1
|
Hur J, Jung HK, Park JH, Maharjan A, Park SW. Development of ELISA Using Phage-Displayed Stx2 Mini-Body for Detection of STEC Antigen in Field Farming Pig Samples. Microorganisms 2025; 13:382. [PMID: 40005748 PMCID: PMC11858614 DOI: 10.3390/microorganisms13020382] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2024] [Revised: 01/22/2025] [Accepted: 01/27/2025] [Indexed: 02/27/2025] Open
Abstract
Porcine edema disease (ED), which causes enormous economic losses in pig farms, is caused by Shiga toxin type 2e (Stx2e) Escherichia coli (STEC), which frequently occurs in young piglets. In this study, we aimed to express a fused Stx2e peptide on a phage surface to generate an innovative sandwich ELISA for the detection of STEC antigen in field pig farming samples. The amino acid sequences at positions 241-319 were selected for capture antibody (T1D2) production. T1D2 was selected after the third round of biopanning, and it showed a high yield with no major impurities. T1D2-ELISA can detect recombinant modified Stx2e antigen, and the detection limit of the antigen was approximately below 20 pg/mL. The sensitivity of T1D2-ELISA was determined using five different stool samples, with a total of 25 stool samples. Positive Stx2e antigen samples were detected only in one of the 25 samples using T1D2-ELISA. The ELISA values of positive stool samples were >300 pg and <600 pg. In conclusion, we developed an innovative ELISA for the detection of STEC antigens in field pig farming samples. It can also be used to easily detect STEC antigens in porcine stool samples. We anticipate that our novel T1D2-ELISA method will enable the effective monitoring of STEC antigen content during industrial vaccine production. By leveraging this approach, we aimed to enhance production efficiency and ensure high-quality vaccines.
Collapse
Affiliation(s)
- Jin Hur
- Department of Veterinary Public Health, College of Veterinary Medicine, Jeonbuk National University, Iksan-si 54596, Jeollabuk-do, Republic of Korea;
| | - Ho-Kyoung Jung
- CTCVAC Inc., 106, Saengmyeonggwahakgwan-gil, Hongcheon-eup, Hongcheon-gun 25142, Gangwon-do, Republic of Korea;
| | - Jung-Ho Park
- Bio-Evaluation Center, Korea Research Institute of Bioscience and Biotechnology, Cheongju-si 28116, Chungcheongbuk-do, Republic of Korea; (J.-H.P.); (A.M.)
| | - Anoth Maharjan
- Bio-Evaluation Center, Korea Research Institute of Bioscience and Biotechnology, Cheongju-si 28116, Chungcheongbuk-do, Republic of Korea; (J.-H.P.); (A.M.)
| | - Seung-Won Park
- Department of Biomedical Science, Daegu Catholic University, Gyeongsan-si 38430, Gyeongsangbuk-do, Republic of Korea
| |
Collapse
|
2
|
Kimura R, Kimura H, Shirai T, Hayashi Y, Sato-Fujimoto Y, Kamitani W, Ryo A, Tomita H. Molecular Evolutionary Analyses of Shiga toxin type 2 subunit A Gene in the Enterohemorrhagic Escherichia coli (EHEC). Microorganisms 2024; 12:1812. [PMID: 39338486 PMCID: PMC11434168 DOI: 10.3390/microorganisms12091812] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2024] [Revised: 08/28/2024] [Accepted: 08/28/2024] [Indexed: 09/30/2024] Open
Abstract
To better understand the molecular genetics of the Shiga toxin type 2 subunit A gene (stx2A gene), we collected many subtypes of stx2A genes and performed detailed molecular evolutionary analyses of the gene. To achieve the aim of the study, we used several bioinformatics technologies, including time-scaled phylogenetic analyses, phylogenetic distance analyses, phylodynamics analyses, selective pressure analyses, and conformational epitope analyses. A time-scaled phylogeny showed that the common ancestor of the stx2A gene dated back to around 18,600 years ago. After that, the gene diverged into two major lineages (Lineage 1 and 2). Lineage 1 comprised the stx2a-2d subtypes, while Lineage 2 comprised the stx2e, 2g, 2h, and 2o subtypes. The evolutionary rates of the genes were relatively fast. Phylogenetic distances showed that the Lineage 2 strains had a wider genetic divergence than Lineage 1. Phylodynamics also indicated that the population size of the stx2A gene increased after the 1930s and spread globally. Moreover, negative selection sites were identified in the Stx2A proteins, and these sites were diffusely distributed throughout the protein. Two negative selection sites were located adjacent to an active site of the common Stx2A protein. Many conformational epitopes were also estimated in these proteins, while no conformational epitope was found adjacent to the active site. The results suggest that the stx2A gene has uniquely evolved and diverged over an extremely long time, resulting in many subtypes. The dominance of the strains belonging to Lineage 1 suggests that differences in virulence may be involved in the prosperity of the offspring. Furthermore, some subtypes of Stx2A proteins may be able to induce effective neutralizing antibodies against the proteins in humans.
Collapse
Affiliation(s)
- Ryusuke Kimura
- Department of Bacteriology, Graduate School of Medicine, Gunma University, Maebashi-shi 371-8511, Gunma, Japan; (R.K.); (H.T.)
- Advanced Medical Science Research Center, Gunma Paz University, Takasaki-shi 370-0006, Gunma, Japan; (T.S.); (Y.H.)
| | - Hirokazu Kimura
- Advanced Medical Science Research Center, Gunma Paz University, Takasaki-shi 370-0006, Gunma, Japan; (T.S.); (Y.H.)
- Department of Health Science, Gunma Paz University Graduate School of Health Sciences, Takasaki-shi 370-0006, Gunma, Japan
| | - Tatsuya Shirai
- Advanced Medical Science Research Center, Gunma Paz University, Takasaki-shi 370-0006, Gunma, Japan; (T.S.); (Y.H.)
- Department of Virology III, Infectious Disease Surveillance Center, National Institute of Infectious Diseases, Tokyo 208-0011, Japan;
| | - Yuriko Hayashi
- Advanced Medical Science Research Center, Gunma Paz University, Takasaki-shi 370-0006, Gunma, Japan; (T.S.); (Y.H.)
| | - Yuka Sato-Fujimoto
- Faculty of Healthcare, Tokyo Healthcare University, Tokyo 141-8648, Japan;
| | - Wataru Kamitani
- Department of Infectious Diseases and Host Defense, Gunma University Graduate School of Medicine, Maebashi-shi 371-8511, Gunma, Japan;
| | - Akihide Ryo
- Department of Virology III, Infectious Disease Surveillance Center, National Institute of Infectious Diseases, Tokyo 208-0011, Japan;
| | - Haruyoshi Tomita
- Department of Bacteriology, Graduate School of Medicine, Gunma University, Maebashi-shi 371-8511, Gunma, Japan; (R.K.); (H.T.)
| |
Collapse
|
3
|
Hur J, Jung HK, Park SW. Development of an indirect ELISA system for diagnosis of porcine edema disease using recombinant modified Stx2e antigen. J Appl Microbiol 2024; 135:lxae021. [PMID: 38285612 DOI: 10.1093/jambio/lxae021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2023] [Revised: 01/17/2024] [Accepted: 01/27/2024] [Indexed: 01/31/2024]
Abstract
AIM This study aimed to develop a sensitive and specific recombinant antigen protein indirect enzyme-linked immunosorbent assay (ELISA) kit to detect the Shiga toxin (Stx)-producing Escherichia coli (STEC) antibodies against porcine edema disease (ED). METHODS AND RESULTS The recombinant antigen was co-expressed with the STEC-derived Stx2e A2-fragment and Stx2e B protein in E. coli BL21(DE3) pLysS cells and purified using maltose-binding protein open columns. We used a Shiga-like toxin 2 antibody to test the specificity of the recombinant antigen in an indirect ELISA, which was detected in antigen-coated wells but not in uncoated wells. We tested the indirect ELISA system using samples from the STEC-immunized pig group, the commercial swine farm group, and healthy aborted fetal pleural effusion group; five and twenty samples, respectively, were positive for STEC in the former, whereas all three samples were negative for STEC in the latter. CONCLUSIONS This newly developed indirect ELISA may be a specific method for diagnosing STEC infections in pigs.
Collapse
Affiliation(s)
- Jin Hur
- Department of Veterinary Public Health, College of Veterinary Medicine, Jeonbuk National University, Iksan-si, Jeollabuk-do 54596, Republic of Korea
| | - Ho-Kyoung Jung
- CTCVAC Inc., 106, Saengmyeonggwahakgwan-gil, Hongcheon-eup, Hongcheon-gun, Gangwon-do 25142, Republic of Korea
| | - Seung-Won Park
- Department of Biomedical Science, Daegu Catholic University, Gyeongsan-si, Gyeongsangbuk-do 38430, Republic of Korea
| |
Collapse
|
4
|
Zhang G, Fu Y, Li Y, Li Q, Wang S, Shi H. Oral Immunization with Attenuated Salmonella Choleraesuis Expressing the FedF Antigens Protects Mice against the Shiga-Toxin-Producing Escherichia coli Challenge. Biomolecules 2023; 13:1726. [PMID: 38136597 PMCID: PMC10741478 DOI: 10.3390/biom13121726] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2023] [Revised: 11/18/2023] [Accepted: 11/22/2023] [Indexed: 12/24/2023] Open
Abstract
Edema disease (ED) is a severe and lethal infectious ailment in swine, stemming from Shiga-toxin-producing Escherichia coli (STEC). An efficient, user-friendly, and safe vaccine against ED is urgently required to improve animal welfare and decrease antibiotic consumption. Recombinant attenuated Salmonella vaccines (RASV) administered orally induce both humoral and mucosal immune responses to the immunizing antigen. Their potential for inducing protective immunity against ED is significant through the delivery of STEC antigens. rSC0016 represents an enhanced recombinant attenuated vaccine vector designed for Salmonella enterica serotype Choleraesuis. It combines sopB mutations with a regulated delay system to strike a well-balanced equilibrium between host safety and immunogenicity. We generated recombinant vaccine strains, namely rSC0016 (pS-FedF) and rSC0016 (pS-rStx2eA), and assessed their safety and immunogenicity in vivo. The findings demonstrated that the mouse models immunized with rSC0016 (pS-FedF) and rSC0016 (pS-rStx2eA) generated substantial IgG antibody responses to FedF and rStx2eA, while also provoking robust mucosal and cellular immune responses against both FedF and rStx2eA. The protective impact of rSC0016 (pS-FedF) against Shiga-toxin-producing Escherichia coli surpassed that of rSC0016 (pS-rStx2eA), with percentages of 83.3%. These findings underscore that FedF has greater suitability for vaccine delivery via recombinant attenuated Salmonella vaccines (RASVs). Overall, this study provides a promising candidate vaccine for infection with STEC.
Collapse
Affiliation(s)
- Guihua Zhang
- College of Veterinary Medicine, Yangzhou University, Yangzhou 225009, China; (G.Z.); (Y.F.); (Q.L.)
- Jiangsu Co-Innovation Center for the Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou 225009, China
| | - Yang Fu
- College of Veterinary Medicine, Yangzhou University, Yangzhou 225009, China; (G.Z.); (Y.F.); (Q.L.)
- Jiangsu Co-Innovation Center for the Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou 225009, China
| | - Yu’an Li
- College of Veterinary Medicine, Yangzhou University, Yangzhou 225009, China; (G.Z.); (Y.F.); (Q.L.)
- Jiangsu Co-Innovation Center for the Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou 225009, China
| | - Quan Li
- College of Veterinary Medicine, Yangzhou University, Yangzhou 225009, China; (G.Z.); (Y.F.); (Q.L.)
- Jiangsu Co-Innovation Center for the Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou 225009, China
| | - Shifeng Wang
- Department of Infectious Diseases and Immunology, College of Veterinary Medicine, University of Florida, Gainesville, FL 32611-0880, USA;
| | - Huoying Shi
- College of Veterinary Medicine, Yangzhou University, Yangzhou 225009, China; (G.Z.); (Y.F.); (Q.L.)
- Jiangsu Co-Innovation Center for the Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou 225009, China
- Joint International Research Laboratory of Agriculture and Agri-Product Safety, Yangzhou University (JIRLAAPS), Yangzhou 225009, China
| |
Collapse
|
5
|
Yoshimura M, Honda Y, Yonemitsu E, Takahashi R, Suenaga K, Waki T. Induction of antitoxic antibody and preventive effect against porcine edema disease by the pentameric Stx2eB subunit vaccine. Vet Res 2023; 54:29. [PMID: 36973816 PMCID: PMC10044737 DOI: 10.1186/s13567-023-01161-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2022] [Accepted: 02/16/2023] [Indexed: 03/29/2023] Open
Abstract
Porcine edema disease (ED) is an enterotoxaemia that frequently occurs in 4-12 week-old piglets and results in high mortality. ED is caused by Shiga toxin 2e (Stx2e), produced by host-adapted Shiga toxin-producing Escherichia coli (STEC) strains. We constructed a recombinant protein in which the B subunit of Stx2e (Stx2eB) was linked to Cartilage Oligomeric Matrix Protein (COMP)'s pentameric domain to enhance antigenicity to induce neutralizing antibodies against Stx2e. We evaluated the efficacy of this antigen as a vaccine on the farm where ED had occurred. The suckling piglets were divided into two groups. The pigs in the vaccinated group were intramuscularly immunized with the vaccine containing 30 µg/head of Stx2eB-COMP at 1 and 4 weeks of age. The control pigs were injected with saline instead of the vaccine. The neutralizing antibody titer to Stx2e, mortality, clinical score, and body weight was evaluated up to 11 weeks after the first vaccination. In the vaccinated group, the Stx2e neutralizing antibody was detected 3 weeks after the first vaccination, its titer increased during the following weeks. The antibody was not detected in the control group during the test period. The STEC gene was detected in both groups during the test period, but a typical ED was observed only in control pigs; the mortality and clinical score were significantly lower in the vaccinated group than in the control group. These data indicate that the pentameric B subunit vaccine is effective for preventing ED and offers a promising tool for pig health control.
Collapse
Affiliation(s)
- Masaya Yoshimura
- Meiji Animal Health Co., Ltd., 1-6-1 Okubo, Kita-Ku, Kumamoto-Shi, Kumamoto, 860-0083, Japan.
| | - Youko Honda
- Meiji Animal Health Co., Ltd., 1-6-1 Okubo, Kita-Ku, Kumamoto-Shi, Kumamoto, 860-0083, Japan
| | - Emi Yonemitsu
- Meiji Animal Health Co., Ltd., 1-6-1 Okubo, Kita-Ku, Kumamoto-Shi, Kumamoto, 860-0083, Japan
| | - Ryota Takahashi
- Meiji Animal Health Co., Ltd., 1-6-1 Okubo, Kita-Ku, Kumamoto-Shi, Kumamoto, 860-0083, Japan
| | - Kiyotaka Suenaga
- Meiji Animal Health Co., Ltd., 1-6-1 Okubo, Kita-Ku, Kumamoto-Shi, Kumamoto, 860-0083, Japan
| | - Takashi Waki
- KM Biologics Co., Ltd., 1-6-1 Okubo, Kita-Ku, Kumamoto-Shi, Kumamoto, 860-8568, Japan
| |
Collapse
|
6
|
Yokoyama A, Oiwa S, Matsui T, Sawada K, Tasaka Y, Matsumura T. Energy-efficient production of vaccine protein against porcine edema disease from transgenic lettuce (Lactuca sativa L.). Sci Rep 2022; 12:15951. [PMID: 36153428 PMCID: PMC9509315 DOI: 10.1038/s41598-022-19491-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2022] [Accepted: 08/30/2022] [Indexed: 11/14/2022] Open
Abstract
The development of functional protein production systems using transgenic plants as hosts has been rapidly progressing in recent years. Lettuce (Lactuca sativa L.) has been studied as one such host, and it has been reported that the biomass of lettuce per area and target protein expression level can be increased by optimizing the cultivation conditions. Therefore, we investigated methods to minimize the input light energy per target protein to reduce production costs. Herein, we examined the yield of a nontoxic B subunit of Stx2e (Stx2eB) from transgenic lettuce under various cultivation conditions. Stx2eB acts as a vaccine against swine edema disease. The effects of photon flux densities (PPFDs), photoperiod, and light source on Stx2eB production were examined and the findings suggested that 400 μmol m-2 s-1, 24 h, and white LED lamps, respectively, contributed to energy-efficient Stx2eB production. In addition, Stx2eB was produced 1.4 times more efficiently per unit area time using a high plant density (228.5 plants m-2) than a common density (30.4 plants m-2). The findings of the present study can facilitate the development of energy-efficient and low-cost production processes for vaccine protein production, considering temporal and spatial perspectives.
Collapse
Affiliation(s)
- Asuka Yokoyama
- Innovation Strategy and Carbon Neutral Transformation Department, Idemitsu Kosan Co., Ltd., 1-2-1, Otemachi, Chiyoda-Ku, Tokyo, Japan.
| | - Seika Oiwa
- Advanced Technology Research Laboratories, Idemitsu Kosan Co., Ltd., 1280 Kamiizumi, Sodegaura-Shi, Chiba, 299-0293, Japan
| | - Takeshi Matsui
- Advanced Technology Research Laboratories, Idemitsu Kosan Co., Ltd., 1280 Kamiizumi, Sodegaura-Shi, Chiba, 299-0293, Japan
| | - Kazutoshi Sawada
- Advanced Technology Research Laboratories, Idemitsu Kosan Co., Ltd., 1280 Kamiizumi, Sodegaura-Shi, Chiba, 299-0293, Japan
| | - Yasushi Tasaka
- Bioproduction Research Institute, National Institute of Advanced Industrial Science and Technology, Sapporo, Hokkaido, 062-8517, Japan
| | - Takeshi Matsumura
- Bioproduction Research Institute, National Institute of Advanced Industrial Science and Technology, Sapporo, Hokkaido, 062-8517, Japan
| |
Collapse
|
7
|
Matsui T, Takita E, Oiwa S, Yokoyama A, Kato K, Sawada K. Lettuce-based production of an oral vaccine against porcine edema disease for the seed lot system. PLANT BIOTECHNOLOGY (TOKYO, JAPAN) 2021; 38:239-246. [PMID: 34393602 PMCID: PMC8329267 DOI: 10.5511/plantbiotechnology.21.0414a] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/25/2020] [Accepted: 04/14/2021] [Indexed: 05/16/2023]
Abstract
Plant-made oral vaccines can be a cost-effective method to control infectious diseases of humans and farm animals. Pig edema is a bacterial disease caused by enterohemorrhagic Escherichia coli producing the toxin Shiga toxin 2e (Stx2e). In our previous report, we chose the non-toxic B subunit of Stx2e (Stx2eB) as a vaccine antigen, and Stx2eB was expressed in lettuce (Lactuca sativa L., cv. Green wave). We found that a double repeated Stx2eB (2×Stx2eB) accumulates to higher levels than a single Stx2eB. In this study, we analyzed progeny plants introduced with 2×Stx2eB in which the gene was expressed under the control of conventional cauliflower mosaic virus 35S RNA (CaMV 35S) promoter, and found that the lettuce underwent transgene silencing and bore few seeds. We resolved these problems by using a transgene cassette which harbored a transcriptional promoter derived from the lettuce ubiquitin gene and a longer version of HSPT. The lettuce harboring this expression construct will be valuable in establishing the seed lot system on the basis that thousands of seeds can be obtained from one plant body and the resulting progeny plants accumulate 2×Stx2eB at high levels without the transgene silencing.
Collapse
Affiliation(s)
- Takeshi Matsui
- Advanced Technology Research Laboratories, Idemitsu Kosan Co., Ltd., 1280 Kamiizumi, Sodegaura, Chiba 299-0293, Japan
| | - Eiji Takita
- Advanced Technology Research Laboratories, Idemitsu Kosan Co., Ltd., 1280 Kamiizumi, Sodegaura, Chiba 299-0293, Japan
| | - Seika Oiwa
- Advanced Technology Research Laboratories, Idemitsu Kosan Co., Ltd., 1280 Kamiizumi, Sodegaura, Chiba 299-0293, Japan
| | - Asuka Yokoyama
- Advanced Technology Research Laboratories, Idemitsu Kosan Co., Ltd., 1280 Kamiizumi, Sodegaura, Chiba 299-0293, Japan
| | - Ko Kato
- Graduate School of Science and Technology, Nara Institute of Science and Technology (NAIST), 8916-5 Takayamacho, Ikoma, Nara 630-0192, Japan
| | - Kazutoshi Sawada
- Advanced Technology Research Laboratories, Idemitsu Kosan Co., Ltd., 1280 Kamiizumi, Sodegaura, Chiba 299-0293, Japan
- E-mail: Tel: +81-438-75-6019, Fax: +81-438-75-3733
| |
Collapse
|
8
|
Hamabata T, Sato T, Takita E, Matsui T, Imaoka T, Nakanishi N, Nakayama K, Tsukahara T, Sawada K. Shiga toxin 2eB-transgenic lettuce vaccine is effective in protecting weaned piglets from edema disease caused by Shiga toxin-producing Escherichia coli infection. Anim Sci J 2019; 90:1460-1467. [PMID: 31502390 DOI: 10.1111/asj.13292] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2019] [Revised: 07/23/2019] [Accepted: 07/31/2019] [Indexed: 12/23/2022]
Abstract
Porcine edema disease (ED) is a toxemia that is caused by enteric infection with Shiga toxin 2e (Stx2e)-producing Escherichia coli (STEC) and is associated with high mortality. Since ED occurs most frequently during the weaning period, preweaning vaccination of newborn piglets is required. We developed stx2eB-transgenic lettuce as an oral vaccine candidate against ED and examined its protective efficacy using a piglet STEC infection model. Two serially developed Stx2eB-lettuce strains, 2BN containing ingredient Stx2eB constituting a concentration level of 0.53 mg Stx2eB/g of powdered lettuce dry weight (DW) and 2BH containing ingredient Stx2eB constituting a concentration level of 2.3 mg of Stx2eB/g of powdered lettuce DW, were evaluated in three sequential experiments. Taken the results together, oral administration of Stx2eB-lettuce vaccine was suggested to relieve the pathogenic symptoms of ED in piglets challenged with virulent STEC strain. Our data suggested that Stx2eB-lettuce is a promising first oral vaccine candidate against ED.
Collapse
Affiliation(s)
- Takashi Hamabata
- National Center for Global Health and Medicine, Research Institute, Tokyo, Japan
| | - Toshio Sato
- National Center for Global Health and Medicine, Research Institute, Tokyo, Japan
| | - Eiji Takita
- Advanced Technology Research Laboratories, Idemitsu Kosan Co. Ltd., Chiba, Japan
| | - Takeshi Matsui
- Advanced Technology Research Laboratories, Idemitsu Kosan Co. Ltd., Chiba, Japan
| | | | | | - Keizo Nakayama
- Kyoto Institute of Nutrition and Pathology, Ujitawara, Japan
| | | | - Kazutoshi Sawada
- Advanced Technology Research Laboratories, Idemitsu Kosan Co. Ltd., Chiba, Japan
| |
Collapse
|
9
|
Won G, John Hwa L. Potent immune responses induced by a Salmonella ghost delivery system that expresses the recombinant Stx2eB, FedF, and FedA proteins of the Escherichia coli-producing F18 and Shiga toxin in a murine model and evaluation of its protective effect as a porcine vaccine candidate. Vet Q 2017; 37:81-90. [DOI: 10.1080/01652176.2017.1308040] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Affiliation(s)
- Gayeon Won
- College of Veterinary Medicine, Chonbuk National University, Iksan, Republic of Korea
| | - Lee John Hwa
- College of Veterinary Medicine, Chonbuk National University, Iksan, Republic of Korea
| |
Collapse
|
10
|
Won G, Kim TH, Lee JH. A novel Salmonella strain inactivated by a regulated autolysis system and expressing the B subunit of Shiga toxin 2e efficiently elicits immune responses and confers protection against virulent Stx2e-producing Escherichia coli. BMC Vet Res 2017; 13:40. [PMID: 28143511 PMCID: PMC5286835 DOI: 10.1186/s12917-017-0962-2] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2016] [Accepted: 01/26/2017] [Indexed: 01/08/2023] Open
Abstract
BACKGROUND Salmonella Typhimurium (S. Typhimurium) inactivated by a regulated autolysis system was genetically engineered to express the homo-pentameric B subunit of Shiga toxin 2e (Stx2eB) on its surface. To prepare a strain able to yield autolyzed Salmonella bearing Stx2eB, the plasmid pJHL184 harboring stx 2eB gene was transformed into the attenuated S. Typhimurium strain, JOL1454. Stx2eB subcloned into the antigen delivery cassette of the plasmid was expressed as fusion protein with the outer membrane protein RESULTS: The expression of Stx2eB fused to the signal peptide in JOL1454 was validated by immunoblot analysis. To determine the immunogenicity of JOL1454, female BALB/c mice were intramuscularly injected with 1 × 108 CFU of the inactivated cells at weeks 0 and 2. Significantly elevated levels of IgG and IgA specific to Stx2eB was observed at weeks 4 and 6 post-immunization (PI) (P <0.05). Proportion of CD3+CD4+ T lymphocyte subpopulation was also significantly augmented in in vivo stimulated splenocytes relative to that in the control group. The increased titers of IgG1 and IgG2a, and of immunomodulatory cytokines indicated that the immunization elicited Th1 and Th2 immune responses. Further, immunomodulatory cytokine genes (IL-6, IL-17A, IL21 and JOL1454) efficiently upregulated in naïve porcine peripheral blood mononuclear cells (PBMCs) pulsed with JOL1454. At week 6 PI, following the challenge with a virulent Stx2e-producing Escherichia coli in the mice, all immunized mice survived whereas approximately 30% of the mice in the control group died. CONCLUSIONS JOL1454 provided superior immunogenicity and effective protection against challenge with a sublethal dose, which demonstrates its potential as a candidate vaccine against edema disease.
Collapse
Affiliation(s)
- Gayeon Won
- College of Veterinary Medicine, Chonbuk National University, Iksan campus, Gobong-ro 79, Iksan, 54596, Republic of Korea
| | - Tae Hoon Kim
- College of Veterinary Medicine, Chonbuk National University, Iksan campus, Gobong-ro 79, Iksan, 54596, Republic of Korea
| | - John Hwa Lee
- College of Veterinary Medicine, Chonbuk National University, Iksan campus, Gobong-ro 79, Iksan, 54596, Republic of Korea.
| |
Collapse
|
11
|
Won G, Lee JH. Multifaceted immune responses and protective efficacy elicited by a recombinant autolyzed Salmonella expressing FliC flagellar antigen of F18+ Escherichia coli. Vaccine 2016; 34:6335-6342. [DOI: 10.1016/j.vaccine.2016.10.066] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2016] [Revised: 10/14/2016] [Accepted: 10/19/2016] [Indexed: 12/20/2022]
|
12
|
Rahal EA, Fadlallah SM, Nassar FJ, Kazzi N, Matar GM. Approaches to treatment of emerging Shiga toxin-producing Escherichia coli infections highlighting the O104:H4 serotype. Front Cell Infect Microbiol 2015; 5:24. [PMID: 25853096 PMCID: PMC4364364 DOI: 10.3389/fcimb.2015.00024] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2015] [Accepted: 03/04/2015] [Indexed: 11/13/2022] Open
Abstract
Shiga toxin-producing Escherichia coli (STEC) are a group of diarrheagenic bacteria associated with foodborne outbreaks. Infection with these agents may result in grave sequelae that include fatality. A large number of STEC serotypes has been identified to date. E. coli serotype O104:H4 is an emerging pathogen responsible for a 2011 outbreak in Europe that resulted in over 4000 infections and 50 deaths. STEC pathogenicity is highly reliant on the production of one or more Shiga toxins that can inhibit protein synthesis in host cells resulting in a cytotoxicity that may affect various organ systems. Antimicrobials are usually avoided in the treatment of STEC infections since they are believed to induce bacterial cell lysis and the release of stored toxins. Some antimicrobials have also been reported to enhance toxin synthesis and production from these organisms. Various groups have attempted alternative treatment approaches including the administration of toxin-directed antibodies, toxin-adsorbing polymers, probiotic agents and natural remedies. The utility of antibiotics in treating STEC infections has also been reconsidered in recent years with certain modalities showing promise.
Collapse
Affiliation(s)
- Elias A Rahal
- Department of Experimental Pathology, Immunology and Microbiology, Faculty of Medicine, American University of Beirut Beirut, Lebanon
| | - Sukayna M Fadlallah
- Department of Experimental Pathology, Immunology and Microbiology, Faculty of Medicine, American University of Beirut Beirut, Lebanon
| | - Farah J Nassar
- Department of Experimental Pathology, Immunology and Microbiology, Faculty of Medicine, American University of Beirut Beirut, Lebanon
| | - Natalie Kazzi
- Department of Experimental Pathology, Immunology and Microbiology, Faculty of Medicine, American University of Beirut Beirut, Lebanon
| | - Ghassan M Matar
- Department of Experimental Pathology, Immunology and Microbiology, Faculty of Medicine, American University of Beirut Beirut, Lebanon
| |
Collapse
|