1
|
Vigne MM, Kweon J, Fukuda AM, Brown JC, Carpenter LL. The Role of Brain Derived Neurotrophic Factor Polymorphism in Transcranial Magnetic Stimulation Response for Major Depressive Disorder. J ECT 2025:00124509-990000000-00268. [PMID: 40036478 DOI: 10.1097/yct.0000000000001123] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 03/06/2025]
Abstract
OBJECTIVES Repetitive transcranial magnetic stimulation (rTMS) is a safe and effective therapy for treatment-resistant depression (TRD). A crucial next step in improving rTMS therapy is to identify response predictors to inform patient selection criteria. Brain-derived neurotrophic factor (BDNF) exerts influence over TRD treatment modalities. BDNF polymorphism, Val66Met, has shown altered cortical plasticity after single-session rTMS in healthy subjects and clinical response in noninvasive brain stimulation methods in major depressive disorder, stroke, Alzheimer's, and cerebral palsy. We sought to evaluate the effect of this BDNF polymorphism on clinical response in a standard course of rTMS therapy for TRD. METHODS In this naturalistic study, 75 patients with TRD completed a standard course of rTMS with weekly clinical assessments via the Inventory of Depressive Symptomatology Self-Report (IDS-SR). BDNF polymorphisms were retrospectively compared in respect to treatment response and remission, baseline and final scores, percent change scores, and scores across the 6-week treatment course. RESULTS As expected, rTMS significantly decreased depressive symptoms as measured by IDS-SR scores. No difference was found in baseline, final, or percent change IDS-SR scores between polymorphism types. There was no difference between polymorphisms in IDS-SR scores across the treatment course. Response and remission rates did not differ between genotypes. CONCLUSIONS In contrast to previous research highlighting differential response between BDNF polymorphisms to motor plasticity and clinical rTMS outcomes, our data suggest that BDNF polymorphism status may not influence the response to a standard course of 10-Hz rTMS for major depressive disorder. Differences in TMS protocol, target, or BDNF serum levels may underlie our results.
Collapse
Affiliation(s)
- Megan M Vigne
- From the Neuromodulation Research Facility, Butler Hospital, Providence, RI
| | - Jamie Kweon
- Brain Stimulation Mechanisms Laboratory, Division of Depression and Anxiety Disorders, McLean Hospital, Belmont, MA
| | | | | | | |
Collapse
|
2
|
Brown R, Cherian K, Jones K, Wickham R, Gomez R, Sahlem G. Repetitive transcranial magnetic stimulation for post-traumatic stress disorder in adults. Cochrane Database Syst Rev 2024; 8:CD015040. [PMID: 39092744 PMCID: PMC11295260 DOI: 10.1002/14651858.cd015040.pub2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 08/04/2024]
Abstract
BACKGROUND The estimated lifetime prevalence of post-traumatic stress disorder (PTSD) in adults worldwide has been estimated at 3.9%. PTSD appears to contribute to alterations in neuronal network connectivity patterns. Current pharmacological and psychotherapeutic treatments for PTSD are associated with inadequate symptom improvement and high dropout rates. Repetitive transcranial magnetic stimulation (rTMS), a non-invasive therapy involving induction of electrical currents in cortical brain tissue, may be an important treatment option for PTSD to improve remission rates and for people who cannot tolerate existing treatments. OBJECTIVES To assess the effects of repetitive transcranial magnetic stimulation (rTMS) on post-traumatic stress disorder (PTSD) in adults. SEARCH METHODS We searched the Cochrane Common Mental Disorders Controlled Trials Register, CENTRAL, MEDLINE, Embase, three other databases, and two clinical trials registers. We checked reference lists of relevant articles. The most recent search was January 2023. SELECTION CRITERIA We included randomized controlled trials (RCTs) assessing the efficacy and safety of rTMS versus sham rTMS for PTSD in adults from any treatment setting, including veterans. Eligible trials employed at least five rTMS treatment sessions with both active and sham conditions. We included trials with combination interventions, where a pharmacological agent or psychotherapy was combined with rTMS for both intervention and control groups. We included studies meeting the above criteria regardless of whether they reported any of our outcomes of interest. DATA COLLECTION AND ANALYSIS Two review authors independently extracted data and assessed the risk of bias in accordance with Cochrane standards. Primary outcomes were PTSD severity immediately after treatment and serious adverse events during active treatment. Secondary outcomes were PTSD remission, PTSD response, PTSD severity at two follow-up time points after treatment, dropouts, and depression and anxiety severity immediately after treatment. MAIN RESULTS We included 13 RCTs in the review (12 published; 1 unpublished dissertation), with 577 participants. Eight studies included stand-alone rTMS treatment, four combined rTMS with an evidence-based psychotherapeutic treatment, and one investigated rTMS as an adjunctive to treatment-as-usual. Five studies were conducted in the USA, and some predominantly included white, male veterans. Active rTMS probably makes little to no difference to PTSD severity immediately following treatment (standardized mean difference (SMD) -0.14, 95% confidence interval (CI) -0.54 to 0.27; 3 studies, 99 participants; moderate-certainty evidence). We downgraded the certainty of evidence by one level for imprecision (sample size insufficient to detect a difference of medium effect size). We deemed one study as having a low risk of bias and the remaining two as having 'some concerns' for risk of bias. A sensitivity analysis of change-from-baseline scores enabled inclusion of a greater number of studies (6 studies, 252 participants). This analysis yielded a similar outcome to our main analysis but also indicated significant heterogeneity in efficacy across studies, including two studies with a high risk of bias. Reported rates of serious adverse events were low, with seven reported (active rTMS: 6; sham rTMS: 1). The evidence is very uncertain about the effect of active rTMS on serious adverse events (odds ratio (OR) 5.26, 95% CI 0.26 to 107.81; 5 studies, 251 participants; very low-certainty evidence [Active rTMS: 23/1000, sham rTMS: 4/1000]). We downgraded the evidence by one level for risk of bias and two levels for imprecision. We rated four of five studies as having a high risk of bias, and the fifth as 'some concerns' for bias. We were unable to assess PTSD remission immediately after treatment as none of the included studies reported this outcome. AUTHORS' CONCLUSIONS Based on moderate-certainty evidence, our review suggests that active rTMS probably makes little to no difference to PTSD severity immediately following treatment compared to sham stimulation. However, significant heterogeneity in efficacy was detected when we included a larger number of studies in sensitivity analysis. We observed considerable variety in participant and protocol characteristics across studies included in this review. For example, studies tended to be weighted towards inclusion of either male veterans or female civilians. Studies varied greatly in terms of the proportion of the sample with comorbid depression. Study protocols differed in treatment design and stimulation parameters (e.g. session number/duration, treatment course length, stimulation intensity/frequency, location of stimulation). These differences may affect efficacy, particularly when considering interactions with participant factors. Reported rates of serious adverse events were very low (< 1%) across active and sham conditions. It is uncertain whether rTMS increases the risk of serious adverse event occurrence, as our certainty of evidence was very low. Studies frequently lacked clear definitions for serious adverse events, as well as detail on tracking/assessment of data and information on the safety population. Increased reporting on these elements would likely aid the advancement of both research and clinical recommendations of rTMS for PTSD. Currently, there is insufficient evidence to meta-analyze PTSD remission, PTSD treatment response, and PTSD severity at different periods post-treatment. Further research into these outcomes could inform the clinical use of rTMS. Additionally, the relatively large contribution of data from trials that focused on white male veterans may limit the generalizability of our conclusions. This could be addressed by prioritizing recruitment of more diverse participant samples.
Collapse
Affiliation(s)
- Randi Brown
- Clinical Psychology, Palo Alto University, Palo Alto, CA, USA
| | - Kirsten Cherian
- Psychiatry and Behavioral Sciences, Stanford University School of Medicine, Stanford, CA, USA
| | - Katherine Jones
- Sheffield Centre for Health and Related Research, University of Sheffield, Sheffield, UK
| | - Robert Wickham
- Department of Psychological Sciences, Northern Arizona University, Flagstaff, AZ, USA
| | - Rowena Gomez
- Clinical Psychology, Palo Alto University, Palo Alto, CA, USA
- Psychiatry and Behavioral Sciences, Stanford University School of Medicine, Stanford, CA, USA
| | - Gregory Sahlem
- Psychiatry and Behavioral Sciences, Stanford University School of Medicine, Stanford, CA, USA
| |
Collapse
|
3
|
Lanza G, Mogavero MP, Lanuzza B, Tripodi M, Cantone M, Pennisi M, Bella R, Ferri R. A Topical Review on Transcranial Magnetic Stimulation in Restless Legs Syndrome. CURRENT SLEEP MEDICINE REPORTS 2024; 10:207-216. [DOI: 10.1007/s40675-024-00282-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/24/2024] [Indexed: 07/26/2024]
|
4
|
Fisicaro F, Lanza G, Concerto C, Rodolico A, Di Napoli M, Mansueto G, Cortese K, Mogavero MP, Ferri R, Bella R, Pennisi M. COVID-19 and Mental Health: A "Pandemic Within a Pandemic". ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2024; 1458:1-18. [PMID: 39102186 DOI: 10.1007/978-3-031-61943-4_1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/06/2024]
Abstract
The COVID-19 pandemic has brought significant changes in daily life for humanity and has had a profound impact on mental health. As widely acknowledged, the pandemic has led to notable increases in rates of anxiety, depression, distress, and other mental health-related issues, affecting both infected patients and non-infected individuals. COVID-19 patients and survivors face heightened risks for various neurological and psychiatric disorders and complications. Vulnerable populations, including those with pre-existing mental health conditions and individuals living in poverty or frailty, may encounter additional challenges. Tragically, suicide rates have also risen, particularly among young people, due to factors such as unemployment, financial crises, domestic violence, substance abuse, and social isolation. Efforts are underway to address these mental health issues, with healthcare professionals urged to regularly screen both COVID-19 and post-COVID-19 patients and survivors for psychological distress, ensuring rapid and appropriate interventions. Ongoing periodic follow-up and multidimensional, interdisciplinary approaches are essential for individuals experiencing long-term psychiatric sequelae. Preventive strategies must be developed to mitigate mental health problems during both the acute and recovery phases of COVID-19 infection. Vaccination efforts continue to prioritize vulnerable populations, including those with mental health conditions, to prevent future complications. Given the profound implications of mental health problems, including shorter life expectancy, diminished quality of life, heightened distress among caregivers, and substantial economic burden, it is imperative that political and health authorities prioritize the mental well-being of all individuals affected by COVID-19, including infected individuals, non-infected individuals, survivors, and caregivers.
Collapse
Affiliation(s)
- Francesco Fisicaro
- Department of Biomedical and Biotechnological Sciences, University of Catania, Via Santa Sofia 97, 95123, Catania, Italy
| | - Giuseppe Lanza
- Department of Surgery and Medical-Surgery Specialties, University of Catania, Via Santa Sofia 78, 95123, Catania, Italy.
- Clinical Neurophysiology Research Unit, Oasi Research Institute-IRCCS, Via Conte Ruggero 78, 94018, Troina, Italy.
| | - Carmen Concerto
- Department of Clinical and Experimental Medicine, Psychiatry Unit, University of Catania, Via Santa Sofia 89, 95123, Catania, Italy
| | - Alessandro Rodolico
- Department of Clinical and Experimental Medicine, Psychiatry Unit, University of Catania, Via Santa Sofia 89, 95123, Catania, Italy
| | - Mario Di Napoli
- Neurological Service, SS Annunziata Hospital, Viale Mazzini 100, 67039, Sulmona, L'Aquila, Italy
| | - Gelsomina Mansueto
- Department of Advanced Medical and Surgical Sciences (DAMSS), University of Campania "Luigi Vanvitelli", Piazza L. Miraglia 2, 80138, Naples, Italy
- Clinical Department of Laboratory Services and Public Health-Legal Medicine Unit, University of Campania "Luigi Vanvitelli", Via Luciano Armanni 5, 80138, Naples, Italy
| | - Klizia Cortese
- Department of Educational Sciences, University of Catania, Via Teatro Greco 84, 95124, Catania, Italy
| | - Maria P Mogavero
- Sleep Disorders Center, Division of Neuroscience, San Raffaele Scientific Institute, Via Stamira d'Ancona 20, 20127, Milan, Italy
- Vita-Salute San Raffaele University, Milan, Italy
| | - Raffaele Ferri
- Clinical Neurophysiology Research Unit, Oasi Research Institute-IRCCS, Via Conte Ruggero 78, 94018, Troina, Italy
| | - Rita Bella
- Department of Medical and Surgical Sciences and Advanced Technologies, University of Catania, Via Santa Sofia 87, 95123, Catania, Italy
| | - Manuela Pennisi
- Department of Biomedical and Biotechnological Sciences, University of Catania, Via Santa Sofia 97, 95123, Catania, Italy
| |
Collapse
|
5
|
Concerto C, Signorelli MS, Chiarenza C, Ciancio A, Francesco AD, Mineo L, Rodolico A, Torrisi G, Caponnetto P, Pennisi M, Lanza G, Petralia A. Transcranial Magnetic Stimulation for the Treatment of Gambling Disorder: A Systematic Review. J Integr Neurosci 2023; 22:164. [PMID: 38176943 DOI: 10.31083/j.jin2206164] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2023] [Revised: 08/27/2023] [Accepted: 08/30/2023] [Indexed: 01/06/2024] Open
Abstract
BACKGROUND Gambling Disorder (GD) is a behavioral addiction listed within the diagnostic category of substance-related and addictive disorders. Recently, transcranial magnetic stimulation (TMS), which non-invasively stimulates the brain and has neuromodulatory properties, has emerged as an innovative treatment tool for GD, thus offering a new option for the management of this complex disorder. The present review explored the efficacy of TMS as a possible non-pharmacological treatment for GD. METHODS An exhaustive search was performed across the MEDLINE, Web of Science, and EMBASE databases using a specific search string related to GD and TMS. A total of 20 papers were selected for full-text examination, out of which eight fulfilled the inclusion criteria and were therefore systematically analyzed in the present review. RESULTS This review included eight studies: three randomized-controlled trials (RCTs), three non-controlled studies, one case series, and one case report. Two cross-over RCTs described a decrease in craving after high-frequency (excitatory), repetitive transcranial magnetic stimulation (rTMS) over the left dorsolateral prefrontal cortex (DLPFC) and the medial prefrontal cortex (PFC), respectively; another study applying low-frequency (inhibitory) rTMS on the right DLPFC did not find any positive effect on craving. Among uncontrolled studies, one demonstrated the beneficial effect of high-frequency rTMS over the left DLPFC, while another showed the efficacy of a continuous theta burst stimulation protocol directed over the pre-supplementary motor area, bilaterally. CONCLUSION The included studies showed the promising effect of excitatory stimulation over the left PFC. However, further investigation is needed, particularly in terms of standardizing stimulation protocols and psychometric assessments.
Collapse
Affiliation(s)
- Carmen Concerto
- Department of Clinical and Experimental Medicine, Psychiatry Unit, University of Catania, 95123 Catania, Italy
| | - Maria Salvina Signorelli
- Department of Clinical and Experimental Medicine, Psychiatry Unit, University of Catania, 95123 Catania, Italy
| | - Cecilia Chiarenza
- Department of Clinical and Experimental Medicine, Psychiatry Unit, University of Catania, 95123 Catania, Italy
| | - Alessia Ciancio
- Department of Clinical and Experimental Medicine, Psychiatry Unit, University of Catania, 95123 Catania, Italy
| | - Antonio Di Francesco
- Department of Clinical and Experimental Medicine, Psychiatry Unit, University of Catania, 95123 Catania, Italy
| | - Ludovico Mineo
- Department of Clinical and Experimental Medicine, Psychiatry Unit, University of Catania, 95123 Catania, Italy
| | - Alessandro Rodolico
- Department of Clinical and Experimental Medicine, Psychiatry Unit, University of Catania, 95123 Catania, Italy
| | - Giulia Torrisi
- Department of Clinical and Experimental Medicine, Psychiatry Unit, University of Catania, 95123 Catania, Italy
| | - Pasquale Caponnetto
- Department of Educational Sciences, Section of Psychology, University of Catania, 95121 Catania, Italy
- Center of Excellence for the Acceleration of Harm Reduction (COEHAR), University of Catania, 95121 Catania, Italy
| | - Manuela Pennisi
- Department of Biomedical and Biotechnological Sciences, University of Catania, 95123 Catania, Italy
| | - Giuseppe Lanza
- Department of Surgery and Medical-Surgical Specialties, University of Catania, 95123 Catania, Italy
- Clinical Neurophysiology Research Unit, Oasi Research Institute-IRCCS, 94018 Troina, Italy
| | - Antonino Petralia
- Department of Clinical and Experimental Medicine, Psychiatry Unit, University of Catania, 95123 Catania, Italy
| |
Collapse
|
6
|
Mao J, Fan K, Zhang Y, Wen N, Fang X, Ye X, Chen Y. 10 Hz repetitive transcranial magnetic stimulation (rTMS) may improve cognitive function: An exploratory study of schizophrenia patients with auditory hallucinations. Heliyon 2023; 9:e19912. [PMID: 37809845 PMCID: PMC10559318 DOI: 10.1016/j.heliyon.2023.e19912] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2023] [Revised: 07/18/2023] [Accepted: 09/05/2023] [Indexed: 10/10/2023] Open
Abstract
Objectives Cognitive impairment in schizophrenia patients with auditory hallucinations is more prominent compared to those without. Our study aimed to investigate the cognitive improvement effects of 10 Hz repetitive transcranial magnetic stimulation (rTMS) over the left dorsolateral prefrontal cortex (DLPFC) in schizophrenia with auditory hallucinations. Methods A total of 60 schizophrenic patients with auditory hallucinations in this study were randomly assigned to sham or active group. Both groups received 10 Hz or sham rTMS targeted in left DLPFC for 20 sessions. The Positive and Negative Syndrome Scale (PANSS), the Auditory Hallucination Rating Scale (AHRS), the Repeatable Battery for the Assessment of Neuropsychological Status (RBANS), and the Udvalg for Kliniske Under-sogelser (UKU) side effect scale were used to measure psychiatric symptoms, auditory hallucinations, cognition, and side reaction, respectively. Results Our results indicated that the active group experienced greater improvements in RBANS-total score (P = 0.043) and immediate memory subscale score (P = 0.001). Additionally, the PANSS-total score, negative and positive subscale score were obviously lower in the active group compared to the sham group (all P < 0.050). Furthermore, our study found that the improvement of RBANS-total score was positively associated with the decline of positive factor score, and the improvement of language score in RBANS was positively associated with the reduction in PANSS-total scale, negative and positive subscale score in the real stimulation group (all P < 0.050). Conclusion Our results demonstrated that a four-week intervention of 10 Hz rTMS over the left DLPFC can improve cognition (particularly immediate memory) among schizophrenia patients with auditory hallucinations. Future studies with larger sample size are needful to verify our preliminary findings.
Collapse
Affiliation(s)
- Jiankai Mao
- Tongde Hospital of Zhejiang Province, Hangzhou, Zhejiang, PR China
| | - Kaili Fan
- Wenzhou Seventh People's Hospital, Wenzhou, Zhejiang, PR China
| | - Yaoyao Zhang
- The Affiliated Kangning Hospital of Wenzhou Medical University Zhejiang Provincial Clinical Research Center for Mental Disorder, Wenzhou, Zhejiang, PR China
| | - Na Wen
- The Affiliated Kangning Hospital of Wenzhou Medical University Zhejiang Provincial Clinical Research Center for Mental Disorder, Wenzhou, Zhejiang, PR China
| | - Xinyu Fang
- The Affiliated Brain Hospital of Nanjing Medical University, Nanjing, PR China
| | - Xiangming Ye
- Zhejiang Provincial People's Hospital, Hangzhou, Zhejiang, PR China
| | - Yi Chen
- The Affiliated Kangning Hospital of Wenzhou Medical University Zhejiang Provincial Clinical Research Center for Mental Disorder, Wenzhou, Zhejiang, PR China
| |
Collapse
|
7
|
Zhang W, Liu N, Zhao Y, Yao C, Yang D, Yang C, Sun H, Wei X, Sweeney JA, Liang H, Zhang M, Gong Q, Lui S. The acute effects of repetitive transcranial magnetic stimulation on laminar diffusion anisotropy of neocortical gray matter. MedComm (Beijing) 2023; 4:e335. [PMID: 37560755 PMCID: PMC10407029 DOI: 10.1002/mco2.335] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2023] [Revised: 06/19/2023] [Accepted: 06/26/2023] [Indexed: 08/11/2023] Open
Abstract
Repetitive transcranial magnetic stimulation (rTMS) is increasingly used to treat neuropsychiatric disorders. Inhibitory and excitatory regimens have been both adopted but the exact mechanism of action remains unclear, and investigating their differential effects on laminar diffusion profiles of neocortex may add important evidence. Twenty healthy participants were randomly assigned to receive a low-frequency/inhibitory or high-frequency/excitatory rTMS targeting the left dorsolateral prefrontal cortex (DLPFC). With the brand-new submillimeter diffusion tensor imaging of whole brain and specialized surface-based laminar analysis, fractional anisotropy (FA) and mean diffusion (MD) profiles of cortical layers at different cortical depths were characterized before/after rTMS. Inhibitory and excitatory rTMS both showed impacts on diffusion metrics of somatosensory, limbic, and sensory regions, but different patterns of changes were observed-increased FA with inhibitory rTMS, whereas decreased FA with excitatory rTMS. More importantly, laminar analysis indicated laminar specificity of changes in somatosensory regions during different rTMS patterns-inhibitory rTMS affected the superficial layers contralateral to the DLPFC, while excitatory rTMS led to changes in the intermediate/deep layers bilateral to the DLPFC. These findings provide novel insights into acute neurobiological effects on diffusion profiles of rTMS that may add critical evidence relevant to different protocols of rTMS on neocortex.
Collapse
Affiliation(s)
- Wenjing Zhang
- Department of Radiologyand Functional and Molecular Imaging Key Laboratory of Sichuan ProvinceWest China Hospital of Sichuan UniversityChengduChina
- Huaxi MR Research Center (HMRRC)West China Hospital of Sichuan UniversityChengduChina
- Research Unit of PsychoradiologyChinese Academy of Medical SciencesChengduChina
| | - Naici Liu
- Department of Radiologyand Functional and Molecular Imaging Key Laboratory of Sichuan ProvinceWest China Hospital of Sichuan UniversityChengduChina
- Huaxi MR Research Center (HMRRC)West China Hospital of Sichuan UniversityChengduChina
- Research Unit of PsychoradiologyChinese Academy of Medical SciencesChengduChina
| | - Youjin Zhao
- Department of Radiologyand Functional and Molecular Imaging Key Laboratory of Sichuan ProvinceWest China Hospital of Sichuan UniversityChengduChina
- Huaxi MR Research Center (HMRRC)West China Hospital of Sichuan UniversityChengduChina
- Research Unit of PsychoradiologyChinese Academy of Medical SciencesChengduChina
| | - Chenyang Yao
- Department of Radiologyand Functional and Molecular Imaging Key Laboratory of Sichuan ProvinceWest China Hospital of Sichuan UniversityChengduChina
- Huaxi MR Research Center (HMRRC)West China Hospital of Sichuan UniversityChengduChina
- Research Unit of PsychoradiologyChinese Academy of Medical SciencesChengduChina
| | - Dan Yang
- Department of Radiologyand Functional and Molecular Imaging Key Laboratory of Sichuan ProvinceWest China Hospital of Sichuan UniversityChengduChina
| | - Chengmin Yang
- Department of Radiologyand Functional and Molecular Imaging Key Laboratory of Sichuan ProvinceWest China Hospital of Sichuan UniversityChengduChina
- Huaxi MR Research Center (HMRRC)West China Hospital of Sichuan UniversityChengduChina
- Research Unit of PsychoradiologyChinese Academy of Medical SciencesChengduChina
| | - Hui Sun
- Department of Radiologyand Functional and Molecular Imaging Key Laboratory of Sichuan ProvinceWest China Hospital of Sichuan UniversityChengduChina
- Huaxi MR Research Center (HMRRC)West China Hospital of Sichuan UniversityChengduChina
- Research Unit of PsychoradiologyChinese Academy of Medical SciencesChengduChina
| | - Xia Wei
- Department of Radiologyand Functional and Molecular Imaging Key Laboratory of Sichuan ProvinceWest China Hospital of Sichuan UniversityChengduChina
- Huaxi MR Research Center (HMRRC)West China Hospital of Sichuan UniversityChengduChina
- Research Unit of PsychoradiologyChinese Academy of Medical SciencesChengduChina
| | - John A. Sweeney
- Huaxi MR Research Center (HMRRC)West China Hospital of Sichuan UniversityChengduChina
- Department of Psychiatry and Behavioral NeuroscienceUniversity of Cincinnati College of MedicineCincinnatiOhioUSA
| | | | | | - Qiyong Gong
- Department of Radiologyand Functional and Molecular Imaging Key Laboratory of Sichuan ProvinceWest China Hospital of Sichuan UniversityChengduChina
- Huaxi MR Research Center (HMRRC)West China Hospital of Sichuan UniversityChengduChina
- Research Unit of PsychoradiologyChinese Academy of Medical SciencesChengduChina
- Department of RadiologyWest China Xiamen Hospital of Sichuan UniversityXiamenFujianChina
| | - Su Lui
- Department of Radiologyand Functional and Molecular Imaging Key Laboratory of Sichuan ProvinceWest China Hospital of Sichuan UniversityChengduChina
- Huaxi MR Research Center (HMRRC)West China Hospital of Sichuan UniversityChengduChina
- Research Unit of PsychoradiologyChinese Academy of Medical SciencesChengduChina
| |
Collapse
|
8
|
Nicoletti VG, Fisicaro F, Aguglia E, Bella R, Calcagno D, Cantone M, Concerto C, Ferri R, Mineo L, Pennisi G, Ricceri R, Rodolico A, Saitta G, Torrisi G, Lanza G, Pennisi M. Challenging the Pleiotropic Effects of Repetitive Transcranial Magnetic Stimulation in Geriatric Depression: A Multimodal Case Series Study. Biomedicines 2023; 11:958. [PMID: 36979937 PMCID: PMC10046045 DOI: 10.3390/biomedicines11030958] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2023] [Revised: 03/16/2023] [Accepted: 03/17/2023] [Indexed: 03/30/2023] Open
Abstract
BACKGROUND Although the antidepressant potential of repetitive transcranial magnetic stimulation (rTMS), the pleiotropic effects in geriatric depression (GD) are poorly investigated. We tested rTMS on depression, cognitive performance, growth/neurotrophic factors, cerebral blood flow (CBF) to transcranial Doppler sonography (TCD), and motor-evoked potentials (MEPs) to TMS in GD. METHODS In this case series study, six drug-resistant subjects (median age 68.0 years) underwent MEPs at baseline and after 3 weeks of 10 Hz rTMS on the left dorsolateral prefrontal cortex. The percentage change of serum nerve growth factor, vascular endothelial growth factor, brain-derived growth factor, insulin-like growth factor-1, and angiogenin was obtained. Assessments were performed at baseline, and at the end of rTMS; psychocognitive tests were also repeated after 1, 3, and 6 months. RESULTS Chronic cerebrovascular disease was evident in five patients. No adverse/undesirable effect was reported. An improvement in mood was observed after rTMS but not at follow-up. Electrophysiological data to TMS remained unchanged, except for an increase in the right median MEP amplitude. TCD and neurotrophic/growth factors did not change. CONCLUSIONS We were unable to detect a relevant impact of high-frequency rTMS on mood, cognition, cortical microcircuits, neurotrophic/growth factors, and CBF. Cerebrovascular disease and exposure to multiple pharmacological treatments might have contributed.
Collapse
Affiliation(s)
- Vincenzo G. Nicoletti
- Department of Biomedical and Biotechnological Sciences, University of Catania, 95123 Catania, Italy; (V.G.N.); (F.F.); (D.C.); (M.P.)
| | - Francesco Fisicaro
- Department of Biomedical and Biotechnological Sciences, University of Catania, 95123 Catania, Italy; (V.G.N.); (F.F.); (D.C.); (M.P.)
| | - Eugenio Aguglia
- Psychiatry Unit, Department of Clinical and Experimental Medicine, University of Catania, 95123 Catania, Italy; (E.A.); (C.C.); (L.M.); (A.R.); (G.S.); (G.T.)
| | - Rita Bella
- Department of Medical and Surgical Sciences and Advanced Technologies, University of Catania, 95123 Catania, Italy;
| | - Damiano Calcagno
- Department of Biomedical and Biotechnological Sciences, University of Catania, 95123 Catania, Italy; (V.G.N.); (F.F.); (D.C.); (M.P.)
| | - Mariagiovanna Cantone
- Neurology Unit, Policlinico University Hospital “G. Rodolico–San Marco”, 95123 Catania, Italy;
| | - Carmen Concerto
- Psychiatry Unit, Department of Clinical and Experimental Medicine, University of Catania, 95123 Catania, Italy; (E.A.); (C.C.); (L.M.); (A.R.); (G.S.); (G.T.)
| | - Raffaele Ferri
- Clinical Neurophysiology Research Unit, Oasi Research Institute-IRCCS, 94018 Troina, Italy; (R.F.); (G.P.)
| | - Ludovico Mineo
- Psychiatry Unit, Department of Clinical and Experimental Medicine, University of Catania, 95123 Catania, Italy; (E.A.); (C.C.); (L.M.); (A.R.); (G.S.); (G.T.)
| | - Giovanni Pennisi
- Clinical Neurophysiology Research Unit, Oasi Research Institute-IRCCS, 94018 Troina, Italy; (R.F.); (G.P.)
| | - Riccardo Ricceri
- Stroke Unit, Neurology Unit, Department of Neuroscience, Ospedale Civile di Baggiovara, Azienda Ospedaliero-Universitaria di Modena, 41126 Modena, Italy;
| | - Alessandro Rodolico
- Psychiatry Unit, Department of Clinical and Experimental Medicine, University of Catania, 95123 Catania, Italy; (E.A.); (C.C.); (L.M.); (A.R.); (G.S.); (G.T.)
| | - Giulia Saitta
- Psychiatry Unit, Department of Clinical and Experimental Medicine, University of Catania, 95123 Catania, Italy; (E.A.); (C.C.); (L.M.); (A.R.); (G.S.); (G.T.)
| | - Giulia Torrisi
- Psychiatry Unit, Department of Clinical and Experimental Medicine, University of Catania, 95123 Catania, Italy; (E.A.); (C.C.); (L.M.); (A.R.); (G.S.); (G.T.)
| | - Giuseppe Lanza
- Clinical Neurophysiology Research Unit, Oasi Research Institute-IRCCS, 94018 Troina, Italy; (R.F.); (G.P.)
- Department of Surgery and Medical-Surgical Specialties, University of Catania, 95123 Catania, Italy
| | - Manuela Pennisi
- Department of Biomedical and Biotechnological Sciences, University of Catania, 95123 Catania, Italy; (V.G.N.); (F.F.); (D.C.); (M.P.)
| |
Collapse
|
9
|
Lanza G, Fisicaro F, Cantone M, Pennisi M, Cosentino FII, Lanuzza B, Tripodi M, Bella R, Paulus W, Ferri R. Repetitive transcranial magnetic stimulation in primary sleep disorders. Sleep Med Rev 2023; 67:101735. [PMID: 36563570 DOI: 10.1016/j.smrv.2022.101735] [Citation(s) in RCA: 39] [Impact Index Per Article: 19.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2022] [Revised: 09/13/2022] [Accepted: 12/05/2022] [Indexed: 12/13/2022]
Abstract
Repetitive transcranial magnetic stimulation (rTMS) is a widely used non-invasive neuromodulatory technique. When applied in sleep medicine, the main hypothesis explaining its effects concerns the modulation of synaptic plasticity and the strength of connections between the brain areas involved in sleep disorders. Recently, there has been a significant increase in the publication of rTMS studies in primary sleep disorders. A multi-database-based search converges on the evidence that rTMS is safe and feasible in chronic insomnia, obstructive sleep apnea syndrome (OSAS), restless legs syndrome (RLS), and sleep deprivation-related cognitive deficits, whereas limited or no data are available for narcolepsy, sleep bruxism, and REM sleep behavior disorder. Regarding efficacy, the stimulation of the dorsolateral prefrontal cortex bilaterally, right parietal cortex, and dominant primary motor cortex (M1) in insomnia, as well as the stimulation of M1 leg area bilaterally, left primary somatosensory cortex, and left M1 in RLS reduced subjective symptoms and severity scale scores, with effects lasting for up to weeks; conversely, no relevant effect was observed in OSAS and narcolepsy. Nevertheless, several limitations especially regarding the stimulation protocols need to be considered. This review should be viewed as a step towards the further contribution of individually tailored neuromodulatory techniques for sleep disorders.
Collapse
Affiliation(s)
- Giuseppe Lanza
- Department of Surgery and Medical-Surgical Specialties, University of Catania, Catania, Italy; Clinical Neurophysiology Research Unit, Oasi Research Institute-IRCCS, Troina, Italy.
| | - Francesco Fisicaro
- Department of Biomedical and Biotechnological Sciences, University of Catania, Catania, Italy
| | - Mariagiovanna Cantone
- Neurology Unit, University Hospital Policlinico "G. Rodolico-San Marco", Catania, Italy; Department of Neurology, Sant'Elia Hospital, ASP Caltanissetta, Caltanissetta, Italy
| | - Manuela Pennisi
- Department of Biomedical and Biotechnological Sciences, University of Catania, Catania, Italy
| | | | - Bartolo Lanuzza
- Department of Neurology IC and Sleep Research Centre, Oasi Research Institute-IRCCS, Troina, Italy
| | - Mariangela Tripodi
- Department of Neurology IC and Sleep Research Centre, Oasi Research Institute-IRCCS, Troina, Italy
| | - Rita Bella
- Department of Medical and Surgical Science and Advanced Technologies, University of Catania, Catania, Italy
| | - Walter Paulus
- Department of Neurology, Ludwig Maximilians University, Munich, Germany
| | - Raffaele Ferri
- Clinical Neurophysiology Research Unit, Oasi Research Institute-IRCCS, Troina, Italy
| |
Collapse
|
10
|
Lanza G, Fisicaro F, Dubbioso R, Ranieri F, Chistyakov AV, Cantone M, Pennisi M, Grasso AA, Bella R, Di Lazzaro V. A comprehensive review of transcranial magnetic stimulation in secondary dementia. Front Aging Neurosci 2022; 14:995000. [PMID: 36225892 PMCID: PMC9549917 DOI: 10.3389/fnagi.2022.995000] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2022] [Accepted: 08/29/2022] [Indexed: 11/13/2022] Open
Abstract
Although primary degenerative diseases are the main cause of dementia, a non-negligible proportion of patients is affected by a secondary and potentially treatable cognitive disorder. Therefore, diagnostic tools able to early identify and monitor them and to predict the response to treatment are needed. Transcranial magnetic stimulation (TMS) is a non-invasive neurophysiological technique capable of evaluating in vivo and in "real time" the motor areas, the cortico-spinal tract, and the neurotransmission pathways in several neurological and neuropsychiatric disorders, including cognitive impairment and dementia. While consistent evidence has been accumulated for Alzheimer's disease, other degenerative cognitive disorders, and vascular dementia, to date a comprehensive review of TMS studies available in other secondary dementias is lacking. These conditions include, among others, normal-pressure hydrocephalus, multiple sclerosis, celiac disease and other immunologically mediated diseases, as well as a number of inflammatory, infective, metabolic, toxic, nutritional, endocrine, sleep-related, and rare genetic disorders. Overall, we observed that, while in degenerative dementia neurophysiological alterations might mirror specific, and possibly primary, neuropathological changes (and hence be used as early biomarkers), this pathogenic link appears to be weaker for most secondary forms of dementia, in which neurotransmitter dysfunction is more likely related to a systemic or diffuse neural damage. In these cases, therefore, an effort toward the understanding of pathological mechanisms of cognitive impairment should be made, also by investigating the relationship between functional alterations of brain circuits and the specific mechanisms of neuronal damage triggered by the causative disease. Neurophysiologically, although no distinctive TMS pattern can be identified that might be used to predict the occurrence or progression of cognitive decline in a specific condition, some TMS-associated measures of cortical function and plasticity (such as the short-latency afferent inhibition, the short-interval intracortical inhibition, and the cortical silent period) might add useful information in most of secondary dementia, especially in combination with suggestive clinical features and other diagnostic tests. The possibility to detect dysfunctional cortical circuits, to monitor the disease course, to probe the response to treatment, and to design novel neuromodulatory interventions in secondary dementia still represents a gap in the literature that needs to be explored.
Collapse
Affiliation(s)
- Giuseppe Lanza
- Department of Surgery and Medical-Surgical Specialties, University of Catania, Catania, Italy
- Clinical Neurophysiology Research Unit, Oasi Research Institute-IRCCS, Troina, Italy
| | - Francesco Fisicaro
- Department of Biomedical and Biotechnological Sciences, University of Catania, Catania, Italy
| | - Raffaele Dubbioso
- Department of Neurosciences, Reproductive Sciences and Odontostomatology, University of Naples “Federico II”, Naples, Italy
| | - Federico Ranieri
- Unit of Neurology, Department of Neuroscience, Biomedicine and Movement Sciences, University of Verona, Verona, Italy
| | | | - Mariagiovanna Cantone
- Neurology Unit, Policlinico University Hospital “G. Rodolico – San Marco”, Catania, Italy
- Neurology Unit, Sant’Elia Hospital, ASP Caltanissetta, Caltanissetta, Italy
| | - Manuela Pennisi
- Department of Biomedical and Biotechnological Sciences, University of Catania, Catania, Italy
| | - Alfio Antonio Grasso
- Department of Surgery and Medical-Surgical Specialties, University of Catania, Catania, Italy
| | - Rita Bella
- Department of Medical and Surgical Sciences and Advanced Technologies, University of Catania, Catania, Italy
| | - Vincenzo Di Lazzaro
- Unit of Neurology, Neurophysiology and Neurobiology, Department of Medicine and Surgery, Università Campus Bio-Medico di Roma, Rome, Italy
- Fondazione Policlinico Universitario Campus Bio-Medico, Rome, Italy
| |
Collapse
|