1
|
Liu F, Gu Z, Yi F, Liu X, Zou W, Xu Q, Yuan Y, Chen N, Tang J. Potential of Glycyrrhiza in the prevention of colitis-associated colon cancer. Fitoterapia 2025; 181:106398. [PMID: 39842555 DOI: 10.1016/j.fitote.2025.106398] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2024] [Revised: 01/09/2025] [Accepted: 01/15/2025] [Indexed: 01/24/2025]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Glycyrrhiza, a legume native to the Mediterranean region, has a long history of ethnomedicinal use in China. Due to its antiviral, antibacterial, anti-inflammatory, antioxidant, antitumor, anti-ulcer, and hepatoprotective properties, Glycyrrhiza is widely utilized in the treatment of gastrointestinal disorders. THE AIM OF THE REVIEW The specific mechanisms of the main active constituents of glycyrrhiza in the treatment of inflammatory bowel disease, precancerous lesions and colorectal cancer at all stages of the colitis-associated colon cancer "Inflammation-Dysplasia-Cancer" sequence, as well as its pharmacokinetics, toxicology, formulation improvements, and application studies, are reviewed to provide new insights and perspectives on glycyrrhiza as a dietary supplement to treat and prevent colitis-associated colon cancer. MATERIALS AND METHODS Information on Glycyrrhiza was retrieved from electronic databases, including PubMed and Web of Science. RESULTS Glycyrrhiza is a well-established medicinal plant with significant potential for applications in both the food and pharmaceutical industries. Over 400 active constituents have been identified in Glycyrrhiza, including terpenoids, flavonoids, isoflavones, coumarins, and polyphenols. Numerous studies have demonstrated that Glycyrrhiza and its active compounds can inhibit the "Inflammation-Dysplasia-Cancer" progression of colitis-associated colon cancer by mitigating inflammatory bowel disease, reducing the number of intestinal precancerous lesions, and counteracting colorectal cancer. Furthermore, derivatives and nanocarriers are crucial for the effective treatment of colitis-associated colon cancer using Glycyrrhiza and its active constituents. CONCLUSION In conclusion, Glycyrrhiza is a plant with both medicinal and nutritional value, making it a potential food ingredient and dietary supplement for the treatment of colitis-associated colon cancer.
Collapse
Affiliation(s)
- Fang Liu
- Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, China; North Sichuan Medical College, Nanchong, China.
| | - Zhili Gu
- North Sichuan Medical College, Nanchong, China
| | - Feiyang Yi
- North Sichuan Medical College, Nanchong, China
| | - Xue Liu
- North Sichuan Medical College, Nanchong, China
| | - Wenxuan Zou
- North Sichuan Medical College, Nanchong, China
| | - Qingxia Xu
- Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Yun Yuan
- Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, China.
| | - Nianzhi Chen
- Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, China.
| | - Jianyuan Tang
- Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, China.
| |
Collapse
|
2
|
Wang X, Chen Z, Li G, Luo L, Dong W, Zhang L, Yao B, Zhang J, Liu D. To explore pharmacodynamic substances and mechanism of Xuanfei Baidu Decoction on LPS-induced ALI / ARDS by pharmacochemistry and metabolomics. JOURNAL OF ETHNOPHARMACOLOGY 2025; 338:119043. [PMID: 39515677 DOI: 10.1016/j.jep.2024.119043] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/12/2024] [Revised: 10/20/2024] [Accepted: 11/05/2024] [Indexed: 11/16/2024]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Xuanfei Baidu Decoction (XFBD) is made up of five classic prescriptions, which is composed of 13 traditional Chinese medicines, which have the effects of dispersing lung and resolving dampness, clearing heat and evil, purging lung and detoxification. It is used for epidemic diseases caused by damp toxin obstructing lung. In this paper, the endogenous and exogenous metabolites of ALI/ARDS rats after oral administration of XFBD were studied and the material basis and metabolic pathway of XFBD in relieving ALI/ARDS were explained. MATERIALS AND METHODS In this study, UPLC-Q-TOF/MS qualitative analysis method was established, and plasma-urine-feces pharmacochemistry was used to identify metabolites in plasma, urine and feces after oral administration of XFBD in rats. RT-PCR and immunohistochemistry were used to study the expression of CYP protein in XFBD and monomeric compounds. In addition, the functional mechanism of XFBD in ALI/ARDS rats was elucidated by non-targeted metabolomics. RESULTS A total of 77 prototype components and 389 metabolites in plasma, urine and feces were identified by exogenous components, mainly including oxidation, reduction, hydrolysis, glucuronidation, sulfation and other reactions. The results of RT-PCR and immunohistochemistry showed that the activity of CYP was inhibited under the pathological state of ALI/ARDS. At the same time, XFBD and its monomeric compounds can change the metabolic process of drugs in vivo by inducing or inhibiting the activity of CYPs. The metabolic process of drugs in vivo is the result of the combined action of different CYPs. In addition, a total of 33 differential metabolites were identified in plasma, 45 in urine and 14 in feces, which were mainly related to the synthesis and degradation of ketone bodies, phenylalanine metabolism, tyrosine metabolism, histidine metabolism, butyric acid metabolism and other metabolic pathways. CONCLUSIONS This study conducted a relatively scientific and systematic analysis of XFBD. A UPLC-Q-TOF/MS qualitative analysis method was established to identify 77 prototype components and 389 metabolites in plasma, urine and feces of rats after oral administration of XFBD.An ARDS rat model was established to analyze the pharmacokinetic differences of XFBD in normal and ARDS model rats and its regulation effect on CYPs.Non-targeted metabolomics was used to identify the pattern recognition of ARDS pathological model, the diagnosis of disease and the intervention effect of XFBD on ARDS. Preliminary discussion was conducted to provide a theoretical basis for clinical rational drug use.
Collapse
Affiliation(s)
- Xinrui Wang
- National Key Laboratory of Modern Chinese Medicine Innovation and Manufacturing, Tianjin University of Traditional Chinese Medicine, Tianjin, 301617, China; Haihe Laboratory of Modern Chinese Medicine, Tianjin, 301617, China; Tianjin Modern Innovation Chinese Medicine Technology Co., Ltd., Tianjin, China
| | - Zhihan Chen
- Haihe Laboratory of Modern Chinese Medicine, Tianjin, 301617, China
| | - Guotong Li
- National Key Laboratory of Modern Chinese Medicine Innovation and Manufacturing, Tianjin University of Traditional Chinese Medicine, Tianjin, 301617, China; Haihe Laboratory of Modern Chinese Medicine, Tianjin, 301617, China; Tianjin Modern Innovation Chinese Medicine Technology Co., Ltd., Tianjin, China
| | - Lifei Luo
- National Key Laboratory of Modern Chinese Medicine Innovation and Manufacturing, Tianjin University of Traditional Chinese Medicine, Tianjin, 301617, China; Haihe Laboratory of Modern Chinese Medicine, Tianjin, 301617, China; Tianjin Modern Innovation Chinese Medicine Technology Co., Ltd., Tianjin, China
| | - Wenxuan Dong
- National Key Laboratory of Modern Chinese Medicine Innovation and Manufacturing, Tianjin University of Traditional Chinese Medicine, Tianjin, 301617, China; Haihe Laboratory of Modern Chinese Medicine, Tianjin, 301617, China; Tianjin Modern Innovation Chinese Medicine Technology Co., Ltd., Tianjin, China
| | - Lanyin Zhang
- National Key Laboratory of Modern Chinese Medicine Innovation and Manufacturing, Tianjin University of Traditional Chinese Medicine, Tianjin, 301617, China; Haihe Laboratory of Modern Chinese Medicine, Tianjin, 301617, China; Tianjin Modern Innovation Chinese Medicine Technology Co., Ltd., Tianjin, China
| | - Bin Yao
- National Key Laboratory of Modern Chinese Medicine Innovation and Manufacturing, Tianjin University of Traditional Chinese Medicine, Tianjin, 301617, China; Haihe Laboratory of Modern Chinese Medicine, Tianjin, 301617, China; Tianjin Modern Innovation Chinese Medicine Technology Co., Ltd., Tianjin, China
| | - Jingze Zhang
- National Key Laboratory of Modern Chinese Medicine Innovation and Manufacturing, Tianjin University of Traditional Chinese Medicine, Tianjin, 301617, China; Haihe Laboratory of Modern Chinese Medicine, Tianjin, 301617, China; Tianjin Modern Innovation Chinese Medicine Technology Co., Ltd., Tianjin, China.
| | - Dailin Liu
- National Key Laboratory of Modern Chinese Medicine Innovation and Manufacturing, Tianjin University of Traditional Chinese Medicine, Tianjin, 301617, China; Haihe Laboratory of Modern Chinese Medicine, Tianjin, 301617, China; Tianjin Modern Innovation Chinese Medicine Technology Co., Ltd., Tianjin, China.
| |
Collapse
|
3
|
He L, Kang Q, Zhang Y, Chen M, Wang Z, Wu Y, Gao H, Zhong Z, Tan W. Glycyrrhizae Radix et Rhizoma: The popular occurrence of herbal medicine applied in classical prescriptions. Phytother Res 2023. [PMID: 37196671 DOI: 10.1002/ptr.7869] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2022] [Revised: 04/14/2023] [Accepted: 04/25/2023] [Indexed: 05/19/2023]
Abstract
Glycyrrhizae Radix et Rhizoma is a well-known herbal medicine with a wide range of pharmacological functions that has been used throughout Chinese history. This review presents a comprehensive introduction to this herb and its classical prescriptions. The article discusses the resources and distribution of species, methods of authentication and determination chemical composition, quality control of the original plants and herbal medicines, dosages use, common classical prescriptions, indications, and relevant mechanisms of the active content. Pharmacokinetic parameters, toxicity tests, clinical trials, and patent applications are discussed. The review will provide a good starting point for the research and development of classical prescriptions to develop herbal medicines for clinical use.
Collapse
Affiliation(s)
- Luying He
- School of Pharmacy, Lanzhou University, Lanzhou, China
| | - Qianming Kang
- School of Pharmacy, Lanzhou University, Lanzhou, China
| | - Yang Zhang
- School of Pharmacy, Lanzhou University, Lanzhou, China
| | - Man Chen
- Oncology Center, Affiliated Hospital of Guangdong Medical University, Zhanjiang, China
| | - Zefei Wang
- School of Pharmacy, Lanzhou University, Lanzhou, China
| | - Yonghui Wu
- School of Pharmacy, Lanzhou University, Lanzhou, China
| | - Hetong Gao
- School of Pharmacy, Lanzhou University, Lanzhou, China
| | - Zhangfeng Zhong
- Macao Centre for Research and Development in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macao SAR, China
| | - Wen Tan
- School of Pharmacy, Lanzhou University, Lanzhou, China
| |
Collapse
|
4
|
Minnetti M, De Alcubierre D, Bonaventura I, Pofi R, Hasenmajer V, Tarsitano MG, Gianfrilli D, Poggiogalle E, Isidori AM. Effects of licorice on sex hormones and the reproductive system. Nutrition 2022; 103-104:111727. [DOI: 10.1016/j.nut.2022.111727] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2022] [Revised: 04/13/2022] [Accepted: 04/28/2022] [Indexed: 10/31/2022]
|
5
|
Jing X, Meng X, Wu Z, Ding Y, Peng Y, Shen M, Wang Q. Sub-acute toxicity of licorice-sargassum extract in Sprague-Dawley rats: biochemical, histopathological, and pharmacokinetic studies. Chin Med J (Engl) 2022; 135:872-874. [PMID: 34561335 PMCID: PMC9276250 DOI: 10.1097/cm9.0000000000001716] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2021] [Indexed: 11/30/2022] Open
Affiliation(s)
- Xinyue Jing
- Nanjing University of Chinese Medicine, Nanjing, Jiangsu 210023, China
| | - Xian Meng
- Jiangsu Key Laboratory for High Technology Research of TCM Formulae and Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, Nanjing University of Chinese Medicine, Nanjing, Jiangsu 210023, China
- Hospital of Integrated Traditional Chinese and Western Medicine Affiliated to Nanjing University of Chinese Medicine, Nanjing, Jiangsu 210028, China
- Jiangsu Provincial Academy of Traditional Chinese Medicine, Nanjing, Jiangsu 210028, China
| | - Zhenhui Wu
- Hospital of Integrated Traditional Chinese and Western Medicine Affiliated to Nanjing University of Chinese Medicine, Nanjing, Jiangsu 210028, China
| | - Yongfang Ding
- Jiangsu Provincial Academy of Traditional Chinese Medicine, Nanjing, Jiangsu 210028, China
| | - Yunru Peng
- Jiangsu Key Laboratory for High Technology Research of TCM Formulae and Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, Nanjing University of Chinese Medicine, Nanjing, Jiangsu 210023, China
- Hospital of Integrated Traditional Chinese and Western Medicine Affiliated to Nanjing University of Chinese Medicine, Nanjing, Jiangsu 210028, China
- Jiangsu Provincial Academy of Traditional Chinese Medicine, Nanjing, Jiangsu 210028, China
| | - Mingqing Shen
- Hospital of Integrated Traditional Chinese and Western Medicine Affiliated to Nanjing University of Chinese Medicine, Nanjing, Jiangsu 210028, China
- Jiangsu Provincial Academy of Traditional Chinese Medicine, Nanjing, Jiangsu 210028, China
| | - Qing Wang
- College of Nursing, Nanjing University of Chinese Medicine, Nanjing, Jiangsu 210023, China
| |
Collapse
|
6
|
Glycyrrhiza Genus: Enlightening Phytochemical Components for Pharmacological and Health-Promoting Abilities. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2021; 2021:7571132. [PMID: 34349875 PMCID: PMC8328722 DOI: 10.1155/2021/7571132] [Citation(s) in RCA: 43] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/05/2021] [Revised: 06/12/2021] [Accepted: 06/18/2021] [Indexed: 02/06/2023]
Abstract
The Glycyrrhiza genus, generally well-known as licorice, is broadly used for food and medicinal purposes around the globe. The genus encompasses a rich pool of bioactive molecules including triterpene saponins (e.g., glycyrrhizin) and flavonoids (e.g., liquiritigenin, liquiritin). This genus is being increasingly exploited for its biological effects such as antioxidant, antibacterial, antifungal, anti-inflammatory, antiproliferative, and cytotoxic activities. The species Glycyrrhiza glabra L. and the compound glycyrrhizin (glycyrrhizic acid) have been studied immensely for their effect on humans. The efficacy of the compound has been reported to be significantly higher on viral hepatitis and immune deficiency syndrome. This review provides up-to-date data on the most widely investigated Glycyrrhiza species for food and medicinal purposes, with special emphasis on secondary metabolites' composition and bioactive effects.
Collapse
|
7
|
Mou SQ, Zhou ZY, Feng H, Zhang N, Lin Z, Aiyasiding X, Li WJ, Ding W, Liao HH, Bian ZY, Tang QZ. Liquiritin Attenuates Lipopolysaccharides-Induced Cardiomyocyte Injury via an AMP-Activated Protein Kinase-Dependent Signaling Pathway. Front Pharmacol 2021; 12:648688. [PMID: 34054527 PMCID: PMC8162655 DOI: 10.3389/fphar.2021.648688] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2021] [Accepted: 04/26/2021] [Indexed: 01/13/2023] Open
Abstract
Background: Liquiritin (LIQ) is a traditional Chinese medicine that has been reported to regulate inflammation, oxidative stress and cell apoptosis. However, the beneficial effects of LIQ in lipopolysaccharides (LPS)-induced septic cardiomyopathy (SCM) has not been reported. The primary goal of this study was to investigate the effects of LIQ in LPS-induced SCM model. Methods: Mice were pre-treated with LIQ for 7 days before they were injected with LPS (10 mg/kg) for inducing SCM model. Echocardiographic analysis was used to evaluate cardiac function after 12 h of LPS injection. Thereafter, mice were sacrificed to collect hearts for molecular and histopathologic assays by RT-PCR, western-blots, immunohistochemical and terminal deoxynucleotidyl transferase nick-end labeling (TUNEL) staining analysis respectively. AMPKα2 knockout (AMPKα2−/−) mice were used to elucidate the mechanism of LIQ Neonatal rat cardiomyocytes (NRCMs) treated with or without LPS were used to further investigate the roles and mechanisms of LIQ in vitro experiments. Results: LIQ administration attenuated LPS-induced mouse cardiac dysfunction and reduced mortality, based upon the restoration of EF, FS, LVEDs, heart rate, dp/dt max and dp/dt min deteriorated by LPS treatment. LIQ treatment also reduced mRNA expression of TNFα, IL-6 and IL-1β, inhibited inflammatory cell migration, suppressed cardiac oxidative stress and apoptosis, and improved metabolism. Mechanistically, LIQ enhanced the phosphorylation of AMP-activated protein kinase α2 (AMPKα2) and decreased the phosphorylation of mTORC1, IκBα and NFκB/p65. Importantly, the beneficial roles of LIQ were not observed in AMPKα2 knockout model, nor were they observed in vitro model after inhibiting AMPK activity with an AMPK inhibitor. Conclusion: We have demonstrated that LIQ exerts its protective effects in an SCM model induced by LPS administration. LIQ reduced inflammation, oxidative stress, apoptosis and metabolic alterations via regulating AMPKα2 dependent signaling pathway. Thus, LIQ might be a potential treatment or adjuvant for SCM treatment.
Collapse
Affiliation(s)
- Shan-Qi Mou
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, China.,Cardiovascular Research Institute of Wuhan University, Wuhan, China.,Hubei Key Laboratory of Metabolic and Chronic Diseases, Wuhan, China
| | - Zi-Ying Zhou
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, China.,Cardiovascular Research Institute of Wuhan University, Wuhan, China.,Hubei Key Laboratory of Metabolic and Chronic Diseases, Wuhan, China
| | - Hong Feng
- Department of Geriatrics, Renmin Hospital of Wuhan University, Wuhan, China
| | - Nan Zhang
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, China.,Cardiovascular Research Institute of Wuhan University, Wuhan, China.,Hubei Key Laboratory of Metabolic and Chronic Diseases, Wuhan, China
| | - Zheng Lin
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, China.,Cardiovascular Research Institute of Wuhan University, Wuhan, China.,Hubei Key Laboratory of Metabolic and Chronic Diseases, Wuhan, China
| | - Xiahenazi Aiyasiding
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, China.,Cardiovascular Research Institute of Wuhan University, Wuhan, China.,Hubei Key Laboratory of Metabolic and Chronic Diseases, Wuhan, China
| | - Wen-Jing Li
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, China.,Cardiovascular Research Institute of Wuhan University, Wuhan, China.,Hubei Key Laboratory of Metabolic and Chronic Diseases, Wuhan, China
| | - Wen Ding
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, China.,Cardiovascular Research Institute of Wuhan University, Wuhan, China.,Hubei Key Laboratory of Metabolic and Chronic Diseases, Wuhan, China
| | - Hai-Han Liao
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, China.,Cardiovascular Research Institute of Wuhan University, Wuhan, China.,Hubei Key Laboratory of Metabolic and Chronic Diseases, Wuhan, China
| | - Zhou-Yan Bian
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, China.,Cardiovascular Research Institute of Wuhan University, Wuhan, China.,Hubei Key Laboratory of Metabolic and Chronic Diseases, Wuhan, China
| | - Qi-Zhu Tang
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, China.,Cardiovascular Research Institute of Wuhan University, Wuhan, China.,Hubei Key Laboratory of Metabolic and Chronic Diseases, Wuhan, China
| |
Collapse
|
8
|
Recent advances in chemical analysis of licorice (Gan-Cao). Fitoterapia 2020; 149:104803. [PMID: 33309652 DOI: 10.1016/j.fitote.2020.104803] [Citation(s) in RCA: 41] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2020] [Revised: 11/17/2020] [Accepted: 12/02/2020] [Indexed: 01/07/2023]
Abstract
Gan-Cao, or licorice, the dried roots and rhizomes of Glycyrrhiza uralensis, G.glabra, and G.inflata, has received considerable interest due to its extensive application in traditional Chinese medicine (TCM) prescriptions (60% approximately), clinical therapy, and as food additives world-wide. Chemical analysis is an important approach to understand the active pharmaceutical components in licorice and its prescriptions, as well as to develop novel methodologies for their quality assessment and control. This comprehensive review describes the advances in the chemical analysis, including sample preparation methods, qualitative and quantitative analysis and biological specimen analysis, based on 113 references for the recent years. Newly established methods are summarized, such as high performance thin layer chromatography (HPTLC), high performance liquid chromatography (HPLC), liquid chromatography tandem mass spectrometry (LC-MS), capillary electrophoresis (CE) and near infrared spectroscopy (NIR), which allows the identification, authentication, and simultaneous detection of multiple compounds in licorice with higher throughput and sensitivity. It is anticipated that this review could provide imperative information for improving the existing quality evaluation methods of licorice and afford scientific basis for further researches on the pharmacodynamic substances of licorice.
Collapse
|
9
|
Chrzanowski J, Chrzanowska A, Graboń W. Glycyrrhizin: An old weapon against a novel coronavirus. Phytother Res 2020; 35:629-636. [PMID: 32902005 DOI: 10.1002/ptr.6852] [Citation(s) in RCA: 53] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2020] [Revised: 07/09/2020] [Accepted: 07/20/2020] [Indexed: 12/15/2022]
Abstract
Currently, over 100 countries are fighting against a common enemy, the severe acute respiratory syndrome coronavirus (SARS-CoV)-2, which causes COVID-19. This has created a demand for a substance whose effectiveness has already been demonstrated in a similar scenario. Glycyrrhizin (GZ) is a promising agent against SARS-CoV-2 as its antiviral activity against SARS-CoV has already been confirmed. It is worthwhile to extrapolate from its proven therapeutic effects as there is a high similarity in the structure and genome of SARS-CoV and SARS-CoV-2. There are many possible mechanisms through which GZ acts against viruses: increasing nitrous oxide production in macrophages, affecting transcription factors and cellular signalling pathways, directly altering the viral lipid-bilayer membrane, and binding to the ACE2 receptor. In this review, we discuss the possible use of GZ in the COVID-19 setting, where topical administration appears to be promising, with the nasal and oral cavity notably being the potent location in terms of viral load. The most recently published papers on the distribution of ACE2 in the human body and documented binding of GZ to this receptor, as well as its antiviral activity, suggest that GZ can be used as a therapeutic for COVID-19 and as a preventive agent against SARS-CoV-2.
Collapse
Affiliation(s)
- Julian Chrzanowski
- Chair and Department of Biochemistry, Medical University of Warsaw, Banacha 1, Warsaw, Poland
| | - Alicja Chrzanowska
- Chair and Department of Biochemistry, Medical University of Warsaw, Banacha 1, Warsaw, Poland
| | - Wojciech Graboń
- Chair and Department of Biochemistry, Medical University of Warsaw, Banacha 1, Warsaw, Poland
| |
Collapse
|
10
|
Wang J, Zheng D, Xu N, Zhang C, Wang Y, Sun X, Zhang Z. Attribution and identification of absorbed components by HPLC-DAD-ESI-MS after oral administration of Erhuang decoction. J Anal Sci Technol 2020. [DOI: 10.1186/s40543-020-00236-4] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
AbstractTo realize the attribution and identification of absorbed components in rat serum after oral administration of Erhuang decoction prepared by semi-bionic enzyme extraction method, the fingerprints of serum samples were established using a HPLC-DAD-ESI-MS method. Thirty-two peaks in Erhuang decoction and 24 peaks in rat serum after oral administration of Erhuang decoction were detected. Among the 24 peaks detected in rat serum, 25 compounds were identified by comparing the retention time and mass spectrometry data with that of reference compounds, or by mass spectrometry analysis and retrieving the reference literatures. Among the identified 25 compounds in vivo, 24 were the original form of compounds absorbed from the detected compounds in vitro, and one was the metabolite compounds of licorice. By analyzing the mass spectrometry or ultraviolet absorption characteristics, other unidentified compounds in vivo were deduced to be the endogenous metabolites in serum or the original form and metabolites of the compounds existed in vivo. Results indicated that HPLC-DAD-ESI-MS is suitable for identifying the bioactive constituents in serum after oral administration of Erhuang decoction, and the findings would be beneficial to further research and development of the pharmacodynamic substance base of Erhuang decoction.
Collapse
|
11
|
Bizzarri M, Giuliani A, Monti N, Verna R, Pensotti A, Cucina A. Rediscovery of natural compounds acting via multitarget recognition and noncanonical pharmacodynamical actions. Drug Discov Today 2020; 25:920-927. [DOI: 10.1016/j.drudis.2020.02.010] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2019] [Revised: 02/20/2020] [Accepted: 02/26/2020] [Indexed: 12/23/2022]
|
12
|
Bioactive Candy: Effects of Licorice on the Cardiovascular System. Foods 2019; 8:foods8100495. [PMID: 31615045 PMCID: PMC6836258 DOI: 10.3390/foods8100495] [Citation(s) in RCA: 49] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2019] [Revised: 10/07/2019] [Accepted: 10/09/2019] [Indexed: 12/15/2022] Open
Abstract
Licorice, today chiefly utilized as a flavoring additive in tea, tobacco and candy, is one of the oldest used herbs for medicinal purposes and consists of up to 300 active compounds. The main active constituent of licorice is the prodrug glycyrrhizin, which is successively converted to 3β-monoglucuronyl-18β-glycyrrhetinic acid (3MGA) and 18β-glycyrrhetinic acid (GA) in the intestines. Despite many reported health benefits, 3MGA and GA inhibit the 11-β-hydrogenase type II enzyme (11β-HSD2) oxidizing cortisol to cortisone. Through activation of mineralocorticoid receptors, high cortisol levels induce a mild form of apparent mineralocorticoid excess in the kidney and increase systemic vascular resistance. Continuous inhibition of 11β-HSD2 related to excess licorice consumption will create a state of hypernatremia, hypokalemia and increased fluid volume, which can cause serious life-threatening complications especially in patients already suffering from cardiovascular diseases. Two recent meta-analyses of 18 and 26 studies investigating the correlation between licorice intake and blood pressure revealed statistically significant increases both in systolic (5.45 mmHg) and in diastolic blood pressure (3.19/1.74 mmHg). This review summarizes and evaluates current literature about the acute and chronic effects of licorice ingestion on the cardiovascular system with special focus on blood pressure. Starting from the molecular actions of licorice (metabolites) inside the cells, it describes how licorice intake is affecting the human body and shows the boundaries between the health benefits of licorice and possible harmful effects.
Collapse
|
13
|
Simultaneous Determination and Pharmacokinetic Characterization of Glycyrrhizin, Isoliquiritigenin, Liquiritigenin, and Liquiritin in Rat Plasma Following Oral Administration of Glycyrrhizae Radix Extract. Molecules 2019; 24:molecules24091816. [PMID: 31083444 PMCID: PMC6539080 DOI: 10.3390/molecules24091816] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2019] [Revised: 05/06/2019] [Accepted: 05/09/2019] [Indexed: 11/25/2022] Open
Abstract
Glycyrrhizae Radix is widely used as herbal medicine and is effective against inflammation, various cancers, and digestive disorders. We aimed to develop a sensitive and simultaneous analytical method for detecting glycyrrhizin, isoliquiritigenin, liquiritigenin, and liquiritin, the four marker components of Glycyrrhizae Radix extract (GRE), in rat plasma using liquid chromatography-tandem mass spectrometry and to apply this analytical method to pharmacokinetic studies. Retention times for glycyrrhizin, isoliquiritigenin, liquiritigenin, and liquiritin were 7.8 min, 4.1 min, 3.1 min, and 2.0 min, respectively, suggesting that the four analytes were well separated without any interfering peaks around the peak elution time. The lower limit of quantitation was 2 ng/mL for glycyrrhizin and 0.2 ng/mL for isoliquiritigenin, liquiritigenin, and liquiritin; the inter- and intra-day accuracy, precision, and stability were less than 15%. Plasma concentrations of glycyrrhizin, isoliquiritigenin, liquiritigenin, and liquiritin were quantified for 24 h after a single oral administration of 1 g/kg GRE to four rats. Among the four components, plasma concentration of glycyrrhizin was the highest and exhibited a long half-life (23.1 ± 15.5 h). Interestingly, plasma concentrations of isoliquiritigenin and liquiritigenin were restored to the initial concentration at 4–10 h after the GRE administration, as evidenced by liquiritin biotransformation into isoliquiritigenin and liquiritigenin, catalyzed by fecal lysate and gut wall enzymes. In conclusion, our analytical method developed for detecting glycyrrhizin, isoliquiritigenin, liquiritigenin, and liquiritin could be successfully applied to investigate their pharmacokinetic properties in rats and would be useful for conducting further studies on the efficacy, toxicity, and biopharmaceutics of GREs and their marker components.
Collapse
|
14
|
Takiyama M, Matsumoto T, Watanabe J. LC-MS/MS detection of citrus unshiu peel-derived flavonoids in the plasma and brain after oral administration of yokukansankachimpihange in rats. Xenobiotica 2019; 49:1494-1503. [PMID: 30741064 DOI: 10.1080/00498254.2019.1581300] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
1. Yokukansankachimpihange (YKSCH), a Kampo formulation combining Citrus unshiu peel (CUP) and Pinellia tuber (PT) with yokukansan (YKS), has been recently used to treat the behavioral and psychological symptoms of dementia. Several flavonoids derived from CUP and PT reportedly exhibit psychopharmacological activity, but it remains unclear whether these flavonoids reach the brain after oral administration of YKSCH. 2. In this study, we first measured eight target flavonoids in the plasma and brain in rats orally administered YKSCH. Among these flavonoids, hesperidin, narirutin, nobiletin, and heptamethoxyflavone (HMF) were detected in the plasma, and nobiletin and HMF were detected in the brain. 3. Next, to clarify whether CUP and PT affect the pharmacokinetics of YKS ingredients in YKSCH, the plasma pharmacokinetics of geissoschizine methyl ether (GM) as a representative active ingredient in YKS was examined in rats orally administered YKSCH or YKS. There was no significant difference between the two groups, inferring that the pharmacokinetics of GM may not be affected by the two additional crude drugs. 4. Taken together, this study suggests that the CUP-derived flavonoids nobiletin and HMF may be responsible for the psychopharmacological effects of YKSCH in addition to YKS ingredients.
Collapse
Affiliation(s)
- Mikina Takiyama
- Tsumura Kampo Research Laboratories, Kampo Research & Development Division, Tsumura & Co. , Ibaraki , Japan
| | - Takashi Matsumoto
- Tsumura Kampo Research Laboratories, Kampo Research & Development Division, Tsumura & Co. , Ibaraki , Japan
| | - Junko Watanabe
- Tsumura Kampo Research Laboratories, Kampo Research & Development Division, Tsumura & Co. , Ibaraki , Japan
| |
Collapse
|
15
|
Li N, Zhou T, Wu F, Wang R, Zhao Q, Zhang JQ, Yang BC, Ma BL. Pharmacokinetic mechanisms underlying the detoxification effect of Glycyrrhizae Radix et Rhizoma (Gancao): drug metabolizing enzymes, transporters, and beyond. Expert Opin Drug Metab Toxicol 2019; 15:167-177. [DOI: 10.1080/17425255.2019.1563595] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Affiliation(s)
- Na Li
- Department of Chinese Materia Medica, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Ting Zhou
- Department of Pharmacology, School of Pharmacy, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Fei Wu
- Engineering Research Center of Modern Preparation Technology of TCM of Ministry of Education, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Rui Wang
- Engineering Research Center of Modern Preparation Technology of TCM of Ministry of Education, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Qing Zhao
- Department of Pharmacology, School of Pharmacy, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Ji-Quan Zhang
- Engineering Research Center of Modern Preparation Technology of TCM of Ministry of Education, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Bai-Can Yang
- Department of Chinese Materia Medica, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Bing-Liang Ma
- Department of Pharmacology, School of Pharmacy, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| |
Collapse
|
16
|
Ramalingam M, Kim H, Lee Y, Lee YI. Phytochemical and Pharmacological Role of Liquiritigenin and Isoliquiritigenin From Radix Glycyrrhizae in Human Health and Disease Models. Front Aging Neurosci 2018; 10:348. [PMID: 30443212 PMCID: PMC6221911 DOI: 10.3389/fnagi.2018.00348] [Citation(s) in RCA: 113] [Impact Index Per Article: 16.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2018] [Accepted: 10/15/2018] [Indexed: 01/09/2023] Open
Abstract
The increasing lifespan in developed countries results in age-associated chronic diseases. Biological aging is a complex process associated with accumulated cellular damage by environmental or genetic factors with increasing age. Aging results in marked changes in brain structure and function. Age-related neurodegenerative diseases and disorders (NDDs) represent an ever-growing socioeconomic challenge and lead to an overall reduction in quality of life around the world. Alzheimer’s disease (AD) and Parkinson’s disease (PD) are most common degenerative neurological disorders of the central nervous system (CNS) in aging process. The low levels of acetylcholine and dopamine are major neuropathological feature of NDDs in addition to oxidative stress, intracellular calcium ion imbalance, mitochondrial dysfunction, ubiquitin-proteasome system impairment and endoplasmic reticulum stress. Current treatments minimally influence these diseases and are ineffective in curing the multifunctional pathological mechanisms. Synthetic neuroprotective agents sometimes have negative reactions as an adverse effect in humans. Recently, numerous ethnobotanical studies have reported that herbal medicines for the treatment or prevention of NDDs are significantly better than synthetic drug treatment. Medicinal herbs have traditionally been used around the world for centuries. Radix Glycyrrhizae (RG) is the dried roots and rhizomes of Glycyrrhiza uralensis or G. glabra or G. inflata from the Leguminosae/Fabaceae family. It has been used for centuries in traditional medicine as a life enhancer, for the treatment of coughs and influenza, and for detoxification. Diverse chemical constituents from RG have reported including flavanones, chalcones, triterpenoid saponins, coumarines, and other glycosides. Among them, flavanone liquiritigenin (LG) and its precursor and isomer chalcone isoliquiritigenin (ILG) are the main bioactive constituents of RG. In the present review, we summarize evidence in the literature on the structure and phytochemical properties and pharmacological applications of LG and ILG in age-related diseases to establish new therapeutics to improve human health and lifespan.
Collapse
Affiliation(s)
- Mahesh Ramalingam
- Well Aging Research Center, Daegu Gyeongbuk Institute of Science and Technology, Daegu, South Korea
| | - Hyojung Kim
- Division of Pharmacology, Department of Molecular Cell Biology, Samsung Biomedical Research Institute, Sungkyunkwan University School of Medicine, Suwon, South Korea
| | - Yunjong Lee
- Division of Pharmacology, Department of Molecular Cell Biology, Samsung Biomedical Research Institute, Sungkyunkwan University School of Medicine, Suwon, South Korea
| | - Yun-Il Lee
- Well Aging Research Center, Daegu Gyeongbuk Institute of Science and Technology, Daegu, South Korea.,Companion Diagnostics and Medical Technology Research Group, Daegu Gyeongbuk Institute of Science and Technology, Daegu, South Korea
| |
Collapse
|
17
|
Mudumbi JBN, Ntwampe SKO, Mekuto L, Matsha T, Itoba-Tombo EF. The role of pollutants in type 2 diabetes mellitus (T2DM) and their prospective impact on phytomedicinal treatment strategies. ENVIRONMENTAL MONITORING AND ASSESSMENT 2018; 190:262. [PMID: 29610974 DOI: 10.1007/s10661-018-6634-2] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/26/2017] [Accepted: 03/22/2018] [Indexed: 06/08/2023]
Abstract
Type 2 diabetes mellitus (T2DM) is the most common form of diabetes and it is characterized by high blood sugar and abnormal sera lipid levels. Although the specific reasons for the development of these abnormalities are still not well understood, traditionally, genetic and lifestyle behavior have been reported as the leading causes of this disease. In the last three decades, the number of diabetic patients has drastically increased worldwide, with current statistics suggesting the number is to double in the next two decades. To combat this incurable ailment, orthodox medicines, to which economically disadvantaged patients have minimal access to, have been used. Thus, a considerable amalgamation of medicinal plants has recently been proven to possess therapeutic capabilities to manage T2DM, and this has prompted studies primarily focusing on the healing aspect of these plants, and ultimately, their commercialization. Hence, this review aims to highlight the potential threat of pollutants, i.e., polyfluoroalkyl compounds (PFCs), endocrine disrupting chemicals (EDCs) and heavy metals, to medicinal plants, and their prospective impact on the phytomedicinal therapy strategies for T2DM. It is further suggested that auxiliary research be undertaken to better comprehend the factors that influence the uptake of these compounds by these plants. This should include a comprehensive risk assessment of phytomedicinal products destined for the treatment of T2DM. Regulations that control the use of PFC-precursors in certain developing countries are also long overdue.
Collapse
Affiliation(s)
- John Baptist Nzukizi Mudumbi
- Bioresource Engineering Research Group (BioERG), Department of Biotechnology, Cape Peninsula University of Technology, PO Box 652, Cape Town, 8000, South Africa.
| | - Seteno Karabo Obed Ntwampe
- Bioresource Engineering Research Group (BioERG), Department of Biotechnology, Cape Peninsula University of Technology, PO Box 652, Cape Town, 8000, South Africa
| | - Lukhanyo Mekuto
- Department of Chemical Engineering, University of Johannesburg, PO Box 17011, Johannesburg, Gauteng, 2028, South Africa
| | - Tandi Matsha
- Department of Bio-Medical sciences, Faculty of Health and Wellness Science, Cape Peninsula University of Technology, PO Box 1906, Bellville, 7535, South Africa
| | - Elie Fereche Itoba-Tombo
- Bioresource Engineering Research Group (BioERG), Department of Biotechnology, Cape Peninsula University of Technology, PO Box 652, Cape Town, 8000, South Africa
| |
Collapse
|
18
|
Nazari S, Rameshrad M, Hosseinzadeh H. Toxicological Effects of Glycyrrhiza glabra (Licorice): A Review. Phytother Res 2017; 31:1635-1650. [PMID: 28833680 DOI: 10.1002/ptr.5893] [Citation(s) in RCA: 166] [Impact Index Per Article: 20.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2017] [Revised: 07/22/2017] [Accepted: 07/24/2017] [Indexed: 12/20/2022]
Abstract
Licorice (Glycyrrhiza glabra) has been considered as an herbal drug since ancient time. Nowadays, it is a well-known spice that possesses worth pharmacological effects. However, some relevant articles have revealed negative impacts of licorice in health. By considering the great wishes in using herbal medicine, it is important to show adverse effects of herbal medicine in health. At present, there are misunderstandings toward the safety of herbal medicines. Herein, we gathered scientific research projects on the toxicity effects of licorice and glycyrrhizin to highlight their safety. In this regards, we categorized our findings about the toxicity effects of licorice and glycyrrhizin in acute, sub-acute, sub-chronic, and chronic states. Besides, we discussed on the cytotoxicity, genotoxicity, mutagenicity, and carcinogenicity of licorice and glycyrrhizin as well as their developmental toxicity. This review disclosed that G. glabra and glycyrrhizin salts are moderately toxic. They need to be used with caution during pregnancy. G. glabra and glycyrrhizin possess selective cytotoxic effects on cancerous cells. The most important side effects of licorice and glycyrrhizin are hypertension and hypokalemic-induced secondary disorders. Licorice side effects are increased by hypokalemia, prolonged gastrointestinal transient time, decreased type 2 11-beta-hydroxysteroid dehydrogenase activities, hypertension, anorexia nervosa, old age, and female sex. Copyright © 2017 John Wiley & Sons, Ltd.
Collapse
Affiliation(s)
- Somayeh Nazari
- Department of Pharmacodynamics and Toxicology, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Maryam Rameshrad
- Pharmaceutical Research Center, Department of Pharmacodynamics and Toxicology, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Hossein Hosseinzadeh
- Pharmaceutical Research Center, Department of Pharmacodynamics and Toxicology, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran
| |
Collapse
|
19
|
Suzuki T, Tsukahara M, Akasaka Y, Inoue H. A highly sensitive LC-MS/MS method for simultaneous determination of glycyrrhizin and its active metabolite glycyrrhetinic acid: Application to a human pharmacokinetic study after oral administration. Biomed Chromatogr 2017. [PMID: 28623864 DOI: 10.1002/bmc.4032] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
A highly sensitive liquid chromatography tandem mass spectrometry (LC-MS/MS) method for simultaneous determination of glycyrrhizin (GL) and its active metabolite, glycyrrhetinic acid (GA), from human plasma was validated and applied to a human pharmacokinetic study. The analytes were extracted from human plasma using an Oasis MAX cartridge and chromatographic separation was performed on an Inertsil ODS-3 column. The detection was performed using an API 4000 mass spectrometer operating in the positive electrospray ionization mode. Selected ion monitoring transitions of m/z 823 → 453 for GL and m/z 471 → 149 for GA were obtained. The response was a linear function of concentration over the ranges of 0.5-200 ng/mL for GL and 2-800 ng/mL for GA (both R2 > 0.998). Using this method, the pharmacokinetics of GL after single oral administration of a clinical dose (75 mg) to six healthy male Japanese volunteers were evaluated. GL was detected in the plasma of all subjects and the average peak concentration was 24.8 ± 12.0 ng/mL. In contrast, peak concentration of GA was 200.3 ± 60.3 ng/mL, i.e. ~8-fold higher than that of GL. This is the first report clarifying pharmacokinetic profiles of GL and GA simultaneously at a therapeutic oral dose of a GL preparation.
Collapse
Affiliation(s)
- Tsuneharu Suzuki
- Research Laboratory, Minophagen Pharmaceutical Co. Ltd, Kanagawa, Japan
| | - Michiko Tsukahara
- Research Laboratory, Minophagen Pharmaceutical Co. Ltd, Kanagawa, Japan
| | - Yuko Akasaka
- Research Laboratory, Minophagen Pharmaceutical Co. Ltd, Kanagawa, Japan
| | - Hideo Inoue
- Research Laboratory, Minophagen Pharmaceutical Co. Ltd, Kanagawa, Japan
| |
Collapse
|
20
|
Gao YX, Cheng BF, Lian JJ, Guo DD, Qin JW, Zhang YB, Yang HJ, Wang M, Wang L, Feng ZW. Liquiritin, a flavone compound from licorice, inhibits IL-1β-induced inflammatory responses in SW982 human synovial cells. J Funct Foods 2017. [DOI: 10.1016/j.jff.2017.03.039] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023] Open
|
21
|
Wang J, Zheng D, Wang Y, Zhang C, Sun X. Pharmacokinetics study of Erhuang decoction extracts in rats by HPLC-MS/MS. J Chromatogr B Analyt Technol Biomed Life Sci 2017; 1059:35-42. [PMID: 28570935 DOI: 10.1016/j.jchromb.2017.05.019] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2016] [Revised: 05/20/2017] [Accepted: 05/21/2017] [Indexed: 11/30/2022]
Abstract
To study the pharmacokinetics of Erhuang decoction extracts, a high performance liquid chromatography-tandem mass spectrometry (HPLC-MS/MS) method was established for the determination of effective substances in rat plasma. The extracts prepared by water extraction (WE) method were given to rats by oral administration. After collected from the orbital venous plexus, plasma was treated by protein precipitation method. Then, the concentration of index components, including baicalin, liquiritin, berberine, palmatine and glycyrrhetinic acid, were determined by HPLC-MS/MS. Gradient elution mode was used to the chromatographic separation with an Inertsil ODS-SP column (100 mm×2.1mm, 5μm), with acetonitrile and 0.1% formic acid containing 10mmolL-1 ammonium acetate as the mobile phase. MS analysis was conducted by multiple reactions monitoring (MRM) with Electrospray Ionization (ESI). The extraction recoveries of the five active ingredients from plasma were greater than 86.04%, and the intra- and inter-day precisions were less than 16.57%. Results indicated that active ingredients in plasma of rats with oral administration of extracts showed certain difference in the pharmacokinetic parameters, which proved that the active ingredients were effectively absorbed. The established HPLC-MS/MS analytical method was sensitive and accurate, suitable for the pharmacokinetic study of active ingredients in Erhuang decoction.
Collapse
Affiliation(s)
- Jinglong Wang
- College of Life Sciences, Zaozhuang University, Zaozhuang 277160, China.
| | - Dandan Zheng
- College of Life Sciences, Zaozhuang University, Zaozhuang 277160, China
| | - Yingzi Wang
- School of Chinese Materia Medica, Beijing University of Traditional Chinese Medicine, Beijing 100029, China
| | - Chao Zhang
- College of pharmacy, Shandong University of Traditional Chinese Medicine, Jinan 250355, China
| | - Xiumei Sun
- College of pharmacy, Shandong University of Traditional Chinese Medicine, Jinan 250355, China
| |
Collapse
|
22
|
Wang Y, Wang S, Bao Y, Li T, Chang X, Yang G, Meng X. Multipathway Integrated Adjustment Mechanism of Glycyrrhiza Triterpenes Curing Gastric Ulcer in Rats. Pharmacogn Mag 2017; 13:209-215. [PMID: 28539709 PMCID: PMC5421414 DOI: 10.4103/0973-1296.204550] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2016] [Revised: 03/02/2016] [Indexed: 12/17/2022] Open
Abstract
Background: Gastric ulcer is a common chronic disease in human digestive system, which is difficult to cure, easy to relapse, and endangers human health seriously. Compared with western medicine, traditional Chinese medicine has a unique advantage in improving the general situation, stablizing medical condition, and with little side effects. Glycyrrhiza known as “king of all the medicine”, has a range of pharmacological activities and is commonly used in a variety of proprietary Chinese medicines and formulations. Objective: On the basis of explicit antiulcer effect of Glycyrrhiza triterpenes, the molecular mechanisms of its therapeutic effect on acetic acid induced gastric ulcer in rats were explored. Materials and Methods: Acetic acid induced gastric ulcer model in rats was established to evaluate the curing effect of G. triterpenes and all of the rats were randomised into six groups: Control group, model group, omeprazole group (0.8 mg/mL), triterpenes high dose group (378.0 mg/mL), triterpenes middle dose group (126.0 mg/mL), and triterpenes low dose group (42.0 mg/mL). All rats in groups were orally administered the active group solution 1.5 mL once daily (model and control groups with saline) for 7 days. HPLC-TOF-MS analysis method was performed to obtain the plasma metabolites spectrums of control group, model group, triterpenes high, middle and low dose groups. Results: A total of 11 differential endogenous metabolites related to the therapeutic effect of G. triterpenes were identified, including tryptophan, phingosine-1-phosphate, pantothenic acid, and so on, among which tryptophan and phingosine-1-phosphate are related with the calcium signaling pathway and arachidonic acid (AA) metabolism. At the same time, in order to verify the above results, quantitative real time polymerase chain reaction were performed to evaluate the expression of H+-K+-ATPase alpha mRNA and phospholipase a 2 mRNA in relational signaling pathways. Combined with statistical analysis of plasma metabolic spectrum and gene expression in tissue, it is suggested that G. triterpenes has antiulcer effect on gastric ulcer in rats. Conclusion: G. triterpenes has a certain regulating effect on the metabolism of tryptophan, AA, sphingosine, and other endogenous metabolites, and we speculated that the antiulcer potential of G. triterpenes can be primarily attributed to its inhibiting gastric acid secretion, reducing the release of inflammatory mediators, and protecting gastric mucosa effects to prevent the further development of gastric ulcer. SUMMARY G. triterpenes can obviously relieve the symptoms of gastric ulcer, especially the low dose group. G. triterpenes can effectively regulate the amount of small molecule metablism in gastric ulcer rats in vivo, including tryptophan, phingosine-1-phosphate, etc. G. triterpenes resisting gastric ulcer is probably by regulating arachidonic acid metabolism, sphingosine metabolism, etc. Down-regulation of H+-K+-ATPase alpha subunit mRNA and up-regulation of PLA2 mRNA in gastric tissue of dose group validated the possible mechanisms of G. triterpenes for the treatment of gastric ulcer
Abbreviations used: HP: Helicobacter pylori, ECL: enterochromaffinlike, TCM: Traditional Chinese medicine; HPLC: High Performance Liquid Chromatography, HPLC/MS: High Performance Liquid chromatography Mass Spectrometry, HPLC-TOF-MS: High Performance Liquid Chromatography and Tof Mass Spectrometry, SD: Sprague Dawley, PCDL: Personal Compound Database and Library, MPP: Mass Profiler Professiona; PCA: principal component analysis, RT-PCR: real time polymerase chain reaction, PGE 2: Prostaglandin E2, COX1: cyclooxygenase 1 S1P: Sphingosine-1-phosphate, AA: Arachidonic acid, 5-HT: 5- hydroxytryptamine.
Collapse
Affiliation(s)
- Ying Wang
- School of Pharmacy, Liaoning University of Traditional Chinese Medicine, Dalian, People's Republic of China
| | - Shuai Wang
- School of Pharmacy, Liaoning University of Traditional Chinese Medicine, Dalian, People's Republic of China.,Component Medicine Engineering Research Center of Liaoning Province, Dalian, People's Republic of China.,Liaoning Province Modern Chinese Medicine Research Engineering Laboratory, Dalian, People's Republic of China
| | - Yongrui Bao
- School of Pharmacy, Liaoning University of Traditional Chinese Medicine, Dalian, People's Republic of China.,Component Medicine Engineering Research Center of Liaoning Province, Dalian, People's Republic of China.,Liaoning Province Modern Chinese Medicine Research Engineering Laboratory, Dalian, People's Republic of China
| | - Tianjiao Li
- School of Pharmacy, Liaoning University of Traditional Chinese Medicine, Dalian, People's Republic of China.,Component Medicine Engineering Research Center of Liaoning Province, Dalian, People's Republic of China.,Liaoning Province Modern Chinese Medicine Research Engineering Laboratory, Dalian, People's Republic of China
| | - Xin Chang
- School of Pharmacy, Liaoning University of Traditional Chinese Medicine, Dalian, People's Republic of China
| | - Guanlin Yang
- School of Pharmacy, Liaoning University of Traditional Chinese Medicine, Dalian, People's Republic of China
| | - Xiansheng Meng
- School of Pharmacy, Liaoning University of Traditional Chinese Medicine, Dalian, People's Republic of China.,Component Medicine Engineering Research Center of Liaoning Province, Dalian, People's Republic of China.,Liaoning Province Modern Chinese Medicine Research Engineering Laboratory, Dalian, People's Republic of China
| |
Collapse
|
23
|
Ikarashi Y, Mizoguchi K. Neuropharmacological efficacy of the traditional Japanese Kampo medicine yokukansan and its active ingredients. Pharmacol Ther 2016; 166:84-95. [PMID: 27373856 DOI: 10.1016/j.pharmthera.2016.06.018] [Citation(s) in RCA: 72] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2016] [Accepted: 06/21/2016] [Indexed: 02/07/2023]
Abstract
Dementia is a progressive neurodegenerative disorder with cognitive dysfunction, and is often complicated by behavioral and psychological symptoms of dementia (BPSD) including excitement, aggression, and hallucinations. Typical and atypical antipsychotics are used for the treatment of BPSD, but induce adverse events. The traditional Japanese Kampo medicine yokukansan (YKS), which had been originated from the traditional Chinese medicine Yi-Gan-San, has been reported to improve BPSD without severe adverse effects. In the preclinical basic studies, there are over 70 research articles indicating the neuropharmacological efficacies of YKS. In this review, we first describe the neuropharmacological actions of YKS and its bioactive ingredients. Multiple potential actions for YKS were identified, which include effects on serotonergic, glutamatergic, cholinergic, dopaminergic, adrenergic, and GABAergic neurotransmissions as well as neuroprotection, anti-stress effect, promotion of neuroplasticity, and anti-inflammatory effect. Geissoschizine methyl ether (GM) in Uncaria hook and 18β-glycyrrhetinic acid (GA) in Glycyrrhiza were responsible for several pharmacological actions of YKS. Subsequently, we describe the pharmacokinetics of GM and GA in rats. These ingredients were absorbed into the blood, crossed the blood-brain barrier, and reached the brain, in rats orally administered YKS. Moreover, autoradiography showed that [(3)H]GM predominantly distributed in the frontal cortex and [(3)H]GA in the hippocampus. Thus, YKS is a versatile herbal remedy with a variety of neuropharmacological effects, and may operate as a multicomponent drug including various active ingredients.
Collapse
Affiliation(s)
- Yasushi Ikarashi
- Tsumura Research Laboratories, Kampo Scientific Strategies Division, Tsumura & Co., 3586 Yoshiwara, Ami-machi, Inashiki-gun, Ibaraki 300-1192, Japan.
| | - Kazushige Mizoguchi
- Tsumura Research Laboratories, Kampo Scientific Strategies Division, Tsumura & Co., 3586 Yoshiwara, Ami-machi, Inashiki-gun, Ibaraki 300-1192, Japan.
| |
Collapse
|
24
|
Jung JC, Lee YH, Kim SH, Kim KJ, Kim KM, Oh S, Jung YS. Hepatoprotective effect of licorice, the root of Glycyrrhiza uralensis Fischer, in alcohol-induced fatty liver disease. BMC COMPLEMENTARY AND ALTERNATIVE MEDICINE 2016; 16:19. [PMID: 26801973 PMCID: PMC4722619 DOI: 10.1186/s12906-016-0997-0] [Citation(s) in RCA: 71] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/20/2015] [Accepted: 01/12/2016] [Indexed: 12/31/2022]
Abstract
Background Our previous study suggested that licorice has anti-inflammatory activity in lipopolysaccharide-stimulated microglial cells and anti-oxidative activity in tert-butyl hydroperoxide–induced oxidative liver damage. In this study, we evaluated the effect of licorice on chronic alcohol-induced fatty liver injury mediated by inflammation and oxidative stress. Methods Raw licorice was extracted, and quantitative and qualitative analysis of its components was performed by using LC–MS/MS. Mice were fed a liquid alcohol diet with or without licorice for 4 weeks. Results We have standardized 70 % fermented ethanol extracted licorice and confirmed by LC-MS/MS as glycyrrhizic acid (GA), 15.77 ± 0.34 μg/mg; liquiritin (LQ), 14.55 ± 0.42 μg/mg; and liquiritigenin (LG), 1.34 ± 0.02 μg/mg, respectively. Alcohol consumption increased serum alanine aminotransferase and aspartate aminotransferase activities and the levels of triglycerides and tumor necrosis factor (TNF)-α. Lipid accumulation in the liver was also markedly induced, whereas the glutathione level was reduced. All these alcohol-induced changes were effectively inhibited by licorice treatment. In particular, the hepatic glutathione level was restored and alcohol-induced TNF-α production was significantly inhibited by licorice. Conclusion Taken together, our data suggests that protective effect of licorice against alcohol-induced liver injury may be attributed to its anti-inflammatory activity and enhancement of antioxidant defense. Electronic supplementary material The online version of this article (doi:10.1186/s12906-016-0997-0) contains supplementary material, which is available to authorized users.
Collapse
|
25
|
Abstract
Liquorice foliage
Collapse
|
26
|
Sadakane C, Watanabe J, Fukutake M, Nisimura H, Maemura K, Kase Y, Kono T. Pharmacokinetic Profiles of Active Components After Oral Administration of a Kampo Medicine, Shakuyakukanzoto, to Healthy Adult Japanese Volunteers. J Pharm Sci 2015; 104:3952-3959. [PMID: 26211516 DOI: 10.1002/jps.24596] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2015] [Revised: 06/26/2015] [Accepted: 07/02/2015] [Indexed: 11/08/2022]
Abstract
Shakuyakukanzoto (SKT), a traditional Japanese (Kampo) medicine, has been used by patients with muscle cramps and abdominal pains. In this trial, we analyzed plasma concentrations of active components after SKT was administered as a single oral dose of 2.5 or 5.0 g/day per person. The study was a randomized, open-label, two-arm, two-period, crossover trial conducted in healthy Japanese volunteers. Albiflorin (ALB), paeoniflorin (PAE), glycycoumarin (GCM), isoliquiritigenin (ILG), glycyrrhetic acid (GA), and glycyrrhetic acid-3-O-monoglucuronide were targeted, and the plasma concentration of each component was measured using a liquid chromatography-tandem mass spectrometry method. The pharmacokinetic parameters were calculated, and the linearity was assessed. All targeted components were detected in the plasma after oral administration of SKT. ALB, PAE, GCM, and ILG were detected at an early stage. The linearity was observed for the maximum plasma concentration of GCM, ILG, and GA and for the area under the plasma concentration-time curve of GA. In this trial, we demonstrated for the first time in humans that these components were absorbed into the blood after oral administration of SKT. The results of this pharmacokinetic trial in humans are also important and useful for understanding the mechanism of action of SKT, verifying the active components predicted in basic research, and conducting pharmacokinetics and safety studies in the future.
Collapse
Affiliation(s)
- Chiharu Sadakane
- Tsumura Research Laboratories, Kampo Scientific Strategies Division, Tsumura & Co., Ibaraki, Japan
| | - Junko Watanabe
- Tsumura Research Laboratories, Kampo Scientific Strategies Division, Tsumura & Co., Ibaraki, Japan.
| | - Miwako Fukutake
- Tsumura Research Laboratories, Kampo Scientific Strategies Division, Tsumura & Co., Ibaraki, Japan
| | - Hiroaki Nisimura
- Kampo Formulations Development Center, Production Division, Tsumura & Co., Ibaraki, Japan
| | - Kazuya Maemura
- Tsumura Research Laboratories, Kampo Scientific Strategies Division, Tsumura & Co., Ibaraki, Japan
| | - Yoshio Kase
- Tsumura Research Laboratories, Kampo Scientific Strategies Division, Tsumura & Co., Ibaraki, Japan
| | - Toru Kono
- Faculty of Pharmaceutical Sciences, Hokkaido University, Sapporo, Japan; Center for Clinical and Biomedical Research, Sapporo Higashi Tokushukai Hospital, Sapporo, Japan
| |
Collapse
|
27
|
Anti-Inflammatory activities of licorice extract and its active compounds, glycyrrhizic acid, liquiritin and liquiritigenin, in BV2 cells and mice liver. Molecules 2015. [PMID: 26205049 PMCID: PMC6332102 DOI: 10.3390/molecules200713041] [Citation(s) in RCA: 159] [Impact Index Per Article: 15.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
This study provides the scientific basis for the anti-inflammatory effects of licorice extract in a t-BHP (tert-butyl hydrogen peroxide)-induced liver damage model and the effects of its ingredients, glycyrrhizic acid (GA), liquiritin (LQ) and liquiritigenin (LG), in a lipopolysaccharide (LPS)-stimulated microglial cell model. The GA, LQ and LG inhibited the LPS-stimulated elevation of pro-inflammatory mediators, such as inducible nitric oxide synthase (iNOS), cyclooxygenase-2 (COX-2), tumor necrosis factor (TNF)-alpha, interleukin (IL)-1beta and interleukin (IL)-6 in BV2 (mouse brain microglia) cells. Furthermore, licorice extract inhibited the expression levels of pro-inflammatory cytokines (TNF-α, IL-1β and IL-6) in the livers of t-BHP-treated mice models. This result suggested that mechanistic-based evidence substantiating the traditional claims of licorice extract and its three bioactive components can be applied for the treatment of inflammation-related disorders, such as oxidative liver damage and inflammation diseases.
Collapse
|
28
|
Kitagawa H, Munekage M, Ichikawa K, Fukudome I, Munekage E, Takezaki Y, Matsumoto T, Igarashi Y, Hanyu H, Hanazaki K. Pharmacokinetics of Active Components of Yokukansan, a Traditional Japanese Herbal Medicine after a Single Oral Administration to Healthy Japanese Volunteers: A Cross-Over, Randomized Study. PLoS One 2015; 10:e0131165. [PMID: 26151135 PMCID: PMC4495062 DOI: 10.1371/journal.pone.0131165] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2014] [Accepted: 05/28/2015] [Indexed: 11/18/2022] Open
Abstract
Context Yokukansan (YKS) is a traditional Japanese herbal medicine called kampo medicine in Japan. Its extract comprises seven crude drugs: Atractylodis lanceae rhizoma, Poria, Cnidii rhizoma, Uncariae uncis cum ramulus, Angelicae radix, Bupleuri radix, and Glycyrrhizae radix. YKS is used to treat neurosis, insomnia, as well as behavioral and psychological symptoms of dementia. Objective To confirm the exposure and pharmacokinetics of the active components of YKS in healthy volunteers. Design, Setting, and Participants A randomized, open-label, 3-arm, 3-period, crossover trial was conducted on 21 healthy Japanese volunteers at the Kochi Medical University between May 2012 and November 2012. Interventions Single oral administration of YKS (2.5 g, 5.0 g, or 7.5 g/day) during each period. Main Outcome Measure Plasma concentrations of three active compounds in YKS, namely 18β-glycyrrhetinic acid (GA), geissoschizine methyl ether (GM), and hirsuteine (HTE). Results The mean maximum plasma concentrations (Cmax) of GM and HTE increased dose-dependently (ranges: 0.650–1.98 ng/mL and 0.138–0.450 ng/mL, respectively). The times to maximum plasma concentration after drug administration (tmax) were 0.500 h for GM and 0.975–1.00 h for HTE. The apparent elimination half-lives (t1/2) were 1.72–1.95 h for GM and 2.47–3.03 h for HTE. These data indicate the rapid absorption and elimination of GM and HTE. On the other hand, the Cmax, tmax, and t1/2 of GA were 57.7–108 ng/mL, 8.00–8.01 h, and 9.39–12.3 h, respectively. Conclusion We demonstrated that pharmacologically active components of YKS are detected in humans. Further, we determined the pharmacokinetics of GM, HTE, and GA. This information will be useful to elucidate the pharmacological effects of YKS. Trial Registration Japan Pharmaceutical Information Center JAPIC CTI-121811
Collapse
Affiliation(s)
- Hiroyuki Kitagawa
- Department of Surgery, Kochi Medical School, Kochi University, Kochi, Japan
| | - Masaya Munekage
- Department of Surgery, Kochi Medical School, Kochi University, Kochi, Japan
| | - Kengo Ichikawa
- Department of Surgical Oncology, Gifu University School of Medicine, Gifu, Japan
| | - Ian Fukudome
- Department of Surgery, Kochi Medical School, Kochi University, Kochi, Japan
| | - Eri Munekage
- Department of Surgery, Kochi Medical School, Kochi University, Kochi, Japan
| | - Yuka Takezaki
- Department of Surgery, Kochi Medical School, Kochi University, Kochi, Japan
| | - Takashi Matsumoto
- Tsumura Research Laboratories, Kampo Scientific Strategies Division, Tsumura & Co., Ibaraki, Japan
- * E-mail:
| | - Yasushi Igarashi
- Kampo Formulations Development Center, Kampo Scientific Strategies Division, Tsumura & Co., Ibaraki, Japan
| | - Haruo Hanyu
- Department of Elderly General Medicine, Tokyo Medical University, Tokyo, Japan
| | - Kazuhiro Hanazaki
- Department of Surgery, Kochi Medical School, Kochi University, Kochi, Japan
| |
Collapse
|
29
|
Ko BS, Jang JS, Hong SM, Sung SR, Lee JE, Lee MY, Jeon WK, Park S. Changes in Components, Glycyrrhizin and Glycyrrhetinic Acid, in RawGlycyrrhiza uralensisFisch, Modify Insulin Sensitizing and Insulinotropic Actions. Biosci Biotechnol Biochem 2014; 71:1452-61. [PMID: 17587675 DOI: 10.1271/bbb.60533] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
Abstract
We hypothesized that roasted Glycyrrhizae Radix (Glycyrrhizin Radix Praeparata, GRP) might modify anti-diabetic action due to compositional changes. Then we examined the anti-diabetic effect and mechanism of raw Glycyrrhizae Radix (GR) and GRP extracts and their major respective components, glycyrrhizin and glycyrrhetinic acid. In partial pancreatectomized (Px) diabetic mice, both GR and GRP improved glucose tolerance, but only GRP enhanced glucose-stimulated insulin secretion as much as exendin-4. Both GR and GRP extracts enhanced insulin-stimulated glucose uptake through peroxisome proliferation-activated receptor (PPAR)-gamma activation in 3T3-L1 adipocytes. Consistently with the results of the mice study, only GRP and glycyrrhetinic acid enhanced glucose-stimulated insulin secretion in isolated islets. In addition, they induced mRNA levels of insulin receptor substrate-2, pancreas duodenum homeobox-1, and glucokinase in the islets, which contributed to improving beta-cell viability. In conclusion, GRP extract containing glycyrrhetinic acid improved glucose tolerance better than GR extract by enhancing insulinotropic action. Thus, GRP had better anti-diabetic action than GR.
Collapse
Affiliation(s)
- Byoung-Seob Ko
- Deptartment of Quality Control and Inspection, Korea Institute of Oriental Medicine, Korea
| | | | | | | | | | | | | | | |
Collapse
|
30
|
Yang Y, Zhang Z, Li S, Ye X, Li X, He K. Synergy effects of herb extracts: Pharmacokinetics and pharmacodynamic basis. Fitoterapia 2014; 92:133-47. [DOI: 10.1016/j.fitote.2013.10.010] [Citation(s) in RCA: 175] [Impact Index Per Article: 15.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2013] [Revised: 10/17/2013] [Accepted: 10/21/2013] [Indexed: 02/07/2023]
|
31
|
Wang X, Zhang H, Chen L, Shan L, Fan G, Gao X. Liquorice, a unique "guide drug" of traditional Chinese medicine: a review of its role in drug interactions. JOURNAL OF ETHNOPHARMACOLOGY 2013; 150:781-90. [PMID: 24201019 DOI: 10.1016/j.jep.2013.09.055] [Citation(s) in RCA: 212] [Impact Index Per Article: 17.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/23/2013] [Revised: 09/24/2013] [Accepted: 09/24/2013] [Indexed: 05/13/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Liquorice is the root of Glycyrrhiza uralensis Fisch. or Glycyrrhiza glabra L., Leguminosae. It is a widely used herbal medicine native to southern Europe and parts of Asia and has beneficial applications in both the medicinal and the confectionery sectors. Unlike its usage in Europe, liquorice in traditional Chinese medicine is commonly combined with other herbs in a single prescription, as a unique "guide drug" to enhance the effectiveness of other ingredients, to reduce toxicity, and to improve flavor in almost half of Chinese herbal formulas. A review on phytochemical and pharmacological research to explain this unique "guide" effect is suggested for future investigations. MATERIALS AND METHODS The information was collected from scientific journals, books, and pharmacopeia. The studies about the traditional uses, randomized controlled trials, chemical, pharmacological and pharmacokinetic data related to liquorice-herb/drug interaction or combination were included in the review. RESULTS According to recent reports, the "guide" effect of liquorice is partially through components transformed in liquorice-drug interaction; altering enzyme activity of P450 isoforms, as evidenced by induction of model probe substrates; and modulation of drug transporter proteins such as intestinal P-glycoprotein. CONCLUSION The overview and comparison of traditional uses of liquorice with recent pharmacological studies and randomized controlled trials provide new insights into this ancient drug for future investigations and clinical use, especially in drug combination.
Collapse
Affiliation(s)
- Xiaoying Wang
- College of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 300193, China; Key Laboratory of Pharmacology of Traditional Chinese Medical Formulae, Ministry of Education, Tianjin 300193, China
| | | | | | | | | | | |
Collapse
|
32
|
Fu XX, Du LL, Zhao N, Dong Q, Liao YH, Du YM. 18β-Glycyrrhetinic acid potently inhibits Kv1.3 potassium channels and T cell activation in human Jurkat T cells. JOURNAL OF ETHNOPHARMACOLOGY 2013; 148:647-54. [PMID: 23707333 DOI: 10.1016/j.jep.2013.05.022] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/04/2013] [Revised: 05/08/2013] [Accepted: 05/14/2013] [Indexed: 05/21/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Licorice has been extensively used in traditional medicines for treatment of many diseases, including inflammations and immunological disorders. Recent studies have shown that the anti-inflammatory and immunomodulation activities of licorice have been attributed to its active component, glycyrretinic acid (GA). GA consists of two isoforms, 18α- and 18β-. However, its mechanism remains poorly understood. AIM OF THE STUDY We compared the effects of two isoforms on Kv1.3 channels in Jurkat T cells and further characterized the inhibition of Kv1.3 channels by 18β-GA in CHO cells. In addition, we examined the effects of 18β-GA on Kv1.3 gene expression, Ca(2+) influx, proliferation, as well as IL-2 production in Jurkat T cells. MATERIALS AND METHODS Whole-cell patch-clamp technique was applied to record Kv1.3 currents in Jurkat T or CHO cells. Real-time PCR and Western blotting were used to detect gene expression. Fluo-4, CCK-8 kit and ELISA kit were used to measure Ca(2+) influx, proliferation, and IL-2 secretion in Jurkat T cells, respectively. RESULTS Superfusion of 18β-GA (10-100 µM) blocked Kv1.3 currents in Jurkat T cells, while 18α-GA at the same concentration had no effect. The 18β-GA induced inhibition had a voltage- and concentration-dependent manner with an IC50 of 23.9±1.5 µM at +40 mV in CHO cells. Furthermore, 18β-GA significantly inhibited Kv1.3 gene expression. In addition, paralleling Kv1.3 inhibition, 18β-GA also inhibited Ca(2+) influx, proliferation as well as IL-2 production in Jurkat T cells. CONCLUSION 18β-GA blocks Kv1.3 channels, which probably involves its anti-inflammatory and immunomodulation effects.
Collapse
Affiliation(s)
- Xiao-Xing Fu
- Ion Channelopathy Research Center, Institute of Cardiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, PR China
| | | | | | | | | | | |
Collapse
|
33
|
Ishida T, Miki I, Tanahashi T, Yagi S, Kondo Y, Inoue J, Kawauchi S, Nishiumi S, Yoshida M, Maeda H, Tode C, Takeuchi A, Nakayama H, Azuma T, Mizuno S. Effect of 18β-glycyrrhetinic acid and hydroxypropyl γcyclodextrin complex on indomethacin-induced small intestinal injury in mice. Eur J Pharmacol 2013; 714:125-31. [PMID: 23792039 DOI: 10.1016/j.ejphar.2013.06.007] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2012] [Revised: 05/31/2013] [Accepted: 06/08/2013] [Indexed: 01/07/2023]
Abstract
Non-steroidal anti-inflammatory drugs (NSAIDs)-induced small intestinal injury is a serious clinical event with recent advances of diagnostic technologies, but a successful therapeutic method to treat such injuries is still lacking. Licorice, a traditional herbal medicine, and its derivatives have been widely used for the treatment of a variety of diseases due to their extensive biological actions. However, it is unknown whether these derivatives have an effect on NSAIDs-induced small intestinal damage. Previously, the anti-inflammatory effects of three compounds extracted from the licorice root, glycyrrhizin, 18β-glycyrrhetinic acid, and dipotassium glycyrrhizinate, were compared in vitro cell culture. The most prominent inhibitory effect on the tumor necrosis factor-α (TNF-α) production was observed with the administration of 18β-glycyrrhetinic acid as an active metabolite of glycyrrhizin. In this study, a complex compound of 18β-glycyrrhetinic acid and hydroxypropyl γcyclodextrin was examined to improve the oral bioavailability. After administration of this complex to indomethacin treated mice, a significantly high plasma concentration of 18β-glycyrrhetinic acid was detected using the tandem mass spectrometry coupled with the HPLC. Furthermore, the complex form of 18β-glycyrrhetinic acid and hydroxypropyl γcyclodextrin reduced mRNA expressions of TNF-α, interleukin (IL)-1β, and IL-6, which was histologically confirmed in the improvement of indomethacin-induced small intestinal damage. These results suggest that the complex of 18β-glycyrrhetinic acid and hydroxypropyl γcyclodextrin has the potential therapeutic value for preventing the adverse effects of indomethacin-induced small intestinal injury.
Collapse
Affiliation(s)
- Tsukasa Ishida
- Division of Gastroenterology, Department of Internal Medicine, Kobe University Graduate School of Medicine, 7-5-1 Kusunoki-cho, Chuo-ku, Kobe 650-0017, Japan
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
34
|
Evaluation on the Pharmacological Effect of Traditional Chinese Medicine SiJunZiTang on Stress-Induced Peptic Ulcers. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2013; 2013:186076. [PMID: 23840247 PMCID: PMC3694386 DOI: 10.1155/2013/186076] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/18/2013] [Revised: 05/09/2013] [Accepted: 05/20/2013] [Indexed: 11/17/2022]
Abstract
Purpose. To explore the effects of SiJunZiTang (SJZT) on central neurotransmitters and the inhibition of HCl hypersecretion, along with the role of the vagus nerve. From this, the effects of SJZT and its constituent ingredients on inhibiting stress-induced peptic ulcers will be determined. Methods. Methods used to determine SJZT's effectiveness included (1) measuring the antipeptic ulcer effects of varying combinations of the constituents of SJZT; (2) evaluations of monoamine (MA) level in the brain; and (3) measuring the effects of longer-term SJZT treatment. Results. Comparing the control and experimental groups where the rats' vagus nerves were not cut after taking SJZT orally (500 mg/kg and 1000 mg/kg), the volume of enterogastric juice, free HCl and total acidity all reduce dose-dependently. The group administered SJZT at 1000 mg/kg showed significant reductions (P < 0.05). For the experimental groups where the vagus nerves were cut, a comparison with the control group suggests that the group receiving SJZT (500 mg/kg) orally for 21 days demonstrated a cure rate of 34.53%. Conclusion. The results display a correlation between the therapeutic effects of SJZT on stress-induced peptic ulcers and central neurotransmitter levels. Further to this, SJZT can inhibit the hypersecretion of HCl in the stomach, thus inhibiting stress-induced peptic ulcers.
Collapse
|
35
|
Liu H, Wang J, Zhou W, Wang Y, Yang L. Systems approaches and polypharmacology for drug discovery from herbal medicines: an example using licorice. JOURNAL OF ETHNOPHARMACOLOGY 2013; 146:773-93. [PMID: 23415946 DOI: 10.1016/j.jep.2013.02.004] [Citation(s) in RCA: 221] [Impact Index Per Article: 18.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/05/2012] [Revised: 02/03/2013] [Accepted: 02/04/2013] [Indexed: 05/08/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Licorice, one of the oldest and most popular herbal medicines in the world, has been widely used in traditional Chinese medicine as a cough reliever, anti-inflammatory, anti-anabrosis, immunomodulatory, anti-platelet, antiviral (hepatitis) and detoxifying agent. Licorice was used as an example to show drug discovery from herbal drugs using systems approaches and polypharmacology. AIM OF THE STUDY Herbal medicines are becoming more mainstream in clinical practice and show value in treating and preventing diseases. However, due to its extreme complexity both in chemical components and mechanisms of action, deep understanding of botanical drugs is still difficult. Thus, a comprehensive systems approach which could identify active ingredients and their targets in the crude drugs and more importantly, understand the biological basis for the pharmacological properties of herbal medicines is necessary. MATERIALS AND METHODS In this study, a novel systems pharmacology model that integrates oral bioavailability screening, drug-likeness evaluation, blood-brain barrier permeation, target identification and network analysis has been established to investigate the herbal medicines. RESULTS The comprehensive systems approach effectively identified 73 bioactive components from licorice and 91 potential targets for this medicinal herb. These 91 targets are closely associated with a series of diseases of respiratory system, cardiovascular system, and gastrointestinal system, etc. These targets are further mapped to drug-target and drug-target-disease networks to elucidate the mechanism of this herbal medicine. CONCLUSION This work provides a novel in silico strategy for investigation of the botanical drugs containing a huge number of components, which has been demonstrated by the well-studied licorice case. This attempt should be helpful for understanding definite mechanisms of action for herbal medicines and discovery of new drugs from plants.
Collapse
Affiliation(s)
- Hui Liu
- Bioinformatics Center, College of Life Sciences, Northwest A&F University, Yangling, Shaanxi 712100, China
| | | | | | | | | |
Collapse
|
36
|
Voskresenskaia AA, Medvedeva NV, Prozorovskiĭ VN, Moskaleva NE, Ipatova OM. [The absorption features of glycyrrhizic acid in composition of drug "phosphogliv"]. BIOMEDIT︠S︡INSKAI︠A︡ KHIMII︠A︡ 2013; 58:564-72. [PMID: 23289298 DOI: 10.18097/pbmc20125805564] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
Glycyrrhizic acid (GL)--one of the active components of the Russian drug formulation "Phosphogliv" possesses extremely low bioavailability. A sensitive method for GL determination in blood using high performance liquid chromatography coupled with mass-spectrometry (HPLC-MS) has been developed in order to investigate absorption characteristics of glycyrrhizic acid after peroral administration of "Phosphogliv" and GL sodium salt. Separation of blood components was achieved on the analytical reverse-phase column C18 "EcoNova" ProntoSIL, using a gradient mode. Detection of GL and an internal standard (IS) (glycyrrhetic acid) was performed using electrospray ionization with the selected ion monitoring in negative mode (SIM) using target ions at m/z 821.3 for GL and 469.3 for IS. The calibration curve was linear over the range of 50-5000 ng/ml (the correlation coefficient was 0.995). The detection limit for GL in blood was 25 ng/ml and the lower limit of quantification was 50 ng/ml. The developed method has been applied to compare absorption efficiency of glycyrrhizic acid as the component of "Phosphogliv" composition and solution of GL sodium salt during first two hours after their single peroral administration to rats at the dose of 8.5 mg/kg. It was shown that GL absorption occurs several minutes after peroral administration. Moreover, GL bioavailability after administration of drug "Phosphogliv" was higher than after administration of GL sodium salt. This difference may be attributed to incorporation of glycyrrhizic acid in the phospholipid nanoparticles structure.
Collapse
|
37
|
Tabuchi M, Imamura S, Kawakami Z, Ikarashi Y, Kase Y. The blood-brain barrier permeability of 18β-glycyrrhetinic acid, a major metabolite of glycyrrhizin in Glycyrrhiza root, a constituent of the traditional Japanese medicine yokukansan. Cell Mol Neurobiol 2012; 32:1139-46. [PMID: 22488528 PMCID: PMC11498522 DOI: 10.1007/s10571-012-9839-x] [Citation(s) in RCA: 63] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2012] [Accepted: 03/23/2012] [Indexed: 10/28/2022]
Abstract
18β-Glycyrrhetinic acid (GA) is a major metabolite of glycyrrhizin (GL), which is one of the components of glycyrrhiza root, a constituent herb of the traditional Japanese medicine yokukansan. It is well known that most GL is metabolized to GA in the intestine by bacteria. A previous in vitro study using cultured rat cortical astrocytes suggested that GA activates glutamate transport, which is a putative mechanism of the psychotropic effect of yokukansan. To activate the glutamate transport in the brain, GA must be absorbed into the blood after oral administration of yokukansan and then cross the blood-brain barrier (BBB) to reach the brain. However, there is no data on the BBB permeability of GA derived from yokukansan. In the present study, the BBB permeability of GA was investigated in both in vivo and in vitro studies. In the in vivo study, GA was detected in the plasma, brain, and cerebrospinal fluid of rats orally administered yokukansan. In the in vitro study using a BBB model composed of co-culture of endothelial cells, pericytes, and astrocytes, the permeability rate and apparent permeability coefficient of GA were found to be 13.3 ± 0.5 % and 16.5 ± 0.7 × 10(-6) cm/s. These in vivo and in vitro results suggest that GL in orally administered yokukansan is absorbed into the blood as GA, and then reaches the brain through the BBB. This evidence further supports the possibility that GA is an active component in the psychotropic effect of yokukansan.
Collapse
Affiliation(s)
- Masahiro Tabuchi
- Tsumura Research Laboratories, Tsumura & Co., Ami-machi, Inashiki-gun, Ibaraki, Japan.
| | | | | | | | | |
Collapse
|
38
|
Qiao X, Ye M, Xiang C, Wang Q, Liu CF, Miao WJ, Guo DA. Analytical strategy to reveal the in vivo process of multi-component herbal medicine: A pharmacokinetic study of licorice using liquid chromatography coupled with triple quadrupole mass spectrometry. J Chromatogr A 2012; 1258:84-93. [DOI: 10.1016/j.chroma.2012.08.041] [Citation(s) in RCA: 85] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2012] [Revised: 08/08/2012] [Accepted: 08/09/2012] [Indexed: 11/26/2022]
|
39
|
|
40
|
Determination of glycyrrhetic acid after consumption of liquorice and application to a fatality. Forensic Sci Int 2010; 197:35-9. [DOI: 10.1016/j.forsciint.2009.12.018] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2009] [Revised: 12/07/2009] [Accepted: 12/09/2009] [Indexed: 11/18/2022]
|
41
|
Assessment of herbal medicinal products: challenges, and opportunities to increase the knowledge base for safety assessment. Toxicol Appl Pharmacol 2009; 243:198-216. [PMID: 20018204 DOI: 10.1016/j.taap.2009.12.005] [Citation(s) in RCA: 187] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2009] [Revised: 12/03/2009] [Accepted: 12/04/2009] [Indexed: 01/29/2023]
Abstract
Although herbal medicinal products (HMP) have been perceived by the public as relatively low risk, there has been more recognition of the potential risks associated with this type of product as the use of HMPs increases. Potential harm can occur via inherent toxicity of herbs, as well as from contamination, adulteration, plant misidentification, and interactions with other herbal products or pharmaceutical drugs. Regulatory safety assessment for HMPs relies on both the assessment of cases of adverse reactions and the review of published toxicity information. However, the conduct of such an integrated investigation has many challenges in terms of the quantity and quality of information. Adverse reactions are under-reported, product quality may be less than ideal, herbs have a complex composition and there is lack of information on the toxicity of medicinal herbs or their constituents. Nevertheless, opportunities exist to capitalise on newer information to increase the current body of scientific evidence. Novel sources of information are reviewed, such as the use of poison control data to augment adverse reaction information from national pharmacovigilance databases, and the use of more recent toxicological assessment techniques such as predictive toxicology and omics. The integration of all available information can reduce the uncertainty in decision making with respect to herbal medicinal products. The example of Aristolochia and aristolochic acids is used to highlight the challenges related to safety assessment, and the opportunities that exist to more accurately elucidate the toxicity of herbal medicines.
Collapse
|
42
|
Wagner H, Ulrich-Merzenich G. Synergy research: approaching a new generation of phytopharmaceuticals. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2009; 16:97-110. [PMID: 19211237 DOI: 10.1016/j.phymed.2008.12.018] [Citation(s) in RCA: 697] [Impact Index Per Article: 43.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/23/2023]
Abstract
The longstanding, successful use of herbal drug combinations in traditional medicine makes it necessary to find a rationale for the pharmacological and therapeutic superiority of many of them in comparison to isolated single constituents. This review describes many examples of how modern molecular-biological methods (including new genomic technologies) can enable us to understand the various synergistic mechanisms underlying these effects. Synergistic effects can be produced if the constituents of an extract affect different targets or interact with one another in order to improve the solubility and thereby enhance the bioavailability of one or several substances of an extract. A special synergy effect can occur when antibiotics are combined with an agent that antagonizes bacterial resistance mechanisms. The verification of real synergy effects can be achieved through detailed pharmacological investigations and by means of controlled clinical studies performed in comparison with synthetic reference drugs. All the new ongoing projects aim at the development of a new generation of phytopharmaceuticals which can be used alone or in combination with synthetic drugs or antibiotics. This new generation of phytopharmaceuticals could lend phytotherapy a new legitimacy and enable their use to treat diseases which have hitherto been treated using synthetic drugs alone.
Collapse
Affiliation(s)
- H Wagner
- Department of Pharmacy, Center of Pharma Research, Ludwig-Maximilians-University, Butenandtstr. 5-13, House B, D-81377 Munich, Germany.
| | | |
Collapse
|
43
|
Final report on the safety assessment of Glycyrrhetinic Acid, Potassium Glycyrrhetinate, Disodium Succinoyl Glycyrrhetinate, Glyceryl Glycyrrhetinate, Glycyrrhetinyl Stearate, Stearyl Glycyrrhetinate, Glycyrrhizic Acid, Ammonium Glycyrrhizate, Dipotassium Glycyrrhizate, Disodium Glycyrrhizate, Trisodium Glycyrrhizate, Methyl Glycyrrhizate, and Potassium Glycyrrhizinate. Int J Toxicol 2008; 26 Suppl 2:79-112. [PMID: 17613133 DOI: 10.1080/10915810701351228] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
Abstract
Glycyrrhetinic Acid and its salts and esters and Glycyrrhizic Acid and its salts and esters are cosmetic ingredients that function as flavoring agents or skin-conditioning agents - miscellaneous or both. These chemicals may be isolated from licorice plants. Glycyrrhetinc Acid is described as at least 98% pure, with 0.6% 24-OH-Glycyrrhetinic Acid, not more than 20 mu g/g of heavy metals and not more than 2 mu g/g of arsenic. Ammonium Glycyrrhizate has been found to be at least 98% pure and Dipotassium Glycyrrhizate has been found to be at least 95% pure. Glycyrrhetinic Acid is used in cosmetics at concentrations of up to 2%; Stearyl Glycyrrhetinate, up to 1%; Glycyrrhizic Acid, up to 0.1%; Ammonium Glycyrrhizate, up to 5%; Dipotassium Glycyrrhizate, up to 1%; and Potassium Glycyrretinate, up to 1%. Although Glycyrrhizic Acid is poorly absorbed by the intestinal tract, it may be hydrolyzed to Glycyrrhetinic Acid by a beta -glucuronidase produced by intestinal bacteria. Glycyrrhetinic Acid and Glycyrrhizic Acid bind to rat and human albumin, but do not absorb well into tissues. Glycyrrhetinic Acid and Glycyrrhizic Acid and metabolites are mostly excreted in the bile, with very little excreted in urine. Dipotassium Glycyrrhizate was undetectable in the receptor chamber when tested for transepidermal permeation through pig skin. Glycyrrhizic Acid increased the dermal penetration of diclofenac sodium in rat skin. Dipotassium Glycyrrhizate increased the intestinal absorption of calcitonin in rats. In humans, Glycyrrhetinic Acid potentiated the effects of hydrocortisone in the skin. Moderate chronic or high acute exposure to Glycyrrhizic Acid, Ammonium Glycyrrhizate, and their metabolites have been demonstrated to cause transient systemic alterations, including increased potassium excretion, sodium and water retention, body weight gain, alkalosis, suppression of the renin-angiotensis-aldosterone system, hypertension, and muscular paralysis; possibly through inhibition of 11beta -hydroxysteroid dehydrogenase-2 (11beta -OHSD2) in the kidney. Glycyrrhetinic Acid and its derivatives block gap junction intracellular communication in a dose-dependent manner in animal and human cells, including epithelial cells, fibroblasts, osteoblasts, hepatocytes, and astrocytes; at high concentrations, it is cytotoxic. Glycyrrhetinic Acid and Glycyrrhizic Acid protect liver tissue from carbon tetrachloride. Glycyrrhizic Acid has been used to treat chronic hepatitis, inhibiting the penetration of the hepatitis A virus into hepatocytes. Glycyrrhetinic Acid and Glycyrrhizic Acid have anti-inflammatory effects in rats and mice. The acute intraperitoneal LD(50) for Glycyrrhetinic Acid in mice was 308 mg/kg and the oral LD(50) was > 610 mg/kg. The oral LD(50) in rats was reported to be 610 mg/kg. Higher LD(50) values were generally reported for salts. Little short-term, subchronic, or chronic toxicity was seen in rats given ammonium, dipotassium, or disodium salts of Glycyrrhizic Acid. Glycyrrhetinic Acid was not irritating to shaved rabbit skin, but was considered slightly irritating in an in vitro test. Glycyrrhetinic Acid inhibited the mutagenic activity of benzo[a]pyrene and inhibited tumor initiation and promotion by other agents in mice. Glycyrrhizic Acid inhibited tumor initiation by another agent, but did not prevent tumor promotion in mice. Glycyrrhizic Acid delayed mortality in mice injected with Erlich ascites tumor cells, but did not reduce the mortality rate. Ammonium Glycyrrhizate was not genotoxic in in vivo and in vitro cytogenetics assays, the dominant lethal assay, an Ames assay, and heritable translocation tests, except for possible increase in dominant lethal mutations in rats given 2000 mg/kg day(-1) in their diet. Disodium Glycyrrhizate was not carcinogenic in mice in a drinking water study at exposure levels up to 12.2 mg/kg day(-1) for 96 weeks. Glycyrrhizate salts produced no reproductive or developmental toxicity in rats, mice, golden hamsters, or Dutch-belted rabbits, except for a dose-dependent increase (at 238.8 and 679.9 mg/kg day(-1)) in sternebral variants in a study using rats. Sedation, hypnosis, hypothermia, and respiratory depression were seen in mice given 1250 mg/kg Glycyrrhetinic Acid intraperitoneally. Rats fed a powdered diet containing up to 4% Ammonium Glycyrrhizate had no treatment related effects in motor function tests, but active avoidance was facilitated at 4%, unaffected at 3%, and depressed at 2%. In a study of 39 healthy volunteers, a no effect level of 2 mg/kg/day was determined for Glycyrrhizic Acid given orally for 8 weeks. Clinical tests in seven normal individuals given oral Ammonium Glycyrrhizate at 6 g/day for 3 days revealed reduced renal and thermal sweat excretion of Na+ and K+, but carbohydrate and protein metabolism were not affected. Glycyrrhetinic Acid at concentrations up to 6% was not a skin irritant or a sensitizer in clinical tests. Neither Glycyrrhizic Acid, Ammonium Glycyrrhizate, nor Dipotassium Glycyrrhizate at 5% were phototoxic agents or photosensitizers. Birth weight and maternal blood pressure were unrelated to the level of consumption of Glycyrrhizic Acid in 1049 Finnish women with infants, but babies whose mother consumed > 500 mg/wk were more likely to be born before 38 weeks. The Cosmetic Ingredient Review (CIR) Expert Panel noted that the ingredients in this safety assessment are not plant extracts, powders, or juices, but rather are specific chemical species that may be isolated from the licorice plant. Because these chemicals may be isolated from plant sources, however, steps should be taken to assure that pesticide and toxic metal residues are below acceptable levels. The Panel advised the industry that total polychlorobiphenyl (PCB)/pesticide contamination should be limited to not more than 40 ppm, with not more than 10 ppm for any specific residue, and that toxic metal levels must not contain more than 3 mg/kg of arsenic (as As), not more than 0.002% heavy metals, and not more than 1 mg/kg of lead (as Pb). Although the Panel noted that Glycyrrhizic Acid is cytotoxic at high doses and ingestion can have physiological effects, there is little acute, short-term, subchronic, or chronic toxicity and it is expected that these ingredients would be poorly absorbed through the skin. These ingredients are not considered to be irritants, sensitizers, phototoxic agents, or photosensitizers at the current maximum concentration of use. Accordingly, the CIR Expert Panel concluded that these ingredients are safe in the current practices of use and concentration. The Panel recognizes that certain ingredients in this group are reportedly used in a given product category, but the concentration of use is not available. For other ingredients in this group, information regarding use concentration for specific product categories is provided, but the number of such products is not known. In still other cases, an ingredient is not in current use, but may be used in the future. Although there are gaps in knowledge about product use, the overall information available on the types of products in which these ingredients are used and at what concentration indicate a pattern of use. Within this overall pattern of use, the Expert Panel considers all ingredients in this group to be safe.
Collapse
|
44
|
Asl MN, Hosseinzadeh H. Review of pharmacological effects of Glycyrrhiza sp. and its bioactive compounds. Phytother Res 2008; 22:709-24. [PMID: 18446848 PMCID: PMC7167813 DOI: 10.1002/ptr.2362] [Citation(s) in RCA: 773] [Impact Index Per Article: 45.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2006] [Revised: 08/01/2007] [Accepted: 08/10/2007] [Indexed: 12/15/2022]
Abstract
The roots and rhizomes of licorice (Glycyrrhiza) species have long been used worldwide as a herbal medicine and natural sweetener. Licorice root is a traditional medicine used mainly for the treatment of peptic ulcer, hepatitis C, and pulmonary and skin diseases, although clinical and experimental studies suggest that it has several other useful pharmacological properties such as antiinflammatory, antiviral, antimicrobial, antioxidative, anticancer activities, immunomodulatory, hepatoprotective and cardioprotective effects. A large number of components have been isolated from licorice, including triterpene saponins, flavonoids, isoflavonoids and chalcones, with glycyrrhizic acid normally being considered to be the main biologically active component. This review summarizes the phytochemical, pharmacological and pharmacokinetics data, together with the clinical and adverse effects of licorice and its bioactive components.
Collapse
Affiliation(s)
- Marjan Nassiri Asl
- Department of Pharmacology, Faculty of Medicine, Qazvin University of Medical Sciences, Qazvin, IR Iran
| | - Hossein Hosseinzadeh
- Department of Pharmacology, Faculty of Medicine, Qazvin University of Medical Sciences, Qazvin, IR Iran
| |
Collapse
|
45
|
Isbrucker RA, Burdock GA. Risk and safety assessment on the consumption of Licorice root (Glycyrrhiza sp.), its extract and powder as a food ingredient, with emphasis on the pharmacology and toxicology of glycyrrhizin. Regul Toxicol Pharmacol 2006; 46:167-92. [PMID: 16884839 DOI: 10.1016/j.yrtph.2006.06.002] [Citation(s) in RCA: 312] [Impact Index Per Article: 16.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2006] [Indexed: 11/28/2022]
Abstract
Licorice (or 'liquorice') is a plant of ancient origin and steeped in history. Licorice extracts and its principle component, glycyrrhizin, have extensive use in foods, tobacco and in both traditional and herbal medicine. As a result, there is a high level of use of licorice and glycyrrhizin in the US with an estimated consumption of 0.027-3.6 mg glycyrrhizin/kg/day. Both products have been approved for use in foods by most national and supranational regulatory agencies. Biochemical studies indicate that glycyrrhizinates inhibit 11beta-hydroxysteroid dehydrogenase, the enzyme responsible for inactivating cortisol. As a result, the continuous, high level exposure to glycyrrhizin compounds can produce hypermineralocorticoid-like effects in both animals and humans. These effects are reversible upon withdrawal of licorice or glycyrrhizin. Other in vivo and clinical studies have reported beneficial effects of both licorice and glycyrrhizin consumption including anti-ulcer, anti-viral, and hepatoprotective responses. Various genotoxic studies have indicated that glycyrrhizin is neither teratogenic nor mutagenic, and may possess anti-genotoxic properties under certain conditions. The pharmacokinetics of glycyrrhizin have been described and show that its bioavailability is reduced when consumed as licorice; this has hampered attempts to establish clear dose-effect levels in animals and humans. Based on the in vivo and clinical evidence, we propose an acceptable daily intake of 0.015-0.229 mg glycyrrhizin/kg body weight/day.
Collapse
Affiliation(s)
- R A Isbrucker
- Burdock Group, 888 17th Street, NW, Suite 810 Washington, DC 20006, USA
| | | |
Collapse
|
46
|
Wagner H. Multitarget therapy--the future of treatment for more than just functional dyspepsia. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2006; 13 Suppl 5:122-9. [PMID: 16772111 DOI: 10.1016/j.phymed.2006.03.021] [Citation(s) in RCA: 46] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/10/2023]
Abstract
Since many years the concept of classical phytotherapy using herbal drug combinations with superior efficacy and lesser side effects in comparison with single isolated constituents of plant extracts has been repeatedly assessed clinically as well as pharmacologically. For this as multitarget therapy defined treatment lot of examples are presented. The exact mechanisms of action underlying these synergy effects is unknown. It could be explained by a multitarget action of compounds on a molecular level or partly by an improved resorption rate and a change of pharmacokinetic. Progress in the field of drug synergy research may lend with standardized plant extracts a new legitimacy and may open the chance to use extract combinations for the treatment of diseases which previously have been reserved for chemotherapeutics only.
Collapse
Affiliation(s)
- H Wagner
- Department of Pharmacy, Center for Pharmaresearch, Ludwig-Maximilians-University, Butenandtstrasse 5-13, 81377 Munich, Germany.
| |
Collapse
|
47
|
Sabbioni C, Ferranti A, Bugamelli F, Forti GC, Raggi MA. Simultaneous HPLC analysis, with isocratic elution, of glycyrrhizin and glycyrrhetic acid in liquorice roots and confectionery products. PHYTOCHEMICAL ANALYSIS : PCA 2006; 17:25-31. [PMID: 16454473 PMCID: PMC7167644 DOI: 10.1002/pca.877] [Citation(s) in RCA: 37] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/06/2023]
Abstract
Glycyrrhizin (1), the main active principle of Glycyrrhiza glabra (liquorice) roots, is extensively used in herbal medicines, in pharmaceutical preparations and confectionery products. A feasible and reliable method which allows the simultaneous analysis of 1 and its aglycone, 18beta-glycyrrhetic acid (2), by means of an isocratic HPLC procedure is described. The system uses a C8 column as the stationary phase, and a mixture of acetonitrile, methanol, water and glacial acetic acid as the mobile phase. Good linearity was found in the concentration ranges 1-50 and 0.05-2.50 microg/mL for 1 and 2, respectively. A simple and rapid sample pre-treatment, based on the extraction of the two analytes with a mixture of water and ethanol, was developed for the examination of liquorice confectionery products and root samples. The HPLC method was shown to be appropriate, in terms of precision and feasibility, for the quality control of the analytes in these matrices.
Collapse
Affiliation(s)
- Cesare Sabbioni
- Department of Pharmaceutical Sciences, Faculty of Pharmacy, Alma Mater Studiorum, University of Bologna, Via Belmeloro 6, 40126 Bologna, Italy
| | - Anna Ferranti
- Department of Pharmaceutical Sciences, Faculty of Pharmacy, Alma Mater Studiorum, University of Bologna, Via Belmeloro 6, 40126 Bologna, Italy
| | - Francesca Bugamelli
- Department of Pharmaceutical Sciences, Faculty of Pharmacy, Alma Mater Studiorum, University of Bologna, Via Belmeloro 6, 40126 Bologna, Italy
| | - Giorgio Cantelli Forti
- Department of Pharmacology, Faculty of Pharmacy, Alma Mater Studiorum, University of Bologna, Via Irnerio 48, 40126 Bologna, Italy
| | - Maria Augusta Raggi
- Department of Pharmaceutical Sciences, Faculty of Pharmacy, Alma Mater Studiorum, University of Bologna, Via Belmeloro 6, 40126 Bologna, Italy
| |
Collapse
|
48
|
Sabbioni C, Mandrioli R, Ferranti A, Bugamelli F, Saracino MA, Forti GC, Fanali S, Raggi MA. Separation and analysis of glycyrrhizin, 18beta-glycyrrhetic acid and 18alpha-glycyrrhetic acid in liquorice roots by means of capillary zone electrophoresis. J Chromatogr A 2005; 1081:65-71. [PMID: 16013600 PMCID: PMC7125616 DOI: 10.1016/j.chroma.2005.03.044] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Glycyrrhizin is the main active compound of Glycyrrhiza glabra root extracts; according to recent studies, glycyrrhizin and its aglycon, glycyrrhetic acid, have interesting therapeutic properties. A new capillary electrophoretic method has been developed for the separation and quantification of glycyrrhizin, beta-glycyrrhetic acid and its isomer a-glycyrrhetic acid. Separation of the analytes was achieved in less than 3 min on a fused silica capillary, by injecting the samples at the short end of the capillary (effective length: 8.5 cm). The background electrolyte was composed of pH 10.0 carbonate buffer, methanol and ethylene glycol (80/10/10) and contained 0.4% beta-cyclodextrin; indomethacin was used as the internal standard. Diode array detection was used, with quantitative assays carried out at 254 nm. Linearity was found over the 5-200 and 2.5-100 microg mL(-1) concentration ranges for glycyrrhizin and glycyrrhetic acid, respectively. This method has been applied to the determination of the analytes in different matrices (liquorice roots and commercial confectionery products), and to the purity control of beta-glycyrrhetic acid obtained from the hydrolysis of glycyrrhizin. When analysing beta-glycyrrhetic acid and its epimer in roots, the samples were purified by means of a suitable solid-phase extraction (SPE) procedure with Oasis HLB cartridges, which granted good selectivity, eliminating matrix interference.
Collapse
Affiliation(s)
- Cesare Sabbioni
- Department of Pharmaceutical Sciences, Faculty of Pharmacy, Alma Mater Studiorum, University of Bologna, Via Belmeloro 6, 40126 Bologna, Italy
| | | | | | | | | | | | | | | |
Collapse
|
49
|
Hou YC, Hsiu SL, Ching H, Lin YT, Tsai SY, Wen KC, Chao PDL. Profound difference of metabolic pharmacokinetics between pure glycyrrhizin and glycyrrhizin in licorice decoction. Life Sci 2005; 76:1167-76. [PMID: 15620580 DOI: 10.1016/j.lfs.2004.10.020] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2004] [Accepted: 10/14/2004] [Indexed: 11/23/2022]
Abstract
To investigate the difference of metabolic pharmacokinetics between pure glycyrrhizin (GZ) and GZ in licorice decoction, six New Zealand White rabbits were orally given pure GZ and licorice decoction containing equivalent content of GZ in a randomized crossover design. HPLC methods were used for the quantitation of GZ and glycyrrhetic acid (GA) in serum. The results indicated that the areas under curves (AUCs) of GZ and GA after administration of licorice decoction were significantly higher than those after pure GZ. This result was contradictory with that obtained in rats. To explore the mechanism of the pharmacokinetic difference, feces of rabbits, rats, pigs and humans were used to investigate the presystemic metabolism of pure GZ and GZ in licorice decoction. The results indicated that pure GZ was hydrolyzed to GA more rapidly and to a greater extent than that in licorice decoction by various feces. In addition, when pure GZ was fermented, the metabolic profiles of GA and 3-dehydroGA in rabbit feces were quite different from other feces. In conclusion, the bioavailabilities of GZ and GA are significantly better from licorice than from pure GZ in rabbits but the presystemic metabolism of pure GZ in rabbit is rather different from that in rat, pig and human.
Collapse
Affiliation(s)
- Yu-Chi Hou
- School of Chinese Medicine, China Medical University, Taichung, Taiwan 404, R.O.C
| | | | | | | | | | | | | |
Collapse
|
50
|
Abstract
Licorice root is one of the oldest and most frequently employed botanicals in Chinese medicine. In the United States, licorice products are most often used as flavoring and sweetening agents in food products. Constituents of licorice include triterpenoids, such as glycyrrhizin and its aglycone glycyrrhizic acid, various polyphenols, and polysaccharides. A number of pharmaceutical effects of licorice are known or suspected (anti-inflammatory, antivirus, antiulcer, anticarcinogenesis, and others). Licorice and its derivatives may protect against carcinogen-induced DNA damage and may be suppressive agents as well. Glycyrrhizic acid is an inhibitor of lipoxygenase and cyclooxygenase, inhibits protein kinase C, and downregulates the epidermal growth factor receptor. Licorice polyphenols induce apoptosis in cancer cells. These and other activities of licorice are reviewed, and a rationale is suggested for combinations of agents in preventive clinical trials.
Collapse
Affiliation(s)
- Z Y Wang
- American Health Foundation, New York, NY 10017, USA.
| | | |
Collapse
|