1
|
Chauhan R, Patel H, Bhardwaj B, Suryawanshi V, Rawat S. Copper induced augmentation of antibiotic resistance in Acinetobacter baumannii MCC 3114. Biometals 2025; 38:485-504. [PMID: 39708209 DOI: 10.1007/s10534-024-00657-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2024] [Accepted: 12/04/2024] [Indexed: 12/23/2024]
Abstract
Increasing antibiotic resistance among the common nosocomial pathogen i.e. Acinetobacter baumannii poses life threat to the health care workers as well as to the society. The dissemination of antibiotic resistance in this pathogen at an alarming rate could be not only due to the overuse of antibiotics but also due to the stress caused by exposure of bacterium to several environmental contaminants in their niches. In the present study, effect of copper stress on augmentation in the antibiotic resistance of A. baumannii MCC 3114 against three clinically used antibiotics was investigated along with the phenotypic and genotypic alterations in the cell. It induced 8, 44 and 22-fold increase in resistance against colistin, ciprofloxacin and levofloxacin, respectively. Moreover, the biofilm formation of adapted culture was significantly enhanced due to a dense EPS around the cell (as revealed by SEM images). The structural changes in EPS were demonstrated by FTIR spectroscopy. The adequate growth of adapted MCC 3114 despite increased level of ROS indicates its persistence in copper and ROS stress. The physiological alterations in cell viz., increased efflux pump activity and decreased membrane permeability was observed. Molecular analysis revealed increased expression of efflux pump related genes, oxidative stress genes, integron and antibiotic resistance genes. In sum, our study revealed that the exposure of the critical pathogen, A. baunmannii to copper in hospital settings and environmental reservoirs can impose adaptive pressure which may lead to genotypic as well phenotypic changes in cell resulting into the augmentation of antibiotic resistance.
Collapse
Affiliation(s)
- Ravi Chauhan
- Microbiology Lab, School of Life Sciences, Central University of Gujarat, Gandhinagar, Gujarat, 382030, India
| | - Hardi Patel
- Microbiology Lab, School of Life Sciences, Central University of Gujarat, Gandhinagar, Gujarat, 382030, India
| | - Bhavna Bhardwaj
- Microbiology Lab, School of Life Sciences, Central University of Gujarat, Gandhinagar, Gujarat, 382030, India
| | - Vijay Suryawanshi
- Microbiology Lab, School of Life Sciences, Central University of Gujarat, Gandhinagar, Gujarat, 382030, India
| | - Seema Rawat
- Microbiology Lab, School of Life Sciences, Central University of Gujarat, Gandhinagar, Gujarat, 382030, India.
| |
Collapse
|
2
|
Alwazzeh MJ, Algazaq J, Al-Salem FA, Alabkari F, Alwarthan SM, Alhajri M, AlShehail BM, Alnimr A, Alrefaai AW, Alsaihati FH, Almuhanna FA. Mortality and clinical outcomes of colistin versus colistin-based combination therapy for infections caused by Multidrug-resistant Acinetobacter baumannii in critically ill patients. BMC Infect Dis 2025; 25:416. [PMID: 40140752 PMCID: PMC11948640 DOI: 10.1186/s12879-025-10781-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2024] [Accepted: 03/11/2025] [Indexed: 03/28/2025] Open
Abstract
BACKGROUND Multidrug-resistant Acinetobacter baumannii emerged as a threatening "superbug" with significant morbidity and mortality and limited antimicrobial therapy options. The results of different antibiotic combination studies are heterogeneous and controversial. Further comparative studies are crucial to overcome such difficult-to-treat infections and to improve patient outcomes. This study investigates the mortality and outcomes of colistin versus colistin-based combination therapy for infections caused by Multidrug-resistant Acinetobacter baumannii in critically ill patients. METHODS A retrospective observational study was conducted at an academic tertiary hospital in Khobar City, Eastern Province, Saudi Arabia. Patients who fulfilled the inclusion criteria and were admitted from January 1, 2017, to December 31, 2022, were included. The investigated primary outcome was 30-day mortality, while secondary outcomes were one-year all-cause mortality, clinical cure, microbiologic eradication, and recurrence of Acinetobacter infections. Statistical comparisons were employed, and a P-value of ≤ .05 was considered significant. RESULTS Of the 178 patients who fulfilled the inclusion criteria, 47 received colistin only, and 131 received colistin in combinations (55 with carbapenems, 53 with tigecycline, and 23 with both). The estimated 30-day mortality rate of the study population was 22.5%, with statistically insignificant differences in 30-day mortality rates when the colistin group compared to cumulative colistin-based combination (23.4% vs. 22.1%; difference, 1.3 percentage points; 95% confidence interval [CI], 0.487-2.371; P = 0.858) or subgroups. However, colistin-based combination groups showed better secondary outcomes, with significantly less all-cause mortality and better clinical cure in colistin combination with carbapenems or tigecycline and less Acinetobacter infection recurrence in combination with carbapenems. CONCLUSIONS The study findings demonstrate the benefits of investigated colistin combination options that result in less one-year all-cause mortality, better clinical cure, higher microbiologic response, and less infection recurrence. However, no significant differences were observed regarding 30-day mortality. In addition, the study highlights the limitations of the available antimicrobial options and the crucial need for new effective antimicrobials and more successful combinations.
Collapse
Affiliation(s)
- Marwan J Alwazzeh
- Infectious Disease Division, Department of Internal Medicine, Faculty of Medicine, Imam Abdulrahman Bin Faisal University, Dammam, & King Fahad Hospital of the University, Al Khobar, Saudi Arabia.
| | - Jumanah Algazaq
- Infectious Disease Division, Department of Internal Medicine, Faculty of Medicine, Imam Abdulrahman Bin Faisal University, Dammam, & King Fahad Hospital of the University, Al Khobar, Saudi Arabia
| | - Fatimah Ali Al-Salem
- Infectious Disease Division, Department of Internal Medicine, Faculty of Medicine, Imam Abdulrahman Bin Faisal University, Dammam, & King Fahad Hospital of the University, Al Khobar, Saudi Arabia
| | - Fatimah Alabkari
- Infectious Disease Division, Department of Internal Medicine, Faculty of Medicine, Imam Abdulrahman Bin Faisal University, Dammam, & King Fahad Hospital of the University, Al Khobar, Saudi Arabia
| | - Sara M Alwarthan
- Infectious Disease Division, Department of Internal Medicine, Faculty of Medicine, Imam Abdulrahman Bin Faisal University, Dammam, & King Fahad Hospital of the University, Al Khobar, Saudi Arabia
| | - Mashael Alhajri
- Infectious Disease Division, Department of Internal Medicine, Faculty of Medicine, Imam Abdulrahman Bin Faisal University, Dammam, & King Fahad Hospital of the University, Al Khobar, Saudi Arabia
| | - Bashayer M AlShehail
- Pharmacy Practice Department, College of Clinical Pharmacy, Imam Abdulrahman Bin Faisal University, Dammam, Saudi Arabia
| | - Amani Alnimr
- Department of Microbiology, College of Medicine, King Fahad Hospital of the University, Imam Abdulrahman Bin Faisal University, Dammam, Saudi Arabia
| | - Ahmad Wajeeh Alrefaai
- Department of Microbiology, College of Medicine, King Fahad Hospital of the University, Imam Abdulrahman Bin Faisal University, Dammam, Saudi Arabia
- Department of Internal Medicine, Faculty of Medicine, Imam Abdulrahman Bin Faisal University, Fahad Hospital of the University, Dammam & King, Al Khobar, Saudi Arabia
| | - Faten Hussain Alsaihati
- Department of Internal Medicine, Faculty of Medicine, Imam Abdulrahman Bin Faisal University, Fahad Hospital of the University, Dammam & King, Al Khobar, Saudi Arabia
| | - Fahd Abdulaziz Almuhanna
- Nephrology Division, Department of Internal Medicine, Faculty of Medicine, Imam Abdulrahman Bin Faisal University, Fahad Hospital of the University, Dammam & King, Al-Khobar, Saudi Arabia
| |
Collapse
|
3
|
Yadav G, Sharma A, Hathi UPS, Gaind R, Singh R. Development and optimization of multiplex PCR for rapid detection of type I-F1 and type I-F2 Cas cluster genes in Acinetobacter baumannii. Biologicals 2025; 90:101824. [PMID: 40086107 DOI: 10.1016/j.biologicals.2025.101824] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2024] [Revised: 02/13/2025] [Accepted: 03/08/2025] [Indexed: 03/16/2025] Open
Abstract
Polymerase chain reaction (PCR), especially the multiplex PCR assay, enables simultaneous detection of multiple genes and is highly effective for diagnostic applications. The CRISPR-associated (Cas) system consists of several genes, and complete gene clusters are essential for its activity; multiplex PCR is an excellent method for detecting these multiple genes. This study focuses on the development and validation of a multiplex PCR protocol for the specific detection of CRISPR-Cas subtypes I-F1 and I-F2 found in A. baumannii, which is classified as a critical ESKAPE pathogen. The multiplex PCR method achieved a 100 % detection rate for isolates containing Cas subtypes I-F1 and I-F2 in clinical A. baumannii isolates. Testing across various genera and Acinetobacter species confirmed the high specificity of the assay, with no false positives, establishing it as a reliable tool for large-scale clinical applications. Of the 96 clinical A. baumannii isolates analysed, 29.167 % (n = 28) were multiplex PCR positive for a CRISPR-Cas system. Among these, 71.43 % (n = 20) had subtype I-F1, while 28.57 % (n = 8) had subtype I-F2. No clear association was found between Cas subtypes and resistance to the tested antibiotics or carbapenem genes. This study provides a valuable tool for monitoring CRISPR-Cas systems and can aid in various experimental and novel strategies to manage multidrug-resistant A. baumannii.
Collapse
Affiliation(s)
- Gulshan Yadav
- ICMR - National Institute of Child Health and Developmental Research, Safdarjung Hospital Campus, Ansari Nagar West, New Delhi, India; Manipal Academy of Higher Education (MAHE), Mangalore, Karnataka, India
| | - Amit Sharma
- Vardhman Mahavir Medical College and Safdarjung Hospital, New Delhi, India
| | - Umesh Prasad Sah Hathi
- ICMR - National Institute of Child Health and Developmental Research, Safdarjung Hospital Campus, Ansari Nagar West, New Delhi, India
| | - Rajni Gaind
- Vardhman Mahavir Medical College and Safdarjung Hospital, New Delhi, India
| | - Ruchi Singh
- ICMR - National Institute of Child Health and Developmental Research, Safdarjung Hospital Campus, Ansari Nagar West, New Delhi, India; Indian Council of Medical Research (ICMR), New Delhi, India.
| |
Collapse
|
4
|
Elshamy AA, Kamal SK, Mahmoud MT, Elhasany AM, Shady AA, Mohamed SA, Abd-Elmaaboud HA, El-Awady NE, Mohamed RA, El-Mirghany SA, El-Hady SW, Abd-ElRahman MM, Aboshanab KM. Recent insights on phage therapy against multidrug-resistant Acinetobacter baumannii. AMB Express 2025; 15:44. [PMID: 40072684 PMCID: PMC11904003 DOI: 10.1186/s13568-025-01837-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2025] [Accepted: 02/03/2025] [Indexed: 03/14/2025] Open
Abstract
Acinetobacter baumannii is a prevalent clinical pathogen commonly found to be multidrug-resistant (MDR), causing serious to life-threatening infections, particularly hospital-acquired infections with limited therapeutic options. The MDR phenotype developed against this critical pathogen is increasingly developed globally, reaching a pan-drug-resistant phenotype conferring non-susceptibility to all antimicrobials used in its treatment according to the standard guidelines. Therefore, it is critical to develop innovative treatment approaches, such as phage therapy, considering the rise in drug-resistant A. baumannii infections. In this review, we highlight and discuss the up-to-date antimicrobial resistance of A. baumannii, the use of phages, their limitations, and future perspectives in treating A. baumannii infections. In addition, the combination of phages with antimicrobials, preclinical and clinical studies including pharmacokinetics and pharmacodynamics properties have been discussed.
Collapse
Affiliation(s)
- Ann A Elshamy
- Department of Microbiology and Immunology, Faculty of Pharmacy, Ain Shams University, Cairo, 11566, Egypt
| | - Sandra K Kamal
- Faculty of Pharmacy, Ain Shams University, Cairo, 11566, Egypt
| | | | - Aya M Elhasany
- Faculty of Pharmacy, Ain Shams University, Cairo, 11566, Egypt
| | - Aya A Shady
- Faculty of Pharmacy, Ain Shams University, Cairo, 11566, Egypt
| | | | | | - Nour E El-Awady
- Faculty of Pharmacy, Ain Shams University, Cairo, 11566, Egypt
| | - Rana A Mohamed
- Faculty of Pharmacy, Ain Shams University, Cairo, 11566, Egypt
| | | | | | | | - Khaled M Aboshanab
- Department of Microbiology and Immunology, Faculty of Pharmacy, Ain Shams University, Cairo, 11566, Egypt.
| |
Collapse
|
5
|
Alharbi O, Al-Said HM, Ashgar SS, Jalal NA, Faidah H, Momenah AM, Johargy AK, Bantun F, Qashqari FS, Faidah OH, Bukhari MA, Ibrahem K. Prevalence and Antibiogram Pattern of Acinetobacter baumannii from 2013 to 2023 in a Tertiary Care Hospital in the Western Region of Saudi Arabia. Antibiotics (Basel) 2025; 14:274. [PMID: 40149085 PMCID: PMC11939176 DOI: 10.3390/antibiotics14030274] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2025] [Revised: 02/13/2025] [Accepted: 02/27/2025] [Indexed: 03/29/2025] Open
Abstract
Acinetobacter baumannii is pathogen of global concern. It causes infection, especially among immunocompromised individuals in intensive care units, due to its ability to survive for long periods on hard surfaces and under a wide range of environmental conditions and become resistant to almost all the available antibiotics used in clinical practice. Objectives: This study aims to address the gap in A. baumannii surveillance in Saudi Arabia by tracking the prevalence, patterns, and trends of acquired A. baumannii resistance at a healthcare facility in the western part of Saudi Arabia over eleven years. Methods: The study was conducted in a tertiary care hospital in the western region of Saudi Arabia, from January 2013 to December 2023. Results: Our data indicated that A. baumannii infections were predominantly observed in inpatients admitted to the hospital (96%) compared to those treated as outpatients in the emergency clinic (4%). The mean of annual A. baumannii infections isolated from inpatients is 503.3, whereas the mean for outpatients is 21, indicating a statistically significant difference with a p-value of <0.0001. The analysis of the antimicrobial susceptibility profile of A. baumannii demonstrated a variable levels of resistance to the evaluated antibiotics. The lowest resistance rate was for colistin. Conclusions: In conclusion, the incidence patterns of A. baumannii isolates peaked in 2013, then declined, and have recently shown an increase, underscoring the necessity for proactive interventions to curtail its dissemination, notwithstanding initial decreases in infection rates and resistance.
Collapse
Affiliation(s)
- Ohood Alharbi
- Department of Microbiology and Parasitology, Faculty of Medicine, Umm Al-Qura University, Makkah 21955, Saudi Arabia; (O.A.); (S.S.A.); (N.A.J.); (H.F.); (A.M.M.); (A.K.J.); (F.B.); (F.S.Q.)
| | - Hamdi M. Al-Said
- Department of Microbiology and Parasitology, Faculty of Medicine, Umm Al-Qura University, Makkah 21955, Saudi Arabia; (O.A.); (S.S.A.); (N.A.J.); (H.F.); (A.M.M.); (A.K.J.); (F.B.); (F.S.Q.)
| | - Sami S. Ashgar
- Department of Microbiology and Parasitology, Faculty of Medicine, Umm Al-Qura University, Makkah 21955, Saudi Arabia; (O.A.); (S.S.A.); (N.A.J.); (H.F.); (A.M.M.); (A.K.J.); (F.B.); (F.S.Q.)
| | - Naif A. Jalal
- Department of Microbiology and Parasitology, Faculty of Medicine, Umm Al-Qura University, Makkah 21955, Saudi Arabia; (O.A.); (S.S.A.); (N.A.J.); (H.F.); (A.M.M.); (A.K.J.); (F.B.); (F.S.Q.)
| | - Hani Faidah
- Department of Microbiology and Parasitology, Faculty of Medicine, Umm Al-Qura University, Makkah 21955, Saudi Arabia; (O.A.); (S.S.A.); (N.A.J.); (H.F.); (A.M.M.); (A.K.J.); (F.B.); (F.S.Q.)
| | - Aiman M. Momenah
- Department of Microbiology and Parasitology, Faculty of Medicine, Umm Al-Qura University, Makkah 21955, Saudi Arabia; (O.A.); (S.S.A.); (N.A.J.); (H.F.); (A.M.M.); (A.K.J.); (F.B.); (F.S.Q.)
| | - Ayman K. Johargy
- Department of Microbiology and Parasitology, Faculty of Medicine, Umm Al-Qura University, Makkah 21955, Saudi Arabia; (O.A.); (S.S.A.); (N.A.J.); (H.F.); (A.M.M.); (A.K.J.); (F.B.); (F.S.Q.)
| | - Farkad Bantun
- Department of Microbiology and Parasitology, Faculty of Medicine, Umm Al-Qura University, Makkah 21955, Saudi Arabia; (O.A.); (S.S.A.); (N.A.J.); (H.F.); (A.M.M.); (A.K.J.); (F.B.); (F.S.Q.)
| | - Fadi S. Qashqari
- Department of Microbiology and Parasitology, Faculty of Medicine, Umm Al-Qura University, Makkah 21955, Saudi Arabia; (O.A.); (S.S.A.); (N.A.J.); (H.F.); (A.M.M.); (A.K.J.); (F.B.); (F.S.Q.)
| | - Omar Hani Faidah
- Faculty of Medicine, Umm Al-Qura University, Makkah 24382, Saudi Arabia;
| | - Mamdouh A. Bukhari
- Regional Laboratory, General Directorate of Health Affairs, Makkah City, Ministry of Health, Makkah 24321, Saudi Arabia;
| | - Karem Ibrahem
- Department of Clinical Microbiology and Immunology, Faculty of Medicine, King Abdulaziz University, Jeddah 21589, Saudi Arabia;
| |
Collapse
|
6
|
Kakavan M, Gholami M, Ahanjan M, Ebrahimzadeh MA, Salehian M, Roozbahani F, Goli HR. Expression of bap gene in multidrug-resistant and biofilm-producing Acinetobacter baumannii clinical isolates. BMC Microbiol 2025; 25:108. [PMID: 40025431 PMCID: PMC11871766 DOI: 10.1186/s12866-025-03806-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2023] [Accepted: 02/05/2025] [Indexed: 03/04/2025] Open
Abstract
INTRODUCTION Acinetobacter baumannii is a significant biofilm-producer and antibiotic-resistant pathogen associated with various infections caused in humans. This study aimed to investigate the expression level of the bap gene in multidrug-resistant and biofilm-producer clinical isolates of A. baumannii. MATERIALS AND METHODS One Hundred A. baumannii clinical isolates were collected from hospitalized patients and identified by phenotypic and genotypic tests. The antibiotic resistance pattern of the isolates was determined by the disk agar diffusion method. The ability of biofilm production was investigated using the microtiter plate test. This study employed the Real-time PCR method to evaluate the expression level of the bap gene. RESULTS Ninety nine percent A. baumannii isolates were MDR. However, the highest resistance rate was observed against ciprofloxacin (100%), while ceftazidime was the most effective drug. Also, 49%, 49%, and 2% of the isolates were strong, moderate, and weak biofilm-producing, respectively. However, we detected no strain without the ability to produce biofilm. Most strong and moderate biofilm-former isolates were non-susceptible to all tested antibiotics. An increased expression level of the bap gene was detected in 99% of the isolates. The results of the present study suggest a correlation between the bap gene expression level and the development of multidrug resistance and biofilm formation in A. baumannii isolates. CONCLUSION This research emphasizes the importance of biofilm formation in the emergence of multidrug-resistant A. baumannii strains in healthcare settings, making them progressively difficult to control. The bap gene may be a considerable target for the development of novel anti-A. baumannii treatment option and eradication of the biofilm formation by this organism.
Collapse
Affiliation(s)
- Maedeh Kakavan
- Immunogenetics Research Center, Faculty of Medicine, Mazandaran University of Medical Sciences, Sari, Iran
- Department of Medical Microbiology and Virology, Faculty of Medicine, Mazandaran University of Medical Sciences, Sari, Iran
| | - Mehrdad Gholami
- Immunogenetics Research Center, Faculty of Medicine, Mazandaran University of Medical Sciences, Sari, Iran
- Department of Medical Microbiology and Virology, Faculty of Medicine, Mazandaran University of Medical Sciences, Sari, Iran
| | - Mohammad Ahanjan
- Immunogenetics Research Center, Faculty of Medicine, Mazandaran University of Medical Sciences, Sari, Iran
- Department of Medical Microbiology and Virology, Faculty of Medicine, Mazandaran University of Medical Sciences, Sari, Iran
| | - Mohammad Ali Ebrahimzadeh
- Pharmaceutical Sciences Research Center, School of Pharmacy, Mazandaran University of Medical Sciences, Sari, Iran
| | - Maryam Salehian
- Department of Medical Microbiology and Virology, Faculty of Medicine, Mazandaran University of Medical Sciences, Sari, Iran
| | - Fatemeh Roozbahani
- Student Research Committee, School of Medicine, Mazandaran University of Medical Sciences, Sari, Iran
| | - Hamid Reza Goli
- Immunogenetics Research Center, Faculty of Medicine, Mazandaran University of Medical Sciences, Sari, Iran.
- Department of Medical Microbiology and Virology, Faculty of Medicine, Mazandaran University of Medical Sciences, Sari, Iran.
| |
Collapse
|
7
|
Hotta A, Nishimura M, Nakada D, Uchida R, Matsuura H, Torii N, Fujita N, Hamada T, Nakamoto A, Yoshikawa N. Markedly elevated blood pressure, tachycardia, and altered consciousness in patients with bacteremia during transurethral surgeries: two case reports. JA Clin Rep 2025; 11:12. [PMID: 39960556 PMCID: PMC11832996 DOI: 10.1186/s40981-025-00774-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2024] [Revised: 02/06/2025] [Accepted: 02/07/2025] [Indexed: 02/20/2025] Open
Abstract
BACKGROUND Transurethral surgery is often accompanied by postoperative urinary tract infection. Although early detection and adequate treatment of bacteremia are required to prevent sepsis, it is usually undetectable during surgery. We report two cases with remarkable hypertension and tachycardia during transurethral surgery in which bacteremia was diagnosed by an intraoperative blood test. CASE PRESENTATION An 80-year-old man (Case 1) underwent transurethral holmium laser prostate enucleation under spinal anesthesia, and an 88-year-old woman (Case 2) underwent transurethral resection of bladder tumor under general anesthesia. Altered consciousness (Case 1) and postoperative delirium (Case 2) were noted, in addition to remarkable intraoperative hypertension and tachycardia. We administered broad-spectrum antibiotics for possible bacteremia in both cases. The patients' hemodynamics positively recovered the following day. Intraoperative blood samples revealed gram-negative bacillus. CONCLUSIONS Hypertension, tachycardia, and altered consciousness may suggest the onset of symptomatic bacteremia during transurethral surgery, and adequate treatment is required to prevent sepsis.
Collapse
Affiliation(s)
- Arisa Hotta
- Department of Anesthesiology, Sumitomo Hospital, 5-3-20 Nakanoshima, Kita-Ku, Osaka City, Osaka, 530-0005, Japan.
| | - Momoka Nishimura
- Department of Anesthesiology, Sumitomo Hospital, 5-3-20 Nakanoshima, Kita-Ku, Osaka City, Osaka, 530-0005, Japan
| | - Daisuke Nakada
- Department of Anesthesiology, Sumitomo Hospital, 5-3-20 Nakanoshima, Kita-Ku, Osaka City, Osaka, 530-0005, Japan
| | - Riko Uchida
- Department of Anesthesiology, Sumitomo Hospital, 5-3-20 Nakanoshima, Kita-Ku, Osaka City, Osaka, 530-0005, Japan
| | - Hiroshi Matsuura
- Department of Anesthesiology, Sumitomo Hospital, 5-3-20 Nakanoshima, Kita-Ku, Osaka City, Osaka, 530-0005, Japan
| | - Naoko Torii
- Department of Anesthesiology, Sumitomo Hospital, 5-3-20 Nakanoshima, Kita-Ku, Osaka City, Osaka, 530-0005, Japan
| | - Naoko Fujita
- Department of Anesthesiology, Sumitomo Hospital, 5-3-20 Nakanoshima, Kita-Ku, Osaka City, Osaka, 530-0005, Japan
| | - Taku Hamada
- Department of Anesthesiology, Sumitomo Hospital, 5-3-20 Nakanoshima, Kita-Ku, Osaka City, Osaka, 530-0005, Japan
| | - Ai Nakamoto
- Department of Anesthesiology, Sumitomo Hospital, 5-3-20 Nakanoshima, Kita-Ku, Osaka City, Osaka, 530-0005, Japan
| | - Noriko Yoshikawa
- Department of Anesthesiology, Sumitomo Hospital, 5-3-20 Nakanoshima, Kita-Ku, Osaka City, Osaka, 530-0005, Japan
| |
Collapse
|
8
|
Garcia Torres S, Henrich D, Verboket RD, Marzi I, Hahne G, Kempf VAJ, Göttig S. Bactericidal Effect of a Novel Phage Endolysin Targeting Multi-Drug-Resistant Acinetobacter baumannii. Antibiotics (Basel) 2025; 14:162. [PMID: 40001406 PMCID: PMC11851708 DOI: 10.3390/antibiotics14020162] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2024] [Revised: 01/26/2025] [Accepted: 02/01/2025] [Indexed: 02/27/2025] Open
Abstract
BACKGROUND/OBJECTIVES Infections with antibiotic-resistant Gram-negative pathogens represent a major global threat to public health. Acinetobacter baumannii is a highly important nosocomial pathogen causing severe and life-threatening infections, like pneumonia, wound infections, or sepsis. It is often resistant even against last-resort antibiotics, such as carbapenems, and can persist in healthcare settings. Artilysin®s are a novel class of endolysins targeted against multidrug-resistant bacteria. METHODS Antibacterial activity of Art-Top3 was determined by broth microdilution, in vitro assays and in the Galleria mellonella infection model. The toxicity of Art-Top3 on red blood cells, endothelial and epithelial cells was analyzed using the MTT assay. RESULTS Here, we report on a new Artilysin® Art-Top3 that is active against A. baumannii and led to a 105-fold reduction in viable A. baumannii after five minutes of exposure. Art-Top3 showed activity against A. baumannii biofilms in static and dynamic experimental infection models. Furthermore, upon infection with carbapenem-resistant A. baumannii patient isolates, Art-Top3 was able to rescue human primary cells in vitro and larvae of Galleria mellonella in an in vivo infection model. Art-Top3 did not lyse human red blood cells and showed activity in human serum, indicating a low toxicity and high stability of Art-Top3 in vitro. CONCLUSION Our findings collectively establish that Art-Top3 might be a candidate for novel therapeutic strategies of infections caused by multidrug-resistant A. baumannii pathogens.
Collapse
Affiliation(s)
- Sara Garcia Torres
- Goethe University Frankfurt, University Hospital, Institute of Medical Microbiology and Infection Control, 60596 Frankfurt am Main, Germany;
| | - Dirk Henrich
- Goethe University Frankfurt, University Hospital, Department of Trauma Surgery and Orthopedics, 60590 Frankfurt am Main, Germany; (D.H.); (R.D.V.); (I.M.)
| | - Rene D. Verboket
- Goethe University Frankfurt, University Hospital, Department of Trauma Surgery and Orthopedics, 60590 Frankfurt am Main, Germany; (D.H.); (R.D.V.); (I.M.)
| | - Ingo Marzi
- Goethe University Frankfurt, University Hospital, Department of Trauma Surgery and Orthopedics, 60590 Frankfurt am Main, Germany; (D.H.); (R.D.V.); (I.M.)
| | - Gernot Hahne
- Lysando Innovations Lab GmbH, 93053 Regensburg, Germany;
| | - Volkhard A. J. Kempf
- Goethe University Frankfurt, University Hospital, Institute of Medical Microbiology and Infection Control, 60596 Frankfurt am Main, Germany;
| | - Stephan Göttig
- Goethe University Frankfurt, University Hospital, Institute of Medical Microbiology and Infection Control, 60596 Frankfurt am Main, Germany;
| |
Collapse
|
9
|
Yousaf A, Ullah MH, Nawaz H, Majeed MI, Rashid N, Alshammari A, Albekairi NA, Ali A, Hussain M, Salfi AB, Aslam MA, Idrees K, Ditta A. SERS-assisted characterization of cell biomass from biofilm-forming Acinetobacter baumannii strains using chemometric tools. RSC Adv 2025; 15:4581-4592. [PMID: 39931412 PMCID: PMC11809493 DOI: 10.1039/d4ra06267a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2024] [Accepted: 01/06/2025] [Indexed: 02/13/2025] Open
Abstract
Acinetobacter baumannii (A. baumannii) is an emerging Gram-negative nosocomial pathogen responsible for infection on a global scale. It has the ability to develop biofilms on different surfaces, especially abiotic surfaces, which is considered a major contributor of its pathogenicity. Surface-enhanced Raman spectroscopy (SERS) holds great potential as an effective method for identifying and characterizing the biochemical composition of biofilm-forming species. In this study, cell mass samples from different strains of A. baumannii, categorized based on their biofilm-forming ability (strong, medium and non-biofilm forming) using a 96-well microtiter plate assay (MTP), were analyzed by SERS. The identified spectral features of the SERS spectra were used to characterize bacterial strains capable of producing biofilms. Silver nanoparticles (Ag-NPs) served as the SERS substrate to differentiate biofilm-forming strains of A. baumannii. Chemometric tools, such as principal component analysis (PCA) and partial least squares discriminant analysis (PLS-DA), were employed for the classification and differentiation of SERS spectra from bacterial strains with varying biofilm-producing capacities, achieving 100% sensitivity, 94.3% specificity, and an area under the curve (AUC) value of 0.81 through Monte Carlo cross-validation. Furthermore, K-fold (Leave-K-out cross-validation (LKOCV)) was applied to verify the robustness of the PLS-DA model, and the AUC value was found to be 0.90, with a sensitivity of 100% and specificity of 98%. These results demonstrate that the PLS-DA model is highly effective for the differentiation and classification of bacterial strains with varying capacities for biofilm production.
Collapse
Affiliation(s)
- Arslan Yousaf
- Department of Chemistry, University of Agriculture Faisalabad Faisalabad (38000) Pakistan
| | - Muhammad Hafeez Ullah
- Department of Chemistry, University of Agriculture Faisalabad Faisalabad (38000) Pakistan
| | - Haq Nawaz
- Department of Chemistry, University of Agriculture Faisalabad Faisalabad (38000) Pakistan
| | - Muhammad Irfan Majeed
- Department of Chemistry, University of Agriculture Faisalabad Faisalabad (38000) Pakistan
| | - Nosheen Rashid
- Department of Chemistry, University of Education, Faisalabad Campus Faisalabad (38000) Pakistan
| | - Abdulrahman Alshammari
- Department of Pharmacology and Toxicology, College of Pharmacy, King Saud University Post Box 2455 Riyadh 11451 Saudi Arabia
| | - Norah A Albekairi
- Department of Pharmacology and Toxicology, College of Pharmacy, King Saud University Post Box 2455 Riyadh 11451 Saudi Arabia
| | - Arslan Ali
- Department of Chemistry, University of Agriculture Faisalabad Faisalabad (38000) Pakistan
| | - Munawar Hussain
- Department of Chemistry, University of Agriculture Faisalabad Faisalabad (38000) Pakistan
| | - Abu Bakar Salfi
- Department of Chemistry, University of Agriculture Faisalabad Faisalabad (38000) Pakistan
| | - Muhammad Aamir Aslam
- Institute of Microbiology, Faculty of Veterinary Sciences, University of Agriculture Faisalabad Faisalabad (38000) Pakistan
| | - Kinza Idrees
- Institute of Microbiology, Faculty of Veterinary Sciences, University of Agriculture Faisalabad Faisalabad (38000) Pakistan
| | - Allah Ditta
- Institute for Experimental Molecular Imaging, RWTH Aachen University Hospital Aachen 52074 Germany
| |
Collapse
|
10
|
Scoffone VC, Trespidi G, Barbieri G, Arshad A, Israyilova A, Buroni S. The Evolution of Antimicrobial Resistance in Acinetobacter baumannii and New Strategies to Fight It. Antibiotics (Basel) 2025; 14:85. [PMID: 39858372 PMCID: PMC11760889 DOI: 10.3390/antibiotics14010085] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2024] [Revised: 01/10/2025] [Accepted: 01/13/2025] [Indexed: 01/27/2025] Open
Abstract
Acinetobacter baumannii is considered one of the prioritized ESKAPE microorganisms for the research and development of novel treatments by the World Health Organization, especially because of its remarkable persistence and drug resistance. In this review, we describe how this can be acquired by the enzymatic degradation of antibiotics, target site modification, altered membrane permeability, multidrug efflux pumps, and their ability to form biofilms. Also, the evolution of drug resistance in A. baumannii, which is mainly driven by mobile genetic elements, is reported, with particular reference to plasmid-associated resistance, resistance islands, and insertion sequences. Finally, an overview of existing, new, and alternative therapies is provided.
Collapse
Affiliation(s)
- Viola Camilla Scoffone
- Department of Biology and Biotechnology, University of Pavia, 27100 Pavia, Italy; (V.C.S.); (G.T.); (G.B.); (A.A.)
| | - Gabriele Trespidi
- Department of Biology and Biotechnology, University of Pavia, 27100 Pavia, Italy; (V.C.S.); (G.T.); (G.B.); (A.A.)
| | - Giulia Barbieri
- Department of Biology and Biotechnology, University of Pavia, 27100 Pavia, Italy; (V.C.S.); (G.T.); (G.B.); (A.A.)
| | - Arooba Arshad
- Department of Biology and Biotechnology, University of Pavia, 27100 Pavia, Italy; (V.C.S.); (G.T.); (G.B.); (A.A.)
| | - Aygun Israyilova
- Laboratory of Microbiology, Center of Excellence, Baku State University, AZ1148 Baku, Azerbaijan;
- Department of Biomedical Materials by ICESCO, Baku State University, AZ1148 Baku, Azerbaijan
| | - Silvia Buroni
- Department of Biology and Biotechnology, University of Pavia, 27100 Pavia, Italy; (V.C.S.); (G.T.); (G.B.); (A.A.)
| |
Collapse
|
11
|
Chou MJ, Cheng CH, Wang HC, Tsai MJ, Sheu CC, Chang WA. Investigating the Pulmonary Host Response of Acinetobacter baumannii Infection-Associated Pneumonia by Metagenomic Next-Generation Sequencing. Biomedicines 2025; 13:142. [PMID: 39857726 PMCID: PMC11761191 DOI: 10.3390/biomedicines13010142] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2024] [Accepted: 01/08/2025] [Indexed: 01/27/2025] Open
Abstract
Background: For investigating the host response in Acinetobacter baumannii associated pneumonia, we analyzed the host genetic sequences obtained from metagenomic next-generation sequencing (mNGS). Methods: The samples for mNGS were bronchoalveolar lavage fluid (BALF) collected from the lungs of patients infected with A. baumannii and from patients without bacterial infections. BALF samples from patients with pneumonia were collected from the lungs of patients infected with A. baumannii with New Delhi metallo-β-lactamase (NDM, before treatment), A. baumannii with NDM (post-treatment), A. baumannii without resistant genes, and those without bacterial infection. Partek was used for investigating enriched functions and pathways related to the pulmonary host response to pneumonia caused by A. baumannii with NDM infection and A. baumannii without antimicrobial-resistant genes. The STRING was employed for identifying protein interaction pathways related to the pulmonary host response to pneumonia caused by A. baumannii without antimicrobial-resistant genes. Results: In pulmonary host response to pneumonia caused by A. baumannii with NDM, five immune system-related pathways and five pathways related to signal transduction were identified. No significant differences were observed in the immune system and signal transduction pathways in the pulmonary host response to pneumonia caused by A. baumannii without antimicrobial-resistant genes. However, significant differences were noted in the phagosome, ferroptosis, and regulation of the actin cytoskeleton in cellular processes. Conclusions: mNGS provides information not only on pathogen gene expression but also on host gene expression. In this study, we found that pneumonia with A. baumannii carrying the NDM resistance gene triggers stronger immune responses in the lung, while pneumonia with A. baumannii lacking antimicrobial resistance genes is more linked to iron-related pathways.
Collapse
Affiliation(s)
- Mu-Jung Chou
- Department of Internal Medicine, Kaohsiung Medical University Hospital, Kaohsiung Medical University, Kaohsiung 807, Taiwan; (M.-J.C.); (C.-H.C.); (M.-J.T.); (C.-C.S.)
| | - Chih-Hung Cheng
- Department of Internal Medicine, Kaohsiung Medical University Hospital, Kaohsiung Medical University, Kaohsiung 807, Taiwan; (M.-J.C.); (C.-H.C.); (M.-J.T.); (C.-C.S.)
- Division of Pulmonary and Critical Care Medicine, Kaohsiung Medical University Hospital, Kaohsiung 807, Taiwan
- Department of Internal Medicine, School of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung 807, Taiwan
| | - Hui-Ching Wang
- Department of Nursing, Kaohsiung Medical University Hospital, Kaohsiung Medical University, Kaohsiung 807, Taiwan;
| | - Ming-Ju Tsai
- Department of Internal Medicine, Kaohsiung Medical University Hospital, Kaohsiung Medical University, Kaohsiung 807, Taiwan; (M.-J.C.); (C.-H.C.); (M.-J.T.); (C.-C.S.)
- Division of Pulmonary and Critical Care Medicine, Kaohsiung Medical University Hospital, Kaohsiung 807, Taiwan
- Department of Internal Medicine, School of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung 807, Taiwan
| | - Chau-Chyun Sheu
- Department of Internal Medicine, Kaohsiung Medical University Hospital, Kaohsiung Medical University, Kaohsiung 807, Taiwan; (M.-J.C.); (C.-H.C.); (M.-J.T.); (C.-C.S.)
- Division of Pulmonary and Critical Care Medicine, Kaohsiung Medical University Hospital, Kaohsiung 807, Taiwan
- Department of Internal Medicine, School of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung 807, Taiwan
| | - Wei-An Chang
- Department of Internal Medicine, Kaohsiung Medical University Hospital, Kaohsiung Medical University, Kaohsiung 807, Taiwan; (M.-J.C.); (C.-H.C.); (M.-J.T.); (C.-C.S.)
- Division of Pulmonary and Critical Care Medicine, Kaohsiung Medical University Hospital, Kaohsiung 807, Taiwan
- Department of Internal Medicine, School of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung 807, Taiwan
- Graduate Institute of Clinical Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung 807, Taiwan
| |
Collapse
|
12
|
Černiauskienė K, Vitkauskienė A. Multidrug-Resistant Acinetobacter baumannii: Risk Factors for Mortality in a Tertiary Care Teaching Hospital. Trop Med Infect Dis 2025; 10:15. [PMID: 39852666 PMCID: PMC11768767 DOI: 10.3390/tropicalmed10010015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2024] [Revised: 12/31/2024] [Accepted: 01/03/2025] [Indexed: 01/26/2025] Open
Abstract
BACKGROUND AND OBJECTIVES Due to resistance and the lack of treatment options, hospital-acquired Acinetobacter baumannii (A. baumannii) infections are associated with high mortality. This study aimed to analyze the characteristics of patients with infections caused by multidrug-resistant (MDR) A. baumannii and patients' clinical outcomes as well as determine the risk factors for mortality in a tertiary care teaching hospital. MATERIALS AND METHODS A retrospective cohort study including 196 adult patients with A. baumannii strains isolated from different clinical specimens in the Hospital of the Lithuanian University of Health Sciences in 2016, 2017, 2020, and 2021 was conducted. Data on patients' characteristics, comorbid diseases, treatment, length of hospital and ICU stay, and outcome were collected. Carbapenemase-producing isolates were detected phenotypically. To determine risk factors for in-hospital mortality, logistic regression analysis was performed. RESULTS There were 60 (30.6%) women and 136 (69.4%) men with a mean age of 61.7 ± 16.6 years (range, 52-74). More than three-fourths (76.5%, n = 150) of the patients had at least one comorbid disease. The highest number of A. baumannii strains were isolated from patients hospitalized in ICUs (43.4%, n = 85). A. baumannii strains producing three types of β-lactamases were more frequently isolated from women than men (77.8% vs. 22.2%, p = 0.006). Infections caused by A. baumannii strains producing two types of β-lactamases were significantly more often treated with combination therapy than infections caused by strains producing one type of β-lactamase (78.9% vs. 60.0%, p = 0.019). Patients with A. baumannii strains producing two different types of β-lactamases (AmpC plus KPC, AmpC plus ESBL, or ESBL plus KPC) stayed significantly shorter at the ICU compared to patients with A. baumannii strains with no detected β-lactamases (median of 9, IQR 2-18, vs. median of 26, IQR 7-38, p = 0.022). Death occurred in 58.7% (n = 115) of patients. Logistic regression analysis showed that a duration of the effective antibiotic treatment of ≤6 days, invasive mechanical ventilation, combination therapy, aged >58 years, and the absence of co-infection were independent predictors of in-hospital mortality. CONCLUSIONS MDR A. baumannii infections pose a significant threat to human health not only due to multidrug resistance but also due to high mortality. The mortality rate of patients with MDR A. baumannii infection was high and was associated with age, invasive mechanical ventilation, the duration of effective antibiotic treatment, no co-infection, and combination therapy. Therefore, it is of utmost importance to reduce the prevalence of MDR A. baumannii infections in healthcare facilities by applying preventive measures and to administer timely effective treatment once A. baumannii infection is detected.
Collapse
Affiliation(s)
- Kristina Černiauskienė
- Department of Laboratory Medicine, Faculty of Medicine, Medical Academy, Lithuanian University of Health Science, Eivenių˛ Str. 2, LT-50161 Kaunas, Lithuania;
| | | |
Collapse
|
13
|
Brindangnanam P, Ashokkumar K, Kamaraj S, Coumar MS. Exploring imidazo[4,5- g]quinoline-4,9-dione derivatives as Acinetobacter baumannii efflux pump inhibitor: an in silico approach. J Biomol Struct Dyn 2025; 43:53-72. [PMID: 37937796 DOI: 10.1080/07391102.2023.2279287] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2023] [Accepted: 10/30/2023] [Indexed: 11/09/2023]
Abstract
Antimicrobial resistance (AMR) is fast becoming a medical crisis affecting the entire global population. World Health Organization (WHO) statistics show that globally 0.7 million people are dying yearly due to the emergence of AMR. By 2050, the expected number of lives lost will be 10 million per year. Acinetobacter baumannii is a dreadful nosocomial pathogen that has developed multidrug resistance (MDR) to several currently prescribed antibiotics worldwide. Overexpression of drug efflux transporters (DETs) is one of the mechanisms of multidrug resistance (MDR) in Acinetobacter baumannii. Therefore, blocking the DET can raise the efficacy of the existing antibiotics by increasing their residence time inside the bacteria. In silico screening of five synthetic compounds against three drug efflux pump from A. baumannii has identified KSA5, a novel imidazo[4,5-g]quinoline-4,9-dione derivative, to block the efflux of antibiotics. Molecular docking and simulation results showed that KSA5 could bind to adeB, adeG, and adeJ by consistently interacting with ligand-binding site residues. KSA5 has a higher binding free energy and a lower HOMO-LUMO energy gap than PAβN, suggesting a better ability to interact and inhibit DETs. Further analysis showed that KSA5 is a drug-like molecule with optimal physicochemical and ADME properties. Hence, KSA5 could be combined with antibiotics to overcome antimicrobial resistance.Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- Pownraj Brindangnanam
- Department of Bioinformatics, School of Life Sciences, Pondicherry University, Kalapet, India
| | - Krishnan Ashokkumar
- Department of Chemistry, School of Advanced Sciences, Vellore Institute of Technology, Velllore, India
| | - Sriraghavan Kamaraj
- Department of Chemistry, School of Advanced Sciences, Vellore Institute of Technology, Velllore, India
| | - Mohane Selvaraj Coumar
- Department of Bioinformatics, School of Life Sciences, Pondicherry University, Kalapet, India
| |
Collapse
|
14
|
Sah SN, Gupta S, Bhardwaj N, Gautam LK, Capalash N, Sharma P. In silico design and assessment of a multi-epitope peptide vaccine against multidrug-resistant Acinetobacter baumannii. In Silico Pharmacol 2024; 13:7. [PMID: 39726905 PMCID: PMC11668725 DOI: 10.1007/s40203-024-00292-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2024] [Accepted: 12/09/2024] [Indexed: 12/28/2024] Open
Abstract
Acinetobacter baumannii, an opportunistic and notorious nosocomial pathogen, is responsible for many infections affecting soft tissues, skin, lungs, bloodstream, and urinary tract, accounting for more than 722,000 cases annually. Despite the numerous advancements in therapeutic options, no approved vaccine is currently available for this particular bacterium. Consequently, this study focused on creating a rational vaccine design using bioinformatics tools. Three outer membrane proteins with immunogenic potential and properties of good vaccine candidates were used to select epitopes based on good antigenic properties, non-allergenicity, high binding scores, and a low IC50 value. A multi-epitope peptide (MEP) construct was created by sequentially linking the epitopes using suitable linkers. ClusPro 2.0 and C-ImmSim web servers were used for docking analysis with TLR2/TLR4 and immune response respectively. The Ramachandran plot showed an accurate model of the MEP with 100% residue in the most favored and allowed regions. The construct was highly antigenic, stable, non-allergenic, non-toxic, and soluble, and showed maximum population coverage. Additionally, molecular docking demonstrated strong binding between the designed MEP vaccine and TLR2/TLR4. In silico immunological simulations showed significant increases in T-cell and B-cell populations. Finally, codon optimization and in silico cloning were conducted using the pET-28a (+) plasmid vector to evaluate the efficiency of the expression of vaccine peptide in the host organism (Escherichia coli). This designed MEP vaccine would support and accelerate the laboratory work to develop a potent vaccine targeting MDR Acinetobacter baumannii. Supplementary Information The online version contains supplementary material available at 10.1007/s40203-024-00292-3.
Collapse
Affiliation(s)
- Shiv Nandan Sah
- Department of Microbiology, Panjab University, Chandigarh, 160014 India
- Department of Microbiology, Central Campus of Technology, Tribhuvan University, Dharan, Nepal
| | - Sumit Gupta
- School of Pharmaceutical Education and Research, Jamia Hamdard University, New Delhi, 110062 India
| | - Neha Bhardwaj
- Department of Microbiology, Panjab University, Chandigarh, 160014 India
| | - Lalit Kumar Gautam
- Department of Anatomy and Cell Biology, University of Iowa, Iowa City, IA 52242 USA
- Department of Biotechnology, Panjab University, Chandigarh, 160014 India
| | - Neena Capalash
- Department of Biotechnology, Panjab University, Chandigarh, 160014 India
| | - Prince Sharma
- Department of Microbiology, Panjab University, Chandigarh, 160014 India
| |
Collapse
|
15
|
Oke MT, Martz K, Mocăniță M, Knezevic S, D'Costa VM. Analysis of Acinetobacter P-type type IV secretion system-encoding plasmid diversity uncovers extensive secretion system conservation and diverse antibiotic resistance determinants. Antimicrob Agents Chemother 2024; 68:e0103824. [PMID: 39494882 PMCID: PMC11619351 DOI: 10.1128/aac.01038-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2024] [Accepted: 10/09/2024] [Indexed: 11/05/2024] Open
Abstract
Acinetobacter baumannii is globally recognized as a multi-drug-resistant pathogen of critical concern due to its capacity for horizontal gene transfer and resistance to antibiotics. Phylogenetically diverse Acinetobacter species mediate human infection, including many considered as important emerging pathogens. While globally recognized as a pathogen of concern, pathogenesis mechanisms are poorly understood. P-type type IV secretion systems (T4SSs) represent important drivers of pathogen evolution, responsible for horizontal gene transfer and secretion of proteins that mediate host-pathogen interactions, contributing to pathogen survival, antibiotic resistance, virulence, and biofilm formation. Genes encoding a P-type T4SS were previously identified on plasmids harboring the carbapenemase gene blaNDM-1 in several clinically problematic Acinetobacter; however, their prevalence among the genus, geographical distribution, the conservation of T4SS proteins, and full capacity for resistance genes remain unclear. Using systematic analyses, we show that these plasmids belong to a group of 53 P-type T4SS-encoding plasmids in 20 established Acinetobacter species, the majority of clinical relevance, including diverse A. baumannii sequence types and one strain of Providencia rettgeri. The strains were globally distributed in 14 countries spanning five continents, and the conjugative operon's T4SS proteins were highly conserved in most plasmids. A high proportion of plasmids harbored resistance genes, with 17 different genes spanning seven drug classes. Collectively, this demonstrates that P-type T4SS-encoding plasmids are more widespread among the Acinetobacter genus than previously anticipated, including strains of both clinical and environmental importance. This research provides insight into the spread of resistance genes among Acinetobacter and highlights a group of plasmids of importance for future surveillance.
Collapse
Affiliation(s)
- Mosopefoluwa T. Oke
- Department of Biochemistry, Microbiology and Immunology, University of Ottawa, Ottawa, Ontario, Canada
- Centre for Infection, Immunity and Inflammation, University of Ottawa, Ottawa, Ontario, Canada
| | - Kailey Martz
- Department of Biochemistry, Microbiology and Immunology, University of Ottawa, Ottawa, Ontario, Canada
- Centre for Infection, Immunity and Inflammation, University of Ottawa, Ottawa, Ontario, Canada
| | - Mădălina Mocăniță
- Department of Biochemistry, Microbiology and Immunology, University of Ottawa, Ottawa, Ontario, Canada
- Centre for Infection, Immunity and Inflammation, University of Ottawa, Ottawa, Ontario, Canada
| | - Sara Knezevic
- Department of Biochemistry, Microbiology and Immunology, University of Ottawa, Ottawa, Ontario, Canada
- Centre for Infection, Immunity and Inflammation, University of Ottawa, Ottawa, Ontario, Canada
| | - Vanessa M. D'Costa
- Department of Biochemistry, Microbiology and Immunology, University of Ottawa, Ottawa, Ontario, Canada
- Centre for Infection, Immunity and Inflammation, University of Ottawa, Ottawa, Ontario, Canada
| |
Collapse
|
16
|
Almoghrabi Y, Daghistani H, Niyazi HA, Niyazi HA, AbdulMajed H, Juma NA, Daffa N, Helmi NR, Al-Rabia MW, Mokhtar JA, Saleh BH, Attallah DM, Matar M, Shukri HA, Moqaddam SA, Alamoudi S, Alkuwaity KK, Abujamel T, Sait AM, Mufrrih M, Al-Zahrani IA, O’hagan S, Ismail MA, Alharbi OS, Momin HJ, Abu IM, Alfadil A, Ibrahem K. Epidemiological and Clinical Insights into Acinetobacter baumannii: A Six-Year Study on Age, Antibiotics, and Specimens. Int J Gen Med 2024; 17:5715-5725. [PMID: 39650788 PMCID: PMC11625184 DOI: 10.2147/ijgm.s489514] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2024] [Accepted: 11/19/2024] [Indexed: 12/11/2024] Open
Abstract
Background This six-year retrospective study provides an in-depth analysis of the epidemiological and clinical patterns associated with Acinetobacter baumannii (A. baumannii) infections, focusing on age distribution, antibiotic resistance profiles, and specimen types. Aim The research examines the incidence and characteristics of both non-Multi-Drug Resistant (non-MDR) and Multi-Drug Resistant (MDR) A. baumannii strains by reviewing patient records from January 2016 to December 2022. Methods Through a statistical analysis, the study highlights the incidence rates across diverse age groups and explores the impact of antibiotic treatment regimens on infection outcomes. Additionally, it identifies the primary clinical specimen types for each strain, noting an association between non-MDR A. baumannii and midstream urine samples, while MDR A. baumannii strains were more frequently found in respiratory, wound, peripheral, and central line swaps/specimens. Results The results indicate that in 2016, non-MDR A. baumannii infections were notably more frequent compared to MDR A. baumannii cases. However, a significant shift occurred in 2021 and 2022, with a marked decrease in non-MDR A. baumannii cases and an increase in MDR A. baumannii infections. Antibiotic susceptibility testing revealed that non-MDR strains were commonly tested against cefazolin, ceftazidime, ciprofloxacin, gentamicin, nitrofurantoin, oxacillin, piperacillin/tazobactam, and trimethoprim/sulfamethoxazole. In contrast, MDR strains were frequently tested against amikacin, cefepime, colistin, meropenem, imipenem, and tigecycline. Conclusion This study enhances the understanding of A. baumannii clinical behaviour and resistance patterns, offering valuable insights to support future research and inform strategies for infectious disease management and control.
Collapse
Affiliation(s)
- Yousef Almoghrabi
- Department of Clinical Biochemistry, Faculty of Medicine, King Abdulaziz University, Jeddah, 21589, Saudi Arabia
- Regenerative Medicine Unit, King Fahd Medical Research Center, King Abdulaziz University, Jeddah, 21589, Saudi Arabia
| | - Hussam Daghistani
- Department of Clinical Biochemistry, Faculty of Medicine, King Abdulaziz University, Jeddah, 21589, Saudi Arabia
- Regenerative Medicine Unit, King Fahd Medical Research Center, King Abdulaziz University, Jeddah, 21589, Saudi Arabia
| | - Hanouf A Niyazi
- Department of Clinical Microbiology and Immunology, Faculty of Medicine, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Hatoon A Niyazi
- Department of Clinical Microbiology and Immunology, Faculty of Medicine, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Hind AbdulMajed
- Department of Clinical Microbiology and Immunology, Faculty of Medicine, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Noha A Juma
- Department of Clinical Microbiology and Immunology, Faculty of Medicine, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Noura Daffa
- Department of Clinical Microbiology and Immunology, Faculty of Medicine, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Noof R Helmi
- Department of Clinical Microbiology and Immunology, Faculty of Medicine, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Mohammed W Al-Rabia
- Department of Clinical Microbiology and Immunology, Faculty of Medicine, King Abdulaziz University, Jeddah, Saudi Arabia
- Centre of Research Excellence for Drug Research and Pharmaceutical Industries, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Jawahir A Mokhtar
- Department of Clinical Microbiology and Immunology, Faculty of Medicine, King Abdulaziz University, Jeddah, Saudi Arabia
- Department of Clinical Microbiology Laboratory, King Abdulaziz University Hospital, Jeddah, 21589, Saudi Arabia
- Vaccines and Immunotherapy Unit, King Fahd Medical Research Center, King Abdulaziz University, Jeddah, 21589, Saudi Arabia
| | - Bandar Hasan Saleh
- Department of Clinical Microbiology and Immunology, Faculty of Medicine, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Dalya M Attallah
- Department of Clinical Microbiology Laboratory, King Abdulaziz University Hospital, Jeddah, 21589, Saudi Arabia
| | - Maram Matar
- Department of Clinical Microbiology Laboratory, King Abdulaziz University Hospital, Jeddah, 21589, Saudi Arabia
| | - Hani Ahmed Shukri
- Department of Clinical Microbiology Laboratory, King Abdulaziz University Hospital, Jeddah, 21589, Saudi Arabia
| | - Shahd A Moqaddam
- Department of Clinical Microbiology Laboratory, King Abdulaziz University Hospital, Jeddah, 21589, Saudi Arabia
| | - Sara Alamoudi
- Department of Clinical Microbiology Laboratory, King Abdulaziz University Hospital, Jeddah, 21589, Saudi Arabia
| | - Khalil K Alkuwaity
- Vaccines and Immunotherapy Unit, King Fahd Medical Research Center, King Abdulaziz University, Jeddah, 21589, Saudi Arabia
- Department of Medical Laboratory Sciences, Faculty of Applied Medical Sciences, King Abdulaziz University, Jeddah, 21589, Saudi Arabia
| | - Turki Abujamel
- Vaccines and Immunotherapy Unit, King Fahd Medical Research Center, King Abdulaziz University, Jeddah, 21589, Saudi Arabia
- Department of Medical Laboratory Sciences, Faculty of Applied Medical Sciences, King Abdulaziz University, Jeddah, 21589, Saudi Arabia
| | - Ahmad M Sait
- Regenerative Medicine Unit, King Fahd Medical Research Center, King Abdulaziz University, Jeddah, 21589, Saudi Arabia
- Department of Medical Laboratory Sciences, Faculty of Applied Medical Sciences, King Abdulaziz University, Jeddah, 21589, Saudi Arabia
| | - Mohammed Mufrrih
- Department of Medical Laboratory Sciences, Faculty of Applied Medical Sciences, King Abdulaziz University, Jeddah, 21589, Saudi Arabia
- Special Infectious Agents Unit BSL-3, King Fahd Medical Research Center, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Ibrahim A Al-Zahrani
- Department of Medical Laboratory Sciences, Faculty of Applied Medical Sciences, King Abdulaziz University, Jeddah, 21589, Saudi Arabia
- Special Infectious Agents Unit BSL-3, King Fahd Medical Research Center, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Stephen O’hagan
- Department of Chemistry, Manchester Institute of Biotechnology, The University of Manchester, Manchester, UK
| | - Mazen A Ismail
- Department of Medical Education, Faculty of Medicine, King Abdulaziz University, Jeddah, 21589, Saudi Arabia
| | - Ohood S Alharbi
- Department of Microbiology and Parasitology, Faculty of Medicine, Umm Al-Qura University, Makkah, Saudi Arabia
| | - Hattan Jamal Momin
- Medical Service Center, King Abdulaziz University, Jeddah, 21589, Saudi Arabia
| | - Ibrahim Mohammed Abu
- Department of Community Medicine, Faculty of Medicine, King Abdulaziz University, Jeddah, 21589, Saudi Arabia
| | - Abdelbagi Alfadil
- Department of Clinical Microbiology and Immunology, Faculty of Medicine, King Abdulaziz University, Jeddah, Saudi Arabia
- Centre of Research Excellence for Drug Research and Pharmaceutical Industries, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Karem Ibrahem
- Department of Clinical Microbiology and Immunology, Faculty of Medicine, King Abdulaziz University, Jeddah, Saudi Arabia
| |
Collapse
|
17
|
Hernández-Durán M, Colín-Castro CA, Fernández-Rodríguez D, Delgado G, Morales-Espinosa R, Martínez-Zavaleta MG, Shekhar C, Ortíz-Álvarez J, García-Contreras R, Franco-Cendejas R, López-Jácome LE. Inside-out, antimicrobial resistance mediated by efflux pumps in clinical strains of Acinetobacter baumannii isolated from burn wound infections. Braz J Microbiol 2024; 55:3629-3641. [PMID: 39044104 PMCID: PMC11711420 DOI: 10.1007/s42770-024-01461-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2024] [Accepted: 07/11/2024] [Indexed: 07/25/2024] Open
Abstract
Acinetobacter baumannii belongs to the ESKAPE group. It is classified as a critical priority group by the World Health Organization and a global concern on account of its capacity to acquire and develop resistance mechanisms to multiple antibiotics. Data from the United States indicates 500 deaths annually. Resistance mechanisms of this bacterium include enzymatic pathways such as ß-lactamases, carbapenemases, and aminoglycoside-modifying enzymes, decreased permeability, and overexpression of efflux pumps. A. baumannii has been demonstrated to possess efflux pumps, which are classified as members of the MATE family, RND and MFS superfamilies, and SMR transporters. The aim of our work was to assess the distribution of efflux pumps and their regulatory gene expression in clinical strains of A. baumannii isolated from burned patients. METHODS: From the Clinical Microbiology Laboratory at the Instituto Nacional de Rehabilitación Luis Guillermo Ibarra Ibarra collection in Mexico, 199 strains were selected. Antibiotics susceptibilities were performed by broth microdilutions to determine minimal inhibitory concentrations. Phenotypic assays with efflux pump inhibitors were conducted using carbonyl cyanide 3-chlorophenylhydrazone (CCCP) and phenylalanine-arginine ß-naphthylamide (PAßN) in conjunction with amikacin, ceftazidime, imipenem, meropenem and levofloxacin. A search was conducted for structural genes that are linked to efflux pumps, and the relative expression of the adeR, adeS, and adeL genes was analyzed. RESULTS: Among a total of 199 strains, 186 exhibited multidrug resistance (MDR). Fluoroquinolones demonstrated the highest resistance rates, while minocycline and amikacin displayed comparatively reduced resistance rates (1.5 and 28.1, respectively). The efflux activity of fluorquinolones exhibited the highest phenotypic detection (from 85 to 100%), while IMP demonstrated the lowest activity of 27% with PAßN and 43.3% with CCCP. Overexpression was observed in adeS and adeL, with adeR exhibiting overexpression. Concluding that clinical strains of A. baumannii from our institution exhibited efflux pumps as one of the resistance mechanisms.
Collapse
Affiliation(s)
- Melissa Hernández-Durán
- Laboratorio de Microbiología Clínica, División de Infectología, Instituto Nacional de Rehabilitación Luis Guillermo Ibarra Ibarra, Mexico City, Mexico
| | - Claudia Adriana Colín-Castro
- Laboratorio de Microbiología Clínica, División de Infectología, Instituto Nacional de Rehabilitación Luis Guillermo Ibarra Ibarra, Mexico City, Mexico
| | - Diana Fernández-Rodríguez
- Laboratorio de Microbiología Clínica, División de Infectología, Instituto Nacional de Rehabilitación Luis Guillermo Ibarra Ibarra, Mexico City, Mexico
- Plan de Estudios Combinados en Medicina (PECEM) MD/PhD, Facultad de Medicina, Universidad Nacional Autónoma de México, Mexico City, Mexico
| | - Gabriela Delgado
- Laboratorio de Genómica Bacteriana, Departamento de Microbiología y Parasitología, Facultad de Medicina, Universidad Nacional Autónoma de México, Mexico City, Mexico
| | - Rosario Morales-Espinosa
- Laboratorio de Genómica Bacteriana, Departamento de Microbiología y Parasitología, Facultad de Medicina, Universidad Nacional Autónoma de México, Mexico City, Mexico
| | - María Guadalupe Martínez-Zavaleta
- Laboratorio de Microbiología Clínica, División de Infectología, Instituto Nacional de Rehabilitación Luis Guillermo Ibarra Ibarra, Mexico City, Mexico
| | - Chandra Shekhar
- College of Medicine, The University of Tennessee Health Science Center, Memphis, USA
| | - Jossue Ortíz-Álvarez
- Ciencias y Tecnologías (CONAHCYT), Programa "Investigadoras E Investigadores Por México". Consejo Nacional de Humanidades, Mexico City, Mexico
| | - Rodolfo García-Contreras
- Laboratorio de Bacteriología, Departamento de Microbiología y Parasitología, Facultad de Medicina, Universidad Nacional Autónoma de México, Mexico City, Mexico
| | - Rafael Franco-Cendejas
- Biomedical Research Subdirection, Instituto Nacional de Rehabilitación Luis Guillermo Ibarra Ibarra, Mexico City, Mexico
| | - Luis Esaú López-Jácome
- Laboratorio de Microbiología Clínica, División de Infectología, Instituto Nacional de Rehabilitación Luis Guillermo Ibarra Ibarra, Mexico City, Mexico.
- Departamento de Biología. Facultad de Química, Universidad Nacional Autónoma de México, Mexico City, Mexico.
| |
Collapse
|
18
|
Nasser F, Gaudreau A, Lubega S, Zaker A, Xia X, Mer AS, D'Costa VM. Characterization of the diversity of type IV secretion system-encoding plasmids in Acinetobacter. Emerg Microbes Infect 2024; 13:2320929. [PMID: 38530969 DOI: 10.1080/22221751.2024.2320929] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2023] [Accepted: 02/14/2024] [Indexed: 03/28/2024]
Abstract
The multi-drug resistant pathogen Acinetobacter baumannii has gained global attention as an important clinical challenge. Owing to its ability to survive on surfaces, its capacity for horizontal gene transfer, and its resistance to front-line antibiotics, A. baumannii has established itself as a successful pathogen. Bacterial conjugation is a central mechanism for pathogen evolution. The epidemic multidrug-resistant A. baumannii ACICU harbours a plasmid encoding a Type IV Secretion System (T4SS) with homology to the E. coli F-plasmid, and plasmids with homologous gene clusters have been identified in several A. baumannii sequence types. However the genetic and host strain diversity, global distribution, and functional ability of this group of plasmids is not fully understood. Using systematic analysis, we show that pACICU2 belongs to a group of almost 120 T4SS-encoding plasmids within four different species of Acinetobacter and one strain of Klebsiella pneumoniae from human and environmental origin, and globally distributed across 20 countries spanning 4 continents. Genetic diversity was observed both outside and within the T4SS-encoding cluster, and 47% of plasmids harboured resistance determinants, with two plasmids harbouring eleven. Conjugation studies with an extensively drug-resistant (XDR) strain showed that the XDR plasmid could be successfully transferred to a more divergent A. baumanii, and transconjugants exhibited the resistance phenotype of the plasmid. Collectively, this demonstrates that these T4SS-encoding plasmids are globally distributed and more widespread among Acinetobacter than previously thought, and that they represent an important potential reservoir for future clinical concern.
Collapse
Affiliation(s)
- Farah Nasser
- Department of Biochemistry, Microbiology and Immunology, University of Ottawa, Ottawa, Canada
- Centre for Infection, Immunity and Inflammation, University of Ottawa, Ottawa, Canada
| | - Avery Gaudreau
- Department of Biochemistry, Microbiology and Immunology, University of Ottawa, Ottawa, Canada
- Centre for Infection, Immunity and Inflammation, University of Ottawa, Ottawa, Canada
| | - Shareefah Lubega
- Department of Biochemistry, Microbiology and Immunology, University of Ottawa, Ottawa, Canada
- Centre for Infection, Immunity and Inflammation, University of Ottawa, Ottawa, Canada
| | - Arvin Zaker
- Department of Biochemistry, Microbiology and Immunology, University of Ottawa, Ottawa, Canada
- Ottawa Institute of Systems Biology, University of Ottawa, Ottawa, Canada
| | - Xuhua Xia
- Ottawa Institute of Systems Biology, University of Ottawa, Ottawa, Canada
- Department of Biology, University of Ottawa, Ottawa, Canada
| | - Arvind S Mer
- Department of Biochemistry, Microbiology and Immunology, University of Ottawa, Ottawa, Canada
- Ottawa Institute of Systems Biology, University of Ottawa, Ottawa, Canada
| | - Vanessa M D'Costa
- Department of Biochemistry, Microbiology and Immunology, University of Ottawa, Ottawa, Canada
- Centre for Infection, Immunity and Inflammation, University of Ottawa, Ottawa, Canada
| |
Collapse
|
19
|
De Luca V, Giovannuzzi S, Supuran CT, Capasso C. A comprehensive investigation of the anion inhibition profile of a β-carbonic anhydrase from Acinetobacter baumannii for crafting innovative antimicrobial treatments. J Enzyme Inhib Med Chem 2024; 39:2372731. [PMID: 39012078 PMCID: PMC467105 DOI: 10.1080/14756366.2024.2372731] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2024] [Accepted: 06/19/2024] [Indexed: 07/17/2024] Open
Abstract
This study refers to the intricate world of Acinetobacter baumannii, a resilient pathogenic bacterium notorious for its propensity at antibiotic resistance in nosocomial infections. Expanding upon previous findings that emphasised the bifunctional enzyme PaaY, revealing unexpected γ-carbonic anhydrase (CA) activity, our research focuses on a different class of CA identified within the A. baumannii genome, the β-CA, designated as 𝛽-AbauCA (also indicated as CanB), which plays a crucial role in the resistance mechanism mediated by AmpC beta-lactamase. Here, we cloned, expressed, and purified the recombinant 𝛽-AbauCA, unveiling its distinctive kinetic properties and inhibition profile with inorganic anions (classical CA inhibitors). The exploration of 𝛽-AbauCA not only enhances our understanding of the CA repertoire of A. baumannii but also establishes a foundation for targeted therapeutic interventions against this resilient pathogen, promising advancements in combating its adaptability and antibiotic resistance.
Collapse
Affiliation(s)
- Viviana De Luca
- Department of Biology, Agriculture and Food Sciences, National Research Council (CNR), Institute of Biosciences and Bioresources, Naples, Italy
| | - Simone Giovannuzzi
- Neurofarba Department, Pharmaceutical and Nutraceutical Section, University of Florence, Sesto Fiorentino, Italy
| | - Claudiu T. Supuran
- Neurofarba Department, Pharmaceutical and Nutraceutical Section, University of Florence, Sesto Fiorentino, Italy
| | - Clemente Capasso
- Department of Biology, Agriculture and Food Sciences, National Research Council (CNR), Institute of Biosciences and Bioresources, Naples, Italy
| |
Collapse
|
20
|
Costa MCC, Mesquita GP, Silva MA, Araújo LG, Vila Nova BG, Castelo Branco LCM, Silva RCS, Marques SG, Abreu AG. Drug resistance of Acinetobacter ssp. in patients with pneumonia in a Brazilian Pre-Amazon region during the pre-pandemic and pandemic periods of COVID-19. BRAZ J BIOL 2024; 84:e279691. [PMID: 39607244 DOI: 10.1590/1519-6984.279691] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2023] [Accepted: 07/12/2024] [Indexed: 11/29/2024] Open
Abstract
Antimicrobial resistance is a global public health threat that has been impacted by the COVID-19 pandemic. The aim of this study was to evaluate the resistance of Acinetobacter spp. isolated from patients with pneumonia in a Brazilian Pre-Amazon region during the pre-pandemic and pandemic periods of COVID-19. Bacterial strains were obtained from tracheal aspiration, sputum and bronchoalveolar lavage for diagnosis and phenotypic characterization. MALD-TOF was used to identify strains. The automated Phoenix and VITEK® 2 Compact system and the disc diffusion method were performed to determine the antimicrobial susceptibility profile. Were analyzed a total of 41,590 samples from patients admitted to hospitals of a Brazilian Pre-Amazon region, from January 2019 to December 2021. Of these, 162 isolates of Acinetobacter spp. were from the pre-pandemic period and 308 from the pandemic COVID-19. A. baumannii was the most prevalent species. Among the samples, 52% were male patients, aged over 60 years, hospitalized in intensive care units. Acinetobacter spp. showed higher rates of resistance to cefepime (79.1%), levofloxacin (77.8%), and ceftazidime (77%) in the pre-pandemic period and during the pandemic to piperacillin (72.4%), imipenem (71.6%) and ciprofloxacin (71.8%). Taken together, the data showed that A. baumannii was the most prevalent species among Acinetobacter spp., being more frequent among elderly patients admitted to the ICU. The strains presented high resistance to most antibiotics tested, mainly carbapenems. In addition, there was an increase in resistance to polymyxin B, which raises an alert since this is a therapeutic choice to treat infections caused by Acinetobacter spp. multidrug resistant.
Collapse
Affiliation(s)
- M C C Costa
- Universidade Ceuma, Programa de Pós-graduação em Biociências Aplicadas à Saúde, Laboratório de Patogenicidade Microbiana, São Luís, MA, Brasil
| | - G P Mesquita
- Universidade Ceuma, Programa de Pós-graduação em Biociências Aplicadas à Saúde, Laboratório de Patogenicidade Microbiana, São Luís, MA, Brasil
| | - M A Silva
- Universidade Ceuma, Programa de Pós-graduação em Biociências Aplicadas à Saúde, Laboratório de Patogenicidade Microbiana, São Luís, MA, Brasil
| | - L G Araújo
- Universidade Ceuma, Programa de Pós-graduação em Biociências Aplicadas à Saúde, Laboratório de Patogenicidade Microbiana, São Luís, MA, Brasil
- Universidade Federal do Maranhão - UFMA, Programa de Pós-graduação em Ciências da Saúde, São Luís, MA, Brasil
| | - B G Vila Nova
- Universidade Ceuma, Programa de Pós-graduação em Biociências Aplicadas à Saúde, Laboratório de Patogenicidade Microbiana, São Luís, MA, Brasil
| | | | | | | | - A G Abreu
- Universidade Ceuma, Programa de Pós-graduação em Biociências Aplicadas à Saúde, Laboratório de Patogenicidade Microbiana, São Luís, MA, Brasil
- Universidade Federal do Maranhão - UFMA, Programa de Pós-graduação em Ciências da Saúde, São Luís, MA, Brasil
| |
Collapse
|
21
|
Luca VD, Giovannuzzi S, Capasso C, Supuran CT. Sulfonamide-Based Inhibition of the β-Carbonic Anhydrase from A. baumannii, a Multidrug-Resistant Bacterium. Int J Mol Sci 2024; 25:12291. [PMID: 39596360 PMCID: PMC11594608 DOI: 10.3390/ijms252212291] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2024] [Revised: 11/11/2024] [Accepted: 11/14/2024] [Indexed: 11/28/2024] Open
Abstract
Acinetobacter baumannii is a Gram-negative opportunistic pathogen responsible for severe hospital-associated infections. Owing to its ability to develop resistance to a wide range of antibiotics, novel therapeutic strategies are urgently needed. One promising approach is to target bacterial carbonic anhydrases (CAs; EC 4.2.1.1), which are enzymes critical for various metabolic processes. The genome of A. baumannii encodes a β-CA (βAbauCA), which is essential for producing bicarbonate ions required in the early stages of uridine triphosphate (UTP) synthesis, a precursor for the synthesis of peptidoglycans, which are vital components of the bacterial cell wall. This study aimed to inhibit βAbauCA in vitro, with the potential to impair the vitality of the pathogen in vivo. We conducted sequence and structural analyses of βAbauCA to explore its differences from those of human CAs. Additionally, kinetic and inhibition studies were performed to investigate the catalytic efficiency of βAbauCAβ and its interactions with sulfonamides and their bioisosteres, classical CA inhibitors. Our results showed that βAbauCA has a turnover rate higher than that of hCA I but lower than that of hCA II and displays distinct inhibition profiles compared to human α-CAs. Based on the obtained data, there are notable differences between the inhibition profiles of the human isoforms CA I and CA II and bacterial βAbauCA. This could open the door to designing inhibitors that selectively target bacterial β-CAs without affecting human α-CAs, as well as offer a novel strategy to weaken A. baumannii and other multidrug-resistant pathogens.
Collapse
Affiliation(s)
- Viviana De Luca
- Department of Biology, Agriculture and Food Sciences, National Research Council (CNR), Institute of Biosciences and Bioresources, 80131 Naples, Italy;
| | - Simone Giovannuzzi
- Neurofarba Department, Section of Pharmaceutical Sciences, University of Florence, Via Ugo Schiff 6, Sesto Fiorentino, 50019 Florence, Italy; (S.G.); (C.T.S.)
| | - Clemente Capasso
- Department of Biology, Agriculture and Food Sciences, National Research Council (CNR), Institute of Biosciences and Bioresources, 80131 Naples, Italy;
| | - Claudiu T. Supuran
- Neurofarba Department, Section of Pharmaceutical Sciences, University of Florence, Via Ugo Schiff 6, Sesto Fiorentino, 50019 Florence, Italy; (S.G.); (C.T.S.)
| |
Collapse
|
22
|
Abid R, Khan M, Siddique N, Khan SW, Khan RU, Zahoor M, Ullah R, Alotaibi A. Novel chiral phthalimides: Antimicrobial evaluation and docking study against Acinetobacter baumannii's OmpA protein. Comput Biol Med 2024; 182:109099. [PMID: 39265475 DOI: 10.1016/j.compbiomed.2024.109099] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2024] [Revised: 08/29/2024] [Accepted: 08/31/2024] [Indexed: 09/14/2024]
Abstract
Antibiotics have been a vital component in the fight against microbial diseases for over 75 years, saving countless lives. However, the global rise of multi-drug-resistance (MDR) bacterial infections is pushing us closer to a post-antibiotic era where common infections may once again become lethal. To combat MDR Acinetobacter baumannii, we investigated chiral phthalimides and used molecular docking to identify potential targets. Outer membrane protein A (OmpA) is crucial for A. baumannii resistant to antibiotics, making it a pathogen of great concern due to its high mortality rate and limited treatment options. In this study, we evaluated three distinct compounds against the OmpA protein: FIA (2-(1,3-dioxoindolin-2yl)-3-phenylpropanoic acid), FIC (2-(1,3-dioxoindolin-2yl)-4-(methylthio) butanoic acid), and FII (3-(1,3-dioxoindolin-2yl)-3-phenylpropanoic acid). Molecular docking results showed that these three compounds exhibited strong interactions with the OmpA protein. Molecular dynamics (MD) simulation analysis further confirmed the stability and binding efficacy of these compounds with OmpA. Their antimicrobial activities were assessed using the agar well diffusion method, revealing that FIA had an optimal zone of inhibition of 24 mm. Additionally, the minimum inhibitory concentrations (MIC) of these compounds were determined, demonstrating their bactericidal properties against A. baumannii, with MICs of 11 μg/μL for FIA, 46 μg/μL for FIC, and 375 μg/μL for FII. In vitro cytotoxicity data indicated that none of the three compounds were hemolytic when exposed to human red blood cells. This finding is particularly significant as it highlights the superior efficacy of FIA against A. baumannii compared to the other compounds. With thorough pharmacokinetic validations, these chiral phthalimides are promising alternative therapeutic options for treating infections caused by A. baumannii, offering new hope in the face of rising antibiotic resistance.
Collapse
Affiliation(s)
- Rimsha Abid
- Institute of Pathology and Diagnostic Medicine, Department of Microbiology, Khyber Medical University, Peshawar, Khyber Pakhtunkhwa, Pakistan.
| | - Momin Khan
- Institute of Pathology and Diagnostic Medicine, Department of Microbiology, Khyber Medical University, Peshawar, Khyber Pakhtunkhwa, Pakistan.
| | - Nayyer Siddique
- Institute of Pathology and Diagnostic Medicine, Department of Microbiology, Khyber Medical University, Peshawar, Khyber Pakhtunkhwa, Pakistan.
| | - Sher Wali Khan
- Department of Chemistry, Rawalpindi Women University, Rawalpindi, 46300, Pakistan.
| | - Rahat Ullah Khan
- CAS Key Laboratory of Pathogen Microbiology and Immunology, Institute of Microbiology, Center for Influenza Research and Early-warning (CASCIRE), CAS-TWAS Center of Excellence for Emerging Infectious Diseases (CEEID, Chinese Academy of Sciences, 100101, Beijing, China; College of Life Science, University of Chinese Academy of Sciences, Beijing, 101408, China.
| | - Muhammad Zahoor
- Department of Biochemistry, University of Malakand, Chakdara, 18800, Pakistan.
| | - Riaz Ullah
- Medicinal Aromatic and Poisonous Plants Research Center, Department of Pharmacognosy, College of Pharmacy, King Saud University, Riyadh, 11451, Saudi Arabia.
| | - Amal Alotaibi
- Department of Basic Science, College of Medicine, Princess Nourah bint Abdulrahman University, Riyadh, 11671, Saudi Arabia.
| |
Collapse
|
23
|
Depka D, Bogiel T, Rzepka M, Gospodarek-Komkowska E. Insertion Sequences within Oxacillinases Genes as Molecular Determinants of Acinetobacter baumannii Resistance to Carbapenems-A Pilot Study. Microorganisms 2024; 12:2057. [PMID: 39458366 PMCID: PMC11510033 DOI: 10.3390/microorganisms12102057] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2024] [Revised: 10/02/2024] [Accepted: 10/08/2024] [Indexed: 10/28/2024] Open
Abstract
Carbapenem-resistant Acinetobacter baumannii is one of the major problems among hospitalized patients. The presence of multiple virulence factors results in bacteria persistence in the hospital environment. It facilitates bacterial transmission between patients, causing various types of infections, mostly ventilator-associated pneumonia and wound and bloodstream infections. A. baumannii has a variable number of resistance mechanisms, but the most commonly produced are carbapenem-hydrolyzing class D β-lactamases (CHDLs). In our study, the presence of blaOXA-23, blaOXA-40 and blaOXA-51 genes was investigated among 88 clinical isolates of A. baumannii, including 53 (60.2%) strains resistant to both carbapenems (meropenem and imipenem) and 35 (39.8%) strains susceptible to at least meropenem. Among these bacteria, all the isolates carried the blaOXA-51 gene. The blaOXA-23 and blaOXA-40 genes were detected in two (5.7%) and three (8.6%) strains, respectively. Among the OXA-23 carbapenemase-producing A. baumannii strains (n = 55), insertion sequences (ISAba1) were detected upstream of the blaOXA-23 gene in fifty-two (94.5%) carbapenem-resistant and two (3.6%) meropenem-susceptible isolates. A. baumannii clinical strains from Poland have a similar antimicrobial resistance profile as those worldwide, with the presence of ISAba1 among blaOXA-23-positive isolates also being quite common. Carbapenem resistance among A. baumannii strains is associated with the presence of CHDLs, especially when insertion sequences are present.
Collapse
Affiliation(s)
- Dagmara Depka
- Microbiology Department, Ludwik Rydygier Collegium Medicum in Bydgoszcz, Nicolaus Copernicus University in Torun, 85-094 Bydgoszcz, Poland; (D.D.); (M.R.); (E.G.-K.)
- Department of Clinical Microbiology, Antoni Jurasz University Hospital No. 1, 85-094 Bydgoszcz, Poland
| | - Tomasz Bogiel
- Microbiology Department, Ludwik Rydygier Collegium Medicum in Bydgoszcz, Nicolaus Copernicus University in Torun, 85-094 Bydgoszcz, Poland; (D.D.); (M.R.); (E.G.-K.)
- Department of Clinical Microbiology, Antoni Jurasz University Hospital No. 1, 85-094 Bydgoszcz, Poland
| | - Mateusz Rzepka
- Microbiology Department, Ludwik Rydygier Collegium Medicum in Bydgoszcz, Nicolaus Copernicus University in Torun, 85-094 Bydgoszcz, Poland; (D.D.); (M.R.); (E.G.-K.)
- Department of Clinical Microbiology, Antoni Jurasz University Hospital No. 1, 85-094 Bydgoszcz, Poland
| | - Eugenia Gospodarek-Komkowska
- Microbiology Department, Ludwik Rydygier Collegium Medicum in Bydgoszcz, Nicolaus Copernicus University in Torun, 85-094 Bydgoszcz, Poland; (D.D.); (M.R.); (E.G.-K.)
- Department of Clinical Microbiology, Antoni Jurasz University Hospital No. 1, 85-094 Bydgoszcz, Poland
| |
Collapse
|
24
|
Güneş S, Acer Ö, Bahçe YG. Carbapenem-resistant Klebsiella pneumoniae strains isolated from clinical specimens in Siirt, Türkiye; molecular characterization and antimicrobial resistance genes detection. Diagn Microbiol Infect Dis 2024; 110:116414. [PMID: 39032321 DOI: 10.1016/j.diagmicrobio.2024.116414] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2024] [Revised: 06/19/2024] [Accepted: 06/24/2024] [Indexed: 07/23/2024]
Abstract
This study aimed to molecularly identify carbapenem-resistant Klebsiella pneumoniae (CRKP) strains isolated from clinical samples and to determine antibiotic resistance genes. Only carbapenem-resistant strains were included in our study. Of the 35 CRKP strains, 18 (51.4%) were extensive drug, 11 (31.4%) were multi-drug, and 6 (17.1%) were pan-drug resistances. PCR amplification revealed that 25% of the strains carried the OXA-51, 20% the OXA-48, and %5 the OXA23 genes. Multilocus sequence typing (MLST) analysis based on seven house-keeping genes revealed sequence type 39. The capsule and O-antigen types were determined as KL103 and O2a, respectively. WGS analysis revealed the existence of β-lactamase, aminoglycoside, sulfonamide, Phenicol, and Fosfomycin-resistant genes. While the K. pneumoniae OmpK37 gene was detected in all 3 strains, the OmpK36 gene was detected only in the CRSU20 strain. This study is important as it is the first study to perform molecular analysis of CRKP strains from Siirt, Türkiye.
Collapse
Affiliation(s)
- Sevgi Güneş
- Siirt University, Medical Faculty, Department of Biophysics, 56100 Siirt, Türkiye
| | - Ömer Acer
- Siirt University, Medical Faculty, Department of Medical Microbiology, 56100 Siirt, Türkiye.
| | - Yasemin Genç Bahçe
- Siirt Training and Research Hospital, Microbiology Laboratory, 56100 Siirt, Türkiye
| |
Collapse
|
25
|
da Silva Cirino IC, de Santana CF, Vasconcelos Rocha I, de Souza LIO, Silva MV, Bressan Queiroz de Figueiredo RC, Coutinho HDM, Leal-Balbino TC. The Combinatory Effects of Essential Oil from Lippia macrophylla on Multidrug Resistant Acinetobacter baumannii Clinical Isolates. Chem Biodivers 2024; 21:e202400537. [PMID: 39008435 DOI: 10.1002/cbdv.202400537] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2024] [Revised: 06/20/2024] [Accepted: 07/15/2024] [Indexed: 07/17/2024]
Abstract
To assess the antibacterial effectiveness of Lippia macrophylla essential oil (LMEO) against multidrug-resistant Acinetobacter baumannii isolates, both as a standalone treatment and in combination with conventional antibiotics. LMEO demonstrated a significant inhibitory effect on the growth of A. baumannii, with a minimum inhibitory concentration (MIC) below 500 μg/mL. Notably, LMEO was capable of reversing the antibiotic resistance of clinical isolates or reducing their MIC values when used in combination with antibiotics, showing synergistic (FICI≤0.5) or additive effects. The combination of LMEO and imipenem was particularly effective, displaying synergistic interactions for most isolates. Ultrastructural analyses supported these findings, revealing that the combination of LMEO+ceftazidime compromised the membrane integrity of the Acb35 isolate, leading to cytoplasmic leakage and increased formation of Outer Membrane Vesicles (OMVs). Taken together our results point for the use of LMEO alone or in combination as an antibacterial agent against A. baumannii. These findings offer promising avenues for utilizing LMEO as a novel antibacterial strategy against drug-resistant infections in healthcare settings, underscoring the potential of essential oils in enhancing antibiotic efficacy.
Collapse
Affiliation(s)
- Isis Caroline da Silva Cirino
- Department of Microbiology, Aggeu Magalhães Institute - Oswaldo Cruz Foundation, Recife, PE, Brazil
- Federal University of Pernambuco, CEP 50670-901, Recife, PE, Brazil
| | - Caroline Ferreira de Santana
- Department of Microbiology, Aggeu Magalhães Institute - Oswaldo Cruz Foundation, Recife, PE, Brazil
- Federal University of Pernambuco, CEP 50670-901, Recife, PE, Brazil
| | - Igor Vasconcelos Rocha
- Department of Microbiology, Aggeu Magalhães Institute - Oswaldo Cruz Foundation, Recife, PE, Brazil
| | | | | | | | | | | |
Collapse
|
26
|
Mohamed RAE, Moustafa NM, Mahmoud FM, Elsaadawy YS, Aziz HSA, Gaber SAB, Hussin AM, Seadawy MG. Whole-genome sequencing of two multidrug-resistant acinetobacter baumannii strains isolated from a neonatal intensive care unit in Egypt: a prospective cross-sectional study. BMC Microbiol 2024; 24:362. [PMID: 39306657 PMCID: PMC11415996 DOI: 10.1186/s12866-024-03482-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2024] [Accepted: 08/28/2024] [Indexed: 09/25/2024] Open
Abstract
BACKGROUND Acinetobacter baumannii (A. baumannii) is a life-threatening and challenging pathogen. In addition, it accounts for numerous serious infections, particularly among immunocompromised patients. Resistance to nearly all clinically used antibiotics and their ability to spread this resistance is one of the most important concerns related to this bacterium. OBJECTIVES This study describes different molecular mechanisms of two multidrug-resistant A. baumannii isolates obtained from endotracheal aspirates collected from the neonatal intensive care unit (NICU), Ain Shams University Hospital, Egypt. METHODS Following the identification of two isolates, they were examined for susceptibility to antimicrobial agents. This was followed by multilocus sequence typing as well as whole-genome sequence (WGS). Additionally, a Pathosystems Resources Integration Center (PATRIC) analysis was performed. RESULTS Two isolates, Ab119 and Ab123, exhibited resistance to all tested antibiotics except for tigecycline and colistin. The WGS analysis of antimicrobial resistance genes (AMR) indicated that both isolates shared beta-lactam, aminoglycoside, macrolides, and sulfonamide resistance genes. Furthermore, each strain revealed different resistance genes such as blaNDM-1, blaNDM-10, OXA-64, aph (3')-VI, Tet-B in Ab119 strain and blaOXA-68, blaPER-1, blaPER-7, Tet-39 in Ab123 strain. Multiple efflux pump genes were detected. Multilocus sequence typing indicated that both isolates belong to the same sequence type (ST931), which belongs to international clone (IC3). Both isolates exhibited the presence of multiple mobile genetic elements (MGEs), but no plasmid was detected in either of them. CONCLUSIONS A low prevalence of the IC3 sequence type was identified among two A. baumannii isolates obtained from the NICU in Egypt, exhibiting a high resistance level. Healthcare workers must have knowledge regarding the prevalence of A. baumannii among different populations in order to administer suitable treatment, improve patient outcomes, and apply effective infection control practices.
Collapse
Affiliation(s)
- Rania Alam Eldin Mohamed
- Medical Microbiology and Immunology Department, Faculty of Medicine, Ain Shams University, Cairo, Egypt
| | - Nouran Magdy Moustafa
- Medical Microbiology and Immunology Department, Faculty of Medicine, Ain Shams University, Cairo, Egypt
- Basic Medical Science Department, College of Medicine, Dar Al Uloom University, Riyadh, Saudi Arabia
| | - Fatma Mostafa Mahmoud
- Medical Microbiology and Immunology Department, Faculty of Medicine, Ain Shams University, Cairo, Egypt
| | - Yara Said Elsaadawy
- Medical Microbiology and Immunology Department, Faculty of Medicine, Ain Shams University, Cairo, Egypt
| | - Heba Sherif Abdel Aziz
- Clinical and Chemical Pathology Department, Faculty of Medicine, Cairo University, Cairo, Egypt.
| | | | | | - Mohamed G Seadawy
- Biodefense Center for Infectious and Emerging Diseases, Ministry of Defense, Cairo, Egypt
| |
Collapse
|
27
|
Jamwal V, Palmo T, Singh K. Understanding the mechanisms of antimicrobial resistance and potential therapeutic approaches against the Gram-negative pathogen Acinetobacter baumannii. RSC Med Chem 2024; 15:d4md00449c. [PMID: 39386059 PMCID: PMC11457259 DOI: 10.1039/d4md00449c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2024] [Accepted: 09/19/2024] [Indexed: 10/12/2024] Open
Abstract
Globally, the emergence of anti-microbial resistance in pathogens has become a serious threat to human health and well-being. Infections caused by drug-resistant microorganisms in hospitals are associated with increased morbidity, mortality, and healthcare costs. Acinetobacter baumannii is a Gram-negative bacterium belonging to the ESKAPE group and is widely associated with nosocomial infections. It persists in hospitals and survives antibiotic treatment, prompting acute infections such as urinary tract infections, pneumonia, bacteremia, meningitis, and wound-related infections. An innovation void in drug discovery and the lack of new therapeutic measures against A. baumannii continue to afflict infection control against the rising drug-resistant cases. The emergence of drug-resistant A. baumannii strains has also led to the incessant collapse of newly discovered antibiotics. Therefore exploring novel strategies is requisite to give impetus to A. baumannii drug discovery. The present review discusses the bacterial research community's efforts in the field of A. baumannii, focusing on the strategies adapted to identify potent scaffolds and novel targets to bolster and diversify the chemical space available for drug discovery. Firstly, we have discussed existing chemotherapy and various anti-microbial resistance mechanisms in A. baumannii bacterial strains. Next, we elaborate on multidisciplinary approaches and strategies that may be the way forward to combat the current menace caused by the drug-resistant A. baumannii strains. The review highlights the recent advances in drug discovery, including combinational therapy, high-throughput screening, drug repurposing, nanotechnology, and anti-microbial peptides, which are imperative tools to fight bacterial pathogens in the future.
Collapse
Affiliation(s)
- Vishwani Jamwal
- Infectious Diseases Division, CSIR-Indian Institute of Integrative Medicine Jammu 180001 India
- Academy of Scientific and Innovative Research (AcSIR) Ghaziabad 201002 India
| | - Tashi Palmo
- Infectious Diseases Division, CSIR-Indian Institute of Integrative Medicine Jammu 180001 India
- Academy of Scientific and Innovative Research (AcSIR) Ghaziabad 201002 India
| | - Kuljit Singh
- Infectious Diseases Division, CSIR-Indian Institute of Integrative Medicine Jammu 180001 India
- Academy of Scientific and Innovative Research (AcSIR) Ghaziabad 201002 India
| |
Collapse
|
28
|
Pumirat P, Santajit S, Tunyong W, Kong-Ngoen T, Tandhavanant S, Lohitthai S, Rungruengkitkun A, Chantratita N, Ampawong S, Reamtong O, Indrawattana N. Impact of AbaI mutation on virulence, biofilm development, and antibiotic susceptibility in Acinetobacter baumannii. Sci Rep 2024; 14:21521. [PMID: 39277662 PMCID: PMC11401864 DOI: 10.1038/s41598-024-72740-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2024] [Accepted: 09/10/2024] [Indexed: 09/17/2024] Open
Abstract
The quorum sensing (QS) system mediated by the abaI gene in Acinetobacter baumannii is crucial for various physiological and pathogenic processes. In this study, we constructed a stable markerless abaI knockout mutant (ΔabaI) strain using a pEXKm5-based allele replacement method to investigate the impact of abaI on A. baumannii. Proteomic analysis revealed significant alterations in protein expression between the wild type (WT) and ΔabaI mutant strains, particularly in proteins associated with membrane structure, antibiotic resistance, and virulence. Notably, the downregulation of key outer membrane proteins such as SurA, OmpA, OmpW, and BamA suggests potential vulnerabilities in outer membrane integrity, which correlate with structural abnormalities in the ΔabaI mutant strain, including irregular cell shapes and compromised membrane integrity, observed by scanning and transmission electron microscopy. Furthermore, diminished expression of regulatory proteins such as OmpR and GacA-GacS highlights the broader regulatory networks affected by abaI deletion. Functional assays revealed impaired biofilm formation and surface-associated motility in the mutant strain, indicative of altered colonization capabilities. Interestingly, the mutant showed a complex antibiotic susceptibility profile. While it demonstrated increased susceptibility to membrane-targeting antibiotics, its response to beta-lactams was more nuanced. Despite increased expression of metallo-beta-lactamase (MBL) superfamily proteins and DcaP-like protein, the mutant unexpectedly showed lower MICs for carbapenems (imipenem and meropenem) compared to the wild-type strain. This suggests that abaI deletion affects antibiotic susceptibility through multiple, potentially competing mechanisms. Further investigation is needed to fully elucidate the interplay between quorum sensing, antibiotic resistance genes, and overall antibiotic susceptibility in A. baumannii. Our findings underscore the multifaceted role of the abaI gene in modulating various cellular processes and highlight its significance in A. baumannii physiology, pathogenesis, and antibiotic resistance. Targeting the abaI QS system may offer novel therapeutic strategies for this clinically significant pathogen.
Collapse
Affiliation(s)
- Pornpan Pumirat
- Department of Microbiology and Immunology, Mahidol University, Bangkok, Thailand
| | - Sirijan Santajit
- Department of Medical Technology, School of Allied Health Sciences, Walailak University, Nakhon Si Thammarat, Thailand
| | - Witawat Tunyong
- Department of Microbiology and Immunology, Mahidol University, Bangkok, Thailand
| | - Thida Kong-Ngoen
- Department of Microbiology and Immunology, Mahidol University, Bangkok, Thailand
| | - Sarunporn Tandhavanant
- Department of Microbiology and Immunology, Mahidol University, Bangkok, Thailand
- Department of Bacteriology, Institute of Tropical Medicine, Nagasaki University, Nagasaki, Japan
| | - Sanisa Lohitthai
- Department of Microbiology and Immunology, Mahidol University, Bangkok, Thailand
| | | | - Narisara Chantratita
- Department of Microbiology and Immunology, Mahidol University, Bangkok, Thailand
| | - Sumate Ampawong
- Department of Tropical Pathology, Faculty of Tropical Medicine, Mahidol University, Bangkok, Thailand
| | - Onrapak Reamtong
- Department of Tropical Molecular Biology and Genetics, Faculty of Tropical Medicine, Mahidol University, Bangkok, Thailand
| | - Nitaya Indrawattana
- Biomedical Research Incubator Unit, Department of Research, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, Thailand.
- Department of Research, Siriraj Center of Research Excellence in Allergy and Immunology, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, Thailand.
| |
Collapse
|
29
|
Afonso L, Grzegorczyk KG, Salomão JM, Basso KR, Alves LC, Silva MCD, Chryssafidis AL, Gionco-Cano B, Yamada-Ogatta SF, Andrade G. Fluopsin C Promotes Biofilm Removal of XDR Acinetobacter baumannii and Presents an Additive Effect with Polymyxin B on Planktonic Cells. Antibiotics (Basel) 2024; 13:875. [PMID: 39335049 PMCID: PMC11428918 DOI: 10.3390/antibiotics13090875] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2024] [Revised: 09/05/2024] [Accepted: 09/10/2024] [Indexed: 09/30/2024] Open
Abstract
Acinetobacter baumannii emerged as one of the most important pathogens for the development of new antimicrobials due to the worldwide detection of isolates resistant to all commercial antibiotics, especially in nosocomial infections. Biofilm formation enhances A. baumannii survival by impairing antimicrobial action, being an important target for new antimicrobials. Fluopsin C (FlpC) is an organocupric secondary metabolite with broad-spectrum antimicrobial activity. This study aimed to evaluate the antibiofilm activity of FlpC in established biofilms of extensively drug-resistant A. baumannii (XDRAb) and the effects of its combination with polymyxin B (PolB) on planktonic cells. XDRAb susceptibility profiles were determined by Vitek 2 Compact, disk diffusion, and broth microdilution. FlpC and PolB interaction was assessed using the microdilution checkerboard method and time-kill kinetics. Biofilms of XDRAb characterization and removal by FlpC exposure were assessed by biomass staining with crystal violet. Confocal Laser Scanning Microscopy was used to determine the temporal removal of the biofilms using DAPI, and cell viability using live/dead staining. The minimum inhibitory concentration (MIC) of FlpC on XDRAb was 3.5 µg mL-1. Combining FlpC + PolB culminated in an additive effect, increasing bacterial susceptibility to both antibiotics. FlpC-treated 24 h biofilms reached a major biomass removal of 92.40 ± 3.38% (isolate 230) using 7.0 µg mL-1 FlpC. Biomass removal occurred significantly over time through the dispersion of the extracellular matrix and decreasing cell number and viability. This is the first report of FlpC's activity on XDRAb and the compound showed a promissory response on planktonic and sessile cells, making it a candidate for the development of a new antimicrobial product.
Collapse
Affiliation(s)
- Leandro Afonso
- Microbial Ecology Laboratory, State University of Londrina, Londrina 86057-970, Brazil; (L.A.)
| | | | - Julio Martins Salomão
- Microbial Ecology Laboratory, State University of Londrina, Londrina 86057-970, Brazil; (L.A.)
| | - Kawany Roque Basso
- Microbial Ecology Laboratory, State University of Londrina, Londrina 86057-970, Brazil; (L.A.)
| | - Leonardo Cruz Alves
- Microbial Ecology Laboratory, State University of Londrina, Londrina 86057-970, Brazil; (L.A.)
| | - Maria Clara Davis Silva
- Microbial Ecology Laboratory, State University of Londrina, Londrina 86057-970, Brazil; (L.A.)
| | | | - Bárbara Gionco-Cano
- Microbial Ecology Laboratory, State University of Londrina, Londrina 86057-970, Brazil; (L.A.)
| | - Sueli Fumie Yamada-Ogatta
- Molecular Biology of Microorganisms Laboratory, State University of Londrina, Londrina 86057-970, Brazil;
| | - Galdino Andrade
- Microbial Ecology Laboratory, State University of Londrina, Londrina 86057-970, Brazil; (L.A.)
| |
Collapse
|
30
|
Holland C, Ballard E, Griffin A, Coulter S, Yarwood T, Heney C, Young M. Impact of the introduction of the national antimicrobial stewardship standard across Queensland Health hospitals: ecological observational study exploring patterns of antimicrobial use. J Hosp Infect 2024; 151:60-68. [PMID: 38879169 DOI: 10.1016/j.jhin.2024.05.018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2024] [Revised: 05/07/2024] [Accepted: 05/21/2024] [Indexed: 07/26/2024]
Abstract
BACKGROUND Antimicrobial stewardship programmes are a critical tool for addressing the rising threat of antimicrobial resistance. AIM To determine changes in patterns of antimicrobial use in Queensland public hospitals following introduction of the National Safety and Quality Health Service antimicrobial stewardship standard. METHODS A retrospective pre/post intervention study was conducted across Queensland public hospitals at the ecological level using Queensland Health's MedTRx database. An interrupted time-series analysis was performed using linear regression models to determine rates of antimicrobial use by quarterly aggregated defined daily dose per 1000 patient-days, for groups of hospitals stratified by peer group classification. Pre-defined time-periods for antimicrobial stewardship programme implementation in response to the introduction of the standard were analysed. FINDINGS In the post-intervention period, there was a decrease in overall use of systemic antimicrobials, glycopeptides, carbapenems and fluoroquinolones in principal referral and public acute group A hospitals. A decrease in overall use was also observed for smaller regional and remote public acute group C and D hospitals; however, increases in glycopeptide and fluoroquinolone use were observed. Third-generation cephalosporin use was unchanged for all hospital peer groups. The proportion of overall use that was accounted for by narrow-spectrum penicillin was low for all facilities, with modest improvements in the post-intervention period observed in principal referral facilities only. CONCLUSION These findings add to current knowledge on the effectiveness of legislative quality standards on antimicrobial stewardship at the macro level and highlight gaps to target for future programmes.
Collapse
Affiliation(s)
- C Holland
- Metro North Public Health Unit (MNPHU), Metro North Hospital and Health Service, Brisbane, Australia.
| | - E Ballard
- Statistics Unit, QIMR Berghofer Medical Research Institute, Brisbane, Australia
| | - A Griffin
- Statistics Unit, QIMR Berghofer Medical Research Institute, Brisbane, Australia
| | - S Coulter
- Pathology Queensland, Queensland Public Health and Scientific Services, Brisbane, Australia
| | - T Yarwood
- Queensland Statewide Antimicrobial Stewardship Program (QSAMSP), Metro North Hospital and Health Service, Brisbane, Australia
| | - C Heney
- Pathology Queensland, Queensland Public Health and Scientific Services, Brisbane, Australia
| | - M Young
- Metro North Public Health Unit (MNPHU), Metro North Hospital and Health Service, Brisbane, Australia; School of Public Health, University of Queensland, Brisbane, Australia; School of Medicine and Dentistry, Griffith University, Gold Coast, Australia
| |
Collapse
|
31
|
Annamalai J, Kasilingam H. BIO-PROSPECTING FOR ACTIVE COMPOUNDS: FTIR AND GCMS PROFILING OF ETHYL ACETATE-EXTRACTED SECONDARY METABOLITES FROM SEA WATER-ORIGIN ACINETOBACTER BAUMANNII MP-1. INDIAN DRUGS 2024; 61:59-68. [DOI: 10.53879/id.61.07.14630] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/03/2025]
Abstract
It is alarming and concerning that, as time progresses, due to lifestyle modifications and the emergence of resistant microbial strains, the need to explore novel drugs against them is escalating and becoming a trend. Natural products are versatile substances with remarkable qualities that could be manipulated to reap beneficial outcomes, if managed rigorously. Among the natural troves, the marine environment is one of the most jubilant environments as it harbors diverse ecosystems where organisms adapt various mechanisms and possess many complex molecules to tackle the harsh conditions around them. Bacteria are an omnipresent entity, and it has been proven previously that the bacteria from marine environments can produce secondary metabolites or marine natural products with many crucial biological applications. This study investigated the bioactive compounds present in the secondary metabolite (ethyl acetate extracted crude- EAEC) extracted from the antagonistic bacteria Acinetobacter baumannii (MP-1) isolated from seawater; concurrently, it also explored the possible pharmaceutical applications of the EAEC. FTIR analysis showed the presence of variety of functional groups and GC-MS spectroscopy unraveled the existence of a wide range of bioactive compounds, including the derivatives of oxazine, pentanoic acid, butanoic acid, dehydromevalonic lactone, etc. The identified compounds from the EAEC have all been previously recorded for their valuable (antibacterial, anticancer, antimalarial, and herbicidal) biological activities. It could be suggested that the EAEC from antagonistic bacterial strain MP-1 can be utilized as a drug after ascertaining its potential through further in vivo and in vitro trials.
Collapse
|
32
|
Ijaz S, Ansari F, Nawaz M, Ejaz H, Anjum AA, Saeed A, Ali T, Rehman OU, Fatima E, Ijaz T. Genomic Insights into and In Vitro Evaluation of Antimicrobial Combination Therapies for Carbapenem-Resistant Acinetobacter baumannii. MEDICINA (KAUNAS, LITHUANIA) 2024; 60:1086. [PMID: 39064515 PMCID: PMC11278937 DOI: 10.3390/medicina60071086] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/19/2024] [Revised: 06/25/2024] [Accepted: 06/28/2024] [Indexed: 07/28/2024]
Abstract
Background and Objectives: Acinetobacter baumannii (A. baumannii), particularly carbapenem-resistant A. baumannii (CRAB), represents a grave concern in healthcare settings and is associated with high mortality. This study aimed to conduct molecular, mutational, and phylogenetic analyses of specific genes in CRAB and evaluate the synergistic effects of selected antimicrobial combinations. Materials and Methods: Phenotypic characterization was performed on six CRAB strains by using the Modified Hodge Test (MHT) and IMP-EDTA Double-Disc Synergy Test (IMP-EDTA DDST). Carbapenemase- and metallo-beta-lactamase-encoding genes were amplified by using Polymerase Chain Reaction. Phylogenetic analysis using the MEGA 11 tool was used to determine the evolutionary relatedness of these genes. Mutational analysis was performed by using I-Mutant, MUPro, and PHD-SNP bioinformatics tools to predict mutations in the carbapenemase-encoding genes. Microdilution checkerboard titration assessed the synergistic effects of antimicrobial combinations (azithromycin-meropenem, rifampicin-meropenem, meropenem-colistin, and azithromycin-colistin) on these CRAB isolates. Results: The phenotypic characterization of six CRAB isolates revealed positive results for MHT and IMP-EDTA DDST. The molecular characterization revealed that carbapenemase- and MBL-encoding genes were present in all isolates with varying frequencies, including blaOXA-51 (100%) and blaIMP (0%). The sequence analysis revealed high evolutionary relatedness to sequences in the NCBI database. The mutational analysis identified 16 mutations, of which 1 mutation (P116L) in the blaOXA-58 gene predicted a change in the protein product, potentially contributing to carbapenem resistance. The checkerboard titration method did not reveal any synergism among the tested antimicrobial combinations against CRAB. Conclusion: This study's findings underscore the significant challenges posed by CRAB isolates harboring multiple resistant genes in treatment. This highlights the urgent need for novel antimicrobial agents, a crucial step towards reducing mortality rates not only in Pakistan but also globally.
Collapse
Affiliation(s)
- Saadia Ijaz
- Institute of Molecular Biology & Biotechnology (IMBB), University of Lahore, Lahore 54590, Pakistan
| | - Farheen Ansari
- Institute of Molecular Biology & Biotechnology (IMBB), University of Lahore, Lahore 54590, Pakistan
| | - Muhammad Nawaz
- Institute of Microbiology, University of Veterinary and Animal Sciences, Lahore 54000, Pakistan
| | - Hasan Ejaz
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, Jouf University, Sakaka 72388, Saudi Arabia
| | - Aftab Ahmad Anjum
- Institute of Microbiology, University of Veterinary and Animal Sciences, Lahore 54000, Pakistan
| | - Aqib Saeed
- Institute of Microbiology, University of Veterinary and Animal Sciences, Lahore 54000, Pakistan
| | - Tehreem Ali
- Institute of Microbiology, University of Veterinary and Animal Sciences, Lahore 54000, Pakistan
| | - Obaid Ur Rehman
- Department of Medicine, Services Institute of Medical Sciences, Lahore 54000, Pakistan
| | - Eeshal Fatima
- Department of Medicine, Services Institute of Medical Sciences, Lahore 54000, Pakistan
| | - Tayyaba Ijaz
- Mayo Hospital, Health Department, Lahore 54000, Pakistan
| |
Collapse
|
33
|
Singh S, Singh S, Trivedi M, Dwivedi M. An insight into MDR Acinetobacter baumannii infection and its pathogenesis: Potential therapeutic targets and challenges. Microb Pathog 2024; 192:106674. [PMID: 38714263 DOI: 10.1016/j.micpath.2024.106674] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2023] [Revised: 04/22/2024] [Accepted: 05/01/2024] [Indexed: 05/09/2024]
Abstract
Acinetobacter baumannii is observed as a common species of Gram-negative bacteria that exist in soil and water. Despite being accepted as a typical component of human skin flora, it has become an important opportunistic pathogen, especially in healthcare settings. The pathogenicity of A. baumannii is attributed to its virulence factors, which include adhesins, pili, lipopolysaccharides, outer membrane proteins, iron uptake systems, autotransporter, secretion systems, phospholipases etc. These elements provide the bacterium the ability to cling to and penetrate host cells, get past the host immune system, and destroy tissue. Its infection is a major contributor to human pathophysiological conditions including pneumonia, bloodstream infections, urinary tract infections, and surgical site infections. It is challenging to treat infections brought on by this pathogen since this bacterium has evolved to withstand numerous drugs and further emergence of drug-resistant A. baumannii results in higher rates of morbidity and mortality. The long-term survival of this bacterium on surfaces of medical supplies and hospital furniture facilitates its frequent spread in humans from one habitat to another. There is a need for urgent investigations to find effective drug targets for A. baumannii as well as designing novel drugs to reduce the survival and spread of infection. In the current review, we represent the specific features, pathogenesis, and molecular intricacies of crucial drug targets of A. baumannii. This would also assist in proposing strategies and alternative therapies for the prevention and treatment of A. baumannii infections and their spread.
Collapse
Affiliation(s)
- Sukriti Singh
- Amity Institute of Biotechnology, Amity University Uttar Pradesh, Lucknow, 226028, India
| | - Sushmita Singh
- Amity Institute of Biotechnology, Amity University Uttar Pradesh, Lucknow, 226028, India
| | - Mala Trivedi
- Amity Institute of Biotechnology, Amity University Uttar Pradesh, Lucknow, 226028, India
| | - Manish Dwivedi
- Amity Institute of Biotechnology, Amity University Uttar Pradesh, Lucknow, 226028, India; Research Cell, Amity University Uttar Pradesh, Lucknow, 226028, India.
| |
Collapse
|
34
|
Yilmaz I, Ozbek T. Genome editing in Acinetobacter baumannii through enhanced natural transformation. J Basic Microbiol 2024; 64:e2300644. [PMID: 38412427 DOI: 10.1002/jobm.202300644] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2023] [Revised: 01/29/2024] [Accepted: 02/03/2024] [Indexed: 02/29/2024]
Abstract
Acinetobacter baumannii, a multidrug-resistant bacterium has become a significant cause of life-threatening infections acquired in hospitals worldwide. The existing drugs used to treat A. baumannii infections are rapidly losing efficacy, and the increasing antimicrobial resistance, which is expected to turn into a global health crisis, underscores the urgency to develop novel prevention and treatment strategies. We reasoned that the discovery of novel virulence targets for vaccine and therapy interventions requires a more enhanced method for the introduction of multiple elements of foreign DNA for genome editing than the current methods of natural transformation techniques. Herein, we employed a novel and a much-improved enhanced technique for the natural transformation of elements of the genome editing system CRISPR-Cas9 to suppress specific genomic regions linked to selectively suppress bacterial virulence. We modified the genome of the laboratory-adapted strain of A. baumannii BAA-747 by targeting the AmpC, as a marker gene, for disruption by three different genomic manipulation strategies, and created mutant strains of A. baumannii that are, at least, fourfold susceptible to ampicillin. This work has established an optimized enhanced natural transformation system that enables efficient genome editing of pathogenic bacteria in a laboratory setting, providing a valuable future tool for exploring the function of unidentified virulence genes in bacterial genomes.
Collapse
Affiliation(s)
- Ilknur Yilmaz
- Department of Molecular Biology and Genetics, Graduate School of Science & Engineering, Yildiz Technical University, Istanbul, Turkey
| | - Tulin Ozbek
- Department of Molecular Biology and Genetics, Faculty of Arts and Sciences, Yildiz Technical University, Istanbul, Turkey
| |
Collapse
|
35
|
Bouhrour N, Nibbering PH, Bendali F. Medical Device-Associated Biofilm Infections and Multidrug-Resistant Pathogens. Pathogens 2024; 13:393. [PMID: 38787246 PMCID: PMC11124157 DOI: 10.3390/pathogens13050393] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2024] [Revised: 04/29/2024] [Accepted: 05/04/2024] [Indexed: 05/25/2024] Open
Abstract
Medical devices such as venous catheters (VCs) and urinary catheters (UCs) are widely used in the hospital setting. However, the implantation of these devices is often accompanied by complications. About 60 to 70% of nosocomial infections (NIs) are linked to biofilms. The main complication is the ability of microorganisms to adhere to surfaces and form biofilms which protect them and help them to persist in the host. Indeed, by crossing the skin barrier, the insertion of VC inevitably allows skin flora or accidental environmental contaminants to access the underlying tissues and cause fatal complications like bloodstream infections (BSIs). In fact, 80,000 central venous catheters-BSIs (CVC-BSIs)-mainly occur in intensive care units (ICUs) with a death rate of 12 to 25%. Similarly, catheter-associated urinary tract infections (CA-UTIs) are the most commonlyhospital-acquired infections (HAIs) worldwide.These infections represent up to 40% of NIs.In this review, we present a summary of biofilm formation steps. We provide an overview of two main and important infections in clinical settings linked to medical devices, namely the catheter-asociated bloodstream infections (CA-BSIs) and catheter-associated urinary tract infections (CA-UTIs), and highlight also the most multidrug resistant bacteria implicated in these infections. Furthermore, we draw attention toseveral useful prevention strategies, and advanced antimicrobial and antifouling approaches developed to reduce bacterial colonization on catheter surfaces and the incidence of the catheter-related infections.
Collapse
Affiliation(s)
- Nesrine Bouhrour
- Laboratoire de Microbiologie Appliquée, Faculté des Sciences de la Nature et de la Vie, Université de Bejaia, Bejaia 06000, Algeria;
| | - Peter H. Nibbering
- Department of Infectious Diseases, Leiden University Medical Center, 2300 RC Leiden, The Netherlands;
| | - Farida Bendali
- Laboratoire de Microbiologie Appliquée, Faculté des Sciences de la Nature et de la Vie, Université de Bejaia, Bejaia 06000, Algeria;
| |
Collapse
|
36
|
Gurnani M, Chauhan A, Ranjan A, Gopi P, Ghosh A, Tuli HS, Haque S, Pandya P, Lal R, Jindal T. Cyanobacterial compound Tolyporphine K as an inhibitor of Apo-PBP (penicillin-binding protein) in A. baumannii and its ADME assessment. J Biomol Struct Dyn 2024; 42:4133-4144. [PMID: 37261797 DOI: 10.1080/07391102.2023.2218930] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2023] [Accepted: 05/22/2023] [Indexed: 06/02/2023]
Abstract
Antibiotic-resistant Acinetobacter baumannii, is a common pathogen found in hospital settings and has become nosocomial due to its high infection-causing tendency amongst ICU patients. The present study explores the cyanocompoundswhich were capable to inhibit the Penicillin Binding Protein of A. baumannii through molecular docking, ADMET, and molecular dynamicssimulation strategy. A database having structural and origin details was generated for 85 bioactive compounds in MS Excel. The 3-D structures weredownloaded from the PubChem database and minimized. The receptor protein was minimized and validated for structure correctness. The database was screened against the penicillin-binding protein of A. baumannii through PyRx software. The top 5 compounds including the control molecule werefurther redocked to the receptor molecule through Autodock Vina software. The molecule pose having the highest affinity was further subjected to 100ns MD- simulation and simultaneously the in-vitro activity of the methanol extract and hexane extract was checked through agar well diffusion assay.Docking studies indicate Tolyporphine K to be a lead molecule which was further assessed through Molecular dynamics and MM/PBSA. The in-silicoresults suggested that the protein-ligand complex was found to be stable over the 100 ns trajectory with a binding free energy of -8.56 Kcalmol-1. Theligand did not induce any major structural conformation in the protein moiety and was largely stabilized by hydrophobic interactions. The bioactivityscore and ADME properties of the compounds were also calculated. The in-vitro agar well diffusion assay showed a moderate zone of inhibition of12.33mm. The results indicate that the compound Tolyporphin- K could be a potential inhibitor of penicillin-binding protein in A. baumannii. Yet furtherwork needs to be done to have a more concrete basis for the pathway of inhibition.Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- Manisha Gurnani
- Amity Institute of Environmental Sciences, Amity University, Noida, India
| | - Abhishek Chauhan
- Amity Institute of Environment Toxicology and Safety Management, Amity University, Noida, India
| | - Anuj Ranjan
- Amity Institute of Environment Toxicology and Safety Management, Amity University, Noida, India
- Academy of Biology and Biotechnology, Southern Federal University, Rostov-on-Don, Russia
| | - Priyanka Gopi
- Amity Institute of Forensic Sciences, Amity University, Noida, India
| | - Arabinda Ghosh
- Department of Botany, Microbiology Division, Guwahati University, Guwahati, India
| | - Hardeep Singh Tuli
- Department of Biotechnology, Maharishi Markandeshwar (Deemed to be University), Ambala, India
| | - Shafiul Haque
- Research and Scientific Studies Unit, College of Nursing and Allied Health Sciences, Jazan University, Jazan, Saudi Arabia
- Gilbert and Rose-Marie Chagoury School of Medicine, Lebanese American University, Beirut, Lebanon
- Centre of Medical and Bio-Allied Health Sciences Research, Ajman University, Ajman, United Arab Emirates
| | - Prateek Pandya
- Amity Institute of Forensic Sciences, Amity University, Noida, India
| | - Rup Lal
- Department of Zoology, University of Delhi, Delhi, India
| | - Tanu Jindal
- Amity Institute of Environmental Sciences, Amity University, Noida, India
- Amity Institute of Environment Toxicology and Safety Management, Amity University, Noida, India
| |
Collapse
|
37
|
Naseef Pathoor N, Viswanathan A, Wadhwa G, Ganesh PS. Understanding the biofilm development of Acinetobacter baumannii and novel strategies to combat infection. APMIS 2024; 132:317-335. [PMID: 38444124 DOI: 10.1111/apm.13399] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2023] [Accepted: 02/22/2024] [Indexed: 03/07/2024]
Abstract
Acinetobacter baumannii (A. baumannii) is a Gram-negative, nonmotile, and aerobic bacillus emerged as a superbug, due to increasing the possibility of infection and accelerating rates of antimicrobial agents. It is recognized as a nosocomial pathogen due to its ability to form biofilms. These biofilms serve as a defensive barrier, increase antibiotic resistance, and make treatment more difficult. As a result, the current situation necessitates the rapid emergence of novel therapeutic approaches to ensure successful treatment outcomes. This review explores the intricate relationship between biofilm formation and antibiotic resistance in A. baumannii, emphasizing the role of key virulence factors and quorum sensing (QS) mechanisms that will lead to infections and facilitate insight into developing innovative method to control A. baumannii infections. Furthermore, the review article looks into promising approaches for preventing biofilm formation on medically important surfaces and potential therapeutic methods for eliminating preformed biofilms, which can address biofilm-associated A. baumannii infections. Modern advances in emerging therapeutic options such as antimicrobial peptide (AMPs), nanoparticles (NPs), bacteriophage therapy, photodynamic therapy (PDT), and other biofilm inhibitors can assist readers understand the current landscape and future prospects for effectively treating A. baumannii biofilm infections.
Collapse
Affiliation(s)
- Naji Naseef Pathoor
- Department of Microbiology, Centre for Infectious Diseases, Saveetha Dental College and Hospitals, Saveetha Institute of Medical and Technical Sciences (SIMATS), Saveetha University (Deemed to be University), Chennai, Tamil Nadu, India
| | - Akshaya Viswanathan
- Department of Microbiology, Centre for Infectious Diseases, Saveetha Dental College and Hospitals, Saveetha Institute of Medical and Technical Sciences (SIMATS), Saveetha University (Deemed to be University), Chennai, Tamil Nadu, India
| | - Gulshan Wadhwa
- Department of Biotechnology, Ministry of Science and Technology, New Delhi, India
| | - Pitchaipillai Sankar Ganesh
- Department of Microbiology, Centre for Infectious Diseases, Saveetha Dental College and Hospitals, Saveetha Institute of Medical and Technical Sciences (SIMATS), Saveetha University (Deemed to be University), Chennai, Tamil Nadu, India
| |
Collapse
|
38
|
Papadopoulou M, Deliolanis I, Polemis M, Vatopoulos A, Psichogiou M, Giakkoupi P. Characteristics of the Genetic Spread of Carbapenem-Resistant Acinetobacter baumannii in a Tertiary Greek Hospital. Genes (Basel) 2024; 15:458. [PMID: 38674392 PMCID: PMC11050095 DOI: 10.3390/genes15040458] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2024] [Revised: 03/30/2024] [Accepted: 04/03/2024] [Indexed: 04/28/2024] Open
Abstract
Acinetobacter baumannii (Ab) has increasingly been identified as a cause of hospital-acquired infections and epidemics. The rise of carbapenem-resistant Acinetobacter baumannii (CRAB) poses significant challenges in treatment. Nosocomial outbreaks linked to CRAΒ A. baumannii strains have been reported worldwide, including in Greece. This study aimed to analyze the molecular epidemiology trends of multidrug-resistant A. baumannii isolates in a tertiary hospital in Athens, Greece. A total of 43 clinical isolates of extensively drug-resistant (XDRAB), pan-drug-resistant (PDRAB), and CRAB were collected from patients suffering from blood infection, hospitalized between 2016 and 2020 at the internal medicine clinics and the ICU. A.baumannii isolates underwent testing for Ambler class B and D carbapenemases and the detection of ISAba1, and were typed, initially, using pulsed-field gel electrophoresis, and, subsequently, using sequence-based typing and multiplex PCR to determine European Clone lineages. The blaOXA-23 gene accompanied by ISAba1 was prevalent in nearly all A. baumannii isolates, except for one carrying blaOXA-58. The intrinsic blaOXA-51-like gene was found in all isolates. No Ambler class B carbapenemases (VIM, NDM) were detected. Isolates were grouped into four PF-clusters and no one-cluster spread was documented, consistent with the absence of outbreak. The study indicated that XDR/PDR-CRAB isolates predominantly produce OXA-23 carbapenemase and belong to European Clone II. Further research is needed to understand the distribution of resistant bacteria and develop effective prevention and control strategies.
Collapse
Affiliation(s)
- Martha Papadopoulou
- Laboratory for the Surveillance of Infectious Diseases-LSID, Department of Public Health Policy, University of West Attica, 11521 Athens, Greece; (A.V.); (P.G.)
| | - Ioannis Deliolanis
- Department of Microbiology, Laiko General Hospital, 11527 Athens, Greece;
| | - Michalis Polemis
- Hellenic National Public Health Organization, 15123 Athens, Greece;
| | - Alkiviadis Vatopoulos
- Laboratory for the Surveillance of Infectious Diseases-LSID, Department of Public Health Policy, University of West Attica, 11521 Athens, Greece; (A.V.); (P.G.)
| | - Mina Psichogiou
- 1st Department of Internal Medicine, Laiko General Hospital, National and Kapodistrian University of Athens, 11527 Athens, Greece;
| | - Panagiota Giakkoupi
- Laboratory for the Surveillance of Infectious Diseases-LSID, Department of Public Health Policy, University of West Attica, 11521 Athens, Greece; (A.V.); (P.G.)
| |
Collapse
|
39
|
Bagińska N, Grygiel I, Orwat F, Harhala MA, Jędrusiak A, Gębarowska E, Letkiewicz S, Górski A, Jończyk-Matysiak E. Stability study in selected conditions and biofilm-reducing activity of phages active against drug-resistant Acinetobacter baumannii. Sci Rep 2024; 14:4285. [PMID: 38383718 PMCID: PMC10881977 DOI: 10.1038/s41598-024-54469-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2023] [Accepted: 02/13/2024] [Indexed: 02/23/2024] Open
Abstract
Acinetobacter baumannii is currently a serious threat to human health, especially to people with immunodeficiency as well as patients with prolonged hospital stays and those undergoing invasive medical procedures. The ever-increasing percentage of strains characterized by multidrug resistance to widely used antibiotics and their ability to form biofilms make it difficult to fight infections with traditional antibiotic therapy. In view of the above, phage therapy seems to be extremely attractive. Therefore, phages with good storage stability are recommended for therapeutic purposes. In this work, we present the results of studies on the stability of 12 phages specific for A. baumannii under different conditions (including temperature, different pH values, commercially available disinfectants, essential oils, and surfactants) and in the urine of patients with urinary tract infections (UTIs). Based on our long-term stability studies, the most optimal storage method for the A. baumannii phage turned out to be - 70 °C. In contrast, 60 °C caused a significant decrease in phage activity after 1 h of incubation. The tested phages were the most stable at a pH from 7.0 to 9.0, with the most inactivating pH being strongly acidic. Interestingly, ethanol-based disinfectants caused a significant decrease in phage titers even after 30 s of incubation. Moreover, copper and silver nanoparticle solutions also caused a decrease in phage titers (which was statistically significant, except for the Acba_3 phage incubated in silver solution), but to a much lesser extent than disinfectants. However, bacteriophages incubated for 24 h in essential oils (cinnamon and eucalyptus) can be considered stable.
Collapse
Affiliation(s)
- Natalia Bagińska
- Bacteriophage Laboratory, Hirszfeld Institute of Immunology and Experimental Therapy, Polish Academy of Sciences, 53-114, Wrocław, Poland
| | - Ilona Grygiel
- Bacteriophage Laboratory, Hirszfeld Institute of Immunology and Experimental Therapy, Polish Academy of Sciences, 53-114, Wrocław, Poland
| | - Filip Orwat
- Bacteriophage Laboratory, Hirszfeld Institute of Immunology and Experimental Therapy, Polish Academy of Sciences, 53-114, Wrocław, Poland
| | - Marek Adam Harhala
- Laboratory of Phage Molecular Biology, Hirszfeld Institute of Immunology and Experimental Therapy, Polish Academy of Sciences, 53-114, Wrocław, Poland
| | - Adam Jędrusiak
- Bacteriophage Laboratory, Hirszfeld Institute of Immunology and Experimental Therapy, Polish Academy of Sciences, 53-114, Wrocław, Poland
| | - Elżbieta Gębarowska
- Division of Biogeochemistry and Environmental Microbiology, Department of Plant Protection, Wroclaw University of Environmental and Life Sciences, Grunwaldzka 53, 50-357, Wrocław, Poland
| | | | - Andrzej Górski
- Phage Therapy Unit, Hirszfeld Institute of Immunology and Experimental Therapy, Polish Academy of Sciences, 53-114, Wrocław, Poland
| | - Ewa Jończyk-Matysiak
- Bacteriophage Laboratory, Hirszfeld Institute of Immunology and Experimental Therapy, Polish Academy of Sciences, 53-114, Wrocław, Poland.
| |
Collapse
|
40
|
Wantanatavatod M, Wongkulab P. Clinical Efficacy of Sitafloxacin-Colistin-Meropenem and Colistin-Meropenem in Patients with Carbapenem-Resistant and Multidrug-Resistant Acinetobacter baumannii Hospital-Acquired Pneumonia (HAP)/Ventilator-Associated Pneumonia (VAP) in One Super-Tertiary Hospital in Bangkok, Thailand: A Randomized Controlled Trial. Antibiotics (Basel) 2024; 13:137. [PMID: 38391523 PMCID: PMC10886248 DOI: 10.3390/antibiotics13020137] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2023] [Revised: 01/24/2024] [Accepted: 01/26/2024] [Indexed: 02/24/2024] Open
Abstract
BACKGROUND Carbapenem-resistant A. baumannii (CRAB) hospital-acquired pneumonia (HAP)/ventilator-associated pneumonia (VAP) is now a therapeutic problem worldwide. METHOD An open-label, randomized, superiority, single-blind trial was conducted in Rajavithi Hospital, a super-tertiary care facility in Bangkok, Thailand. CRAB HAP/VAP patients were randomly assigned to receive either sitafloxacin-colistin-meropenem or colistin-meropenem. Outcomes in the two groups were then assessed with respect to mortality, clinical response, and adverse effects. RESULT Between April 2021 and April 2022, 77 patients were treated with combinations of either sitafloxacin plus colistin plus meropenem (n = 40) or colistin plus meropenem (n = 37). There were no significant differences between the two groups with respect to all-cause mortality rates at 7 days and 14 days (respectively, 7.5% vs. 2.7%; p = 0.616, and 10% vs. 10%; p = 1). Patients who received sitafloxacin-colistin-meropenem showed improved clinical response compared with patients who received colistin-meropenem in terms of both intention-to-treat (87.5% vs. 62.2%; p = 0.016) and per-protocol analysis (87.2% vs. 67.7%; p = 0.049). There were no significant differences between the two groups with respect to adverse effects. CONCLUSIONS Adding sitafloxacin as a third agent to meropenem plus colistin could improve clinical outcomes in CRAB HAP/VAP with little or no impact on adverse effects. In short, sitafloxacin-meropenem-colistin could be another therapeutic option for combatting CRAB HAP/VAP.
Collapse
Affiliation(s)
- Manasawee Wantanatavatod
- Division of Infectious Disease, Department of Medicine, Rajavithi Hospital, Bangkok 10400, Thailand
| | - Panuwat Wongkulab
- Division of Infectious Disease, Department of Medicine, Rajavithi Hospital, Bangkok 10400, Thailand
| |
Collapse
|
41
|
Asefian S, Ghavam M. Green and environmentally friendly synthesis of silver nanoparticles with antibacterial properties from some medicinal plants. BMC Biotechnol 2024; 24:5. [PMID: 38263231 PMCID: PMC10807138 DOI: 10.1186/s12896-023-00828-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2023] [Accepted: 12/19/2023] [Indexed: 01/25/2024] Open
Abstract
Recently there have been a variety of methods to synthesize silver nanoparticles, among which the biosynthesis method is more noticeable due to features like being eco-friendly, simple, and cost-efficient. The present study aims for the green synthesis of silver nanoparticles from the extract of the three plants A. wilhelmsi, M. chamomilla, and C. longa; moreover, it pledges to measure the antibacterial activity against some variants causing a skin rash. The morphology and size of the synthesized silver nanoparticles were evaluated by UV.vis, XRD, SEM, and FTIR analyses. Then results showed a color alteration from light yellow to dark brown and the formation of silver nanoparticles. The absorption peak with the wavelength of approximately 450 nm resulting from the Spectrophotometry analysis confirmed the synthesis of silver nanoparticles. The presence of strong and wide peaks in FTIR indicated the presence of OH groups. The SEM results showed that most synthesized nanoparticles had a spherical angular structure and their size was about 10 to 20 nm. The highest inhibition power was demonstrated by silver nanoparticles synthesized from the extract combined from all three species against Gram-positive bacteria Staphylococcus aureus and Staphylococcus epidermidis (23 mm) which had a performance far more powerful than the extract. Thus, it can be understood that the nanoparticles synthesized from these three species can act as potential environment-friendly alternatives to inhibit some variations causing skin disorders; an issue that calls for further clinical studies.
Collapse
Affiliation(s)
- Samira Asefian
- Department of Nature Engineering, Faculty of Natural Resources and Earth Sciences, University of Kashan, Kashan, Iran
| | - Mansureh Ghavam
- Department of Nature Engineering, Faculty of Natural Resources and Earth Sciences, University of Kashan, Kashan, Iran.
| |
Collapse
|
42
|
Shi J, Cheng J, Liu S, Zhu Y, Zhu M. Acinetobacter baumannii: an evolving and cunning opponent. Front Microbiol 2024; 15:1332108. [PMID: 38318341 PMCID: PMC10838990 DOI: 10.3389/fmicb.2024.1332108] [Citation(s) in RCA: 16] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2023] [Accepted: 01/08/2024] [Indexed: 02/07/2024] Open
Abstract
Acinetobacter baumannii is one of the most common multidrug-resistant pathogens causing nosocomial infections. The prevalence of multidrug-resistant A. baumannii infections is increasing because of several factors, including unregulated antibiotic use. A. baumannii drug resistance rate is high; in particular, its resistance rates for tigecycline and polymyxin-the drugs of last resort for extensively drug-resistant A. baumannii-has been increasing annually. Patients with a severe infection of extensively antibiotic-resistant A. baumannii demonstrate a high mortality rate along with a poor prognosis, which makes treating them challenging. Through carbapenem enzyme production and other relevant mechanisms, A. baumannii has rapidly acquired a strong resistance to carbapenem antibiotics-once considered a class of strong antibacterials for A. baumannii infection treatment. Therefore, understanding the resistance mechanism of A. baumannii is particularly crucial. This review summarizes mechanisms underlying common antimicrobial resistance in A. baumannii, particularly those underlying tigecycline and polymyxin resistance. This review will serve as a reference for reasonable antibiotic use at clinics, as well as new antibiotic development.
Collapse
Affiliation(s)
- Jingchao Shi
- Open Laboratory Medicine, Hangzhou Xixi Hospital Affiliated to Zhejiang Chinese Medical University, Hangzhou, China
- Department of Clinical Laboratory, Affiliated Jinhua Hospital, Zhejiang University School of Medicine, Jinhua, China
- Graduate School, Zhejiang Chinese Medical University, Hangzhou, China
| | - Jianghao Cheng
- Open Laboratory Medicine, Hangzhou Xixi Hospital Affiliated to Zhejiang Chinese Medical University, Hangzhou, China
| | - Shourong Liu
- Department of Infectious Disease, Hangzhou Xixi Hospital Affiliated to Zhejiang Chinese Medical University, Hangzhou, China
| | - Yufeng Zhu
- Open Laboratory Medicine, Hangzhou Xixi Hospital Affiliated to Zhejiang Chinese Medical University, Hangzhou, China
| | - Mingli Zhu
- Open Laboratory Medicine, Hangzhou Xixi Hospital Affiliated to Zhejiang Chinese Medical University, Hangzhou, China
| |
Collapse
|
43
|
Zhao S, Zhang B, Liu C, Sun X, Chu Y. Acinetobacter baumannii infection in intensive care unit: analysis of distribution and drug resistance. Mol Biol Rep 2024; 51:120. [PMID: 38227070 DOI: 10.1007/s11033-023-09144-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2023] [Accepted: 12/12/2023] [Indexed: 01/17/2024]
Abstract
BACKGROUND The isolation rate and drug resistance rate of Acinetobacter baumannii (A.baumannii) have increased over the years, which has become one of the main causes of infection and death in intensive care unit (ICU) patients. Analysis of the distribution characteristics, drug resistance and influencing factors of A.baumannii in ICU could provide basis and reference for the infection prevention and clinical treatment. METHODS AND RESULTS In this study, patients diagnosed with A.baumannii infection in ICU from January 2020 to December 2021 were selected. Samples of patients were collected for bacterial culture, drug sensitivity test analysis and drug resistant gene detection of A.baumannii. A total of 197 strains of A.baumannii were cultured in 2021, which was 18 strains more than in 2020. The specimens were mainly from lower respiratory tract secretions, and the isolated strains were multi-drug resistant. The resistance of isolates to tobramycin, gentamicin, and trimethoprim-sulfamethoxazole in 2021 showed a significant increase compared to 2020, while there were no significant differences observed in other resistance changes. The prevalence of multi-drug resistant A.baumannii in ICU remains high. Among them, all imipenem-resistant A.baumannii strains carried OXA-23 gene. CONCLUSION Clinical treatment should use antibiotics reasonably based on the characteristics of bacterial resistance, and strengthen the prevention and control of hospital infection, pay more attention to the disinfection and isolation to reduce the risk of cross infection.
Collapse
Affiliation(s)
- Siyang Zhao
- Department of Clinical Research Center, Dazhou Central Hospital, Dazhou, Sichuan province, China
| | - Bing Zhang
- Department of Clinical Pharmacy, Dazhou Central Hospital, Dazhou, Sichuan province, China
| | - Conghai Liu
- Department of Clinical Pharmacy, Dazhou Central Hospital, Dazhou, Sichuan province, China
| | - Xiaodong Sun
- Department of Clinical Pharmacy, Dazhou Central Hospital, Dazhou, Sichuan province, China
| | - Yanpeng Chu
- Department of Clinical Research Center, Dazhou Central Hospital, Dazhou, Sichuan province, China.
- College of Health Care Industry, Sichuan University of Arts and Science, No.56 nanyuemiao Street, Tongchuan District, Dazhou, Sichuan province, China.
| |
Collapse
|
44
|
Gera B, Gautam H, Raza S, Mohapatra S, Sood S, Dhawan B, Kapil A, Das BK. Detection of Aminoglycoside Modifying Enzyme (AME) genes in Acinetobacter baumannii isolates and the inhibitory effect of efflux pump activity on drug susceptibility pattern. Indian J Med Microbiol 2024; 47:100493. [PMID: 37890414 DOI: 10.1016/j.ijmmb.2023.100493] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2023] [Revised: 10/07/2023] [Accepted: 10/08/2023] [Indexed: 10/29/2023]
Abstract
INTRODUCTION The development of aminoglycoside modifying enzymes (AMEs) and increased efflux activity are considered important aminoglycosides resistance mechanisms. AIM This study is focused on the detection of the AMEs gene and assessing the effect of efflux pump inhibitor on the reversal of A. baumannii drug susceptibility. METHODOLOGY Bacterial DNA was amplified using AMEs gene-specific primers. Isolates were also investigated for efflux pump activity using efflux pump inhibitor (EPI) i.e. Carbonyl cyanide m-chlorophenyl hydrazone (CCCP) and the impact of both mechanisms was analyzed. RESULTS Among A. baumannii isolates, 55% isolates (n = 22/40) were identified to have aminoglycoside modifying enzymes genes; ant(3')-I gene (50%, 11/22), aac(6')-Ib gene (45.4%, 10/22), aph(3')-I gene (18.1%, 4/22) and aac(3)-I (9.1%, 2/22). Total 70% isolates have shown MIC alteration in different classes of drugs in response to EPI-CCCP. Such alteration was found in 100% amikacin sensitive and 58.6% amikacin resistant, 93.7% and 57.1% gentamicin sensitive and resistant isolates respectively. CONCLUSION The presence of aminoglycosides modifying enzymes was frequent among aminoglycosides resistant A. baumannii isolates and the coexistence of efflux pumps activity also plays an important role to increase drug resistance. REPOSITORIES Genbank and their accession numbers are MT903331[aac(3)-I], MT903332 MT903333 [ant(3')-I], MT903334, MT903335 [aph(3')-I)] and MT903336, MT940242 [ aac(6')-Ib].
Collapse
Affiliation(s)
- Bhavna Gera
- Department of Microbiology, All India Institute of Medical Sciences, New Delhi 110029, India
| | - Hitender Gautam
- Department of Microbiology, All India Institute of Medical Sciences, New Delhi 110029, India.
| | - Shahid Raza
- Department of Microbiology, All India Institute of Medical Sciences, New Delhi 110029, India
| | - Sarita Mohapatra
- Department of Microbiology, All India Institute of Medical Sciences, New Delhi 110029, India
| | - Seema Sood
- Department of Microbiology, All India Institute of Medical Sciences, New Delhi 110029, India
| | - Benu Dhawan
- Department of Microbiology, All India Institute of Medical Sciences, New Delhi 110029, India
| | - Arti Kapil
- North DMC Medical College & Hindu Rao Hospital, New Delhi 110007, India
| | - Bimal Kumar Das
- Department of Microbiology, All India Institute of Medical Sciences, New Delhi 110029, India
| |
Collapse
|
45
|
Tyagi I, Tyagi K, Gupta V, Dutta R, Singhvi N, Kumar V, Bhutiani R, Prakash O. Microbial diversity characterizations, associated pathogenesis and antimicrobial resistance profiling of Najafgarh drain. ENVIRONMENTAL RESEARCH 2023; 238:117140. [PMID: 37716389 DOI: 10.1016/j.envres.2023.117140] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/28/2023] [Revised: 08/30/2023] [Accepted: 09/13/2023] [Indexed: 09/18/2023]
Abstract
The Najafgarh drain plays a significant role in the pollution of the Yamuna River, accounting for 40% of the total pollution. Therefore, it is crucial to investigate and analyze the microbial diversity, metabolic functional capacity, and antibiotic resistance genes (ARGs) present in the Najafgarh drain. Additionally, studying the water quality and its relationship with the proliferation of microorganisms in the drain is of utmost importance. Results obtained confirmed the deteriorated water quality as physico-chemical parameters such as biochemical oxygen demand (BOD), chemical oxygen demand (COD), dissolved oxygen (DO), and total suspended solids (TSS) in the range of 125-140, 400-460, 0-0.2, 25-140.4 mg/l respectively violated the standard permissible national and global standards. In addition, the next generation sequencing (NGS) analysis confirm the presence of genus such as Thauera, Arcobacter, Pseudomonas, Geobacter, Dechloromonas, Tolumonas, Sulfurospirullum, Desulfovibrio, Aeromonas, Bacteroides, Prevotella, Cloacibacterium, Bifidobacterium, Clostridium etc. along with 864 ARGs in the wastewater obtained from the Najafgarh drain. Findings confirm that the pathogenic species reported from this dataset possess severe detrimental impact on faunal and human health. Further, Pearson's r correlation analysis indicated that environmental variables, mainly total dissolved solids (TDS) and chemical oxygen demand (COD), play a pivotal role in driving microbial community structure of this heavily polluted drain. Thus, the poor water quality, presence of a microbial nexus, pathogenic markers, and ARGs throughout this drain confirmed that it would be one potential contributor to the dissemination of disease-causing agents (pathogens) to the household and drinking water supplies in the near future.
Collapse
Affiliation(s)
- Inderjeet Tyagi
- Centre for DNA Taxonomy, Molecular Systematics Division, Zoological Survey of India, Kolkata, 700 053, West Bengal, India.
| | - Koamud Tyagi
- Centre for DNA Taxonomy, Molecular Systematics Division, Zoological Survey of India, Kolkata, 700 053, West Bengal, India
| | - Vipin Gupta
- Ministry of Environment Forest and Climate Change, Integrated Regional Office-Dehradun, India, 248001, Uttarakhand, India
| | - Ritesh Dutta
- Kiit School of Biotechnology, Bhubaneswar, 751024, Odisha, India
| | - Nirjara Singhvi
- School of Allied Sciences, Dev Bhoomi Uttarakhand University, Dehradun, 248007, India
| | - Vikas Kumar
- Centre for DNA Taxonomy, Molecular Systematics Division, Zoological Survey of India, Kolkata, 700 053, West Bengal, India.
| | - Rakesh Bhutiani
- Limnology and Ecological Modelling Lab, Department of Zoology and Environmental Science, Gurukul Kangri (Deemed to be University), Haridwar, 249404, UK, India
| | - Om Prakash
- Symbiosis Centre for Climate Change and Sustainability (SCCCS), Symbiosis International (Deemed University), Lavale, Pune, 412115, Maharastra, India
| |
Collapse
|
46
|
Zhang YD, Liu LY, Wang D, Yuan XL, Zheng Y, Wang Y. Isolation and identification of bioactive compounds from Antrodia camphorata against ESKAPE pathogens. PLoS One 2023; 18:e0293361. [PMID: 37889913 PMCID: PMC10610075 DOI: 10.1371/journal.pone.0293361] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2023] [Accepted: 10/10/2023] [Indexed: 10/29/2023] Open
Abstract
Antimicrobial resistance is a major threat to human health globally. Antrodia camphorata was grown in a malt/yeast extract broth liquid medium for 15 days. Then, 4-L fermentation broth was harvested, yielding 7.13 g of the ethyl acetate extract. By tracing the antimicrobial activity, 12.22 mg of the antimicrobial compound was isolated. The structure of 5-methyl-benzo [1,3]-dioxole-4,7-diol (MBBD) was elucidated using NMR and MS data analyses. The antibacterial activity of MBBD was detected through the microbroth dilution method. MBBD exhibited broad-spectrum antibacterial activity. The minimum inhibitory concentration (MIC) range of MBBD for drug-resistant pathogenic bacteria was 64-256 μg/mL, with the lowest MIC observed for Acinetobacter baumannii (64 μg/mL), followed by Pseudomonas aeruginosa (MIC = 128 μg/mL). Klebsiella pneumoniae, Staphylococcus aureus, Enterococcus faecalis, and Escherichia coli were also sensitive, with an MIC of 256 μg/mL. The MIC range of MBBD against 10 foodborne pathogens was 12.5-100 μg/mL. Based on the results of this study, MBBD exhibits broad-spectrum antibacterial activity, particularly demonstrating excellent inhibitory effects against A. baumannii. MBBD will be good candidates for new antimicrobial drugs.
Collapse
Affiliation(s)
- Ya-Dong Zhang
- College of Forestry, Southwest Forestry University, Kunming, China
- Laboratory of Forest Plant Cultivation and Utilization, The Key Laboratory of Rare and Endangered Forest Plants of State Forestry Administration, Yunnan Academy of Forestry and Grassland, Kunming, China
- Yunnan Key Laboratory for Fungal Diversity and Green Development, Kunming, China
| | - Liang-Yan Liu
- College of Agronomy and Biotechnology, Yunnan Agriculture University, Kunming, Yunnan, China
| | - Dong Wang
- College of Forestry, Southwest Forestry University, Kunming, China
- Laboratory of Forest Plant Cultivation and Utilization, The Key Laboratory of Rare and Endangered Forest Plants of State Forestry Administration, Yunnan Academy of Forestry and Grassland, Kunming, China
| | - Xiao-Long Yuan
- Laboratory of Forest Plant Cultivation and Utilization, The Key Laboratory of Rare and Endangered Forest Plants of State Forestry Administration, Yunnan Academy of Forestry and Grassland, Kunming, China
| | - Yuan Zheng
- College of Forestry, Southwest Forestry University, Kunming, China
| | - Yi Wang
- Laboratory of Forest Plant Cultivation and Utilization, The Key Laboratory of Rare and Endangered Forest Plants of State Forestry Administration, Yunnan Academy of Forestry and Grassland, Kunming, China
- Yunnan Key Laboratory for Fungal Diversity and Green Development, Kunming, China
| |
Collapse
|
47
|
Huang Y, Ali MR, Li W, Wang W, Dai Y, Lu H, He Z, Li Y, Sun B. Epidemiological characteristics of multidrug-resistant Acinetobacter baumannii ST369 in Anhui, China. mSystems 2023; 8:e0073123. [PMID: 37655924 PMCID: PMC10654100 DOI: 10.1128/msystems.00731-23] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2023] [Accepted: 07/19/2023] [Indexed: 09/02/2023] Open
Abstract
IMPORTANCE Acinetobacter baumannii is a major health threat due to its antibiotic resistance and ability to cause nosocomial infections. Epidemiological studies indicated that the majority of globally prevalent ST369 clones originated from China, indicating a significant impact on public health in the country. In this study, we conducted whole-genome sequencing, comparative genomics, and Galleria mellonella infection model on eight A. baumannii ST369 isolates collected from a provincial hospital in China to comprehensively understand the organism. We identified two mutations (G540A and G667D) on the wzc gene that can affect bacterial virulence and viscosity. We confirmed their impact on resistance and virulence. We also investigated the potential involvement of AB46_0125 and AB152_03903 proteins in virulence. This finding provides a theoretical reference for further research on A. baumannii ST369 clinical isolates with similar mutations.
Collapse
Affiliation(s)
- Yi Huang
- Department of Oncology, The First Affiliated Hospital of University of Science and Technology of China, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China
| | - Md Roushan Ali
- Department of Oncology, The First Affiliated Hospital of University of Science and Technology of China, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China
| | - Wei Li
- Department of Oncology, The First Affiliated Hospital of University of Science and Technology of China, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China
| | - Wanying Wang
- Intensive Care Unit, Biomedical Research Center, Shenzhen Institute of Translational Medicine, Health Science Center, The First Affiliated Hospital of Shenzhen University, Shenzhen Second People’s Hospital, Shenzhen, China
| | - Yuanyuan Dai
- Department of Oncology, The First Affiliated Hospital of University of Science and Technology of China, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China
| | - Huaiwei Lu
- Department of Oncology, The First Affiliated Hospital of University of Science and Technology of China, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China
| | - Zhien He
- Department of Oncology, The First Affiliated Hospital of University of Science and Technology of China, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China
| | - Yujie Li
- Department of Oncology, The First Affiliated Hospital of University of Science and Technology of China, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China
| | - Baolin Sun
- Department of Oncology, The First Affiliated Hospital of University of Science and Technology of China, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China
| |
Collapse
|
48
|
Mottaghiyan Z, Esmaeili D, Ahmadi MH, Niakan M. Designing a Multiplex PCR for Rapid and Accurate Detection of Metallobetalactamases Resistant Genes from Acinetobacter baumaniiIsolates in Tehran City, Iran. IRANIAN JOURNAL OF PATHOLOGY 2023; 18:449-455. [PMID: 38024550 PMCID: PMC10646741 DOI: 10.30699/ijp.2023.2007142.3144] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/17/2023] [Accepted: 09/04/2023] [Indexed: 12/01/2023]
Abstract
Background & Objective Acinetobacter baumannii strains harboring Meallobetalactamases (MBL) pose a significant threat in the context of nosocomial infections. The present investigation was undertaken with the objective of devising a Multiplex PCR methodology for the concurrent detection of MBL genes within A. baumannii strains prevalent in Tehran City, Iran. Methods Between October 2020 and February 2021, 100 strains of A. baumannii were procured from burn specimens of hospitalized patients at Motahhari Hospital in Tehran. The identification of A. baumannii strains involved conventional biochemical techniques, coupled with confirmation of the presence of the bla OXA-51 gene. Antibiotic susceptibility was assessed using the Kirby-Bauer disc diffusion test. MBL-producing strains were characterized through a phenotypic approach employing the combined disk test, alongside Multiplex PCR for the simultaneous identification of bla VIM, bla IMP, bla GIM, and bla NDM genes. Statistical analyses were conducted using the chi-square test, with SPSS version 20.0 employed for data processing. Results Among 100 strains examined, 96.1% exhibited positivity for MBL, as determined by the combined disk test. The study revealed a predominance of extensively drug-resistant (XDR) strains, with colistin demonstrating the highest level of sensitivity. The genotypic assay unveiled that Multiplex PCR identified bla VIM, bla NDM, and bla IMP in 20 strains, bla VIM and bla NDM in 30 strains, and exclusively the bla NDM gene in 45 strains. Notably, the Multiplex PCR technique exhibited the capacity to concurrently detect MBL genes (bla VIM, bla IMP, bla GIM, bla NDM) in 2 strains. Conclusion The current investigation underscores prevalence of the bla NDM gene within clinical strains of A. baumannii. Furthermore, Multiplex PCR emerges as a robust and highly sensitive technique for rapid discernment of the MBL genes within in A. baumannii strains.
Collapse
Affiliation(s)
- Zahra Mottaghiyan
- Department of Microbiology, Faculty of Medicine, Shahed University, Tehran, Iran
| | | | | | - Mohammad Niakan
- Department of Microbiology, Faculty of Medicine, Shahed University, Tehran, Iran
| |
Collapse
|
49
|
Abban MK, Ayerakwa EA, Mosi L, Isawumi A. The burden of hospital acquired infections and antimicrobial resistance. Heliyon 2023; 9:e20561. [PMID: 37818001 PMCID: PMC10560788 DOI: 10.1016/j.heliyon.2023.e20561] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2023] [Revised: 08/21/2023] [Accepted: 09/29/2023] [Indexed: 10/12/2023] Open
Abstract
The burden of Hospital care-associated infections (HCAIs) is becoming a global concern. This is compounded by the emergence of virulent and high-risk bacterial strains such as "ESKAPE" pathogens - (Enterococcus faecium, Staphylococcus aureus, Klebsiella pneumoniae, Acinetobacter baumannii, Pseudomonas aeruginosa and Enterobacter species), especially within Intensive care units (ICUs) that house high-risk and immunocompromised patients. In this review, we discuss the contributions of AMR pathogens to the increasing burden of HCAIs and provide insights into AMR mechanisms, with a particular focus on last-resort antibiotics like polymyxins. We extensively discuss how structural modifications of surface-membrane lipopolysaccharides and cationic interactions influence and inform AMR, and subsequent severity of HCAIs. We highlight some bacterial phenotypic survival mechanisms against polymyxins. Lastly, we discuss the emergence of plasmid-mediated resistance as a phenomenon making mitigation of AMR difficult, especially within the ICUs. This review provides a balanced perspective on the burden of HCAIs, associated pathogens, implication of AMR and factors influencing emerging AMR mechanisms.
Collapse
Affiliation(s)
- Molly Kukua Abban
- West African Centre for Cell Biology of Infectious Pathogens, P.O. Box LG 54, Volta Road, University of Ghana, Legon, Accra, Ghana
- Department of Biochemistry, Cell and Molecular Biology, College of Basic and Applied Sciences, P.O. Box LG 54, Volta Road, University of Ghana, Legon, Accra, Ghana
| | - Eunice Ampadubea Ayerakwa
- West African Centre for Cell Biology of Infectious Pathogens, P.O. Box LG 54, Volta Road, University of Ghana, Legon, Accra, Ghana
- Department of Biochemistry, Cell and Molecular Biology, College of Basic and Applied Sciences, P.O. Box LG 54, Volta Road, University of Ghana, Legon, Accra, Ghana
| | - Lydia Mosi
- West African Centre for Cell Biology of Infectious Pathogens, P.O. Box LG 54, Volta Road, University of Ghana, Legon, Accra, Ghana
- Department of Biochemistry, Cell and Molecular Biology, College of Basic and Applied Sciences, P.O. Box LG 54, Volta Road, University of Ghana, Legon, Accra, Ghana
| | - Abiola Isawumi
- West African Centre for Cell Biology of Infectious Pathogens, P.O. Box LG 54, Volta Road, University of Ghana, Legon, Accra, Ghana
- Department of Biochemistry, Cell and Molecular Biology, College of Basic and Applied Sciences, P.O. Box LG 54, Volta Road, University of Ghana, Legon, Accra, Ghana
| |
Collapse
|
50
|
Wei Y, Zhang S, Guan G, Wan Z, Wang R, Li P, Liu Y, Wang J, Jiao G, Wang H, Sun C. A specific and rapid method for detecting Bacillus and Acinetobacter species in Daqu. Front Bioeng Biotechnol 2023; 11:1261563. [PMID: 37818237 PMCID: PMC10561003 DOI: 10.3389/fbioe.2023.1261563] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2023] [Accepted: 09/11/2023] [Indexed: 10/12/2023] Open
Abstract
Daqu is a spontaneous, solid-state cereal fermentation product used for saccharification and as a starter culture for Chinese Baijiu production. Bacillus and Acinetobacter, two dominant microbial genera in Daqu, produce enzymes and organic acids that influence the Daqu quality. However, there are no rapid analytical methods for detecting Bacillus and Acinetobacter. We designed primers specific to the genera Bacillus and Acinetobacter to perform genetic comparisons using the 16 S rRNA. After amplification of polymerase chain reaction using specific primers, high-throughput sequencing was performed to detect strains of Bacillus and Acinetobacter. The results showed that the effective amplification rates for Bacillus and Acinetobacter in Daqu were 86.92% and 79.75%, respectively. Thus, we have devised and assessed a method to accurately identify the species associated with Bacillus and Acinetobacter in Daqu, which can also hold significance for bacterial typing and identification.
Collapse
Affiliation(s)
- Yanwei Wei
- State Key Laboratory of Biobased Material and Green Papermaking (LBMP), Qilu University of Technology, Jinan, Shandong, China
- Department of Biological Engineering, Qilu University of Technology, Jinan, Shandong, China
| | - Shuyue Zhang
- State Key Laboratory of Biobased Material and Green Papermaking (LBMP), Qilu University of Technology, Jinan, Shandong, China
- Department of Biological Engineering, Qilu University of Technology, Jinan, Shandong, China
| | - Guikun Guan
- Lanling Meijiu Co., Ltd., Lanling, Shandong, China
| | - Ziran Wan
- Lanling Meijiu Co., Ltd., Lanling, Shandong, China
| | - Ruiming Wang
- State Key Laboratory of Biobased Material and Green Papermaking (LBMP), Qilu University of Technology, Jinan, Shandong, China
- Department of Biological Engineering, Qilu University of Technology, Jinan, Shandong, China
| | - Piwu Li
- State Key Laboratory of Biobased Material and Green Papermaking (LBMP), Qilu University of Technology, Jinan, Shandong, China
- Department of Biological Engineering, Qilu University of Technology, Jinan, Shandong, China
| | - Yu Liu
- Lanling Meijiu Co., Ltd., Lanling, Shandong, China
| | - Junqing Wang
- State Key Laboratory of Biobased Material and Green Papermaking (LBMP), Qilu University of Technology, Jinan, Shandong, China
- Department of Biological Engineering, Qilu University of Technology, Jinan, Shandong, China
| | - Guanhua Jiao
- State Key Laboratory of Biobased Material and Green Papermaking (LBMP), Qilu University of Technology, Jinan, Shandong, China
- Department of Biological Engineering, Qilu University of Technology, Jinan, Shandong, China
| | - Hao Wang
- State Key Laboratory of Biobased Material and Green Papermaking (LBMP), Qilu University of Technology, Jinan, Shandong, China
- Department of Biological Engineering, Qilu University of Technology, Jinan, Shandong, China
| | - Chuying Sun
- State Key Laboratory of Biobased Material and Green Papermaking (LBMP), Qilu University of Technology, Jinan, Shandong, China
- Department of Biological Engineering, Qilu University of Technology, Jinan, Shandong, China
| |
Collapse
|