1
|
Adjou Moumouni PF, Naomasa S, Tuvshintulga B, Sato N, Okado K, Zheng W, Lee SH, Mosqueda J, Suzuki H, Xuan X, Umemiya-Shirafuji R. Identification and Characterization of Rhipicephalus microplus ATAQ Homolog from Haemaphysalis longicornis Ticks and Its Immunogenic Potential as an Anti-Tick Vaccine Candidate Molecule. Microorganisms 2023; 11:822. [PMID: 37110244 PMCID: PMC10145298 DOI: 10.3390/microorganisms11040822] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2023] [Revised: 03/17/2023] [Accepted: 03/20/2023] [Indexed: 04/29/2023] Open
Abstract
Although vaccines are one of the environmentally friendly means to prevent the spread of ticks, there is currently no commercial vaccine effective against Haemaphysalis longicornis ticks. In this study, we identified, characterized, localized, and evaluated the expression patterns, and tested the immunogenic potential of a homologue of Rhipicephalus microplus ATAQ in H. longicornis (HlATAQ). HlATAQ was identified as a 654 amino acid-long protein present throughout the midgut and in Malpighian tubule cells and containing six full and one partial EGF-like domains. HlATAQ was genetically distant (homology < 50%) from previously reported ATAQ proteins and was expressed throughout tick life stages. Its expression steadily increased (p < 0.001) during feeding, reached a peak, and then decreased slightly with engorgement. Silencing of HlATAQ did not result in a phenotype that was significantly different from the control ticks. However, H. longicornis female ticks fed on a rabbit immunized with recombinant HlATAQ showed significantly longer blood-feeding periods, higher body weight at engorgement, higher egg mass, and longer pre-oviposition and egg hatching periods than control ticks. These findings indicate that the ATAQ protein plays a role in the blood-feeding-related physiological processes in the midgut and Malpighian tubules and antibodies directed against it may affect these tissues and disrupt tick engorgement and oviposition.
Collapse
Affiliation(s)
- Paul Franck Adjou Moumouni
- National Research Center for Protozoan Diseases, Obihiro University of Agriculture and Veterinary Medicine, Obihiro 080-8555, Hokkaido, Japan
| | - Souichirou Naomasa
- National Research Center for Protozoan Diseases, Obihiro University of Agriculture and Veterinary Medicine, Obihiro 080-8555, Hokkaido, Japan
| | - Bumduuren Tuvshintulga
- National Research Center for Protozoan Diseases, Obihiro University of Agriculture and Veterinary Medicine, Obihiro 080-8555, Hokkaido, Japan
| | - Nariko Sato
- National Research Center for Protozoan Diseases, Obihiro University of Agriculture and Veterinary Medicine, Obihiro 080-8555, Hokkaido, Japan
| | - Kiyoshi Okado
- National Research Center for Protozoan Diseases, Obihiro University of Agriculture and Veterinary Medicine, Obihiro 080-8555, Hokkaido, Japan
| | - Weiqing Zheng
- National Research Center for Protozoan Diseases, Obihiro University of Agriculture and Veterinary Medicine, Obihiro 080-8555, Hokkaido, Japan
| | - Seung-Hun Lee
- National Research Center for Protozoan Diseases, Obihiro University of Agriculture and Veterinary Medicine, Obihiro 080-8555, Hokkaido, Japan
| | - Juan Mosqueda
- Immunology and Vaccines Laboratory, C. A. Facultad de Ciencias Naturales, Universidad Autónoma de Querétaro, Carretera a Chichimequillas, Queretaro 76140, Mexico
| | - Hiroshi Suzuki
- National Research Center for Protozoan Diseases, Obihiro University of Agriculture and Veterinary Medicine, Obihiro 080-8555, Hokkaido, Japan
| | - Xuenan Xuan
- National Research Center for Protozoan Diseases, Obihiro University of Agriculture and Veterinary Medicine, Obihiro 080-8555, Hokkaido, Japan
| | - Rika Umemiya-Shirafuji
- National Research Center for Protozoan Diseases, Obihiro University of Agriculture and Veterinary Medicine, Obihiro 080-8555, Hokkaido, Japan
| |
Collapse
|
2
|
Parizi LF, Ali A, Tirloni L, Oldiges DP, Sabadin GA, Coutinho ML, Seixas A, Logullo C, Termignoni C, DA Silva Vaz I. Peptidase inhibitors in tick physiology. MEDICAL AND VETERINARY ENTOMOLOGY 2018; 32:129-144. [PMID: 29111611 DOI: 10.1111/mve.12276] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/19/2016] [Revised: 06/23/2017] [Accepted: 10/07/2017] [Indexed: 06/07/2023]
Abstract
Peptidase inhibitors regulate a wide range of physiological processes involved in the interaction between hematophagous parasites and their hosts, including tissue remodeling, the immune response and blood coagulation. In tick physiology, peptidase inhibitors have a crucial role in adaptation to improve parasitism mechanisms, facilitating blood feeding by interfering with defense-related host peptidases. Recently, a larger number of studies on this topic led to the description of several new tick inhibitors displaying interesting novel features, for example a role in pathogen transmission to the host. A comprehensive review discussing these emerging concepts can therefore shed light on peptidase inhibitor functions, their relevance to tick physiology and their potential applications. Here, we summarize and examine the general characteristics, functional diversity and action of tick peptidase inhibitors with known physiological roles in the tick-host-pathogen interaction.
Collapse
Affiliation(s)
- L F Parizi
- Centro de Biotecnologia, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brazil
- Faculdade de Veterinária, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brazil
| | - A Ali
- Department of Zoology, Abdul Wali Khan University, Mardan, Pakistan
- Escola de Enfermagem de Ribeirão Preto, Universidade de São Paulo, Ribeirão Preto, SP, Brazil
| | - L Tirloni
- Centro de Biotecnologia, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brazil
| | - D P Oldiges
- Centro de Biotecnologia, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brazil
| | - G A Sabadin
- Centro de Biotecnologia, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brazil
| | - M L Coutinho
- Centro de Biotecnologia, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brazil
- Faculdade de Veterinária, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brazil
| | - A Seixas
- Departamento de Farmacociências, Universidade Federal de Ciências da Saúde de Porto Alegre, RS, Brazil
- Instituto Nacional de Ciência e Tecnologia em Entomologia Molecular, Rio de Janeiro, RJ, Brazil
| | - C Logullo
- Laboratório de Química e Função de Proteínas e Peptídeos-CBB and Unidade de Experimentação Animal, Universidade Estadual do Norte Fluminense Darcy Ribeiro, Campos dos Goytacazes, RJ, Brazil
- Instituto Nacional de Ciência e Tecnologia em Entomologia Molecular, Rio de Janeiro, RJ, Brazil
| | - C Termignoni
- Centro de Biotecnologia, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brazil
- Departamento de Bioquímica, Universidade Federal do Rio Grande do Sul, Porto Alegre, Porto Alegre, Brazil
- Instituto Nacional de Ciência e Tecnologia em Entomologia Molecular, Rio de Janeiro, RJ, Brazil
| | - I DA Silva Vaz
- Centro de Biotecnologia, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brazil
- Faculdade de Veterinária, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brazil
- Instituto Nacional de Ciência e Tecnologia em Entomologia Molecular, Rio de Janeiro, RJ, Brazil
| |
Collapse
|
3
|
Molecular and functional characterization of Bm05br antigen from Rhipicephalus microplus. Ticks Tick Borne Dis 2016; 8:320-329. [PMID: 28043800 DOI: 10.1016/j.ttbdis.2016.12.008] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2016] [Revised: 12/14/2016] [Accepted: 12/14/2016] [Indexed: 11/20/2022]
Abstract
Rhipicephalus microplus is a cattle-specific tick, causing considerable losses in the livestock industry. The identification of molecules responsible for modulation of host defenses during different parasite stages can help in the development of alternative methods, such as vaccination, to control tick infestations. Hq05, a protein of unknown function identified in the tick Haemaphysalis qinghaiensis, induced a significant protective immune response when used as a vaccine in sheep. In the present study, we investigated Bm05br, the Hq05 homologous gene from R. microplus. Besides H. qinghaiensis, Bm05br homologous found in other tick species such as Rhipicephalus annulatus, Rhipicephalus sanguineus sensu lato, Haemaphysalis longicornis and Ixodes scapularis were comparatively analyzed. Bm05br expression profile in different R. microplus tissues and life-stages was determined by qRT-PCR and Western blot. Bm05br was detected in ovaries, salivary glands and the fat body of both partially and fully engorged females. The highest transcription levels were observed in partially engorged females fat body and salivary glands. Gene knockdown by RNAi reduced egg hatching rate and the weight of tick larvae obtained from treated group, when compared to controls. These results indicate that Bm05br may be involved in R. microplus reproduction. Together with its distribution and high sequence conservation across different tick species, our data suggest Bm05br as a potential antigen for development of a multispecies anti-tick vaccine.
Collapse
|
4
|
Greene WK, Macnish MG, Rice KL, Thompson RCA. Identification of genes associated with blood feeding in the cat flea, Ctenocephalides felis. Parasit Vectors 2015; 8:368. [PMID: 26168790 PMCID: PMC4501088 DOI: 10.1186/s13071-015-0972-5] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2015] [Accepted: 06/30/2015] [Indexed: 11/29/2022] Open
Abstract
Background The cat flea (Ctenocephalides felis) is a blood-feeding ectoparasitic insect and particular nuisance pest of companion animals worldwide. Identification of genes that are differentially expressed in response to feeding is important for understanding flea biology and discovering targets for their control. Methods C. felis fleas were maintained and fed for 24 h using an artificial rearing system. The technique of suppression subtractive hybridization was employed to screen for mRNAs specifically expressed in fed fleas. Results We characterized nine distinct full-length flea transcripts that exhibited modulated or de novo expression during feeding. Among the predicted protein sequences were two serine proteases, a serine protease inhibitor, two mucin-like molecules, a DNA topoisomerase, an enzyme associated with GPI-mediated cell membrane attachment of proteins and a component of the insect innate immune response. Conclusions Our results provide a molecular insight into the physiology of flea feeding. The protein products of the genes identified may play important roles during flea feeding in terms of blood meal digestion, cellular growth/repair and protection from feeding-associated stresses.
Collapse
Affiliation(s)
- Wayne K Greene
- School of Veterinary and Life Sciences, Murdoch University, Perth, W.A. 6150, Australia.
| | - Marion G Macnish
- School of Veterinary and Life Sciences, Murdoch University, Perth, W.A. 6150, Australia.
| | - Kim L Rice
- School of Veterinary and Life Sciences, Murdoch University, Perth, W.A. 6150, Australia. .,Present address: INSERM UMR 944, Equipe Labellisée par la Ligue Nationale contre le Cancer, Institut Universitaire d'Hématologie, Hôpital St. Louis, Paris, France.
| | - R C Andrew Thompson
- School of Veterinary and Life Sciences, Murdoch University, Perth, W.A. 6150, Australia.
| |
Collapse
|
5
|
Lewis LA, Radulović ŽM, Kim TK, Porter LM, Mulenga A. Identification of 24h Ixodes scapularis immunogenic tick saliva proteins. Ticks Tick Borne Dis 2015; 6:424-34. [PMID: 25825233 PMCID: PMC4415496 DOI: 10.1016/j.ttbdis.2015.03.012] [Citation(s) in RCA: 47] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2014] [Revised: 02/19/2015] [Accepted: 03/09/2015] [Indexed: 12/13/2022]
Abstract
Ixodes scapularis is arguably the most medically important tick species in the United States. This tick transmits 5 of the 14 human tick-borne disease (TBD) agents in the USA: Borrelia burgdorferi, Anaplasma phagocytophilum, B. miyamotoi, Babesia microti, and Powassan virus disease. Except for the Powassan virus disease, I. scapularis-vectored TBD agents require more than 24h post attachment to be transmitted. This study describes identification of 24h immunogenic I. scapularis tick saliva proteins, which could provide opportunities to develop strategies to stop tick feeding before transmission of the majority of pathogens. A 24h fed female I. scapularis phage display cDNA expression library was biopanned using rabbit antibodies to 24h fed I. scapularis female tick saliva proteins, subjected to next generation sequencing, de novo assembly, and bioinformatic analyses. A total of 182 contigs were assembled, of which ∼19% (35/182) are novel and did not show identity to any known proteins in GenBank. The remaining ∼81% (147/182) of contigs were provisionally identified based on matches in GenBank including ∼18% (27/147) that matched protein sequences previously annotated as hypothetical and putative tick saliva proteins. Others include proteases and protease inhibitors (∼3%, 5/147), transporters and/or ligand binding proteins (∼6%, 9/147), immunogenic tick saliva housekeeping enzyme-like (17%, 25/147), ribosomal protein-like (∼31%, 46/147), and those classified as miscellaneous (∼24%, 35/147). Notable among the miscellaneous class include antimicrobial peptides (microplusin and ricinusin), myosin-like proteins that have been previously found in tick saliva, and heat shock tick saliva protein. Data in this study provides the foundation for in-depth analysis of I. scapularis feeding during the first 24h, before the majority of TBD agents can be transmitted.
Collapse
Affiliation(s)
- Lauren A Lewis
- Department of Veterinary Pathobiology, College of Veterinary Medicine, Texas A&M University, College Station, TX 77843, United States
| | - Željko M Radulović
- Department of Veterinary Pathobiology, College of Veterinary Medicine, Texas A&M University, College Station, TX 77843, United States
| | - Tae K Kim
- Department of Veterinary Pathobiology, College of Veterinary Medicine, Texas A&M University, College Station, TX 77843, United States
| | - Lindsay M Porter
- Department of Veterinary Pathobiology, College of Veterinary Medicine, Texas A&M University, College Station, TX 77843, United States
| | - Albert Mulenga
- Department of Veterinary Pathobiology, College of Veterinary Medicine, Texas A&M University, College Station, TX 77843, United States.
| |
Collapse
|
6
|
Marr EJ, Sargison ND, Nisbet AJ, Burgess STG. RNA interference for the identification of ectoparasite vaccine candidates. Parasite Immunol 2015; 36:616-26. [PMID: 25065384 DOI: 10.1111/pim.12132] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2014] [Accepted: 07/23/2014] [Indexed: 12/21/2022]
Abstract
Ectoparasites present a major challenge for disease management globally. With drug resistance increasingly observed in many disease-causing species, the need for novel control measures is pressing. Ever-expanding genomic resources from 'next generation' sequencing are now available for a number of arthropod ectoparasites, necessitating an effective means of screening these data for novel candidates for vaccine antigens or targets for chemotherapeutics. Such in vitro screening methods must be developed if we are to make discoveries in a timely and cost-effective manner. This review will discuss the potential that RNA interference (RNAi) has demonstrated thus far in the context of arthropod ectoparasites and the potential roles for this technology in the development of novel methods for parasite control.
Collapse
Affiliation(s)
- E J Marr
- Division of Vaccines and Diagnostics, Pentlands Science Park, Moredun Research Institute, Bush Loan, Penicuik, Edinburgh, UK; Royal (Dick) School of Veterinary Studies, University of Edinburgh, Easter Bush, Roslin, Midlothian, UK
| | | | | | | |
Collapse
|
7
|
Tian M, Tian Z, Luo J, Xie J, Yin H, Zeng Q, Shen H, Chai H, Yuan X, Wang F, Liu G. Identification of the tropomyosin (HL-Tm) in Haemaphysalis longicornis. Vet Parasitol 2014; 207:318-23. [PMID: 25535026 DOI: 10.1016/j.vetpar.2014.10.007] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2013] [Revised: 10/10/2014] [Accepted: 10/12/2014] [Indexed: 10/24/2022]
Abstract
Haemaphysalis longicornis tropomyosin (HL-Tm) was amplified by RT-PCR. The cDNA contained a 825 bp open reading frame coding for 274 amino acids with a predicted theoretical isoelectric point (pI) of 4.55 and molecular weight of 31.7 kDa. Real-time RT-PCR analysis showed that the expression levels of the HL-Tm in the unfed-females were significantly higher than in other tested developmental stages (eggs, unfed-larvae and unfed-nymphs). Western blot analysis showed that rabbit anti-serum against H. longicornis unfed-adult ticks recognized the recombinant HL-Tm protein (rHL-Tm). Immunization of rabbits with the rHL-Tm resulted in a statistically significant reduction of female engorgement and oviposition. Silencing of HL-Tm by RNAi showed a decrease in tick engorgement and oviposition, which is consistent with the effect of recombinant protein vaccine on the adults. These results showed that tick HL-Tm might be involved in the regulation of ticks blood-feeding, growth and oviposition.
Collapse
Affiliation(s)
- Meiyuan Tian
- State Key Laboratory of Veterinary Etiological Biology, Key Laboratory of Veterinary Parasitology of Gansu Province, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Xujiaping, Yanchangbu, Lanzhou, Gansu Province 730046, People's Republic of China
| | - Zhancheng Tian
- State Key Laboratory of Veterinary Etiological Biology, Key Laboratory of Veterinary Parasitology of Gansu Province, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Xujiaping, Yanchangbu, Lanzhou, Gansu Province 730046, People's Republic of China
| | - Jin Luo
- State Key Laboratory of Veterinary Etiological Biology, Key Laboratory of Veterinary Parasitology of Gansu Province, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Xujiaping, Yanchangbu, Lanzhou, Gansu Province 730046, People's Republic of China
| | - Junren Xie
- State Key Laboratory of Veterinary Etiological Biology, Key Laboratory of Veterinary Parasitology of Gansu Province, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Xujiaping, Yanchangbu, Lanzhou, Gansu Province 730046, People's Republic of China
| | - Hong Yin
- State Key Laboratory of Veterinary Etiological Biology, Key Laboratory of Veterinary Parasitology of Gansu Province, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Xujiaping, Yanchangbu, Lanzhou, Gansu Province 730046, People's Republic of China; Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou 225009, People's Republic of China
| | - Qiaoying Zeng
- Wuwei Bureau of Animal Husbandry and Veterinary, Wuwei, Gansu Province 733000, People's Republic of China
| | - Hui Shen
- State Key Laboratory of Veterinary Etiological Biology, Key Laboratory of Veterinary Parasitology of Gansu Province, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Xujiaping, Yanchangbu, Lanzhou, Gansu Province 730046, People's Republic of China
| | - Huiping Chai
- State Key Laboratory of Veterinary Etiological Biology, Key Laboratory of Veterinary Parasitology of Gansu Province, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Xujiaping, Yanchangbu, Lanzhou, Gansu Province 730046, People's Republic of China
| | - Xiaosong Yuan
- State Key Laboratory of Veterinary Etiological Biology, Key Laboratory of Veterinary Parasitology of Gansu Province, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Xujiaping, Yanchangbu, Lanzhou, Gansu Province 730046, People's Republic of China
| | - Fangfang Wang
- State Key Laboratory of Veterinary Etiological Biology, Key Laboratory of Veterinary Parasitology of Gansu Province, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Xujiaping, Yanchangbu, Lanzhou, Gansu Province 730046, People's Republic of China
| | - Guangyuan Liu
- State Key Laboratory of Veterinary Etiological Biology, Key Laboratory of Veterinary Parasitology of Gansu Province, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Xujiaping, Yanchangbu, Lanzhou, Gansu Province 730046, People's Republic of China.
| |
Collapse
|
8
|
Yamaji K, Miyoshi T, Hatta T, Matsubayashi M, Alim MA, Anisuzzaman, Kushibiki S, Fujisaki K, Tsuji N. HlCPL-A, a cathepsin L-like cysteine protease from the ixodid tick Haemaphysalis longicornis, modulated midgut proteolytic enzymes and their inhibitors during blood meal digestion. INFECTION GENETICS AND EVOLUTION 2013; 16:206-11. [DOI: 10.1016/j.meegid.2013.01.018] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/05/2012] [Revised: 01/24/2013] [Accepted: 01/29/2013] [Indexed: 11/28/2022]
|
9
|
Barnard AC, Nijhof AM, Fick W, Stutzer C, Maritz-Olivier C. RNAi in Arthropods: Insight into the Machinery and Applications for Understanding the Pathogen-Vector Interface. Genes (Basel) 2012; 3:702-41. [PMID: 24705082 PMCID: PMC3899984 DOI: 10.3390/genes3040702] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2012] [Revised: 10/19/2012] [Accepted: 10/23/2012] [Indexed: 01/06/2023] Open
Abstract
The availability of genome sequencing data in combination with knowledge of expressed genes via transcriptome and proteome data has greatly advanced our understanding of arthropod vectors of disease. Not only have we gained insight into vector biology, but also into their respective vector-pathogen interactions. By combining the strengths of postgenomic databases and reverse genetic approaches such as RNAi, the numbers of available drug and vaccine targets, as well as number of transgenes for subsequent transgenic or paratransgenic approaches, have expanded. These are now paving the way for in-field control strategies of vectors and their pathogens. Basic scientific questions, such as understanding the basic components of the vector RNAi machinery, is vital, as this allows for the transfer of basic RNAi machinery components into RNAi-deficient vectors, thereby expanding the genetic toolbox of these RNAi-deficient vectors and pathogens. In this review, we focus on the current knowledge of arthropod vector RNAi machinery and the impact of RNAi on understanding vector biology and vector-pathogen interactions for which vector genomic data is available on VectorBase.
Collapse
Affiliation(s)
| | - Ard M Nijhof
- Institut für Parasitologie und Tropenveterinärmedizin, Freie Universität Berlin, Königsweg 67, 14163, Berlin, Germany.
| | - Wilma Fick
- Department of Genetics, University of Pretoria, Pretoria, 0002, South Africa.
| | - Christian Stutzer
- Department of Biochemistry, University of Pretoria, Pretoria, 0002, South Africa.
| | | |
Collapse
|
10
|
Target of rapamycin (TOR) controls vitellogenesis via activation of the S6 kinase in the fat body of the tick, Haemaphysalis longicornis. Int J Parasitol 2012; 42:991-8. [DOI: 10.1016/j.ijpara.2012.08.002] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2012] [Revised: 08/10/2012] [Accepted: 08/13/2012] [Indexed: 11/23/2022]
|
11
|
Abstract
Parasitic diseases cause important losses in public and veterinary health worldwide. Novel drugs, more reliable diagnostic techniques and vaccine candidates are urgently needed. Due to the complexity of parasites and the intricate relationship with their hosts, development of successful tools to fight parasites has been very limited to date. The growing information on individual parasite genomes is now allowing the use of a broader range of potential strategies to gain deeper insights into the host-parasite relationship and has increased the possibilities to develop molecular-based tools in the field of parasitology. Nevertheless, functional studies of respective genes are still scarce. The RNA interference phenomenon resulting in the regulation of protein expression through the specific degradation of defined mRNAs, and more specifically the possibility of artificially induce it, has shown to be a powerful tool for the investigation of proteins function in many organisms. Recent advances in the design and delivery of targeting molecules allow efficient and highly specific gene silencing in different types of parasites, pointing out this technology as a powerful tool for the identification of novel vaccine candidates or drug targets at the high-throughput level in the near future, and could enable researchers to functionally annotate parasite genomes. The aim of this review is to provide a comprehensive overview on the current advances and pitfalls in gene silencing mechanisms, techniques, applications and prospects in animal parasites.
Collapse
|
12
|
Aung KM, Boldbaatar D, Umemiya-Shirafuji R, Liao M, Xuenan X, Suzuki H, Linggatong Galay R, Tanaka T, Fujisaki K. Scavenger receptor mediates systemic RNA interference in ticks. PLoS One 2011; 6:e28407. [PMID: 22145043 PMCID: PMC3228737 DOI: 10.1371/journal.pone.0028407] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2011] [Accepted: 11/07/2011] [Indexed: 11/29/2022] Open
Abstract
RNA interference is an efficient method to silence gene and protein expressions. Here, the class B scavenger receptor CD36 (SRB) mediated the uptake of exogenous dsRNAs in the induction of the RNAi responses in ticks. Unfed female Haemaphysalis longicornis ticks were injected with a single or a combination of H. longicornis SRB (HlSRB) dsRNA, vitellogenin-1 (HlVg-1) dsRNA, and vitellogenin receptor (HlVgR) dsRNA. We found that specific and systemic silencing of the HlSRB, HlVg-1, and HlVgR genes was achieved in ticks injected with a single dsRNA of HlSRB, HlVg-1, and HlVgR. In ticks injected first with HlVg-1 or HlVgR dsRNA followed 96 hours later with HlSRB dsRNA (HlVg-1/HlSRB or HlVgR/HlSRB), gene silencing of HlSRB was achieved in addition to first knockdown in HlVg-1 or HlVgR, and prominent phenotypic changes were observed in engorgement, mortality, and hatchability, indicating that a systemic and specific double knockdown of target genes had been simultaneously attained in these ticks. However, in ticks injected with HlSRB dsRNA followed 96 hours later with HlVg-1 or HlVgR dsRNAs, silencing of HlSRB was achieved, but no subsequent knockdown in HlVgR or HlVg-1 was observed. The Westernblot and immunohistochemical examinations revealed that the endogenous HlSRB protein was fully abolished in midguts of ticks injected with HlSRB/HlVg-1 dsRNAs but HlVg-1 was normally expressed in midguts, suggesting that HlVg-1 dsRNA-mediated RNAi was fully inhibited by the first knockdown of HlSRB. Similarly, the abolished localization of HlSRB protein was recognized in ovaries of ticks injected with HlSRB/HlVgR, while normal localization of HlVgR was observed in ovaries, suggesting that the failure to knock-down HlVgR could be attributed to the first knockdown of HlSRB. In summary, we demonstrated for the first time that SRB may not only mediate the effective knock-down of gene expression by RNAi but also play essential roles for systemic RNAi of ticks.
Collapse
MESH Headings
- Animals
- Blotting, Western
- Egg Proteins/antagonists & inhibitors
- Egg Proteins/genetics
- Egg Proteins/metabolism
- Female
- Fluorescent Antibody Technique
- Gene Silencing
- Ovary/metabolism
- Ovary/pathology
- RNA Interference
- RNA, Double-Stranded/genetics
- RNA, Messenger/genetics
- RNA, Small Interfering/genetics
- Rabbits
- Real-Time Polymerase Chain Reaction
- Receptors, Cell Surface/antagonists & inhibitors
- Receptors, Cell Surface/genetics
- Receptors, Cell Surface/metabolism
- Receptors, Scavenger/antagonists & inhibitors
- Receptors, Scavenger/genetics
- Receptors, Scavenger/metabolism
- Tick Infestations/genetics
- Tick Infestations/metabolism
- Tick Infestations/mortality
- Ticks/pathogenicity
Collapse
Affiliation(s)
- Kyaw Min Aung
- Department of Pathological and Preventive Veterinary Science, The United Graduate School of Veterinary Science, Yamaguchi University, Yoshida, Yamaguchi, Japan
- Laboratory of Emerging Infectious Diseases, Department of Frontier Veterinary Medicine, Faculty of Agriculture, Kagoshima University, Korimoto, Kagoshima, Japan
| | - Damdinsuren Boldbaatar
- Laboratory of Emerging Infectious Diseases, Department of Frontier Veterinary Medicine, Faculty of Agriculture, Kagoshima University, Korimoto, Kagoshima, Japan
| | - Rika Umemiya-Shirafuji
- Laboratory of Emerging Infectious Diseases, Department of Frontier Veterinary Medicine, Faculty of Agriculture, Kagoshima University, Korimoto, Kagoshima, Japan
| | - Min Liao
- Laboratory of Emerging Infectious Diseases, Department of Frontier Veterinary Medicine, Faculty of Agriculture, Kagoshima University, Korimoto, Kagoshima, Japan
| | - Xuan Xuenan
- National Research Center for Protozoan Diseases, Obihiro University of Agriculture and Veterinary Medicine, Inada, Obihiro, Japan
| | - Hiroshi Suzuki
- National Research Center for Protozoan Diseases, Obihiro University of Agriculture and Veterinary Medicine, Inada, Obihiro, Japan
| | - Remil Linggatong Galay
- Department of Pathological and Preventive Veterinary Science, The United Graduate School of Veterinary Science, Yamaguchi University, Yoshida, Yamaguchi, Japan
- Laboratory of Emerging Infectious Diseases, Department of Frontier Veterinary Medicine, Faculty of Agriculture, Kagoshima University, Korimoto, Kagoshima, Japan
| | - Tetsuya Tanaka
- Department of Pathological and Preventive Veterinary Science, The United Graduate School of Veterinary Science, Yamaguchi University, Yoshida, Yamaguchi, Japan
- Laboratory of Emerging Infectious Diseases, Department of Frontier Veterinary Medicine, Faculty of Agriculture, Kagoshima University, Korimoto, Kagoshima, Japan
| | - Kozo Fujisaki
- Department of Pathological and Preventive Veterinary Science, The United Graduate School of Veterinary Science, Yamaguchi University, Yoshida, Yamaguchi, Japan
- Laboratory of Emerging Infectious Diseases, Department of Frontier Veterinary Medicine, Faculty of Agriculture, Kagoshima University, Korimoto, Kagoshima, Japan
- * E-mail:
| |
Collapse
|
13
|
Mulenga A, Erikson K. A snapshot of the Ixodes scapularis degradome. Gene 2011; 482:78-93. [PMID: 21596113 PMCID: PMC3129411 DOI: 10.1016/j.gene.2011.04.008] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2011] [Revised: 03/04/2011] [Accepted: 04/15/2011] [Indexed: 01/19/2023]
Abstract
Parasitic encoded proteases are essential to regulating interactions between parasites and their hosts and thus they represent attractive anti-parasitic druggable and/or vaccine target. We have utilized annotations of Ixodes scapularis proteases in gene bank and version 9.3 MEROPS database to compile an index of at least 233 putatively active and 150 putatively inactive protease enzymes that are encoded by the I. scapularis genome. The 233 putatively active protease homologs hereafter referred to as the degradome (the full repertoire of proteases encoded by the I. scapularis genome) represent ~1.14% of the 20485 putative I. scapularis protein content. Consistent with observations in other animals, the content of the I. scapularis degradome is ~6.0% (14/233) aspartic, ~19% (44/233) cysteine, ~40% (93/233) metallo, ~28.3% (66/233) serine and ~6.4% (15/233) threonine proteases. When scanned against other tick sequences, ~11% (25/233) of I. scapularis putatively active proteases are conserved in other tick species with ≥ 60% amino acid identity levels. The I. scapularis genome does not apparently encode for putatively inactive aspartic proteases. Of the 150 putative inactive protease homologs none are from the aspartic protease class, ~8% (12/150) are cysteine, ~58.7% (88/150) metallo, 30% (45/150) serine and ~3.3% (5/150) are threonine proteases. The I. scapularis tick genome appears to have evolutionarily lost proteolytic activity of at least 6 protease families, C56 and C64 (cysteine), M20 and M23 (metallo), S24 and S28 (serine) as revealed by a lack of the putatively active proteases in these families. The overall protease content is comparable to other organisms. However, the paucity of the S1 chymotrypsin/trypsin-like serine protease family in the I. scapularis genome where it is ~12.7% (28/233) of the degradome as opposed to ~22-48% content in other blood feeding arthropods, Pediculus humanus humanus, Anopheles gambiae, Aedes Aegypti and Culex pipiens quinquefasciatus is notable. The data is presented as a one-stop index of proteases encoded by the I. scapularis genome.
Collapse
Affiliation(s)
- Albert Mulenga
- Texas A & M University AgriLife Research, Department of Entomology, College Station, TX 77843, USA.
| | | |
Collapse
|
14
|
Cloning and characterization of the autophagy-related gene 6 from the hard tick, Haemaphysalis longicornis. Parasitol Res 2011; 109:1341-9. [DOI: 10.1007/s00436-011-2429-x] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2010] [Accepted: 04/05/2011] [Indexed: 12/14/2022]
|
15
|
Torres L, Almazán C, Ayllón N, Galindo RC, Rosario-Cruz R, Quiroz-Romero H, de la Fuente J. Functional genomics of the horn fly, Haematobia irritans (Linnaeus, 1758). BMC Genomics 2011; 12:105. [PMID: 21310032 PMCID: PMC3045961 DOI: 10.1186/1471-2164-12-105] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2010] [Accepted: 02/10/2011] [Indexed: 12/27/2022] Open
Abstract
Background The horn fly, Haematobia irritans (Linnaeus, 1758) (Diptera: Muscidae) is one of the most important ectoparasites of pastured cattle. Horn flies infestations reduce cattle weight gain and milk production. Additionally, horn flies are mechanical vectors of different pathogens that cause disease in cattle. The aim of this study was to conduct a functional genomics study in female horn flies using Expressed Sequence Tags (EST) analysis and RNA interference (RNAi). Results A cDNA library was made from whole abdominal tissues collected from partially fed adult female horn flies. High quality horn fly ESTs (2,160) were sequenced and assembled into 992 unigenes (178 contigs and 814 singlets) representing molecular functions such as serine proteases, cell metabolism, mitochondrial function, transcription and translation, transport, chromatin structure, vitellogenesis, cytoskeleton, DNA replication, cell response to stress and infection, cell proliferation and cell-cell interactions, intracellular trafficking and secretion, and development. Functional analyses were conducted using RNAi for the first time in horn flies. Gene knockdown by RNAi resulted in higher horn fly mortality (protease inhibitor functional group), reduced oviposition (vitellogenin, ferritin and vATPase groups) or both (immune response and 5'-NUC groups) when compared to controls. Silencing of ubiquitination ESTs did not affect horn fly mortality and ovisposition while gene knockdown in the ferritin and vATPse functional groups reduced mortality when compared to controls. Conclusions These results advanced the molecular characterization of this important ectoparasite and suggested candidate protective antigens for the development of vaccines for the control of horn fly infestations.
Collapse
Affiliation(s)
- Lorena Torres
- Facultad de Medicina Veterinaria y Zootecnia, Universidad Autónoma de Tamaulipas, Km, 5 carretera Victoria-Mante, CP 87000 Ciudad Victoria, Tamaulipas, Mexico
| | | | | | | | | | | | | |
Collapse
|
16
|
Aung KM, Boldbaatar D, Liao M, Umemiya-Shirafuji R, Nakao S, Matsuoka T, Tanaka T, Fujisaki K. Identification and characterization of class B scavenger receptor CD36 from the hard tick, Haemaphysalis longicornis. Parasitol Res 2011; 108:273-85. [PMID: 20872015 DOI: 10.1007/s00436-010-2053-1] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2010] [Accepted: 09/06/2010] [Indexed: 11/27/2022]
Abstract
Scavenger receptors (SRs) are cell-surface proteins and exhibit distinctive ligand-binding properties, recognizing a wide range of ligands that include microbial surface constituents and intact microbes. The class B scavenger receptor CD36 (SRB) is predominantly expressed by macrophages and is considered important in innate immunity. We here show the identification and characterization of SRB from the hard ixodid tick, Haemaphysalis longicornis (HlSRB). The full-length cDNA was 2,908 bp, including an ORF encoding of 1,518 amino acids with a pI value of 5.83. H. longicornis SRB contains a hydrophobic SRB domain and four centrally clustered cysteine residues for arrangement of disulfide bridges. Deduced amino acid sequence has an identity of 30-38% with the SRB of other organisms. RT-PCR analysis showed that mRNA transcripts were expressed in multiple organs of adult ticks but with a different transcript level in the developmental stages of H. longicornis ticks. His-tagged recombinant HlSRB was expressed in Escherichia coli with an expected molecular mass of 50 kDa. In Western blot analysis, mouse anti-rHlSRB serum recognized a strong reaction with a 50 kDa protein band in lysates prepared from egg and adult tick but showed a weak reaction with lysates of larva and nymph. In an indirect immunofluorescent antibody test, HlSRB antiserum recognized the protein located on the midgut, salivary glands, and ovary of partially fed H. longicornis females. Silencing of the HlSRB gene by RNAi led to a significant reduction in the engorged female body weight. It is noteworthy that more than a dozen SRB orthologs have been identified in the genomes of insect species with functions related to pheromone signaling, innate immunity, phagocytic clearance of apoptotic cells, and various aspects of the fatty acid metabolism. This is the first report of the identification and characterization of the SRB homologue in Chelicerata, including ticks, horseshoe crabs, scorpions, spiders, and mites.
Collapse
Affiliation(s)
- Kyaw Min Aung
- Department of Pathological and Preventive Veterinary Science, The United Graduate School of Veterinary Science, Yamaguchi University, 1677-1 Yoshida, Yamaguchi, 753-8515, Japan
| | | | | | | | | | | | | | | |
Collapse
|
17
|
Gao X, Shi L, Zhou Y, Cao J, Zhang H, Zhou J. Characterization of the anticoagulant protein Rhipilin-1 from the Rhipicephalus haemaphysaloides tick. JOURNAL OF INSECT PHYSIOLOGY 2011; 57:339-343. [PMID: 21147114 DOI: 10.1016/j.jinsphys.2010.12.001] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/20/2010] [Revised: 12/02/2010] [Accepted: 12/04/2010] [Indexed: 05/30/2023]
Abstract
To understand the molecular mechanism of tick blood feeding, an anticoagulant protein, Rhipilin-1, was identified in the tick Rhipicephalus haemaphysaloides. The cDNA sequence of Rhipilin-1 is 620bp, and it encodes a deduced 164 amino acid protein with a size of 18kDa. Bioinformatic analysis shows that Rhipilin-1 belongs to the Kunitz-type family of inhibitors, containing one Kunitz domain with high homology to the tissue factor pathway inhibitor (TFPI). The recombinant protein expressed in Escherichia coli delayed normal clotting of rabbit plasma both in the recalcification time (RT) and the activated partial thromboplastin time (APTT) tests. Using RT-PCR, mRNA transcripts of Rhipilin-1 were detected in fed but not in unfed ticks. Disruption of the Rhipilin-1 gene with RNAi led to a 52.7% decrease in the tick attachment rate 24h after introduction in the rabbit ears and a 21.9% decrease in the average engorged body weight of ticks. These results indicate that Rhipilin-1 is a novel anticoagulant protein involved in tick blood feeding with possible future application as a vaccine candidate. The discovery of Rhipilin-1 is the first report on anticoagulant genes in this species of tick.
Collapse
Affiliation(s)
- Xiao Gao
- Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, No. 518 Ziyue Road, Minhang District, Shanghai, China
| | | | | | | | | | | |
Collapse
|
18
|
Gong H, Umemiya R, Zhou J, Liao M, Zhang H, Jia H, Nishikawa Y, Xuan X, Fujisaki K. Blocking the secretion of saliva by silencing the HlYkt6 gene in the tick Haemaphysalis longicornis. INSECT BIOCHEMISTRY AND MOLECULAR BIOLOGY 2009; 39:372-381. [PMID: 19328851 DOI: 10.1016/j.ibmb.2009.03.002] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/25/2008] [Revised: 12/14/2008] [Accepted: 03/02/2009] [Indexed: 05/27/2023]
Abstract
Soluble N-ethylmaleimide-sensitive fusion protein attachment protein receptors (SNAREs) have been identified as the key components of the protein complexes that facilitate vesicle traffic, of which Ykt6 (from Saccharomyces cerevisiae, v-SNARE) is proved to be a multifunctional protein in the membrane fusion. In the present study, a tick homologue of Ykt6 (HlYkt6, predicted 22.6 kDa), was isolated from the ixodid tick Haemaphysalis longicornis. RT-PCR and Western blot analysis indicated that the gene and the encoded protein were expressed ubiquitously in different tissues of the partially fed adult tick. Silencing of the HlYkt6 gene resulted in a significant decrease of the engorged body weight (82.9 +/- 26.8 mg vs. 232.17 +/- 59.1 mg in the PBS-injected control group and 178.7 +/- 57.0 mg in the GFP dsRNA-injected control group) and high mortality of replete ticks (100% in tested group vs. 4.8% in the PBS and 20.4% in GFP dsRNA-injected control groups). Disruption of HlYkt6 mRNA led to the suppression of saliva secretion, and a lower anticoagulant activity of the released liquid from the glands (APTT time: 25.25 +/- 1.50 s) than that of the control groups (39.25 +/- 0.50 s in the PBS-treated group and 40.0 +/- 1.41 s in the GFP dsRNA-treated group). These results suggest the vital role of the HlYkt6 protein in the exocytosis of saliva proteins, the feeding and survival of ticks.
Collapse
Affiliation(s)
- Haiyan Gong
- National Research Center for Protozoan Diseases, Obihiro University of Agriculture and Veterinary Medicine, Inada-cho, Hokkaido, Japan
| | | | | | | | | | | | | | | | | |
Collapse
|
19
|
Liao M, Zhou J, Gong H, Boldbaatar D, Shirafuji R, Battur B, Nishikawa Y, Fujisaki K. Hemalin, a thrombin inhibitor isolated from a midgut cDNA library from the hard tick Haemaphysalis longicornis. JOURNAL OF INSECT PHYSIOLOGY 2009; 55:164-173. [PMID: 19061894 DOI: 10.1016/j.jinsphys.2008.11.004] [Citation(s) in RCA: 47] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/23/2008] [Revised: 11/05/2008] [Accepted: 11/06/2008] [Indexed: 05/27/2023]
Abstract
A full-length sequence of a thrombin inhibitor (designated as hemalin) from the midgut of parthenogenetic Haemaphysalis longicornis has been identified. Sequence analysis shows that this gene belongs to the Kunitz-type family, containing two Kunitz domains with high homology to boophilin, the thrombin inhibitor from Rhipicephalus (Boophilus) microplus. The recombinant protein expressed in insect cells delayed bovine plasma clotting time and inhibited both thrombin-induced fibrinogen clotting and platelet aggregation. A 20-kDa protein was detected from the midgut lysate with antiserum against recombinant hemalin. The gene is expressed at all stages of the tick except for the egg stage, and hemalin mRNA mainly in the midgut of the female adult tick. Real-time PCR analysis shows that this gene has a distinctly high expression level in the rapid bloodsucking period of the larvae, nymphs, and adults. Disruption of the hemalin gene by RNA interference led to a 2-day extension of the tick blood feeding period, and 27.7% of the RNA-treated ticks did not successfully complete the blood feeding. These findings indicate that the newly identified thrombin inhibitor from the midgut of H. longicornis might play an important role in tick blood feeding.
Collapse
Affiliation(s)
- Min Liao
- Laboratory of Emerging Infectious Diseases, Department of Frontier Veterinary Medicine, Faculty of Agriculture, Kagoshima University, Korimoto, Kagoshima 890-0065, Japan
| | | | | | | | | | | | | | | |
Collapse
|
20
|
A set of serine proteinase paralogs are required for blood-digestion in the ixodid tick Haemaphysalis longicornis. Parasitol Int 2008; 57:499-505. [PMID: 18775510 DOI: 10.1016/j.parint.2008.08.003] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2008] [Revised: 07/10/2008] [Accepted: 08/06/2008] [Indexed: 11/23/2022]
Abstract
We present evidence demonstrating that genes encoding enzymes essential for successful blood-feeding are differentially induced in the midgut of the hard tick Haemaphysalis longicornis. Three serine proteinase genes (HlSP, HlSP2 and HlSP3) isolated from H. longicornis midgut exhibit protein sequence similarity with other trypsin-like serine proteinases reported from arthropods and vertebrate animal species. The endogenous enzymes were mainly detected in the midgut epithelial cells and in the lumen of an adult tick. The recombinant enzymes expressed in Escherichia coli efficiently hydrolyzed synthetic substrates specific for serine proteinases over a broad range of pH and temperature values. Notably, the transcript levels of HlSP2 and HlSP3 were detected to significantly increase at 96 h post infestation, while the transcript of HlSP was induced in the earlier stage of blood-feeding. Further, silencing of HlSP, HlSP2 and HlSP3 genes by RNA interference led to a significant reductions in the engorged tick body weight, suggesting synergetic roles of these serine proteinases in blood-feeding and digestion.
Collapse
|
21
|
Tsuji N, Miyoshi T, Battsetseg B, Matsuo T, Xuan X, Fujisaki K. A cysteine protease is critical for Babesia spp. transmission in Haemaphysalis ticks. PLoS Pathog 2008; 4:e1000062. [PMID: 18483546 PMCID: PMC2358973 DOI: 10.1371/journal.ppat.1000062] [Citation(s) in RCA: 75] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2007] [Accepted: 04/09/2008] [Indexed: 11/25/2022] Open
Abstract
Vector ticks possess a unique system that enables them to digest large amounts of host blood and to transmit various animal and human pathogens, suggesting the existence of evolutionally acquired proteolytic mechanisms. We report here the molecular and reverse genetic characterization of a multifunctional cysteine protease, longipain, from the babesial parasite vector tick Haemaphysalis longicornis. Longipain shares structural similarity with papain-family cysteine proteases obtained from invertebrates and vertebrates. Endogenous longipain was mainly expressed in the midgut epithelium and was specifically localized at lysosomal vacuoles and possibly released into the lumen. Its expression was up-regulated by host blood feeding. Enzymatic functional assays using in vitro and in vivo substrates revealed that longipain hydrolysis occurs over a broad range of pH and temperature. Haemoparasiticidal assays showed that longipain dose-dependently killed tick-borne Babesia parasites, and its babesiacidal effect occurred via specific adherence to the parasite membranes. Disruption of endogenous longipain by RNA interference revealed that longipain is involved in the digestion of the host blood meal. In addition, the knockdown ticks contained an increased number of parasites, suggesting that longipain exerts a killing effect against the midgut-stage Babesia parasites in ticks. Our results suggest that longipain is essential for tick survival, and may have a role in controlling the transmission of tick-transmittable Babesia parasites. Ticks are important ectoparasites among the blood-feeding arthropods and serve as vectors of many deadly diseases of humans and animals. Of tick-transmitted pathogens, Babesia, an intracellular haemoprotozoan parasite causing a malaria-like disease, called babesiosis, gain increasing interest due to its zoonotic significance. When vector ticks acquire the protozoa via blood-meals, they invade midgut and undergo several developmental stages prior to exit through salivary glands. It has long been conceived that midguts of these ticks evolve diverse innate immune mechanisms and perform blood digestion critical for tick survival. A cysteine proteinase, longipain, was identified from the three-host tick Haemaphysalis longicornis, which shows potent parasiticidal activity. Longipain is localized in midgut epithelium and its expression is induced by blood feeding. This protein is passively secreted into midgut lumen where it exerts enzymatic degradation of blood-meals. A series of experiments unveil that longipain-knockdown ticks when fed on Babesia-infected dog, exhibited a significantly increased numbers of parasites compared with controls. Longipain has shown to interact on the surface of Babesia parasites in vitro and in vivo, and is thought to mediate direct killing of the parasites, suggesting that longipain may be a potential chemotherapeutic target against babesiosis and ticks themselves.
Collapse
Affiliation(s)
- Naotoshi Tsuji
- Laboratory of Parasitic Diseases, National Institute of Animal Health, National Agriculture and Food Research Organization, Tsukuba, Ibaraki, Japan
| | - Takeharu Miyoshi
- Laboratory of Parasitic Diseases, National Institute of Animal Health, National Agriculture and Food Research Organization, Tsukuba, Ibaraki, Japan
| | - Badger Battsetseg
- National Research Center for Protozoan Diseases, Obihiro University of Agriculture and Veterinary Medicine, Obihiro, Hokkaido, Japan
| | - Tomohide Matsuo
- National Research Center for Protozoan Diseases, Obihiro University of Agriculture and Veterinary Medicine, Obihiro, Hokkaido, Japan
- Department of Infectious Diseases, Kyorin University School of Medicine, Mitaka, Tokyo, Japan
| | - Xuenan Xuan
- Department of Infectious Diseases, Kyorin University School of Medicine, Mitaka, Tokyo, Japan
| | - Kozo Fujisaki
- National Research Center for Protozoan Diseases, Obihiro University of Agriculture and Veterinary Medicine, Obihiro, Hokkaido, Japan
- Department of Emerging Infectious Diseases, School of Veterinary Medicine, Kagoshima University, Korimoto, Kagoshima, Japan
- * E-mail:
| |
Collapse
|
22
|
de la Fuente J, Kocan KM, Almazán C, Blouin EF. RNA interference for the study and genetic manipulation of ticks. Trends Parasitol 2007; 23:427-33. [PMID: 17656154 DOI: 10.1016/j.pt.2007.07.002] [Citation(s) in RCA: 110] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2006] [Revised: 05/22/2007] [Accepted: 07/04/2007] [Indexed: 11/19/2022]
Abstract
Ticks are ectoparasites of wild and domestic animals, and humans. A more comprehensive understanding of tick function and the tick-pathogen interface is needed to formulate improved tick-control methods. RNA interference (RNAi) is the most widely used gene-silencing technique in ticks where the use of other methods of genetic manipulations has been limited. In the short time that RNAi has been available, it has proved to be a valuable tool for studying tick gene function, the characterization of the tick-pathogen interface, and the screening and characterization of tick protective antigens. This review considers the applications of RNAi to tick research and the potential of this technique for tick functional studies, and to elucidate the tick-pathogen and tick-host interface. It is probable that the knowledge gained from this experimental approach will contribute to development of vaccines to control tick infestations and the transmission of tick-borne pathogens.
Collapse
Affiliation(s)
- José de la Fuente
- Department of Veterinary Pathobiology, Center for Veterinary Health Sciences, Oklahoma State University, Stillwater, OK 74078, USA.
| | | | | | | |
Collapse
|
23
|
Tsuji N, Battsetseg B, Boldbaatar D, Miyoshi T, Xuan X, Oliver JH, Fujisaki K. Babesial vector tick defensin against Babesia sp. parasites. Infect Immun 2007; 75:3633-40. [PMID: 17485458 PMCID: PMC1932947 DOI: 10.1128/iai.00256-07] [Citation(s) in RCA: 67] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2007] [Revised: 03/17/2007] [Accepted: 04/26/2007] [Indexed: 11/20/2022] Open
Abstract
Antimicrobial peptides are major components of host innate immunity, a well-conserved, evolutionarily ancient defensive mechanism. Infectious disease-bearing vector ticks are thought to possess specific defense molecules against the transmitted pathogens that have been acquired during their evolution. We found in the tick Haemaphysalis longicornis a novel parasiticidal peptide named longicin that may have evolved from a common ancestral peptide resembling spider and scorpion toxins. H. longicornis is the primary vector for Babesia sp. parasites in Japan. Longicin also displayed bactericidal and fungicidal properties that resemble those of defensin homologues from invertebrates and vertebrates. Longicin showed a remarkable ability to inhibit the proliferation of merozoites, an erythrocyte blood stage of equine Babesia equi, by killing the parasites. Longicin was localized at the surface of the Babesia sp. parasites, as demonstrated by confocal microscopic analysis. In an in vivo experiment, longicin induced significant reduction of parasitemia in animals infected with the zoonotic and murine B. microti. Moreover, RNA interference data demonstrated that endogenous longicin is able to directly kill the canine B. gibsoni, thus indicating that it may play a role in regulating the vectorial capacity in the vector tick H. longicornis. Theoretically, longicin may serve as a model for the development of chemotherapeutic compounds against tick-borne disease organisms.
Collapse
Affiliation(s)
- Naotoshi Tsuji
- Laboratory of Emerging Infectious Diseases, School of Frontier Veterinary Medicine, Kagoshima University, 1-21-24 Korimoto, Kagoshima 890-0065, Japan
| | | | | | | | | | | | | |
Collapse
|
24
|
Liao M, Zhou J, Hatta T, Umemiya R, Miyoshi T, Tsuji N, Xuan X, Fujisaki K. Molecular characterization of Rhipicephalus (Boophilus) microplus Bm86 homologue from Haemaphysalis longicornis ticks. Vet Parasitol 2007; 146:148-57. [PMID: 17363170 DOI: 10.1016/j.vetpar.2007.01.015] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2006] [Revised: 01/25/2007] [Accepted: 01/30/2007] [Indexed: 11/16/2022]
Abstract
One sequence in the EST database of a midgut cDNA library prepared from semi-engorged female Haemaphysalis longicornis ticks has been found to be a homologue of the Bm86 gene of Rhipicephalus (Boophilus) microplus ticks. The full-length sequence containing a 1785 bp open reading fragment (ORF) was obtained and designated as the Hl86 gene. The predicted amino acid sequence of the Hl86 gene shows a 37% identity to the Bm86 gene. Hl86 is predicted to be a GPI-anchored membrane-bound glycoprotein with a 19-amino acid signal sequence and a 22-amino acid hydrophobic region adjacent to the carboxyl terminus. The most important feature that Hl86 has in common with Bm86 is the repeated pattern of 6 cysteine residues forming epidermal growth factor (EGF)-like domains. RT-PCR analysis showed that Hl86 mRNA transcripts are expressed in all the life cycles of H. longicornis, and the expression was found in the midgut of the adult tick. The Hl86 was expressed in Escherichia coli as a gene10 fusion protein. Mouse anti-recombinant Hl86 serum recognized an 86 kDa protein band in the midgut lysate of semi-engorged ticks in Western blot analysis and showed a strong reaction on the luminal surface of midgut cells in an indirect immunofluorescent antibody test (IFAT). Silencing of the Hl86 gene by RNAi led to a significant reduction in the engorged tick body weight. This is the first report of cloning and characterization of the Bm86 homologue in different genera and species of ixodid and argasid ticks since Bm86 was first reported in 1989.
Collapse
Affiliation(s)
- Min Liao
- National Research Center for Protozoan Diseases, Obihiro University of Agriculture and Veterinary Medicine, Inada-cho, Obihiro, Hokkaido 080-8555, Japan
| | | | | | | | | | | | | | | |
Collapse
|
25
|
Huang X, Tsuji N, Miyoshi T, Motobu M, Islam MK, Alim MA, Fujisaki K. Characterization of glutamine: fructose-6-phosphate aminotransferase from the ixodid tick, Haemaphysalis longicornis, and its critical role in host blood feeding. Int J Parasitol 2007; 37:383-92. [PMID: 17222844 DOI: 10.1016/j.ijpara.2006.11.012] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2006] [Revised: 11/20/2006] [Accepted: 11/22/2006] [Indexed: 10/23/2022]
Abstract
Glutamine: fructose-6-phosphate aminotransferase (GFAT, EC2.6.1.16) is the first, and rate-limiting, enzyme in the hexosamine biosynthetic pathway, and is involved in the regulation of chitin biosynthesis and glycosylation of proteins. We report here the molecular characterization and potential functions of a novel GFAT (HlGFAT) from the ixodid tick Haemaphysalis longicornis. HlGFAT consists of 696 amino acids, possesses a class II glutamine aminotransferase domain and two sugar isomerase motifs, and has a close phylogenetic relationship to insect GFAT. HlGFAT was expressed at all stages of development and in multiple organs. The transcription levels in the cuticle and midgut were enhanced significantly by blood feeding during the first 3 days and decreased on the fifth day, while those in salivary glands maintained almost the same level during the first 3 days, and decreased to a rather low level at 5 days postinfestation. Endogenous HlGFAT was identified at all developmental stages and in multiple organs, such as epidermis, midgut epithelium, salivary gland, ovary, Malpigian's tubule and trachea. It was identified as a protein of 78.4 kDa using Western blot analysis. Following RNA interference of HlGFAT, engorgement by adult females was reduced significantly. One of the potential mechanisms for this effect may be that the inhibition of HlGFAT limits chitin biosynthesis, so disrupting cuticle growth and possibly peritrophic matrix formation during blood feeding.
Collapse
Affiliation(s)
- Xiaohong Huang
- Laboratory of Parasitic Diseases, National Institute of Animal Health, National Agriculture Research Organization, 3-1-5, Kannondai, Tsukuba, Ibaraki 305-0856, Japan
| | | | | | | | | | | | | |
Collapse
|
26
|
Miyoshi T, Tsuji N, Islam MK, Huang X, Motobu M, Alim MA, Fujisaki K. Molecular and reverse genetic characterization of serine proteinase-induced hemolysis in the midgut of the ixodid tick Haemaphysalis longicornis. JOURNAL OF INSECT PHYSIOLOGY 2007; 53:195-203. [PMID: 17275020 DOI: 10.1016/j.jinsphys.2006.12.001] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/01/2006] [Revised: 12/01/2006] [Accepted: 12/04/2006] [Indexed: 05/13/2023]
Abstract
Enzyme-induced hemolysis has been shown to occur in the midgut of ticks; however, little is known about the molecular basis for hemolytic activity. We report here the molecular and reverse genetic characterization of a hemolytic midgut serine proteinase, HlSP, recently identified from the ixodid tick Haemaphysalis longicornis. Endogenous HlSP was found in the midgut lumen and its contents, indicating that HlSP is extracellularly secreted. Recombinant H. longicornis serine proteinase (rHlSP) expressed in Escherichia coli showed dose-dependent hemolytic activity towards rabbit erythrocytes, with a maximum hemolysis of 94.5% within 1 h in vitro. Tests of pH dependency showed that rHlSP displayed optimal activity at pH 6.0. In binding assays, rHlSP showed high affinity to band 3, which shares the major erythrocyte membrane proteins. Disruption of HlSP-specific mRNA by RNA interference resulted in inhibition of the degradation of host erythrocyte membranes by endogenous HlSP in the knock-down ticks, indicating that HlSP plays a crucial role in the hemolysis in the midgut of haematophagous ticks. Our results suggest that HlSP may be essential for initiating the proteolytic cascade for the degradation of the host blood-meal.
Collapse
Affiliation(s)
- Takeharu Miyoshi
- Laboratory of Parasitic Diseases, National Institute of Animal Health, National Agriculture and Food Research Organization, 3-1-5 Kannondai, Tsukuba, Ibaraki 305-0856, Japan
| | | | | | | | | | | | | |
Collapse
|
27
|
Nijhof AM, Taoufik A, de la Fuente J, Kocan KM, de Vries E, Jongejan F. Gene silencing of the tick protective antigens, Bm86, Bm91 and subolesin, in the one-host tick Boophilus microplus by RNA interference. Int J Parasitol 2006; 37:653-62. [PMID: 17196597 PMCID: PMC1885961 DOI: 10.1016/j.ijpara.2006.11.005] [Citation(s) in RCA: 77] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2006] [Revised: 11/09/2006] [Accepted: 11/14/2006] [Indexed: 11/23/2022]
Abstract
The use of RNA interference (RNAi) to assess gene function has been demonstrated in several three-host tick species but adaptation of RNAi to the one-host tick, Boophilus microplus, has not been reported. We evaluated the application of RNAi in B. microplus and the effect of gene silencing on three tick-protective antigens: Bm86, Bm91 and subolesin. Gene-specific double-stranded (dsRNA) was injected into two tick stages, freshly molted unfed and engorged females, and specific gene silencing was confirmed by real time PCR. Gene silencing occurred in injected unfed females after they were allowed to feed. Injection of dsRNA into engorged females caused gene silencing in the subsequently oviposited eggs and larvae that hatched from these eggs, but not in adults that developed from these larvae. dsRNA injected into engorged females could be detected by quantitative real-time RT-PCR in eggs 14 days from the beginning of oviposition, demonstrating that unprocessed dsRNA was incorporated in the eggs. Eggs produced by engorged females injected with subolesin dsRNA were abnormal, suggesting that subolesin may play a role in embryonic development. The injection of dsRNA into engorged females to obtain gene-specific silencing in eggs and larvae is a novel method which can be used to study gene function in tick embryogenesis.
Collapse
Affiliation(s)
- Ard M Nijhof
- Utrecht Centre for Tick-borne Diseases (UCTD), Department of Infectious Diseases and Immunology, Faculty of Veterinary Medicine, Utrecht University, Yalelaan 1, 3584CL Utrecht, The Netherlands.
| | | | | | | | | | | |
Collapse
|
28
|
Hatta T, Umemiya R, Liao M, Gong H, Harnnoi T, Tanaka M, Miyoshi T, Boldbaatar D, Battsetseg B, Zhou J, Xuan X, Tsuji N, Taylor D, Fujisaki K. RNA interference of cytosolic leucine aminopeptidase reduces fecundity in the hard tick, Haemaphysalis longicornis. Parasitol Res 2006; 100:847-54. [PMID: 17136388 DOI: 10.1007/s00436-006-0336-3] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2006] [Accepted: 09/01/2006] [Indexed: 11/24/2022]
Abstract
Ticks are effective vectors of pathogens because of their blood feeding and high fecundity. This high fecundity is related to the size of the blood meal. Therefore, knowledge of how blood proteins are degraded and converted to proteins, including yolk protein, is important for the development of ways to inhibit the utilization of blood proteins by ticks. RNA interference (RNAi) is becoming a powerful post-transcriptional gene silencing technique that provides insight into gene function. We constructed a double-stranded RNA (dsRNA) based on a previously cloned Haemaphysalis longicornis leucine aminopeptidase (HlLAP) gene to reevaluate the biological role in tick blood digestion. Gene specific transcriptional, translational, and functional disruptions were achieved by the introduction of dsRNA into the ticks. Significantly delayed onset of egg-laying and reduced egg oviposition resulted from the RNAi for the HlLAP gene. These results suggest that HlLAP actually works as a blood digestive enzyme and affects tick fecundity via unknown mechanisms. The reduction of egg oviposition may be caused by a decrease in nutrients, especially free amino acids generated by HlLAP, from the blood meal. This is the first report of an impact on tick reproduction caused by gene silencing of a blood digestion-related molecule.
Collapse
Affiliation(s)
- Takeshi Hatta
- National Research Center for Protozoan Diseases, Obihiro University of Agriculture and Veterinary Medicine, Inada-cho, Obihiro, Hokkaido, 080-8555, Japan
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
29
|
Abstract
Ticks are distributed worldwide and impact human and animal health, as well as food animal production. Control of ticks has been primarily by application of acaricides, which has resulted in selection of resistant ticks and environmental pollution. Vaccines have been shown to be a feasible tick control method that offers a cost-effective, environmentally friendly alternative to chemical control. However, identification of tick-protective antigens remains the limiting step in vaccine development. Tick antigens exposed naturally to the host during tick feeding and those concealed have both shown promise as candidate vaccine antigens. Development of vaccines against multiple tick species may be possible using highly conserved tick-protective antigens or by antigens showing immune cross-reaction to different tick species. Vaccines made from a combination of key protective antigens may greatly enhance vaccine efficacy. Preliminary studies have suggested the possibility of vaccine strategies directed toward both tick control and the blocking of pathogen transmission. Characterization of the tick genomes will have a great impact on the discovery of new protective antigens. The future of research directed toward tick vaccine development is exciting because of new and emerging technologies for gene discovery, and vaccine formulation and delivery.
Collapse
Affiliation(s)
- J de la Fuente
- Department of Veterinary Pathobiology, Center for Veterinary pathobiology, Oklahoma State University, Stillwater, OK 74078-2007, USA.
| | | |
Collapse
|
30
|
Nuttall PA, Trimnell AR, Kazimirova M, Labuda M. Exposed and concealed antigens as vaccine targets for controlling ticks and tick-borne diseases. Parasite Immunol 2006; 28:155-63. [PMID: 16542317 DOI: 10.1111/j.1365-3024.2006.00806.x] [Citation(s) in RCA: 139] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
Tick vaccines derived from Bm86, a midgut membrane-bound protein of the cattle tick, Boophilus microplus, are currently the only commercially available ectoparasite vaccines. Despite its introduction to the market in 1994, and the recognized need for alternatives to chemical pesticides, progress in developing effective antitick vaccines (and ectoparasite vaccines in general) is slow. The primary rate-limiting step is the identification of suitable antigenic targets for vaccine development. Two sources of candidate vaccine antigens have been identified: 'exposed' antigens that are secreted in tick saliva during attachment and feeding on a host and 'concealed' antigens that are normally hidden from the host. Recently, a third group of antigens has been distinguished that combines the properties of both exposed and concealed antigens. This latter group offers the prospect of a broad-spectrum vaccine effective against both adults and immature stages of a wide variety of tick species. It also shows transmission-blocking and protective activity against a tick-borne pathogen. With the proliferation of molecular techniques and their application to vaccine development, there are high hopes for new and effective antitick vaccines that also control tick-borne diseases.
Collapse
|
31
|
Zhou J, Liao M, Hatta T, Tanaka M, Xuan X, Fujisaki K. Identification of a follistatin-related protein from the tick Haemaphysalis longicornis and its effect on tick oviposition. Gene 2006; 372:191-8. [PMID: 16517100 DOI: 10.1016/j.gene.2005.12.020] [Citation(s) in RCA: 51] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2005] [Revised: 12/23/2005] [Accepted: 12/27/2005] [Indexed: 11/18/2022]
Abstract
The identification of ovary-associated molecules will lead to a better understanding of the physiology of tick reproduction and vector-pathogen interactions. A gene encoding a follistatin-related protein (FRP) was obtained by random sequencing from the ovary cDNA library of the tick Haemaphysalis longicornis. The full-length cDNA is 1157 bp, including an intact ORF encoding an expected protein with 289 amino acids. Three distinct domains were present in the deduced amino acids, namely, the follistatin-like domain, KAZAL, and two calcium-binding motifs, EFh. The sequence shows homology with the follistatin-related protein (FRP), which was thought to play some roles in the negative regulation of cellular growth. RT-PCR showed that the gene was expressed throughout the developing stages and mainly in the ovary as well as in fat body, hemocytes, salivary glands, and midgut. This gene was expressed in GST-fused recombinant protein with an expected size. The mouse antiserum against the recombinant protein recognized a 56-kDa native protein in both tick ovary and hemolymph. The recombinant proteins were found to have binding activity for both activin A and bone morphogenetic protein-2 (BMP-2). Silencing of FRP by RNAi showed a decrease in tick oviposition, which is consistent with the effect of a recombinant protein vaccine on the adult tick. These results showed that the tick FRP might be involved in tick oviposition. This is the first report of a member of follistatin family proteins in Chelicerata, which include ticks, spiders, and scorpions.
Collapse
Affiliation(s)
- Jinlin Zhou
- National Research Center for Protozoan Diseases, Obihiro University of Agriculture and Veterinary Medicine, Obihiro, Hokkaido 080-8555, Japan
| | | | | | | | | | | |
Collapse
|
32
|
de la Fuente J, Almazán C, Naranjo V, Blouin EF, Kocan KM. Synergistic effect of silencing the expression of tick protective antigens 4D8 and Rs86 in Rhipicephalus sanguineus by RNA interference. Parasitol Res 2006; 99:108-13. [PMID: 16518610 DOI: 10.1007/s00436-006-0132-0] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2005] [Accepted: 12/26/2005] [Indexed: 11/30/2022]
Abstract
Tick proteins have been shown to be useful for the development of vaccines which reduce tick infestations. Potential tick protective antigens have been identified and characterized, in part, by use of RNA interference (RNAi). RNAi allows for analysis of gene function by characterizing the impact of loss of gene expression on tick physiology. Herein, we used RNAi in Rhipicephalus sanguineus to evaluate gene functions of two tick protective antigens, 4D8 and Rs86, the homologue of Bm86, on tick infestation, feeding and oviposition. Silencing of 4D8 alone resulted in decreased tick attachment, survival, feeding and oviposition. Although the effect of Rs86 RNAi was less pronounced, silencing of this gene also reduced tick weight and oviposition. Most notably, simultaneous silencing of 4D8 and Rs86 by RNAi resulted in a synergistic effect in which tick survival, attachment, feeding, weight and oviposition were profoundly reduced. Microscopic evaluation of tick tissues revealed that guts from dual injected ticks were distended with epithelial cells sparsely distributed along the basement membrane. These results demonstrated the synergistic effect of the silencing expression of two tick protective genes. Inclusion of multiple tick protective antigens may, therefore, enhance the efficacy of tick vaccines.
Collapse
Affiliation(s)
- José de la Fuente
- Department of Veterinary Pathobiology, Center for Veterinary Health Sciences, Oklahoma State University, Stillwater, OK 74078-2007, USA.
| | | | | | | | | |
Collapse
|
33
|
Guerrero FD, Nene VM, George JE, Barker SC, Willadsen P. Sequencing a new target genome: the Boophilus microplus (Acari: Ixodidae) genome project. JOURNAL OF MEDICAL ENTOMOLOGY 2006; 43:9-16. [PMID: 16506442 DOI: 10.1603/0022-2585(2006)043[0009:santgt]2.0.co;2] [Citation(s) in RCA: 37] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/06/2023]
Abstract
The southern cattle tick, Boophilus microplus (Canestrini), causes annual economic losses in the hundreds of millions of dollars to cattle producers throughout the world, and ranks as the most economically important tick from a global perspective. Control failures attributable to the development of pesticide resistance have become commonplace, and novel control technologies are needed. The availability of the genome sequence will facilitate the development of these new technologies, and we are proposing sequencing to a 4-6X draft coverage. Many existing biological resources are available to facilitate a genome sequencing project, including several inbred laboratory tick strains, a database of approximately 45,000 expressed sequence tags compiled into a B. microplus Gene Index, a bacterial artificial chromosome (BAC) library, an established B. microplus cell line, and genomic DNA suitable for library synthesis. Collaborative projects are underway to map BACs and cDNAs to specific chromosomes and to sequence selected BAC clones. When completed, the genome sequences from the cow, B. microplus, and the B. microplus-borne pathogens Babesia bovis and Anaplasma marginale will enhance studies of host-vector-pathogen systems. Genes involved in the regeneration of amputated tick limbs and transitions through developmental stages are largely unknown. Studies of these and other interesting biological questions will be advanced by tick genome sequence data. Comparative genomics offers the prospect of new insight into many, perhaps all, aspects of the biology of ticks and the pathogens they transmit to farm animals and people. The B. microplus genome sequence will fill a major gap in comparative genomics: a sequence from the Metastriata lineage of ticks. The purpose of the article is to synergize interest in and provide rationales for sequencing the genome of B. microplus and for publicizing currently available genomic resources for this tick.
Collapse
Affiliation(s)
- Felix D Guerrero
- USDA-ARS Knipling-Bushland U.S. Livestock Insects Research Laboratory, Kerrville, TX 78028, USA
| | | | | | | | | |
Collapse
|
34
|
de la Fuente J, Almazán C, Blouin EF, Naranjo V, Kocan KM. RNA interference screening in ticks for identification of protective antigens. Parasitol Res 2005; 96:137-41. [PMID: 15824899 DOI: 10.1007/s00436-005-1351-5] [Citation(s) in RCA: 61] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2005] [Accepted: 03/14/2005] [Indexed: 10/25/2022]
Abstract
Ticks are ectoparasites of wild and domestic animals and humans, and are considered to be the most important arthropod vector of pathogens in North America. Development of vaccines directed against tick proteins may effect reduction of tick infestations and transmission of tick-borne pathogens. The limiting step for the development of tick vaccines has been the identification of tick protective antigens. Reverse vaccinology approaches aimed at reducing animal experimentation while allowing for the rapid screening of pools of potential tick vaccine candidates would greatly facilitate progress towards the development of tick vaccines. Herein, we describe the screening of Ixodes scapularis cDNAs for identification of tick protective antigens using RNA interference (RNAi). The results of the RNAi screening were similar to those obtained previously using expression library immunization and demonstrated that RNAi could serve as a more rapid and cost-effective tool for vaccine antigen discovery in ticks and in other nonmodel organisms.
Collapse
Affiliation(s)
- José de la Fuente
- Department of Veterinary Pathobiology, Center for Veterinary Health Sciences, Oklahoma State University, Stillwater, OK 74078, USA.
| | | | | | | | | |
Collapse
|