1
|
Shosha EAEM, Zanaty AM, Darwesh MM, Fotouh A. Molecular characterization and immunopathological investigation of Avian reticuloendotheliosis virus in breeder flocks in Egypt. Virol J 2024; 21:259. [PMID: 39438969 PMCID: PMC11515750 DOI: 10.1186/s12985-024-02525-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2024] [Accepted: 10/01/2024] [Indexed: 10/25/2024] Open
Abstract
BACKGROUND Reticuloendotheliosis virus (REV) is an oncogenic immunosuppressive retrovirus that infects different kinds of avian species; posing significant economic losses to the poultry industry worldwide. METHODS In Egypt, there is an unidentified disease associated with the runting-stunting syndrome with neoplasia, suspected to be REV, that has been continuously monitored in several breeder flocks. To diagnose and analyze REV by cell cultures, enzyme-linked immunosorbent assay (ELISA), histopathological investigation, the polymerase chain reaction (PCR) test, and sequencing analysis, 200 blood samples, and 50 tissue specimens were collected. The current study targets the occurrence and genetic characteristics of a viral neoplastic disease, resembling REV infection, circulating in breeder flocks from 2022 to 2023 in the Ismailia, El-Sharqia, and El-Dakahliya governorates. RESULT Here, REV was isolated on chicken embryo fibroblast cell culture; exhibiting cell aggregation, rounding, and cell detachments. Collectively, only 70 serum samples were positive for anti-REV antibodies with seroprevalence rates of 35% based on the ELISA test. The histopathological observation demonstrated lymphoreticular tumors in the liver, spleen, and other examined organs. The immunohistochemical staining method confirmed the REV-positive signals in all examined organs (liver, kidney, spleen, bursa, ovaries) except for the heart. The PCR assay of the LTR gene assessed 370 base pairs with only 5 positive samples with a percentage of 16.6%. Three positive samples were further sequenced and submitted to the Genbank under accession numbers (PP763709, PP763710, PP763711). Phylogenetic analysis of the REV-LTR gene showed that our three isolates (Sharquia-1-REV, Ismilia-2-REV, Mansoura-3-REV) are REV subtype III which predominantly circulated in breeders in Egypt. These three isolates are highest similar to American, Chinese, and Taiwanese REV reference strains, and other Egyptian strains with nucleotide identity percentages of 100%, 99%, and 99%; respectively, and on the amino acid identity level were with (99-100%), (98%, 99%), (99%, 100%); respectively. CONCLUSIONS This study established that REV infection was extensively distributed in the breeders and became one of the causes of the clinical outbreaks of tumors, raising awareness of REV as the causative agent of avian oncogenic disease in Egypt.
Collapse
Affiliation(s)
- Eman Abd El-Menamm Shosha
- Virology Department, Faculty of Veterinary Medicine, New Valley University, The New Valley Governorate, Egypt.
| | - Ali Mahmoud Zanaty
- Gene Analysis Unit, Reference Laboratory for Quality Control On Poultry, Animal Health Institute, Agriculture Research Center (ARC), Giza, Egypt
| | - Marwa Mostafa Darwesh
- Pathology Department, Faculty of Veterinary Medicine, Benha University, Banha, Egypt
| | - Ahmed Fotouh
- Pathology and Clinical Pathology Department, Faculty of Veterinary Medicine, New Valley University, The New Valley Governorate, Egypt
| |
Collapse
|
2
|
Alfaki SH, Hussien MO, Elsheikh FM, Taha KM, Elbrissi AH, El Hussein ARM. Serological and molecular identification of Reticuloendotheliosis virus (REV) in chickens in Sudan. Vet Med Sci 2019; 5:508-511. [PMID: 31347279 PMCID: PMC6868445 DOI: 10.1002/vms3.188] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022] Open
Abstract
BACKGROUND Reticuloendotheliosis virus (REV) is a gammaretrovirus that belongs to the family of Retroviridae. The infection can result in immunosuppression, runting syndrome, high mortality, acute reticular cell neoplasia or T- and/ or B-cell lymphoma, in a variety of domestic and wild birds. The disease is widespread around the world. No related data have been reported in Sudan about the disease. The present study was conducted to determine the prevalence of REV antibodies and DNA in local and commercial breeds of chickens older than 20 weeks from June 2014 to February, 2017. METHODS A total of 460 sera samples and 150 (50 liver and 100 spleen) tissue samples were collected from local and commercial breeds of chickens older than 20 weeks and screened for anti-REV antibodies in four states of Sudan using a commercial REV antibody ELISA test kit (IDEXX). Polymerase chain reaction (PCR) was performed to detect REV DNA in tissue samples in Khartoum State. RESULTS The results revealed that the overall seroprevalence of REV was 74.6% among local and commercial chicken breeds, but in commercial it was 79.5% (190/239) and 69.2% in local breeds (153/221). One hundred and fifty tissue samples of chickens (50 liver, 100 spleen) were tested using PCR for detection of REV using primer sets of the conserved region in envelope glycoprotein (env) gene with a band length of 850 bp. Five out of 50 (10%) liver samples were RE provirus DNA positive detected by PCR, whereas 15 out of 100 (15%) spleen samples were PCR positive. Univariate analysis revealed there was a difference (p ≤ 0.05) between locality and breed of chickens and seropositivity to REV. CONCLUSIONS The prevalence of the disease was high in Sudan and more studies are needed to evaluate the epidemiology and pathogenesis of the virus.
Collapse
Affiliation(s)
- Shima H Alfaki
- Central Veterinary Research Laboratory (CVRL), Animal Resources Research Corporation (ARRC), Khartoum, Sudan
| | - Mohammed O Hussien
- Central Laboratory, Ministry of Higher Education and Scientific Research, Khartoum, Sudan
| | - Fadwa M Elsheikh
- Central Laboratory, Ministry of Higher Education and Scientific Research, Khartoum, Sudan
| | - Khalid M Taha
- Atbara Veterinary Research Laboratory (AVRL), Atbara, Sudan
| | - Atif H Elbrissi
- Central Laboratory, Ministry of Higher Education and Scientific Research, Khartoum, Sudan
| | - Abdel Rahim M El Hussein
- Central Veterinary Research Laboratory (CVRL), Animal Resources Research Corporation (ARRC), Khartoum, Sudan
| |
Collapse
|
3
|
Thontiravong A, Wannaratana S, Sasipreeyajan J. Genetic characterization of reticuloendotheliosis virus in chickens in Thailand. Poult Sci 2019; 98:2432-2438. [PMID: 30668827 DOI: 10.3382/ps/pez025] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2018] [Accepted: 01/09/2019] [Indexed: 11/20/2022] Open
Abstract
Reticuloendotheliosis virus (REV) causes an immunosuppressive, runting, and oncogenic disease in poultry, posing a significant threat to the poultry industry. In Thailand, an unidentified disease associated with runting-stunting syndrome and neoplasia, resembling REV infection, has been continuously observed in several chicken farms. However, REV infection in Thailand has never been reported. In this study, we investigated the occurrence and genetic characteristics of REVs in chickens in Thailand from 2013 to 2016. Of the 130 clinical samples obtained from 29 chicken farms from 9 provinces located in the major chicken-raising regions of Thailand, including the central, eastern, northern, and northeastern parts of Thailand, 51 samples (39.23%) and 21 farms (72.41%) were REV-positive. REV-positive samples were detected in all 9 provinces tested. Our results demonstrated that REV was extensively distributed in the major chicken-raising regions of Thailand. Phylogenetic analysis of the whole genome sequence showed that Thai REV was most closely related to Chinese, Taiwanese, and the US REV strains isolated from different avian species and clustered into REV subtype III. This finding indicates that REV subtype III was predominantly circulated in Thai chicken flocks. This study is the first report on REV infection in chickens in Thailand. Our findings raise the awareness of REV as another causative agent of runting and oncogenic disease in chickens in Thailand and highlight the wide distribution of REV infection among chickens worldwide.
Collapse
Affiliation(s)
- Aunyaratana Thontiravong
- Department of Veterinary Microbiology, Faculty of Veterinary Science, Chulalongkorn University, Bangkok 10330, Thailand.,Center of Excellence for Emerging and Re-emerging Infectious Diseases in Animals (CUEIDAs), Faculty of Veterinary Science, Chulalongkorn University, Bangkok 10330, Thailand
| | - Suwarak Wannaratana
- Faculty of Veterinary Medicine, Rajamangala University of Technology Tawan-Ok, Chonburi 20110, Thailand
| | - Jiroj Sasipreeyajan
- Avian Health Research Unit, Department of Veterinary Medicine, Faculty of Veterinary Science, Chulalongkorn University, Bangkok 10330, Thailand
| |
Collapse
|
4
|
Immunoprotection induced by CpG-ODN/Poly(I:C) combined with recombinant gp90 protein in chickens against reticuloendotheliosis virus infection. Antiviral Res 2017; 147:1-10. [PMID: 28465147 DOI: 10.1016/j.antiviral.2017.04.019] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2017] [Revised: 04/11/2017] [Accepted: 04/28/2017] [Indexed: 11/20/2022]
Abstract
The present study is focused on investigating the immunoprotective effects of CpG-ODN/Poly(I:C) combined with the viral glycoprotein gp90 protein against reticuloendotheliosis virus (REV) infection in chickens. REV's gp90 gene was amplified from the REV-infected cells and expressed in Escherichia coli (E.coli). The expressed products, upon purification, were inoculated into 7-day-old chickens with PBS, CpG-ODN or Poly(I:C) adjuvant; Two booster inoculations were then conducted, and then each chicken was challenged. The presence of REV-antibodies in serum was determined weekly after the first vaccination. The viremia and immunosuppressive effects of REV infection were also monitored after the challenge. The neutralizing effects of the antisera were tested in vitro. The results showed that the recombinant gene containing REV gp90 gene was expressed into the recombinant protein with a size of 51 Kilo Dalton (KD), which could be recognized by a monoclonal antibody (MAb) against the gp90 protein. The viremia and immunosuppressive effects of avian influenza virus (AIV) vaccine caused by REV challenge in CpG-ODN group and in Poly(I:C) group were dramatically decreased. REV antibody with low titers was induced in gp90 group and the inoculated chickens were partly protected. Compared with those in gp90 group, the titers and the positive ratios of REV antibody in CpG+gp90 group were significantly increased, whereas the viremia and immunosuppressive effects of AIV vaccine caused by REV infection were significantly decreased. In the Poly(I:C) +gp90 group, the viremia and immunosuppressive effects caused by REV infection were also dramatically decreased, although REV antibody responses were softly increased. The diluted antisera from the vaccinated chickens in both groups could completely inhibit the replication of REV in chick fibroblast cells (CEF). Hence, it can be concluded that CpG-ODN or the Poly(I:C) adjuvant can enhance the antiviral effects of the REV subunit vaccine against REV infection, which may result from different mechanisms.
Collapse
|
5
|
Yu Z, Gao X, Liu C, Lv X, Zheng S. Analysis of microRNA expression profile in specific pathogen-free chickens in response to reticuloendotheliosis virus infection. Appl Microbiol Biotechnol 2016; 101:2767-2777. [DOI: 10.1007/s00253-016-8060-0] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2016] [Revised: 12/07/2016] [Accepted: 12/10/2016] [Indexed: 12/13/2022]
|
6
|
El-Abasy MA, El-Gohary AEGA, El-Sawy A, M. Hafez H, El-Adawy H. Histopathological and Serological Diagnosis of Avian Reticuloendotheliosis in Cross-bred Chicken Farms in Delta Egypt. ASIAN JOURNAL OF ANIMAL AND VETERINARY ADVANCES 2016; 11:272-279. [DOI: 10.3923/ajava.2016.272.279] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/02/2023]
|
7
|
Wang LC, Lin DY, Thong W, Wang CH. MULTIPLEX REVERSE TRANSCRIPTION POLYMERASE CHAIN REACTION FOR CHICKEN TUMOR VIRUS DETECTION. ACTA ACUST UNITED AC 2016. [DOI: 10.1142/s168264851550016x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Tumor diseases occur frequently in chickens causing a great economic loss. Infected chickens’ pathological lesions are not pathognomonic. This study developed an accurate diagnosis for tumor diseases in chickens. Specific primers to reticuloendotheliosis virus (REV), avian leucosis virus subgroup A (ALV-A), avian leucosis virus subgroup J (ALV-J), and Marek’s disease virus (MDV) were combined into one tube with a single step multiplex reverse transcription polymerase chain reaction (mRT-PCR) performed to amplify the genes from each virus. A total of 117 sample pools containing blood and tissues were collected from chickens. Three of these pools (2.6%) showed REV positive, 22 (18.8%) ALV-J positive, 1 (0.8%) ALV-A positive, and 3 (2.6%) MDV positive. A total of 268 blood samples were used to compare the viral RNA detection from plasma using RT-PCR and provirus DNA from buffy coat using PCR. The result showed no difference from both tests. In conclusion, the present mRT-PCR could be used for tumor virus detections in chickens.
Collapse
Affiliation(s)
- Lih-Chiann Wang
- School of Veterinary Medicine, National Taiwan University, No. 1 Sec 4, Roosevelt Road, Taipei 10617, Taiwan
| | - Der-Yuh Lin
- Livestock Research Institute, Council of Agriculture, No. 112 Muchang Road Xinhua District, Tainan City 71246, Taiwan
| | - Wei Thong
- School of Veterinary Medicine, National Taiwan University, No. 1 Sec 4, Roosevelt Road, Taipei 10617, Taiwan
| | - Ching-Ho Wang
- School of Veterinary Medicine, National Taiwan University, No. 1 Sec 4, Roosevelt Road, Taipei 10617, Taiwan
| |
Collapse
|
8
|
Deng X, Hu F, Qi X, Gao L, Li K, Gao H, Gao Y, Wang Y, Shen N, Hua Y, Wang X. Construction and characterization of a recombinant reticuloendotheliosis virus expressing enhanced green fluorescent protein. Arch Virol 2015; 160:2231-5. [DOI: 10.1007/s00705-015-2502-3] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2015] [Accepted: 06/15/2015] [Indexed: 11/29/2022]
|
9
|
Hu F, Zhao Y, Qi X, Cui H, Gao Y, Gao H, Liu C, Wang Y, Zhang Y, Li K, Wang X, Wang Y. Soluble expression and enzymatic activity evaluation of protease from reticuloendotheliosis virus. Protein Expr Purif 2015; 114:64-70. [PMID: 26102339 DOI: 10.1016/j.pep.2015.06.010] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2015] [Revised: 05/11/2015] [Accepted: 06/17/2015] [Indexed: 11/26/2022]
Abstract
The protease (PR) encoded by most retroviruses is deeply involved in the lifecycle and infection process of retroviruses by possessing the specificity necessary to correctly cleave the viral polyproteins and host cell proteins. However, as an important representative of avian retroviruses, the enzymatic properties of PR from reticuloendotheliosis virus (REV) have not been clearly documented. The recombinant PR, its mutant fused with a His-tag, and its substrate p18-p30 fused with a GST-tag were expressed in the Escherichia coli system as soluble enzymes. The soluble PR and p18-p30 were purified using Ni-NTA His Bind Resin and Glutathione Sepharose 4B, respectively. The enzymatic activity of PR was analyzed using the substrate of p18-p30. The expressed prokaryotic protease has enzyme activity that is dependent on such conditions as temperature, pH, and ions, and its activity can be inhibited by caspase inhibitor and the divalent metal ions Ca(2+) and Ni(2+). In addition, the key role of the residue Thr (amino acids 28) for the enzymatic activity of PR was identified. Furthermore, the caspase inhibitor Z-VAD-FMK was confirmed to inhibit the PR enzymatic activity of REV. For the first time, the PR of REV was expressed in the soluble form, and the optimal enzymatic reaction system in vitro was developed and preliminarily used. This study provides essential tools and information for further understanding the infection mechanism of REV and for the development of antiviral drugs treating retroviruses.
Collapse
Affiliation(s)
- Feng Hu
- Division of Avian Infectious Diseases, State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, The Chinese Academy of Agricultural Sciences, Harbin 150001, China.
| | - Yan Zhao
- Division of Avian Infectious Diseases, State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, The Chinese Academy of Agricultural Sciences, Harbin 150001, China.
| | - Xiaole Qi
- Division of Avian Infectious Diseases, State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, The Chinese Academy of Agricultural Sciences, Harbin 150001, China.
| | - Hongyu Cui
- Division of Avian Infectious Diseases, State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, The Chinese Academy of Agricultural Sciences, Harbin 150001, China.
| | - Yulong Gao
- Division of Avian Infectious Diseases, State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, The Chinese Academy of Agricultural Sciences, Harbin 150001, China.
| | - Honglei Gao
- Division of Avian Infectious Diseases, State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, The Chinese Academy of Agricultural Sciences, Harbin 150001, China.
| | - Changjun Liu
- Division of Avian Infectious Diseases, State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, The Chinese Academy of Agricultural Sciences, Harbin 150001, China.
| | - Yongqiang Wang
- Division of Avian Infectious Diseases, State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, The Chinese Academy of Agricultural Sciences, Harbin 150001, China.
| | - Yanping Zhang
- Division of Avian Infectious Diseases, State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, The Chinese Academy of Agricultural Sciences, Harbin 150001, China.
| | - Kai Li
- Division of Avian Infectious Diseases, State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, The Chinese Academy of Agricultural Sciences, Harbin 150001, China.
| | - Xiaomei Wang
- Division of Avian Infectious Diseases, State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, The Chinese Academy of Agricultural Sciences, Harbin 150001, China; Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Disease and Zoonoses, Yangzhou 225009, China.
| | - Yunfeng Wang
- Division of Avian Infectious Diseases, State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, The Chinese Academy of Agricultural Sciences, Harbin 150001, China; National Engineering Research Center of Veterinary Biologics, Harbin, China.
| |
Collapse
|
10
|
Niewiadomska AM, Gifford RJ. The extraordinary evolutionary history of the reticuloendotheliosis viruses. PLoS Biol 2013; 11:e1001642. [PMID: 24013706 PMCID: PMC3754887 DOI: 10.1371/journal.pbio.1001642] [Citation(s) in RCA: 66] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2013] [Accepted: 07/19/2013] [Indexed: 11/18/2022] Open
Abstract
The reticuloendotheliosis viruses (REVs) comprise several closely related amphotropic retroviruses isolated from birds. These viruses exhibit several highly unusual characteristics that have not so far been adequately explained, including their extremely close relationship to mammalian retroviruses, and their presence as endogenous sequences within the genomes of certain large DNA viruses. We present evidence for an iatrogenic origin of REVs that accounts for these phenomena. Firstly, we identify endogenous retroviral fossils in mammalian genomes that share a unique recombinant structure with REVs-unequivocally demonstrating that REVs derive directly from mammalian retroviruses. Secondly, through sequencing of archived REV isolates, we confirm that contaminated Plasmodium lophurae stocks have been the source of multiple REV outbreaks in experimentally infected birds. Finally, we show that both phylogenetic and historical evidence support a scenario wherein REVs originated as mammalian retroviruses that were accidentally introduced into avian hosts in the late 1930s, during experimental studies of P. lophurae, and subsequently integrated into the fowlpox virus (FWPV) and gallid herpesvirus type 2 (GHV-2) genomes, generating recombinant DNA viruses that now circulate in wild birds and poultry. Our findings provide a novel perspective on the origin and evolution of REV, and indicate that horizontal gene transfer between virus families can expand the impact of iatrogenic transmission events.
Collapse
Affiliation(s)
| | - Robert J. Gifford
- Aaron Diamond AIDS Research Center, New York, New York, United States of America
- * E-mail:
| |
Collapse
|
11
|
Li K, Gao H, Gao L, Qi X, Gao Y, Qin L, Wang Y, Wang X. Enhancement of humoral and cellular immunity in chickens against reticuloendotheliosis virus by DNA prime-protein boost vaccination. Vaccine 2013; 31:1944-9. [DOI: 10.1016/j.vaccine.2013.02.010] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2012] [Revised: 01/22/2013] [Accepted: 02/05/2013] [Indexed: 11/17/2022]
|
12
|
Wu NH, Tsai WT, Chen HW, Wang LC, Wang CH. Detection of Anti-Reticuloendotheliosis Virus Antibody by Blocking Enzyme-Linked Immunosorbent Assay with Expression Envelope Protein. Avian Dis 2013; 57:71-5. [DOI: 10.1637/10290-062512-reg.1] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
|
13
|
Mays JK, Silva RF, Lee LF, Fadly AM. Characterization of reticuloendotheliosis virus isolates obtained from broiler breeders, turkeys, and prairie chickens located in various geographical regions in the United States. Avian Pathol 2010; 39:383-9. [DOI: 10.1080/03079457.2010.510828] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
14
|
Lin CY, Chen CL, Wang CC, Wang CH. Isolation, identification, and complete genome sequence of an avian reticuloendotheliosis virus isolated from geese. Vet Microbiol 2008; 136:246-9. [PMID: 19131189 DOI: 10.1016/j.vetmic.2008.11.017] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2008] [Revised: 11/19/2008] [Accepted: 11/21/2008] [Indexed: 10/21/2022]
Abstract
Naturally occurring lymphoreticular tumors in geese have been found from time to time in Taiwan, but their etiology has not been determined except through morphological descriptions. This study observed a reticuloendotheliosis virus (REV) infection occurring in a white Roman goose (Anser anser) farm in Yunlin, Taiwan in 2006. These geese showed growth-retarded and nodular lymphoma-like tumors in the liver, lung, kidney, and pancreas. Thirty blood samples were taken for REV detection and 21 (70%) of them contained REV genetic sequences using polymerase chain reaction (PCR). Virus isolation was attempted from 11 blood samples by inoculating the buffy coat onto DF1 cells. Nine (81%) REVs were isolated after three blind passages. The complete proviral sequence from one isolate was determined for phylogenetic analysis by direct sequencing using overlapping PCR products. The length of the provial genome is 8284 nucleotides. By comparing with other published REV complete sequences, the nucleotide percent identity ranged from 93.5% to 99.8% with most LTR varieties, ranging from 74.9% to 99.8%. The present isolated goose REV is most close to REV APC-566, a REV isolated from Attwater's Prairie chickens.
Collapse
Affiliation(s)
- Chia-Yao Lin
- School of Veterinary Medicine, National Taiwan University, Taipei 10617, Taiwan
| | | | | | | |
Collapse
|