1
|
Bulkina A, Prilepskii A. Bacterial cellulose: Is it really a promising biomedical material? Carbohydr Polym 2025; 357:123427. [PMID: 40158967 DOI: 10.1016/j.carbpol.2025.123427] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2024] [Revised: 01/25/2025] [Accepted: 02/19/2025] [Indexed: 04/02/2025]
Abstract
Bacterial cellulose (BC) is currently considered a promising biomaterial due to its specific structure and properties. However, despite extensive research, questions about its fundamental properties, especially biocompatibility, remain. Thus, the purpose of this review is to analyze the results of in vivo trials from different areas of biomedicine, including wound healing, tissue engineering, drug delivery, and biomedical implants. The primary question guiding our review was "Why is bacterial cellulose still not used in clinical practice?" Analysis of the literature has shown that the results of in vivo studies often contradict each other. For example, BC caused and did not cause an immune response in an equal number of reviewed articles. Its efficacy in pure form generally does not differ significantly from that of materials already on the market. Conversely, BC may prove to be a valuable material in the long term, not because of its efficacy, but rather because of its affordability and ease of use. Additionally, challenges associated with immune reactions, long-term biocompatibility, and the necessity for standardized experimental protocols must be addressed. We expect that this review will encourage a more thoughtful investigation of BC to bring it into practical medicine.
Collapse
Affiliation(s)
- Anastasia Bulkina
- ITMO University, Laboratory for Bioactive Materials in Tissue Engineering 9, Lomonosova str., Saint Petersburg 191002, Russian Federation
| | - Artur Prilepskii
- ITMO University, Laboratory for Bioactive Materials in Tissue Engineering 9, Lomonosova str., Saint Petersburg 191002, Russian Federation.
| |
Collapse
|
2
|
Liu L, Hou S, Xu G, Gao J, Mu J, Gao M, He J, Su X, Yang Z, Liu Y, Chen T, Dong Z, Cheng L, Shi Z. Evaluation of osteogenic properties of a novel injectable bone-repair material containing strontium in vitro and in vivo. Front Bioeng Biotechnol 2024; 12:1390337. [PMID: 38707496 PMCID: PMC11069309 DOI: 10.3389/fbioe.2024.1390337] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2024] [Accepted: 04/11/2024] [Indexed: 05/07/2024] Open
Abstract
Objective: This study aims to develop and evaluate the biocompatibility and osteogenic potential of a novel injectable strontium-doped hydroxyapatite bone-repair material. Methods: The properties of strontium-doped hydroxyapatite/chitosan (Sr-HA/CS), hydroxyapatite/chitosan (HA/CS) and calcium phosphate/chitosan (CAP/CS) were assessed following their preparation via physical cross-linking and a one-step simplified method. Petri dishes containing Escherichia coli and Staphylococcus epidermidis were inoculated with the material for in vitro investigations. The material was also co-cultured with stem cells derived from human exfoliated deciduous teeth (SHEDs), to assess the morphology and proliferation capability of the SHEDs, Calcein-AM staining and the Cell Counting Kit-8 assay were employed. Osteogenic differentiation of SHEDs was determined using alkaline phosphatase (ALP) staining and Alizarin Red staining. For in vivo studies, Sr-HA/CS was implanted into the muscle pouch of mice and in a rat model of ovariectomy-induced femoral defects. Hematoxylin-eosin (HE) staining was performed to determine the extent of bone formation and defect healing. The formation of new bone was determined using Masson's trichrome staining. The osteogenic mechanism of the material was investigated using Tartrate-resistant acid phosphatase (TRAP) staining and immunohistochemical studies. Results: X-ray diffraction (XRD) and energy-dispersive spectroscopy (EDS) showed that strontium was successfully doped into HA. The Sr-HA/CS material can be uniformly squeezed using a syringe with a 13% swelling rate. Sr-HA/CS had a significant antibacterial effect against both E. coli and S. epidermidis (p < 0.05), with a stronger effect observed against E. coli. The Sr-HA/CS significantly improved cell proliferation and cell viability in vitro studies (p < 0.05). Compared to CAP/CS and CS, Sr-HA/CS generated a substantially greater new bone area during osteoinduction experiments (p < 0.05, p < 0.001). The Sr-HA/CS material demonstrated a significantly higher rate of bone repair in the bone defeat studies compared to the CAP/CS and CS materials (p < 0.01). The OCN-positive area and TRAP-positive cells in Sr-HA/CS were greater than those in control groups (p < 0.05). Conclusion: A novel injectable strontium-doped HA bone-repair material with good antibacterial properties, biocompatibility, and osteoinductivity was successfully prepared.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | | | | | | | - Lijia Cheng
- Clinical Medical College, Affiliated Hospital, School of Basic Medical Sciences of Chengdu University, Chengdu, China
| | - Zheng Shi
- Clinical Medical College, Affiliated Hospital, School of Basic Medical Sciences of Chengdu University, Chengdu, China
| |
Collapse
|
3
|
Xu J, Vecstaudza J, Wesdorp MA, Labberté M, Kops N, Salerno M, Kok J, Simon M, Harmand MF, Vancíková K, van Rietbergen B, Misciagna MM, Dolcini L, Filardo G, Farrell E, van Osch GJ, Locs J, Brama PA. Incorporating strontium enriched amorphous calcium phosphate granules in collagen/collagen-magnesium-hydroxyapatite osteochondral scaffolds improves subchondral bone repair. Mater Today Bio 2024; 25:100959. [PMID: 38327976 PMCID: PMC10847994 DOI: 10.1016/j.mtbio.2024.100959] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2023] [Revised: 01/10/2024] [Accepted: 01/15/2024] [Indexed: 02/09/2024] Open
Abstract
Osteochondral defect repair with a collagen/collagen-magnesium-hydroxyapatite (Col/Col-Mg-HAp) scaffold has demonstrated good clinical results. However, subchondral bone repair remained suboptimal, potentially leading to damage to the regenerated overlying neocartilage. This study aimed to improve the bone repair potential of this scaffold by incorporating newly developed strontium (Sr) ion enriched amorphous calcium phosphate (Sr-ACP) granules (100-150 μm). Sr concentration of Sr-ACP was determined with ICP-MS at 2.49 ± 0.04 wt%. Then 30 wt% ACP or Sr-ACP granules were integrated into the scaffold prototypes. The ACP or Sr-ACP granules were well embedded and distributed in the collagen matrix demonstrated by micro-CT and scanning electron microscopy/energy dispersive x-ray spectrometry. Good cytocompatibility of ACP/Sr-ACP granules and ACP/Sr-ACP enriched scaffolds was confirmed with in vitro cytotoxicity assays. An overall promising early tissue response and good biocompatibility of ACP and Sr-ACP enriched scaffolds were demonstrated in a subcutaneous mouse model. In a goat osteochondral defect model, significantly more bone was observed at 6 months with the treatment of Sr-ACP enriched scaffolds compared to scaffold-only, in particular in the weight-bearing femoral condyle subchondral bone defect. Overall, the incorporation of osteogenic Sr-ACP granules in Col/Col-Mg-HAp scaffolds showed to be a feasible and promising strategy to improve subchondral bone repair.
Collapse
Affiliation(s)
- Jietao Xu
- Department of Orthopedics and Sports Medicine, Erasmus MC, University Medical Center Rotterdam, Rotterdam, 3015 GD, Netherlands
| | - Jana Vecstaudza
- Rudolfs Cimdins Riga Biomaterials Innovations and Development Centre of RTU, Institute of General Chemical Engineering, Faculty of Materials Science and Applied Chemistry, Riga Technical University, LV-1007, Riga, Latvia
| | - Marinus A. Wesdorp
- Department of Orthopedics and Sports Medicine, Erasmus MC, University Medical Center Rotterdam, Rotterdam, 3015 GD, Netherlands
| | - Margot Labberté
- School of Veterinary Medicine, University College Dublin, Dublin, D04 W6F6, Ireland
| | - Nicole Kops
- Department of Orthopedics and Sports Medicine, Erasmus MC, University Medical Center Rotterdam, Rotterdam, 3015 GD, Netherlands
| | - Manuela Salerno
- Applied and Translational Research Center, IRCCS Rizzoli Orthopaedic Institute, Bologna, 40136, Italy
| | - Joeri Kok
- Department of Biomedical Engineering, Eindhoven University of Technology, Eindhoven, 5612 AZ, Netherlands
| | | | | | - Karin Vancíková
- School of Veterinary Medicine, University College Dublin, Dublin, D04 W6F6, Ireland
| | - Bert van Rietbergen
- Department of Biomedical Engineering, Eindhoven University of Technology, Eindhoven, 5612 AZ, Netherlands
| | | | | | - Giuseppe Filardo
- Applied and Translational Research Center, IRCCS Rizzoli Orthopaedic Institute, Bologna, 40136, Italy
| | - Eric Farrell
- Department of Oral and Maxillofacial Surgery, Erasmus MC, University Medical Center Rotterdam, Rotterdam, 3015 GD, Netherlands
| | - Gerjo J.V.M. van Osch
- Department of Orthopedics and Sports Medicine, Erasmus MC, University Medical Center Rotterdam, Rotterdam, 3015 GD, Netherlands
- Department of Otorhinolaryngology, Head and Neck Surgery, Erasmus MC, University Medical Center Rotterdam, Rotterdam, 3015 GD, Netherlands
- Department of Biomechanical Engineering, Delft University of Technology, Delft, 2628 CD, Netherlands
| | - Janis Locs
- Rudolfs Cimdins Riga Biomaterials Innovations and Development Centre of RTU, Institute of General Chemical Engineering, Faculty of Materials Science and Applied Chemistry, Riga Technical University, LV-1007, Riga, Latvia
- Baltic Biomaterials Centre of Excellence, Headquarters at Riga Technical University, LV-1048, Riga, Latvia
| | - Pieter A.J. Brama
- School of Veterinary Medicine, University College Dublin, Dublin, D04 W6F6, Ireland
| |
Collapse
|
4
|
Markel DC, Dietz PR, Wu B, Chen L, Bou-Akl T, Shi T, Ren W. Repair of a rat calvaria defect with injectable strontium (Sr)-doped polyphosphate dicalcium phosphate dehydrate (P-DCPD) ceramic bone grafts. J Biomed Mater Res B Appl Biomater 2024; 112:e35388. [PMID: 38334714 DOI: 10.1002/jbm.b.35388] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2023] [Revised: 01/07/2024] [Accepted: 01/27/2024] [Indexed: 02/10/2024]
Abstract
The trace element strontium (Sr) enhances new bone formation. However, delivering Sr, like other materials, in a sustained manner from a ceramic bone graft substitute (BGS) is difficult. We developed a novel ceramic BGS, polyphosphate dicalcium phosphate dehydrate (P-DCPD), which delivers embedded drugs in a sustained pattern. This study assessed the in vitro and in vivo performance of Sr-doped P-DCPD. In vitro P-DCPD and 10%Sr-P-DCPD were nontoxic and eluents from 10%Sr-P-DCPD significantly enhanced osteoblastic MC3T3 cell differentiation. A sustained, zero-order Sr release was observed from 10%Sr-P-DCPD for up to 70 days. When using this BGS in a rat calvaria defect model, both P-DCPD and 10% Sr-P-DCPD were found to be biocompatible and biodegradable. Histologic data from decalcified and undecalcified tissue showed that 10%Sr-P-DCPD had more extensive new bone formation compared with P-DCPD 12-weeks after surgery and the 10%Sr-P-DCPD had more organized new bone and much less fibrous tissue at the defect margins. The new bone was formed on the surface of the degraded ceramic debris within the bone defect area. P-DCPD represented a promising drug-eluting BGS for repair of critical bone defects.
Collapse
Affiliation(s)
- David C Markel
- Ascension Providence Hospital, Section of Orthopedic Surgery, Southfield, Michigan, USA
- Department of Biomedical Engineering, Wayne State University, Detroit, Michigan, USA
| | - Paula R Dietz
- Ascension Providence Hospital, Section of Orthopedic Surgery, Southfield, Michigan, USA
| | - Bin Wu
- Ascension Providence Hospital, Section of Orthopedic Surgery, Southfield, Michigan, USA
| | - Liang Chen
- Department of Biomedical Engineering, Wayne State University, Detroit, Michigan, USA
| | - Therese Bou-Akl
- Ascension Providence Hospital, Section of Orthopedic Surgery, Southfield, Michigan, USA
| | - Tong Shi
- Department of Biomedical Engineering, Wayne State University, Detroit, Michigan, USA
| | - Weiping Ren
- Ascension Providence Hospital, Section of Orthopedic Surgery, Southfield, Michigan, USA
- Department of Biomedical Engineering, Wayne State University, Detroit, Michigan, USA
| |
Collapse
|
5
|
El-Kady AM, Mahmoud EM, Sayed M, Kamel SM, Naga SM. In-vitro and in-vivo evaluation for the bio-natural Alginate/nano-Hydroxyapatite (Alg/n-HA) injectable hydrogel for critical size bone substitution. Int J Biol Macromol 2023; 253:126618. [PMID: 37659491 DOI: 10.1016/j.ijbiomac.2023.126618] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2023] [Revised: 08/27/2023] [Accepted: 08/28/2023] [Indexed: 09/04/2023]
Abstract
Currently, bio-natural injectable hydrogels are receiving a lot of attention due to their ability to control, adjust, and adapt to random bone defects, in addition, to their ability to mimic the composition of natural bones. From such a viewpoint, this study goal is to prepare and characterize the injectable hydrogels paste based on the natural alginate (Alg) derived from brown sea algae as a polysaccharide polymer, which coupled with nano biogenic-hydroxyapatite (n-HA) prepared from eggshells and enriched with valuable trace elements. The viscosity and mechanical properties of the paste were investigated. As well as the in-vitro study in terms of water absorption and biodegradability in the PBS, biocompatibility and the capability of the injectable Alginate/n-Hydroxyapatite (Alg/n-HA) to regenerate bone for the most suitable injectable form. The injectable hydrogel (BP -B sample) was chosen for the study as it had an appropriate setting time for injecting (13 mins), and suitable compressive strength reached 6.3 MPa. The in vivo study was also carried out including a post-surgery follow-up test of the newly formed bone (NB) in the defect area after 10 and 20 weeks using different techniques such as (SEM/EDX) and histological analysis, the density of the newly formed bone by Dual x-ray absorptiometry (DEXA), blood biochemistry and the radiology test. The results proved that the injectable hydrogels Alginate/n-Hydroxyapatite (Alg/n-HA) had an appreciated biodegradability and bioactivity, which allow the progress of angiogenesis, endochondral ossification, and osteogenesis throughout the defect area, which positively impacts the healing time and ensures the full restoration for the well-mature bone tissue that similar to the natural bone.
Collapse
Affiliation(s)
- Abeer M El-Kady
- Glass Research Department, National Research Centre, El-Bohous Str., 12622 Cairo, Egypt
| | - E M Mahmoud
- Ceramics Department, National Research Centre, El-Bohous Str., 12622 Cairo, Egypt.
| | - M Sayed
- Ceramics Department, National Research Centre, El-Bohous Str., 12622 Cairo, Egypt
| | - S M Kamel
- Oral Biology Department, MSA University, Egypt
| | - S M Naga
- Ceramics Department, National Research Centre, El-Bohous Str., 12622 Cairo, Egypt
| |
Collapse
|
6
|
Silva AV, Gomes DDS, Victor RDS, Santana LNDL, Neves GA, Menezes RR. Influence of Strontium on the Biological Behavior of Bioactive Glasses for Bone Regeneration. MATERIALS (BASEL, SWITZERLAND) 2023; 16:7654. [PMID: 38138796 PMCID: PMC10744628 DOI: 10.3390/ma16247654] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/25/2023] [Revised: 11/26/2023] [Accepted: 11/30/2023] [Indexed: 12/24/2023]
Abstract
Bioactive glasses (BGs) can potentially be applied in biomedicine, mainly for bone repair and replacement, given their unique ability to connect to natural bone tissue and stimulate bone regeneration. Since their discovery, several glass compositions have been developed to improve the properties and clinical abilities of traditional bioactive glass. Different inorganic ions, such as strontium (Sr2+), have been incorporated in BG due to their ability to perform therapeutic functions. Sr2+ has been gaining prominence due to its ability to stimulate osteogenesis, providing an appropriate environment to improve bone regeneration, in addition to its antibacterial potential. However, as there are still points in the literature that are not well consolidated, such as the influence of ionic concentrations and the BG production technique, this review aims to collect information on the state of the art of the biological behavior of BGs containing Sr2+. It also aims to gather data on different types of BGs doped with different concentrations of Sr2+, and to highlight the manufacturing techniques used in order to analyze the influence of the incorporation of this ion for bone regeneration purposes.
Collapse
Affiliation(s)
- Amanda Vieira Silva
- Graduate Program in Materials Science and Engineering, Federal University of Campina Grande, Campina Grande 58429-900, PB, Brazil;
- Laboratory of Materials Technology (LTM), Federal University of Campina Grande, Campina Grande 58429-900, PB, Brazil; (R.d.S.V.); (L.N.d.L.S.); (G.A.N.)
| | - Déborah dos Santos Gomes
- Laboratory of Materials Technology (LTM), Federal University of Campina Grande, Campina Grande 58429-900, PB, Brazil; (R.d.S.V.); (L.N.d.L.S.); (G.A.N.)
| | - Rayssa de Sousa Victor
- Laboratory of Materials Technology (LTM), Federal University of Campina Grande, Campina Grande 58429-900, PB, Brazil; (R.d.S.V.); (L.N.d.L.S.); (G.A.N.)
| | - Lisiane Navarro de Lima Santana
- Laboratory of Materials Technology (LTM), Federal University of Campina Grande, Campina Grande 58429-900, PB, Brazil; (R.d.S.V.); (L.N.d.L.S.); (G.A.N.)
| | - Gelmires Araújo Neves
- Laboratory of Materials Technology (LTM), Federal University of Campina Grande, Campina Grande 58429-900, PB, Brazil; (R.d.S.V.); (L.N.d.L.S.); (G.A.N.)
| | - Romualdo Rodrigues Menezes
- Laboratory of Materials Technology (LTM), Federal University of Campina Grande, Campina Grande 58429-900, PB, Brazil; (R.d.S.V.); (L.N.d.L.S.); (G.A.N.)
| |
Collapse
|
7
|
Forysenkova AA, Fadeeva IV, Deyneko DV, Gosteva AN, Mamin GV, Shurtakova DV, Davydova GA, Yankova VG, Antoniac IV, Rau JV. Polyvinylpyrrolidone-Alginate-Carbonate Hydroxyapatite Porous Composites for Dental Applications. MATERIALS (BASEL, SWITZERLAND) 2023; 16:4478. [PMID: 37374661 DOI: 10.3390/ma16124478] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/29/2023] [Revised: 06/13/2023] [Accepted: 06/18/2023] [Indexed: 06/29/2023]
Abstract
An alternative approach for the currently used replacement therapy in dentistry is to apply materials that restore tooth tissue. Among them, composites, based on biopolymers with calcium phosphates, and cells can be applied. In the present work, a composite based on polyvinylpyrrolidone (PVP) and alginate (Alg) with carbonate hydroxyapatite (CHA) was prepared and characterized. The composite was investigated by X-ray diffraction, infrared spectroscopy, electron paramagnetic resonance (EPR) and scanning electron microscopy methods, and the microstructure, porosity, and swelling properties of the material were described. In vitro studies included the MTT test using mouse fibroblasts, and adhesion and survivability tests with human dental pulp stem cells (DPSC). The mineral component of the composite corresponded to CHA with an admixture of amorphous calcium phosphate. The presence of a bond between the polymer matrix and CHA particles was shown by EPR. The structure of the material was represented by micro- (30-190 μm) and nano-pores (average 8.71 ± 4.15 nm). The swelling measurements attested that CHA addition increased the polymer matrix hydrophilicity by 200%. In vitro studies demonstrated the biocompatibility of PVP-Alg-CHA (95 ± 5% cell viability), and DPSC located inside the pores. It was concluded that the PVP-Alg-CHA porous composite is promising for dentistry applications.
Collapse
Affiliation(s)
- Anna A Forysenkova
- A.A. Baikov Institute of Metallurgy and Material Science RAS, Leninsky, 49, 119334 Moscow, Russia
| | - Inna V Fadeeva
- A.A. Baikov Institute of Metallurgy and Material Science RAS, Leninsky, 49, 119334 Moscow, Russia
| | - Dina V Deyneko
- Chemistry Department, Lomonosov Moscow State University, Leninskie Gory 1, 119991 Moscow, Russia
- Laboratory of Arctic Mineralogy and Material Sciences, Kola Science Centre RAS, 14 Fersman Str., 184209 Apatity, Russia
| | - Alevtina N Gosteva
- Tananaev Institute of Chemistry, Kola Science Centre RAS, Akademgorodok 26A, 184209 Apatity, Russia
| | - Georgy V Mamin
- Institute of Physics, Kazan Federal University, Kremlevskaya 18, 420008 Kazan, Russia
| | - Darya V Shurtakova
- Institute of Physics, Kazan Federal University, Kremlevskaya 18, 420008 Kazan, Russia
| | - Galina A Davydova
- Institute of Theoretical and Experimental Biophysics of RAS, Institutskaya 3, Puschino, 142290 Moscow, Russia
| | - Viktoriya G Yankova
- Department of Analytical, Physical and Colloid Chemistry, Institute of Pharmacy, I.M. Sechenov First Moscow State Medical University, Trubetskaya 8, Build. 2, 119991 Moscow, Russia
| | - Iulian V Antoniac
- Faculty of Materials Science and Engineering, University Politehnica of Bucharest, 313 Splaiul Independentei Street, District 6, 060042 Bucharest, Romania
- Academy of Romanian Scientists, 54 Splaiul Independentei Street, District 5, 050094 Bucharest, Romania
| | - Julietta V Rau
- Department of Analytical, Physical and Colloid Chemistry, Institute of Pharmacy, I.M. Sechenov First Moscow State Medical University, Trubetskaya 8, Build. 2, 119991 Moscow, Russia
- Istituto di Struttura della Materia, Consiglio Nazionale delle Ricerche (ISM-CNR), Via del Fosso del Cavaliere, 100, 00133 Rome, Italy
| |
Collapse
|
8
|
Wang X, Diwu W, Guo J, Yan M, Ma W, Yang M, Bi L, Han Y. Enhancement of antibacterial properties and biocompatibility of Ti 6Al 4V by graphene oxide/strontium nanocomposite electrodepositing. Biochem Biophys Res Commun 2023; 665:35-44. [PMID: 37156051 DOI: 10.1016/j.bbrc.2023.05.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2023] [Revised: 04/19/2023] [Accepted: 05/01/2023] [Indexed: 05/10/2023]
Abstract
Ti6Al4V is a widely used orthopedic implant material in clinics. Due to its poor antibacterial properties, surface modification is required to prevent peri-implantation infection. However, chemical linkers used for surface modification have generally been reported to have detrimental effects on cell growth. In this work, by optimizing parameters related to electrodeposition, a composite structural coating with graphene oxide (GO) compact films in the inner layer and 35 nm diameter strontium (Sr) nanoparticles in the outer layer was constructed on the surface of Ti6Al4V without using substance harmful to bone marrow mesenchymal stem cells (BMSCs) growth. The antibacterial properties of Ti6Al4V are enhanced by the controlled release of Sr ions and incomplete masking of the GO surface, showing excellent antibacterial activity against Staphylococcus aureus in bacterial culture assays. The biomimetic GO/Sr coating has a reduced roughness of the implant surface and a water contact angle of 44.1°, improving the adhesion, proliferation and differentiation of BMSCs. Observations of synovial tissue and fluid in the joint in an implantation model of rabbit knee also point to the superior anti-infective properties of the novel GO/Sr coating. In summary, the novel GO/Sr nanocomposite coating on the surface of Ti6Al4V effectively prevents surface colonization of Staphylococcus aureus and eliminates local infections in vitro and in vivo.
Collapse
Affiliation(s)
- Xing Wang
- Department of Orthopedics, The First Affiliated Hospital of Air Force Military Medical University, People's Republic of China; Department of Medical Identification, The Air Force Medical Center, Beijing, People's Republic of China
| | - Weilong Diwu
- Department of Orthopedics, The First Affiliated Hospital of Air Force Military Medical University, People's Republic of China
| | - Jianbin Guo
- Department of Joint Surgery, Hong-Hui Hospital, Xi'an Jiaotong University College of Medicine, People's Republic of China
| | - Ming Yan
- Department of Orthopedics, The First Affiliated Hospital of Air Force Military Medical University, People's Republic of China
| | - Wenrui Ma
- Department of Orthopedics, The First Affiliated Hospital of Air Force Military Medical University, People's Republic of China
| | - Min Yang
- Department of Orthopedics, The First Affiliated Hospital of Air Force Military Medical University, People's Republic of China
| | - Long Bi
- Department of Orthopedics, The First Affiliated Hospital of Air Force Military Medical University, People's Republic of China.
| | - Yisheng Han
- Department of Orthopedics, The First Affiliated Hospital of Air Force Military Medical University, People's Republic of China.
| |
Collapse
|
9
|
Olivier F, Drouet C, Marsan O, Sarou-Kanian V, Rekima S, Gautier N, Fayon F, Bonnamy S, Rochet N. Long-Term Fate and Efficacy of a Biomimetic (Sr)-Apatite-Coated Carbon Patch Used for Bone Reconstruction. J Funct Biomater 2023; 14:246. [PMID: 37233356 PMCID: PMC10218964 DOI: 10.3390/jfb14050246] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2023] [Revised: 04/11/2023] [Accepted: 04/24/2023] [Indexed: 05/27/2023] Open
Abstract
Critical bone defect repair remains a major medical challenge. Developing biocompatible materials with bone-healing ability is a key field of research, and calcium-deficient apatites (CDA) are appealing bioactive candidates. We previously described a method to cover activated carbon cloths (ACC) with CDA or strontium-doped CDA coatings to generate bone patches. Our previous study in rats revealed that apposition of ACC or ACC/CDA patches on cortical bone defects accelerated bone repair in the short term. This study aimed to analyze in the medium term the reconstruction of cortical bone in the presence of ACC/CDA or ACC/10Sr-CDA patches corresponding to 6 at.% of strontium substitution. It also aimed to examine the behavior of these cloths in the medium and long term, in situ and at distance. Our results at day 26 confirm the particular efficacy of strontium-doped patches on bone reconstruction, leading to new thick bone with high bone quality as quantified by Raman microspectroscopy. At 6 months the biocompatibility and complete osteointegration of these carbon cloths and the absence of micrometric carbon debris, either out of the implantation site or within peripheral organs, was confirmed. These results demonstrate that these composite carbon patches are promising biomaterials to accelerate bone reconstruction.
Collapse
Affiliation(s)
- Florian Olivier
- CNRS, Université d’Orléans, ICMN UMR 7374, 45071 Orléans, France;
| | - Christophe Drouet
- CIRIMAT, Université de Toulouse, CNRS/UT3/INP, 31062 Toulouse, France; (C.D.); (O.M.)
| | - Olivier Marsan
- CIRIMAT, Université de Toulouse, CNRS/UT3/INP, 31062 Toulouse, France; (C.D.); (O.M.)
| | - Vincent Sarou-Kanian
- CNRS, Université d’Orléans, CEMHTI UPR 3079, 45071 Orléans, France; (V.S.-K.); (F.F.)
| | - Samah Rekima
- Université Côte d’Azur, INSERM, CNRS, iBV, 06107 Nice, France; (S.R.); (N.G.); (N.R.)
| | - Nadine Gautier
- Université Côte d’Azur, INSERM, CNRS, iBV, 06107 Nice, France; (S.R.); (N.G.); (N.R.)
| | - Franck Fayon
- CNRS, Université d’Orléans, CEMHTI UPR 3079, 45071 Orléans, France; (V.S.-K.); (F.F.)
| | - Sylvie Bonnamy
- CNRS, Université d’Orléans, ICMN UMR 7374, 45071 Orléans, France;
| | - Nathalie Rochet
- Université Côte d’Azur, INSERM, CNRS, iBV, 06107 Nice, France; (S.R.); (N.G.); (N.R.)
| |
Collapse
|
10
|
Chen F, Tian L, Pu X, Zeng Q, Xiao Y, Chen X, Zhang X. Enhanced ectopic bone formation by strontium-substituted calcium phosphate ceramics through regulation of osteoclastogenesis and osteoblastogenesis. Biomater Sci 2022; 10:5925-5937. [PMID: 36043373 DOI: 10.1039/d2bm00348a] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
To explore how strontium influences osteoclastogenesis and osteoblastogenesis during material-induced ectopic bone formation, porous strontium-substituted biphasic calcium phosphate (Sr-BCP) and BCP ceramics with equivalent pore structures and comparable grain size and porosity were prepared. In vitro results showed that compared with BCP, Sr-BCP inhibited the osteoclastic differentiation of osteoclast precursors by delaying cell fusion, down-regulating the expression of osteoclast marker genes, and reducing the activity of osteoclast specific proteins, possibly due to the activated ERK signaling pathway but the suppressed p38, JNK and AKT signaling pathways. Meanwhile, Sr-BCP promoted the osteogenic differentiation of mesenchymal stem cells (MSCs) by up-regulating the osteogenic gene expression. Sr-BCP also mediated the expression of important osteoblast-osteoclast coupling factors, as evidenced by the increased Opg/Rankl ratio in mMSCs, and the reduced Rank expression and enhanced EphrinB2 expression in osteoclast precursors. Similar results were observed in an in vivo study based on a murine intramuscular implantation model. The sign of ectopic bone formation was only seen in Sr-BCP at 8 weeks. Compared to BCP, Sr-BCP obviously hindered the formation of TRAP- and CTSK-positive multinucleated osteoclast-like cells during the early implantation time up to 6 weeks, which is consistent with the in vivo PCR results. This suggested that Sr-BCP could clearly accelerate the ectopic bone formation by promoting osteogenesis but suppressing osteoclastogenesis, which might be closely related to the expression of osteoblast-osteoclast coupling factors regulated by Sr2+. These findings may help in the design and fabrication of smart bone substitutes with the desired potential for bone regeneration through modulating both osteoclastic resorption and osteoblastic synthesis.
Collapse
Affiliation(s)
- Fuying Chen
- National Engineering Research Center for Biomaterials, College of Biomedical Engineering, Sichuan University, Chengdu 610064, China.
| | - Luoqiang Tian
- National Engineering Research Center for Biomaterials, College of Biomedical Engineering, Sichuan University, Chengdu 610064, China.
| | - Ximing Pu
- College of Biomedical Engineering, Sichuan University, Chengdu, China
| | - Qin Zeng
- National Engineering Research Center for Biomaterials, College of Biomedical Engineering, Sichuan University, Chengdu 610064, China.
| | - Yumei Xiao
- National Engineering Research Center for Biomaterials, College of Biomedical Engineering, Sichuan University, Chengdu 610064, China.
| | - Xuening Chen
- National Engineering Research Center for Biomaterials, College of Biomedical Engineering, Sichuan University, Chengdu 610064, China.
| | - Xingdong Zhang
- National Engineering Research Center for Biomaterials, College of Biomedical Engineering, Sichuan University, Chengdu 610064, China.
| |
Collapse
|
11
|
You J, Zhang Y, Zhou Y. Strontium Functionalized in Biomaterials for Bone Tissue Engineering: A Prominent Role in Osteoimmunomodulation. Front Bioeng Biotechnol 2022; 10:928799. [PMID: 35875505 PMCID: PMC9298737 DOI: 10.3389/fbioe.2022.928799] [Citation(s) in RCA: 42] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2022] [Accepted: 06/13/2022] [Indexed: 12/24/2022] Open
Abstract
With the development of bone tissue engineering bio-scaffold materials by adding metallic ions to improve bone healing have been extensively explored in the past decades. Strontium a non-radioactive element, as an essential osteophilic trace element for the human body, has received widespread attention in the medical field due to its superior biological properties of inhibiting bone resorption and promoting osteogenesis. As the concept of osteoimmunology developed, the design of orthopedic biomaterials has gradually shifted from “immune-friendly” to “immunomodulatory” with the aim of promoting bone healing by modulating the immune microenvironment through implanted biomaterials. The process of bone healing can be regarded as an immune-induced procedure in which immune cells can target the effector cells such as macrophages, neutrophils, osteocytes, and osteoprogenitor cells through paracrine mechanisms, affecting pathological alveolar bone resorption and physiological bone regeneration. As a kind of crucial immune cell, macrophages play a critical role in the early period of wound repair and host defense after biomaterial implantation. Despite Sr-doped biomaterials being increasingly investigated, how extracellular Sr2+ guides the organism toward favorable osteogenesis by modulating macrophages in the bone tissue microenvironment has rarely been studied. This review focuses on recent knowledge that the trace element Sr regulates bone regeneration mechanisms through the regulation of macrophage polarization, which is significant for the future development of Sr-doped bone repair materials. We will also summarize the primary mechanism of Sr2+ in bone, including calcium-sensing receptor (CaSR) and osteogenesis-related signaling pathways.
Collapse
Affiliation(s)
- Jiaqian You
- Department of Oral Implantology, Jilin Provincial Key Laboratory of Tooth Development and Bone Remodeling, Hospital of Stomatology, Jilin University, Changchun, China
| | - Yidi Zhang
- Department of Oral Implantology, Jilin Provincial Key Laboratory of Tooth Development and Bone Remodeling, Hospital of Stomatology, Jilin University, Changchun, China
| | - Yanmin Zhou
- Department of Oral Implantology, Jilin Provincial Key Laboratory of Tooth Development and Bone Remodeling, Hospital of Stomatology, Jilin University, Changchun, China
| |
Collapse
|
12
|
Antibacterial and Cytocompatible: Combining Silver Nitrate with Strontium Acetate Increases the Therapeutic Window. Int J Mol Sci 2022; 23:ijms23158058. [PMID: 35897634 PMCID: PMC9331456 DOI: 10.3390/ijms23158058] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2022] [Revised: 07/16/2022] [Accepted: 07/19/2022] [Indexed: 02/01/2023] Open
Abstract
Microbial infection and insufficient tissue formation are considered to be the two main causes of dental implant failure. Novel studies have focused on designing dual-functional strategies to promote antibacterial properties and improve tissue cell response simultaneously. In this study, we investigated the antibacterial properties and cytocompatibility of silver nitrate (AgNO3) and strontium acetate (SrAc) in a mono-culture setup for dental application. Additionally, we defined the therapeutic window between the minimum inhibitory concentration against pathogenic bacteria and maximum cytocompatible dose in the case of combined applications in a co-culture setup. Antibacterial properties were screened using Aggregatibacter actinomycetemcomitans and cell response experiments were performed with osteoblastic cells (MC3T3) and fibroblastic cells (NIH3T3). The osteoinductive behavior was investigated separately on MC3T3 cells using alizarin red staining. A therapeutic window for AgNO3 as well as SrAc applications could be defined in the case of MC3T3 cells while the cytocompatibility of NIH3T3 cells was compromised for all concentrations with an antibacterial effect. However, the combined application of AgNO3/SrAc caused an enhanced antibacterial effect and opened a therapeutic window for both cell lines. Enhanced mineralization rates could be observed in cultures containing SrAc. In conclusion, we were able to demonstrate that adding SrAc to AgNO3 not only intensifies antibacterial properties but also exhibits bone inductive characteristics, thereby offering a promising strategy to combat peri-implantitis and at the same time improve osseointegration in implant therapy.
Collapse
|
13
|
Potential bioactive coating system for high-performance absorbable magnesium bone implants. Bioact Mater 2022; 12:42-63. [PMID: 35087962 PMCID: PMC8777287 DOI: 10.1016/j.bioactmat.2021.10.034] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2021] [Revised: 10/21/2021] [Accepted: 10/21/2021] [Indexed: 12/11/2022] Open
Abstract
Magnesium alloys are considered the most suitable absorbable metals for bone fracture fixation implants. The main challenge in absorbable magnesium alloys is their high corrosion/degradation rate that needs to be controlled. Various coatings have been applied to magnesium alloys to slow down their corrosion rates to match their corrosion rate to the regeneration rate of the bone fracture. In this review, a bioactive coating is proposed to slow down the corrosion rate of magnesium alloys and accelerate the bone fracture healing process. The main aim of the bioactive coatings is to enhance the direct attachment of living tissues and thereby facilitate osteoconduction. Hydroxyapatite, collagen type I, recombinant human bone morphogenetic proteins 2, simvastatin, zoledronate, and strontium are six bioactive agents that show high potential for developing a bioactive coating system for high-performance absorbable magnesium bone implants. In addition to coating, the substrate itself can be made bioactive by alloying magnesium with calcium, zinc, copper, and manganese that were found to promote bone regeneration. Bioactive-coated magnesium implant could accelerate bone fracture healing time to match with magnesium degradation. Hydroxyapatite, collagen type I, recombinant human bone morphogenetic proteins 2, simvastatin, zoledronate, and strontium are high potential bioactive coating materials. The incorporation of Ca, Zn, Cu, Sr, and Mn in Mg base-metal could further enhance bone formation.
Collapse
|
14
|
Adawy A, Diaz R. Probing the Structure, Cytocompatibility, and Antimicrobial Efficacy of Silver-, Strontium-, and Zinc-Doped Monetite. ACS APPLIED BIO MATERIALS 2022; 5:1648-1657. [PMID: 35324139 PMCID: PMC9019811 DOI: 10.1021/acsabm.2c00047] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2022] [Accepted: 03/08/2022] [Indexed: 11/28/2022]
Abstract
Calcium phosphate phases are among the most widely accepted compounds for biomaterial applications, of which the resorbable phases have gained particular attention in recent years. Brushite and its anhydrous form monetite are among the most interesting resorbable calcium phosphate phases that can be applied as cements and for in situ fabrication of three-dimensional (3D) implants. Of these two dicalcium phosphate compounds, monetite is more stable and undergoes slower degradation than brushite. The purpose of the current study is to synthesize and dope monetite with the antimicrobial elements silver and zinc and the osteoinductive element strontium and investigate the possible structural variations as well as their biocompatibility and antimicrobial effectiveness. For this, powder X-ray diffraction (PXRD), energy-dispersive X-ray spectroscopy (EDX), scanning electron microscopy (SEM), and cryo-transmission electron microscopy (cryo-TEM) were used to thoroughly study the synthesized structures. Moreover, the ASTM E-2149-01 protocol and a cell proliferation assay were used to determine the minimum inhibitory concentration (MIC) and minimum bactericidal concentration (MBC) and the cytocompatibility of the different phases with the Soas-2 cell line, respectively. The results confirm the successful synthesis and doping procedures, such that zinc was the most incorporated element into the monetite phase and strontium was the least incorporated element. The microbiological studies revealed that silver is a very effective antimicrobial agent at low concentrations but unsuitable at high concentrations because its cytotoxicity would prevail. On the other hand, doping the compounds with zinc led to a reasonable antimicrobial activity without compromising the biocompatibility to obviously high concentrations. The study also highlights that strontium, widely known for its osteoinductivity, bears an antimicrobial effect at high concentrations. The generated doped compounds could be beneficial for prospective studies as bone cements or for scaffold biomaterial applications.
Collapse
Affiliation(s)
- Alaa Adawy
- Unit
of Electron Microscopy and Nanotechnology, Institute for Scientific
and Technological Resources (SCTs), University
of Oviedo, 33006 Oviedo, Asturias, Spain
| | - Raquel Diaz
- Nanomaterials
and Nanotechnology Research Centre—CINN (CSIC), 33940 El Entrego, Spain
| |
Collapse
|
15
|
Chen S, Wang Y, Ma J. A facile way to construct Sr-doped apatite coating on the surface of 3D printed scaffolds to improve osteogenic effect. J Biomater Appl 2022; 37:344-354. [DOI: 10.1177/08853282221087107] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Bone-like apatite coating fabricated by biomineralization process is a facile way for surface modification of porous scaffolds to improve interfacial behaviors and thus facilitate cell attachment, proliferation, and differentiation for bone tissue engineering. In this study, a Sr-containing calcium phosphate solution was made and used to construct a thick layer of Sr-doped bone-like apatite on the surface of 3D printed scaffolds via biomineralization process. Importantly, Sr-doped bone-like apatite could form and fully cover the 3D printed scaffolds surface in hours. The characterization results indicated that Sr2+ ions successfully replaced Ca2+ ions in bone-like apatite and the molar ratio of Sr/(Ca+Sr) was up to 8.2%. Furthermore, the Sr-doped apatite coating increased the compressive strength and Young’s modulus of composite scaffolds. The compatibility and bioactivity of mineralized scaffolds were evaluated by cell attachment, proliferation, and differentiation of MC3T3-E1 cells. It was found that Sr-doped apatite coating could gradually release Sr2+ ions and further promote cell attachment, proliferation rate, and the expression of alkaline phosphatase activity and osteogenic related genes, such as collagen type I (Col I), Runt-related transcription factor 2 (Runx-2), osteopontin, and osterix. Therefore, the Sr-doped apatite coating fabricated by this facile and rapid biomineralization process offers a new strategy to modify 3D printed porous scaffolds with significantly improved mechanical and biological properties for bone tissue engineering applications.
Collapse
Affiliation(s)
- Shangsi Chen
- Biomedical Engineering, Huazhong Univesity of Science and Technology, Wuhan, China
| | - Yue Wang
- Department of Mechanical and Energy Engineering, Southern University of Science and Technology, Shenzhen, China
| | - Jun Ma
- Biomedical Engineering, Huazhong Univesity of Science and Technology, Wuhan, China
| |
Collapse
|
16
|
Yan MD, Ou YJ, Lin YJ, Liu RM, Fang Y, Wu WL, Zhou L, Yao X, Chen J. Does the incorporation of strontium into calcium phosphate improve bone repair? A meta-analysis. BMC Oral Health 2022; 22:62. [PMID: 35260122 PMCID: PMC8905839 DOI: 10.1186/s12903-022-02092-7] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2021] [Accepted: 02/21/2022] [Indexed: 12/09/2022] Open
Abstract
Background The application of calcium phosphate (CaP)-based bone substitutes plays an important role in periodontal regeneration, implant dentistry and alveolar bone reconstruction. The incorporation of strontium (Sr) into CaP-based bone substitutes appears to improve their biological properties, but the reported in vivo bone repair performance is inconsistent among studies. Herein, we conducted a systematic review and meta-analysis to investigate the in vivo performance of Sr-doped materials. Methods We searched PubMed, EMBASE (via OVIDSP), and reference lists to identify relevant animal studies. The search, study selection, and data extraction were performed independently by two investigators. Meta-analyses and sub-group analyses were conducted using Revman version 5.4.1. The heterogeneity between studies were assessed by I2. Publication bias was investigated through a funnel plot. Results Thirty-five studies were finally enrolled, of which 16 articles that reported on new bone formation (NBF) were included in the meta-analysis, covering 31 comparisons and 445 defects. The overall effect for NBF was 2.25 (95% CI 1.61–2.90, p < 0.00001, I2 = 80%). Eight comparisons from 6 studies reported the outcomes of bone volume/tissue volume (BV/TV), with an overall effect of 1.42 (95% CI 0.65–2.18, p = 0.0003, I2 = 75%). Fourteen comparisons reported on the material remaining (RM), with the overall effect being -2.26 (95% CI − 4.02 to − 0.50, p = 0.0009, I2 = 86%). Conclusions Our study revealed that Sr-doped calcium phosphate bone substitutes improved in vivo performance of bone repair. However, more studies are also recommended to further verify this conclusion. Supplementary Information The online version contains supplementary material available at 10.1186/s12903-022-02092-7.
Collapse
Affiliation(s)
- Ming-Dong Yan
- Fujian Key Laboratory of Oral Diseases and Fujian Provincial Engineering Research Center of Oral Biomaterial and Stomatological Key Laboratory of Fujian College and University, School and Hospital of Stomatology, Fujian Medical University, Fuzhou, 350002, China
| | - Yan-Jing Ou
- Fujian Key Laboratory of Oral Diseases and Fujian Provincial Engineering Research Center of Oral Biomaterial and Stomatological Key Laboratory of Fujian College and University, School and Hospital of Stomatology, Fujian Medical University, Fuzhou, 350002, China.,Department of Oral Implantology, Affiliated Stomatological Hospital of Fujian Medical University, Fuzhou, 350002, China
| | - Yan-Jun Lin
- Fujian Key Laboratory of Oral Diseases and Fujian Provincial Engineering Research Center of Oral Biomaterial and Stomatological Key Laboratory of Fujian College and University, School and Hospital of Stomatology, Fujian Medical University, Fuzhou, 350002, China
| | - Rui-Min Liu
- ORAL Center, Fujian Provincial Governmental Hospital (Affiliated Hospital of Fujian Health College), Fuzhou, 350003, China
| | - Yan Fang
- Fujian Provincial Key Laboratory of Polymer Materials, College of Chemistry and Materials Science, Fujian Normal University, Fuzhou, 350007, China
| | - Wei-Liang Wu
- Fujian Key Laboratory of Oral Diseases and Fujian Provincial Engineering Research Center of Oral Biomaterial and Stomatological Key Laboratory of Fujian College and University, School and Hospital of Stomatology, Fujian Medical University, Fuzhou, 350002, China
| | - Lin Zhou
- Fujian Key Laboratory of Oral Diseases and Fujian Provincial Engineering Research Center of Oral Biomaterial and Stomatological Key Laboratory of Fujian College and University, School and Hospital of Stomatology, Fujian Medical University, Fuzhou, 350002, China
| | - Xiu Yao
- Fujian Key Laboratory of Oral Diseases and Fujian Provincial Engineering Research Center of Oral Biomaterial and Stomatological Key Laboratory of Fujian College and University, School and Hospital of Stomatology, Fujian Medical University, Fuzhou, 350002, China.,Institute of Stomatology and Research Center of Dental and Craniofacial Implants, School and Hospital of Stomatology, Fujian Medical University, Fuzhou, China
| | - Jiang Chen
- Fujian Key Laboratory of Oral Diseases and Fujian Provincial Engineering Research Center of Oral Biomaterial and Stomatological Key Laboratory of Fujian College and University, School and Hospital of Stomatology, Fujian Medical University, Fuzhou, 350002, China.
| |
Collapse
|
17
|
Zhang J, Jiang Y, Shang Z, Zhao B, Jiao M, Liu W, Cheng M, Zhai B, Guo Y, Liu B, Shi X, Ma B. Biodegradable metals for bone defect repair: A systematic review and meta-analysis based on animal studies. Bioact Mater 2021; 6:4027-4052. [PMID: 33997491 PMCID: PMC8089787 DOI: 10.1016/j.bioactmat.2021.03.035] [Citation(s) in RCA: 48] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2021] [Revised: 03/24/2021] [Accepted: 03/24/2021] [Indexed: 12/18/2022] Open
Abstract
Biodegradable metals are promising candidates for bone defect repair. With an evidence-based approach, this study investigated and analyzed the performance and degradation properties of biodegradable metals in animal models for bone defect repair to explore their potential clinical translation. Animal studies on bone defect repair with biodegradable metals in comparison with other traditional biomaterials were reviewed. Data was carefully collected after identification of population, intervention, comparison, outcome, and study design (PICOS), and following the inclusion criteria of biodegradable metals in animal studies. 30 publications on pure Mg, Mg alloys, pure Zn and Zn alloys were finally included after extraction from a collected database of 2543 publications. A qualitative systematic review and a quantitative meta-analysis were performed. Given the heterogeneity in animal model, anatomical site and critical size defect (CSD), biodegradable metals exhibited mixed effects on bone defect repair and degradation in animal studies in comparison with traditional non-degradable metals, biodegradable polymers, bioceramics, and autogenous bone grafts. The results indicated that there were limitations in the experimental design of the included studies, and quality of the evidence presented by the studies was very low. To enhance clinical translation of biodegradable metals, evidence-based research with data validity is needed. Future studies should adopt standardized experimental protocols in investigating the effects of biodegradable metals on bone defect repair with animal models.
Collapse
Affiliation(s)
- Jiazhen Zhang
- Center for Medical Device Evaluation, National Medical Products Administration, Beijing, 100081, PR China
| | - Yanbiao Jiang
- Evidence-Based Medicine Center, School of Basic Medical Sciences, Lanzhou University, Lanzhou, 730000, PR China
| | - Zhizhong Shang
- Evidence-Based Medicine Center, School of Basic Medical Sciences, Lanzhou University, Lanzhou, 730000, PR China
| | - Bing Zhao
- Evidence-Based Medicine Center, School of Basic Medical Sciences, Lanzhou University, Lanzhou, 730000, PR China
| | - Mingyue Jiao
- Evidence-Based Medicine Center, School of Basic Medical Sciences, Lanzhou University, Lanzhou, 730000, PR China
| | - Wenbo Liu
- Center for Medical Device Evaluation, National Medical Products Administration, Beijing, 100081, PR China
| | - Maobo Cheng
- Center for Medical Device Evaluation, National Medical Products Administration, Beijing, 100081, PR China
| | - Bao Zhai
- Center for Medical Device Evaluation, National Medical Products Administration, Beijing, 100081, PR China
| | - Yajuan Guo
- Center for Medical Device Evaluation, National Medical Products Administration, Beijing, 100081, PR China
| | - Bin Liu
- Center for Medical Device Evaluation, National Medical Products Administration, Beijing, 100081, PR China
| | - Xinli Shi
- Center for Medical Device Evaluation, National Medical Products Administration, Beijing, 100081, PR China
| | - Bin Ma
- Evidence-Based Medicine Center, School of Basic Medical Sciences, Lanzhou University, Lanzhou, 730000, PR China
- Institute of Health Data Science, Lanzhou University, Lanzhou, 730000, PR China
| |
Collapse
|
18
|
Baheiraei N, Eyni H, Bakhshi B, Najafloo R, Rabiee N. Effects of strontium ions with potential antibacterial activity on in vivo bone regeneration. Sci Rep 2021; 11:8745. [PMID: 33888790 PMCID: PMC8062523 DOI: 10.1038/s41598-021-88058-1] [Citation(s) in RCA: 44] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2020] [Accepted: 04/07/2021] [Indexed: 11/15/2022] Open
Abstract
Bioactive glasses (BGs) have attracted added attention in the structure of the scaffolds for bone repair applications. Different metal ions could be doped in BGs to induce specific biological responses. Among these ions, strontium (Sr) is considered as an effective and safe doping element with promising effects on bone formation and regeneration. In this experiment, we evaluated the antibacterial activities of the gelatin-BG (Gel-BG) and Gel-BG/Sr scaffolds in vitro. The osteogenic properties of the prepared scaffolds were also assessed in rabbit calvarial bone defects for 12 weeks. Both scaffolds showed in vivo bone formation during 12 weeks with the newly formed bone area in Gel-BG/Sr scaffold was higher than that in Gel-BG scaffolds after the whole period. Based on the histological results, Gel-BG/Sr exhibited acceleration of early-stage bone formation in vivo. The results of antibacterial investigation for both scaffolds showed complete growth inhibition against Escherichia coli (E. coli). Although Gel-BG revealed no antibacterial effect on Staphylococcus aureus (S. aureus), the Gel-BG/Sr was able to partially inhibit the growth of S. aureus, as detected by threefold reduction in growth index. Our results confirmed that Sr doped BG is a favorable candidate for bone tissue engineering with superior antibacterial activity and bone regeneration capacity compared with similar counterparts having no Sr ion.
Collapse
Affiliation(s)
- Nafiseh Baheiraei
- Tissue Engineering and Applied Cell Sciences Division, Department of Anatomical Sciences, Faculty of Medical Sciences, Tarbiat Modares University, Tehran, Iran.
| | - Hossein Eyni
- Department of Anatomical Sciences, Faculty of Medical sceinces, Tarbiat Modares University, Tehran, Iran
| | - Bita Bakhshi
- Department of Bacteriology, Faculty of Medical Sciences, Tarbiat Modares University, Tehran, Iran
| | - Raziyeh Najafloo
- Department of Bio-Informatics, Faculty of Interdisciplinary Science and Technology, Tarbiat Modares University, Tehran, Iran
| | - Navid Rabiee
- Department of Chemistry, Shahid Beheshti University, Tehran, Iran
| |
Collapse
|
19
|
Strontium substituted hydroxyapatite with β-lactam integrin agonists to enhance mesenchymal cells adhesion and to promote bone regeneration. Colloids Surf B Biointerfaces 2021; 200:111580. [PMID: 33493943 DOI: 10.1016/j.colsurfb.2021.111580] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2020] [Revised: 12/28/2020] [Accepted: 01/11/2021] [Indexed: 11/23/2022]
Abstract
Multi-functionalization of calcium phosphates to get delivery systems of therapeutic agents is gaining increasing relevance for the development of functional biomaterials aimed to solve problems related to disorders of the muscolo-skeletal system. In this regard, we functionalized Strontium substituted hydroxyapatite (SrHA) with some β-lactam integrin agonists to develop materials with enhanced properties in promoting cell adhesion and activation of intracellular signaling as well as in counteracting abnormal bone resorption. For this purpose, we selected two monocyclic β-lactams on the basis of their activities towards specific integrins on promoting cell adhesion and signalling. The amount of β-lactams loaded on SrHA could be modulated on changing the polarity of the loading solution, from 3.5-24 wt% for compound 1 and from 3.2-8.4 wt% for compound 2. Studies on the release of the β-lactams from the functionalized SrHA in aqueous medium showed an initial burst followed by a steady-release that ensures a small but constant amount of the compounds over time. The new composites were fully characterized. Co-culture of human primary mesenchymal stem cells (hMSC) and human primary osteoclast (OC) demonstrated that the presence of β-lactams on SrHA favors hMSC adhesion and viability, as well as differentiation towards osteoblastic lineage. Moreover, the β-lactams were found to enhance the inhibitory role of Strontium on osteoclast viability and differentiation.
Collapse
|
20
|
Li Y, Wu R, Yu L, Shen M, Ding X, Lu F, Liu M, Yang X, Gou Z, Xu S. Rational design of nonstoichiometric bioceramic scaffolds via digital light processing: tuning chemical composition and pore geometry evaluation. J Biol Eng 2021; 15:1. [PMID: 33407741 PMCID: PMC7789156 DOI: 10.1186/s13036-020-00252-3] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2020] [Accepted: 12/03/2020] [Indexed: 11/26/2022] Open
Abstract
Bioactive ceramics are promising candidates as 3D porous substrates for bone repair in bone regenerative medicine. However, they are often inefficient in clinical applications due to mismatching mechanical properties and compromised biological performances. Herein, the additional Sr dopant is hypothesized to readily adjust the mechanical and biodegradable properties of the dilute Mg-doped wollastonite bioceramic scaffolds with different pore geometries (cylindrical-, cubic-, gyroid-) by ceramic stereolithography. The results indicate that the compressive strength of Mg/Sr co-doped bioceramic scaffolds could be tuned simultaneously by the Sr dopant and pore geometry. The cylindrical-pore scaffolds exhibit strength decay with increasing Sr content, whereas the gyroid-pore scaffolds show increasing strength and Young's modulus as the Sr concentration is increased from 0 to 5%. The ion release could also be adjusted by pore geometry in Tris buffer, and the high Sr content may trigger a faster scaffold bio-dissolution. These results demonstrate that the mechanical strengths of the bioceramic scaffolds can be controlled from the point at which their porous structures are designed. Moreover, scaffold bio-dissolution can be tuned by pore geometry and doping foreign ions. It is reasonable to consider the nonstoichiometric bioceramic scaffolds are promising for bone regeneration, especially when dealing with pathological bone defects.
Collapse
Affiliation(s)
- Yifan Li
- Department of Orthopedics, the First Affiliated Hospital, Zhejiang University School of Medicine, #79 Qingchun Road, Hangzhou, Zhejiang Province 310003 P. R. China
| | - Ronghuan Wu
- Department of Orthopedics, the First Affiliated Hospital, Zhejiang University School of Medicine, #79 Qingchun Road, Hangzhou, Zhejiang Province 310003 P. R. China
| | - Li Yu
- Operation Room, the First Affiliated Hospital, Zhejiang University School of Medicine, #79 Qingchun Road, Hangzhou, 310003 Zhejiang Province P. R. China
| | - Miaoda Shen
- Department of Orthopedics, the First Affiliated Hospital, Zhejiang University School of Medicine, #79 Qingchun Road, Hangzhou, Zhejiang Province 310003 P. R. China
| | - Xiaoquan Ding
- Department of Orthopedics, the First Affiliated Hospital, Zhejiang University School of Medicine, #79 Qingchun Road, Hangzhou, Zhejiang Province 310003 P. R. China
| | - Fengling Lu
- Bio-nanomaterials and Regenerative Medicine Research Division, Zhejiang-California International Nanosystem Institute, Zhejiang University, #866 Yuhangtang Road, Hangzhou, Zhejiang Province 310058 P. R. China
| | - Mengtao Liu
- Bio-nanomaterials and Regenerative Medicine Research Division, Zhejiang-California International Nanosystem Institute, Zhejiang University, #866 Yuhangtang Road, Hangzhou, Zhejiang Province 310058 P. R. China
| | - Xianyan Yang
- Bio-nanomaterials and Regenerative Medicine Research Division, Zhejiang-California International Nanosystem Institute, Zhejiang University, #866 Yuhangtang Road, Hangzhou, Zhejiang Province 310058 P. R. China
| | - Zhongru Gou
- Bio-nanomaterials and Regenerative Medicine Research Division, Zhejiang-California International Nanosystem Institute, Zhejiang University, #866 Yuhangtang Road, Hangzhou, Zhejiang Province 310058 P. R. China
| | - Sanzhong Xu
- Department of Orthopedics, the First Affiliated Hospital, Zhejiang University School of Medicine, #79 Qingchun Road, Hangzhou, Zhejiang Province 310003 P. R. China
| |
Collapse
|
21
|
Fernández-Villa D, Asensio G, Silva M, Ramírez-Jiménez RA, Saldaña L, Vilaboa N, Leite-Oliveira A, San Román J, Vázquez-Lasa B, Rojo L. Vitamin B9 derivatives as carriers of bioactive cations for musculoskeletal regeneration applications: Synthesis, characterization and biological evaluation. Eur J Med Chem 2021; 212:113152. [PMID: 33453601 DOI: 10.1016/j.ejmech.2021.113152] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2020] [Revised: 12/29/2020] [Accepted: 12/30/2020] [Indexed: 01/06/2023]
Abstract
The development of new drugs for musculoskeletal regeneration purposes has attracted much attention in the last decades. In this work, we present three novel vitamin B9 (folic acid)-derivatives bearing divalent cations (ZnFO, MgFO and MnFO), providing their synthesis mechanism and physicochemical characterization. In addition, a strong emphasis has been placed on evaluating their biological properties (along with our previously reported SrFO) using human mesenchymal stem cells (hMSC). In all the cases, pure folate derivatives (MFOs) with a bidentate coordination mode between the metal and the folate anion, and a 1:1 stoichiometry, were obtained in high yields. A non-cytotoxic dose of all the MFOs (50 μg/mL) was demonstrated to modulate by their own the mRNA profiles towards osteogenic-like or fibrocartilaginous-like phenotypes in basal conditions. Moreover, ZnFO increased the alkaline phosphatase activity in basal conditions, while both ZnFO and MnFO increased the matrix mineralization degree in osteoinductive conditions. Thus, we have demonstrated the bioactivity of these novel compounds and the suitability to further studied them in vivo for musculoskeletal regeneration applications.
Collapse
Affiliation(s)
- Daniel Fernández-Villa
- Instituto de Ciencia y Tecnología de Polímeros, Consejo Superior de Investigaciones Científicas (ICTP-CSIC), 28006, Madrid, Spain; Centro de Investigación Biomédica en Red de Bioingeniería, Biomateriales y Nanomedicina (CIBER-BBN), 28029, Madrid, Spain
| | - Gerardo Asensio
- Instituto de Ciencia y Tecnología de Polímeros, Consejo Superior de Investigaciones Científicas (ICTP-CSIC), 28006, Madrid, Spain
| | - Manuel Silva
- Universidade Católica Portuguesa - Centro de Biotecnologia e Química Fina, Escola Superior de Biotecnologia, 4169-005, Porto, Portugal
| | - Rosa Ana Ramírez-Jiménez
- Instituto de Ciencia y Tecnología de Polímeros, Consejo Superior de Investigaciones Científicas (ICTP-CSIC), 28006, Madrid, Spain; Centro de Investigación Biomédica en Red de Bioingeniería, Biomateriales y Nanomedicina (CIBER-BBN), 28029, Madrid, Spain
| | - Laura Saldaña
- Centro de Investigación Biomédica en Red de Bioingeniería, Biomateriales y Nanomedicina (CIBER-BBN), 28029, Madrid, Spain; Hospital Universitario La Paz-IdiPAZ, 28029, Madrid, Spain
| | - Nuria Vilaboa
- Centro de Investigación Biomédica en Red de Bioingeniería, Biomateriales y Nanomedicina (CIBER-BBN), 28029, Madrid, Spain; Hospital Universitario La Paz-IdiPAZ, 28029, Madrid, Spain
| | - Ana Leite-Oliveira
- Universidade Católica Portuguesa - Centro de Biotecnologia e Química Fina, Escola Superior de Biotecnologia, 4169-005, Porto, Portugal
| | - Julio San Román
- Instituto de Ciencia y Tecnología de Polímeros, Consejo Superior de Investigaciones Científicas (ICTP-CSIC), 28006, Madrid, Spain; Centro de Investigación Biomédica en Red de Bioingeniería, Biomateriales y Nanomedicina (CIBER-BBN), 28029, Madrid, Spain
| | - Blanca Vázquez-Lasa
- Instituto de Ciencia y Tecnología de Polímeros, Consejo Superior de Investigaciones Científicas (ICTP-CSIC), 28006, Madrid, Spain; Centro de Investigación Biomédica en Red de Bioingeniería, Biomateriales y Nanomedicina (CIBER-BBN), 28029, Madrid, Spain
| | - Luis Rojo
- Instituto de Ciencia y Tecnología de Polímeros, Consejo Superior de Investigaciones Científicas (ICTP-CSIC), 28006, Madrid, Spain; Centro de Investigación Biomédica en Red de Bioingeniería, Biomateriales y Nanomedicina (CIBER-BBN), 28029, Madrid, Spain.
| |
Collapse
|
22
|
Simpson CR, Kelly HM, Murphy CM. Synergistic use of biomaterials and licensed therapeutics to manipulate bone remodelling and promote non-union fracture repair. Adv Drug Deliv Rev 2020; 160:212-233. [PMID: 33122088 DOI: 10.1016/j.addr.2020.10.011] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2020] [Revised: 10/16/2020] [Accepted: 10/20/2020] [Indexed: 12/16/2022]
Abstract
Disrupted bone metabolism can lead to delayed fracture healing or non-union, often requiring intervention to correct. Although the current clinical gold standard bone graft implants and commercial bone graft substitutes are effective, they possess inherent drawbacks and are limited in their therapeutic capacity for delayed union and non-union repair. Research into advanced biomaterials and therapeutic biomolecules has shown great potential for driving bone regeneration, although few have achieved commercial success or clinical translation. There are a number of therapeutics, which influence bone remodelling, currently licensed for clinical use. Providing an alternative local delivery context for these therapies, can enhance their efficacy and is an emerging trend in bone regenerative therapeutic strategies. This review aims to provide an overview of how biomaterial design has advanced from currently available commercial bone graft substitutes to accommodate previously licensed therapeutics that target local bone restoration and healing in a synergistic manner, and the challenges faced in progressing this research towards clinical reality.
Collapse
Affiliation(s)
- Christopher R Simpson
- Tissue Engineering Research Group, Department of Anatomy and Regenerative Medicine, Royal College of Surgeons in Ireland (RCSI), Dublin, Ireland
| | - Helena M Kelly
- Tissue Engineering Research Group, Department of Anatomy and Regenerative Medicine, Royal College of Surgeons in Ireland (RCSI), Dublin, Ireland; School of Pharmacy and Biomolecular Sciences, Royal College of Surgeons in Ireland (RCSI), Dublin, Ireland
| | - Ciara M Murphy
- Tissue Engineering Research Group, Department of Anatomy and Regenerative Medicine, Royal College of Surgeons in Ireland (RCSI), Dublin, Ireland; Trinity Centre for Biomedical Engineering, Trinity College Dublin (TCD), Dublin, Ireland; Advanced Materials and Bioengineering Research Centre (AMBER), RCSI and TCD, Dublin, Ireland.
| |
Collapse
|
23
|
Wan B, Wang R, Sun Y, Cao J, Wang H, Guo J, Chen D. Building Osteogenic Microenvironments With Strontium-Substituted Calcium Phosphate Ceramics. Front Bioeng Biotechnol 2020; 8:591467. [PMID: 33117789 PMCID: PMC7576675 DOI: 10.3389/fbioe.2020.591467] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2020] [Accepted: 09/16/2020] [Indexed: 12/24/2022] Open
Abstract
Bioceramics have experienced great development over the past 50 years. Modern bioceramics are designed to integrate bioactive ions within ceramic granules to trigger living tissue regeneration. Preclinical and clinical studies have shown that strontium is a safe and effective divalent metal ion for preventing osteoporosis, which has led to its incorporation in calcium phosphate-based ceramics. The local release of strontium ions during degradation results in moderate concentrations that trigger osteogenesis with few systemic side effects. Moreover, strontium has been proven to generate a favorable immune environment and promote early angiogenesis at the implantation site. Herein, the important aspects of strontium-enriched calcium phosphate bioceramics (Sr-CaPs), and how Sr-CaPs affect the osteogenic microenvironment, are described.
Collapse
Affiliation(s)
| | - Renxian Wang
- Laboratory of Bone Tissue Engineering, Beijing Laboratory of Biomedical Materials, Beijing Research Institute of Traumatology and Orthopaedics, Beijing Jishuitan Hospital, Beijing, China
| | | | | | | | | | - Dafu Chen
- Laboratory of Bone Tissue Engineering, Beijing Laboratory of Biomedical Materials, Beijing Research Institute of Traumatology and Orthopaedics, Beijing Jishuitan Hospital, Beijing, China
| |
Collapse
|
24
|
Lyons JG, Plantz MA, Hsu WK, Hsu EL, Minardi S. Nanostructured Biomaterials for Bone Regeneration. Front Bioeng Biotechnol 2020; 8:922. [PMID: 32974298 PMCID: PMC7471872 DOI: 10.3389/fbioe.2020.00922] [Citation(s) in RCA: 66] [Impact Index Per Article: 13.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2020] [Accepted: 07/17/2020] [Indexed: 12/13/2022] Open
Abstract
This review article addresses the various aspects of nano-biomaterials used in or being pursued for the purpose of promoting bone regeneration. In the last decade, significant growth in the fields of polymer sciences, nanotechnology, and biotechnology has resulted in the development of new nano-biomaterials. These are extensively explored as drug delivery carriers and as implantable devices. At the interface of nanomaterials and biological systems, the organic and synthetic worlds have merged over the past two decades, forming a new scientific field incorporating nano-material design for biological applications. For this field to evolve, there is a need to understand the dynamic forces and molecular components that shape these interactions and influence function, while also considering safety. While there is still much to learn about the bio-physicochemical interactions at the interface, we are at a point where pockets of accumulated knowledge can provide a conceptual framework to guide further exploration and inform future product development. This review is intended as a resource for academics, scientists, and physicians working in the field of orthopedics and bone repair.
Collapse
Affiliation(s)
- Joseph G. Lyons
- Department of Orthopaedic Surgery, Northwestern University Feinberg School of Medicine, Chicago, IL, United States
- Simpson Querrey Institute, Northwestern University, Chicago, IL, United States
| | - Mark A. Plantz
- Department of Orthopaedic Surgery, Northwestern University Feinberg School of Medicine, Chicago, IL, United States
- Simpson Querrey Institute, Northwestern University, Chicago, IL, United States
| | - Wellington K. Hsu
- Department of Orthopaedic Surgery, Northwestern University Feinberg School of Medicine, Chicago, IL, United States
- Simpson Querrey Institute, Northwestern University, Chicago, IL, United States
| | - Erin L. Hsu
- Department of Orthopaedic Surgery, Northwestern University Feinberg School of Medicine, Chicago, IL, United States
- Simpson Querrey Institute, Northwestern University, Chicago, IL, United States
| | - Silvia Minardi
- Department of Orthopaedic Surgery, Northwestern University Feinberg School of Medicine, Chicago, IL, United States
- Simpson Querrey Institute, Northwestern University, Chicago, IL, United States
| |
Collapse
|
25
|
Kruppke B, Heinemann C, Gebert A, Rohnke M, Weiß M, Henß A, Wiesmann HP, Hanke T. Strontium substitution of gelatin modified calcium hydrogen phosphates as porous hard tissue substitutes. J Biomed Mater Res A 2020; 109:722-732. [PMID: 32654374 DOI: 10.1002/jbm.a.37057] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2019] [Revised: 06/25/2020] [Accepted: 06/26/2020] [Indexed: 12/27/2022]
Abstract
Aiming at the generation of a high strontium-containing degradable bone substitute, the exchange of calcium with strontium in gelatin-modified brushite was investigated. The ion substitution showed two mineral groups, the high-calcium containing minerals with a maximum measured molar Ca/Sr ratio of 80%/20% (mass ratio 63%/37%) and the high-strontium containing ones with a maximum measured molar Ca/Sr ratio of 21%/79% (mass ratio 10%/90%). In contrast to the high-strontium mineral phases, a high mass loss was observed for the calcium-based minerals during incubation in cell culture medium (alpha-MEM), but also an increase in strength owing to dissolution and re-precipitation. This resulted for the former in a decrease of cation concentration (Ca + Sr) in the medium, while the pH value decreased and the phosphate ion concentration rose significantly. The latter group of materials, the high-strontium containing ones, showed only a moderate change in mass and a decrease in strength, but the Ca + Sr concentration remained permanently above the initial calcium concentration in the medium. This might be advantageous for a future planned application by supporting bone regeneration on the cellular level.
Collapse
Affiliation(s)
- Benjamin Kruppke
- Institute of Materials Science, Max Bergmann Center of Biomaterials, Technische Universität Dresden, Dresden, Germany
| | - Christiane Heinemann
- Institute of Materials Science, Max Bergmann Center of Biomaterials, Technische Universität Dresden, Dresden, Germany
| | - Annett Gebert
- Institute for Complex Materials, Leibniz-Institute for Solid State and Materials Research Dresden (IFW Dresden), Dresden, Germany
| | - Marcus Rohnke
- Institute of Physical Chemistry, Justus-Liebig-Universität Gießen, Gießen, Germany
| | - Manuel Weiß
- Institute of Physical Chemistry, Justus-Liebig-Universität Gießen, Gießen, Germany
| | - Anja Henß
- Institute of Physical Chemistry, Justus-Liebig-Universität Gießen, Gießen, Germany
| | - Hans-Peter Wiesmann
- Institute of Materials Science, Max Bergmann Center of Biomaterials, Technische Universität Dresden, Dresden, Germany
| | - Thomas Hanke
- Institute of Materials Science, Max Bergmann Center of Biomaterials, Technische Universität Dresden, Dresden, Germany
| |
Collapse
|
26
|
Marx D, Rahimnejad Yazdi A, Papini M, Towler M. A review of the latest insights into the mechanism of action of strontium in bone. Bone Rep 2020; 12:100273. [PMID: 32395571 PMCID: PMC7210412 DOI: 10.1016/j.bonr.2020.100273] [Citation(s) in RCA: 76] [Impact Index Per Article: 15.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/13/2020] [Revised: 04/09/2020] [Accepted: 04/16/2020] [Indexed: 02/08/2023] Open
Abstract
Interest in strontium (Sr) has persisted over the last three decades due to its unique mechanism of action: it simultaneously promotes osteoblast function and inhibits osteoclast function. While this mechanism of action is strongly supported by in vitro studies and small animal trials, recent large-scale clinical trials have demonstrated that orally administered strontium ranelate (SrRan) may have no anabolic effect on bone formation in humans. Yet, there is a strong correlation between Sr accumulation in bone and reduced fracture risk in post-menopausal women, suggesting Sr acts via a purely physiochemical mechanism to enhance bone strength. Conversely, the local administration of Sr with the use of modified biomaterials has been shown to enhance bone growth, osseointegration and bone healing at the bone-implant interface, to a greater degree than Sr-free materials. This review summarizes current knowledge of the main cellular and physiochemical mechanisms that underly Sr's effect in bone, which center around Sr's similarity to calcium (Ca). We will also summarize the main controversies in Sr research which cast doubt on the 'dual-acting mechanism'. Lastly, we will explore the effects of Sr-modified bone-implant materials both in vitro and in vivo, examining whether Sr may act via an alternate mechanism when administered locally.
Collapse
Affiliation(s)
- Daniella Marx
- Department of Biomedical Engineering, Ryerson University, Toronto M5B 2K3, Ontario, Canada.,Li Ka Shing Knowledge Institute, St. Michael's Hospital, Toronto M5B 1W8, Ontario, Canada
| | - Alireza Rahimnejad Yazdi
- Li Ka Shing Knowledge Institute, St. Michael's Hospital, Toronto M5B 1W8, Ontario, Canada.,Department of Mechanical Engineering, Ryerson University, Toronto M5B 2K3, Ontario, Canada
| | - Marcello Papini
- Department of Biomedical Engineering, Ryerson University, Toronto M5B 2K3, Ontario, Canada.,Department of Mechanical Engineering, Ryerson University, Toronto M5B 2K3, Ontario, Canada
| | - Mark Towler
- Department of Biomedical Engineering, Ryerson University, Toronto M5B 2K3, Ontario, Canada.,Li Ka Shing Knowledge Institute, St. Michael's Hospital, Toronto M5B 1W8, Ontario, Canada.,Department of Mechanical Engineering, Ryerson University, Toronto M5B 2K3, Ontario, Canada
| |
Collapse
|
27
|
Kermani F, Mollazadeh Beidokhti S, Baino F, Gholamzadeh-Virany Z, Mozafari M, Kargozar S. Strontium- and Cobalt-Doped Multicomponent Mesoporous Bioactive Glasses (MBGs) for Potential Use in Bone Tissue Engineering Applications. MATERIALS (BASEL, SWITZERLAND) 2020; 13:1348. [PMID: 32188165 PMCID: PMC7143072 DOI: 10.3390/ma13061348] [Citation(s) in RCA: 35] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/31/2019] [Revised: 03/02/2020] [Accepted: 03/13/2020] [Indexed: 01/03/2023]
Abstract
Mesoporous bioactive glasses (MBGs) offer suitable platforms for drug/ion delivery in tissue engineering strategies. The main goal of this study was to prepare strontium (Sr)- and cobalt (Co)-doped MBGs; strontium is currently used in the treatment of osteoporosis, and cobalt is known to exhibit pro-angiogenic effects. Sr- and Co-doped mesoporous glasses were synthesized for the first time in a multicomponent silicate system via the sol-gel method by using P123 as a structure-directing agent. The glassy state of the Sr- and Co-doped materials was confirmed by XRD before immersion in SBF, while an apatite-like layer was detected onto the surface of samples post-immersion. The textural characteristics of MBGs were confirmed by nitrogen adsorption/desorption measurements. In vitro experiments including MTT assay, Alizarin red staining, and cell attachment and migration showed the cytocompatibility of all the samples as well as their positive effects on osteoblast-like cell line MG-63. Early experiments with human umbilical vein endothelial cells also suggested the potential of these MBGs in the context of angiogenesis. In conclusion, the prepared materials were bioactive, showed the ability to improve osteoblast cell function in vitro and could be considered as valuable delivery vehicles for therapeutics, like Co2+ and Sr2+ ions.
Collapse
Affiliation(s)
- Farzad Kermani
- Department of Materials Engineering, Faculty of Engineering, Ferdowsi University of Mashhad (FUM), Azadi Sq., Mashhad 917794-8564, Iran; (F.K.); (S.M.B.)
| | - Sahar Mollazadeh Beidokhti
- Department of Materials Engineering, Faculty of Engineering, Ferdowsi University of Mashhad (FUM), Azadi Sq., Mashhad 917794-8564, Iran; (F.K.); (S.M.B.)
| | - Francesco Baino
- Institute of Materials Physics and Engineering, Applied Science and Technology Department, Politecnico di Torino, Corso Duca degli Abruzzi 24, 10129 Torino, Italy
| | - Zahra Gholamzadeh-Virany
- Department of Biology, Faculty of Sciences, Islamic Azad University-Mashhad Branch, Mashhad 917794-8564, Iran;
| | - Masoud Mozafari
- Department of Tissue Engineering & Regenerative Medicine, Faculty of Advanced Technologies in Medicine, Iran University of Medical Sciences (IUMS), Tehran 1449614535, Iran;
| | - Saeid Kargozar
- Tissue Engineering Research Group (TERG), Department of Anatomy and Cell Biology, School of Medicine, Mashhad University of Medical Sciences, Mashhad 917794-8564, Iran
| |
Collapse
|
28
|
Ressler A, Cvetnić M, Antunović M, Marijanović I, Ivanković M, Ivanković H. Strontium substituted biomimetic calcium phosphate system derived from cuttlefish bone. J Biomed Mater Res B Appl Biomater 2019; 108:1697-1709. [PMID: 31738012 DOI: 10.1002/jbm.b.34515] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2019] [Revised: 10/02/2019] [Accepted: 11/04/2019] [Indexed: 01/13/2023]
Abstract
Biomimetic triphasic strontium-substituted calcium phosphate (CaP) powders were prepared by wet precipitation method at 50°C, using CaCO3 , (NH2 )2 COH3 PO4 , and Sr(NO3 )2 as reagents. Calcite was prepared from biogenic source (cuttlefish bone). The synthesized powders have been characterized by elemental analysis, Fourier transform infrared spectrometry, X-ray diffraction, Rietveld refinement studies and cell viability test. Phase transformation and ion release were analyzed during 7 days of incubation in simulated body fluid at 37°C. The raw precipitated powders were composed of calcium deficient carbonated hydroxyapatite (HA), octacalcium phosphate (OCP), and amorphous calcium phosphate (ACP). After heat treatment at 1200°C β-tricalcium phosphate (β-TCP) was detected. Strontium substitution for calcium results in an increase of lattice parameters in HA, OCP, and β-TCP. Sr2+ occupy the Ca(1) site in HA, Ca(3,4,7,8) sites in OCP and Ca(1,2,3,4) sites in β-TCP. Along with Sr2+ substitution, presence of Mg2+ and Na+ ions was detected as a result of using biogenic calcium carbonate. The culture of human embryonic kidney cells indicated noncytotoxicity of the prepared CaP powders with emphasis on the cell proliferation during 3 days of culture.
Collapse
Affiliation(s)
- Antonia Ressler
- Faculty of Chemical Engineering and Technology, University of Zagreb, Zagreb, Croatia
| | - Matija Cvetnić
- Faculty of Chemical Engineering and Technology, University of Zagreb, Zagreb, Croatia
| | - Maja Antunović
- Faculty of Science, University of Zagreb, Zagreb, Croatia
| | | | - Marica Ivanković
- Faculty of Chemical Engineering and Technology, University of Zagreb, Zagreb, Croatia
| | - Hrvoje Ivanković
- Faculty of Chemical Engineering and Technology, University of Zagreb, Zagreb, Croatia
| |
Collapse
|
29
|
Liu Z, Yu Z, Chang H, Wang Y, Xiang H, Zhang X, Yu B. Strontium‑containing α‑calcium sulfate hemihydrate promotes bone repair via the TGF‑β/Smad signaling pathway. Mol Med Rep 2019; 20:3555-3564. [PMID: 31432182 PMCID: PMC6755234 DOI: 10.3892/mmr.2019.10592] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2018] [Accepted: 05/09/2019] [Indexed: 11/16/2022] Open
Abstract
Calcium phosphate-based bone substitutes have been widely used for bone repair, augmentation and reconstruction in bone implant surgery. While some of these substitutes have shown excellent biological efficacy, there remains a need to improve the performance of the current calcium phosphate-based bone substitutes. Strontium ions (Sr) can promote new osteogenesis, inhibit osteoclast formation and increase osteoconductivity. However, the therapeutic effect and mechanism of strontium-containing α-calcium sulfate hemihydrate (Sr-CaS) remains unclear. The present study created bone injuries in rats and treated the injuries with Sr-CaS. Then Cell Counting Kit-8, soft agar colony formation, flow cytometry, Transwell and Alizarin Red staining assays were performed to assess the bone cells for their proliferation, growth, apoptosis, invasion, and osteogenic differentiation abilities. The bone reconstructive states were measured by the microCT method, hematoxylin and eosin staining and Masson staining. Bone-related factors were analyzed by the reverse transcription-quantitative PCR assay; transforming growth factor (TGF)-β, mothers against decapentaplegic homolog (Smad)2/3 and β-catenin expression was measured by western blot analysis and osteocalcin (OCN) expression was assessed by immunohistochemistry. Sr-CaS did not significantly affect the proliferation and apoptosis of bone marrow stem cells (BMSCs), but did accelerate the migration and osteogenic differentiation of BMSCs in vitro. Sr-CaS promoted bone repair and significantly increased the values for bone mineral density, bone volume fraction, and trabecular thickness, but decreased trabecular spacing in vivo in a concentration-dependent manner. In addition, Sr-CaS dramatically upregulated the expression levels of genes associated with osteogenic differentiation (Runt-related transcription factor 2, Osterix, ALP, OCN and bone sialoprotein) both in vitro and in vivo. Sr-CaS also increased Smad2/3, TGF-β and phosphorylated-β-catenin protein expression in vitro and in vivo. These results indicated that materials that contain 5 or 10% Sr can improve bone defects by regulating the TGF-β/Smad signaling pathway.
Collapse
Affiliation(s)
- Zhi Liu
- Department of Orthopedics and Traumatology, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong 510515, P.R. China
| | - Zewei Yu
- Department of Orthopedics and Traumatology, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong 510515, P.R. China
| | - Hong Chang
- Department of Orthopedics and Traumatology, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong 510515, P.R. China
| | - Yu Wang
- Department of Orthopedics and Traumatology, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong 510515, P.R. China
| | - Haibo Xiang
- Department of Orthopedics and Traumatology, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong 510515, P.R. China
| | - Xianrong Zhang
- Department of Orthopedics and Traumatology, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong 510515, P.R. China
| | - Bin Yu
- Department of Orthopedics and Traumatology, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong 510515, P.R. China
| |
Collapse
|
30
|
Kargozar S, Montazerian M, Fiume E, Baino F. Multiple and Promising Applications of Strontium (Sr)-Containing Bioactive Glasses in Bone Tissue Engineering. Front Bioeng Biotechnol 2019; 7:161. [PMID: 31334228 PMCID: PMC6625228 DOI: 10.3389/fbioe.2019.00161] [Citation(s) in RCA: 84] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2019] [Accepted: 06/20/2019] [Indexed: 12/22/2022] Open
Abstract
Improving and accelerating bone repair still are partially unmet needs in bone regenerative therapies. In this regard, strontium (Sr)-containing bioactive glasses (BGs) are highly-promising materials to tackle this challenge. The positive impacts of Sr on the osteogenesis makes it routinely used in the form of strontium ranelate (SR) in the clinical setting, especially for patients suffering from osteoporosis. Therefore, a large number of silicate-, borate-, and phosphate-based BGs doped with Sr and produced in different shapes have been developed and characterized, in order to be used in the most advanced therapeutic strategies designed for the management of bone defects and injuries. Although the influence of Sr incorporation in the glass is debated regarding the obtained physicochemical and mechanical properties, the biological improvements have been found to be substantial both in vitro and in vivo. In the present study, we provide a comprehensive overview of Sr-containing glasses along with the current state of their clinical use. For this purpose, different types of Sr-doped BG systems are described, including composites, coatings and porous scaffolds, and their applications are discussed in the light of existing experimental data along with the significant challenges ahead.
Collapse
Affiliation(s)
- Saeid Kargozar
- Tissue Engineering Research Group (TERG), Department of Anatomy and Cell Biology, School of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Maziar Montazerian
- Center for Research, Technology and Education in Vitreous Materials, Federal University of São Carlos, São Carlos, Brazil
| | - Elisa Fiume
- Department of Applied Science and Technology, Institute of Materials Physics and Engineering, Politecnico di Torino, Turin, Italy
| | - Francesco Baino
- Department of Applied Science and Technology, Institute of Materials Physics and Engineering, Politecnico di Torino, Turin, Italy
- Interuniversity Center for the Promotion of the 3Rs Principles in Teaching and Research, Italy
| |
Collapse
|
31
|
Biomaterial based treatment of osteoclastic/osteoblastic cell imbalance - Gelatin-modified calcium/strontium phosphates. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2019; 104:109933. [PMID: 31499966 DOI: 10.1016/j.msec.2019.109933] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/09/2019] [Revised: 06/28/2019] [Accepted: 07/01/2019] [Indexed: 12/11/2022]
Abstract
Osteoporotic bone represents - particularly in case of fractures - difficult conditions for its regeneration. In the present study, the focus was put on a degradable bone substitute material of gelatin-modified calcium and strontium phosphates facing the special demands of osteoporotic bone. The release of strontium ions from the material ought to stimulate osteoblastogenesis either direct by ion release or indirect after material resorption by increased presence and activity of osteoclasts, which subsequently stimulate osteoblasts. A new porous material was produced from calcium phosphate, strontium phosphate and a mixed phase of calcium/strontium phosphate precipitated in presence of gelatin. Initially, ion release was analyzed in standard‑calcium containing (2.0 mM) and low-calcium (0.4 mM) minimum essential medium. The cultivation of human peripheral blood mononuclear cells next to the material led to formation of osteoclast-like cells, able to migrate, fuse, and differentiate. Especially, the mixed gelatin-modified calcium/strontium phosphate allowed osteoclastogenesis as proven morphologically and by real-time quantitative polymerase chain reaction (RT-qPCR). It was precisely this material that led to the best osteoblastic reaction of human bone marrow stromal cells cultured on the material. The investigations of the bone substitute material indicate active involvement in the balance of cells of the bone morphogenetic unit.
Collapse
|
32
|
Autefage H, Allen F, Tang HM, Kallepitis C, Gentleman E, Reznikov N, Nitiputri K, Nommeots-Nomm A, O'Donnell MD, Lange C, Seidt BM, Kim TB, Solanki AK, Tallia F, Young G, Lee PD, Pierce BF, Wagermaier W, Fratzl P, Goodship A, Jones JR, Blunn G, Stevens MM. Multiscale analyses reveal native-like lamellar bone repair and near perfect bone-contact with porous strontium-loaded bioactive glass. Biomaterials 2019; 209:152-162. [PMID: 31048149 PMCID: PMC6527862 DOI: 10.1016/j.biomaterials.2019.03.035] [Citation(s) in RCA: 40] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2018] [Revised: 03/08/2019] [Accepted: 03/22/2019] [Indexed: 02/07/2023]
Abstract
The efficient healing of critical-sized bone defects using synthetic biomaterial-based strategies is promising but remains challenging as it requires the development of biomaterials that combine a 3D porous architecture and a robust biological activity. Bioactive glasses (BGs) are attractive candidates as they stimulate a biological response that favors osteogenesis and vascularization, but amorphous 3D porous BGs are difficult to produce because conventional compositions crystallize during processing. Here, we rationally designed a porous, strontium-releasing, bioactive glass-based scaffold (pSrBG) whose composition was tailored to deliver strontium and whose properties were optimized to retain an amorphous phase, induce tissue infiltration and encourage bone formation. The hypothesis was that it would allow the repair of a critical-sized defect in an ovine model with newly-formed bone exhibiting physiological matrix composition and structural architecture. Histological and histomorphometric analyses combined with indentation testing showed pSrBG encouraged near perfect bone-to-material contact and the formation of well-organized lamellar bone. Analysis of bone quality by a combination of Raman spectral imaging, small-angle X-ray scattering, X-ray fluorescence and focused ion beam-scanning electron microscopy demonstrated that the repaired tissue was akin to that of normal, healthy bone, and incorporated small amounts of strontium in the newly formed bone mineral. These data show the potential of pSrBG to induce an efficient repair of critical-sized bone defects and establish the importance of thorough multi-scale characterization in assessing biomaterial outcomes in large animal models.
Collapse
Affiliation(s)
- H Autefage
- Department of Materials, Imperial College London, London, SW7 2AZ, United Kingdom; Department of Bioengineering, Imperial College London, London, SW7 2AZ, United Kingdom; Institute of Biomedical Engineering, Imperial College London, London, SW7 2AZ, United Kingdom
| | - F Allen
- Institute of Orthopaedics and Musculoskeletal Science, University College London, London, WC1E 6BT, United Kingdom
| | - H M Tang
- Department of Materials, Imperial College London, London, SW7 2AZ, United Kingdom
| | - C Kallepitis
- Department of Materials, Imperial College London, London, SW7 2AZ, United Kingdom; Department of Bioengineering, Imperial College London, London, SW7 2AZ, United Kingdom; Institute of Biomedical Engineering, Imperial College London, London, SW7 2AZ, United Kingdom
| | - E Gentleman
- Centre for Craniofacial and Regenerative Biology, King's College London, London, SE1 9RT, United Kingdom
| | - N Reznikov
- Department of Materials, Imperial College London, London, SW7 2AZ, United Kingdom; Department of Bioengineering, Imperial College London, London, SW7 2AZ, United Kingdom; Institute of Biomedical Engineering, Imperial College London, London, SW7 2AZ, United Kingdom
| | - K Nitiputri
- Department of Materials, Imperial College London, London, SW7 2AZ, United Kingdom; Department of Bioengineering, Imperial College London, London, SW7 2AZ, United Kingdom; Institute of Biomedical Engineering, Imperial College London, London, SW7 2AZ, United Kingdom
| | - A Nommeots-Nomm
- Department of Materials, Imperial College London, London, SW7 2AZ, United Kingdom
| | - M D O'Donnell
- Department of Materials, Imperial College London, London, SW7 2AZ, United Kingdom
| | - C Lange
- Max Planck Institute of Colloids and Interfaces, Department of Biomaterials, Research Campus Golm, Potsdam, Germany
| | - B M Seidt
- Max Planck Institute of Colloids and Interfaces, Department of Biomaterials, Research Campus Golm, Potsdam, Germany
| | - T B Kim
- Department of Materials, Imperial College London, London, SW7 2AZ, United Kingdom
| | - A K Solanki
- Department of Materials, Imperial College London, London, SW7 2AZ, United Kingdom; Department of Bioengineering, Imperial College London, London, SW7 2AZ, United Kingdom; Institute of Biomedical Engineering, Imperial College London, London, SW7 2AZ, United Kingdom
| | - F Tallia
- Department of Materials, Imperial College London, London, SW7 2AZ, United Kingdom
| | - G Young
- Department of Materials, Imperial College London, London, SW7 2AZ, United Kingdom
| | - P D Lee
- Department of Materials, Imperial College London, London, SW7 2AZ, United Kingdom; Mechanical Engineering, University College London, Torrington Place, London, WC1E 7JE, United Kingdom
| | - B F Pierce
- Department of Materials, Imperial College London, London, SW7 2AZ, United Kingdom; Department of Bioengineering, Imperial College London, London, SW7 2AZ, United Kingdom; Institute of Biomedical Engineering, Imperial College London, London, SW7 2AZ, United Kingdom
| | - W Wagermaier
- Max Planck Institute of Colloids and Interfaces, Department of Biomaterials, Research Campus Golm, Potsdam, Germany
| | - P Fratzl
- Max Planck Institute of Colloids and Interfaces, Department of Biomaterials, Research Campus Golm, Potsdam, Germany
| | - A Goodship
- Institute of Orthopaedics and Musculoskeletal Science, University College London, London, WC1E 6BT, United Kingdom
| | - J R Jones
- Department of Materials, Imperial College London, London, SW7 2AZ, United Kingdom
| | - G Blunn
- Institute of Orthopaedics and Musculoskeletal Science, University College London, London, WC1E 6BT, United Kingdom; School of Pharmacy and Biomedical Sciences, University of Portsmouth, PO1 2DT Portsmouth, United Kingdom.
| | - M M Stevens
- Department of Materials, Imperial College London, London, SW7 2AZ, United Kingdom; Department of Bioengineering, Imperial College London, London, SW7 2AZ, United Kingdom; Institute of Biomedical Engineering, Imperial College London, London, SW7 2AZ, United Kingdom.
| |
Collapse
|
33
|
Lourenço AH, Torres AL, Vasconcelos DP, Ribeiro-Machado C, Barbosa JN, Barbosa MA, Barrias CC, Ribeiro CC. Osteogenic, anti-osteoclastogenic and immunomodulatory properties of a strontium-releasing hybrid scaffold for bone repair. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2019; 99:1289-1303. [PMID: 30889663 DOI: 10.1016/j.msec.2019.02.053] [Citation(s) in RCA: 53] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/14/2018] [Revised: 02/04/2019] [Accepted: 02/15/2019] [Indexed: 01/08/2023]
Abstract
Strontium (Sr) is known to stimulate osteogenesis, while inhibiting osteoclastogenesis, thus encouraging research on its application as a therapeutic agent for bone repair/regeneration. It has been suggested that it may possess immunomodulatory properties, which might act synergistically in bone repair/regeneration processes. To further explore this hypothesis we have designed a Sr-hybrid system composed of an in situ forming Sr-crosslinked RGD-alginate hydrogel reinforced with Sr-doped hydroxyapatite (HAp) microspheres and studied its in vitro osteoinductive behaviour and in vivo inflammatory response. The Sr-hybrid scaffold acts as a dual Sr2+ delivery system, showing a cumulative Sr2+ release of ca. 0.3 mM after 15 days. In vitro studies using Sr2+concentrations within this range (0 to 3 mM Sr2+) confirmed its ability to induce osteogenic differentiation of mesenchymal stem/stromal cells (MSC), as well as to reduce osteoclastogenesis and osteoclasts (OC) functionality. In comparison with a similar Sr-free system, the Sr-hybrid system stimulated osteogenic differentiation of MSC, while inhibiting the formation of OC. Implantation in an in vivo model of inflammation, revealed an increase in F4/80+/CD206+ cells, highlighting its ability to modulate the inflammatory response as a pro-resolution mediator, through M2 macrophage polarization. Therefore, the Sr-hybrid system is potentially an appealing biomaterial for future clinical applications.
Collapse
Affiliation(s)
- Ana Henriques Lourenço
- i3S - Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Rua Alfredo Allen, 208, 4200 - 135 Porto, Portugal; INEB - Instituto de Engenharia Biomédica, Universidade do Porto, Rua Alfredo Allen, 208, 4200 - 135 Porto, Portugal; Faculdade de Engenharia, Universidade do Porto, Rua Dr. Roberto Frias, s/n, 4200-465 Porto, Portugal
| | - Ana Luísa Torres
- i3S - Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Rua Alfredo Allen, 208, 4200 - 135 Porto, Portugal; INEB - Instituto de Engenharia Biomédica, Universidade do Porto, Rua Alfredo Allen, 208, 4200 - 135 Porto, Portugal; ICBAS - Instituto de Ciências Biomédicas de Abel Salazar, Universidade do Porto, Rua de Jorge Viterbo Ferreira n. 228, 4050-313 Porto, Portugal
| | - Daniela P Vasconcelos
- i3S - Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Rua Alfredo Allen, 208, 4200 - 135 Porto, Portugal; INEB - Instituto de Engenharia Biomédica, Universidade do Porto, Rua Alfredo Allen, 208, 4200 - 135 Porto, Portugal; ICBAS - Instituto de Ciências Biomédicas de Abel Salazar, Universidade do Porto, Rua de Jorge Viterbo Ferreira n. 228, 4050-313 Porto, Portugal
| | - Cláudia Ribeiro-Machado
- i3S - Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Rua Alfredo Allen, 208, 4200 - 135 Porto, Portugal; INEB - Instituto de Engenharia Biomédica, Universidade do Porto, Rua Alfredo Allen, 208, 4200 - 135 Porto, Portugal
| | - Judite N Barbosa
- i3S - Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Rua Alfredo Allen, 208, 4200 - 135 Porto, Portugal; INEB - Instituto de Engenharia Biomédica, Universidade do Porto, Rua Alfredo Allen, 208, 4200 - 135 Porto, Portugal; ICBAS - Instituto de Ciências Biomédicas de Abel Salazar, Universidade do Porto, Rua de Jorge Viterbo Ferreira n. 228, 4050-313 Porto, Portugal
| | - Mário A Barbosa
- i3S - Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Rua Alfredo Allen, 208, 4200 - 135 Porto, Portugal; INEB - Instituto de Engenharia Biomédica, Universidade do Porto, Rua Alfredo Allen, 208, 4200 - 135 Porto, Portugal; ICBAS - Instituto de Ciências Biomédicas de Abel Salazar, Universidade do Porto, Rua de Jorge Viterbo Ferreira n. 228, 4050-313 Porto, Portugal
| | - Cristina C Barrias
- i3S - Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Rua Alfredo Allen, 208, 4200 - 135 Porto, Portugal; INEB - Instituto de Engenharia Biomédica, Universidade do Porto, Rua Alfredo Allen, 208, 4200 - 135 Porto, Portugal; ICBAS - Instituto de Ciências Biomédicas de Abel Salazar, Universidade do Porto, Rua de Jorge Viterbo Ferreira n. 228, 4050-313 Porto, Portugal
| | - Cristina C Ribeiro
- i3S - Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Rua Alfredo Allen, 208, 4200 - 135 Porto, Portugal; INEB - Instituto de Engenharia Biomédica, Universidade do Porto, Rua Alfredo Allen, 208, 4200 - 135 Porto, Portugal; ISEP - Instituto Superior de Engenharia do Porto, Instituto Politécnico do Porto, Rua Dr. António Bernardino de Almeida 431, 4249-015, Porto, Portugal.
| |
Collapse
|
34
|
The Role of Strontium Enriched Hydroxyapatite and Tricalcium Phosphate Biomaterials in Osteoporotic Bone Regeneration. Symmetry (Basel) 2019. [DOI: 10.3390/sym11020229] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Background: Strontium (Sr) enriched biomaterials have been used to improve bone regeneration in vivo. However, most studies provide only two experimental groups. The aim of our study was to compare eleven different bone sample groups from osteoporotic and healthy rabbits’ femoral neck, as it is the most frequent osteoporotic fracture in humans. Methods: Osteoporotic bone defects were filled with hydroxyapatite 30% (HA) and tricalcium phosphate 70% (TCP), 5% Sr-enriched HA30/TCP70, HA70/TCP30, or Sr-HA70/TCP30 granules and were compared with intact leg, sham surgery and healthy non-operated bone. Expression of osteoprotegerin (OPG), nuclear factor kappa beta 105 (NFkB-105), osteocalcin (OC), bone morphogenetic protein 2/4 (BMP-2/4), collagen I (Col-1α), matrix metalloproteinase 2 (MMP-2), tissue inhibitor of matrix metalloproteinase 2 (TIMP-2), interleukin 1 (IL-1) and interleukin 10 (IL-10) was analyzed by histomorphometry and immunohistochemistry. Results: Our study showed that Sr-HA70/TCP30 induced higher expression of all above-mentioned factors compared to intact leg and even higher expression of OC, MMP-2 and NFkB-105 compared to Sr-HA30/TCP70. HA70/TCP30 induced higher level of NFkB-105 and IL-1 compared to HA30/TCP70. Conclusion: Sr-enriched biomaterials improved bone regeneration at molecular level in severe osteoporosis and induced activity of the factors was higher than after pure ceramic, sham or even healthy rabbits.
Collapse
|
35
|
Meininger S, Moseke C, Spatz K, März E, Blum C, Ewald A, Vorndran E. Effect of strontium substitution on the material properties and osteogenic potential of 3D powder printed magnesium phosphate scaffolds. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2019; 98:1145-1158. [PMID: 30812998 DOI: 10.1016/j.msec.2019.01.053] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/02/2018] [Revised: 01/11/2019] [Accepted: 01/12/2019] [Indexed: 12/27/2022]
Abstract
3D powder printing is a versatile method for the fabrication of individual bone implants and was used for the processing of in vivo degradable ceramic scaffolds based on ammonium magnesium phosphate hexahydrate (struvite). In this study, synergetic effects could be achieved by the substitution of magnesium phosphate cements with strontium carbonate. This substitution resulted in 8.2 wt%, 16.4 wt%, and 24.6 wt% Sr2+ doped scaffolds, with a 1.9-3.1 times increased radiopacity compared to pure struvite. The maximal compressive strength of (16.1 ± 1.1) MPa found for strontium substituted magnesium phosphate was in the range of cancelleous bone, which makes these 3D printed structures suitable for medical application in low-load-bearing bone areas. In an ion release study over a course of 18 days, the release of strontium, magnesium, calcium, and phosphate ions from scaffolds was analyzed by means of inductively coupled plasma mass spectrometry. Independent of the scaffold composition the Mg2+ concentrations (83-499 mg/l) continuously increased in the cell media. The Sr2+ release varied between 4.3 μg/day and 15.1 μg/day per g scaffold, corresponding to a Sr2+ concentration in media between 1.14 mg/l and 7.24 mg/l. Moreover, decreasing calcium and phosphate concentrations indicated the precipitation of an amorphous calcium phosphate phase. The superior osteogenic properties of strontium substituted magnesium phosphate, e.g. the increase of osteoblast activity and cell number and the simultaneous suppression of osteoclast differentiation could be verified in vitro by means of WST-assay, TRAP-staining, and SEM imaging.
Collapse
Affiliation(s)
- Susanne Meininger
- Department for Functional Materials in Medicine and Dentistry, University of Würzburg, Germany
| | - Claus Moseke
- Institute for Biomedical Engineering (IBMT), University of Applied Sciences Mittelhessen (THM), Gießen, Germany
| | - Kerstin Spatz
- Department for Functional Materials in Medicine and Dentistry, University of Würzburg, Germany
| | - Emilie März
- Department for Functional Materials in Medicine and Dentistry, University of Würzburg, Germany
| | - Carina Blum
- Department for Functional Materials in Medicine and Dentistry, University of Würzburg, Germany
| | - Andrea Ewald
- Department for Functional Materials in Medicine and Dentistry, University of Würzburg, Germany
| | - Elke Vorndran
- Department for Functional Materials in Medicine and Dentistry, University of Würzburg, Germany.
| |
Collapse
|
36
|
Jiménez M, Abradelo C, San Román J, Rojo L. Bibliographic review on the state of the art of strontium and zinc based regenerative therapies. Recent developments and clinical applications. J Mater Chem B 2019; 7:1974-1985. [DOI: 10.1039/c8tb02738b] [Citation(s) in RCA: 56] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
This review brings up to date the state of the art of strontium and zinc based regenerative therapies, both having a promoting effect on tissue formation and a role inhibiting resorption in musculoskeletal disorders.
Collapse
Affiliation(s)
| | | | - Julio San Román
- Instituto de Ciencia y tecnología de Polímeros
- CSIC
- Spain
- Consorcio Centro de Investigación Biomédica en Red de Bioingeniería
- Biomateriales y Nanomedicina Spain
| | - Luis Rojo
- Instituto de Ciencia y tecnología de Polímeros
- CSIC
- Spain
- Consorcio Centro de Investigación Biomédica en Red de Bioingeniería
- Biomateriales y Nanomedicina Spain
| |
Collapse
|
37
|
Kruppke B, Heinemann C, Wagner AS, Farack J, Wenisch S, Wiesmann HP, Hanke T. Strontium ions promote in vitro human bone marrow stromal cell proliferation and differentiation in calcium-lacking media. Dev Growth Differ 2018; 61:166-175. [PMID: 30585307 DOI: 10.1111/dgd.12588] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2018] [Revised: 11/20/2018] [Accepted: 11/21/2018] [Indexed: 01/07/2023]
Abstract
In order to investigate the influence of calcium and strontium ion concentration on human bone marrow stromal cells and their differentiation to osteoblasts, different cell culture media have been used. Even though this study does not contain a bone substitute material, the reason for this study was the decrease of cation concentration by many biomaterials, due to induced apatite precipitation. As a consequence, the reduced calcium ion concentration is known to affect osteoblastic development. Therefore, the main focus was put on the question, whether an increased strontium concentration (in the range of mM) might be suitable to compensate the lack of calcium ions. The effect of solely strontium ions-with only calcium in the media resulting from fetal calf serum-was investigated. Commercially available calcium-free medium (modified α-MEM) was tested in comparison with media with varied calcium ion concentrations (0.9, 1.8, and 3.6 mM), or strontium ion concentration (0.4, 0.9, 1.8, and 3.6 mM). In case of calcium, higher concentrations cause increased proliferation, while differentiation was shifted to earlier points of time. Differentiation was increased by solely strontium ions only at 0.4-0.9 mM, while proliferation was highest for 0.9-1.8 mM. From these results, it can be concluded that strontium is able to compensate a lack of calcium to a certain degree. Thus, in contrast to calcium ion release, a strontium ion release from bone substitute materials might be applicable for stimulation of bone regeneration without influencing the media saturation.
Collapse
Affiliation(s)
- Benjamin Kruppke
- Max Bergmann Center of Biomaterials and Institute of Materials Science, Technische Universität Dresden, Dresden, Germany
| | - Christiane Heinemann
- Max Bergmann Center of Biomaterials and Institute of Materials Science, Technische Universität Dresden, Dresden, Germany
| | - Alena-Svenja Wagner
- Clinic of Small Animals, c/o Institute of Veterinary-Anatomy, -Histology and -Embryology, Justus-Liebig-University Gießen, Gießen, Germany.,Institute of Veterinary Physiology and Biochemistry, Justus-Liebig-University Gießen, Gießen, Germany
| | - Jana Farack
- Max Bergmann Center of Biomaterials and Institute of Materials Science, Technische Universität Dresden, Dresden, Germany
| | - Sabine Wenisch
- Clinic of Small Animals, c/o Institute of Veterinary-Anatomy, -Histology and -Embryology, Justus-Liebig-University Gießen, Gießen, Germany
| | - Hans-Peter Wiesmann
- Max Bergmann Center of Biomaterials and Institute of Materials Science, Technische Universität Dresden, Dresden, Germany
| | - Thomas Hanke
- Max Bergmann Center of Biomaterials and Institute of Materials Science, Technische Universität Dresden, Dresden, Germany
| |
Collapse
|
38
|
Lino AB, McCarthy AD, Fernández JM. Evaluation of Strontium-Containing PCL-PDIPF Scaffolds for Bone Tissue Engineering: In Vitro and In Vivo Studies. Ann Biomed Eng 2018; 47:902-912. [PMID: 30560305 DOI: 10.1007/s10439-018-02183-z] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2018] [Accepted: 12/04/2018] [Indexed: 12/19/2022]
Abstract
Bone tissue engineering (BTE) has the general objective of restoring and improving damaged bone. A very interesting strategy for BTE is to combine an adequate polymeric scaffold with an osteoinductive compound. Strontium is a divalent cation that can substitute calcium in hydroxyapatite and induce both anabolic and anti-catabolic effects in bone. On the other hand, systemic increases in Sr2+ levels can provoke adverse cardiovascular effects. In the present study we have developed a compatibilized blend of poly-ε-caprolactone (PCL) and polydiisopropyl fumarate (PDIPF) enriched with 1% or 5% Sr2+ and evaluated the applicability of these biomaterials for BTE, both in vitro and in vivo. In vitro, whereas Blend + 5% Sr2+ was pro-inflammatory and anti-osteogenic, Blend + 1% Sr2+ released very low quantities of the cation; was not cytotoxic for cultured macrophages; and showed improved osteocompatibility when used as a substratum for primary cultures of bone marrow stromal cells. In vivo, implants with Blend + 1% Sr2+ significantly increased bone tissue regeneration and improved fibrous bridging (vs. Blend alone), while neither inducing a local inflammatory response nor increased serum levels of Sr2+. These results indicate that our compatibilized blend of PCL-PDIPF enriched with 1% Sr2+ could be useful for BTE.
Collapse
Affiliation(s)
- Agustina Berenice Lino
- LIOMM (Laboratorio de Investigación en Osteopatías y Metabolismo Mineral) - Departamento de Ciencias Biológicas, Facultad de Ciencias Exactas, Universidad Nacional de La Plata, Calle 47 y 115 (1900), La Plata, Argentina
| | - Antonio Desmond McCarthy
- LIOMM (Laboratorio de Investigación en Osteopatías y Metabolismo Mineral) - Departamento de Ciencias Biológicas, Facultad de Ciencias Exactas, Universidad Nacional de La Plata, Calle 47 y 115 (1900), La Plata, Argentina
| | - Juan Manuel Fernández
- LIOMM (Laboratorio de Investigación en Osteopatías y Metabolismo Mineral) - Departamento de Ciencias Biológicas, Facultad de Ciencias Exactas, Universidad Nacional de La Plata, Calle 47 y 115 (1900), La Plata, Argentina. .,Cátedra Bioquímica Patológica, Facultad de Ciencias Exactas, Universidad Nacional de La Plata, Calle 47 y 115 (1900), La Plata, Argentina.
| |
Collapse
|
39
|
Romero-Gavilán F, Araújo-Gomes N, García-Arnáez I, Martínez-Ramos C, Elortza F, Azkargorta M, Iloro I, Gurruchaga M, Suay J, Goñi I. The effect of strontium incorporation into sol-gel biomaterials on their protein adsorption and cell interactions. Colloids Surf B Biointerfaces 2018; 174:9-16. [PMID: 30408675 DOI: 10.1016/j.colsurfb.2018.10.075] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2018] [Revised: 10/11/2018] [Accepted: 10/25/2018] [Indexed: 01/06/2023]
Abstract
It is known strontium can both inhibit the osteoclast formation and stimulate the osteoblast maturation, so biomaterials containing this element can favour bone structure stabilisation. The addition of Sr to biomaterials could affect their interactions with proteins and cells. Here, a silica-hybrid sol-gel network doped with different amounts of SrCl2 and applied as coatings on titanium discs was examined. in vitro analysis was performed to determine the potential effect of Sr in the coatings, showing enhanced gene expression of osteogenic markers (alkaline phosphatase and transforming growth factor-β) in MC3T3-E1 incubated with Sr-doped biomaterials. The examination of inflammatory markers (tumour necrosis factor-α and interleukin 10) in RAW 264.7 macrophages revealed an anti-inflammatory potential of these materials. Proteins adsorbed onto the coatings incubated with human serum (3 h at 37 °C) were also analysed; mass spectrometry was used to characterise the proteins adhering to materials with different Sr content. Adding Sr to the coatings increased their affinity to APOE and VTNC proteins (associated with anti-inflammatory and osteogenic functions). Moreover, the proteins involved in coagulation processes, such as prothrombin, were more abundant on the coatings containing Sr than on the base sol-gel surfaces. Correlations between gene expression and proteomic results were also examined.
Collapse
Affiliation(s)
- F Romero-Gavilán
- Departamento de Ingeniería de Sistemas Industriales y Diseño, Universitat Jaume I, Av. Vicent-Sos Baynat s/n. Castellón 12071. Spain
| | - N Araújo-Gomes
- Departamento de Ingeniería de Sistemas Industriales y Diseño, Universitat Jaume I, Av. Vicent-Sos Baynat s/n. Castellón 12071. Spain; Department of Medicine. Universitat Jaume I, Av. Vicent-Sos Baynat s/n. Castellón 12071. Spain.
| | - I García-Arnáez
- Facultad de Ciencias Químicas. Universidad del País Vasco (UPV/EHU). P. M. de Lardizábal, 3. San Sebastián 20018. Spain
| | - C Martínez-Ramos
- Department of Medicine. Universitat Jaume I, Av. Vicent-Sos Baynat s/n. Castellón 12071. Spain
| | - F Elortza
- Proteomics Platform, CIC bioGUNE, CIBERehd, ProteoRed-ISCIII, Bizkaia Science and Technology Park, 48160 Derio, Spain
| | - M Azkargorta
- Proteomics Platform, CIC bioGUNE, CIBERehd, ProteoRed-ISCIII, Bizkaia Science and Technology Park, 48160 Derio, Spain
| | - I Iloro
- Proteomics Platform, CIC bioGUNE, CIBERehd, ProteoRed-ISCIII, Bizkaia Science and Technology Park, 48160 Derio, Spain
| | - M Gurruchaga
- Facultad de Ciencias Químicas. Universidad del País Vasco (UPV/EHU). P. M. de Lardizábal, 3. San Sebastián 20018. Spain
| | - J Suay
- Departamento de Ingeniería de Sistemas Industriales y Diseño, Universitat Jaume I, Av. Vicent-Sos Baynat s/n. Castellón 12071. Spain
| | - I Goñi
- Facultad de Ciencias Químicas. Universidad del País Vasco (UPV/EHU). P. M. de Lardizábal, 3. San Sebastián 20018. Spain
| |
Collapse
|
40
|
Wang X, Shao J, Abd El Raouf M, Xie H, Huang H, Wang H, Chu PK, Yu XF, Yang Y, AbdEl-Aal AM, Mekkawy NH, Miron RJ, Zhang Y. Near-infrared light-triggered drug delivery system based on black phosphorus for in vivo bone regeneration. Biomaterials 2018; 179:164-174. [DOI: 10.1016/j.biomaterials.2018.06.039] [Citation(s) in RCA: 70] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2018] [Revised: 06/07/2018] [Accepted: 06/28/2018] [Indexed: 10/28/2022]
|
41
|
Zarins J, Pilmane M, Sidhoma E, Salma I, Locs J. Immunohistochemical evaluation after Sr-enriched biphasic ceramic implantation in rabbits femoral neck: comparison of seven different bone conditions. JOURNAL OF MATERIALS SCIENCE. MATERIALS IN MEDICINE 2018; 29:119. [PMID: 30030632 DOI: 10.1007/s10856-018-6124-7] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/11/2018] [Accepted: 07/07/2018] [Indexed: 06/08/2023]
Abstract
Strontium (Sr) has shown effectiveness for stimulating bone remodeling. Nevertheless, the exact therapeutic values are not established yet. Authors hypothesized that local application of Sr-enriched ceramics would enhance bone remodeling in constant osteoporosis of rabbits' femoral neck bone. Seven different bone conditions were analyzed: ten healthy rabbits composed a control group, while other twenty underwent ovariectomy and were divided into three groups. Bone defect was filled with hydroxyapatite 30% (HAP) and tricalcium phosphate 70% (TCP) granules in 7 rabbits, 5% of Sr-enriched HAP/TCP granules in 7, but sham defect was left unfilled in 6 rabbits. Bone samples were obtained from operated and non-operated legs 12 weeks after surgery and analyzed by histomorphometry and immunohistochemistry (IMH). Mean trabecular bone area in control group was 0.393 mm2, in HAP/TCP - 0.226 mm2, in HAP/TCP/Sr - 0.234 mm2 and after sham surgery - 0.242 mm2. IMH revealed that HAP/TCP/Sr induced most noticeable increase of nuclear factor kappa beta 105 (NFkB 105), osteoprotegerin (OPG), osteocalcin (OC), bone morphogenetic protein 2/4 (BMP 2/4), collagen type 1α (COL-1α), interleukin 1 (IL-1) with comparison to intact leg; NFkB 105 and OPG rather than pure HAP/TCP or sham bone. We concluded that Sr-enriched biomaterials induce higher potential to improve bone regeneration than pure bioceramics in constant osteoporosis of femoral neck bone. Further studies on bigger osteoporotic animals using Sr-substituted orthopedic implants for femoral neck fixation should be performed to confirm valuable role in local treatment of osteoporotic femoral neck fractures in humans.
Collapse
Affiliation(s)
- Janis Zarins
- Department of Hand and Plastic Surgery, Microsurgery Centre of Latvia, Brivibas Street 410, Riga, Latvia.
- Institute of Anatomy and Anthropology, Riga Stradins University, Kronvalda bulvaris 9, Riga, Latvia.
| | - Mara Pilmane
- Institute of Anatomy and Anthropology, Riga Stradins University, Kronvalda bulvaris 9, Riga, Latvia
| | - Elga Sidhoma
- Institute of Anatomy and Anthropology, Riga Stradins University, Kronvalda bulvaris 9, Riga, Latvia
| | - Ilze Salma
- Department of Oral and Maxillofacial Surgery, Riga Stradins University, Dzirciema Street 20, Riga, Latvia
| | - Janis Locs
- Rudolfs Cimdins Riga Biomaterials Innovations and Development Centre of Riga Technical University, Pulka Street 3, Riga, Latvia
| |
Collapse
|
42
|
Gradient coatings of strontium hydroxyapatite/zinc β-tricalcium phosphate as a tool to modulate osteoblast/osteoclast response. J Inorg Biochem 2018. [DOI: 10.1016/j.jinorgbio.2018.02.024] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
|
43
|
Morochnik S, Zhu Y, Duan C, Cai M, Reid RR, He TC, Koh J, Szleifer I, Ameer GA. A thermoresponsive, citrate-based macromolecule for bone regenerative engineering. J Biomed Mater Res A 2018; 106:1743-1752. [PMID: 29396921 DOI: 10.1002/jbm.a.36358] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2017] [Revised: 01/08/2018] [Accepted: 01/24/2018] [Indexed: 11/09/2022]
Abstract
There is a need in orthopaedic and craniomaxillofacial surgeries for materials that are easy to handle and apply to a surgical site, can fill and fully conform to the bone defect, and can promote the formation of new bone tissue. Thermoresponsive polymers that undergo liquid to gel transition at physiological temperature can potentially be used to meet these handling and shape-conforming requirements. However, there are no reports on their capacity to induce in vivo bone formation. The objective of this research was to investigate whether the functionalization of the thermoresponsive, antioxidant macromolecule poly(poly-ethyleneglycol citrate-co-N-isopropylacrylamide) (PPCN), with strontium, phosphate, and/or the cyclic RGD peptide would render it a hydrogel with osteoinductive properties. We show that all formulations of functionalized PPCN retain thermoresponsive properties and can induce osteodifferentiation of human mesenchymal stem cells without the need for exogenous osteogenic supplements. PPCN-Sr was the most osteoinductive formulation in vitro and produced robust localized mineralization and osteogenesis in subcutaneous and intramuscular tissue in a mouse model. Strontium was not detected in any of the major organs. Our results support the use of functionalized PPCN as a valuable tool for the recruitment, survival, and differentiation of cells critical to the development of new bone and the induction of bone formation in vivo. © 2018 Wiley Periodicals, Inc. J Biomed Mater Res Part A: 106A: 1743-1752, 2018.
Collapse
Affiliation(s)
- Simona Morochnik
- Biomedical Engineering Department and Chemistry of Life Processes Institute, Northwestern University, Evanston, Illinois, USA
| | - Yunxiao Zhu
- Biomedical Engineering Department, Northwestern University, Evanston, Illinois, USA
| | - Chongwen Duan
- Biomedical Engineering Department, Northwestern University, Evanston, Illinois, USA
| | - Michelle Cai
- Biomedical Engineering Department, Northwestern University, Evanston, Illinois, USA
| | - Russell R Reid
- Department of Surgery, Plastic and Reconstructive Surgery, The University of Chicago Medical Center, Chicago, Illinois, 60637, USA
| | - Tong-Chuan He
- Department of Orthopaedic Surgery and Rehabilitation Medicine, The University of Chicago Medical Center, Chicago, Illinois, 60637, USA
| | - Jason Koh
- NorthShore Orthopaedic Institute, NorthShore University HealthSystem, 2650 Ridge Avenue Suite 2505, Evanston, Illinois, 60201, USA
| | - Igal Szleifer
- Biomedical Engineering Department and Chemistry of Life Processes Institute, Northwestern University, Evanston, Illinois, USA.,Department of Chemistry, Northwestern University, Evanston, Illinois, USA
| | - Guillermo A Ameer
- Biomedical Engineering Department and Chemistry of Life Processes Institute, Northwestern University, Evanston, Illinois, USA.,Department of Surgery, Feinberg School of Medicine, Chicago, Illinois, USA
| |
Collapse
|
44
|
Deng Y, Liu M, Chen X, Wang M, Li X, Xiao Y, Zhang X. Enhanced osteoinductivity of porous biphasic calcium phosphate ceramic beads with high content of strontium-incorporated calcium-deficient hydroxyapatite. J Mater Chem B 2018; 6:6572-6584. [DOI: 10.1039/c8tb01637b] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Further biomimicking natural bone and enhancing osteoinductivity to meet the requirements of regenerative medicine is the key development direction of biphasic calcium phosphate (BCP) ceramics.
Collapse
Affiliation(s)
- Yanglong Deng
- National Engineering Research Center for Biomaterials
- Sichuan University
- Chengdu 610064
- China
| | - Minjun Liu
- National Engineering Research Center for Biomaterials
- Sichuan University
- Chengdu 610064
- China
| | - Xuening Chen
- National Engineering Research Center for Biomaterials
- Sichuan University
- Chengdu 610064
- China
| | - Menglu Wang
- National Engineering Research Center for Biomaterials
- Sichuan University
- Chengdu 610064
- China
| | - Xiangfeng Li
- National Engineering Research Center for Biomaterials
- Sichuan University
- Chengdu 610064
- China
| | - Yumei Xiao
- National Engineering Research Center for Biomaterials
- Sichuan University
- Chengdu 610064
- China
| | - Xingdong Zhang
- National Engineering Research Center for Biomaterials
- Sichuan University
- Chengdu 610064
- China
| |
Collapse
|