1
|
Goyal A, Jain H, Usman M, Zuhair V, Sulaiman SA, Javed B, Mubbashir A, Abozaid AM, Passey S, Yakkali S. A comprehensive exploration of novel biomarkers for the early diagnosis of aortic dissection. Hellenic J Cardiol 2025; 82:74-85. [PMID: 38909846 DOI: 10.1016/j.hjc.2024.06.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2024] [Revised: 05/23/2024] [Accepted: 06/15/2024] [Indexed: 06/25/2024] Open
Abstract
Aortic dissection (AD) is a catastrophic life-threatening cardiovascular emergency with a 1-2% per hour mortality rate post-diagnosis, characterized physiologically by the separation of aortic wall layers. AD initially presents as intense pain that can then radiate to the back, arms, neck, or jaw along with neurological deficits like difficulty in speaking, and unilateral weakness in some patients. This spectrum of clinical features associated with AD is often confused with acute myocardial infarction, hence leading to a delay in AD diagnosis. Cardiac and vascular biomarkers are structural proteins and microRNAs circulating in the bloodstream that correlate to tissue damage and their levels become detectable even before symptom onset. Timely diagnosis of AD using biomarkers, in combination with advanced imaging diagnostics, will significantly improve prognosis by allowing earlier vascular interventions. This comprehensive review aims to investigate emerging biomarkers in the diagnosis of AD, as well as provide future directives for creating advanced diagnostic tools and imaging techniques.
Collapse
Affiliation(s)
- Aman Goyal
- Department of Internal Medicine, Seth GS Medical College and KEM Hospital, Mumbai, India.
| | - Hritvik Jain
- All India Institute of Medical Sciences (AIIMS), Jodhpur, India.
| | | | | | | | - Binish Javed
- Atal Bihari Vajpayee Institute of Medical Sciences & Dr Ram Manohar Lohia Hospital, New Delhi, India.
| | | | | | - Siddhant Passey
- Department of Internal Medicine, University of Connecticut Health Center, Connecticut, USA.
| | - Shreyas Yakkali
- Department of Internal Medicine, NYC Health+Hospitals / Jacobi Medical Center, Albert Einstein College of Medicine, Bronx, NY, USA.
| |
Collapse
|
2
|
Niu L, Stinson SE, Holm LA, Lund MAV, Fonvig CE, Cobuccio L, Meisner J, Juel HB, Fadista J, Thiele M, Krag A, Holm JC, Rasmussen S, Hansen T, Mann M. Plasma proteome variation and its genetic determinants in children and adolescents. Nat Genet 2025; 57:635-646. [PMID: 39972214 PMCID: PMC11906355 DOI: 10.1038/s41588-025-02089-2] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2023] [Accepted: 01/13/2025] [Indexed: 02/21/2025]
Abstract
Our current understanding of the determinants of plasma proteome variation during pediatric development remains incomplete. Here, we show that genetic variants, age, sex and body mass index significantly influence this variation. Using a streamlined and highly quantitative mass spectrometry-based proteomics workflow, we analyzed plasma from 2,147 children and adolescents, identifying 1,216 proteins after quality control. Notably, the levels of 70% of these were associated with at least one of the aforementioned factors, with protein levels also being predictive. Quantitative trait loci (QTLs) regulated at least one-third of the proteins; between a few percent and up to 30-fold. Together with excellent replication in an additional 1,000 children and 558 adults, this reveals substantial genetic effects on plasma protein levels, persisting from childhood into adulthood. Through Mendelian randomization and colocalization analyses, we identified 41 causal genes for 33 cardiometabolic traits, emphasizing the value of protein QTLs in drug target identification and disease understanding.
Collapse
Affiliation(s)
- Lili Niu
- Novo Nordisk Foundation Center for Protein Research, University of Copenhagen, Copenhagen, Denmark
- Department of Proteomics and Signal Transduction, Max Planck Institute of Biochemistry, Martinsried, Germany
- Novo Nordisk A/S, Copenhagen, Denmark
| | - Sara Elizabeth Stinson
- Novo Nordisk Foundation Center for Basic Metabolic Research, University of Copenhagen, Copenhagen, Denmark
| | - Louise Aas Holm
- Novo Nordisk Foundation Center for Basic Metabolic Research, University of Copenhagen, Copenhagen, Denmark
- The Children's Obesity Clinic, accredited European Centre for Obesity Management, Department of Pediatrics, Copenhagen University Hospital Holbæk, Holbæk, Denmark
| | - Morten Asp Vonsild Lund
- The Children's Obesity Clinic, accredited European Centre for Obesity Management, Department of Pediatrics, Copenhagen University Hospital Holbæk, Holbæk, Denmark
- Department of Biomedical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Cilius Esmann Fonvig
- Novo Nordisk Foundation Center for Basic Metabolic Research, University of Copenhagen, Copenhagen, Denmark
- The Children's Obesity Clinic, accredited European Centre for Obesity Management, Department of Pediatrics, Copenhagen University Hospital Holbæk, Holbæk, Denmark
- The Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Leonardo Cobuccio
- Novo Nordisk Foundation Center for Protein Research, University of Copenhagen, Copenhagen, Denmark
| | - Jonas Meisner
- Novo Nordisk Foundation Center for Protein Research, University of Copenhagen, Copenhagen, Denmark
| | - Helene Bæk Juel
- Novo Nordisk Foundation Center for Basic Metabolic Research, University of Copenhagen, Copenhagen, Denmark
| | | | - Maja Thiele
- Odense Liver Research Centre, Department of Gastroenterology and Hepatology, Odense University Hospital, Odense, Denmark
- Department of Clinical Research, University of Southern Denmark, Odense, Denmark
| | - Aleksander Krag
- Odense Liver Research Centre, Department of Gastroenterology and Hepatology, Odense University Hospital, Odense, Denmark
- Department of Clinical Research, University of Southern Denmark, Odense, Denmark
| | - Jens-Christian Holm
- Novo Nordisk Foundation Center for Basic Metabolic Research, University of Copenhagen, Copenhagen, Denmark
- The Children's Obesity Clinic, accredited European Centre for Obesity Management, Department of Pediatrics, Copenhagen University Hospital Holbæk, Holbæk, Denmark
- The Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Simon Rasmussen
- Novo Nordisk Foundation Center for Protein Research, University of Copenhagen, Copenhagen, Denmark.
- The Novo Nordisk Foundation Center for Genomic Mechanisms of Disease, Broad Institute of MIT and Harvard, Cambridge, MA, USA.
| | - Torben Hansen
- Novo Nordisk Foundation Center for Basic Metabolic Research, University of Copenhagen, Copenhagen, Denmark.
| | - Matthias Mann
- Novo Nordisk Foundation Center for Protein Research, University of Copenhagen, Copenhagen, Denmark.
- Department of Proteomics and Signal Transduction, Max Planck Institute of Biochemistry, Martinsried, Germany.
| |
Collapse
|
3
|
Arslan G, Hazan F, Tabanlı G, Kırkgöz T, Özkan B. A rare case of skeletal dysplasia: biallelic variant in ACAN gene. J Pediatr Endocrinol Metab 2024; 37:1104-1111. [PMID: 39295451 DOI: 10.1515/jpem-2024-0255] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/04/2024] [Accepted: 08/28/2024] [Indexed: 09/21/2024]
Abstract
OBJECTIVES Spondylo-epimetaphyseal dysplasia-aggregan (SEMD-ACAN) is a rare form of osteo-chondrodysplasia that includes vertebral, epiphyseal and metaphyseal dysplasia. It occurs as a result of loss-of-function mutations in the ACAN gene, which encodes aggregan protein, which is the basic component of the extracellular matrix in cartilage. It results in disproportionately short stature and skeletal abnormalities. Here, we aimed to present the fourth SEMD-ACAN report in the literature. CASE PRESENTATION A 9-year-old girl was admitted to our clinic with growth retardation. She was born from a first-degree cousin marriage with severe short stature (41 cm; -3.54 SDS). Her mother also had severe short stature. Her height was 110 cm (-4.6 SDS); she had midface hypoplasia, low-set ears, short neck, short limbs, and central obesity. Biochemical and hormonal tests were normal. Skeletal survey showed moderate platyspondylia, thoracolumbar scoliosis, lumbar lordosis, bilateral femoro-acetabular narrowing, and advanced bone age (10 years). The patient's brother was 100 cm (-3.97 SDS). He had similar but milder clinical findings. Biallelic ACAN variation (c.512C>T; p. Ala171Val) was detected in two siblings by next-generation sequencing. The parents were heterozygous carriers. Before, the heterozygous form of this variant has been reported in a 15-year-old boy with short stature, advanced bone age, and dysmorphic features. CONCLUSIONS SEMD-ACAN is a rare genetic condition that affects bone growth and development and can cause physical and developmental abnormalities. This article highlights the importance of considering genetic testing in characteristic symptoms associated with SEMD-ACAN, such as severe growth retardation and skeletal abnormalities.
Collapse
Affiliation(s)
- Gülçin Arslan
- Department of Pediatric Endocrinology, Dr. Behçet Uz Training and Research Hospital, University of Health Science, Izmir, Türkiye
| | - Filiz Hazan
- Department of Pediatric Genetic, Dr. Behçet Uz Training and Research Hospital, University of Health Science, Izmir, Türkiye
| | - Gülin Tabanlı
- Department of Pediatric Endocrinology, Dr. Behçet Uz Training and Research Hospital, University of Health Science, Izmir, Türkiye
| | - Tarık Kırkgöz
- Department of Pediatric Endocrinology, Dr. Behçet Uz Training and Research Hospital, University of Health Science, Izmir, Türkiye
| | - Behzat Özkan
- Department of Pediatric Endocrinology, Dr. Behçet Uz Training and Research Hospital, University of Health Science, Izmir, Türkiye
| |
Collapse
|
4
|
Farrell A, Sura SR. Short Stature in Klinefelter Syndrome From Aggrecan Mutation. JCEM CASE REPORTS 2024; 2:luae170. [PMID: 39364324 PMCID: PMC11447372 DOI: 10.1210/jcemcr/luae170] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/04/2024] [Indexed: 10/05/2024]
Abstract
Despite tall stature being a characteristic feature of Klinefelter syndrome, occasional cases of short stature have been reported. These cases are often attributed to GH deficiency. This case report details a unique case of a 16-year-old male with Klinefelter syndrome exhibiting proportionate short stature resulting from a heterozygous, likely pathogenic, variant in the ACAN gene c.7141G > A (p.Asp2381Asn). This specific variant, previously identified once in a family with a recessive inheritance pattern is reported here for the first time in an individual with Klinefelter syndrome. This report emphasizes the importance of a thorough evaluation and consideration of genetic testing for an underlying diagnosis in short-statured individuals with Klinefelter syndrome. Timely detection would enable appropriate therapeutic interventions.
Collapse
Affiliation(s)
- Antoinette Farrell
- Department of Pediatrics, University of Connecticut School of Medicine, Hartford, CT 06106, USA
| | - Sunitha R Sura
- Department of Pediatrics, University of Connecticut School of Medicine, Hartford, CT 06106, USA
- Division of Pediatric Endocrinology & Diabetes, Connecticut Children's, Farmington, CT 06032, USA
| |
Collapse
|
5
|
Fink S, Suppanz M, Oberzaucher J, Castro MA, Fernandes O, Alves I. Gait characterization in rare bone diseases in a real-world environment - A comparative controlled study. Gait Posture 2024; 112:174-180. [PMID: 38850844 DOI: 10.1016/j.gaitpost.2024.05.033] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/22/2023] [Revised: 05/24/2024] [Accepted: 05/30/2024] [Indexed: 06/10/2024]
Abstract
BACKGROUND Rare bone diseases (RBD) cause physical and sensory disability that affects quality of life. Mobility challenges are common for people with RBDs, and travelling to gait analysis labs can be very complex. Smartphone sensors could provide remote monitoring. RESEARCH QUESTION This study aimed to search for and identify variables that can be used to discriminate between people with RBD and healthy people by using built-in smartphone sensors in a real-world setting. METHODS In total, 18 participants (healthy: n=9; RBD: n=9), controlled by age and sex, were included in this cross-sectional study. A freely available App (Phyphox) was used to gather data from built-in smartphone sensors (accelerometer & gyroscope) at 60 Hz during a 15-min walk on a level surface without turns or stops. Temporal gait parameters like cadence, mean stride time and, coefficient variance (CoVSt) and nonlinear analyses, as the largest Lyapunov exponent (LLE) & sample entropy (SE) in the three accelerometer axes were used to distinguish between the groups and describe gait patterns. RESULTS The LLE (p=0.04) and the SE of the z-axis (p=0.01), which are correlated with balance control during walking and regularity of the gait, are sufficiently sensitive to distinguish between RBD and controls. SIGNIFICANCE The use of smartphone sensors to monitor gait in people with RBD allows for the identification of subtle changes in gait patterns, which can be used to inform assessment and management strategies in larger cohorts.
Collapse
Affiliation(s)
- Sascha Fink
- Institute of Human Movement Science, Sport and Health, University of Graz, Schubertstrasse 1/III, Graz 8010, Austria; Institute for applied Human movement Science, Carinthia University of Applied Sciences, Europastraße 4, Villach 9524, Austria; Institute for applied research on Aging, Carinthia University of Applied Sciences, Europastraße 4, Villach 9524, Austria.
| | - Michael Suppanz
- Institute for applied Human movement Science, Carinthia University of Applied Sciences, Europastraße 4, Villach 9524, Austria
| | - Johannes Oberzaucher
- Institute for applied research on Aging, Carinthia University of Applied Sciences, Europastraße 4, Villach 9524, Austria
| | - Maria António Castro
- RoboCorp Laboratory, i2A, Polytechnic Institute of Coimbra, Coimbra 3046-854, Portugal; School of Health Sciences, Polytechnic Institute of Leiria, Leiria 2411-901, Portugal
| | - Orlando Fernandes
- Sport and Health Department, School of Health and Human Development, University of Évora, Évora 7000-671, Portugal; Comprehensive Health Research Center (CHRC), University of Évora, Évora 7000-671, Portugal
| | - Inês Alves
- Sport and Health Department, School of Health and Human Development, University of Évora, Évora 7000-671, Portugal; Comprehensive Health Research Center (CHRC), University of Évora, Évora 7000-671, Portugal; ANDO Portugal, National Association for Skeletal Dysplasias, Évora 7005-144, Portugal
| |
Collapse
|
6
|
Tang W, Wu K, Zhou Q, Tang Y, Fu J, Dong G, Zou C. Genotype and phenotype in patients with ACAN gene variants: Three cases and literature review. Mol Genet Genomic Med 2024; 12:e2439. [PMID: 38613222 PMCID: PMC11015147 DOI: 10.1002/mgg3.2439] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2023] [Revised: 03/25/2024] [Accepted: 03/28/2024] [Indexed: 04/14/2024] Open
Abstract
OBJECTIVE To characterize the phenotype spectrum, diagnosis, and response to growth-promoting therapy in patients with ACAN variants causing familial short stature. METHODS Three families with ACAN variants causing short stature were reported. Similar cases in the literature were summarized, and the genotype and phenotype were analyzed. RESULTS Three novel heterozygous variants, c.757+1G>A, (splicing), c.6229delG, p.(Asp2078Tfs*1), and c.6679C>T, p.(Gln2227*) in the ACAN gene were identified. A total of 314 individuals with heterozygous variants from 105 families and 8 individuals with homozygous variants from 4 families were confirmed to have ACAN variants from literature and our 3 cases. Including our 3 cases, the variants reported comprised 33 frameshift, 39 missense, 23 nonsense, 5 splicing, 4 deletion, and 1 translocation variants. Variation points are scattered throughout the gene, while exons 12, 15, and 10 were most common (25/105, 11/105, and 10/105, respectively). Some identical variants existing in different families could be hot variants, c.532A>T, p.(Asn178Tyr), c.1411C>T, p.(Gln471*), c.1608C>A, p.(Tyr536*), c.2026+1G>A, (splicing), and c.7276G>T, p.(Glu2426*). Short stature, early-onset osteoarthritis, brachydactyly, midfacial hypoplasia, and early growth cessation were the common phenotypic features. The 48 children who received rhGH (and GnRHa) treatment had a significant height improvement compared with before (-2.18 ± 1.06 SD vs. -2.69 ± 0.95 SD, p < 0.001). The heights of children who received rhGH (and GnRHa) treatment were significantly improved compared with those of untreated adults (-2.20 ± 1.10 SD vs. -3.24 ± 1.14 SD, p < 0.001). CONCLUSION Our study achieves a new understanding of the phenotypic spectrum, diagnosis, and management of individuals with ACAN variants. No clear genotype-phenotype relationship of patients with ACAN variants was found. Gene sequencing is necessary to diagnose ACAN variants that cause short stature. In general, appropriate rhGH and/or GnRHa therapy can improve the adult height of affected pediatric patients caused by ACAN variants.
Collapse
Affiliation(s)
- Wei Tang
- Department of PulmonaryChildren's Hospital of Zhejiang University School of MedicineHangzhouChina
| | - Ke‐Mi Wu
- Department of PulmonaryChildren's Hospital of Zhejiang University School of MedicineHangzhouChina
| | - Qiong Zhou
- Department of PulmonaryChildren's Hospital of Zhejiang University School of MedicineHangzhouChina
- Department of PediatricsHangzhou Children's HospitalHangzhouChina
| | - Yan‐Fei Tang
- Department of PulmonaryChildren's Hospital of Zhejiang University School of MedicineHangzhouChina
- Department of PediatricsJiaxing Second people's HospitalJiaxingChina
| | - Jun‐Fen Fu
- Department of EndocrinologyChildren's Hospital of Zhejiang University School of MedicineHangzhouChina
| | - Guan‐Ping Dong
- Department of EndocrinologyChildren's Hospital of Zhejiang University School of MedicineHangzhouChina
| | - Chao‐Chun Zou
- Department of EndocrinologyChildren's Hospital of Zhejiang University School of MedicineHangzhouChina
| |
Collapse
|
7
|
Wu S, Liu K, Huang X, Sun Q, Wu X, Mehmood K, Li Y, Zhang H. Molecular mechanism of miR-203a targeting Runx2 to regulate thiram induced-chondrocyte development. PESTICIDE BIOCHEMISTRY AND PHYSIOLOGY 2024; 200:105817. [PMID: 38582587 DOI: 10.1016/j.pestbp.2024.105817] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/10/2023] [Revised: 01/14/2024] [Accepted: 02/06/2024] [Indexed: 04/08/2024]
Abstract
Thiram is a kind of organic compound, which is commonly used for sterilization, insecticidal and deodorization in daily life. Its toxicology has been broadly studied. Recently, more and more microRNAs have been shown to participate in the regulation of cartilage development. However, the potential mechanism by which microRNA regulates chondrocyte growth is still unclear. Our experiments have demonstrated that thiram can hamper chondrocytes development and cause a significant increase in miR-203a content in vitro and in vivo trials. miR-203a mimic significantly decrease in mRNA and protein expression of Wnt4, Runx2, COL2A1, β-catenin and ALP, and significantly enhance the mRNA and protein levels of GSK-3β. It has been observed that overexpression of miR-203a hindered chondrocytes development. In addition, Runx2 was confirmed to be a direct target of miR-203a by dual luciferase report gene assay. Transfection of si-Runx2 into chondrocytes reveals that significant downregulation of genes is associated with cartilage development. Overall, these results suggest that overexpression of miR-203a inhibits the expression of Runx2. These findings are conducive to elucidate the mechanism of chondrocytes dysplasia induced by thiram and provide new research ideas for the toxicology of thiram.
Collapse
Affiliation(s)
- Shouyan Wu
- College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, China
| | - Kai Liu
- College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, China
| | - Xiaojuan Huang
- College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, China
| | - Qiuyu Sun
- College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, China
| | - Xiaomei Wu
- College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, China
| | - Khalid Mehmood
- Faculty of Veterinary and Animal Sciences, The Islamia University of Bahawalpur, Pakistan 63100
| | - Ying Li
- College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, China
| | - Hui Zhang
- College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, China.
| |
Collapse
|
8
|
Chen X, Cai D, Li H, Wei Q, Li X, Han Z, Liang J, Xie J, Ruan J, Liu J, Xiang Z, Dong W, Guo W. Exosomal U2AF2 derived from human bone marrow mesenchymal stem cells attenuates the intervertebral disc degeneration through circ_0036763/miR-583/ACAN axis. Regen Ther 2024; 25:344-354. [PMID: 38362337 PMCID: PMC10867602 DOI: 10.1016/j.reth.2024.01.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2023] [Revised: 01/18/2024] [Accepted: 01/25/2024] [Indexed: 02/17/2024] Open
Abstract
Intervertebral disc degeneration (IDD) is one of the major leading causes of back pain affecting the patient's quality of life. However, the roles of circular RNA (circRNA) in IDD remains unclear. This study aimed to explore the function and underlying mechanism of circ_0036763 in IDD. In this study, expressions of circ_0036763, U2 small nuclear RNA auxiliary factor 2 (U2AF2), miR-583 and aggrecan (ACAN) in primary human nucleus pulposus cells (HNPCs) derived from IDD patients and healthy controls were detected by quantitative real-time reverse transcription-PCR (qRT-PCR) or Western blot (WB). The relationship between pre-circ_0036763 and U2AF2, circ_0036763 and miR-583, miR-583 and ACAN mRNA was determined by bioinformatic analysis, miRNA pull down or RNA immunoprecipitation (RIP) assay. The expressions of Collagen I and Collagen II were evaluated by WB. Co-culture of bone marrow mesenchymal stem cells (bMSCs) or bMSCs-derived exosomes and HNPCs were performed to identify the effect of U2AF2 on the mature of circ_0036763 and ACAN. Results indicated that circ_0036763, U2AF2 and ACAN were downregulated while miR-583 was upregulated in HNPCs derived from IDD patients compared with that in normal HNPCs. Besides, overexpression of circ_0036763 elevated the expressions of ACAN and Collagen II whereas reduced Collagen I expression in HNPCs. Moreover, U2AF2 promoted the mature of circ_0036763, and circ_0036763 positively regulated ACAN by directly sponging miR-583. Furthermore, exosomal U2AF2 derived from bMSCs could increase U2AF2 levels in HNPCs and subsequently regulate the expression of ACAN by circ_0036763/miR-583 axis. In summary, circ_0036763 modified by exosomal U2AF2 derived from bMSCs alleviated IDD through regulating miR-583/ACAN axis in HNPCs. Thus, this study might provide novel therapeutic targets for IDD.
Collapse
Affiliation(s)
- Xiaofeng Chen
- Department of Orthopedics, Panyu Hospital of Chinese Medicine, No.93 and 65 Qiaodong Road, Panyu District, Guangzhou 511400, China
| | - Dongling Cai
- Department of Orthopedics, Panyu Hospital of Chinese Medicine, No.93 and 65 Qiaodong Road, Panyu District, Guangzhou 511400, China
| | - Hao Li
- Department of Orthopedics, Panyu Hospital of Chinese Medicine, No.93 and 65 Qiaodong Road, Panyu District, Guangzhou 511400, China
| | - Qipeng Wei
- Department of Orthopedics, Panyu Hospital of Chinese Medicine, No.93 and 65 Qiaodong Road, Panyu District, Guangzhou 511400, China
| | - Xi Li
- Department of Dermatology, Panyu Hospital of Chinese Medicine, No.93 and 65 Qiaodong Road, Panyu District, Guangzhou 511400, China
- Guangzhou University of Chinese Medicine, No.12 Jichang Road, Baiyun Disitrct, Guangzhou 510405, China
| | - Zhuangxun Han
- Department of Orthopedics, Panyu Hospital of Chinese Medicine, No.93 and 65 Qiaodong Road, Panyu District, Guangzhou 511400, China
| | - Jinjun Liang
- Department of Orthopedics, Panyu Hospital of Chinese Medicine, No.93 and 65 Qiaodong Road, Panyu District, Guangzhou 511400, China
| | - Junxian Xie
- Department of Orthopedics, Panyu Hospital of Chinese Medicine, No.93 and 65 Qiaodong Road, Panyu District, Guangzhou 511400, China
| | - Jiajian Ruan
- Guangzhou University of Chinese Medicine, No.12 Jichang Road, Baiyun Disitrct, Guangzhou 510405, China
| | - Jincheng Liu
- Guangzhou University of Chinese Medicine, No.12 Jichang Road, Baiyun Disitrct, Guangzhou 510405, China
| | - Zhen Xiang
- Guangzhou University of Chinese Medicine, No.12 Jichang Road, Baiyun Disitrct, Guangzhou 510405, China
| | - Wenxuan Dong
- Guangzhou University of Chinese Medicine, No.12 Jichang Road, Baiyun Disitrct, Guangzhou 510405, China
| | - Weijun Guo
- Department of Orthopedics, Panyu Hospital of Chinese Medicine, No.93 and 65 Qiaodong Road, Panyu District, Guangzhou 511400, China
| |
Collapse
|
9
|
Ahmed HA, Elhossini R, Aglan M, Amr K. Aggrecan-related bone disorders; a novel heterozygous ACAN variant associated with spondyloepimetaphyseal dysplasia expanding the phenotypic spectrum and review of literature. J Genet Eng Biotechnol 2024; 22:100341. [PMID: 38494255 PMCID: PMC10860877 DOI: 10.1016/j.jgeb.2023.100341] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/19/2024]
Abstract
BACKGROUND Spondyloepimetaphyseal dysplasias (SEMD) are a large group of skeletal disorders represented by abnormalities of vertebrae in addition to epiphyseal and metaphyseal areas of bones. Several genes have been identified underlying different forms. ACAN gene mutations were found to cause Aggrecan-related bone disorders (spondyloepimetaphyseal dysplasias,spondyloepiphyseal dysplasias, familial osteochondritis dissecans and short stature syndromes). This study aims to find the disease causing variant in Egyptian patient with SEMD using whole exome sequencing. METHODS Whole-exome sequencing was performed for an Egyptian male patient who presented with short stature, clinical and radiological features suggestive of unclassified SEMD. RESULTS The study identified a novel de novo heterozygous ACAN gene variant (c.7378G>A; p.Gly2460Arg) in G3 domain. Mutations in ACAN gene have been more commonly associated with short stature than SEMD. The phenotype of our patient was intermediate in severity between spondyloepiphyseal dysplasia presentation; Kimberley type(SEDK) and Spondyloepimetaphyseal dysplasias Aggrecan (SEMDAG) CONCLUSIONS: Whole exome sequencing revealed a novel de novo ACAN gene variant in patient with SEDK. The clinical and skeletal phenotype of our patient was much severe than those reported originally and showed more metaphyseal involvement. To the best of our knowledge, two previous studies reported a heterozygous variant in ACAN with spondyloepiphyseal dysplasia presentation; Kimberley type.
Collapse
Affiliation(s)
- Hoda A Ahmed
- Medical Molecular Genetics Department, Human Genetics and Genome Research Institute, National Research Centre, Egypt.
| | - R Elhossini
- Department of Clinical Genetics, Human Genetics and Genome Research Institute, National Research Centre, Egypt
| | - M Aglan
- Department of Clinical Genetics, Human Genetics and Genome Research Institute, National Research Centre, Egypt
| | - Khalda Amr
- Medical Molecular Genetics Department, Human Genetics and Genome Research Institute, National Research Centre, Egypt
| |
Collapse
|
10
|
Sao K, Risbud MV. Proteoglycan Dysfunction: A Common Link Between Intervertebral Disc Degeneration and Skeletal Dysplasia. Neurospine 2024; 21:162-178. [PMID: 38569642 PMCID: PMC10992626 DOI: 10.14245/ns.2347342.671] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2023] [Revised: 02/04/2024] [Accepted: 02/23/2024] [Indexed: 04/05/2024] Open
Abstract
Proteoglycans through their sulfated glycosaminoglycans regulate cell-matrix signaling during tissue development, regeneration, and degeneration processes. Large extracellular proteoglycans such as aggrecan, versican, and perlecan are especially important for the structural integrity of the intervertebral disc and cartilage during development. In these tissues, proteoglycans are responsible for hydration, joint flexibility, and the absorption of mechanical loads. Loss or reduction of these molecules can lead to disc degeneration and skeletal dysplasia, evident from loss of disc height or defects in skeletal development respectively. In this review, we discuss the common proteoglycans found in the disc and cartilage and elaborate on various murine models and skeletal dysplasias in humans to highlight how their absence and/or aberrant expression causes accelerated disc degeneration and developmental defects.
Collapse
Affiliation(s)
- Kimheak Sao
- Graduate Program in Cell Biology and Regenerative Medicine, Jefferson College of Life Sciences, Thomas Jefferson University, Philadelphia, PA, USA
- Department of Orthopaedic Surgery, Sidney Kimmel Medical College, Thomas Jefferson University, Philadelphia, PA, USA
| | - Makarand V. Risbud
- Graduate Program in Cell Biology and Regenerative Medicine, Jefferson College of Life Sciences, Thomas Jefferson University, Philadelphia, PA, USA
- Department of Orthopaedic Surgery, Sidney Kimmel Medical College, Thomas Jefferson University, Philadelphia, PA, USA
| |
Collapse
|
11
|
Kobayashi Y, Eguchi A, Imami K, Tempaku M, Izuoka K, Takase T, Kainuma K, Nagao M, Furuta N, Iwasa M, Nakagawa H, Fujisawa T, Togashi K. Circulating extracellular vesicles are associated with pathophysiological condition including metabolic syndrome-related dysmetabolism in children and adolescents with obesity. J Mol Med (Berl) 2024; 102:23-38. [PMID: 37874387 DOI: 10.1007/s00109-023-02386-5] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2023] [Revised: 10/11/2023] [Accepted: 10/13/2023] [Indexed: 10/25/2023]
Abstract
Obesity of children and adolescents (OCA) is often accompanied by metabolic syndrome (MetS), which often leads to adult obesity and subsequent complications, yet the entire pathophysiological response is not fully understood. The number and composition of circulating extracellular vesicles (EV) reflect overall patient condition; therefore, we investigated the pathophysiological condition of OCA, including MetS-associated dysmetabolism, using circulating EVs. In total, 107 children and adolescents with or without obesity (boys, n = 69; girls, n = 38; median age, 10 years) were enrolled. Circulating EV number and EV protein composition were assessed via flow cytometry and liquid chromatography tandem-mass spectrometry, respectively. In a multivariate analysis, relative body weight (standardized partial regression coefficient (SPRC) 0.469, P = 0.012) and serum triglyceride level (SPRC 0.548, P < 0.001) were detected as independent parameters correlating with circulating EV number. Proteomic analysis identified 31 upregulated and 45 downregulated EV proteins in OCA. Gene ontology analysis revealed upregulated proteins to be involved in various biological processes, including intracellular protein transport, protein folding, stress response, leukocyte activation, innate immune response, and platelet degranulation, which can modulate lipid and glucose metabolism, skeletal and cardiac muscle development, inflammation, immune response, carcinogenesis, and cancer progression. Notably, several identified EV proteins are involved in neuro-development, neurotransmitter release, and neuro-protective agents in OCA. Circulating EVs were derived from adipocytes, hepatocytes, B cell lymphocytes, and neurons. Circulating EV number is significantly associated with MetS-related dysmetabolism and the EV protein cargo carries a special "signature" that reflects the alteration of various biological processes under the pathophysiological condition of OCA. KEY MESSAGES: Circulating EV number correlates with physical and laboratory parameters for obesity in children and adolescents. Relative body weight and triglyceride are independent factors for increased circulating EVs. EV composition is significantly changed in obesity of children and adolescents. Identified EV composition changes associated with obesity and involves in metabolism, immune response, and cancer progression. Circulating EVs are partially derived from adipocyte, hepatocytes, B cells, and neurons.
Collapse
Affiliation(s)
- Yoshinao Kobayashi
- Center for Physical and Mental Health, Mie University Graduate School of Medicine, Tsu, Mie, 514-8507, Japan
- Department of Gastroenterology and Hepatology, Mie University Graduate School of Medicine, 2-174 Edobashi, Tsu, Mie, 514-8507, Japan
| | - Akiko Eguchi
- Department of Gastroenterology and Hepatology, Mie University Graduate School of Medicine, 2-174 Edobashi, Tsu, Mie, 514-8507, Japan.
- JST, PRESTO, 4-1-8 Honcho, Kawaguchi, Saitama, 332-0012, Japan.
- Biobank Center, Mie University Hospital, Tsu, Mie, 514-8507, Japan.
| | - Koshi Imami
- JST, PRESTO, 4-1-8 Honcho, Kawaguchi, Saitama, 332-0012, Japan
- Graduate School of Pharmaceutical Sciences, Kyoto University, Kyoto, 606-8501, Japan
- RIKEN Center for Integrative Medical Sciences, Yokohama, 230-0045, Japan
| | - Mina Tempaku
- Department of Gastroenterology and Hepatology, Mie University Graduate School of Medicine, 2-174 Edobashi, Tsu, Mie, 514-8507, Japan
| | - Kiyora Izuoka
- Department of Gastroenterology and Hepatology, Mie University Graduate School of Medicine, 2-174 Edobashi, Tsu, Mie, 514-8507, Japan
| | - Takafumi Takase
- Department of Pediatrics, National Hospital Organization Mie National Hospital, Tsu, Mie, 514-0125, Japan
| | - Keigo Kainuma
- Department of Pediatrics, National Hospital Organization Mie National Hospital, Tsu, Mie, 514-0125, Japan
| | - Mizuho Nagao
- Department of Pediatrics, National Hospital Organization Mie National Hospital, Tsu, Mie, 514-0125, Japan
| | - Noriko Furuta
- Center for Physical and Mental Health, Mie University Graduate School of Medicine, Tsu, Mie, 514-8507, Japan
| | - Motoh Iwasa
- Department of Gastroenterology and Hepatology, Mie University Graduate School of Medicine, 2-174 Edobashi, Tsu, Mie, 514-8507, Japan
| | - Hayato Nakagawa
- Department of Gastroenterology and Hepatology, Mie University Graduate School of Medicine, 2-174 Edobashi, Tsu, Mie, 514-8507, Japan
| | - Takao Fujisawa
- Department of Pediatrics, National Hospital Organization Mie National Hospital, Tsu, Mie, 514-0125, Japan
| | - Kenji Togashi
- Department of Health and Physical Education, Faculty of Education, Mie University, Tsu, Mie, 514-8507, Japan
| |
Collapse
|
12
|
Alharazy S, Naseer MI. Use of whole exome sequencing for identification of genetic variants related to Growth Hormone Deficiency and Short Stature: A Family-Based Study. Pak J Med Sci 2023; 39:1337-1344. [PMID: 37680843 PMCID: PMC10480707 DOI: 10.12669/pjms.39.5.7601] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2023] [Revised: 04/18/2023] [Accepted: 05/15/2023] [Indexed: 09/09/2023] Open
Abstract
Objective Genetic polymorphisms in genes involved in growth process and Vitamin-D metabolism form a significant etiology behind growth hormone deficiency and short stature. The aim of this study was to explore for known and unknown genes and variants related to growth hormone and short stature in a family based study using whole exome sequencing (WES). Method This family-based study included a family with members diagnosed with growth hormone deficiency, short stature and Vitamin-D deficiency (four boys affected and four boys non-affected). The participants were recruited from King Abdulaziz University Hospital (Jeddah, Saudi Arabia) and referred to King Fahad Centre for Medical Research (Jeddah, Saudi Arabia from April 2022 to June 2022. The consanguineous parents and one of the affected boys (aged 16 years old) underwent WES. Results Several variants in RNPC3, ACAN, GC, VDR and LRP2 were identified in index cases but not in controls. Novel frameshift and splice region variants in RNPC3 (c.358dupA, p.Arg120fs) were detected. Other missense variants were also observed including variants in ACAN (c.2591C>T, c.2789G>T, c.2815T>A, c.4207A>G, c.4523A>C and c.7119C>G), GC (rs4588 and rs7041) and LRP2 (rs2075252 and rs1991517). A start loss variant in VDR (rs2228570) with high impact was also observed. Conclusions Our findings suggest a potential association of these variants with growth hormone deficiency and short stature. In this study, novel pathogenic variants in RNPC3 were revealed as well as other variants in ACAN and in genes related to Vitamin-D metabolism (GC, VDR and LRP2) that some or all might be associated with growth hormone deficiency. Further large-scale studies are required to address the association of these variants with growth hormone deficiency and its subsequent short stature.
Collapse
Affiliation(s)
- Shatha Alharazy
- Shatha Alharazy Department of Physiology, Faculty of Medicine, Center of Excellence in Genomic Medicine Research, King Abdulaziz University, Jeddah 21589, Saudi Arabia
| | - Muhammad Imran Naseer
- Muhammad Imran Naseer Department of Medical Laboratory Technology, Faculty of Applied Medical Sciences, Center of Excellence in Genomic Medicine Research, King Abdulaziz University, Jeddah 21589, Saudi Arabia
| |
Collapse
|
13
|
Sivakumaran TA, Grebe TA. 15q26.3 deletions distal to IGF1R cause growth retardation, congenital heart defect and skeletal anomalies: Case report and review of literature. Am J Med Genet A 2023; 191:2392-2397. [PMID: 37434556 DOI: 10.1002/ajmg.a.63350] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2023] [Revised: 06/23/2023] [Accepted: 06/28/2023] [Indexed: 07/13/2023]
Abstract
15q26 deletion is a rare genomic disorder characterized by intrauterine and postnatal growth retardation, microcephaly, intellectual disability, and congenital malformations. Here, we report a 4-month-old female with intrauterine growth retardation, short stature, pulmonary hypertension, atrial septal defect and congenital bowing of long bones of the legs. Chromosomal microarray analysis showed a de novo deletion of approximately 2.1 Mb at 15q26.3 region that does not include IGF1R. Our analysis of patients documented in the literature and the DECIPHER database with 15q26 deletions distal to IGF1R, including 10 patients with de novo pure deletions, allowed us to define the smallest region of overlap to 686 kb. This region includes ALDH1A3, LRRK1, CHSY1, SELENOS, SNRPA1, and PCSK6. We propose haploinsufficiency of one or more genes, besides IGF1R, within this region may contribute to the clinical findings in patients with 15q26.3 deletion.
Collapse
Affiliation(s)
- Theru A Sivakumaran
- Division of Pathology and Laboratory Medicine, Phoenix Children's Hospital, Phoenix, Arizona, USA
- Department of Child Health, University of Arizona College of Medicine-Phoenix, Phoenix, Arizona, USA
- Department of Pathology, University of Arizona College of Medicine-Phoenix, Phoenix, Arizona, USA
- Department of Pathology, Creighton University School of Medicine, Phoenix, Arizona, USA
| | - Theresa A Grebe
- Department of Child Health, University of Arizona College of Medicine-Phoenix, Phoenix, Arizona, USA
- Division of Genetics and Metabolism, Phoenix Children's Hospital, Phoenix, Arizona, USA
| |
Collapse
|
14
|
Hashim SS, Morgan C, Sarraf KM. Osteochondritis dissecans. Br J Hosp Med (Lond) 2023; 84:1-7. [PMID: 37127418 DOI: 10.12968/hmed.2023.0044] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/03/2023]
Abstract
Osteochondritis dissecans is a condition characterised by acquired pathological subchondral bone lesions and its incidence is unknown. It has a multifactorial aetiology, with a combination of genetic and acquired risk factors. It commonly presents in adolescents and young adults. Patients have variable presentations, including trauma, insidious onset and pain exacerbated by exercise. The joints primarily affected are the knee, ankle and elbow joint. Early identification is key to treatment and to prevent future osteoarthritis of the joint. This article gives an overview of the presentation, assessment and management of the juvenile form of osteochondritis dissecans.
Collapse
Affiliation(s)
- Sophia Sr Hashim
- Department of Trauma and Orthopaedics, Imperial College Healthcare NHS Foundation Trust, London, UK
| | - Catrin Morgan
- Department of Trauma and Orthopaedics, Imperial College Healthcare NHS Foundation Trust, London, UK
| | - Khaled M Sarraf
- Department of Trauma and Orthopaedics, Imperial College Healthcare NHS Foundation Trust, London, UK
| |
Collapse
|
15
|
Karatas E, Demir M, Ozcelik F, Kara L, Akyurek E, Berber U, Hatipoglu N, Ozkul Y, Dundar M. A Case of Short Stature Caused by a Mutation in the ACAN Gene. Mol Syndromol 2023; 14:123-128. [PMID: 37064332 PMCID: PMC10091005 DOI: 10.1159/000526166] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2022] [Accepted: 07/22/2022] [Indexed: 11/19/2022] Open
Abstract
Introduction Aggrecanopathies are rare disorders associated with idiopathic short stature. They are caused by pathogenic changes in the ACAN gene located on chromosome 15q26. In this study, we present a case of short stature caused by mutations in the ACAN gene. Case Presentation A 3-year-3-month-old male patient was referred to us because of his short stature. Physical examination revealed proportional short stature, frontal bossing, macrocephaly, midface hypoplasia, ptosis in the right eye, and wide toes. When the patient was 6 years and 3 months old, his bone age was compatible with 7 years of age. The patient underwent clinical exome sequencing and a heterozygous nonsense c.1243G>T, p.(Glu415*) pathogenic variant was detected in the ACAN gene. The same variant was found in his phenotypically similar father. Our patient is the second case with ptosis. Discussion ACAN gene mutation should be considered in the differential diagnosis of patients with idiopathic short stature. The development and widespread use of next-generation sequencing technology has increased the diagnostic and treatment possibilities.
Collapse
Affiliation(s)
- Emine Karatas
- Medical Genetics Department, Faculty of Medicine, Erciyes University, Kayseri, Turkey
| | - Mikail Demir
- Medical Genetics Department, Faculty of Medicine, Erciyes University, Kayseri, Turkey
| | - Firat Ozcelik
- Medical Genetics Department, Faculty of Medicine, Erciyes University, Kayseri, Turkey
| | - Leyla Kara
- Pediatric Endocrinology Department, Faculty of Medicine, Erciyes University, Kayseri, Turkey
| | - Esra Akyurek
- Pediatric Endocrinology Department, Faculty of Medicine, Erciyes University, Kayseri, Turkey
| | - Ugur Berber
- Pediatric Endocrinology Department, Faculty of Medicine, Erciyes University, Kayseri, Turkey
| | - Nihal Hatipoglu
- Pediatric Endocrinology Department, Faculty of Medicine, Erciyes University, Kayseri, Turkey
| | - Yusuf Ozkul
- Medical Genetics Department, Faculty of Medicine, Erciyes University, Kayseri, Turkey
| | - Munis Dundar
- Medical Genetics Department, Faculty of Medicine, Erciyes University, Kayseri, Turkey
| |
Collapse
|
16
|
Richard D, Pregizer S, Venkatasubramanian D, Raftery RM, Muthuirulan P, Liu Z, Capellini TD, Craft AM. Lineage-specific differences and regulatory networks governing human chondrocyte development. eLife 2023; 12:e79925. [PMID: 36920035 PMCID: PMC10069868 DOI: 10.7554/elife.79925] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2022] [Accepted: 03/14/2023] [Indexed: 03/16/2023] Open
Abstract
To address large gaps in our understanding of the molecular regulation of articular and growth plate cartilage development in humans, we used our directed differentiation approach to generate these distinct cartilage tissues from human embryonic stem cells. The resulting transcriptomic profiles of hESC-derived articular and growth plate chondrocytes were similar to fetal epiphyseal and growth plate chondrocytes, with respect to genes both known and previously unknown to cartilage biology. With the goal to characterize the regulatory landscapes accompanying these respective transcriptomes, we mapped chromatin accessibility in hESC-derived chondrocyte lineages, and mouse embryonic chondrocytes, using ATAC-sequencing. Integration of the expression dataset with the differentially accessible genomic regions revealed lineage-specific gene regulatory networks. We validated functional interactions of two transcription factors (TFs) (RUNX2 in growth plate chondrocytes and RELA in articular chondrocytes) with their predicted genomic targets. The maps we provide thus represent a framework for probing regulatory interactions governing chondrocyte differentiation. This work constitutes a substantial step towards comprehensive and comparative molecular characterizations of distinct chondrogenic lineages and sheds new light on human cartilage development and biology.
Collapse
Affiliation(s)
- Daniel Richard
- Human Evolutionary Biology, Harvard UniversityCambridgeUnited States
| | - Steven Pregizer
- Department of Orthopedic Research, Boston Children’s HospitalBostonUnited States
- Department of Orthopedic Surgery, Harvard Medical SchoolBostonUnited States
| | - Divya Venkatasubramanian
- Department of Orthopedic Research, Boston Children’s HospitalBostonUnited States
- Department of Orthopedic Surgery, Harvard Medical SchoolBostonUnited States
- Department of Molecular and Cellular Biology, Harvard UniversityCambridgeUnited States
| | - Rosanne M Raftery
- Department of Orthopedic Research, Boston Children’s HospitalBostonUnited States
- Department of Orthopedic Surgery, Harvard Medical SchoolBostonUnited States
| | | | - Zun Liu
- Human Evolutionary Biology, Harvard UniversityCambridgeUnited States
| | - Terence D Capellini
- Human Evolutionary Biology, Harvard UniversityCambridgeUnited States
- Broad Institute of MIT and HarvardCambridgeUnited States
| | - April M Craft
- Department of Orthopedic Research, Boston Children’s HospitalBostonUnited States
- Department of Orthopedic Surgery, Harvard Medical SchoolBostonUnited States
- Harvard Stem Cell InstituteCambridgeUnited States
| |
Collapse
|
17
|
Kim SJ, Yoon JS, Hwang IT. A Novel Heterozygous ACAN Variant in a Short Patient Born Small for Gestational Age with Recurrent Patellar Dislocation: A Case Report. J Clin Res Pediatr Endocrinol 2022; 14:481-484. [PMID: 34210114 PMCID: PMC9724056 DOI: 10.4274/jcrpe.galenos.2021.2021.0081] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
ACAN variants can manifest as various clinical features, including short stature, advanced bone age (BA), and skeletal defects. Here, we report rare clinical manifestations of ACAN defects in a 9 year, 5 month-old girl born small for gestational age (SGA), who presented with short stature, and was initially diagnosed with idiopathic growth hormone deficiency. She displayed several dysmorphic features, including genu valgum, cubitus valgus, and recurrent patellar dislocations. She presented with progressive advancement of BA compared with chronological age. Whole exome sequencing confirmed the presence of a novel heterozygous nonsense variant, c.1968C>G, p.(Tyr656*), in ACAN. ACAN variants should be considered in short stature patients born SGA with joint problems, particularly those with recurrent patellar dislocation and genu valgum.
Collapse
Affiliation(s)
- Su Ji Kim
- Hallym University Kangdong Sacred Heart Hospital, Hallym University College of Medicine, Department of Pediatrics, Seoul, Korea
| | - Jong Seo Yoon
- Hallym University Kangdong Sacred Heart Hospital, Hallym University College of Medicine, Department of Pediatrics, Seoul, Korea
| | - Il Tae Hwang
- Hallym University Kangdong Sacred Heart Hospital, Hallym University College of Medicine, Department of Pediatrics, Seoul, Korea,* Address for Correspondence: Hallym University Kangdong Sacred Heart Hospital, Hallym University College of Medicine, Department of Pediatrics, Seoul, Korea Phone: +82-10-2396-1772 E-mail:
| |
Collapse
|
18
|
Wu S, Wang C, Cao Q, Zhu Z, Liu Q, Gu X, Zheng B, Zhou W, Jia Z, Gu W, Li X. The Spectrum of ACAN Gene Mutations in a Selected Chinese Cohort of Short Stature: Genotype-Phenotype Correlation. Front Genet 2022; 13:891040. [PMID: 35620465 PMCID: PMC9127616 DOI: 10.3389/fgene.2022.891040] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2022] [Accepted: 04/21/2022] [Indexed: 11/28/2022] Open
Abstract
Objective: Mutations in the ACAN gene have been reported to cause short stature. However, the prevalence estimates of pathogenic ACAN variants in individuals with short stature vary, and the correlation between ACAN genotype and clinical phenotype remain to be evaluated. To determine the prevalence of ACAN variants among Chinese people with short stature and analyze the relationship between genotype and main clinical manifestations of short stature and advanced bone age among patients with ACAN variants. Methods: We performed next-generation sequencing-based genetic analyses on 442 individuals with short stature. ACAN variants were summarized, previously reported cases were retrospectively analyzed, and an association analysis between genotype and phenotype was conducted. Result: We identified 15 novel and two recurrent ACAN gene variants in 16 different pedigrees that included index patients with short stature. Among the patients with ACAN variants, 12 of 18 had advanced bone age and 7 of 18 received growth hormone therapy, 5 (71.4%) of whom exhibited variable levels of height standard deviation score improvement. Further analysis showed that patients with ACAN truncating variants had shorter height standard deviation scores (p = 0.0001) and larger bone age–chronological age values (p = 0.0464). Moreover, patients in this Asian population had a smaller mean bone age–chronological age value than those that have been determined in European and American populations (p = 0.0033). Conclusion: Our data suggest that ACAN mutation is a common cause of short stature in China, especially among patients with a family history of short stature but also among those who were born short for their gestational age without a family history. Patients with truncating variants were shorter in height and had more obvious advanced bone age, and the proportion of patients with advanced bone age was lower in this Asian population than in Europe and America.
Collapse
Affiliation(s)
- Su Wu
- Department of Endocrinology, Children's Hospital of Nanjing Medical University, Nanjing, China
| | - Chunli Wang
- Nanjing Key Laboratory of Pediatrics, Children's Hospital of Nanjing Medical University, Nanjing, China
| | - Qing Cao
- Department of Child Health Care, Children's Hospital of Nanjing Medical University, Nanjing, China
| | - Ziyang Zhu
- Department of Endocrinology, Children's Hospital of Nanjing Medical University, Nanjing, China
| | - Qianqi Liu
- Department of Child Health Care, Children's Hospital of Nanjing Medical University, Nanjing, China
| | - Xinyan Gu
- School of Pediatrics, Nanjing Medical University, Nanjing, China
| | - Bixia Zheng
- Nanjing Key Laboratory of Pediatrics, Children's Hospital of Nanjing Medical University, Nanjing, China
| | - Wei Zhou
- Nanjing Key Laboratory of Pediatrics, Children's Hospital of Nanjing Medical University, Nanjing, China
| | - Zhanjun Jia
- Nanjing Key Laboratory of Pediatrics, Children's Hospital of Nanjing Medical University, Nanjing, China
| | - Wei Gu
- Department of Endocrinology, Children's Hospital of Nanjing Medical University, Nanjing, China
| | - Xiaonan Li
- Department of Child Health Care, Children's Hospital of Nanjing Medical University, Nanjing, China
| |
Collapse
|
19
|
Cao Y, Guan X, Li S, Wu N, Chen X, Yang T, Yang B, Zhao X. Identification of variants in ACAN and PAPSS2 leading to spondyloepi(meta)physeal dysplasias in four Chinese families. Mol Genet Genomic Med 2022; 10:e1916. [PMID: 35261200 PMCID: PMC9034684 DOI: 10.1002/mgg3.1916] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2021] [Revised: 02/16/2022] [Accepted: 02/17/2022] [Indexed: 12/13/2022] Open
Abstract
Background Spondyloepi(meta)physeal dysplasias (SE[M]D) are a group of inherited skeletal disorders that mainly affect bone and cartilage, and next‐generation sequencing has aided the detection of genetic defects of such diseases. In this study, we aimed to identify causative variants in four Chinese families associated with SE(M)D. Methods We recruited four unrelated Chinese families all displaying short stature and growth retardation. Clinical manifestations and X‐ray imaging were recorded for all patients. Candidate variants were identified by whole‐exome sequencing (WES) and verified by Sanger sequencing. Pathogenicity was assessed by conservation analysis, 3D protein modeling and in silico prediction, and was confirmed according to American College of Medical Genetics and Genomics. Results Three novel SE(M)D‐related variants c.1090dupG, c.7168 T > G, and c.2947G > C in ACAN, and one reported variant c.712C > T in PAPSS2 were identified. Among them, c.1090dupG in ACAN and c.712C > T in PAPSS2 caused truncated protein and the other two variants led to amino acid alterations. Conservation analysis revealed sites of the two missense variants were highly conserved, and bioinformatic findings confirmed their pathogenicity. 3D modeling of mutant protein encoded by c.7168 T > G(p.Trp2390Gly) in ACAN proved the structural alteration in protein level. Conclusion Our data suggested ACAN is a common pathogenic gene of SE(M)D. This study enriched the genetic background of skeletal dysplasias, and expanded the mutation spectra of ACAN and PAPSS2.
Collapse
Affiliation(s)
- Yixuan Cao
- Department of Medical Genetics, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences & School of Basic Medicine, Peking Union Medical College, Beijing, China
| | - Xin Guan
- Department of Medical Genetics, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences & School of Basic Medicine, Peking Union Medical College, Beijing, China
| | - Shan Li
- Department of Medical Genetics, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences & School of Basic Medicine, Peking Union Medical College, Beijing, China
| | - Nan Wu
- Department of Orthopedic Surgery, Peking Union Medical College Hospital, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing, China
| | - Xiumin Chen
- Department of Medical Genetics, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences & School of Basic Medicine, Peking Union Medical College, Beijing, China
| | - Tao Yang
- Department of Medical Genetics, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences & School of Basic Medicine, Peking Union Medical College, Beijing, China
| | - Bo Yang
- Department of Orthopedic Surgery, Peking Union Medical College Hospital, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing, China
| | - Xiuli Zhao
- Department of Medical Genetics, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences & School of Basic Medicine, Peking Union Medical College, Beijing, China
| |
Collapse
|
20
|
Okamoto M, Hamada J, Ochi F, Fukami M, Eguchi M. Short stature in a child with a novel Aggrecan gene variant: A case report. Pediatr Int 2022; 64:e15116. [PMID: 35396811 DOI: 10.1111/ped.15116] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/20/2020] [Revised: 12/10/2021] [Accepted: 12/23/2021] [Indexed: 01/05/2023]
Affiliation(s)
- Michiko Okamoto
- Department of Pediatrics, Ehime University Graduate School of Medicine, Shitsukawa, Toon, Ehime, Japan
| | - Junpei Hamada
- Department of Pediatrics, Ehime University Graduate School of Medicine, Shitsukawa, Toon, Ehime, Japan
| | - Fumihiro Ochi
- Department of Pediatrics, Ehime University Graduate School of Medicine, Shitsukawa, Toon, Ehime, Japan
| | - Maki Fukami
- Department of Molecular Endocrinology, National Research Institute for Child Health and Development, Setagaya, Tokyo, Japan
| | - Mariko Eguchi
- Department of Pediatrics, Ehime University Graduate School of Medicine, Shitsukawa, Toon, Ehime, Japan
| |
Collapse
|
21
|
Satoh M, Hasegawa Y. Factors affecting prepubertal and pubertal bone age progression. Front Endocrinol (Lausanne) 2022; 13:967711. [PMID: 36072933 PMCID: PMC9441639 DOI: 10.3389/fendo.2022.967711] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/13/2022] [Accepted: 08/03/2022] [Indexed: 12/03/2022] Open
Abstract
Bone age (BA) is a clinical marker of bone maturation which indicates the developmental stage of endochondral ossification at the epiphysis and the growth plate. Hormones that promote the endochondral ossification process include growth hormone, insulin-like growth factor-1, thyroid hormone, estrogens, and androgens. In particular, estrogens are essential for growth plate fusion and closure in both sexes. Bone maturation in female children is more advanced than in male children of all ages. The promotion of bone maturation seen in females before the onset of puberty is thought to be an effect of estrogen because estrogen levels are higher in females than in males before puberty. Sex hormones are essential for bone maturation during puberty. Since females have their pubertal onset about two years earlier than males, bone maturation in females is more advanced than in males during puberty. In the present study, we aimed to review the factors affecting prepubertal and pubertal BA progression, BA progression in children with hypogonadism, and bone maturation and deformities in children with Turner syndrome.
Collapse
Affiliation(s)
- Mari Satoh
- Department of Pediatrics, Toho University Omori Medical Center, Tokyo, Japan
- *Correspondence: Mari Satoh,
| | - Yukihiro Hasegawa
- Division of Endocrinology and Metabolism, Tokyo Metropolitan Children’s Medical Center, Tokyo, Japan
| |
Collapse
|
22
|
Mancioppi V, Prodam F, Mellone S, Ricotti R, Giglione E, Grasso N, Vurchio D, Petri A, Rabbone I, Giordano M, Bellone S. Retrospective Diagnosis of a Novel ACAN Pathogenic Variant in a Family With Short Stature: A Case Report and Review of the Literature. Front Genet 2021; 12:708864. [PMID: 34456977 PMCID: PMC8397523 DOI: 10.3389/fgene.2021.708864] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2021] [Accepted: 07/19/2021] [Indexed: 11/13/2022] Open
Abstract
Short stature is a frequent disorder in the pediatric population and can be caused by multiple factors. In the last few years, the introduction of Next Generation Sequencing (NGS) in the molecular diagnostic workflow led to the discovery of mutations in novel genes causing short stature including heterozygous mutations in ACAN gene. It encodes for aggrecan, a primary proteoglycan component specific for the structure of the cartilage growth plate, articular and intervertebral disc. We report a novel ACAN heterozygous pathogenic variant in a family with idiopathic short stature, early-onset osteoarthritis and osteoarthritis dissecans (SSOAOD). We also performed a literature review summarizing the clinical characteristic of ACAN's patients. The probands are two Caucasian sisters with a family history of short stature and osteoarthritis dissecans. They showed dysmorphic features such as mild midface hypoplasia, brachydactyly and broad thumbs, especially the great toes. The same phenotype was presented in the mother who had had short stature and suffered from intervertebral disc disease. DNA sequencing identified a heterozygous pathogenic variation (c.4390delG p.Val1464Ter) in the sisters, with a maternal inheritance. The nonsense mutation, located on exon 12, results in premature truncation and presumed loss of protein function. In terms of treatment, our patients underwent recombinant human growth hormone replacement therapy, associated with gonadotropin releasing hormone therapy, in order to block early growth cessation and therefore reach a better final height. Our case suggests that SSOAOD ACAN related should be considered in the differential diagnosis of children with autosomal dominant short stature and family history of joints disease.
Collapse
Affiliation(s)
- Valentina Mancioppi
- Division of Pediatrics, Department of Health Sciences, University of Piemonte Orientale, Novara, Italy
| | - Flavia Prodam
- Division of Pediatrics, Department of Health Sciences, University of Piemonte Orientale, Novara, Italy.,Endocrinology, Department of Translational Medicine, University of Piemonte Orientale, Novara, Italy.,Interdisciplinary Research Center of Autoimmune and Allergic Diseases, University of Piemonte Orientale, Novara, Italy
| | - Simona Mellone
- Laboratory of Genetics, SCDU Biochimica Clinica, Ospedale Maggiore della Carità, Novara, Italy
| | - Roberta Ricotti
- Division of Pediatrics, Department of Health Sciences, University of Piemonte Orientale, Novara, Italy
| | - Enza Giglione
- Division of Pediatrics, Department of Health Sciences, University of Piemonte Orientale, Novara, Italy
| | - Nicolino Grasso
- Division of Pediatrics, Department of Health Sciences, University of Piemonte Orientale, Novara, Italy
| | - Denise Vurchio
- Laboratory of Genetics, SCDU Biochimica Clinica, Ospedale Maggiore della Carità, Novara, Italy
| | - Antonella Petri
- Division of Pediatrics, Department of Health Sciences, University of Piemonte Orientale, Novara, Italy
| | - Ivana Rabbone
- Division of Pediatrics, Department of Health Sciences, University of Piemonte Orientale, Novara, Italy
| | - Mara Giordano
- Laboratory of Genetics, SCDU Biochimica Clinica, Ospedale Maggiore della Carità, Novara, Italy.,Department of Health Sciences, University of Piemonte Orientale, Novara, Italy
| | - Simonetta Bellone
- Division of Pediatrics, Department of Health Sciences, University of Piemonte Orientale, Novara, Italy.,Interdisciplinary Research Center of Autoimmune and Allergic Diseases, University of Piemonte Orientale, Novara, Italy
| |
Collapse
|
23
|
Toscano P, Di Meglio L, Lonardo F, Di Meglio L, Mazzarelli LL, Sica C, Di Meglio A. Prenatal diagnosis of a novel pathogenic variation in the ACAN gene presenting with isolated shortening of fetal long bones in the second trimester of gestation: a case report. BMC Pregnancy Childbirth 2021; 21:459. [PMID: 34187405 PMCID: PMC8243643 DOI: 10.1186/s12884-021-03952-w] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2021] [Accepted: 06/10/2021] [Indexed: 12/28/2022] Open
Abstract
BACKGROUND Heterozygous mutations of the ACAN gene are a major cause of different evolutive growth defects in the pediatric population, but were never described as a cause of fetal skeletal dysplasia. CASE PRESENTATION A G1 at 21w + 3d came to our institution for the second-trimester ultrasound and a skeletal dysplasia with prevalent involvement of limb's rhizomelic tracts was suspected. Amniocentesis followed by CGH-array was performed, with normal results. An examination by NGS of some genes associated with skeletal dysplasias showed a novel pathogenic variant of the ACAN gene: c.2677delG. CONCLUSION Sequence variations of ACAN were never described as a possible cause of fetal skeletal anomalies to date. In this case report, we describe the first prenatal diagnosis of skeletal dysplasia associated with a pathogenic variant of ACAN.
Collapse
Affiliation(s)
- Paolo Toscano
- Department of Neuroscience, Reproductive Sciences and Dentistry, School of Medicine and Surgery Federico II of Naples, University of Naples Federico II, Naples, Italy
- Diagnostica Ecografica e Prenatale di A. Di Meglio, Via dei Fiorentini n.21, Naples, Italy
| | - Lavinia Di Meglio
- Diagnostica Ecografica e Prenatale di A. Di Meglio, Via dei Fiorentini n.21, Naples, Italy.
- Department of Obstetrics and Gynecology, H. Buzzi, University of Milan, Milan, Italy.
| | - Fortunato Lonardo
- Department of Medical Genetics, A.O.R.N. "San Pio", Benevento, Italy
| | - Letizia Di Meglio
- Diagnostica Ecografica e Prenatale di A. Di Meglio, Via dei Fiorentini n.21, Naples, Italy
| | - Laura Letizia Mazzarelli
- Department of Neuroscience, Reproductive Sciences and Dentistry, School of Medicine and Surgery Federico II of Naples, University of Naples Federico II, Naples, Italy
- Diagnostica Ecografica e Prenatale di A. Di Meglio, Via dei Fiorentini n.21, Naples, Italy
| | - Carmine Sica
- Diagnostica Ecografica e Prenatale di A. Di Meglio, Via dei Fiorentini n.21, Naples, Italy
| | - Aniello Di Meglio
- Diagnostica Ecografica e Prenatale di A. Di Meglio, Via dei Fiorentini n.21, Naples, Italy
| |
Collapse
|
24
|
König KC, Lahm H, Dreßen M, Doppler SA, Eichhorn S, Beck N, Kraehschuetz K, Doll S, Holdenrieder S, Kastrati A, Lange R, Krane M. Aggrecan: a new biomarker for acute type A aortic dissection. Sci Rep 2021; 11:10371. [PMID: 33990642 PMCID: PMC8121825 DOI: 10.1038/s41598-021-89653-y] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2021] [Accepted: 04/19/2021] [Indexed: 12/27/2022] Open
Abstract
Acute type A aortic dissection (ATAAD) constitutes a life-threatening aortic pathology with significant morbidity and mortality. Without surgical intervention the usual mortality rate averages between 1 and 2% per hour. Thus, an early diagnosis of ATAAD is of pivotal importance to direct the affected patients to the appropriate treatment. Preceding tests to find an appropriate biomarker showed among others an increased aggrecan (ACAN) mRNA expression in aortic tissue of ATAAD patients. As a consequence, we investigated whether ACAN is a potential biomarker for diagnosing ATAAD. Mean ACAN protein concentration showed a significantly higher plasma concentration in ATAAD patients (38.59 ng/mL, n = 33) compared to plasma of patients with thoracic aortic aneurysms (4.45 ng/mL, n = 13), patients with myocardial infarction (11.77 ng/mL, n = 18) and healthy volunteers (8.05 ng/mL, n = 12). Cardiac enzymes like creatine kinase MB and cardiac troponin T showed no correlation with ACAN levels in ATAAD patients. Receiver-operator characteristics (ROC) curve analysis for ATAAD patients versus control subjects an optimum discrimination limit of ACAN plasma levels at 14.3 ng/mL with a corresponding sensitivity of 97% and specificity of 81%. According to our findings ACAN is a reliable potential biomarker in plasma samples to detect ATAAD with high sensitivity and specificity.
Collapse
Affiliation(s)
- Karl C König
- Division of Experimental Surgery, Department of Cardiovascular Surgery, Institute Insure, German Heart Center Munich, Lazarettstrasse 36, 80636, Munich, Germany.
| | - Harald Lahm
- Division of Experimental Surgery, Department of Cardiovascular Surgery, Institute Insure, German Heart Center Munich, Lazarettstrasse 36, 80636, Munich, Germany.
| | - Martina Dreßen
- Division of Experimental Surgery, Department of Cardiovascular Surgery, Institute Insure, German Heart Center Munich, Lazarettstrasse 36, 80636, Munich, Germany
| | - Stefanie A Doppler
- Division of Experimental Surgery, Department of Cardiovascular Surgery, Institute Insure, German Heart Center Munich, Lazarettstrasse 36, 80636, Munich, Germany
| | - Stefan Eichhorn
- Division of Experimental Surgery, Department of Cardiovascular Surgery, Institute Insure, German Heart Center Munich, Lazarettstrasse 36, 80636, Munich, Germany
| | - Nicole Beck
- Division of Experimental Surgery, Department of Cardiovascular Surgery, Institute Insure, German Heart Center Munich, Lazarettstrasse 36, 80636, Munich, Germany
| | - Kathrin Kraehschuetz
- Division of Experimental Surgery, Department of Cardiovascular Surgery, Institute Insure, German Heart Center Munich, Lazarettstrasse 36, 80636, Munich, Germany
| | - Sophia Doll
- Department of Proteomics and Signal Transduction, Max Planck Institute of Biochemistry, Martinsried, Germany
| | - Stefan Holdenrieder
- Institute of Laboratory Medicine, German Heart Center Munich, Munich, Germany
| | - Adnan Kastrati
- Department of Cardiology, German Heart Center Munich, Munich, Germany
| | - Rüdiger Lange
- Division of Experimental Surgery, Department of Cardiovascular Surgery, Institute Insure, German Heart Center Munich, Lazarettstrasse 36, 80636, Munich, Germany
- DZHK (German Center for Cardiovascular Research) - Partner Site Munich Heart Alliance, Munich, Germany
| | - Markus Krane
- Division of Experimental Surgery, Department of Cardiovascular Surgery, Institute Insure, German Heart Center Munich, Lazarettstrasse 36, 80636, Munich, Germany
- DZHK (German Center for Cardiovascular Research) - Partner Site Munich Heart Alliance, Munich, Germany
| |
Collapse
|
25
|
Li X, He Z, Zhang J, Han Y. Identification of crucial noncoding RNAs and mRNAs in hypertrophic scars via RNA sequencing. FEBS Open Bio 2021; 11:1673-1684. [PMID: 33932142 PMCID: PMC8167876 DOI: 10.1002/2211-5463.13167] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2020] [Revised: 03/04/2021] [Accepted: 04/14/2021] [Indexed: 12/22/2022] Open
Abstract
Hypertrophic scarring (HS) is a dermal fibroproliferative disorder characterized by excessive deposition of collagen and other extracellular matrix components. The aim of this study is to explore crucial long noncoding RNAs (lncRNAs) and circular RNAs (circRNAs) associated with HS and provide a better understanding of the molecular mechanism of HS. To investigate the lncRNA, circRNA and mRNA expression profiles, we performed RNA sequencing of human HS and normal skin tissues. After the identification of differentially expressed mRNAs (DEmRNAs), lncRNAs (DElncRNAs) and circRNAs (DEcircRNAs), we performed functional enrichment of DEmRNAs. Further on, we constructed DElncRNA/DEcircRNA–DEmRNA coexpression networks and competing endogenous RNA regulatory networks, and performed functional analyses of the DEmRNAs in the constructed networks. In total, 487 DEmRNAs, 92 DElncRNAs and 17 DEcircRNAs were identified. DEmRNAs were significantly enriched in processes such as collagen fibril organization, extracellular matrix–receptor interaction and the phosphatidylinositol 3‐kinase (PI3K)–Akt signaling pathway. In addition, we detected 580 DElncRNA–DEmRNA and 505 DEcircRNA–DEmRNA coexpression pairs. The competing endogenous RNA network contained 18 circRNA–microRNA (miRNA) pairs, 18 lncRNA–miRNA pairs and 409 miRNA–mRNA pairs, including 10 circRNAs, 5 lncRNAs, 15 miRNAs and 160 mRNAs. We concluded that MIR503HG/hsa‐miR‐204‐3p/ACAN, MIR503HG/hsa‐miR‐431‐5p/TNFRSF9, MEG3/hsa‐miR‐6884‐5p/ADAMTS14, AC000035.1‐ADAMTS14 and hsa_circ_0069865‐COMP/ADAM12 interaction pairs may play a central role in HS.
Collapse
Affiliation(s)
- Xiaodong Li
- Department of Burn and Plastic Surgery, The 980st Hospital of the PLA Joint Logistics Support Force, Shijiazhuang, China.,Department of Plastic and Reconstructive Surgery, The First Medical Center, Chinese PLA General Hospital, Beijing, China
| | - Zeliang He
- Department of Burn and Plastic Surgery, The 980st Hospital of the PLA Joint Logistics Support Force, Shijiazhuang, China
| | - Julei Zhang
- Department of Burn and Plastic Surgery, The 980st Hospital of the PLA Joint Logistics Support Force, Shijiazhuang, China
| | - Yan Han
- Department of Plastic and Reconstructive Surgery, The First Medical Center, Chinese PLA General Hospital, Beijing, China
| |
Collapse
|
26
|
A novel mutation in the ACAN gene in a family with autosomal dominant short stature and intervertebral disc disease. Hum Genome Var 2020; 7:44. [PMID: 33298914 PMCID: PMC7712780 DOI: 10.1038/s41439-020-00132-8] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2020] [Revised: 10/29/2020] [Accepted: 11/06/2020] [Indexed: 12/20/2022] Open
Abstract
Heterozygous mutations in the ACAN gene have been reported in individuals with short stature and advanced bone age, with or without early-onset osteoarthritis and/or osteochondritis dissecans. We report a family with a phenotypic constellation carrying a novel mutation in the ACAN gene. The proband was a 7-year-old Japanese girl with short stature. Her mother and maternal grandmother also had short stature and intervertebral disc disease. We analyzed the ACAN gene in the family and identified a novel heterozygous mutation: c.4634delT, Leu1545Profs*11.
Collapse
|
27
|
Kim TY, Jang KM, Keum CW, Oh SH, Chung WY. Identification of a heterozygous ACAN mutation in a 15-year-old boy with short stature who presented with advanced bone age: a case report and review of the literature. Ann Pediatr Endocrinol Metab 2020; 25:272-276. [PMID: 32871652 PMCID: PMC7788345 DOI: 10.6065/apem.1938198.099] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/23/2019] [Accepted: 02/18/2020] [Indexed: 12/17/2022] Open
Abstract
Longitudinal bone growth is primarily mediated by the growth plate, which is a specialized cartilaginous structure. Aggrecan, encoded by ACAN, is a primary proteoglycan component of the extracellular matrix in both the growth plate and articular cartilage. Aggrecanopathies have emerged as a phenotype of genetic skeletal disease in humans. A heterozygous ACAN mutation causes short stature, premature growth cessation, and accelerated bone age maturation. We report the case of a 15-year-old boy with familial short stature, with height of 149 cm (Korean standard deviation score [SDS] of -3.6) and weight of 50.5 kg (-1.48 SDS). He presented with mild midfacial hypoplasia, frontal bossing, a broad chest, and a short neck. The father's and mother's heights were 150 cm (-4.8 SDS) and 153 cm (-1.69 SDS), respectively. The patient's bone age was 2-3 years more advanced than his chronological age, and no endocrine abnormalities were detected. Wholeexome sequencing followed by Sanger sequencing revealed a heterozygous ACAN mutation, c.512C>T (p.Ala171Val), in both the proband and his father. Short stature is generally associated with a delayed bone age, and this case suggests that ACAN mutations may be the most likely etiology among patients with short stature and an advanced bone age and should warrant early treatment.
Collapse
Affiliation(s)
- Tae Youp Kim
- Department of Pediatrics, Yeungnam University Hospital, Yeungnam University College of Medicine, Daegu, Korea
| | - Kyung Mi Jang
- Department of Pediatrics, Yeungnam University Hospital, Yeungnam University College of Medicine, Daegu, Korea,Address for co-correspondence: Kyung Mi Jang, MD, PhD Department of Pediatrics, Yeungnam Universit y Hospital, Yeungnam University College of Medicine, 170 Hyeonchung-ro, Nam-gu, Daegu 42415, Korea Tel: +82-53-620-3532 Fax: +82-53-629-2252 E-mail:
| | - Chang Won Keum
- Rare Genetic Disease Research Center, 3Billion Inc, Seoul, Korea
| | - Seung Hwan Oh
- Department of Laboratory Medicine, Inje University, Busan Paik Hospital, Inje University College of Medicine, Busan, Korea
| | - Woo Yeong Chung
- Department of Pediatrics, Inje University, Busan Paik Hospital, Inje University College of Medicine, Busan, Korea,Address for correspondence: Woo Yeong Chung, MD, PhD Department of Pediatrics, Inje University Busan Paik Hospital, Inje University College of Medicine, 75 Bokji-ro, Busanjin-gu, Busan 47392, Korea Tel: +82-51-890-6280 Fax: +82-51-897-4012, E-mail:
| |
Collapse
|
28
|
Liang H, Miao H, Pan H, Yang H, Gong F, Duan L, Chen S, Wang L, Zhu H. Growth-Promoting Therapies May Be Useful In Short Stature Patients With Nonspecific Skeletal Abnormalities Caused By Acan Heterozygous Mutations: Six Chinese Cases And Literature Review. Endocr Pract 2020; 26:1255-1268. [PMID: 33471655 DOI: 10.4158/ep-2019-0518] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/02/2019] [Accepted: 05/25/2020] [Indexed: 12/13/2022]
Abstract
OBJECTIVE There are numerous reasons for short stature, including mutations in osteochondral development genes. ACAN, one such osteochondral development gene in which heterozygous mutations can cause short stature, has attracted attention from researchers in recent years. Therefore, we analyzed six cases of short stature with heterozygous ACAN mutations and performed a literature review. METHODS Clinical information and blood samples from 6 probands and their family members were collected after consent forms were signed. Gene mutations in the probands were detected by whole-exome sequencing. Then, we searched the literature, performed statistical analyses, and summarized the characteristics of all reported cases. RESULTS We identified six novel mutations in ACAN: c.1411C>T, c.1817C>A, c.1762C>T, c.2266G>C, c.7469G>A, and c.1733-1G>A. In the literature, more than 200 affected individuals have been diagnosed genetically with a similar condition (height standard deviation score [SDS] -3.14 ± 1.15). Among affected individuals receiving growth-promoting treatment, their height before and after treatment was SDS -2.92±1.07 versus SDS -2.14±1.23 (P<.001). As of July 1, 2019, a total of 57 heterozygous ACAN mutations causing nonsyndromic short stature had been reported, including the six novel mutations found in our study. Approximately half of these mutations can lead to protein truncation. CONCLUSIONS This study used clinical and genetic means to examine the relationship between the ACAN gene and short stature. To some extent, clear diagnosis is difficult, since most of these affected individuals' characteristics are not prominent. Growth-promoting therapies may be beneficial for increasing the height of affected patients. ABBREVIATIONS AI = aromatase inhibitor; ECM = extracellular matrix; GnRHa = gonadotropin-releasing hormone analogue; IQR = interquartile range; MIM = Mendelian Inheritance in Man; PGHD = partial growth hormone deficiency; rhGH = recombinant human growth hormone; SDS = standard deviation score; SGA = small for gestational age; SGHD = severe growth hormone deficiency.
Collapse
Affiliation(s)
- Hanting Liang
- Key Laboratory of Endocrinology of National Health Commission, Department of Endocrinology, Peking Union Medixcal College Hospital, Chinese Academy of Medical Science and Peking Union Medical College, Beijing, China
| | - Hui Miao
- Key Laboratory of Endocrinology of National Health Commission, Department of Endocrinology, Peking Union Medixcal College Hospital, Chinese Academy of Medical Science and Peking Union Medical College, Beijing, China
| | - Hui Pan
- Key Laboratory of Endocrinology of National Health Commission, Department of Endocrinology, Peking Union Medixcal College Hospital, Chinese Academy of Medical Science and Peking Union Medical College, Beijing, China
| | - Hongbo Yang
- Key Laboratory of Endocrinology of National Health Commission, Department of Endocrinology, Peking Union Medixcal College Hospital, Chinese Academy of Medical Science and Peking Union Medical College, Beijing, China
| | - Fengying Gong
- Key Laboratory of Endocrinology of National Health Commission, Department of Endocrinology, Peking Union Medixcal College Hospital, Chinese Academy of Medical Science and Peking Union Medical College, Beijing, China
| | - Lian Duan
- Key Laboratory of Endocrinology of National Health Commission, Department of Endocrinology, Peking Union Medixcal College Hospital, Chinese Academy of Medical Science and Peking Union Medical College, Beijing, China
| | - Shi Chen
- Key Laboratory of Endocrinology of National Health Commission, Department of Endocrinology, Peking Union Medixcal College Hospital, Chinese Academy of Medical Science and Peking Union Medical College, Beijing, China
| | - Linjie Wang
- Key Laboratory of Endocrinology of National Health Commission, Department of Endocrinology, Peking Union Medixcal College Hospital, Chinese Academy of Medical Science and Peking Union Medical College, Beijing, China
| | - Huijuan Zhu
- Key Laboratory of Endocrinology of National Health Commission, Department of Endocrinology, Peking Union Medixcal College Hospital, Chinese Academy of Medical Science and Peking Union Medical College, Beijing, China..
| |
Collapse
|
29
|
de Andrade DGA, Basso RM, Magro AJ, Laufer-Amorim R, Borges AS, de Oliveira-Filho JP. Evaluation of a new variant in the aggrecan gene potentially associated with chondrodysplastic dwarfism in Miniature horses. Sci Rep 2020; 10:15238. [PMID: 32943661 PMCID: PMC7499210 DOI: 10.1038/s41598-020-72192-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2020] [Accepted: 08/27/2020] [Indexed: 12/15/2022] Open
Abstract
Chondrodysplastic dwarfism in Miniature horses is an autosomal recessive disorder previously associated with four mutations (D1, D2, D3*, and D4) in the aggrecan (ACAN) gene. The aim of this study was to identify additional variants in the candidate ACAN gene associated with chondrodysplastic dwarfism in Miniature horses. Fifteen dwarf Miniature horses were found to possess only one of the dwarfism-causing variants, and two possessed none of the variants. The ACAN exons (EquCab3.0) of seven dwarf Miniature horses were sequenced. A missense SNP in coding exon 11 (g.95271115A > T, c.6465A > T-RefSeq XM_005602799.2), which resulted in the amino acid substitution p.Leu2155Phe (RefSeq XP_005602856.2), was initially associated with the dwarf phenotype. The variant was tested and found present in 14 dwarf foals as well as one parent of each, and both parents of a dwarf possessing two copies. Genetic testing of 347 phenotypically normal Miniature horses demonstrated that none had more than one of the dwarf alleles or c.6465A > T. However, a study of large breeds revealed the presence of c.6465A > T, which was present in homozygosis in two Mangalarga Marchador horses. We suggest that c.6465A > T as a marker of disequilibrium or complex interactions in the Miniature horse genome could contribute to the associated dwarfism.
Collapse
Affiliation(s)
| | - Roberta Martins Basso
- School of Veterinary Medicine and Animal Science, São Paulo State University (Unesp), Botucatu, 18618-681, Brazil
| | - Angelo José Magro
- Institute for Biotechnology, São Paulo State University (Unesp), Botucatu, 18607-440, Brazil.,School of Agriculture, São Paulo State University (Unesp), Botucatu, 18610-034, Brazil
| | - Renée Laufer-Amorim
- School of Veterinary Medicine and Animal Science, São Paulo State University (Unesp), Botucatu, 18618-681, Brazil
| | - Alexandre Secorun Borges
- School of Veterinary Medicine and Animal Science, São Paulo State University (Unesp), Botucatu, 18618-681, Brazil
| | - José Paes de Oliveira-Filho
- School of Veterinary Medicine and Animal Science, São Paulo State University (Unesp), Botucatu, 18618-681, Brazil.
| |
Collapse
|
30
|
Mohammadian Khonsari N, Mohammad Poor Nami S, Hakak-Zargar B, Voth T. Mutations of uncertain significance in heterozygous variants as a possible cause of severe short stature: a case report. Mol Cell Pediatr 2020; 7:11. [PMID: 32935225 PMCID: PMC7492327 DOI: 10.1186/s40348-020-00104-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2020] [Accepted: 08/25/2020] [Indexed: 11/13/2022] Open
Abstract
Background Linear bone growth is achieved by the division of chondrocytes at the growth plate and is regulated by endocrine and paracrine factors such as growth hormone. Mutations that negatively affect chondrogenesis can be a contributor to short stature. One such mutation can occur in the ACAN gene, causing short stature and advanced bone age. Similarly, mutations in growth hormone receptors (GHR) can lead to Laron syndrome (LS), one of the several disorders that are collectively called growth hormone insensitivity syndrome (GHI). Another example is Floating-Harbor syndrome (FHS), a rare autosomal dominant due to mutations in the SRCAP gene that can also result in short stature. Case presentation We report the case of a 6-year-old female with concomitant mutations in the three genes mentioned above. The mutations reported here were found on genetic studies and are usually benign, causing a variant of undetermined significance. However, our patient’s phenotype could only be explained by the compounded effects of pathogenic mutations of these genes. Some of the same mutations were also found in the patient’s father and her paternal grandfather. Both also presented with short stature, though not to the same degree as our patient. While these mutations are often reported to be insignificant, they gave rise to severe short stature and a specific phenotype in the patient when presented together. We think that even though the GHI spectrum is inherited through an autosomal recessive pattern, the sum of these heterozygous mutations resulted in severe short stature despite the limited GHI seen in our patient, the father, and the grandfather, through a rare ACAN and SRCAP mutation that, to our knowledge, has not been previously reported as a pathogenic mutation in the literature. Conclusion We investigated the possible synergistic effects of these variations on exacerbation or masking of the signs and symptoms of GHI with the hope of providing a better understanding of these genes and their function through our rare case.
Collapse
Affiliation(s)
| | | | - Benyamin Hakak-Zargar
- Faculty of Health Sciences, Simon Fraser University, Burnaby, British Columbia, Canada
| | - Tessa Voth
- Department of Biomedical Physiology and Kinesiology, Faculty of Science, Simon Fraser University, Burnaby, British Columbia, Canada
| |
Collapse
|
31
|
Abstract
PURPOSE OF REVIEW The goal of the review is to provide a comprehensive overview of the current understanding of the mechanisms underlying variation in human stature. RECENT FINDINGS Human height is an anthropometric trait that varies considerably within human populations as well as across the globe. Historically, much research focus was placed on understanding the biology of growth plate chondrocytes and how modifications to core chondrocyte proliferation and differentiation pathways potentially shaped height attainment in normal as well as pathological contexts. Recently, much progress has been made to improve our understanding regarding the mechanisms underlying the normal and pathological range of height variation within as well as between human populations, and today, it is understood to reflect complex interactions among a myriad of genetic, environmental, and evolutionary factors. Indeed, recent improvements in genetics (e.g., GWAS) and breakthroughs in functional genomics (e.g., whole exome sequencing, DNA methylation analysis, ATAC-sequencing, and CRISPR) have shed light on previously unknown pathways/mechanisms governing pathological and common height variation. Additionally, the use of an evolutionary perspective has also revealed important mechanisms that have shaped height variation across the planet. This review provides an overview of the current knowledge of the biological mechanisms underlying height variation by highlighting new research findings on skeletal growth control with an emphasis on previously unknown pathways/mechanisms influencing pathological and common height variation. In this context, this review also discusses how evolutionary forces likely shaped the genomic architecture of height across the globe.
Collapse
Affiliation(s)
| | - Terence D Capellini
- Department of Human Evolutionary Biology, Harvard University, Cambridge, MA, USA.
- Broad Institute of MIT and Harvard, Cambridge, MA, USA.
| |
Collapse
|
32
|
Eberth JE, Graves KT, MacLeod JN, Bailey E. Multiple alleles of ACAN
associated with chondrodysplastic dwarfism in Miniature horses. Anim Genet 2018; 49:413-420. [DOI: 10.1111/age.12682] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/10/2018] [Indexed: 12/22/2022]
Affiliation(s)
- J. E. Eberth
- Department of Veterinary Science; MH Gluck Equine Research Center; University of Kentucky; Lexington KY 40546 USA
| | - K. T. Graves
- Department of Veterinary Science; MH Gluck Equine Research Center; University of Kentucky; Lexington KY 40546 USA
| | - J. N. MacLeod
- Department of Veterinary Science; MH Gluck Equine Research Center; University of Kentucky; Lexington KY 40546 USA
| | - E. Bailey
- Department of Veterinary Science; MH Gluck Equine Research Center; University of Kentucky; Lexington KY 40546 USA
| |
Collapse
|