1
|
Öztürk Y, Öztürk M, Dörtbudak MB, Mariotti F, Magi GE, Di Cerbo A. Astaxanthin Mitigates 5-Fluorouracil-Induced Hepatotoxicity and Oxidative Stress in Male Rats. Nutrients 2025; 17:1230. [PMID: 40218988 PMCID: PMC11990585 DOI: 10.3390/nu17071230] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2025] [Revised: 03/27/2025] [Accepted: 03/29/2025] [Indexed: 04/14/2025] Open
Abstract
BACKGROUND Hepatotoxicity, a significant complication of 5-fluorouracil (5-FU) treatment, is generally triggered by oxidative stress, liver damage, and apoptosis processes that take place in cancer patients. METHODS In this study, the protective effect of different astaxanthin (ASX) dosages (16 and 32/mg/kg/bw) was determined in rats with 5-FU-induced liver damage. RESULTS 5-FU induced a significant increase in the histopathological lesions severity and immunohistochemical (TNF-α and 8-OHdG) expression scores in the liver (p < 0.001), significantly increased serum liver parameters (AST, ALP, ALT, GGT, and TP) and malondialdehyde (p < 0.001), and, at the same time, significantly decreased antioxidant parameters (SOD, CAT, GST, GSR, Caspase-3, and GPx) (p < 0.001). Histopathological lesions and oxidative stress parameters significantly decreased in parallel while increasing the ASX dosage (p < 0.001). CONCLUSIONS Based on these data, our results suggest that ASX may be considered a promising and valuable agent to mitigate hepatotoxicity and resistance mechanisms during cancer treatment.
Collapse
Affiliation(s)
- Yasin Öztürk
- Department of Pharmacology and Toxicology, Faculty of Veterinary Medicine, University of Necmettin Erbakan, Ereğli 42310, Konya, Türkiye;
| | - Merve Öztürk
- Department Internal Medicine, Faculty of Veterinary Medicine, University of Necmettin Erbakan, Ereğli 42310, Konya, Türkiye;
| | - Muhammet Bahaeddin Dörtbudak
- Department of Pathology, Faculty of Veterinary Medicine, Harran University, Şanlıurfa 63200, Şanlıurfa, Türkiye;
| | - Francesca Mariotti
- School of Biosciences and Veterinary Medicine, University of Camerino, 62024 Matelica, Italy; (F.M.); (A.D.C.)
| | - Gian Enrico Magi
- School of Biosciences and Veterinary Medicine, University of Camerino, 62024 Matelica, Italy; (F.M.); (A.D.C.)
| | - Alessandro Di Cerbo
- School of Biosciences and Veterinary Medicine, University of Camerino, 62024 Matelica, Italy; (F.M.); (A.D.C.)
| |
Collapse
|
2
|
Pożarska A, Karpiesiuk K, Kozera W, Czarnik U, Dąbrowski M, Zielonka Ł. AFB1 Toxicity in Human Food and Animal Feed Consumption: A Review of Experimental Treatments and Preventive Measures. Int J Mol Sci 2024; 25:5305. [PMID: 38791343 PMCID: PMC11121597 DOI: 10.3390/ijms25105305] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2024] [Revised: 05/09/2024] [Accepted: 05/10/2024] [Indexed: 05/26/2024] Open
Abstract
AIMS The current review aims to outline and summarize the latest research on aflatoxin, with research studies describing natural, herbal and chemical compound applications in animal (pig) models and in vitro cellular studies. Aflatoxin, a carcinogenic toxin metabolite, is produced by Aspergillus flavus in humid environments, posing a threat to human health and crop production. The current treatment involves the prevention of exposure to aflatoxin and counteracting its harmful toxic effects, enabling survival and research studies on an antidote for aflatoxin. OBJECTIVES To summarize current research prospects and to outline the influence of aflatoxin on animal forage in farm production, food and crop processing. The research application of remedies to treat aflatoxin is undergoing development to pinpoint biochemical pathways responsible for aflatoxin effects transmission and actions of treatment. SIGNIFICANCE To underline the environmental stress of aflatoxin on meat and dairy products; to describe clinical syndromes associated with aflatoxicosis on human health that are counteracted with proposed treatment and preventive interventions. To understand how to improve the health of farm animals with feed conditions.
Collapse
Affiliation(s)
- Agnieszka Pożarska
- Department of Pig Breeding, Faculty of Animal Bioengineering, University of Warmia and Mazury in Olsztyn, Oczapowskiego 5, 10-719 Olsztyn, Poland
| | - Krzysztof Karpiesiuk
- Department of Pig Breeding, Faculty of Animal Bioengineering, University of Warmia and Mazury in Olsztyn, Oczapowskiego 5, 10-719 Olsztyn, Poland
| | - Wojciech Kozera
- Department of Pig Breeding, Faculty of Animal Bioengineering, University of Warmia and Mazury in Olsztyn, Oczapowskiego 5, 10-719 Olsztyn, Poland
| | - Urszula Czarnik
- Department of Pig Breeding, Faculty of Animal Bioengineering, University of Warmia and Mazury in Olsztyn, Oczapowskiego 5, 10-719 Olsztyn, Poland
| | - Michał Dąbrowski
- Department of Veterinary Prevention and Feed Hygiene, Faculty of Veterinary Medicine, University of Warmia and Mazury in Olsztyn, Oczapowskiego 13, 10-718 Olsztyn, Poland
| | - Łukasz Zielonka
- Department of Veterinary Prevention and Feed Hygiene, Faculty of Veterinary Medicine, University of Warmia and Mazury in Olsztyn, Oczapowskiego 13, 10-718 Olsztyn, Poland
| |
Collapse
|
3
|
Szczepanik K, Oczkowicz M, Dobrowolski P, Świątkiewicz M. The Protective Effects of Astaxanthin (AST) in the Liver of Weaned Piglets. Animals (Basel) 2023; 13:3268. [PMID: 37893992 PMCID: PMC10603637 DOI: 10.3390/ani13203268] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2023] [Revised: 10/17/2023] [Accepted: 10/18/2023] [Indexed: 10/29/2023] Open
Abstract
During the weaning period, piglets are exposed to high levels of stress, which often causes problems with the digestive system. This stress also promotes the production of free radicals, resulting in oxidative stress. Astaxanthin (AST) stands out as one of the most potent antioxidants. Its resistance to light and heat makes it particularly valuable in compound feed production. This study was to determine the effect of AST impact on liver histology and gene expression in piglets. For our experiment, we used 16 weaned piglets of the PL breed, which we divided into two groups: Group I (control group with no AST supplementation) and Group II (supplemented with AST at 0.025 g/kg). Both feed mixtures were iso-proteins and iso-energetic, meeting the nutritional requirements of the piglets. The experiment lasted from day 35 to day 70 of the piglets' age, during which they had ad libitum access. The results indicate that the addition of AST prevents liver fibrosis due to reduced collagen deposition in the tissue. Analysis of gene expression supported these results. In the AST-supplemented group, we noted a decrease in NR1H3 expression, an increase in CYP7A1 expression, and reductions in the expression of NOTCH1 and CREB genes.
Collapse
Affiliation(s)
- Kinga Szczepanik
- Department of Animal Nutrition and Feed Science, National Research Institute of Animal Production, Krakowska St. 1, 32-083 Balice, Poland; (K.S.); (M.Ś.)
| | - Maria Oczkowicz
- Department of Animal Molecular Biology, National Research Institute of Animal Production, Krakowska St. 1, 32-083 Balice, Poland
| | - Piotr Dobrowolski
- Department of Functional Anatomy and Cytobiology, Maria Curie-Skłodowska University, Akademicka St. 19, 20-033 Lublin, Poland;
| | - Małgorzata Świątkiewicz
- Department of Animal Nutrition and Feed Science, National Research Institute of Animal Production, Krakowska St. 1, 32-083 Balice, Poland; (K.S.); (M.Ś.)
| |
Collapse
|
4
|
Nishida Y, Berg PC, Shakersain B, Hecht K, Takikawa A, Tao R, Kakuta Y, Uragami C, Hashimoto H, Misawa N, Maoka T. Astaxanthin: Past, Present, and Future. Mar Drugs 2023; 21:514. [PMID: 37888449 PMCID: PMC10608541 DOI: 10.3390/md21100514] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2023] [Revised: 09/18/2023] [Accepted: 09/22/2023] [Indexed: 10/28/2023] Open
Abstract
Astaxanthin (AX), a lipid-soluble pigment belonging to the xanthophyll carotenoids family, has recently garnered significant attention due to its unique physical properties, biochemical attributes, and physiological effects. Originally recognized primarily for its role in imparting the characteristic red-pink color to various organisms, AX is currently experiencing a surge in interest and research. The growing body of literature in this field predominantly focuses on AXs distinctive bioactivities and properties. However, the potential of algae-derived AX as a solution to various global environmental and societal challenges that threaten life on our planet has not received extensive attention. Furthermore, the historical context and the role of AX in nature, as well as its significance in diverse cultures and traditional health practices, have not been comprehensively explored in previous works. This review article embarks on a comprehensive journey through the history leading up to the present, offering insights into the discovery of AX, its chemical and physical attributes, distribution in organisms, and biosynthesis. Additionally, it delves into the intricate realm of health benefits, biofunctional characteristics, and the current market status of AX. By encompassing these multifaceted aspects, this review aims to provide readers with a more profound understanding and a robust foundation for future scientific endeavors directed at addressing societal needs for sustainable nutritional and medicinal solutions. An updated summary of AXs health benefits, its present market status, and potential future applications are also included for a well-rounded perspective.
Collapse
Affiliation(s)
- Yasuhiro Nishida
- Fuji Chemical Industries, Co., Ltd., 55 Yokohoonji, Kamiich-machi, Nakaniikawa-gun, Toyama 930-0405, Japan
| | | | - Behnaz Shakersain
- AstaReal AB, Signum, Forumvägen 14, Level 16, 131 53 Nacka, Sweden; (P.C.B.); (B.S.)
| | - Karen Hecht
- AstaReal, Inc., 3 Terri Lane, Unit 12, Burlington, NJ 08016, USA;
| | - Akiko Takikawa
- First Department of Internal Medicine, Faculty of Medicine, University of Toyama, 2630 Sugitani, Toyama 930-0194, Japan;
| | - Ruohan Tao
- Graduate School of Science and Technology, Kwansei Gakuin University, 1 Gakuen-Uegahara, Sanda 669-1330, Japan; (R.T.); (Y.K.); (C.U.); (H.H.)
| | - Yumeka Kakuta
- Graduate School of Science and Technology, Kwansei Gakuin University, 1 Gakuen-Uegahara, Sanda 669-1330, Japan; (R.T.); (Y.K.); (C.U.); (H.H.)
| | - Chiasa Uragami
- Graduate School of Science and Technology, Kwansei Gakuin University, 1 Gakuen-Uegahara, Sanda 669-1330, Japan; (R.T.); (Y.K.); (C.U.); (H.H.)
| | - Hideki Hashimoto
- Graduate School of Science and Technology, Kwansei Gakuin University, 1 Gakuen-Uegahara, Sanda 669-1330, Japan; (R.T.); (Y.K.); (C.U.); (H.H.)
| | - Norihiko Misawa
- Research Institute for Bioresources and Biotechnology, Ishikawa Prefectural University, Suematsu, Nonoichi-shi 921-8836, Japan;
| | - Takashi Maoka
- Research Institute for Production Development, 15 Shimogamo-morimoto-cho, Sakyo-ku, Kyoto 606-0805, Japan
| |
Collapse
|
5
|
Shang J, Liu H, Zheng Y, Zhang Z. Role of oxidative stress in the relationship between periodontitis and systemic diseases. Front Physiol 2023; 14:1210449. [PMID: 37501927 PMCID: PMC10369007 DOI: 10.3389/fphys.2023.1210449] [Citation(s) in RCA: 29] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2023] [Accepted: 07/05/2023] [Indexed: 07/29/2023] Open
Abstract
Periodontitis is a common inflammatory disease. It is characterized by destruction of the supporting structures of the teeth and could lead to tooth loss and systemic inflammation. Bacteria in inflamed gingival tissue and virulence factors are capable of entering the bloodstream to induce systemic inflammatory response, thus influencing the pathological process of many diseases, such as cardiovascular diseases, diabetes, chronic kidney disease, as well as liver injury. An increasing body of evidence show the complex interplay between oxidative stress and inflammation in disease pathogenesis. When periodontitis occurs, increased reactive oxygen species accumulation leads to oxidative stress. Oxidative stress contributes to major cellular components damage, including DNA, proteins, and lipids. In this article, the focus will be on oxidative stress in periodontal disease, the relationship between periodontitis and systemic inflammation, and the impact of periodontal therapy on oxidative stress parameters.
Collapse
Affiliation(s)
- Jiaxin Shang
- Tianjin Stomatological Hospital, School of Medicine, Nankai University, Tianjin, China
- Tianjin Key Laboratory of Oral and Maxillofacial Function Reconstruction, Tianjin, China
| | - Haifeng Liu
- Tianjin Stomatological Hospital, School of Medicine, Nankai University, Tianjin, China
- Tianjin Key Laboratory of Oral and Maxillofacial Function Reconstruction, Tianjin, China
| | - Youli Zheng
- The School and Hospital of Stomatology, Tianjin Medical University, Tianjin, China
| | - Zheng Zhang
- Tianjin Stomatological Hospital, School of Medicine, Nankai University, Tianjin, China
- Tianjin Key Laboratory of Oral and Maxillofacial Function Reconstruction, Tianjin, China
| |
Collapse
|
6
|
Tian Y, Che H, Yang J, Jin Y, Yu H, Wang C, Fu Y, Li N, Zhang J. Astaxanthin Alleviates Aflatoxin B1-Induced Oxidative Stress and Apoptosis in IPEC-J2 Cells via the Nrf2 Signaling Pathway. Toxins (Basel) 2023; 15:toxins15030232. [PMID: 36977123 PMCID: PMC10057844 DOI: 10.3390/toxins15030232] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2023] [Revised: 03/14/2023] [Accepted: 03/20/2023] [Indexed: 03/30/2023] Open
Abstract
Aflatoxin B1 (AFB1), a typical fungal toxin found in feed, is highly carcinogenic. Oxidative stress is one of the main ways it exerts its toxicity; therefore, finding a suitable antioxidant is the key to reducing its toxicity. Astaxanthin (AST) is a carotenoid with strong antioxidant properties. The aim of the present research was to determine whether AST eases the AFB1-induced impairment in IPEC-J2 cells, and its specific mechanism of action. AFB1 and AST were applied to IPEC-J2 cells in different concentrations for 24 h. The AST (80 µM) significantly prevented the reduction in the IPEC-J2 cell viability that was induced by AFB1 (10 μM). The results showed that treatment with AST attenuated the AFB1-induced ROS, and cytochrome C, the Bax/Bcl2 ratio, Caspase-9, and Caspase-3, which were all activated by AFB1, were among the pro-apoptotic proteins which were diminished by AST. AST activates the Nrf2 signaling pathway and ameliorates antioxidant ability. This was further evidenced by the expression of the HO-1, NQO1, SOD2, and HSP70 genes were all upregulated. Taken together, the findings show that the impairment of oxidative stress and apoptosis, caused by the AFB1 in the IPEC-J2 cells, can be attenuated by AST triggering the Nrf2 signaling pathway.
Collapse
Affiliation(s)
- Yue Tian
- Jilin Provincial Key Laboratory of Livestock and Poultry Feed and Feeding in the Northeastern Frigid Area, College of Animal Sciences, Jilin University, Changchun 130062, China
| | - Haoyu Che
- Jilin Provincial Key Laboratory of Livestock and Poultry Feed and Feeding in the Northeastern Frigid Area, College of Animal Sciences, Jilin University, Changchun 130062, China
| | - Jinsheng Yang
- Jilin Provincial Key Laboratory of Livestock and Poultry Feed and Feeding in the Northeastern Frigid Area, College of Animal Sciences, Jilin University, Changchun 130062, China
| | - Yongcheng Jin
- Jilin Provincial Key Laboratory of Livestock and Poultry Feed and Feeding in the Northeastern Frigid Area, College of Animal Sciences, Jilin University, Changchun 130062, China
| | - Hao Yu
- Jilin Provincial Key Laboratory of Livestock and Poultry Feed and Feeding in the Northeastern Frigid Area, College of Animal Sciences, Jilin University, Changchun 130062, China
| | - Chuanqi Wang
- Jilin Provincial Key Laboratory of Livestock and Poultry Feed and Feeding in the Northeastern Frigid Area, College of Animal Sciences, Jilin University, Changchun 130062, China
| | - Yurong Fu
- Jilin Provincial Key Laboratory of Livestock and Poultry Feed and Feeding in the Northeastern Frigid Area, College of Animal Sciences, Jilin University, Changchun 130062, China
| | - Na Li
- Jilin Academy of Agricultural Sciences, Changchun 130033, China
| | - Jing Zhang
- Jilin Provincial Key Laboratory of Livestock and Poultry Feed and Feeding in the Northeastern Frigid Area, College of Animal Sciences, Jilin University, Changchun 130062, China
| |
Collapse
|
7
|
Wu B, Liu Y, Zhen J, Mou P, Li J, Xu Z, Song B. Protective effect of methionine on the intestinal oxidative stress and microbiota change induced by nickel. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2022; 244:114037. [PMID: 36049335 DOI: 10.1016/j.ecoenv.2022.114037] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/17/2022] [Revised: 08/23/2022] [Accepted: 08/26/2022] [Indexed: 06/15/2023]
Abstract
Nickel is a common heavy metal pollutant in industrial areas and can cause oxidative damage to human and animal organs. As an essential amino acid with antioxidant function, methionine (Met) may protect the body from the oxidative stress induce by nickel, however, there is not enough research to study in this aspect. The study aims at investigating the effect of Met on the nickel-induced intestinal oxidative stress and further detected the gut microbiota changes. Mice were gavaged with quantitative NiCl2 (1.6 mg/ml, 0.25 ml) and fed with different doses of methionine in each group. The contents of intestinal oxidation product and antioxidant enzymes were determined by different biochemical quantitative methods, and the data showed that NiCl2 increased the content of intestinal oxidation product (MDA), and the antioxidant enzymes (GSH-Px, GR, SOD and CAT) were decreased. But this situation was alleviated in the group fed with additional methionine solution (0.5 mg/ml). In addition, we detected changes in the gut microbiota using high-throughput sequencing, the results showed that the structure of intestinal flora was disturbed by NiCl2, but methionine restored the germs with antioxidant capacity. Based on the results, we speculate that methionine can alleviate the impact of NiCl2 on the intestinal by enhancing the activity of antioxidant enzymes and the number of gut bacteria with anti-oxidation, suggesting that methionine as a nutritional additive may have the potential to treat nickel poisoning.
Collapse
Affiliation(s)
- Bangyuan Wu
- Key Laboratory of Southwest China Wildlife Resources Conservation, Ministry of Education, 637009 Nanchong, PR China; College of Life Sciences, China West Normal University, Nanchong 637000, PR China.
| | - Yiwei Liu
- College of Life Sciences, China West Normal University, Nanchong 637000, PR China.
| | - Jie Zhen
- Kunming University of Science and Technology School of Medicine, Kunming 650500, PR China.
| | - Pan Mou
- College of Life Sciences, China West Normal University, Nanchong 637000, PR China.
| | - Jia Li
- College of Life Sciences, China West Normal University, Nanchong 637000, PR China.
| | - Zhengyang Xu
- College of Life Sciences, China West Normal University, Nanchong 637000, PR China.
| | - Baolin Song
- Department of Infectious Diseases and Public Health, Jockey Club College of Veterinary Medicine and Life Sciences, City University of Hong Kong, PR China.
| |
Collapse
|
8
|
Alugoju P, Krishna Swamy VKD, Anthikapalli NVA, Tencomnao T. Health benefits of astaxanthin against age-related diseases of multiple organs: A comprehensive review. Crit Rev Food Sci Nutr 2022; 63:10709-10774. [PMID: 35708049 DOI: 10.1080/10408398.2022.2084600] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Age-related diseases are associated with increased morbidity in the past few decades and the cost associated with the treatment of these age-related diseases exerts a substantial impact on social and health care expenditure. Anti-aging strategies aim to mitigate, delay and reverse aging-associated diseases, thereby improving quality of life and reducing the burden of age-related pathologies. The natural dietary antioxidant supplementation offers substantial pharmacological and therapeutic effects against various disease conditions. Astaxanthin is one such natural carotenoid with superior antioxidant activity than other carotenoids, as well as well as vitamins C and E, and additionally, it is known to exhibit a plethora of pharmacological effects. The present review summarizes the protective molecular mechanisms of actions of astaxanthin on age-related diseases of multiple organs such as Neurodegenerative diseases [Alzheimer's disease (AD), Parkinson's disease (PD), Stroke, Multiple Sclerosis (MS), Amyotrophic lateral sclerosis (ALS), and Status Epilepticus (SE)], Bone Related Diseases [Osteoarthritis (OA) and Osteoporosis], Cancers [Colon cancer, Prostate cancer, Breast cancer, and Lung Cancer], Cardiovascular disorders [Hypertension, Atherosclerosis and Myocardial infarction (MI)], Diabetes associated complications [Diabetic nephropathy (DN), Diabetic neuropathy, and Diabetic retinopathy (DR)], Eye disorders [Age related macular degeneration (AMD), Dry eye disease (DED), Cataract and Uveitis], Gastric Disorders [Gastritis, Colitis, and Functional dyspepsia], Kidney Disorders [Nephrolithiasis, Renal fibrosis, Renal Ischemia reperfusion (RIR), Acute kidney injury (AKI), and hyperuricemia], Liver Diseases [Nonalcoholic fatty liver disease (NAFLD), Alcoholic Liver Disease (AFLD), Liver fibrosis, and Hepatic Ischemia-Reperfusion (IR) Injury], Pulmonary Disorders [Pulmonary Fibrosis, Acute Lung injury (ALI), and Chronic obstructive pulmonary disease (COPD)], Muscle disorders (skeletal muscle atrophy), Skin diseases [Atopic dermatitis (ATD), Skin Photoaging, and Wound healing]. We have also briefly discussed astaxanthin's protective effects on reproductive health.
Collapse
Affiliation(s)
- Phaniendra Alugoju
- Natural Products for Neuroprotection and Anti-Ageing Research Unit, Chulalongkorn University, Bangkok, Thailand
- Department of Clinical Chemistry, Faculty of Allied Health Sciences, Chulalongkorn University, Bangkok, Thailand
| | - V K D Krishna Swamy
- Department of Biochemistry and Molecular Biology, Pondicherry University (A Central University), Puducherry, India
| | | | - Tewin Tencomnao
- Natural Products for Neuroprotection and Anti-Ageing Research Unit, Chulalongkorn University, Bangkok, Thailand
- Department of Clinical Chemistry, Faculty of Allied Health Sciences, Chulalongkorn University, Bangkok, Thailand
| |
Collapse
|
9
|
Yan J, Chen L, Zhang L, Zhang Z, Zhao Y, Wang Y, Ou J. New Insights Into the Persistent Effects of Acute Exposure to AFB1 on Rat Liver. Front Microbiol 2022; 13:911757. [PMID: 35783385 PMCID: PMC9244543 DOI: 10.3389/fmicb.2022.911757] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2022] [Accepted: 05/17/2022] [Indexed: 11/18/2022] Open
Abstract
Aflatoxin B1 (AFB1) has mutagenesis, carcinogenesis and teratogenesis effects and mainly found in food crops and their processed foods. AFB1 exposure can cause acute or chronic liver poisoning, but there were few studies on the persistent effects of acute AFB1 exposure on the liver. In this study, rat liver injury models were established 2 and 7 days after single exposure to high and low doses of AFB1. The persistent effects of AFB1 single acute exposure (ASAE) on rat liver were analyzed from the phenotypic and genetic levels. The results showed that compared with the control group, liver function indexes, MDA content in liver and the number of apoptotic hepatocytes in model groups increased to the highest on the 2nd day after ASAE (p < 0.001). However, the changes of liver coefficient were most significant on the 7th day after ASAE (p < 0.01). The results of liver pathology showed that the liver injury was not alleviated and the activities of antioxidant enzymes GSH-Px and SOD were the lowest on the 7th day (p < 0.001). RNA-Seq results indicated that there were 236, 33, 679, and 78 significantly differentially expressed genes (DEGs) in the model groups (LA-2d, LA-7d, HA-2d, HA-7d) compared with the control group. Among them, the Gtse1 gene related to the proliferation, differentiation and metastasis of liver cancer cells, the Lama5 and Fabp4 gene related to the inflammatory response were significantly DEGs in the four model groups, and the differential expression of the immune system-related Bcl6 gene increased with the prolonged observation time after ASAE. In conclusion, ASAE can cause persistent liver damage in rats. The persistently affected genes Lama5, Gtse1, Fabp4, and Bcl6 possess the potential to be therapeutic targets for liver disease induced by AFB1.
Collapse
Affiliation(s)
- Jiahui Yan
- College of Food Sciences and Technology, Shanghai Ocean University, Shanghai, China
| | - Lin Chen
- College of Food Sciences and Technology, Shanghai Ocean University, Shanghai, China
| | - Li Zhang
- Engineering Research Center of Modern Preparation Technology of TCM, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Zhaohuan Zhang
- College of Food Sciences and Technology, Shanghai Ocean University, Shanghai, China
| | - Yong Zhao
- College of Food Sciences and Technology, Shanghai Ocean University, Shanghai, China
- Shanghai Engineering Research Center of Aquatic Product Processing & Preservation, Shanghai, China
- Laboratory of Quality and Safety Risk Assessment for Aquatic Product on Storage and Preservation, Ministry of Agriculture and Rural Affairs, Shanghai, China
| | - Yuan Wang
- Engineering Research Center of Modern Preparation Technology of TCM, Shanghai University of Traditional Chinese Medicine, Shanghai, China
- *Correspondence: Yuan Wang,
| | - Jie Ou
- College of Food Sciences and Technology, Shanghai Ocean University, Shanghai, China
- Shanghai Engineering Research Center of Aquatic Product Processing & Preservation, Shanghai, China
- Laboratory of Quality and Safety Risk Assessment for Aquatic Product on Storage and Preservation, Ministry of Agriculture and Rural Affairs, Shanghai, China
- Jie Ou,
| |
Collapse
|
10
|
Abd-Elkareem M, Soliman M, Abd El-Rahman MAM, Abou Khalil NS. Effect of Nigella sativa L. Seed on the Kidney of Monosodium Glutamate Challenged Rats. Front Pharmacol 2022; 13:789988. [PMID: 35814230 PMCID: PMC9257379 DOI: 10.3389/fphar.2022.789988] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2021] [Accepted: 05/25/2022] [Indexed: 11/13/2022] Open
Abstract
Monosodium glutamate (MSG) consumption is responsible for a wide spectrum of health hazards including nephrotoxicity. The search for phytochemical strategies having broad safety profile to counter MSG toxicity is worthwhile. Nigella sativa L. seed (NSS) is very promising in this regard owing to its antioxidant and cytoprotective nature. Therefore, we attempted to investigate the potential protective effect of NSS on MSG-induced renal toxicity in rats. To accomplish this objective, fifteen adult Wistar albino rats were randomly and equally divided into three groups for 21 days: the control group received no treatment, MSG group supplemented with MSG at a dose of 30 g/kg feed, and MSG + NSS group supplemented with MSG at the same previous dose in conjugation with NSS at a dose of 30 g/kg feed. MSG and its combination with NSS failed to cause any significant difference in the kidney function parameters in comparison with the control. A significant elevation in lipid peroxides (LPO) level, glutathione-S-transferase activity and total antioxidant capacity (TAC) and a significant reduction in superoxide dismutase activity were found in MSG group. LPO level and TAC in MSG intoxicated rats significantly normalized by NSS ingestion. NO level showed absence of significant difference among all experimental groups. MSG elicited histopathological lesions such as decreased glycoprotein content and fibrosis however, NSS succeeded in enhancing all these features. MSG group showed positive glutathione reductase and superoxide dismutase 2 immuno-expression whereas, MSG + NSS group showed weak immunostaining. A significant increase in the number of apoptotic cells was observed in MSG group compared to the control. On the other hand, MSG + NSS group exhibited a significant decrease in the number of apoptotic cells. NSS mitigated MSG-induced renal impairments by ameliorating oxidative stress and exerting anti-apoptotic effect.
Collapse
Affiliation(s)
- Mahmoud Abd-Elkareem
- Department of Cell and Histology, Faculty of Veterinary Medicine, Assiut University, Assiut, Egypt
- *Correspondence: Mahmoud Abd-Elkareem, ,
| | - Mahmoud Soliman
- Department of Pathology and Clinical Pathology, Faculty of Veterinary Medicine, Assiut University, Assiut, Egypt
| | | | - Nasser S. Abou Khalil
- Department of Medical Physiology, Faculty of Medicine, Assiut University, Assiut, Egypt
| |
Collapse
|
11
|
Effect of cultured white soft cheese on the histopathological changes in the kidneys and liver of albino rats. Sci Rep 2022; 12:2564. [PMID: 35169197 PMCID: PMC8847355 DOI: 10.1038/s41598-022-06522-y] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2021] [Accepted: 02/01/2022] [Indexed: 11/29/2022] Open
Abstract
Three different types of lactic acid bacteria (Lactobacillus helveticus, Lactobacillus rhamnosus and Streptococcus thermophilus S3855) were used to manufacture white soft cheese. The resultant white soft cheeses were pickled for 28 days at refrigerator temperatures and were fed to the experimental rats. The chemical and microbiological analyses of white soft cheese were conducted at different storage periods (fresh, 7 days, 14 days, 21 days, and 28 days). The pH values and protein content of white soft cheese gradually decreased during the storage peroid. Conversely, the moisture content, titratable acidity, and fat/DM % of white soft cheese were found to increase with of the increase in pickling periods of up to 28 days. Microbiologically, the total viable count of bacteria in the control samples was lower than that in the other treatments. Furthermore, the treatments containing the L. helveticus and L. rhamnosus strains had the highest lactoacilli counts whereas the treatment containing the S. thermophilus strain had the highest streptococci counts. Twenty-five male Albino rats were used for experiemntal technique. Rats were fed with 70% basal diet with addition of 30% white soft cheese. Several pathological findings were present in all experimental groups apart from the control rats, and the kidney samples exhibited renal vascular congestion especially in the cortical area. The changes of the glomeruli comprise atrophy, distortion, hypocellularity of the glomerular tuft, and focal lymphoid cell reactions. The renal tubular epithelium showed a series of degenerative changes ranging up to necrosis. The liver samples showed variable hepatic injury in the form of thickening in the Glisson capsule, as well as dissociation and disorganization of hepatic cords. Hepatocellular vacuolar degeneration, presence of focal areas of nodular hyperplasia, the hyperplastic cells mixed with lymphocytic infiltration, congestion in the portal vein, periportal fibrosis and edema with the presence of newly formed nonfunctional bile ductulus. Based on the histopathology scores, the severity of renal and hepatic changes was significantly increased (P ≤ 0.05) in all of the experimental groups compared with the control group. Generally, the chemical composition, microbiological analysis and vital organs were significantly affected by using cultured white soft cheese.
Collapse
|
12
|
Abd-Elkareem M, Soliman M, Abd El-Rahman MA, Abou Khalil NS. The protective effect of Nigella sativa seeds against monosodium glutamate-induced hepatic dysfunction in rats. Toxicol Rep 2022; 9:147-153. [PMID: 35145878 PMCID: PMC8818490 DOI: 10.1016/j.toxrep.2022.01.014] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2021] [Revised: 01/17/2022] [Accepted: 01/26/2022] [Indexed: 11/12/2022] Open
Abstract
MSG-challenged rats were characterized by hepatic dysfunction and redox imbalance along with increased programmed cell death. The negative consequences of MSG consumption have been partially overcome by the nutritional inclusion of NSS. NSS restores the redox potential and ameliorates the histopathological deteriorations and apoptosis in the liver. These outcomes are of major importance in paving the road towards the incorporation of NSS as a candidate strategy against MSG-related abnormalities.
Monosodium glutamate (MSG) is one of the most commonly used feed additives which poses a threat to public health. Nigella sativa is a promising natural approach in this issue due to its antioxidant, hypolipidemic, and cytoprotective characters. Here, we investigated the potential protective effect of Nigella sativa seed (NSS) against MSG-induced hepatotoxicity in rats. To accomplish this objective, fifteen adult Wistar albino rats were randomly and equally divided into three groups for 21 days: the control group received no treatment, MSG group supplemented with MSG at a dose of 30 g/kg feed, and MSG + NSS group supplemented with MSG at the same previous dose together with NSS at a dose of 30 g/kg feed. NSS succeeded in boosting serum alkaline phosphatase activity and total cholesterol, triglycerides, and glucose levels. It reduced lipid peroxides in the serum and down-regulated glutathione reductase and superoxide dismutase 2 immuno-expression in the hepatic cells. NSS intervention provided cytoprotection by improving the histo-architecture of the liver and reducing the number of apoptotic cells. NSS was effective in protecting against the hepatotoxicity of MSG through its antioxidant and anti-apoptotic effects. These findings are of utmost significance in directing the attention towards the incorporation of NSS in our food industry as well as a health remedy in traditional medicine to fight MSG-related hepatic abnormalities.
Collapse
|
13
|
Cao W, Yu P, Yang K, Cao D. Aflatoxin B1: metabolism, toxicology, and its involvement in oxidative stress and cancer development. Toxicol Mech Methods 2021; 32:395-419. [PMID: 34930097 DOI: 10.1080/15376516.2021.2021339] [Citation(s) in RCA: 98] [Impact Index Per Article: 24.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Aflatoxins are a class of carcinogenic mycotoxins produced by Aspergillus fungi, which are widely distributed in nature. Aflatoxin B1 (AFB1) is the most toxic of these compounds and its metabolites have a variety of biological activities, including acute toxicity, teratogenicity, mutagenicity and carcinogenicity, which has been well-characterized to lead to the development of hepatocellular carcinoma (HCC) in humans and animals. This review focuses on the metabolism of AFB1, including epoxidation and DNA adduction, as it concerns the initiation of cancer and the underlying mechanisms. In addition to DNA adduction, inflammation and oxidative stress caused by AFB1 can also participate in the occurrence of cancer. Therefore, the main carcinogenic mechanism of AFB1 related ROS is summarized. This review also describes recent reports of AFB1 exposures in occupational settings. It is hoped that people will pay more attention to occupational health, in order to reduce the incidence of cancer caused by occupational exposure.
Collapse
Affiliation(s)
- Weiya Cao
- Medical school, Anhui University of Science & Technology, Huainan 232001, China
| | - Pan Yu
- Medical school, Anhui University of Science & Technology, Huainan 232001, China
| | - KePeng Yang
- Medical school, Anhui University of Science & Technology, Huainan 232001, China
| | - Dongli Cao
- Medical school, Anhui University of Science & Technology, Huainan 232001, China
| |
Collapse
|
14
|
Sharma V, Patial V. Food Mycotoxins: Dietary Interventions Implicated in the Prevention of Mycotoxicosis. ACS FOOD SCIENCE & TECHNOLOGY 2021; 1:1717-1739. [DOI: 10.1021/acsfoodscitech.1c00220] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/10/2024]
Affiliation(s)
- Vinesh Sharma
- Pharmacology and Toxicology Laboratory, Dietetics & Nutrition Technology Division, CSIR-Institute of Himalayan Bioresource Technology, Palampur-176061 (H.P.), India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad-201002 (U.P.), India
| | - Vikram Patial
- Pharmacology and Toxicology Laboratory, Dietetics & Nutrition Technology Division, CSIR-Institute of Himalayan Bioresource Technology, Palampur-176061 (H.P.), India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad-201002 (U.P.), India
| |
Collapse
|
15
|
Wang M, Ma H, Guan S, Luo T, Zhao C, Cai G, Zheng Y, Jia X, Di J, Li R, Cui H. Astaxanthin from Haematococcus pluvialis alleviates obesity by modulating lipid metabolism and gut microbiota in mice fed a high-fat diet. Food Funct 2021; 12:9719-9738. [PMID: 34664590 DOI: 10.1039/d1fo01495a] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Obesity is a global chronic disease epidemic that is attributed to the abnormal accumulation of lipids in adipose tissue. Astaxanthin (AST) from Haematococcus pluvialis, a natural carotenoid, exhibits antioxidant, anti-lipogenic, anti-diabetic and other potent effects. Herein, we evaluated the effect of AST to illuminate its efficacy and mechanisms in high-fat diet-fed mice. AST supplementation not only significantly decreased body weight and lipid droplet accumulation in the liver but also modulated liver function and serum lipid levels. Lipidomic analysis revealed that 13 lipids might be potential biomarkers responsible for the effects of AST in lipid reduction, such as total free fatty acids (FFAs), triacylglycerols (TGs) and cholesterol esters (CEs). The gut microbiota sequencing results indicated that AST alleviated HFD-induced gut microbiota dysbiosis by optimizing the ratio of Firmicutes to Bacteroides and inhibiting the abundance of obesity-related pathogenic microbiota while promoting the abundance of probiotics related to glucose and lipid metabolism. In addition, qRT-PCR demonstrated that AST could regulate the gene expressions of the AMPK/SREBP1c pathway by downregulating lipogenesis correlated-genes and upregulating the lipid oxidant related-gene. The present study revealed the new function of AST in regulating lipid metabolism, which provided a theoretical basis for the development of high-quality AST functional food and the application of diet active substances in obesity, as demonstrated in mice.
Collapse
Affiliation(s)
- Meng Wang
- College of Agriculture, Institute of Molecular Agriculture and Bioenergy, Shanxi Agricultural University, Taigu 030801, Shanxi, China.
| | - Haotian Ma
- College of Agriculture, Institute of Molecular Agriculture and Bioenergy, Shanxi Agricultural University, Taigu 030801, Shanxi, China.
| | - Siyu Guan
- College of Agriculture, Institute of Molecular Agriculture and Bioenergy, Shanxi Agricultural University, Taigu 030801, Shanxi, China.
| | - Tao Luo
- College of Agriculture, Institute of Molecular Agriculture and Bioenergy, Shanxi Agricultural University, Taigu 030801, Shanxi, China.
| | - Chunchao Zhao
- College of Agriculture, Institute of Molecular Agriculture and Bioenergy, Shanxi Agricultural University, Taigu 030801, Shanxi, China.
| | - Guiping Cai
- College of Agriculture, Institute of Molecular Agriculture and Bioenergy, Shanxi Agricultural University, Taigu 030801, Shanxi, China.
| | - Yubin Zheng
- Shandong Jinjing Biotechnology Co., Ltd, Weifang 261000, China.
| | - Xiaoyun Jia
- College of Life Sciences, Shanxi Agricultural University, Taigu 030801, Shanxi, China.
| | - Jianbing Di
- College of Food Science and Engineering, Shanxi Agricultural University, Taigu 030801, Shanxi, China.
| | - Runzhi Li
- College of Agriculture, Institute of Molecular Agriculture and Bioenergy, Shanxi Agricultural University, Taigu 030801, Shanxi, China.
| | - Hongli Cui
- College of Agriculture, Institute of Molecular Agriculture and Bioenergy, Shanxi Agricultural University, Taigu 030801, Shanxi, China.
| |
Collapse
|
16
|
Ali FAZ, Abdel-Maksoud FM, Abd Elaziz HO, Al-Brakati A, Elmahallawy EK. Descriptive Histopathological and Ultrastructural Study of Hepatocellular Alterations Induced by Aflatoxin B1 in Rats. Animals (Basel) 2021; 11:ani11020509. [PMID: 33669202 PMCID: PMC7919794 DOI: 10.3390/ani11020509] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2020] [Revised: 02/07/2021] [Accepted: 02/10/2021] [Indexed: 11/17/2022] Open
Abstract
Simple Summary Aflatoxins can affect hepatocytes, which results in a series of histological and ultrastructural changes to the cells. We investigated the hepatocellular alterations induced by aflatoxin B1 in rats. Interestingly, we observed several histopathological and ultrastructural alterations in hepatocytes, including necrotic changes and massive vacuolar degeneration. Ultrastructural examinations of treated groups revealed damage to the sinusoidal endothelium, as well as aggregations of hyperactive Kupffer cells in the space of Disse and damaged telocytes. Our findings provide novel insights into the induction of a series of irreversible adverse effects on hepatocytes by aflatoxin B1. Based on our results, we suggest future investigations for the exploration of mechanistic pathways related to these induced hepatocellular alterations. Abstract Liver sinusoids are lined by fenestrated endothelial cells surrounded by perisinusoidal cells, Kupffer cells, and pit cells, as well as large granular lymphocytes. The functional ability of the liver cells can be substantially modified by exposure to toxins. In the current work, we assessed the histopathological and ultrastructural effects of a time-course exposure to aflatoxin B1 (AFB1) on the hepatic structures of rats. A total of 30 adult female Wistar rats were randomly divided into three groups: a control group, a group orally administered 250 µg/kg body weight/day of AFB1 for 5 days/week over 4 weeks, and a group that received the same AFB1 treatment but over 8 weeks. Histopathological and ultrastructural examinations of hepatocytes revealed massive vacuolar degeneration and signs of necrosis. Furthermore, the rat liver of the treated group exhibited damage to the sinusoidal endothelium, invasion of the space of Disse with hyperactive Kupffer cells, and some immune cells, as well as Ito cells overloaded with lipids. In addition, damaged telocytes were observed. Taken together, our results indicate that AFB1 induces irreversible adverse effects on the livers of rats.
Collapse
Affiliation(s)
- Fatma Abo Zakaib Ali
- Department of Pathology and Clinical Pathology, Faculty of Veterinary Medicine, Sohag University, Sohag 82524, Egypt;
| | - Fatma M. Abdel-Maksoud
- Department of Anatomy and Histology, Faculty of Veterinary Medicine, Assiut University, Assiut 71526, Egypt;
| | | | - Ashraf Al-Brakati
- Department of Human Anatomy, College of Medicine, Taif University, P.O. Box 11099, Taif 21944, Saudi Arabia;
| | - Ehab Kotb Elmahallawy
- Department of Zoonoses, Faculty of Veterinary Medicine, Sohag University, Sohag 82524, Egypt
- Correspondence:
| |
Collapse
|
17
|
Wu L, Mo W, Feng J, Li J, Yu Q, Li S, Zhang J, Chen K, Ji J, Dai W, Wu J, Xu X, Mao Y, Guo C. Astaxanthin attenuates hepatic damage and mitochondrial dysfunction in non-alcoholic fatty liver disease by up-regulating the FGF21/PGC-1α pathway. Br J Pharmacol 2020; 177:3760-3777. [PMID: 32446270 PMCID: PMC7393201 DOI: 10.1111/bph.15099] [Citation(s) in RCA: 95] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2020] [Revised: 04/26/2020] [Accepted: 04/29/2020] [Indexed: 12/12/2022] Open
Abstract
BACKGROUND AND PURPOSE Non-alcoholic fatty liver disease (NAFLD) is considered to be one of the most common chronic liver diseases across worldwide. Astaxanthin (Ax) is a carotenoid, and beneficial effects of astaxanthin, including anti-oxidative, anti-inflammatory, and anti-tumour activity, have been identified. The present study aimed to elucidate the protective effect of astaxanthin against NAFLD and its underlying mechanism. EXPERIMENTAL APPROACH Mice were fed either a high fat or chow diet, with or without astaxanthin, for up to 12 weeks. L02 cells were treated with free fatty acids combined with different doses of astaxanthin for 48 h. Histopathology, expression of lipid metabolism, inflammation, apoptosis, and fibrosis-related gene expression were assessed. And the function of mitochondria was also evaluated. KEY RESULTS The results indicated that astaxanthin attenuated HFD- and FFA-induced lipid accumulation and its associated oxidative stress, cell apoptosis, inflammation, and fibrosis both in vivo and in vitro. Astaxanthin up-regulated FGF21 and PGC-1α expression in damaged hepatocytes, which suggested an unrecognized mechanism of astaxanthin on ameliorating NAFLD. CONCLUSION AND IMPLICATIONS Astaxanthin attenuated hepatocyte damage and mitochondrial dysfunction in NAFLD by up-regulating FGF21/PGC-1α pathway. Our results suggest that astaxanthin may become a promising drug to treat or relieve NAFLD.
Collapse
Affiliation(s)
- Liwei Wu
- Department of Gastroenterology, Shanghai Tenth People's HospitalTongji University School of MedicineShanghaiChina
| | - Wenhui Mo
- Department of GastroenterologyShidong Hospital of ShanghaiShanghaiChina
| | - Jiao Feng
- Department of Gastroenterology, Shanghai Tenth People's HospitalTongji University School of MedicineShanghaiChina
| | - Jingjing Li
- Department of Gastroenterology, Shanghai Tenth People's HospitalTongji University School of MedicineShanghaiChina
- Department of Gastroenterology, Putuo People's HospitalTongji University School of MedicineShanghaiChina
| | - Qiang Yu
- Department of Gastroenterology, Shanghai Tenth People's HospitalTongji University School of MedicineShanghaiChina
| | - Sainan Li
- Department of Gastroenterology, Shanghai Tenth People's HospitalTongji University School of MedicineShanghaiChina
| | - Jie Zhang
- Department of Gastroenterology, Shanghai Tenth People's HospitalTongji University School of MedicineShanghaiChina
- Shanghai Tenth HospitalSchool of Clinical Medicine of Nanjing Medical UniversityShanghaiChina
| | - Kan Chen
- Department of Gastroenterology, Shanghai Tenth People's HospitalTongji University School of MedicineShanghaiChina
| | - Jie Ji
- Department of Gastroenterology, Shanghai Tenth People's HospitalTongji University School of MedicineShanghaiChina
| | - Weiqi Dai
- Department of Gastroenterology, Shanghai Tenth People's HospitalTongji University School of MedicineShanghaiChina
- Department of Gastroenterology, Putuo People's HospitalTongji University School of MedicineShanghaiChina
- Department of GastroenterologyZhongshan Hospital of Fudan UniversityShanghaiChina
- Shanghai Institute of Liver DiseasesZhongshan Hospital of Fudan UniversityShanghaiChina
- Shanghai Tongren HospitalShanghai Jiaotong University School of MedicineShanghaiChina
| | - Jianye Wu
- Department of Gastroenterology, Putuo People's HospitalTongji University School of MedicineShanghaiChina
| | - Xuanfu Xu
- Department of GastroenterologyShidong Hospital of ShanghaiShanghaiChina
| | - Yuqing Mao
- Department of Gastroenterology, Shanghai First People's HospitalShanghai Jiaotong University School of MedicineShanghaiChina
| | - Chuanyong Guo
- Department of Gastroenterology, Shanghai Tenth People's HospitalTongji University School of MedicineShanghaiChina
| |
Collapse
|