1
|
Ansermet C, Centeno G, Pradervand S, Harmacek D, Garcia A, Daraspe J, Kocherlakota S, Baes M, Bignon Y, Firsov D. Renal tubular peroxisomes are dispensable for normal kidney function. JCI Insight 2022; 7:155836. [PMID: 35191396 PMCID: PMC8876468 DOI: 10.1172/jci.insight.155836] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2021] [Accepted: 01/12/2022] [Indexed: 12/04/2022] Open
Abstract
Peroxisomes are specialized cellular organelles involved in a variety of metabolic processes. In humans, mutations leading to complete loss of peroxisomes cause multiorgan failure (Zellweger’s spectrum disorders, ZSD), including renal impairment. However, the (patho)physiological role of peroxisomes in the kidney remains unknown. We addressed the role of peroxisomes in renal function in mice with conditional ablation of peroxisomal biogenesis in the renal tubule (cKO mice). Functional analyses did not reveal any overt kidney phenotype in cKO mice. However, infant male cKO mice had lower body and kidney weights, and adult male cKO mice exhibited substantial reductions in kidney weight and kidney weight/body weight ratio. Stereological analysis showed an increase in mitochondria density in proximal tubule cells of cKO mice. Integrated transcriptome and metabolome analyses revealed profound reprogramming of a number of metabolic pathways, including metabolism of glutathione and biosynthesis/biotransformation of several major classes of lipids. Although this analysis suggested compensated oxidative stress, challenge with high-fat feeding did not induce significant renal impairments in cKO mice. We demonstrate that renal tubular peroxisomes are dispensable for normal renal function. Our data also suggest that renal impairments in patients with ZSD are of extrarenal origin.
Collapse
Affiliation(s)
| | | | | | | | | | - Jean Daraspe
- Electron Microscopy Facility, University of Lausanne, Lausanne, Switzerland
| | - Sai Kocherlakota
- Department for Pharmaceutical and Pharmacological Sciences, University of Leuven, Leuven, Belgium
| | - Myriam Baes
- Department for Pharmaceutical and Pharmacological Sciences, University of Leuven, Leuven, Belgium
| | | | | |
Collapse
|
2
|
Qi H, Liu Z, Liu B, Cao H, Sun W, Yan Y, Zhang L. micro-RNA screening and prediction model construction for diagnosis of salt-sensitive essential hypertension. Medicine (Baltimore) 2017; 96:e6417. [PMID: 28445253 PMCID: PMC5413218 DOI: 10.1097/md.0000000000006417] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Commonly used tests for diagnosis of salt-sensitive hypertension (SSH) are complex and time-consuming, so new methods are required. Many studies have demonstrated roles for miRNAs in hypertension; however, the diagnostic value of miRNAs has yet to be determined for human SSH. In this study, we examined miRNA expression profiles by initial high-throughput miRNA sequencing of samples from patients with salt-sensitive and salt-resistant hypertension (SSH and SRH, respectively; n = 6, both groups), followed by validation by quantitative real-time polymerase chain reaction (qRT-PCR) in a larger cohort (n = 91). We also evaluated differences in baseline characteristics (e.g., age, sex, body mass index, consumption of specific foods) between the SSH and SRH groups. Of 36 miRNAs identified as differentially expressed between SSH and SRH groups by RNA-Seq, 8 were analyzed by qRT-PCR. There were significant differences in the expression levels of hsa-miR-361-5p and hsa-miR-362-5p between the 2 groups (P = .023 and.049, respectively). In addition, there were significant differences in sauce and poultry consumption between the 2 groups (P = .004 and.001, respectively). The areas under the curve (AUC) determined by receptor operating characteristic (ROC) analysis for hsa-miR-361-5p and all 8 miRNAs were 0.793 (95% CI, 0.698-0.888; sensitivity = 73.9%, specificity = 74.4%; P < .001) and 0.836 (95% CI, 0.749-0.922; sensitivity = 80.4%, specificity = 81.4%; P < .001), respectively, when sauce and poultry consumption were included in the models. Assay feasibility and economic considerations make hsa-miR-361-5p combined with the dietary factors the preferred markers for diagnosis of SSH.
Collapse
Affiliation(s)
- Han Qi
- Department of Epidemiology and Biostatistics, School of Public Health, Capital Medical University
- Beijing Municipal Key Laboratory of Clinical Epidemiology
| | - Zheng Liu
- Department of Epidemiology and Biostatistics, School of Public Health, Capital Medical University
- Beijing Municipal Key Laboratory of Clinical Epidemiology
| | - Bin Liu
- Department of Epidemiology and Biostatistics, School of Public Health, Capital Medical University
- Beijing Municipal Key Laboratory of Clinical Epidemiology
| | - Han Cao
- Department of Epidemiology and Biostatistics, School of Public Health, Capital Medical University
- Beijing Municipal Key Laboratory of Clinical Epidemiology
| | - Weiping Sun
- Department of Epidemiology and Biostatistics, School of Public Health, Capital Medical University
- Beijing Municipal Key Laboratory of Clinical Epidemiology
- Department of Cardiology, Beijing Luhe Hospital, Capital Medical University, Beijing, China
| | - Yuxiang Yan
- Department of Epidemiology and Biostatistics, School of Public Health, Capital Medical University
- Beijing Municipal Key Laboratory of Clinical Epidemiology
| | - Ling Zhang
- Department of Epidemiology and Biostatistics, School of Public Health, Capital Medical University
- Beijing Municipal Key Laboratory of Clinical Epidemiology
| |
Collapse
|
3
|
Hsin‐Hung Chen M, Dip A, Ahmed M, Tan ML, Walterscheid JP, Sun H, Teng B, Mozayani A. Detection and Characterization of the Effect of AB-FUBINACA and Its Metabolites in a Rat Model. J Cell Biochem 2015; 117:1033-43. [PMID: 26517302 PMCID: PMC5063098 DOI: 10.1002/jcb.25421] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2015] [Accepted: 10/28/2015] [Indexed: 01/05/2023]
Abstract
Synthetic cannabinoids were originally developed by academic and pharmaceutical laboratories with the hope of providing therapeutic relief from the pain of inflammatory and degenerative diseases. However, recreational drug enthusiasts have flushed the market with new strains of these potent drugs that evade detection yet endanger public health and safety. Although many of these drug derivatives were published in the medical literature, others were merely patented without further characterization. AB‐FUBINACA is an example of one of the new indazole‐carboxamide synthetic cannabinoids introduced in the past year. Even though AB‐FUBINACA has become increasingly prominent in forensic drug and toxicology specimens analyses, little is known about the pharmacology of this substance. To study its metabolic fate, we utilized Wistar rats to study the oxidative products of AB‐FUBINACA in urine and its effect on gene expressions in liver and heart. Rats were injected with 5 mg/kg of AB‐FUBINACA each day for 5 days. Urine samples were collected every day at the same time. On day 5 after treatment, we collected the organs such as liver and heart. The urine samples were analyzed by mass spectrometry, which revealed several putative metabolites and positioning of the hydroxyl addition on the molecule. We used quantitative PCR gene expression array to analyze the hepatotoxicity and cardiotoxicity on these rats and confirmed by real‐time quantitative RT‐PCR. We identified three genes significantly associated with dysfunction of oxidation and inflammation. Our study reports in vivo metabolites of AB‐FUBINACA in urine and its effect on the gene expressions in liver and heart. J. Cell. Biochem. 117: 1033–1043, 2016. © 2015 The Authors. Journal of Cellular Biochemistry Published by Wiley Periodicals. Inc.
Collapse
Affiliation(s)
| | - Aybike Dip
- Department of Administration of JusticeTexas Southern UniversityHoustonTexas77030
| | - Mostafa Ahmed
- Department of Administration of JusticeTexas Southern UniversityHoustonTexas77030
- Research Center for Human GeneticsThe Brown Foundation Institute of Molecular MedicineUniversity of Texas Health Science Center at HoustonHoustonTexas77030
| | - Michael L. Tan
- Research Center for Human GeneticsThe Brown Foundation Institute of Molecular MedicineUniversity of Texas Health Science Center at HoustonHoustonTexas77030
| | | | - Hua Sun
- Research Center for Human GeneticsThe Brown Foundation Institute of Molecular MedicineUniversity of Texas Health Science Center at HoustonHoustonTexas77030
| | - Ba‐Bie Teng
- Research Center for Human GeneticsThe Brown Foundation Institute of Molecular MedicineUniversity of Texas Health Science Center at HoustonHoustonTexas77030
- University of Texas Graduate School of Biomedical Sciences at HoustonHoustonTexas77030
| | - Ashraf Mozayani
- Department of Administration of JusticeTexas Southern UniversityHoustonTexas77030
| |
Collapse
|
4
|
Low TY, van Heesch S, van den Toorn H, Giansanti P, Cristobal A, Toonen P, Schafer S, Hübner N, van Breukelen B, Mohammed S, Cuppen E, Heck AJR, Guryev V. Quantitative and qualitative proteome characteristics extracted from in-depth integrated genomics and proteomics analysis. Cell Rep 2013; 5:1469-78. [PMID: 24290761 DOI: 10.1016/j.celrep.2013.10.041] [Citation(s) in RCA: 94] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2013] [Revised: 09/28/2013] [Accepted: 10/24/2013] [Indexed: 02/07/2023] Open
Abstract
Quantitative and qualitative protein characteristics are regulated at genomic, transcriptomic, and posttranscriptional levels. Here, we integrated in-depth transcriptome and proteome analyses of liver tissues from two rat strains to unravel the interactions within and between these layers. We obtained peptide evidence for 26,463 rat liver proteins. We validated 1,195 gene predictions, 83 splice events, 126 proteins with nonsynonymous variants, and 20 isoforms with nonsynonymous RNA editing. Quantitative RNA sequencing and proteomics data correlate highly between strains but poorly among each other, indicating extensive nongenetic regulation. Our multilevel analysis identified a genomic variant in the promoter of the most differentially expressed gene Cyp17a1, a previously reported top hit in genome-wide association studies for human hypertension, as a potential contributor to the hypertension phenotype in SHR rats. These results demonstrate the power of and need for integrative analysis for understanding genetic control of molecular dynamics and phenotypic diversity in a system-wide manner.
Collapse
Affiliation(s)
- Teck Yew Low
- Biomolecular Mass Spectrometry and Proteomics, Bijvoet Center for Biomolecular Research and Utrecht Institute for Pharmaceutical Sciences, Utrecht University, Padualaan 8, 3584 CH Utrecht, the Netherlands; Netherlands Proteomics Center, Padualaan 8, 3584 CH Utrecht, the Netherlands
| | - Sebastiaan van Heesch
- Hubrecht Institute-KNAW & University Medical Center Utrecht, Uppsalalaan 8, 3584 CT Utrecht, the Netherlands
| | - Henk van den Toorn
- Biomolecular Mass Spectrometry and Proteomics, Bijvoet Center for Biomolecular Research and Utrecht Institute for Pharmaceutical Sciences, Utrecht University, Padualaan 8, 3584 CH Utrecht, the Netherlands; Netherlands Proteomics Center, Padualaan 8, 3584 CH Utrecht, the Netherlands
| | - Piero Giansanti
- Biomolecular Mass Spectrometry and Proteomics, Bijvoet Center for Biomolecular Research and Utrecht Institute for Pharmaceutical Sciences, Utrecht University, Padualaan 8, 3584 CH Utrecht, the Netherlands; Netherlands Proteomics Center, Padualaan 8, 3584 CH Utrecht, the Netherlands
| | - Alba Cristobal
- Biomolecular Mass Spectrometry and Proteomics, Bijvoet Center for Biomolecular Research and Utrecht Institute for Pharmaceutical Sciences, Utrecht University, Padualaan 8, 3584 CH Utrecht, the Netherlands; Netherlands Proteomics Center, Padualaan 8, 3584 CH Utrecht, the Netherlands
| | - Pim Toonen
- Hubrecht Institute-KNAW & University Medical Center Utrecht, Uppsalalaan 8, 3584 CT Utrecht, the Netherlands
| | - Sebastian Schafer
- Max-Delbruck-Center for Molecular Medicine (MDC), Robert-Rossle-Strasse 10, 13125 Berlin, Germany
| | - Norbert Hübner
- Max-Delbruck-Center for Molecular Medicine (MDC), Robert-Rossle-Strasse 10, 13125 Berlin, Germany; DZHK (German Centre for Cardiovascular Research), Partner Site Berlin, Berlin, Germany
| | - Bas van Breukelen
- Biomolecular Mass Spectrometry and Proteomics, Bijvoet Center for Biomolecular Research and Utrecht Institute for Pharmaceutical Sciences, Utrecht University, Padualaan 8, 3584 CH Utrecht, the Netherlands; Netherlands Proteomics Center, Padualaan 8, 3584 CH Utrecht, the Netherlands
| | - Shabaz Mohammed
- Biomolecular Mass Spectrometry and Proteomics, Bijvoet Center for Biomolecular Research and Utrecht Institute for Pharmaceutical Sciences, Utrecht University, Padualaan 8, 3584 CH Utrecht, the Netherlands; Netherlands Proteomics Center, Padualaan 8, 3584 CH Utrecht, the Netherlands
| | - Edwin Cuppen
- Hubrecht Institute-KNAW & University Medical Center Utrecht, Uppsalalaan 8, 3584 CT Utrecht, the Netherlands.
| | - Albert J R Heck
- Biomolecular Mass Spectrometry and Proteomics, Bijvoet Center for Biomolecular Research and Utrecht Institute for Pharmaceutical Sciences, Utrecht University, Padualaan 8, 3584 CH Utrecht, the Netherlands; Netherlands Proteomics Center, Padualaan 8, 3584 CH Utrecht, the Netherlands.
| | - Victor Guryev
- Hubrecht Institute-KNAW & University Medical Center Utrecht, Uppsalalaan 8, 3584 CT Utrecht, the Netherlands
| |
Collapse
|
5
|
Tao H, Mei S, Sun X, Peng X, Zhang X, Ma C, Wang L, Hua L, Li F. Associations of TCF12, CTNNAL1 and WNT10B gene polymorphisms with litter size in pigs. Anim Reprod Sci 2013; 140:189-94. [PMID: 23820070 DOI: 10.1016/j.anireprosci.2013.05.013] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2013] [Revised: 05/21/2013] [Accepted: 05/23/2013] [Indexed: 11/27/2022]
Abstract
In previous research, several WNT signaling pathway genes including transcription factor 12 (TCF12), catenin alpha-like protein 1 (CTNNAL1) and wingless-type MMTV integration site family, member 10B (WNT10B) were differentially expressed in PMSG-hCG stimulated preovulatory ovarian follicles of Large White and Chinese Taihu sows. In the present research, these three genes were selected as the candidate genes for litter size traits in pigs. Four mutations (TCF12 c.-201+65 G>A, TCF12 c.-200-300 G>A, CTNNAL1 c.1878 G>C and WNT10B c.*12 C>T) were detected in eleven pig populations, and results indicated CTNNAL1 c.1878 G and WNT10B c.*12 C were the major alleles in all tested pig populations, while TCF12 c.-201+65 A and TCF12 c.-200-300 A were the major alleles in several Chinese native pig breeds. Association analysis of four mutations with litter size in Large White and DIV pigs showed that both the signficant differences of total number born (TNB) and number born alive (NBA) among three genotypes and the significance of additive effects appeared at TCF12 c.-200-300 G>A and CTNNAL1 c.1878 G>C loci, suggesting these two mutations might be reliable markers for pig selection and breeding.
Collapse
Affiliation(s)
- Hu Tao
- Key Laboratory of Pig Genetics and Breeding of Ministry of Agriculture & Key Laboratory of Agricultural Animal Genetics, Breeding and Reproduction of Ministry of Education, Huazhong Agricultural University, Wuhan, PR China
| | | | | | | | | | | | | | | | | |
Collapse
|
6
|
Identification of the promoter region and genetic mutations of the porcine GALP gene. Mol Biol Rep 2012; 40:2821-7. [PMID: 23224658 DOI: 10.1007/s11033-012-2297-1] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2012] [Accepted: 11/19/2012] [Indexed: 10/27/2022]
Abstract
Galanin-like peptide (GALP) gene, encoding a member of the galanin family of neuropeptides involved in reproduction, was differentially expressed in PMSG-hCG stimulated pre-ovulatory ovarian follicles of Chinese Taihu and Large White sows in our previous study. In the present study, promoter region and genetic mutations of the porcine GALP gene were determined. A 1,322 bp contig in 5'-flanking region was predicted to contain 5 potential transcription promoters by Neural Network Promoter Prediction version 2.2. 5'-deletion expression in both CHO and hela cells showed that there were a negative regulatory element at -852 to -803 bp and a positive regulatory element at -1,318 to -1,269 bp. Comparative sequence analyses of Chinese Taihu and Large White GALP gene sequence revealed the c.*27C>G mutation in the 3'-UTR and the c.88-1225C>G mutation in intron 1, which can be detected by HhaI and AluI PCR-RFLP, respectively. The association analysis with litter size traits showed that at both loci CC and GG genotypes were different for NBA for all parities in DIV pigs (P < 0.05). However, two SNPs were not in significant linkage disequilibrium analyzed using SHEsis online software, and could be used in pig breeding individually.
Collapse
|
7
|
Barawkar DA, Bandyopadhyay A, Deshpande A, Koul S, Kandalkar S, Patil P, Khose G, Vyas S, Mone M, Bhosale S, Singh U, De S, Meru A, Gundu J, Chugh A, Palle VP, Mookhtiar KA, Vacca JP, Chakravarty PK, Nargund RP, Wright SD, Roy S, Graziano MP, Cully D, Cai TQ, Singh SB. Discovery of pyrazole carboxylic acids as potent inhibitors of rat long chain l-2-hydroxy acid oxidase. Bioorg Med Chem Lett 2012; 22:4341-7. [DOI: 10.1016/j.bmcl.2012.05.020] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2012] [Revised: 04/28/2012] [Accepted: 05/02/2012] [Indexed: 11/15/2022]
|
8
|
Barawkar DA, Meru A, Bandyopadhyay A, Banerjee A, Deshpande AM, Athare C, Koduru C, Khose G, Gundu J, Mahajan K, Patil P, Kandalkar SR, Niranjan S, Bhosale S, De S, Mukhopadhyay S, Chaudhary S, Koul S, Singh U, Chugh A, Palle VP, Mookhtiar KA, Vacca J, Chakravarty PK, Nargund RP, Wright SD, Roy S, Graziano MP, Singh SB, Cully D, Cai TQ. Potent and Selective Inhibitors of Long Chain l-2-Hydroxy Acid Oxidase Reduced Blood Pressure in DOCA Salt-Treated Rats. ACS Med Chem Lett 2011; 2:919-23. [PMID: 24900281 DOI: 10.1021/ml2001938] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2011] [Accepted: 10/07/2011] [Indexed: 12/31/2022] Open
Abstract
l-2-Hydroxy acid oxidase (Hao2) is a peroxisomal enzyme with predominant expression in the liver and kidney. Hao2 was recently identified as a candidate gene for blood pressure quantitative trait locus in rats. To investigate a pharmacological role of Hao2 in the management of blood pressure, selective Hao2 inhibitors were developed. Optimization of screening hits 1 and 2 led to the discovery of compounds 3 and 4 as potent and selective rat Hao2 inhibitors with pharmacokinetic properties suitable for in vivo studies in rats. Treatment with compound 3 or 4 resulted in a significant reduction or attenuation of blood pressure in an established or developing model of hypertension, deoxycorticosterone acetate-treated rats. This is the first report demonstrating a pharmacological benefit of selective Hao2 inhibitors in a relevant model of hypertension.
Collapse
Affiliation(s)
- Dinesh A. Barawkar
- Drug Discovery Facility, Advinus Therapeutics Limited, Quantum Towers, Plot-9, Phase-I, Rajiv Gandhi InfoTech Park, Hinjewadi,
Pune 411 057, India
| | - Ashwin Meru
- Drug Discovery Facility, Advinus Therapeutics Limited, Quantum Towers, Plot-9, Phase-I, Rajiv Gandhi InfoTech Park, Hinjewadi,
Pune 411 057, India
| | - Anish Bandyopadhyay
- Drug Discovery Facility, Advinus Therapeutics Limited, Quantum Towers, Plot-9, Phase-I, Rajiv Gandhi InfoTech Park, Hinjewadi,
Pune 411 057, India
| | - Abir Banerjee
- Drug Discovery Facility, Advinus Therapeutics Limited, Quantum Towers, Plot-9, Phase-I, Rajiv Gandhi InfoTech Park, Hinjewadi,
Pune 411 057, India
| | - Anil M. Deshpande
- Drug Discovery Facility, Advinus Therapeutics Limited, Quantum Towers, Plot-9, Phase-I, Rajiv Gandhi InfoTech Park, Hinjewadi,
Pune 411 057, India
| | - Chandrashekhar Athare
- Drug Discovery Facility, Advinus Therapeutics Limited, Quantum Towers, Plot-9, Phase-I, Rajiv Gandhi InfoTech Park, Hinjewadi,
Pune 411 057, India
| | - Chandrasekhar Koduru
- Drug Discovery Facility, Advinus Therapeutics Limited, Quantum Towers, Plot-9, Phase-I, Rajiv Gandhi InfoTech Park, Hinjewadi,
Pune 411 057, India
| | - Goraksha Khose
- Drug Discovery Facility, Advinus Therapeutics Limited, Quantum Towers, Plot-9, Phase-I, Rajiv Gandhi InfoTech Park, Hinjewadi,
Pune 411 057, India
| | - Jayasagar Gundu
- Drug Discovery Facility, Advinus Therapeutics Limited, Quantum Towers, Plot-9, Phase-I, Rajiv Gandhi InfoTech Park, Hinjewadi,
Pune 411 057, India
| | - Koshu Mahajan
- Drug Discovery Facility, Advinus Therapeutics Limited, Quantum Towers, Plot-9, Phase-I, Rajiv Gandhi InfoTech Park, Hinjewadi,
Pune 411 057, India
| | - Pradeep Patil
- Drug Discovery Facility, Advinus Therapeutics Limited, Quantum Towers, Plot-9, Phase-I, Rajiv Gandhi InfoTech Park, Hinjewadi,
Pune 411 057, India
| | - Sachin R. Kandalkar
- Drug Discovery Facility, Advinus Therapeutics Limited, Quantum Towers, Plot-9, Phase-I, Rajiv Gandhi InfoTech Park, Hinjewadi,
Pune 411 057, India
| | - Sanjay Niranjan
- Drug Discovery Facility, Advinus Therapeutics Limited, Quantum Towers, Plot-9, Phase-I, Rajiv Gandhi InfoTech Park, Hinjewadi,
Pune 411 057, India
| | - Shubhangi Bhosale
- Drug Discovery Facility, Advinus Therapeutics Limited, Quantum Towers, Plot-9, Phase-I, Rajiv Gandhi InfoTech Park, Hinjewadi,
Pune 411 057, India
| | - Siddhartha De
- Drug Discovery Facility, Advinus Therapeutics Limited, Quantum Towers, Plot-9, Phase-I, Rajiv Gandhi InfoTech Park, Hinjewadi,
Pune 411 057, India
| | - Sudit Mukhopadhyay
- Drug Discovery Facility, Advinus Therapeutics Limited, Quantum Towers, Plot-9, Phase-I, Rajiv Gandhi InfoTech Park, Hinjewadi,
Pune 411 057, India
| | - Sumit Chaudhary
- Drug Discovery Facility, Advinus Therapeutics Limited, Quantum Towers, Plot-9, Phase-I, Rajiv Gandhi InfoTech Park, Hinjewadi,
Pune 411 057, India
| | - Summon Koul
- Drug Discovery Facility, Advinus Therapeutics Limited, Quantum Towers, Plot-9, Phase-I, Rajiv Gandhi InfoTech Park, Hinjewadi,
Pune 411 057, India
| | - Umesh Singh
- Drug Discovery Facility, Advinus Therapeutics Limited, Quantum Towers, Plot-9, Phase-I, Rajiv Gandhi InfoTech Park, Hinjewadi,
Pune 411 057, India
| | - Anita Chugh
- Drug Discovery Facility, Advinus Therapeutics Limited, Quantum Towers, Plot-9, Phase-I, Rajiv Gandhi InfoTech Park, Hinjewadi,
Pune 411 057, India
| | - Venkata P. Palle
- Drug Discovery Facility, Advinus Therapeutics Limited, Quantum Towers, Plot-9, Phase-I, Rajiv Gandhi InfoTech Park, Hinjewadi,
Pune 411 057, India
| | - Kasim A. Mookhtiar
- Drug Discovery Facility, Advinus Therapeutics Limited, Quantum Towers, Plot-9, Phase-I, Rajiv Gandhi InfoTech Park, Hinjewadi,
Pune 411 057, India
| | - Joseph Vacca
- Merck Research Laboratories, Rahway, New Jersey 07065,
United States
| | | | - Ravi P. Nargund
- Merck Research Laboratories, Rahway, New Jersey 07065,
United States
| | - Samuel D. Wright
- Merck Research Laboratories, Rahway, New Jersey 07065,
United States
| | - Sophie Roy
- Merck Research Laboratories, Rahway, New Jersey 07065,
United States
| | | | - Sheo B. Singh
- Merck Research Laboratories, Rahway, New Jersey 07065,
United States
| | - Doris Cully
- Merck Research Laboratories, Rahway, New Jersey 07065,
United States
| | - Tian-Quan Cai
- Merck Research Laboratories, Rahway, New Jersey 07065,
United States
| |
Collapse
|
9
|
Sun X, Mei S, Tao H, Wang G, Su L, Jiang S, Deng C, Xiong Y, Li F. Microarray profiling for differential gene expression in PMSG-hCG stimulated preovulatory ovarian follicles of Chinese Taihu and Large White sows. BMC Genomics 2011; 12:111. [PMID: 21324170 PMCID: PMC3047302 DOI: 10.1186/1471-2164-12-111] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2010] [Accepted: 02/16/2011] [Indexed: 11/16/2022] Open
Abstract
Background The Chinese Taihu is one of the most prolific pig breeds in the world, which farrows at least five more piglets per litter than Western pig breeds partly due to a greater ovulation rate. Variation of ovulation rate maybe associated with the differences in the transcriptome of Chinese Taihu and Large White ovaries. In order to understand the molecular basis of the greater ovulation rate of Chinese Taihu sows, expression profiling experiments were conducted to identify differentially expressed genes in ovarian follicles at the preovulatory stage of a PMSG-hCG stimulated estrous cycle from 3 Chinese Taihu and 3 Large White cycling sows by using the Affymetrix Porcine Genechip™. Results One hundred and thirty-three differentially expressed genes were identified between Chinese Taihu and Large White sows by using Affymetrix porcine GeneChip (p ≤ 0.05, Fold change ≥ 2 or ≤ 0.5). Gene Ontology (GO) analysis revealed that these genes belonged to the class of genes that participated in regulation of cellular process, regulation of biological process, biological regulation, developmental process, cell communication and signal transduction and so on. Significant differential expression of 6 genes including WNT10B and DKK2 in the WNT signaling pathway was detected. Real-time RT-PCR confirmed the expression pattern in seven of eight selected genes. A search of chromosomal location revealed that 92 differentially expressed transcripts located to the intervals of quantitative trait loci (QTLs) for reproduction traits. Furthermore, SNPs of two differentially expressed genes- BAX and BMPR1B were showed to be associated with litter size traits in Large White pigs and Chinese DIV line pigs (p ≤ 0.1 or p ≤ 0.05). Conclusions Our study detected many genes that showed differential expression between ovary follicles of two divergent breeds of pigs. Genes involved with regulation of cellular process, regulation of biological process, in addition to several genes not previously associated with ovarian physiology or with unknown function, were differentially expressed between two breeds. The suggestive or significant associations of BAX and BMPR1B gene with litter size indicated these genetic markers had the potentials to be used in pig industry after further validation of their genetic effects. Taken together, this study reveals many potential avenues of investigation for seeking new insights into ovarian physiology and the genetic control of reproduction.
Collapse
Affiliation(s)
- Xiaojie Sun
- Key Laboratory of Pig Genetics and Breeding of Ministry of Agriculture & Key Laboratory of Agricultural Animal Genetics, Breeding and Reproduction of Ministry of Education, Huazhong Agricultural University, Wuhan, PR China
| | | | | | | | | | | | | | | | | |
Collapse
|
10
|
Chang RL, Xie L, Xie L, Bourne PE, Palsson BØ. Drug off-target effects predicted using structural analysis in the context of a metabolic network model. PLoS Comput Biol 2010; 6:e1000938. [PMID: 20957118 PMCID: PMC2950675 DOI: 10.1371/journal.pcbi.1000938] [Citation(s) in RCA: 158] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2010] [Accepted: 08/23/2010] [Indexed: 02/07/2023] Open
Abstract
Recent advances in structural bioinformatics have enabled the prediction of protein-drug off-targets based on their ligand binding sites. Concurrent developments in systems biology allow for prediction of the functional effects of system perturbations using large-scale network models. Integration of these two capabilities provides a framework for evaluating metabolic drug response phenotypes in silico. This combined approach was applied to investigate the hypertensive side effect of the cholesteryl ester transfer protein inhibitor torcetrapib in the context of human renal function. A metabolic kidney model was generated in which to simulate drug treatment. Causal drug off-targets were predicted that have previously been observed to impact renal function in gene-deficient patients and may play a role in the adverse side effects observed in clinical trials. Genetic risk factors for drug treatment were also predicted that correspond to both characterized and unknown renal metabolic disorders as well as cryptic genetic deficiencies that are not expected to exhibit a renal disorder phenotype except under drug treatment. This study represents a novel integration of structural and systems biology and a first step towards computational systems medicine. The methodology introduced herein has important implications for drug development and personalized medicine. Pharmaceutical science is only beginning to scratch the surface on the exact mechanisms of drug action that lead to a drug's breadth of patient responses, both intended and side effects. Decades of clinical trials, molecular studies, and more recent computational analysis have sought to characterize the interactions between a drug and the cell's molecular machinery. We have devised an integrated computational approach to assess how a drug may affect a particular system, in our study the metabolism of the human kidney, and its capacity for filtration of the contents of the blood. We applied this approach to retrospectively investigate potential causal drug targets leading to increased blood pressure in participants of clinical trials for the drug torcetrapib in an effort to display how our approach could be directly useful in the drug development process. Our results suggest specific metabolic enzymes that may be directly responsible for the side effect. The drug screening framework we have developed could be used to link adverse side effects to particular drug targets, discover new uses for old drugs, identify biomarkers for metabolic disease and drug response, and suggest genetic or dietary risk factors to help guide personalized patient care.
Collapse
Affiliation(s)
- Roger L. Chang
- Department of Bioengineering, University of California San Diego, La Jolla, California, United States of America
| | - Li Xie
- Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California San Diego, La Jolla, California, United States of America
| | - Lei Xie
- San Diego Supercomputer Center, University of California San Diego, La Jolla, California, United States of America
| | - Philip E. Bourne
- Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California San Diego, La Jolla, California, United States of America
- San Diego Supercomputer Center, University of California San Diego, La Jolla, California, United States of America
| | - Bernhard Ø. Palsson
- Department of Bioengineering, University of California San Diego, La Jolla, California, United States of America
- * E-mail:
| |
Collapse
|
11
|
Verdugo RA, Farber CR, Warden CH, Medrano JF. Serious limitations of the QTL/microarray approach for QTL gene discovery. BMC Biol 2010; 8:96. [PMID: 20624276 PMCID: PMC2919467 DOI: 10.1186/1741-7007-8-96] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2010] [Accepted: 07/12/2010] [Indexed: 01/23/2023] Open
Abstract
BACKGROUND It has been proposed that the use of gene expression microarrays in nonrecombinant parental or congenic strains can accelerate the process of isolating individual genes underlying quantitative trait loci (QTL). However, the effectiveness of this approach has not been assessed. RESULTS Thirty-seven studies that have implemented the QTL/microarray approach in rodents were reviewed. About 30% of studies showed enrichment for QTL candidates, mostly in comparisons between congenic and background strains. Three studies led to the identification of an underlying QTL gene. To complement the literature results, a microarray experiment was performed using three mouse congenic strains isolating the effects of at least 25 biometric QTL. Results show that genes in the congenic donor regions were preferentially selected. However, within donor regions, the distribution of differentially expressed genes was homogeneous once gene density was accounted for. Genes within identical-by-descent (IBD) regions were less likely to be differentially expressed in chromosome 2, but not in chromosomes 11 and 17. Furthermore, expression of QTL regulated in cis (cis eQTL) showed higher expression in the background genotype, which was partially explained by the presence of single nucleotide polymorphisms (SNP). CONCLUSIONS The literature shows limited successes from the QTL/microarray approach to identify QTL genes. Our own results from microarray profiling of three congenic strains revealed a strong tendency to select cis-eQTL over trans-eQTL. IBD regions had little effect on rate of differential expression, and we provide several reasons why IBD should not be used to discard eQTL candidates. In addition, mismatch probes produced false cis-eQTL that could not be completely removed with the current strains genotypes and low probe density microarrays. The reviewed studies did not account for lack of coverage from the platforms used and therefore removed genes that were not tested. Together, our results explain the tendency to report QTL candidates as differentially expressed and indicate that the utility of the QTL/microarray as currently implemented is limited. Alternatives are proposed that make use of microarray data from multiple experiments to overcome the outlined limitations.
Collapse
Affiliation(s)
- Ricardo A Verdugo
- Department of Animal Science, University of California Davis. Davis, CA 95616, USA
- The Jackson Laboratory, Bar Harbor, ME 04609, USA
| | - Charles R Farber
- Departments of Medicine, Biochemistry and Molecular Genetics, and Center for Public Health Genomics, University of Virginia, Charlottesville, VA 22908, USA
| | - Craig H Warden
- Departments of Pediatrics and Neurobiology, Physiology and Behavior, University of California Davis. Davis, CA 95616, USA
| | - Juan F Medrano
- Department of Animal Science, University of California Davis. Davis, CA 95616, USA
| |
Collapse
|
12
|
Abstract
Hypertension represents a global public health burden. In addition to the rarer Mendelian forms of hypertension, classic genetic studies have documented a significant heritable component to the most common form, essential hypertension (EH). Extensive efforts are under way to elucidate the genetic basis of this disease. Recently, a new form of Mendelian hypertension has been identified, pharmacogenetic association studies in hypertensive patients have identified novel gene-by-drug interactions, and the first genome-wide association studies of EH have been published. New findings in consomic and congenic rat models also offer new clues to the genetic architecture of this complex phenotype. In this review, the authors summarize and evaluate the most recent findings related to hypertension gene identification.
Collapse
|
13
|
Liang M, Lee NH, Wang H, Greene AS, Kwitek AE, Kaldunski ML, Luu TV, Frank BC, Bugenhagen S, Jacob HJ, Cowley AW. Molecular networks in Dahl salt-sensitive hypertension based on transcriptome analysis of a panel of consomic rats. Physiol Genomics 2008; 34:54-64. [PMID: 18430809 DOI: 10.1152/physiolgenomics.00031.2008] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
The Dahl salt-sensitive (SS) rat is a widely used model of human salt-sensitive hypertension and renal injury. We studied the molecular networks that underlie the complex disease phenotypes in the SS model, using a design that involved two consomic rat strains that were protected from salt-induced hypertension and one that was not protected. Substitution of Brown Norway (BN) chromosome 13 or 18, but not 20, into the SS genome was found to significantly attenuate salt-induced hypertension and albuminuria. Gene expression profiles were examined in the kidneys of SS and consomic SS-13(BN), SS-18(BN), and SS-20(BN) rats with a total of 240 cDNA microarrays. The substituted chromosome was overrepresented in genes differentially expressed between a consomic strain and SS rats on a 0.4% salt diet. F5, Serpinc1, Slc19a2, and genes represented by three other expressed sequence tags (ESTs), which are located on chromosome 13, were found to be differentially expressed between SS-13(BN) and all other strains examined. Likewise, Acaa2, B4galt6, Colec12, Hsd17b4, and five other ESTs located on chromosome 18 exhibited expression patterns unique to SS-18(BN). On exposure to a 4% salt diet, there were 184 ESTs in the renal cortex and 346 in the renal medulla for which SS-13(BN) and SS-18(BN) shared one expression pattern, while SS and SS-20(BN) shared another, mirroring the phenotypic segregation among the four strains. Molecular networks that might contribute to the development of Dahl salt-sensitive hypertension and albuminuria were constructed with an approach that merged biological knowledge-driven analysis and data-driven Bayesian probabilistic analysis.
Collapse
Affiliation(s)
- Mingyu Liang
- Department of Physiology, Medical College of Wisconsin, Milwaukee, Wisconsin 53226, USA.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
14
|
Toland EJ, Saad Y, Yerga-Woolwine S, Ummel S, Farms P, Ramdath R, Frank BC, Lee NH, Joe B. Closely linked non-additive blood pressure quantitative trait loci. Mamm Genome 2008; 19:209-18. [PMID: 18324438 DOI: 10.1007/s00335-008-9093-1] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2007] [Accepted: 01/04/2008] [Indexed: 11/30/2022]
Abstract
There is enough evidence through linkage and substitution mapping to indicate that rat chromosome 1 harbors multiple blood pressure (BP) quantitative trait loci (QTLs). Of these, BP QTL1b was previously reported from our laboratory using congenic strains derived by introgressing normotensive alleles from the LEW rat onto the genetic background of the hypertensive Dahl salt-sensitive (S) rat. The region spanned by QTL1b is quite large (20.92 Mb), thus requiring further mapping with improved resolution so as to facilitate systematic identification of the underlying genetic determinant(s). Using congenic strains containing the LEW rat chromosomal segments on the Dahl salt-sensitive (S) rat background, further iterations of congenic substrains were constructed and characterized. Collective data obtained from this new iteration of congenic substrains provided evidence for further fragmentation of QTL1b with improved resolution. At least two separate genetic determinants of blood pressure underlie QTL1b. These are within 7.40 Mb and 7.31 Mb and are known as the QTL1b1 region and the QTL1b2 region, respectively. A genetic interaction was detected between the two BP QTLs. Interestingly, five of the previously reported differentially expressed genes located within the newly mapped QTL1b1 region remained differentially expressed. The congenic strain S.LEW(D1Mco36-D1Mco101), which harbors the QTL1b1 region alone but not the QTL1b2 region, serves as a genetic tool for further dissection of the QTL1b1 region and validation of Nr2f2 as a positional candidate gene. Overall, this study represents an intermediary yet obligatory progression towards the identification of genetic elements controlling BP.
Collapse
Affiliation(s)
- Edward J Toland
- Physiological Genomics Laboratory, Department of Physiology and Pharmacology, University of Toledo College of Medicine, 3035 Arlington Avenue, Toledo, OH 43614, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
15
|
Tyther R, Ahmeda A, Johns E, Sheehan D. Proteomic identification of tyrosine nitration targets in kidney of spontaneously hypertensive rats. Proteomics 2007; 7:4555-64. [DOI: 10.1002/pmic.200700503] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
16
|
Lee NH, Haas BJ, Letwin NE, Frank BC, Luu TV, Sun Q, House CD, Yerga-Woolwine S, Farms P, Manickavasagam E, Joe B. Cross-Talk of Expression Quantitative Trait Loci Within 2 Interacting Blood Pressure Quantitative Trait Loci. Hypertension 2007; 50:1126-33. [DOI: 10.1161/hypertensionaha.107.093138] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Affiliation(s)
- Norman H. Lee
- From the Department of Pharmacology and Physiology (N.H.L., N.E.L., B.C.F., T.V.L., C.D.H.), George Washington University, Washington, DC; Department of Functional Genomics (N.H.L., B.J.H., Q.S.), Institute for Genomic Research, Rockville Md; Physiological Genomics Laboratory (S.Y.-W., P.F., E.M., B.J.), Department of Physiology and Pharmacology, University of Toledo College of Medicine, Toledo, Ohio
| | - Brian J. Haas
- From the Department of Pharmacology and Physiology (N.H.L., N.E.L., B.C.F., T.V.L., C.D.H.), George Washington University, Washington, DC; Department of Functional Genomics (N.H.L., B.J.H., Q.S.), Institute for Genomic Research, Rockville Md; Physiological Genomics Laboratory (S.Y.-W., P.F., E.M., B.J.), Department of Physiology and Pharmacology, University of Toledo College of Medicine, Toledo, Ohio
| | - Noah E. Letwin
- From the Department of Pharmacology and Physiology (N.H.L., N.E.L., B.C.F., T.V.L., C.D.H.), George Washington University, Washington, DC; Department of Functional Genomics (N.H.L., B.J.H., Q.S.), Institute for Genomic Research, Rockville Md; Physiological Genomics Laboratory (S.Y.-W., P.F., E.M., B.J.), Department of Physiology and Pharmacology, University of Toledo College of Medicine, Toledo, Ohio
| | - Bryan C. Frank
- From the Department of Pharmacology and Physiology (N.H.L., N.E.L., B.C.F., T.V.L., C.D.H.), George Washington University, Washington, DC; Department of Functional Genomics (N.H.L., B.J.H., Q.S.), Institute for Genomic Research, Rockville Md; Physiological Genomics Laboratory (S.Y.-W., P.F., E.M., B.J.), Department of Physiology and Pharmacology, University of Toledo College of Medicine, Toledo, Ohio
| | - Truong V. Luu
- From the Department of Pharmacology and Physiology (N.H.L., N.E.L., B.C.F., T.V.L., C.D.H.), George Washington University, Washington, DC; Department of Functional Genomics (N.H.L., B.J.H., Q.S.), Institute for Genomic Research, Rockville Md; Physiological Genomics Laboratory (S.Y.-W., P.F., E.M., B.J.), Department of Physiology and Pharmacology, University of Toledo College of Medicine, Toledo, Ohio
| | - Qiang Sun
- From the Department of Pharmacology and Physiology (N.H.L., N.E.L., B.C.F., T.V.L., C.D.H.), George Washington University, Washington, DC; Department of Functional Genomics (N.H.L., B.J.H., Q.S.), Institute for Genomic Research, Rockville Md; Physiological Genomics Laboratory (S.Y.-W., P.F., E.M., B.J.), Department of Physiology and Pharmacology, University of Toledo College of Medicine, Toledo, Ohio
| | - Carrie D. House
- From the Department of Pharmacology and Physiology (N.H.L., N.E.L., B.C.F., T.V.L., C.D.H.), George Washington University, Washington, DC; Department of Functional Genomics (N.H.L., B.J.H., Q.S.), Institute for Genomic Research, Rockville Md; Physiological Genomics Laboratory (S.Y.-W., P.F., E.M., B.J.), Department of Physiology and Pharmacology, University of Toledo College of Medicine, Toledo, Ohio
| | - Shane Yerga-Woolwine
- From the Department of Pharmacology and Physiology (N.H.L., N.E.L., B.C.F., T.V.L., C.D.H.), George Washington University, Washington, DC; Department of Functional Genomics (N.H.L., B.J.H., Q.S.), Institute for Genomic Research, Rockville Md; Physiological Genomics Laboratory (S.Y.-W., P.F., E.M., B.J.), Department of Physiology and Pharmacology, University of Toledo College of Medicine, Toledo, Ohio
| | - Phyllis Farms
- From the Department of Pharmacology and Physiology (N.H.L., N.E.L., B.C.F., T.V.L., C.D.H.), George Washington University, Washington, DC; Department of Functional Genomics (N.H.L., B.J.H., Q.S.), Institute for Genomic Research, Rockville Md; Physiological Genomics Laboratory (S.Y.-W., P.F., E.M., B.J.), Department of Physiology and Pharmacology, University of Toledo College of Medicine, Toledo, Ohio
| | - Ezhilarasi Manickavasagam
- From the Department of Pharmacology and Physiology (N.H.L., N.E.L., B.C.F., T.V.L., C.D.H.), George Washington University, Washington, DC; Department of Functional Genomics (N.H.L., B.J.H., Q.S.), Institute for Genomic Research, Rockville Md; Physiological Genomics Laboratory (S.Y.-W., P.F., E.M., B.J.), Department of Physiology and Pharmacology, University of Toledo College of Medicine, Toledo, Ohio
| | - Bina Joe
- From the Department of Pharmacology and Physiology (N.H.L., N.E.L., B.C.F., T.V.L., C.D.H.), George Washington University, Washington, DC; Department of Functional Genomics (N.H.L., B.J.H., Q.S.), Institute for Genomic Research, Rockville Md; Physiological Genomics Laboratory (S.Y.-W., P.F., E.M., B.J.), Department of Physiology and Pharmacology, University of Toledo College of Medicine, Toledo, Ohio
| |
Collapse
|
17
|
Zhu M, Zhao S. Candidate gene identification approach: progress and challenges. Int J Biol Sci 2007; 3:420-7. [PMID: 17998950 PMCID: PMC2043166 DOI: 10.7150/ijbs.3.420] [Citation(s) in RCA: 192] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2007] [Accepted: 10/24/2007] [Indexed: 11/05/2022] Open
Abstract
Although it has been widely applied in identification of genes responsible for biomedically, economically, or even evolutionarily important complex and quantitative traits, traditional candidate gene approach is largely limited by its reliance on the priori knowledge about the physiological, biochemical or functional aspects of possible candidates. Such limitation results in a fatal information bottleneck, which has apparently become an obstacle for further applications of traditional candidate gene approach on many occasions. While the identification of candidate genes involved in genetic traits of specific interest remains a challenge, significant progress in this subject has been achieved in the last few years. Several strategies have been developed, or being developed, to break the barrier of information bottleneck. Recently, being a new developing method of candidate gene approach, digital candidate gene approach (DigiCGA) has emerged and been primarily applied to identify potential candidate genes in some studies. This review summarizes the progress, application software, online tools, and challenges related to this approach.
Collapse
Affiliation(s)
- Mengjin Zhu
- Key Laboratory of Agricultural Animal Genetics, Breeding, Reproduction of Ministry of Education, Huazhong Agricultural University, Wuhan 430070, PR China
| | | |
Collapse
|
18
|
Thifault S, Ondrej S, Sun Y, Fortin A, Skamene E, Lalonde R, Tremblay J, Hamet P. Genetic determinants of emotionality and stress response in AcB/BcA recombinant congenic mice and in silico evidence of convergence with cardiovascular candidate genes. Hum Mol Genet 2007; 17:331-44. [PMID: 17913702 DOI: 10.1093/hmg/ddm277] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Genomic loci bearing stress-related phenotypes were dissected in recombinant congenic strains (RCS) of mice with C57BL/6J (B6) and A/J progenitors. Adult male mice from 14 A/J and 22 B6 background lines were evaluated for emotional reactivity in open-field (OF) and elevated plus-maze tests. Core temperature was monitored by radio telemetry during immobilization and on standard as well as salt-enriched diets. In addition, urinary electrolytes were measured. Genome-wide linkage analysis of the parameters revealed over 20 significant quantitative trait loci (QTL). The highest logarithm of odds (LOD) scores were within the previously-reported OF emotionality locus on Chr 1 (LOD = 4.6), in the dopa decarboxylase region on Chr 11 for the plus-maze (LOD = 4.7), and within a novel region of calmodulin 1 on Chr 12 for Ca++ excretion after a 24-h salt load (LOD = 4.6). RCS stress QTL overlapped with several candidate loci for cardiovascular (CV) disease. In silico evidence of functional polymorphisms by comparative sequence analysis of progenitor strains assisted to ascertain this convergence. The anxious BcA70 strain showed down regulation of Atp1a2 gene expression in the heart (P < 0.001) and brain (P < 0.05) compared with its parental B6 strain, compatible with the enhanced emotionality described in knock out animals for this gene, also involved in the salt-sensitive component of hypertension. Functional polymorphisms in regulatory elements of candidate genes of the CV/inflammatory/immune systems support the hypothesis of genetically-altered environmental susceptibility in CV disease development.
Collapse
Affiliation(s)
- Stéphane Thifault
- Centre de recherche, Centre hospitalier de l'Université de Montréal-Technopôle Angus, Montréal, Québec, Canada
| | | | | | | | | | | | | | | |
Collapse
|
19
|
Saad Y, Garrett MR, Manickavasagam E, Yerga-Woolwine S, Farms P, Radecki T, Joe B. Fine-mapping and comprehensive transcript analysis reveals nonsynonymous variants within a novel 1.17 Mb blood pressure QTL region on rat chromosome 10. Genomics 2007; 89:343-53. [PMID: 17218081 PMCID: PMC1808207 DOI: 10.1016/j.ygeno.2006.12.005] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2006] [Revised: 11/23/2006] [Accepted: 12/09/2006] [Indexed: 10/23/2022]
Abstract
The presence of blood pressure (BP) quantitative trait loci (QTL) on rat chromosome 10 has been clearly demonstrated by linkage analysis and substitution mapping. Using congenic strains containing the LEW rat chromosomal segments on the Dahl salt-sensitive (S) rat background, further iterations of congenic substrains were constructed and characterized to fine-map a chromosome 10 region (QTL1) linked to blood pressure. Comparison of seven congenic substrains refined QTL1 to a 1.17 Mb segment flanked by D10Mco88 and D10Mco89, which are located at 71,513,116 and 72,684,774 bp, respectively. The newly defined QTL1, containing 18 genes, is captured in its entirety within a single congenic substrain. A thorough transcript analysis revealed that 3 of these 18 genes, Ccl5, Ddx52, and RGD1559577, had nonsynonymous allelic variations between the S rat and the LEW rat. None of the detected transcripts within the newly defined QTL1 are implicated directly in BP control in humans or model organisms. Therefore, the present work defines a novel blood pressure QTL with three potential quantitative trait nucleotides.
Collapse
Affiliation(s)
- Yasser Saad
- Department of Physiology, Pharmacology, Metabolism, and Cardiovascular Sciences, University of Toledo, Health Science Campus, 3035 Arlington Avenue, Toledo, OH 43614-5804, USA
| | | | | | | | | | | | | |
Collapse
|
20
|
|
21
|
Abstract
QTL mapping in humans and rats has identified hundreds of blood-pressure-related phenotypes and genomic regions; the next daunting task is gene identification and validation. The development of novel rat model systems that mimic many elements of the human disease, coupled with advances in the genomic and informatic infrastructure for rats, promise to revolutionize the hunt for genes that determine susceptibility to hypertension. Furthermore, methods are evolving that should enable the identification of candidate genes in human populations. Together with the computational reconstruction of regulatory networks, these methods provide opportunities to significantly advance our understanding of the underlying aetiology of hypertension.
Collapse
Affiliation(s)
- Allen W Cowley
- Department of Physiology, Medical College of Wisconsin, 8701 Watertown Plank Road, Milwaukee, Wisconsin 53226, USA.
| |
Collapse
|
22
|
Abstract
Most animal microRNAs are imperfectly complementary to their mRNA targets and inhibit protein synthesis through an unknown mechanism. MicroRNAs have been reported to play important roles in a number of biological processes. We assessed the microRNA system in Dahl salt-sensitive rats in order to investigate possible roles of microRNA in salt-sensitive hypertension. We constructed microRNA libraries from the kidneys of Dahl salt-sensitive and Lewis rats taking normal or high-salt diets (4 groups), and identified 91 previously reported and 12 new microRNAs expressed in the kidney. We then used Northern blotting to assess the expression levels of 118 microRNAs in the kidneys and heart ventricles. No significant differences in microRNA expression profiles were observed among the 4 groups. Thus, the microRNA system seemed to be unlikely to contribute to salt-sensitive hypertension in Dahl salt-sensitive rats.
Collapse
Affiliation(s)
- Hiroaki Naraba
- Department of Epidemiology, Research Institute, National Cardiovascular Center, Suita, Japan
| | | |
Collapse
|
23
|
Lee SJ, Ways JA, Barbato JC, Essig D, Pettee K, DeRaedt SJ, Yang S, Weaver DA, Koch LG, Cicila GT. Gene expression profiling of the left ventricles in a rat model of intrinsic aerobic running capacity. Physiol Genomics 2005; 23:62-71. [PMID: 16033863 DOI: 10.1152/physiolgenomics.00251.2004] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Our previous work found DA rats superior for intrinsic aerobic running capacity (ARC) and several cardiac function indexes compared with Copenhagen (COP) rats, and identified ARC quantitative trait loci (QTLs) on rat chromosomes 16 (RNO16) and 3 (RNO3). The purpose of this study was to use these inbred rat strains as a genetic substrate for differential cardiac gene expression to identify candidate genes for the observed ARC QTLs. RNA expression was examined globally in left ventricles of 15-wk-old DA, F1(COP x DA), and COP rats using microarrays to identify candidate genes for ARC QTLs. We identified 199 differentially expressed probe sets and determined their chromosomal locations. Six differentially expressed genes and expressed sequence tags (ESTs) mapped near ARC QTL regions, including PDZ and LIM domain 3 (Pdlim3). Differential expression of these genes/ESTs was confirmed by quantitative RT-PCR. The Ingenuity Pathways program identified 13 biological networks containing 50 (of the 199) differentially expressed probe sets and 85 additional genes. Four of these eighty-five genes mapped near ARC QTL-containing regions, including insulin receptor substrate 2 (Irs2) and acyl-CoA synthetase long-chain family member 1 (Acsl1). Most (148/199) differentially expressed probe sets showed left ventricular expression patterns consistent with the alleles exerting additive effects, i.e., F1(COP x DA) rat RNA expression was intermediate between DA and COP rats. This study identified several potential ARC QTL candidate genes and molecular networks, one of them related to energy expenditure involving Pik3r1 mRNA expression that may, in part, explain the observed strain differences in ARC and cardiac performance.
Collapse
Affiliation(s)
- Soon Jin Lee
- Department of Physiology and Cardiovascular Genomics, Medical University of Ohio, Toledo, Ohio 43614, USA.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
24
|
Abstract
PURPOSE OF REVIEW Limited to 2003-2004 publications, this review focuses on 'big picture' concepts learned from rat genetic studies of cardiovascular disease. RECENT DEVELOPMENTS Analysis reveals insights into pathogenic paradigms, as well as experimental perspectives into rat-based systems of analyses of complex cardiovascular disease. Key concepts are forwarded. Multiple susceptibility genes underlie several quantitative trait loci for blood pressure suggesting a 'quantitative trait loci cluster' concept; hypertension end-organ disease quantitative trait loci are distinct from blood pressure quantitative trait loci indicating differential susceptibility paradigms for hypertension and each complication (stroke, renal disease, cardiac hypertrophy); distinct blood pressure quantitative trait loci are found in males and females indicating gender-specific susceptibility; and genetic subtypes comprise polygenic hypertension in rat models suggesting a genetic basis for clinical heterogeneity of human essential hypertension. Gender specific genetic susceptibility plays a key role in coronary artery disease susceptibility; multiple distinct quantitative trait loci underlie hyperlipidemia and type-2 diabetes, indicating multiple susceptibilities in risk factors for cardiovascular disease. Studies in transgenic inbred rat-strain models demonstrate value for serial, complex, cardiovascular pathophysiological analyses within a genetic context. SUMMARY Cognizant of the limitations of animal model studies, observations from rat genetic studies provide insight into respective modeled human cardiovascular diseases and risk factor susceptibility, as well as systematically dissect the multifaceted complexities apparent in human complex cardiovascular disease. Given the recapitulation of many features of human cardiovascular disease, the value of rat model-based genetic studies for complex cardiovascular disease is unequivocal, thus mandating the expansion of resources for maximization of rat-based genetic studies.
Collapse
Affiliation(s)
- Victoria L M Herrera
- Whitaker Cardiovascular Institute and Department of Medicine, Boston University School of Medicine, Boston, Massachusetts 02118, USA.
| | | |
Collapse
|
25
|
Diament AL, Fisler JS, Warden CH. Studies of natural allele effects in mice can be used to identify genes causing common human obesity. Obes Rev 2003; 4:249-55. [PMID: 14649375 DOI: 10.1046/j.1467-789x.2003.00113.x] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Although genes causing rare Mendelian forms of human obesity have provided much useful information about underlying causes of obesity, these genes do not explain significant proportions of common obesity. This review presents evidence that animal models can be used to uncover subtle genetic effects on obesity and can provide a powerful rigorous compliment to human association studies. We discuss the advantages of animal models of obesity, various approaches to discovering obesity genes, and the future of mapping and isolating naturally occurring alleles of obesity genes. We review evidence that it is important to map naturally occurring obesity genes using quantitative trait locus (QTL) mapping, instead of mutagenesis and knockout models because the latter do not allow study of interactions and because naturally occurring obesity alleles can interfere with cloning from mutagenesis projects. Because a substantial percentage of human obesity results from complex interactions, the underlying genes can only be identified by direct studies in humans, which are still very difficult, or by studies in mice that begin with QTL mapping. Finally, we emphasize that animal model studies can be used to prove that a specific gene, only associated with obesity in humans, can indeed be the underlying cause of obesity in mammals.
Collapse
Affiliation(s)
- A L Diament
- Rowe Program in Genetics, University of California, Davis, CA 95616, USA
| | | | | |
Collapse
|