1
|
Blayac M, Yegen CH, Marj EA, Rodriguez JCM, Cazaunau M, Bergé A, Epaud R, Coll P, Lanone S. Acute exposure to realistic simulated urban atmospheres exacerbates pulmonary phenotype in cystic fibrosis-like mice. JOURNAL OF HAZARDOUS MATERIALS 2024; 465:133340. [PMID: 38147748 DOI: 10.1016/j.jhazmat.2023.133340] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/01/2023] [Revised: 12/19/2023] [Accepted: 12/19/2023] [Indexed: 12/28/2023]
Abstract
Cystic Fibrosis (CF) is a lethal genetic disorder caused by pathogenic mutations of the CFTR gene. CF patients show a high phenotypic variability of unknown origin. In this context, the present study was therefore dedicated to investigating the effects of acute exposure to air pollution on the pulmonary morbidity of a CF-like mice model. To achieve our aim, we developed a multidisciplinary approach and designed an innovative protocol using a simulation chamber reproducing multiphasic chemical processes at the laboratory. A particular attention was paid to modulate the composition of these simulated atmospheres, in terms of concentrations of gaseous and particulate pollutants. Exposure to simulated urban atmospheres induced mucus secretion and increased inflammatory biomarkers levels, oxidative stress as well as expression of lung remodeling actors in both WT and CF-like mice. The latter were more susceptible to develop such a response. Though we could not establish direct mechanistic link between biological responses and specific components, the type of immune response induced depended on the chemical composition of the atmospheres. Overall, we demonstrated that air pollution is an important determinant of CF-like lung phenotypic variability and emphasized the added value of considering air pollution with a multi-pollutant approach.
Collapse
Affiliation(s)
- Marion Blayac
- Univ Paris Est Creteil, INSERM, IMRB, F-94010 Créteil, France
| | | | - Elie Al Marj
- Université de Paris Cité and Univ Paris Est Créteil, CNRS, LISA, F-75013 Paris, France
| | | | - Mathieu Cazaunau
- Univ Paris Est Creteil and Université de Paris, CNRS, LISA, F-94010 Créteil, France
| | - Antonin Bergé
- Université de Paris Cité and Univ Paris Est Créteil, CNRS, LISA, F-75013 Paris, France
| | - Ralph Epaud
- Univ Paris Est Creteil, INSERM, IMRB, F-94010 Créteil, France; Centre Hospitalier Intercommunal, Centre des Maladies Respiratoires Rares (RespiRare®)- CRCM, 94010 Créteil, France
| | - Patrice Coll
- Université de Paris Cité and Univ Paris Est Créteil, CNRS, LISA, F-75013 Paris, France
| | - Sophie Lanone
- Univ Paris Est Creteil, INSERM, IMRB, F-94010 Créteil, France.
| |
Collapse
|
2
|
Jandacka D, Durcanska D. Seasonal Variation, Chemical Composition, and PMF-Derived Sources Identification of Traffic-Related PM 1, PM 2.5, and PM 2.5-10 in the Air Quality Management Region of Žilina, Slovakia. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2021; 18:ijerph181910191. [PMID: 34639491 PMCID: PMC8508023 DOI: 10.3390/ijerph181910191] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/06/2021] [Revised: 09/20/2021] [Accepted: 09/22/2021] [Indexed: 11/16/2022]
Abstract
Particulate matter (PM) air pollution in the urban environment is mainly related to the presence of potential sources throughout the year. Road transport is one of the most important sources of PM in the urban environment, because it directly affects pedestrians. PM measurements were performed in the city of Žilina, Slovakia, at various road-traffic-related measurement stations over the course of several years. This paper evaluates changes in the concentration of the fine fraction (PM2.5), the ultrafine fraction (PM1), and the coarse fraction (PM2.5–10) over time. PM concentrations were measured by reference gravimetric method. Significant changes in PM concentrations over time due to the diversification of pollution sources and other, secondary factors can be observed from the analysis of the measured data. PM samples were subjected to chemical analysis inductively coupled plasma mass spectrometry (ICP-MS) to determine the concentrations of elements (Mg, Al, Ca, Cr, Cu, Fe, Cd, Sb, Ba, Pb, Ni, and Zn). The seasonal variation of elements was evaluated, and the sources of PM2.5, PM1, and PM2.5–10 were estimated using principal component analysis (PCA) and positive matrix factorization (PMF). PM2.5 (maximum concentration of 148.95 µg/m3 over 24 h) and PM1 (maximum concentration of 110.51 µg/m3 over 24 h) showed the highest concentrations during the heating season, together with the elements Cd, Pb, and Zn, which showed a significant presence in these fractions. On the other hand, PM2.5–10 (maximum concentration of 38.17 µg/m3 over 24 h) was significantly related to the elements Cu, Sb, Ba, Ca, Cr, Fe, Mg, and Al. High correlation coefficients (r ≥ 0.8) were found for the elements Mg, Ca, Fe, Al, Cd, Pb, and Zn in the PM1 fraction, Cd, Pb, and Zn in PM2.5, and Ba, Sb, Fe, Cu, Cr, Mg, Al, and Ca in PM2.5–10. Using PMF analysis, three major sources of PM (abrasion from tires and brakes, road dust resuspension/winter salting, and combustion processes) were identified for the PM2.5 and PM1 fractions, as well as for the coarse PM2.5–10 fraction. This study reveals the importance of non-exhaust PM emissions in the urban environment.
Collapse
|
3
|
The Role of Fossil Fuel Combustion Metals in PM2.5 Air Pollution Health Associations. ATMOSPHERE 2021. [DOI: 10.3390/atmos12091086] [Citation(s) in RCA: 37] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
In this review, we elucidate the central role played by fossil fuel combustion in the health-related effects that have been associated with inhalation of ambient fine particulate matter (PM2.5). We especially focus on individual properties and concentrations of metals commonly found in PM air pollution, as well as their sources and their adverse health effects, based on both epidemiologic and toxicological evidence. It is known that transition metals, such as Ni, V, Fe, and Cu, are highly capable of participating in redox reactions that produce oxidative stress. Therefore, particles that are enriched, per unit mass, in these metals, such as those from fossil fuel combustion, can have greater potential to produce health effects than other ambient particulate matter. Moreover, fossil fuel combustion particles also contain varying amounts of sulfur, and the acidic nature of the resulting sulfur compounds in particulate matter (e.g., as ammonium sulfate, ammonium bisulfate, or sulfuric acid) makes transition metals in particles more bioavailable, greatly enhancing the potential of fossil fuel combustion PM2.5 to cause oxidative stress and systemic health effects in the human body. In general, there is a need to further recognize particulate matter air pollution mass as a complex source-driven mixture, in order to more effectively quantify and regulate particle air pollution exposure health risks.
Collapse
|
4
|
Thompson LC, Walsh L, Martin BL, McGee J, Wood C, Kovalcik K, Pancras JP, Haykal-Coates N, Ledbetter AD, Davies D, Cascio WE, Higuchi M, Hazari MS, Farraj AK. Ambient Particulate Matter and Acrolein Co-Exposure Increases Myocardial Dyssynchrony in Mice via TRPA1. Toxicol Sci 2020; 167:559-572. [PMID: 30351402 DOI: 10.1093/toxsci/kfy262] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Air pollution is a complex mixture of particulate matter and gases linked to adverse clinical outcomes. As such, studying responses to individual pollutants does not account for the potential biological responses resulting from the interaction of various constituents within an ambient air shed. We previously reported that exposure to high levels of the gaseous pollutant acrolein perturbs myocardial synchrony. Here, we examined the effects of repeated, intermittent co-exposure to low levels of concentrated ambient particulates (CAPs) and acrolein on myocardial synchrony and the role of transient receptor potential cation channel A1 (TRPA1), which we previously linked to air pollution-induced sensitization to triggered cardiac arrhythmia. Female B6129 and Trpa1-/- mice (n = 6/group) were exposed to filtered air (FA), CAPs (46 µg/m3 of PM2.5), Acrolein (0.42 ppm), or CAPs+Acrolein for 3 h/day, 2 days/week for 4 weeks. Cardiac ultrasound was conducted to assess cardiac synchronicity and function before and after the first exposure and after the final exposure. Heart rate variability (HRV), an indicator of autonomic tone, was assessed after the final exposure. Strain delay (time between peak strain in adjacent cardiac wall segments), an index of myocardial dyssynchrony, increased by 5-fold after the final CAPs+Acrolein exposure in B6129 mice compared with FA, CAPs, or Acrolein-exposed B6129 mice, and CAPs+Acrolein-exposed Trpa1-/- mice. Only exposure to acrolein alone increased the HRV high frequency domain (5-fold) in B6129 mice, but not in Trpa1-/- mice. Thus, repeated inhalation of pollutant mixtures may increase risk for cardiac responses compared with single or multiple exposures to individual pollutants through TRPA1 activation.
Collapse
Affiliation(s)
- Leslie C Thompson
- Environmental Public Health Division, National Health and Environmental Effects Research Laboratory
| | - Leon Walsh
- Environmental Public Health Division, National Health and Environmental Effects Research Laboratory
| | - Brandi L Martin
- Oak Ridge Institute for Science and Education, Oak Ridge, TN 37830
| | - John McGee
- Environmental Public Health Division, National Health and Environmental Effects Research Laboratory
| | - Charles Wood
- Integrated Systems Toxicology Division, National Health and Environmental Effects Research Laboratory
| | - Kasey Kovalcik
- Exposure Methods & Measurements Division, National Exposure Research Laboratory, United States Environmental Protection Agency, Research Triangle Park, North Carolina 27711
| | - Joseph Patrick Pancras
- Environmental Public Health Division, National Health and Environmental Effects Research Laboratory
| | - Najwa Haykal-Coates
- Environmental Public Health Division, National Health and Environmental Effects Research Laboratory
| | - Allen D Ledbetter
- Environmental Public Health Division, National Health and Environmental Effects Research Laboratory
| | - David Davies
- Environmental Public Health Division, National Health and Environmental Effects Research Laboratory
| | - Wayne E Cascio
- Environmental Public Health Division, National Health and Environmental Effects Research Laboratory
| | - Mark Higuchi
- Environmental Public Health Division, National Health and Environmental Effects Research Laboratory
| | - Mehdi S Hazari
- Environmental Public Health Division, National Health and Environmental Effects Research Laboratory
| | - Aimen K Farraj
- Environmental Public Health Division, National Health and Environmental Effects Research Laboratory
| |
Collapse
|
5
|
Kodavanti UP. Susceptibility Variations in Air Pollution Health Effects: Incorporating Neuroendocrine Activation. Toxicol Pathol 2019; 47:962-975. [PMID: 31594484 PMCID: PMC9353182 DOI: 10.1177/0192623319878402] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/03/2023]
Abstract
Diverse host factors/phenotypes may exacerbate or diminish biological responses induced by air pollutant exposure. We lack an understanding of biological indicators of environmental exposures that culminate in a physiological response versus those that lead to adversity. Variations in response phenotype might arise centrally and/or at the local tissue level. In addition to genetic differences, the current evidence supports the roles of preexisting cardiopulmonary diseases, diabetes, diet, adverse prenatal environments, neurobehavioral disorders, childhood infections, microbiome, sex, and psychosocial stressors in modifying the susceptibility to air pollutant exposures. Animal models of human diseases, obesity, nutritional inadequacies, and neurobehavioral conditions have been compared with healthy controls to understand the causes of variations in susceptibility. Although psychosocial stressors have been associated with increased susceptibility to air pollutant effects, the contribution of neuroendocrine stress pathways in mediating these effects is just emerging. The new findings of neuroendocrine activation leading to systemic metabolic and immunological effects of air pollutants, and the potential contribution to allostatic load, emphasize the consideration of these mechanisms into susceptibility. Variations in susceptibility to air pollution health effects are likely to underlie host genetic and physiological conditions in concert with disrupted neuroendocrine circuitry that alters physiological stability under the influence of stressors.
Collapse
Affiliation(s)
- Urmila P Kodavanti
- Environmental Public Health Division, National Health and Environmental Effects Research Laboratory, US Environmental Protection Agency, Research Triangle Park, NC, USA
| |
Collapse
|
6
|
Dugheri S, Mucci N, Cappelli G, Bonari A, Garzaro G, Marrubini G, Bartolucci G, Campagna M, Arcangeli G. Monitoring of Air-Dispersed Formaldehyde and Carbonyl Compounds as Vapors and Adsorbed on Particulate Matter by Denuder-Filter Sampling and Gas Chromatographic Analysis. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2019; 16:E1969. [PMID: 31163683 PMCID: PMC6603861 DOI: 10.3390/ijerph16111969] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/19/2019] [Revised: 05/30/2019] [Accepted: 06/01/2019] [Indexed: 12/13/2022]
Abstract
Carbonyl compounds (CCs) are products present both as vapors and as condensed species adsorbed on the carbonaceous particle matter dispersed in the air of urban areas, due to vehicular traffic and human activities. Chronic exposure to CCs is a potential health risk given the toxicity of these chemicals. The present study reports on the measurement of the concentrations of 14 CCs in air as vapors and 2.5 µm fraction PM by the ENVINT GAS08/16 gas/aerosol sampler, a serial sampler that uses annular denuder, as sampling device. The 14 CCs were derivatized during sampling prior to gas-chromatographic separation and multiple detection by mass spectrometry, nitrogen-phosphorus thermionic, electron capture detection. Outdoor air multiple samples were collected in four locations in the urban area of Florence. The results evidenced that formaldehyde, acetaldehyde, and acetone were the more abundant CCs in the studied areas. The data collected was discussed considering the particle to vapor ratio of each CC found. The CCs pollution picture obtained was tentatively related to the nature and intensity of the traffic transiting by the sampling sites. This approach allowed to determine 14 CCs in both concentrated and diluted samples and is proposed as a tool for investigating outdoor and indoor pollution.
Collapse
Affiliation(s)
- Stefano Dugheri
- Industrial Hygiene and Toxicology Laboratory, Careggi University Hospital, 50134 Florence, Italy.
| | - Nicola Mucci
- Department of Experimental and Clinical Medicine, University of Florence, 50134 Florence, Italy.
| | - Giovanni Cappelli
- Department of Experimental and Clinical Medicine, University of Florence, 50134 Florence, Italy.
| | - Alessandro Bonari
- General Laboratory, Careggi University Hospital, 50134 Florence, Italy.
| | - Giacomo Garzaro
- Department of Public Health Sciences and Pediatrics, University of Turin, 10126 Turin, Italy.
| | - Giorgio Marrubini
- Department of Drug Sciences, University of Pavia, 27100 Pavia, Italy.
| | - Gianluca Bartolucci
- Department of Neurosciences, Psychology, Drug Research and Child Health Section of Pharmaceutical and Nutraceutical Sciences, University of Florence, 50134 Florence, Italy.
| | - Marcello Campagna
- Department of Medical Sciences and Public Health, University of Cagliari, 09124 Cagliari, Italy.
| | - Giulio Arcangeli
- Department of Experimental and Clinical Medicine, University of Florence, 50134 Florence, Italy.
| |
Collapse
|
7
|
Kastury F, Smith E, Juhasz AL. A critical review of approaches and limitations of inhalation bioavailability and bioaccessibility of metal(loid)s from ambient particulate matter or dust. THE SCIENCE OF THE TOTAL ENVIRONMENT 2017; 574:1054-1074. [PMID: 27672736 DOI: 10.1016/j.scitotenv.2016.09.056] [Citation(s) in RCA: 156] [Impact Index Per Article: 19.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/01/2016] [Revised: 09/06/2016] [Accepted: 09/08/2016] [Indexed: 05/04/2023]
Abstract
Inhalation of metal(loid)s in ambient particulate matter (APM) represents a significant exposure pathway to humans. Although exposure assessment associated with this pathway is currently based on total metal(loid) content, a bioavailability (i.e. absorption in the systemic circulation) and/or bioaccessibility (i.e. solubility in simulated lung fluid) based approach may more accurately quantify exposure. Metal(loid) bioavailability-bioaccessibility assessment from APM is inherently complex and lacks consensus. This paper reviews the discrepancies that impede the adoption of a universal protocol for the assessment of inhalation bioaccessibility. Exposure assessment approaches for in-vivo bioavailability, in-vitro cell culture and in-vitro bioaccessibility (composition of simulated lungs fluid, physico-chemical and methodological considerations) are critiqued in the context of inhalation exposure refinement. An important limitation of bioavailability and bioaccessibility studies is the use of considerably higher than environmental metal(loid) concentration, which diminishing their relevance to human exposure scenarios. Similarly, individual metal(loid) studies have been criticised due to complexities of APM metal(loid) mixtures which may impart synergistic or antagonistic effects compared to single metal(loid) exposure. Although a number of different simulated lung fluid (SLF) compositions have been used in metal(loid) bioaccessibility studies, information regarding the comparative leaching efficiency among these different SLF and comparisons to in-vivo bioavailability data is lacking. In addition, the particle size utilised is often not representative of what is deposited in the lungs while assay parameters (extraction time, solid to liquid ratio, temperature and agitation) are often not biologically relevant. Research needs are identified in order to develop robust in-vitro bioaccessibility protocols for the assessment or prediction of metal(loid) bioavailability in APM for the refinement of inhalation exposure.
Collapse
Affiliation(s)
- Farzana Kastury
- Future Industries Institute, University of South Australia, Mawson Lakes Campus, Adelaide, SA 5095, Australia.
| | - Euan Smith
- Future Industries Institute, University of South Australia, Mawson Lakes Campus, Adelaide, SA 5095, Australia
| | - Albert L Juhasz
- Future Industries Institute, University of South Australia, Mawson Lakes Campus, Adelaide, SA 5095, Australia
| |
Collapse
|
8
|
Kodavanti UP, Ledbetter AD, Thomas RF, Richards JE, Ward WO, Schladweiler MC, Costa DL. Variability in ozone-induced pulmonary injury and inflammation in healthy and cardiovascular-compromised rat models. Inhal Toxicol 2016; 27 Suppl 1:39-53. [PMID: 26667330 DOI: 10.3109/08958378.2014.954169] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
The molecular bases for variability in air pollutant-induced pulmonary injury due to underlying cardiovascular (CVD) and/or metabolic diseases are unknown. We hypothesized that healthy and genetic CVD-prone rat models will exhibit exacerbated response to acute ozone exposure dependent on the type and severity of disease. Healthy male 12-14-week-old Wistar Kyoto (WKY), Wistar (WS) and Sprague Dawley (SD); and CVD-compromised spontaneously hypertensive (SH), Fawn-Hooded hypertensive (FHH), stroke-prone spontaneously hypertensive (SHSP), obese spontaneously hypertensive heart failure (SHHF) and obese JCR (JCR) rats were exposed to 0.0, 0.25, 0.5, or 1.0 ppm ozone for 4 h; pulmonary injury and inflammation were analyzed immediately following (0-h) or 20-h later. Baseline bronchoalveolar lavage fluid (BALF) protein was higher in CVD strains except for FHH when compared to healthy. Ozone-induced increases in protein and inflammation were concentration-dependent within each strain but the degree of response varied from strain to strain and with time. Among healthy rats, SD were least affected. Among CVD strains, lean rats were more susceptible to protein leakage from ozone than obese rats. Ozone caused least neutrophilic inflammation in SH and SHHF while SHSP and FHH were most affected. BALF neutrophils and protein were poorly correlated when considering the entire dataset (r = 0.55). The baseline and ozone-induced increases in cytokine mRNA varied markedly between strains and did not correlate with inflammation. These data illustrate that the degree of ozone-induced lung injury/inflammation response is likely influenced by both genetic and physiological factors that govern the nature of cardiovascular compromise in CVD models.
Collapse
Affiliation(s)
| | | | | | | | - William O Ward
- b Research Cores Unit, National Health and Environmental Effects Research Laboratory , and
| | | | - Daniel L Costa
- c National Program for Air Climate and Energy Research, U.S. Environmental Protection Agency , Research Triangle Park , NC , USA
| |
Collapse
|
9
|
Miller DB, Snow SJ, Schladweiler MC, Richards JE, Ghio AJ, Ledbetter AD, Kodavanti UP. Acute Ozone-Induced Pulmonary and Systemic Metabolic Effects Are Diminished in Adrenalectomized Rats. Toxicol Sci 2016; 150:312-22. [PMID: 26732886 DOI: 10.1093/toxsci/kfv331] [Citation(s) in RCA: 57] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Acute ozone exposure increases circulating stress hormones and induces metabolic alterations in animals. We hypothesized that the increase of adrenal-derived stress hormones is necessary for both ozone-induced metabolic effects and lung injury. Male Wistar-Kyoto rats underwent bilateral adrenal demedullation (DEMED), total bilateral adrenalectomy (ADREX), or sham surgery (SHAM). After a 4 day recovery, rats were exposed to air or ozone (1 ppm), 4 h/day for 1 or 2 days and responses assessed immediately postexposure. Circulating adrenaline levels dropped to nearly zero in DEMED and ADREX rats relative to SHAM. Corticosterone tended to be low in DEMED rats and dropped to nearly zero in ADREX rats. Adrenalectomy in air-exposed rats caused modest changes in metabolites and lung toxicity parameters. Ozone-induced hyperglycemia and glucose intolerance were markedly attenuated in DEMED rats with nearly complete reversal in ADREX rats. Ozone increased circulating epinephrine and corticosterone in SHAM but not in DEMED or ADREX rats. Free fatty acids (P = .15) and branched-chain amino acids increased after ozone exposure in SHAM but not in DEMED or ADREX rats. Lung minute volume was not affected by surgery or ozone but ozone-induced labored breathing was less pronounced in ADREX rats. Ozone-induced increases in lung protein leakage and neutrophilic inflammation were markedly reduced in DEMED and ADREX rats (ADREX > DEMED). Ozone-mediated decreases in circulating white blood cells in SHAM were not observed in DEMED and ADREX rats. We demonstrate that ozone-induced peripheral metabolic effects and lung injury/inflammation are mediated through adrenal-derived stress hormones likely via the activation of stress response pathway.
Collapse
Affiliation(s)
- Desinia B Miller
- *Curriculum in Toxicology, University of North Carolina-Chapel Hill, Chapel Hill, North Carolina 27599; and
| | - Samantha J Snow
- Environmental Public Health Division, National Health and Environmental Effects Research Laboratory, U.S. Environmental Protection Agency, Research Triangle Park, North Carolina 27711
| | - Mette C Schladweiler
- Environmental Public Health Division, National Health and Environmental Effects Research Laboratory, U.S. Environmental Protection Agency, Research Triangle Park, North Carolina 27711
| | - Judy E Richards
- Environmental Public Health Division, National Health and Environmental Effects Research Laboratory, U.S. Environmental Protection Agency, Research Triangle Park, North Carolina 27711
| | - Andrew J Ghio
- Environmental Public Health Division, National Health and Environmental Effects Research Laboratory, U.S. Environmental Protection Agency, Research Triangle Park, North Carolina 27711
| | - Allen D Ledbetter
- Environmental Public Health Division, National Health and Environmental Effects Research Laboratory, U.S. Environmental Protection Agency, Research Triangle Park, North Carolina 27711
| | - Urmila P Kodavanti
- Environmental Public Health Division, National Health and Environmental Effects Research Laboratory, U.S. Environmental Protection Agency, Research Triangle Park, North Carolina 27711
| |
Collapse
|
10
|
Dye JA, Ledbetter AD, Schladweiler MC, Costa DL, Kodavanti UP. Whole body plethysmography reveals differential ventilatory responses to ozone in rat models of cardiovascular disease. Inhal Toxicol 2015; 27 Suppl 1:14-25. [DOI: 10.3109/08958378.2014.954167] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Affiliation(s)
- Janice A. Dye
- Environmental Public Health Division, NHEERL, U.S. Environmental Protection Agency, Research Triangle Park, NC, USA and
| | - Allen D. Ledbetter
- Environmental Public Health Division, NHEERL, U.S. Environmental Protection Agency, Research Triangle Park, NC, USA and
| | - Mette C. Schladweiler
- Environmental Public Health Division, NHEERL, U.S. Environmental Protection Agency, Research Triangle Park, NC, USA and
| | - Daniel L. Costa
- National Program for Air Climate & Energy Research, Office of Research and Development, US Environmental Protection Agency, Research Triangle Park, NC, USA
| | - Urmila P. Kodavanti
- Environmental Public Health Division, NHEERL, U.S. Environmental Protection Agency, Research Triangle Park, NC, USA and
| |
Collapse
|
11
|
Plummer LE, Carosino CM, Bein KJ, Zhao Y, Willits N, Smiley-Jewell S, Wexler AS, Pinkerton KE. Pulmonary inflammatory effects of source-oriented particulate matter from California's San Joaquin Valley. ATMOSPHERIC ENVIRONMENT (OXFORD, ENGLAND : 1994) 2015; 119:174-181. [PMID: 26568698 PMCID: PMC4639935 DOI: 10.1016/j.atmosenv.2015.08.043] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/25/2023]
Abstract
The EPA regulates ambient particulate matter (PM) because substantial associations have been established between PM and health impacts. Presently, regulatory compliance involves broad control of PM emission sources based on mass concentration rather than chemical composition, although PM toxicity is likely to vary depending upon PM physicochemical properties. The overall objective of this study was to help inform source-specific PM emission control regulations. For the first time, source-oriented PM was collected from the atmosphere in Fresno, CA, onto 38 source/size substrates. Mice were exposed via oropharyngeal aspiration to equivalent mass doses [50 μg] of two size fractions: ultrafine (Dp < 0.17μm) and submicron fine (0.17 < Dp < 1 μm) during summer and winter seasons. At 24 hours post-exposure, cellular and biochemical indicators of pulmonary inflammation were evaluated in the bronchoalveolar lavage fluid. Significant inflammatory responses were elicited by vehicle, regional background, and cooking PM sources that were dependent on season and particle size. This is the first study of source-oriented toxicity of atmospheric PM and supports source-specific emissions control strategies.
Collapse
Affiliation(s)
- Laurel E. Plummer
- Center for Health and the Environment, University of California, Davis, One Shields Avenue, Davis, California, 95616 USA
| | - Christopher M. Carosino
- Center for Health and the Environment, University of California, Davis, One Shields Avenue, Davis, California, 95616 USA
| | - Keith J. Bein
- Center for Health and the Environment, University of California, Davis, One Shields Avenue, Davis, California, 95616 USA
- Air Quality Research Center, University of California, Davis, One Shields Avenue, Davis, California, 95616 USA
| | - Yongjing Zhao
- Air Quality Research Center, University of California, Davis, One Shields Avenue, Davis, California, 95616 USA
| | - Neil Willits
- Department of Statistics, University of California, Davis, One Shields Avenue, Davis, California, 95616 USA
| | - Suzette Smiley-Jewell
- Center for Health and the Environment, University of California, Davis, One Shields Avenue, Davis, California, 95616 USA
| | - Anthony S. Wexler
- Air Quality Research Center, University of California, Davis, One Shields Avenue, Davis, California, 95616 USA
| | - Kent E. Pinkerton
- Center for Health and the Environment, University of California, Davis, One Shields Avenue, Davis, California, 95616 USA
| |
Collapse
|
12
|
Farraj AK, Walsh L, Haykal-Coates N, Malik F, McGee J, Winsett D, Duvall R, Kovalcik K, Cascio WE, Higuchi M, Hazari MS. Cardiac effects of seasonal ambient particulate matter and ozone co-exposure in rats. Part Fibre Toxicol 2015; 12:12. [PMID: 25944145 PMCID: PMC4419498 DOI: 10.1186/s12989-015-0087-3] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2014] [Accepted: 03/26/2015] [Indexed: 12/28/2022] Open
Abstract
Background The potential for seasonal differences in the physicochemical characteristics of ambient particulate matter (PM) to modify interactive effects with gaseous pollutants has not been thoroughly examined. The purpose of this study was to compare cardiac responses in conscious hypertensive rats co-exposed to concentrated ambient particulates (CAPs) and ozone (O3) in Durham, NC during the summer and winter, and to analyze responses based on particle mass and chemistry. Methods Rats were exposed once for 4 hrs by whole-body inhalation to fine CAPs alone (target concentration: 150 μg/m3), O3 (0.2 ppm) alone, CAPs plus O3, or filtered air during summer 2011 and winter 2012. Telemetered electrocardiographic (ECG) data from implanted biosensors were analyzed for heart rate (HR), ECG parameters, heart rate variability (HRV), and spontaneous arrhythmia. The sensitivity to triggering of arrhythmia was measured in a separate cohort one day after exposure using intravenously administered aconitine. PM elemental composition and organic and elemental carbon fractions were analyzed by high-resolution inductively coupled plasma–mass spectrometry and thermo-optical pyrolytic vaporization, respectively. Particulate sources were inferred from elemental analysis using a chemical mass balance model. Results Seasonal differences in CAPs composition were most evident in particle mass concentrations (summer, 171 μg/m3; winter, 85 μg/m3), size (summer, 324 nm; winter, 125 nm), organic:elemental carbon ratios (summer, 16.6; winter, 9.7), and sulfate levels (summer, 49.1 μg/m3; winter, 16.8 μg/m3). Enrichment of metals in winter PM resulted in equivalent summer and winter metal exposure concentrations. Source apportionment analysis showed enrichment for anthropogenic and marine salt sources during winter exposures compared to summer exposures, although only 4% of the total PM mass was attributed to marine salt sources. Single pollutant cardiovascular effects with CAPs and O3 were present during both summer and winter exposures, with evidence for unique effects of co-exposures and associated changes in autonomic tone. Conclusions These findings provide evidence for a pronounced effect of season on PM mass, size, composition, and contributing sources, and exposure-induced cardiovascular responses. Although there was inconsistency in biological responses, some cardiovascular responses were evident only in the co-exposure group during both seasons despite variability in PM physicochemical composition. These findings suggest that a single ambient PM metric alone is not sufficient to predict potential for interactive health effects with other air pollutants. Electronic supplementary material The online version of this article (doi:10.1186/s12989-015-0087-3) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Aimen K Farraj
- Environmental Public Health Division, US EPA, 109 TW Alexander Drive, Research Triangle Park, Durham, NC, 27711, USA.
| | - Leon Walsh
- Environmental Public Health Division, US EPA, 109 TW Alexander Drive, Research Triangle Park, Durham, NC, 27711, USA.
| | - Najwa Haykal-Coates
- Environmental Public Health Division, US EPA, 109 TW Alexander Drive, Research Triangle Park, Durham, NC, 27711, USA.
| | - Fatiha Malik
- Environmental Public Health Division, US EPA, 109 TW Alexander Drive, Research Triangle Park, Durham, NC, 27711, USA.
| | - John McGee
- Environmental Public Health Division, US EPA, 109 TW Alexander Drive, Research Triangle Park, Durham, NC, 27711, USA.
| | - Darrell Winsett
- Environmental Public Health Division, US EPA, 109 TW Alexander Drive, Research Triangle Park, Durham, NC, 27711, USA.
| | - Rachelle Duvall
- Human Exposure and Atmospheric Sciences Division, US EPA, 109 TW Alexander Drive, Research Triangle Park, Durham, NC, 27711, USA.
| | - Kasey Kovalcik
- Human Exposure and Atmospheric Sciences Division, US EPA, 109 TW Alexander Drive, Research Triangle Park, Durham, NC, 27711, USA.
| | - Wayne E Cascio
- Environmental Public Health Division, US EPA, 109 TW Alexander Drive, Research Triangle Park, Durham, NC, 27711, USA.
| | - Mark Higuchi
- Environmental Public Health Division, US EPA, 109 TW Alexander Drive, Research Triangle Park, Durham, NC, 27711, USA.
| | - Mehdi S Hazari
- Environmental Public Health Division, US EPA, 109 TW Alexander Drive, Research Triangle Park, Durham, NC, 27711, USA.
| |
Collapse
|
13
|
Bass VL, Schladweiler MC, Nyska A, Thomas RF, Miller DB, Krantz T, King C, Ian Gilmour M, Ledbetter AD, Richards JE, Kodavanti UP. Comparative cardiopulmonary toxicity of exhausts from soy-based biofuels and diesel in healthy and hypertensive rats. Inhal Toxicol 2015; 27:545-56. [PMID: 26514782 PMCID: PMC4768834 DOI: 10.3109/08958378.2015.1060279] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2015] [Revised: 06/03/2015] [Accepted: 06/05/2015] [Indexed: 01/17/2023]
Abstract
Increased use of renewable energy sources raise concerns about health effects of new emissions. We analyzed relative cardiopulmonary health effects of exhausts from (1) 100% soy biofuel (B100), (2) 20% soy biofuel + 80% low sulfur petroleum diesel (B20), and (3) 100% petroleum diesel (B0) in rats. Normotensive Wistar-Kyoto (WKY) and spontaneously hypertensive rats were exposed to these three exhausts at 0, 50, 150 and 500 μg/m(3), 4 h/day for 2 days or 4 weeks (5 days/week). In addition, WKY rats were exposed for 1 day and responses were analyzed 0 h, 1 day or 4 days later for time-course assessment. Hematological parameters, in vitro platelet aggregation, bronchoalveolar lavage fluid (BALF) markers of pulmonary injury and inflammation, ex vivo aortic ring constriction, heart and aorta mRNA markers of vasoconstriction, thrombosis and atherogenesis were analyzed. The presence of pigmented macrophages in the lung alveoli was clearly evident with all three exhausts without apparent pathology. Overall, exposure to all three exhausts produced only modest effects in most endpoints analyzed in both strains. BALF γ-glutamyl transferase (GGT) activity was the most consistent marker and was increased in both strains, primarily with B0 (B0 > B100 > B20). This increase was associated with only modest increases in BALF neutrophils. Small and very acute increases occurred in aorta mRNA markers of vasoconstriction and thrombosis with B100 but not B0 in WKY rats. Our comparative evaluations show modest cardiovascular and pulmonary effects at low concentrations of all exhausts: B0 causing more pulmonary injury and B100 more acute vascular effects. BALF GGT activity could serve as a sensitive biomarker of inhaled pollutants.
Collapse
Affiliation(s)
- Virginia L Bass
- a Environmental Sciences and Engineering, School of Public Health, University of North Carolina , Chapel Hill , NC , USA
| | - Mette C Schladweiler
- b Environmental Public Health Division, National Health and Environmental Effects Research Laboratory, U.S. Environmental Protection Agency , Research Triangle Park , NC , USA
| | - Abraham Nyska
- c Consultant in Toxicologic Pathology, Sackler School of Medicine, Tel Aviv University , Timrat , Israel , and
| | - Ronald F Thomas
- b Environmental Public Health Division, National Health and Environmental Effects Research Laboratory, U.S. Environmental Protection Agency , Research Triangle Park , NC , USA
| | - Desinia B Miller
- d Curriculum in Toxicology, University of North Carolina , Chapel Hill , NC , USA
| | - Todd Krantz
- b Environmental Public Health Division, National Health and Environmental Effects Research Laboratory, U.S. Environmental Protection Agency , Research Triangle Park , NC , USA
| | - Charly King
- b Environmental Public Health Division, National Health and Environmental Effects Research Laboratory, U.S. Environmental Protection Agency , Research Triangle Park , NC , USA
| | - M Ian Gilmour
- b Environmental Public Health Division, National Health and Environmental Effects Research Laboratory, U.S. Environmental Protection Agency , Research Triangle Park , NC , USA
| | - Allen D Ledbetter
- b Environmental Public Health Division, National Health and Environmental Effects Research Laboratory, U.S. Environmental Protection Agency , Research Triangle Park , NC , USA
| | - Judy E Richards
- b Environmental Public Health Division, National Health and Environmental Effects Research Laboratory, U.S. Environmental Protection Agency , Research Triangle Park , NC , USA
| | - Urmila P Kodavanti
- b Environmental Public Health Division, National Health and Environmental Effects Research Laboratory, U.S. Environmental Protection Agency , Research Triangle Park , NC , USA
| |
Collapse
|
14
|
Gray DL, Wallace LA, Brinkman MC, Buehler SS, La Londe C. Respiratory and cardiovascular effects of metals in ambient particulate matter: a critical review. REVIEWS OF ENVIRONMENTAL CONTAMINATION AND TOXICOLOGY 2015; 234:135-203. [PMID: 25385514 DOI: 10.1007/978-3-319-10638-0_3] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/12/2023]
Abstract
In this review, we critically evaluated the epidemiological and toxicological evidence for the role of specific transition metals (As. Cr. Cu. Fe. Mn. Ni. Sc. Ti. V and Zn) in causing or contributing to the respiratory and cardiovascular health effects associated with ambient PM. Although the epidemiologic studies arc suggestive. and both the in vivo and in vitro laboratory studies document the toxicity of specific metals (Fe. Ni. V and Zn). the overall weight of evidence does not convincingly implicate metals as major contributors to health effects. None of the epidemiology studies that we reviewed conclusively implicated specific transition metals as having caused the respiratory and cardiovascular effects associated with ambient levels of PM. However, the studies reviewed tended to be internal ly consistent in identifying some metals (Fe, Ni, V and Zn) more frequently than others (As, Cu, Mn and Sc) as having positive associations wi th health effects. The major problem wi th which the epidemiological studies were faced was classifying and quantifying exposure. Community and population exposures to metals or other components of ambient PM were inferred from centrally- located samplers that may not accurately represent individual level exposures. Only a few authors reported findings that did not support the stated premise of the study; indeed, statistic ally significant associations are not necessarily biologically significant. It is likely that ·'negative studies" are under-represented in the published literature, making it a challenge to achieve a balanced evaluation of the role of metals in causing health effects associated with ambient PM. Both the in vivo and in vitro study results demonstrated that individual metals (Cu. Fe. Ni. V and Zn) and extracts of metals from ambient PM sources can produce acute inflammatory responses. However. the doses administered to laboratory animals were many orders of magnitude greater than what humans experience from breathing ambient air. The studies that used intratracheal instillation have the advantage of delivering a known dose to a specific anatomical location. but arc not analogous to an inhaled dose that is distributed over the surface area of the respiratory tract. Studies. in which laboratory animals or human volunteers inhaled CAPs best represent exposures to the general human population. The in vivo and in vitro studies reviewed provide indications that the probable mechanisms involved in the respiratory and cardiac effects from high metal exposures include: an inflammatory response mediated by formation of ROS, upregulation of genes coding for inflammatory cytokines, altered expression of genes involved in cell signaling pathways and maintenance of metals homeostasis.The fact that doses of metals many orders of magnitude greater than those existing in ambient air were required to produce measurable adverse effects in animals makes it doubtful that metals play any major role in respiratory and cardiovascular effects produced from human exposure to ambient PM. We suggest that future research priorities should focus on testing at more environmentally relevant exposure levels and that any new toxicological studies be written to include dosages in units that can be easily compared to human exposure levels.
Collapse
Affiliation(s)
- Deborah L Gray
- Stantec Consulting Services, Inc., 1500 Lake Shore Drive, Suite 100, Columbus, OH, 43204, USA,
| | | | | | | | | |
Collapse
|
15
|
Lippmann M. Toxicological and epidemiological studies of cardiovascular effects of ambient air fine particulate matter (PM2.5) and its chemical components: coherence and public health implications. Crit Rev Toxicol 2014; 44:299-347. [PMID: 24494826 DOI: 10.3109/10408444.2013.861796] [Citation(s) in RCA: 119] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Abstract
Recent investigations on PM2.5 constituents' effects in community residents have substantially enhanced our knowledge on the impacts of specific components, especially the HEI-sponsored National Particle Toxicity Component (NPACT) studies at NYU and UW-LRRI that addressed the impact of long-term PM2.5 exposure on cardiovascular disease (CVD) effects. NYU's mouse inhalation studies at five sites showed substantial variations in aortic plaque progression by geographic region that was coherent with the regional variation in annual IHD mortality in the ACS-II cohort, with both the human and mouse responses being primarily attributable to the coal combustion source category. The UW regressions of associations of CVD events and mortality in the WHI cohort, and of CIMT and CAC progression in the MESA cohort, indicated that [Formula: see text] had stronger associations with CVD-related human responses than OC, EC, or Si. The LRRI's mice had CVD-related biomarker responses to [Formula: see text]. NYU also identified components most closely associated with daily hospital admissions (OC, EC, Cu from traffic and Ni and V from residual oil). For daily mortality, they were from coal combustion ([Formula: see text], Se, and As). While the recent NPACT research on PM2.5 components that affect CVD has clearly filled some major knowledge gaps, and helped to define remaining uncertainties, much more knowledge is needed on the effects in other organ systems if we are to identify and characterize the most effective and efficient means for reducing the still considerable adverse health impacts of ambient air PM. More comprehensive speciation data are needed for better definition of human responses.
Collapse
Affiliation(s)
- Morton Lippmann
- Department of Environmental Medicine, New York University School of Medicine , Tuxedo, NY , USA
| |
Collapse
|
16
|
Determination of carbonyl compounds in particulate matter PM2.5 by in-tube solid-phase microextraction coupled to capillary liquid chromatography/mass spectrometry. Talanta 2013; 115:876-80. [DOI: 10.1016/j.talanta.2013.07.003] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2013] [Revised: 07/01/2013] [Accepted: 07/03/2013] [Indexed: 11/23/2022]
|
17
|
Kreider ML, Doyle-Eisele M, Russell RG, McDonald JD, Panko JM. Evaluation of potential for toxicity from subacute inhalation of tire and road wear particles in rats. Inhal Toxicol 2013; 24:907-17. [PMID: 23121300 DOI: 10.3109/08958378.2012.730071] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
Tire and road wear particles (TRWP) are a component of ambient particulate matter (PM) produced from the interaction of tires with the roadway. Inhalation of PM has been associated with cardiopulmonary morbidities and mortalities thought to stem from pulmonary inflammation. To determine whether TRWP may contribute to these events, the effects of subacute inhalation of TRWP were evaluated in rats. TRWP were collected at a road simulator laboratory, aerosolized, and used to expose male and female Sprague-Dawley rats (n = 10/treatment group) at ~10, 40, or 100 μg/m³ TRWP via nose-only inhalation for 6 h/day for 28 days. Particle size distribution of the aerosolized TRWP was found to be within the respirable range for rats. Toxicity was assessed following OECD guidelines (TG 412). No TRWP-related effects were observed on survival, clinical observations, body or organ weights, gross pathology, food consumption, immune system endpoints, serum chemistry, or biochemical markers of inflammation or cytotoxicity. Rare to few focal areas of subacute inflammatory cell infiltration associated with TWRP exposure were observed in the lungs of one mid and four high exposure animals, but not the low-exposure animals. These alterations were minimal, widely scattered and considered insufficient in extent or severity to have an impact on pulmonary function. Furthermore, it is expected that these focal lesions would remain limited and may undergo resolution without long-term or progressive pulmonary alterations. Therefore, from this study we identified a no-observable-adverse-effect-level (NOAEL) of 112 μg/m³ of TRWP in rats for future use in risk assessment of TRWP.
Collapse
Affiliation(s)
- Marisa L Kreider
- ChemRisk, LLC, 20 Stanwix Street, Pittsburgh, Pennsylvania 15222, USA.
| | | | | | | | | |
Collapse
|
18
|
Plummer LE, Ham W, Kleeman MJ, Wexler A, Pinkerton KE. Influence of season and location on pulmonary response to California's San Joaquin Valley airborne particulate matter. JOURNAL OF TOXICOLOGY AND ENVIRONMENTAL HEALTH. PART A 2012; 75:253-71. [PMID: 22409489 DOI: 10.1080/15287394.2012.640102] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/07/2023]
Abstract
Season and location have documented impacts on particulate matter (PM)-induced morbidity and mortality. Seasonal and regional influences on the physical and chemical properties of PM₂.₅ (also known as fine/ultrafine PM) contribute to differences in exposure burden and adverse respiratory health outcomes experienced in California's San Joaquin Valley (SJV), which ranks among the worst in the nation for PM pollution. Current regulations are driven by the association between mass concentrations and adverse health outcomes. However, this association is difficult to reproduce in toxicological studies and suggests a role for other parameters, such as chemical composition, involved in PM-induced adverse pulmonary health effects. Pulmonary toxicity of summer/winter and rural/urban SJV PM was evaluated given the unique geography, metereology and sources of the region. Healthy juvenile male mice inhaled summer/winter and urban/rural concentrated ambient PM (CAP) or ambient PM for 6 h/d for 10 d, and pulmonary inflammatory responses were measured 48 h postexposure. Exposure concentrations ranged from 10 to 20 μg/m³ for ambient air control mice and from 86 to 284 μg/m³. Mice exposed to rural but not urban CAP, displayed significant neutrophil influx that was more than 50-fold greater than control levels, which ranged from 21 to 60 neutrophils/ml for all experiments. Pulmonary neutrophilic inflammation was measured despite lower CAP concentrations in the rural compared to the urban location and in the absence of cytotoxicity, oxidative stress, or elevations in cytokine and chemokines expression. Further, the inflammatory responses induced by rural winter CAP were associated with the highest levels of organic carbon (OC) and nitrates (NO₃⁻). Evidence indicates that regional/seasonal influences on PM chemical composition rather than PM mass may be associated with increased PM-induced adverse health effects.
Collapse
Affiliation(s)
- Laurel E Plummer
- Center for Health and the Environment, University of California Davis, Davis, CA 95616, USA
| | | | | | | | | |
Collapse
|
19
|
Hazari MS, Haykal-Coates N, Winsett DW, Krantz QT, King C, Costa DL, Farraj AK. TRPA1 and sympathetic activation contribute to increased risk of triggered cardiac arrhythmias in hypertensive rats exposed to diesel exhaust. ENVIRONMENTAL HEALTH PERSPECTIVES 2011; 119:951-7. [PMID: 21377951 PMCID: PMC3223009 DOI: 10.1289/ehp.1003200] [Citation(s) in RCA: 113] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/10/2010] [Accepted: 03/04/2011] [Indexed: 05/20/2023]
Abstract
BACKGROUND Diesel exhaust (DE), which is emitted from on- and off-road sources, is a complex mixture of toxic gaseous and particulate components that leads to triggered adverse cardiovascular effects such as arrhythmias. OBJECTIVE We hypothesized that increased risk of triggered arrhythmias 1 day after DE exposure is mediated by airway sensory nerves bearing transient receptor potential (TRP) channels [e.g., transient receptor potential cation channel, member A1 (TRPA1)] that, when activated by noxious chemicals, can cause a centrally mediated autonomic imbalance and heightened risk of arrhythmia. METHODS Spontaneously hypertensive rats implanted with radiotelemeters were whole-body exposed to either 500 μg/m³ (high) or 150 μg/m³ (low) whole DE (wDE) or filtered DE (fDE), or to filtered air (controls), for 4 hr. Arrhythmogenesis was assessed 24 hr later by continuous intravenous infusion of aconitine, an arrhythmogenic drug, while heart rate (HR) and electrocardiogram (ECG) were monitored. RESULTS Rats exposed to wDE or fDE had slightly higher HRs and increased low-frequency:high-frequency ratios (sympathetic modulation) than did controls; ECG showed prolonged ventricular depolarization and shortened repolarization periods. Rats exposed to wDE developed arrhythmia at lower doses of aconitine than did controls; the dose was even lower in rats exposed to fDE. Pretreatment of low wDE-exposed rats with a TRPA1 antagonist or sympathetic blockade prevented the heightened sensitivity to arrhythmia. CONCLUSIONS These findings suggest that a single exposure to DE increases the sensitivity of the heart to triggered arrhythmias. The gaseous components appear to play an important role in the proarrhythmic response, which may be mediated by activation of TRPA1, and subsequent sympathetic modulation. As such, toxic inhalants may partly exhibit their toxicity by lowering the threshold for secondary triggers, complicating assessment of their risk.
Collapse
Affiliation(s)
- Mehdi S Hazari
- Environmental Public Health Division, U.S. Environmental Protection Agency, Research Triangle Park, North Carolina 27711, USA.
| | | | | | | | | | | | | |
Collapse
|
20
|
Rohr AC, Kamal A, Morishita M, Mukherjee B, Keeler GJ, Harkema JR, Wagner JG. Altered heart rate variability in spontaneously hypertensive rats is associated with specific particulate matter components in Detroit, Michigan. ENVIRONMENTAL HEALTH PERSPECTIVES 2011; 119:474-80. [PMID: 21163724 PMCID: PMC3080928 DOI: 10.1289/ehp.1002831] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/05/2010] [Accepted: 12/15/2010] [Indexed: 05/10/2023]
Abstract
BACKGROUND Exposure to fine particulate matter [aerodynamic diameter ≤ 2.5 μm (PM2.5)] is linked to adverse cardiopulmonary health effects; however, the responsible constituents are not well defined. OBJECTIVE We used a rat model to investigate linkages between cardiac effects of concentrated ambient particle (CAP) constituents and source factors using a unique, highly time-resolved data set. METHODS Spontaneously hypertensive rats inhaled Detroit Michigan, CAPs during summer or winter (2005-2006) for 13 consecutive days. Electrocardiogram data were recorded continuously, and heart rate (HR) and heart rate variability (HRV) metrics were derived. Extensive CAP characterization, including use of a Semicontinuous Elements in Aerosol Sampler (SEAS), was performed, and positive matrix factorization was applied to investigate source factors. RESULTS Mean CAP exposure concentrations were 518 μg/m(3) and 357 μg/m(3) in the summer and winter, respectively. Significant reductions in the standard deviation of the normal-to-normal intervals (SDNN) in the summer were strongly associated with cement/lime, iron/steel, and gasoline/diesel factors, whereas associations with the sludge factor and components were less consistent. In winter, increases in HR were associated with a refinery factor and its components. CAP-associated HR decreases in winter were linked to sludge incineration, cement/lime, and coal/secondary sulfate factors and most of their associated components. Specific relationships for increased root mean square of the standard deviation of successive normal-to-normal intervals (RMSSD) in winter were difficult to determine because of lack of consistency between factors and associated constituents. CONCLUSIONS Our results indicate that specific modulation of cardiac function in Detroit was most strongly linked to local industrial sources. Findings also highlight the need to consider both factor analytical results and component-specific results when interpreting findings.
Collapse
Affiliation(s)
- Annette C Rohr
- Electric Power Research Institute, Palo Alto, California, USA.
| | | | | | | | | | | | | |
Collapse
|
21
|
Kodavanti UP, Thomas R, Ledbetter AD, Schladweiler MC, Shannahan JH, Wallenborn JG, Lund AK, Campen MJ, Butler EO, Gottipolu RR, Nyska A, Richards JE, Andrews D, Jaskot RH, McKee J, Kotha SR, Patel RB, Parinandi NL. Vascular and cardiac impairments in rats inhaling ozone and diesel exhaust particles. ENVIRONMENTAL HEALTH PERSPECTIVES 2011; 119:312-8. [PMID: 20980218 PMCID: PMC3059992 DOI: 10.1289/ehp.1002386] [Citation(s) in RCA: 92] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/21/2010] [Accepted: 10/27/2010] [Indexed: 05/24/2023]
Abstract
BACKGROUND Mechanisms of cardiovascular injuries from exposure to gas and particulate air pollutants are unknown. OBJECTIVE We sought to determine whether episodic exposure of rats to ozone or diesel exhaust particles (DEP) causes differential cardiovascular impairments that are exacerbated by ozone plus DEP. METHODS AND RESULTS Male Wistar Kyoto rats (10-12 weeks of age) were exposed to air, ozone (0.4 ppm), DEP (2.1 mg/m(3)), or ozone (0.38 ppm) + DEP (2.2 mg/m(3)) for 5 hr/day, 1 day/week for 16 weeks, or to air, ozone (0.51 or 1.0 ppm), or DEP (1.9 mg/m(3)) for 5 hr/day for 2 days. At the end of each exposure period, we examined pulmonary and cardiovascular biomarkers of injury. In the 16-week study, we observed mild pulmonary pathology in the ozone, DEP, and ozone + DEP exposure groups, a slight decrease in circulating lymphocytes in the ozone and DEP groups, and decreased platelets in the DEP group. After 16 weeks of exposure, mRNA biomarkers of oxidative stress (hemeoxygenase-1), thrombosis (tissue factor, plasminogen activator inhibitor-1, tissue plasminogen activator, and von Willebrand factor), vasoconstriction (endothelin-1, endothelin receptors A and B, endothelial NO synthase) and proteolysis [matrix metalloprotease (MMP)-2, MMP-3, and tissue inhibitor of matrix metalloprotease-2] were increased by DEP and/or ozone in the aorta, but not in the heart. Aortic LOX-1 (lectin-like oxidized low-density lipoprotein receptor-1) mRNA and protein increased after ozone exposure, and LOX-1 protein increased after exposure to ozone + DEP. RAGE (receptor for advanced glycation end products) mRNA increased in the ozone + DEP group. Exposure to ozone or DEP depleted cardiac mitochondrial phospholipid fatty acids (DEP > ozone). The combined effect of ozone and DEP exposure was less pronounced than exposure to either pollutant alone. Exposure to ozone or DEP for 2 days (acute) caused mild changes in the aorta. CONCLUSIONS In animals exposed to ozone or DEP alone for 16 weeks, we observed elevated biomarkers of vascular impairments in the aorta, with the loss of phospholipid fatty acids in myocardial mitochondria. We conclude that there is a possible role of oxidized lipids and protein through LOX-1 and/or RAGE signaling.
Collapse
Affiliation(s)
- Urmila P Kodavanti
- Environmental Public Health Division, National Health and Environmental Effects Research Laboratory, Office of Research and Development, U.S. Environmental Protection Agency, Research Triangle Park, North Carolina 27709, USA.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
22
|
Rohr AC, Wagner JG, Morishita M, Kamal A, Keeler GJ, Harkema JR. Cardiopulmonary responses in spontaneously hypertensive and Wistar-Kyoto rats exposed to concentrated ambient particles from Detroit, Michigan. Inhal Toxicol 2010; 22:522-33. [PMID: 20384466 DOI: 10.3109/08958370903524509] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
Toxicological effects have been observed in rats exposed to concentrated ambient particles (CAPs) from different regions of the United States. The objective of this study was to evaluate the cardiopulmonary and systemic effects of CAPs in Detroit. The authors stationed a mobile concentrator at a location near major traffic and industrial sources. Spontaneously hypertensive (SH) and Wistar-Kyoto (WKY) rats were exposed to fine CAPs (diameter < 0.1-2.5 microm) 8 h/day for 13 consecutive days. Animals were implanted with telemeters, and electrocardiogram data were recorded continuously. Bronchoalveolar lavage (BAL) fluid and plasma were analyzed. Comprehensive exposure monitoring was conducted, including CAPs components. CAPs exposure concentrations were 103-918 microg/m(3) (mean = 502 microg/m(3)). The authors found no statistically significant differences in heart rate or SDNN (standard deviation of the normal-to-normal intervals), a measure of heart rate variability, between CAPs-exposed and control rats. The authors found significantly higher levels of C-reactive protein in the serum of CAPs-exposed SH rats compared with air-exposed animals. Protein in BAL fluid was elevated in WKY rats exposed to CAPs. Measurement of trace metals in lung tissue showed elevated concentrations of V, Sb, La, and Ce in CAPs-exposed SH animals versus controls. These elements are generally associated with oil combustion, oil refining, waste incineration, and traffic. Examination of wind rose data from the exposure period confirmed that the predominant wind direction was SSW, the direction of many of the aforementioned sources. These results indicate that ambient particles in Detroit can cause mild pulmonary and systemic changes in rats, and suggest the importance of local PM(2.5) sources in these effects.
Collapse
Affiliation(s)
- Annette C Rohr
- Electric Power Research Institute, Palo Alto, California 94304, USA.
| | | | | | | | | | | |
Collapse
|
23
|
Kang CM, Gupta T, Ruiz PA, Wolfson JM, Ferguson ST, Lawrence JE, Rohr AC, Godleski J, Koutrakis P. Aged particles derived from emissions of coal-fired power plants: the TERESA field results. Inhal Toxicol 2010; 23 Suppl 2:11-30. [PMID: 20462390 DOI: 10.3109/08958371003728040] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
The Toxicological Evaluation of Realistic Emissions Source Aerosols (TERESA) study was carried out at three US coal-fired power plants to investigate the potential toxicological effects of primary and photochemically aged (secondary) particles using in situ stack emissions. The exposure system designed successfully simulated chemical reactions that power plant emissions undergo in a plume during transport from the stack to receptor areas (e.g., urban areas). Test atmospheres developed for toxicological experiments included scenarios to simulate a sequence of atmospheric reactions that can occur in a plume: (1) primary emissions only; (2) H(2)SO(4) aerosol from oxidation of SO(2); (3) H(2)SO(4) aerosol neutralized by gas-phase NH(3); (4) neutralized H(2)SO(4) with secondary organic aerosol (SOA) formed by the reaction of α-pinene with O(3); and (5) three control scenarios excluding primary particles. The aged particle mass concentrations varied significantly from 43.8 to 257.1 µg/m(3) with respect to scenario and power plant. The highest was found when oxidized aerosols were neutralized by gas-phase NH(3) with added SOA. The mass concentration depended primarily on the ratio of SO(2) to NO(x) (particularly NO) emissions, which was determined mainly by coal composition and emissions controls. Particulate sulfate (H(2)SO(4) + neutralized sulfate) and organic carbon (OC) were major components of the aged particles with added SOA, whereas trace elements were present at very low concentrations. Physical and chemical properties of aged particles appear to be influenced by coal type, emissions controls and the particular atmospheric scenarios employed.
Collapse
Affiliation(s)
- Choong-Min Kang
- Department of Environmental Health, Harvard School of Public Health, Boston, Massachusetts 02215, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
24
|
Simultaneous determination of carbonyl compounds and polycyclic aromatic hydrocarbons in atmospheric particulate matter by liquid chromatography–diode array detection–fluorescence detection. Talanta 2010; 80:2083-92. [DOI: 10.1016/j.talanta.2009.11.009] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2009] [Revised: 10/23/2009] [Accepted: 11/03/2009] [Indexed: 11/23/2022]
|
25
|
Gordon CJ, Gottipolu RR, Kenyon EM, Thomas R, Schladweiler MC, Mack CM, Shannahan JH, Wallenborn JG, Nyska A, MacPhail RC, Richards JE, Devito M, Kodavanti UP. Aging and susceptibility to toluene in rats: a pharmacokinetic, biomarker, and physiological approach. JOURNAL OF TOXICOLOGY AND ENVIRONMENTAL HEALTH. PART A 2010; 73:301-318. [PMID: 20077299 DOI: 10.1080/15287390903421144] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/28/2023]
Abstract
Aging adults are a growing segment of the U.S. population and are likely to exhibit increased susceptibility to many environmental toxicants. However, there is little information on the susceptibility of the aged to toxicants. The toxicity of toluene has been well characterized in young adult rodents but there is little information in the aged. Three approaches were used: (1) pharmacokinetic (PK), (2) cardiac biomarkers, and (3) whole-animal physiology to assess whether aging increases susceptibility to toluene in the Brown Norway (BN) rat. Three life stages, young adult, middle aged, and aged (4, 12, and 24 mo, respectively), were administered toluene orally at doses of 0, 0.3, 0.65, or 1 g/kg and subjected to the following: terminated at 45 min or 4 h post dosing, and blood and brain toluene concentration were measured; terminated at 4 h post dosing, and biomarkers of cardiac function were measured; or monitor heart rate (HR), core temperature (Tc), and motor activity (MA) by radiotelemetry before and after dosing. Brain toluene concentration was significantly elevated in aged rats at 4 h after dosing with either 0.3 or 1 g/kg. Blood toluene concentrations were unaffected by age. There were various interactions between aging and toluene-induced effects on cardiac biomarkers. Most notably, toluene exposure led to reductions in mRNA markers for oxidative stress in aged but not younger animals. Toluene also produced a reduction in cardiac endothelin-1 in aged rats. Higher doses of toluene led to tachycardia, hypothermia, and a transient elevation in MA. Aged rats were less sensitive to the tachycardic effects of toluene but showed a prolonged hypothermic response. Elevated brain levels of toluene in aged rats may be attributed to their suppressed cardiovascular and respiratory responses. The expression of several cardiac biochemical markers of toluene exposure in the aged may also reflect differential susceptibility to this toxicant.
Collapse
Affiliation(s)
- Christopher J Gordon
- National Health and Environmental Effects Research Laboratory, ORD, U.S. Environmental Protection Agency, Research Triangle Park, North Carolina, USA.
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
26
|
Shannahan JH, Schladweiler MCJ, Richards JH, Ledbetter AD, Ghio AJ, Kodavanti UP. Pulmonary oxidative stress, inflammation, and dysregulated iron homeostasis in rat models of cardiovascular disease. JOURNAL OF TOXICOLOGY AND ENVIRONMENTAL HEALTH. PART A 2010; 73:641-656. [PMID: 20391109 DOI: 10.1080/15287390903578208] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/29/2023]
Abstract
Underlying cardiovascular disease (CVD) is a risk factor for the exacerbation of air pollution health effects. Pulmonary oxidative stress, inflammation, and altered iron (Fe) homeostasis secondary to CVD may influence mammalian susceptibility to air pollutants. Rodent models of CVD are increasingly used to examine mechanisms of variation in susceptibility. Baseline cardiac and pulmonary disease was characterized in healthy normotensive Wistar Kyoto (WKY) rats, cardiovascular compromised spontaneously hypertensive rats (SHR), and spontaneously hypertensive heart failure (SHHF) rats. Blood pressure, heart rate, and breathing frequencies were measured in rats 11 to 12 wk of age, followed by necropsy at 14 to 15 wk of age. Blood pressure and heart rate were increased in SHR and SHHF relative to WKY rats (SHR > SHHF > WKY). Increased breathing frequency in SHHF and SHR (SHR > SHHF > WKY) resulted in greater minute volume relative to WKY. Bronchoalveolar lavage fluid (BALF) protein and neutrophils were higher in SHHF and SHR relative to WKY (SHHF >> SHR > WKY). Lung ascorbate and glutathione levels were low in SHHF rats. BALF Fe-binding capacity was decreased in SHHF relative to WKY rats and was associated with increased transferrin (Trf) and ferritin. However, lung ferritin was lower and Trf was higher in SHHF relative to WKY or SHR rats. mRNA for markers of inflammation and oxidative stress (macrophage inflammatory protein [MIP]-2, interleukin [IL]-1alpha, and heme oxygenase [HO]-1) were greater in SHHF and SHR relative to WKY rats. Trf mRNA rose in SHR but not SHHF relative to WKY rats, whereas transferrin receptors 1 and 2 mRNA was lower in SHHF rats. Four of 12 WKY rats exhibited cardiac hypertrophy despite normal blood pressure, while demonstrating some of the pulmonary complications noted earlier. This study demonstrates that SHHF rats display greater underlying pulmonary complications such as oxidative stress, inflammation, and impaired Fe homeostasis than WKY or SHR rats, which may play a role in SHHF rats' increased susceptibility to air pollution.
Collapse
Affiliation(s)
- Jonathan H Shannahan
- Curriculum in Toxicology, University of North Carolina, Chapel Hill, North Carolina, USA.
| | | | | | | | | | | |
Collapse
|
27
|
Lippmann M, Chen LC. Health effects of concentrated ambient air particulate matter (CAPs) and its components. Crit Rev Toxicol 2009; 39:865-913. [DOI: 10.3109/10408440903300080] [Citation(s) in RCA: 123] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
|
28
|
Jalava PI, Hirvonen MR, Sillanpää M, Pennanen AS, Happo MS, Hillamo R, Cassee FR, Gerlofs-Nijland M, Borm PJA, Schins RPF, Janssen NAH, Salonen RO. Associations of urban air particulate composition with inflammatory and cytotoxic responses in RAW 246.7 cell line. Inhal Toxicol 2009; 21:994-1006. [DOI: 10.1080/08958370802695710] [Citation(s) in RCA: 69] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|
29
|
Saxena RK, Gilmour MI, Schladweiler MC, McClure M, Hays M, Kodavanti UP. Differential pulmonary retention of diesel exhaust particles in Wistar Kyoto and spontaneously hypertensive rats. Toxicol Sci 2009; 111:392-401. [PMID: 19635756 DOI: 10.1093/toxsci/kfp164] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023] Open
Abstract
Spontaneously hypertensive (SH) and normotensive Wistar Kyoto (WKY) rats have been used for understanding the mechanisms of variations in susceptibility to airborne pollutants. We examined the lung burden of diesel exhaust particles (DEP) following inhalation of diesel engine exhaust (DEE) in both strains. The kinetics of clearance was also examined after single intratracheal (IT) instillation of DEP. Lungs were analyzed for DEP elemental carbon (EC) after exposure to DEE (0, 500, or 2000 microg/m(3) 4 h/day, 5 days/week x 4 weeks). SH rats had 16% less DEP-EC at 500 and 32% less at 2000 microg/m(3) in the lungs, despite having 50% higher than the average minute volume. No strain-related differences were noted in number of alveolar macrophages or their average DEP load as evident from examining cells in bronchoalveolar lavage fluid (BALF). The kinetics of DEP clearance from lungs of male WKY and SH rats was studied following a single instillation at 0.0 or 8.33 mg/kg of DEP standard reference material (SRM 2975) from the National Institute of Standards Technology. SH rats cleared 60% DEP over 112 days while minimal clearance occurred from the lungs of WKY. The pattern of DEP-induced inflammatory response assessed by BALF analysis was similar in both strains, although the overall protein leak was slightly greater in SH rats. A time-dependent accumulation of DEP occurred in tracheal lymph nodes of both strains (SH > WKY). Thus, SH rats may clear DEP more efficiently from their lungs than normotensive WKY rats, with a small contribution of more effective lymphatic drainage.
Collapse
Affiliation(s)
- Rajiv K Saxena
- School Of Life Sciences, Jawaharlal Nehru University, New Delhi 110067, India
| | | | | | | | | | | |
Collapse
|
30
|
Wegesser TC, Last JA. Mouse lung inflammation after instillation of particulate matter collected from a working dairy barn. Toxicol Appl Pharmacol 2009; 236:348-57. [PMID: 19272399 PMCID: PMC2680696 DOI: 10.1016/j.taap.2009.02.023] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2009] [Revised: 02/23/2009] [Accepted: 02/26/2009] [Indexed: 11/30/2022]
Abstract
Coarse and fine particulate matter (PM(2.5-10) and PM(2.5), respectively) are regulated ambient air pollutants thought to have major adverse health effects in exposed humans. The role of endotoxin and other bioaerosol components in the toxicity of PM from ambient air is controversial. This study evaluated the inflammatory lung response in mice instilled intratracheally with PM(2.5-10) and PM(2.5) emitted from a working dairy barn, a source presumed to have elevated concentrations of endotoxin. PM(2.5-10) was more pro-inflammatory on an equal weight basis than was PM(2.5); both fractions elicited a predominantly neutrophilic response. The inflammatory response was reversible, with a peak response to PM(2.5-10) observed at 24 h after instillation, and a return to control values by 72 h after instillation. The major active pro-inflammatory component in whole PM(2.5-10), but not in whole PM(2.5), is heat-labile, consistent with it being endotoxin. A heat treatment protocol for the gradual inactivation of biological materials in the PM fractions over a measurable time course was developed and optimized in this study using pure lipopolysaccharide (LPS) as a model system. The time course of heat inactivation of pure LPS and of endotoxin activity in PM(2.5-10) as measured by Limulus bioassay is identical. The active material in both PM(2.5-10) and PM(2.5) remained in the insoluble fraction when the whole PM samples were extracted with physiological saline solution. Histological analysis of lung sections from mice instilled with PM(2.5-10) or PM(2.5) showed evidence of inflammation consistent with the cellular responses observed in lung lavage fluid. The major pro-inflammatory components present in endotoxin-rich PM were found in the insoluble fraction of PM(2.5-10); however, in contrast with PM(2.5-10) isolated from ambient air in the Central Valley of California, the active components in the insoluble fraction were heat-labile.
Collapse
Affiliation(s)
- Teresa C. Wegesser
- Pulmonary and Critical Care Medicine, University of California, Davis, Genome and Biomedical Sciences Facility, Room 6510, 451 E. Health Sciences Drive, Davis, CA 95616, USA, Telephone: 530.752.6230 Fax: 530.752.8632,
| | - Jerold A. Last
- Pulmonary and Critical Care Medicine, University of California, Davis, Genome and Biomedical Sciences Facility, Room 6510, 451 E. Health Sciences Drive, Davis, CA 95616, USA, Telephone: 530.752.6230 Fax: 530.752.8632,
| |
Collapse
|
31
|
Chen LC, Lippmann M. Effects of Metals within Ambient Air Particulate Matter (PM) on Human Health. Inhal Toxicol 2009; 21:1-31. [DOI: 10.1080/08958370802105405] [Citation(s) in RCA: 245] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|
32
|
Gottipolu RR, Wallenborn JG, Karoly ED, Schladweiler MC, Ledbetter AD, Krantz T, Linak WP, Nyska A, Johnson JA, Thomas R, Richards JE, Jaskot RH, Kodavanti UP. One-month diesel exhaust inhalation produces hypertensive gene expression pattern in healthy rats. ENVIRONMENTAL HEALTH PERSPECTIVES 2009; 117:38-46. [PMID: 19165385 PMCID: PMC2627863 DOI: 10.1289/ehp.11647] [Citation(s) in RCA: 46] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/30/2008] [Accepted: 09/11/2008] [Indexed: 05/08/2023]
Abstract
BACKGROUND Exposure to diesel exhaust (DE) is linked to vasoconstriction, endothelial dysfunction, and myocardial ischemia in compromised individuals. OBJECTIVE We hypothesized that DE inhalation would cause greater inflammation, hematologic alterations, and cardiac molecular impairment in spontaneously hypertensive (SH) rats than in healthy Wistar Kyoto (WKY) rats. METHODS AND RESULTS Male rats (12-14 weeks of age) were exposed to air or DE from a 30-kW Deutz engine at 500 or 2,000 microg/m3, 4 hr/day, 5 days/week for 4 weeks. Neutrophilic influx was noted in the lung lavage fluid of both strains, but injury markers were minimally changed. Particle-laden macrophages were apparent histologically in DE-exposed rats. Lower baseline cardiac anti-oxidant enzyme activities were present in SH than in WKY rats; however, no DE effects were noted. Cardiac mitochondrial aconitase activity decreased after DE exposure in both strains. Electron microscopy indicated abnormalities in cardiac mitochondria of control SH but no DE effects. Gene expression profiling demonstrated alterations in 377 genes by DE in WKY but none in SH rats. The direction of DE-induced changes in WKY mimicked expression pattern of control SH rats without DE. Most genes affected by DE were down-regulated in WKY. The same genes were down-regulated in SH without DE producing a hypertensive-like expression pattern. The down-regulated genes included those that regulate compensatory response, matrix metabolism, mitochondrial function, and oxidative stress response. No up-regulation of inflammatory genes was noted. CONCLUSIONS We provide the evidence that DE inhalation produces a hypertensive-like cardiac gene expression pattern associated with mitochondrial oxidative stress in healthy rats.
Collapse
Affiliation(s)
- Reddy R. Gottipolu
- Experimental Toxicology Division, National Health & Environmental Effects Research Laboratory, Office of Research and Development, U.S. Environmental Protection Agency, Research Triangle Park, North Carolina, USA
| | - J. Grace Wallenborn
- School of Public Health, University of North Carolina, Chapel Hill, North Carolina, USA
| | - Edward D. Karoly
- Human Studies Division, National Health & Environmental Effects Research Laboratory, Office of Research and Development, U.S. Environmental Protection Agency, Chapel Hill, North Carolina, USA
| | - Mette C. Schladweiler
- Experimental Toxicology Division, National Health & Environmental Effects Research Laboratory, Office of Research and Development, U.S. Environmental Protection Agency, Research Triangle Park, North Carolina, USA
| | - Allen D. Ledbetter
- Experimental Toxicology Division, National Health & Environmental Effects Research Laboratory, Office of Research and Development, U.S. Environmental Protection Agency, Research Triangle Park, North Carolina, USA
| | - Todd Krantz
- Experimental Toxicology Division, National Health & Environmental Effects Research Laboratory, Office of Research and Development, U.S. Environmental Protection Agency, Research Triangle Park, North Carolina, USA
| | - William P. Linak
- Air Pollution Prevention and Control Division, National Risk Management Research Laboratory, Office of Research and Development, U.S. Environmental Protection Agency, Research Triangle Park, North Carolina, USA
| | | | - Jo Anne Johnson
- Laboratory of Experimental Pathology, National Institute of Environmental Health Sciences, National Institutes of Health, Department of Health and Human Services, Research Triangle Park, North Carolina, USA
| | - Ronald Thomas
- Experimental Toxicology Division, National Health & Environmental Effects Research Laboratory, Office of Research and Development, U.S. Environmental Protection Agency, Research Triangle Park, North Carolina, USA
| | - Judy E. Richards
- Experimental Toxicology Division, National Health & Environmental Effects Research Laboratory, Office of Research and Development, U.S. Environmental Protection Agency, Research Triangle Park, North Carolina, USA
| | - Richard H. Jaskot
- Experimental Toxicology Division, National Health & Environmental Effects Research Laboratory, Office of Research and Development, U.S. Environmental Protection Agency, Research Triangle Park, North Carolina, USA
| | - Urmila P. Kodavanti
- Experimental Toxicology Division, National Health & Environmental Effects Research Laboratory, Office of Research and Development, U.S. Environmental Protection Agency, Research Triangle Park, North Carolina, USA
- Address correspondence to U.P. Kodavanti, MD: B143-01, ETD/NHEERL, U.S. EPA, 109 T.W. Alexander Dr., Research Triangle Park, NC 27709 USA. Telephone: (919) 541-4963. Fax: (919) 541-0026. E-mail:
| |
Collapse
|
33
|
Upadhyay S, Stoeger T, Harder V, Thomas RF, Schladweiler MC, Semmler-Behnke M, Takenaka S, Karg E, Reitmeir P, Bader M, Stampfl A, Kodavanti UP, Schulz H. Exposure to ultrafine carbon particles at levels below detectable pulmonary inflammation affects cardiovascular performance in spontaneously hypertensive rats. Part Fibre Toxicol 2008; 5:19. [PMID: 19055790 PMCID: PMC2612692 DOI: 10.1186/1743-8977-5-19] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2008] [Accepted: 12/04/2008] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Exposure to particulate matter is a risk factor for cardiopulmonary disease but the underlying molecular mechanisms remain poorly understood. In the present study we sought to investigate the cardiopulmonary responses on spontaneously hypertensive rats (SHRs) following inhalation of UfCPs (24 h, 172 mug.m-3), to assess whether compromised animals (SHR) exhibit a different response pattern compared to the previously studied healthy rats (WKY). METHODS Cardiophysiological response in SHRs was analyzed using radiotelemetry. Blood pressure (BP) and its biomarkers plasma renin-angiotensin system were also assessed. Lung and cardiac mRNA expressions for markers of oxidative stress (hemeoxygenase-1), blood coagulation (tissue factor, plasminogen activator inhibitor-1), and endothelial function (endothelin-1, and endothelin receptors A and B) were analyzed following UfCPs exposure in SHRs. UfCPs-mediated inflammatory responses were assessed from broncho-alveolar-lavage fluid (BALF). RESULTS Increased BP and heart rate (HR) by about 5% with a lag of 1-3 days were detected in UfCPs exposed SHRs. Inflammatory markers of BALF, lung (pulmonary) and blood (systemic) were not affected. However, mRNA expression of hemeoxygenase-1, endothelin-1, endothelin receptors A and B, tissue factor, and plasminogen activator inhibitor showed a significant induction (~2.5-fold; p < 0.05) with endothelin 1 being the maximally induced factor (6-fold; p < 0.05) on the third recovery day in the lungs of UfCPs exposed SHRs; while all of these factors - except hemeoxygenase-1 - were not affected in cardiac tissues. Strikingly, the UfCPs-mediated altered BP is paralleled by the induction of renin-angiotensin system in plasma. CONCLUSION Our finding shows that UfCPs exposure at levels which does not induce detectable pulmonary neutrophilic inflammation, triggers distinct effects in the lung and also at the systemic level in compromised SHRs. These effects are characterized by increased activity of plasma renin-angiotensin system and circulating white blood cells together with moderate increases in the BP, HR and decreases in heart rate variability. This systemic effect is associated with pulmonary, but not cardiac, mRNA induction of biomarkers reflective of oxidative stress; activation of vasoconstriction, stimulation of blood coagulation factors, and inhibition of fibrinolysis. Thus, UfCPs may cause cardiovascular and pulmonary impairment, in the absence of detectable pulmonary inflammation, in individuals suffering from preexisting cardiovascular diseases.
Collapse
|
34
|
Gottipolu RR, Landa ER, Schladweiler MC, McGee JK, Ledbetter AD, Richards JH, Wallenborn GJ, Kodavanti UP. Cardiopulmonary responses of intratracheally instilled tire particles and constituent metal components. Inhal Toxicol 2008; 20:473-84. [PMID: 18368618 DOI: 10.1080/08958370701858427] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
Abstract
Tire and brake wear particles contain transition metals, and contribute to near-road PM. We hypothesized that acute cardiopulmonary injury from respirable tire particles (TP) will depend on the amount of soluble metals. Respirable fractions of two types of TP (TP1 and TP2) were analyzed for water and acid-leachable metals using ICP-AES. Both TP types contained a variety of transition metals, including zinc (Zn), copper (Cu), aluminum, and iron. Zn and Cu were detected at high levels in water-soluble fractions (TP2 > TP1). Male Wistar Kyoto rats (12-14 wk) were intratracheally instilled, in the first study, with saline, TP1 or TP2 (5 mg/kg), and in the second study, with soluble Zn, Cu (0.5 micromol/kg), or both. Pulmonary toxicity and cardiac mitochondrial enzymes were analyzed 1 d, 1 wk, or 4 wk later for TP and 4 or 24 h later for metals. Increases in lavage fluid markers of inflammation and injury were observed at d 1 (TP2 > TP1), but these changes reversed by wk 1. No effects on cardiac enzymes were noted with either TP. Exposure of rats to soluble Zn and Cu caused marked pulmonary inflammation and injury but temporal differences were apparent (Cu effects peaked at 4 h and Zn at 24 h). Instillation of Zn, Cu, and Zn + Cu decreased the activity of cardiac aconitase, isocitrate dehydrogenase, succinate dehydrogenase, cytochrome-c-oxidase and superoxide dismutase suggesting mitochondrial oxidative stress. The observed acute pulmonary toxicity of TP could be due to the presence of water soluble Zn and Cu. At high concentrations these metals may induce cardiac oxidative stress.
Collapse
Affiliation(s)
- Reddy R Gottipolu
- National Research Council, National Health and Environmental Effects Research Laboratory, U.S. Environmental Protection Agency, Research Triangle Park, North Carolina, USA
| | | | | | | | | | | | | | | |
Collapse
|
35
|
Wegesser TC, Last JA. Lung response to coarse PM: bioassay in mice. Toxicol Appl Pharmacol 2008; 230:159-66. [PMID: 18384828 DOI: 10.1016/j.taap.2008.02.013] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2007] [Revised: 01/24/2008] [Accepted: 02/17/2008] [Indexed: 11/17/2022]
Abstract
Particulate matter (PM) elicits inflammatory and toxic responses in the lung specific to its constituents, which can vary by region, time, and particle size. To identify the mechanism of toxicity in PM collected in a rural area in the San Joaquin Valley of Central California, we studied coarse particles of 2.5-10 mum diameter (PM(2.5)-PM(10)). Potential pro-inflammatory and toxic effects of PM(2.5)-PM(10) in the lung were investigated using intratracheally instilled mice. We determined total and differential cell profiles and inflammatory chemokines in lung lavage fluid, and biomarkers of toxicity resulting from coarse PM exposure. Responses of the mice were readily observed with total doses of 25-50 mug of PM per mouse. Changes in pro-inflammatory cellular profiles and chemokines showed both dose and time responses; peak responses were observed 24 h after PM instillation, with recovery as early as 48 h. Furthermore, macrophage inflammatory protein (MIP-2) profiles following PM exposures were correlated to levels of measured macrophages and neutrophils recovered from lung lavage fluid of PM-treated animals. Our data suggest that pro-inflammatory effects observed from coarse PM collected during the summer months from California's hot and dry Central Valley are driven largely by the insoluble components of the PM mixture, and are not caused by endotoxin.
Collapse
Affiliation(s)
- Teresa C Wegesser
- Pulmonary and Critical Care Medicine Division, School of Medicine, University of California, 6519 Genome and Biomedical Sciences Facility, 451 Health Sciences Drive, Davis, CA 95616, USA
| | | |
Collapse
|
36
|
Kodavanti UP, Schladweiler MC, Gilmour PS, Wallenborn JG, Mandavilli BS, Ledbetter AD, Christiani DC, Runge MS, Karoly ED, Costa DL, Peddada S, Jaskot R, Richards JH, Thomas R, Madamanchi NR, Nyska A. The role of particulate matter-associated zinc in cardiac injury in rats. ENVIRONMENTAL HEALTH PERSPECTIVES 2008; 116:13-20. [PMID: 18197293 PMCID: PMC2199289 DOI: 10.1289/ehp.10379] [Citation(s) in RCA: 58] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/18/2007] [Accepted: 10/23/2007] [Indexed: 05/03/2023]
Abstract
BACKGROUND Exposure to particulate matter (PM) has been associated with increased cardiovascular morbidity; however, causative components are unknown. Zinc is a major element detected at high levels in urban air. OBJECTIVE We investigated the role of PM-associated zinc in cardiac injury. METHODS We repeatedly exposed 12- to 14-week-old male Wistar Kyoto rats intratracheally (1x/week for 8 or 16 weeks) to a) saline (control); b) PM having no soluble zinc (Mount St. Helens ash, MSH); or c) whole-combustion PM suspension containing 14.5 microg/mg of water-soluble zinc at high dose (PM-HD) and d ) low dose (PM-LD), e) the aqueous fraction of this suspension (14.5 microg/mg of soluble zinc) (PM-L), or f ) zinc sulfate (rats exposed for 8 weeks received double the concentration of all PM components of rats exposed for 16 weeks). RESULTS Pulmonary inflammation was apparent in all exposure groups when compared with saline (8 weeks > 16 weeks). PM with or without zinc, or with zinc alone caused small increases in focal subepicardial inflammation, degeneration, and fibrosis. Lesions were not detected in controls at 8 weeks but were noted at 16 weeks. We analyzed mitochondrial DNA damage using quantitative polymerase chain reaction and found that all groups except MSH caused varying degrees of damage relative to control. Total cardiac aconitase activity was inhibited in rats receiving soluble zinc. Expression array analysis of heart tissue revealed modest changes in mRNA for genes involved in signaling, ion channels function, oxidative stress, mitochondrial fatty acid metabolism, and cell cycle regulation in zinc but not in MSH-exposed rats. CONCLUSION These results suggest that water-soluble PM-associated zinc may be one of the causal components involved in PM cardiac effects.
Collapse
Affiliation(s)
- Urmila P Kodavanti
- National Health and Environmental Effects Research Laboratory, Office of Research and Development, U.S. Environmental Protection Agency, Research Triangle Park, NC 27710, USA.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
37
|
Gilmour MI, McGee J, Duvall RM, Dailey L, Daniels M, Boykin E, Cho SH, Doerfler D, Gordon T, Devlin RB. Comparative toxicity of size-fractionated airborne particulate matter obtained from different cities in the United States. Inhal Toxicol 2007; 19 Suppl 1:7-16. [PMID: 17886044 DOI: 10.1080/08958370701490379] [Citation(s) in RCA: 63] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
Abstract
Hundreds of epidemiological studies have shown that exposure to ambient particulate matter (PM) is associated with dose-dependent increases in morbidity and mortality. While early reports focused on PM less than 10 microm (PM10), numerous studies have since shown that the effects can occur with PM stratified into ultrafine (UF), fine (FI), and coarse (CO) size modes despite the fact that these materials differ significantly in both evolution and chemistry. Furthermore the chemical makeup of these different size fractions can vary tremendously depending on location, meteorology, and source profile. For this reason, high-volume three-stage particle impactors with the capacity to collect UF, FI, and CO particles were deployed to four different locations in the United States (Seattle, WA; Salt Lake City, UT; Sterling Forest and South Bronx, NY), and weekly samples were collected for 1 mo in each place. The particles were extracted, assayed for a standardized battery of chemical components, and instilled into mouse lungs (female BALB/c) at doses of 25 and 100 microg. Eighteen hours later animals were euthanized and parameters of injury and inflammation were monitored in the bronchoalveolar lavage fluid and plasma. Of the four locations, the South Bronx coarse fraction was the most potent sample in both pulmonary and systemic biomarkers, with a strong increase in lung inflammatory cells as well as elevated levels of creatine kinase in the plasma. These effects did not correlate with lipopolysaccharide (LPS) or total zinc or sulfate content, but were associated with total iron. Receptor source modeling on the PM2.5 samples showed that the South Bronx sample was heavily influenced by emissions from coal fired power plants (31%) and mobile sources (22%). Further studies will assess how source profiles correlate with the observed effects for all locations and size fractions.
Collapse
Affiliation(s)
- M Ian Gilmour
- Experimental Toxicology Division, National Health and Environmental Effects Research Laboratory, US Environmental Protection Agency, Durham, North Carolina 27711, USA.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
38
|
Grahame T, Hidy GM. Secondary sulfate effects? ENVIRONMENTAL HEALTH PERSPECTIVES 2007; 115:A532-A533. [PMID: 18007967 PMCID: PMC2072820 DOI: 10.1289/ehp.10293] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/30/2023]
|
39
|
Grahame TJ, Schlesinger RB. Health effects of airborne particulate matter: do we know enough to consider regulating specific particle types or sources? Inhal Toxicol 2007; 19:457-81. [PMID: 17497526 DOI: 10.1080/08958370701382220] [Citation(s) in RCA: 53] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Researchers and regulators have often considered preferentially regulating the types of ambient airborne particulate matter (PM) most relevant to human health effects. While few would argue the inherent merits of such a policy, many believe there may not yet be enough information to differentially regulate PM species. New evidence, using increasingly sophisticated methodologies, has become available in the last several years, allowing more accurate assessment of exposure and resultant associations with specific types of PM, or PM derived from different sources. Such new studies may also allow differentiation of effects from different chemical components in the same study against the same health endpoints. This article considers whether this new evidence might be adequate to allow us to "speciate" PM types or sources by severity of health effects. We address this issue with respect to two widespread sources of PM, emissions from motor vehicles and coal-fired power plants. Emissions from less widespread sources, residual oil and steel/coking facilities, are also discussed in order to illustrate how health effects associated with such emissions might instead be associated with more widespread sources when accurate exposure information is unavailable. Based upon evaluation of studies and methodologies which appear to contain the most accurate information on exposure and response to important emissions, including variable local emissions, it is concluded that public health will likely be better protected by reduction of various vehicular emissions than by continued regulation of the total mass of fine PM (PM <2.5 microm, or PM2.5) as if all PM in this mode is equitoxic. However, the knowledge base is incomplete. Important remaining research questions are identified.
Collapse
|
40
|
Gilmour PS, Schladweiler MC, Nyska A, McGee JK, Thomas R, Jaskot RH, Schmid J, Kodavanti UP. Systemic imbalance of essential metals and cardiac gene expression in rats following acute pulmonary zinc exposure. JOURNAL OF TOXICOLOGY AND ENVIRONMENTAL HEALTH. PART A 2006; 69:2011-32. [PMID: 17074742 DOI: 10.1080/15287390600746173] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/12/2023]
Abstract
It was recently demonstrated that particulate matter (PM) containing water-soluble zinc produces cardiac injury following pulmonary exposure. To investigate whether pulmonary zinc exposure produces systemic metal imbalance and direct cardiac effects, male Wistar Kyoto (WKY) rats (12-14 wk age) were intratracheally (IT) instilled with saline or 2 micromol/kg zinc sulfate. Temporal analysis was performed for systemic levels of essential metals (zinc, copper, and selenium), and induction of zinc transporter-2 (ZT-2) and metallothionein-1 (MT-1) mRNA in the lung, heart, and liver. Additionally, cardiac gene expression profile was evaluated using Affymetrix GeneChips (rat 230A) arrays to identify zinc-specific effects. Pulmonary zinc instillation produced an increase in plasma zinc to approximately 20% at 1 and 4 h postexposure with concomitant decline in the lung levels. At 24 and 48 h postexposure, zinc levels rose significantly (approximately 35%) in the liver. At these time points, plasma and liver levels of copper and selenium also increased significantly, suggesting systemic disturbance in essential metals. Zinc exposure was associated with marked induction of MT-1 and ZT-2 mRNA in lung, heart, and liver, suggesting systemic metal sequestration response. Given the functional role of zinc in hundreds of proteins, the gene expression profiles demonstrated changes that are expected based on its physiological role. Zinc exposure produced an increase in expression of kinases and inhibition of expression of phosphatases; up- or downregulation of genes involved in mitochondrial function; changes in calcium regulatory proteins suggestive of elevated intracellular free calcium and increases in sulfotransferases; upregulation of potassium channel genes; and changes in free radical-sensitive proteins. Some of these expression changes are reflective of a direct effect of zinc on myocardium following pulmonary exposure, which may result in impaired mitochondrial respiration, stimulated cell signaling, altered Ca2+ homeostasis, and increased transcription of sulfotransferases. Cardiotoxicity may be an outcome of acute zinc toxicosis and occupational exposures to metal fumes containing soluble zinc. Imbalance of systemic metal homeostasis as a result of pulmonary zinc exposure may underlie the cause of extrapulmonary effects.
Collapse
Affiliation(s)
- Peter S Gilmour
- Center for Environmental Medicine, Asthma and Lung Biology, School of Medicine, University of North Carolina, Chapel Hill, North Carolina, USA
| | | | | | | | | | | | | | | |
Collapse
|
41
|
Sällsten G, Gustafson P, Johansson L, Johannesson S, Molnár P, Strandberg B, Tullin C, Barregard L. Experimental wood smoke exposure in humans. Inhal Toxicol 2006; 18:855-64. [PMID: 16864403 DOI: 10.1080/08958370600822391] [Citation(s) in RCA: 45] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
Abstract
Experimental studies are used to evaluate effects of human exposure to diesel exhaust and concentrated ambient particles. This article describes a system for studying exposure of humans to wood smoke. Wood smoke was generated using a wood stove placed outside an exposure chamber that can hold at least 10 subjects. A partial flow of the generated wood smoke from the stove was mixed with filtered indoor air. Personal and stationary measurements were performed of PM2.5 and PM1 mass concentrations and various volatile organic compounds (VOCs): 1,3-butadiene, benzene, and aldehydes. In addition, particulate matter (PM) mass, number concentrations, and size distributions of particles (0.007-6.7 microm), as well as nitrous oxides, CO2, and CO, were measured online. Filters were analyzed for trace elements and black smoke. Polycyclic aromatic compounds, toluene, and xylenes were determined in stationary samples. Results of the first experiment showed no differences between personal and stationary measurements for particles or VOCs. Consequently, stationary measurements can be used to predict personal exposure. All PM mass (about 250 microg/m3) was in the PM1 fraction. Subjective symptoms were generally weak, while clear objective signs were found, for example, in biomarkers of inflammation. With careful control of the combustion process, relatively constant mass and number concentrations were obtained over each exposure session. By varying the combustion and dilution of the wood smoke, different exposure scenarios can be achieved and thus, knowledge about which of the properties of particles and gaseous compounds are crucial for the effects.
Collapse
Affiliation(s)
- Gerd Sällsten
- Department of Occupational and Environmental Medicine, Sahlgrenska University Hospital and Academy, Göteborg University, Göteborg, Sweden.
| | | | | | | | | | | | | | | |
Collapse
|
42
|
Smith KR, Veranth JM, Kodavanti UP, Aust AE, Pinkerton KE. Acute pulmonary and systemic effects of inhaled coal fly ash in rats: comparison to ambient environmental particles. Toxicol Sci 2006; 93:390-9. [PMID: 16840564 DOI: 10.1093/toxsci/kfl062] [Citation(s) in RCA: 48] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Although primary particle emissions of ash from coal-fired power plants are well controlled, coal fly ash (CFA) can still remain a significant fraction of the overall particle exposure for some plant workers and highly impacted communities. The effect of CFA on pulmonary and systemic inflammation and injury was measured in male Sprague-Dawley rats exposed to filtered air or CFA for 4 h/day for 3 days. The average concentration of CFA particulate matter less than 2.5 microm (PM(2.5)) was 1400 microg/m(3), of which 600 microg/m(3) was PM(1). Animals were examined 18 and 36 h postexposure. Chemical analysis of CFA detected silicon, calcium, aluminum, and iron as major components. Total number of neutrophils in bronchoalveolar lavage fluid (BALF) following exposure to CFA was significantly increased along with significantly elevated blood neutrophils. Exposure to CFA caused slight increases in macrophage inflammatory protein-2, and marked increases in transferrin in BALF. Interleukin-1beta and total antioxidant potential in lung tissues were also increased in rats exposed to CFA. Histological examination of lung tissue demonstrated focal alveolar septal thickening and increased cellularity in select alveoli immediately beyond terminal bronchioles. These responses are consistent with the ability of CFA to induce mild neutrophilic inflammation in the lung and blood following short-term exposure at levels that could be occupationally relevant. However, when comparing the effects of CFA with those of concentrated ambient particles, CFA does not appear to have greater potency to cause pulmonary alterations. This study furthers our understanding of possible mechanisms by which specific sources of particulate air pollution affect human health.
Collapse
Affiliation(s)
- Kevin R Smith
- Center for Health and the Environment, University of California, Davis, California 95616, USA
| | | | | | | | | |
Collapse
|
43
|
Kooter IM, Boere AJF, Fokkens PHB, Leseman DLAC, Dormans JAMA, Cassee FR. Response of spontaneously hypertensive rats to inhalation of fine and ultrafine particles from traffic: experimental controlled study. Part Fibre Toxicol 2006; 3:7. [PMID: 16700918 PMCID: PMC1513241 DOI: 10.1186/1743-8977-3-7] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2006] [Accepted: 05/15/2006] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Many epidemiological studies have shown that mass concentrations of ambient particulate matter (PM) are associated with adverse health effects in the human population. Since PM is still a very crude measure, this experimental study has explored the role of two distinct size fractions: ultrafine (<0.15 microm) and fine (0.15- 2.5 microm) PM. In a series of 2-day inhalation studies, spontaneously hypersensitive (SH) rats were exposed to fine, concentrated, ambient PM (fCAP) at a city background location or a combination of ultrafine and fine (u+fCAP) PM at a location dominated by traffic. We examined the effect on inflammation and both pathological and haematological indicators as markers of pulmonary and cardiovascular injury. Exposure concentrations ranged from 399 microg/m3 to 3613 microg/m3 for fCAP and from 269 microg/m3 to 556 microg/m3 for u+fCAP. RESULTS Ammonium, nitrate, and sulphate ions accounted for 56 +/- 16% of the total fCAP mass concentrations, but only 17 +/- 6% of the u+fCAP mass concentrations. Unambiguous particle uptake in alveolar macrophages was only seen after u+fCAP exposures. Neither fCAP nor u+fCAP induced significant changes of cytotoxicity or inflammation in the lung. However, markers of oxidative stress (heme oxygenase-1 and malondialdehyde) were affected by both fCAP and u+fCAP exposure, although not always significantly. Additional analysis revealed heme oxygenase-1 (HO-1) levels that followed a nonmonotonic function with an optimum at around 600 microg/m3 for fCAP. As a systemic response, exposure to u+fCAP and fCAP resulted in significant decreases of the white blood cell concentrations. CONCLUSION Minor pulmonary and systemic effects are observed after both fine and ultrafine + fine PM exposure. These effects do not linearly correlate with the CAP mass. A greater component of traffic CAP and/or a larger proportion ultrafine PM does not strengthen the absolute effects.
Collapse
Affiliation(s)
- Ingeborg M Kooter
- Centre for Environmental Health Research, National Institute for Public Health and the Environment, Bilthoven, The Netherlands
| | - A John F Boere
- Centre for Environmental Health Research, National Institute for Public Health and the Environment, Bilthoven, The Netherlands
| | - Paul HB Fokkens
- Centre for Environmental Health Research, National Institute for Public Health and the Environment, Bilthoven, The Netherlands
| | - Daan LAC Leseman
- Centre for Environmental Health Research, National Institute for Public Health and the Environment, Bilthoven, The Netherlands
| | - Jan AMA Dormans
- Laboratory of Toxicology, Pathology and Genetics, National Institute for Public Health and the Environment, Bilthoven, The Netherlands
| | - Flemming R Cassee
- Centre for Environmental Health Research, National Institute for Public Health and the Environment, Bilthoven, The Netherlands
| |
Collapse
|