1
|
Tang KN, Adkesson MJ, Cárdenas-Alayza S, Adamovicz L, Deming AC, Wellehan JFX, Childress A, Cortes-Hinojosa G, Colegrove K, Langan JN, Allender MC. Otariid gammaherpesvirus 1 in South American fur seals (Arctocephalus australis) and a novel related herpesvirus in free-ranging South American sea lions (Otaria byronia): Prevalence and effects of age, sex, and sample type. PLoS One 2024; 19:e0299404. [PMID: 38446776 PMCID: PMC10917305 DOI: 10.1371/journal.pone.0299404] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2023] [Accepted: 02/08/2024] [Indexed: 03/08/2024] Open
Abstract
Otariid gammaherpesvirus 1 (OtGHV1) is associated with high rates of urogenital carcinoma in free-ranging California sea lions (Zalophus californianus; CSL), and until recently was reported only in the Northern Hemisphere. The objective of this study was to survey free-ranging South American sea lions (Otaria byronia; SASL) and South American fur seals (Arctocephalus australis: SAFS) in Punta San Juan, Peru for OtGHV1 and to determine prevalence characteristics. Twenty-one percent (14/67) of urogenital swabs collected over three years (2011, 2014, 2015) from live pinnipeds of both species tested positive with a pan-herpesvirus conventional PCR. Sequencing of SAFS amplicons revealed 100% homology to OtGHV1 at the DNA polymerase, glycoprotein B, and viral bcl2-like genes. Sequencing of SASL amplicons revealed a novel related virus, herein called Otariid gammaherpesvirus 8 (OtGHV8). For comparison of sample sites, urogenital, conjunctival, and oropharyngeal swabs collected from 136 live pinnipeds of both species at Punta San Juan between 2011-2018 were then assayed using quantitative PCR for a segment of the OtGHV1/8 DNA polymerase gene using a qPCR assay now determined to cross-react between the two viruses. In total, across both species, 38.6% (51/132) of urogenital swabs, 5.6% (4/71) of conjunctival swabs, and 1.1% (1/90) of oropharyngeal swabs were positive for OtGHV1/8, with SASL only positive on urogenital swabs. Results from SASL were complicated by the finding of OtGHV8, necessitating further study to determine prevalence of OtGHV1 versus OtGHV8 using an alternate assay. Results from SAFS suggest a potential relationship between OtGHV1 in SAFS and CSL. Though necropsy surveillance in SAFS is very limited, geographic patterns of OtGHV1-associated urogenital carcinoma in CSL and the tendency of herpesviruses to cause more detrimental disease in aberrant hosts suggests that it is possible that SAFS may be the definitive host of OtGHV1, which gives further insight into the diversity and phyogeography of this clade of related gammaherpesviruses.
Collapse
Affiliation(s)
- Karisa N. Tang
- Chicago Zoological Society, Brookfield Zoo, Brookfield, IL, United States of America
- Illinois Zoological and Aquatic Animal Residency, Urbana, IL, United States of America
- A. Watson Armour III Center for Animal Health and Welfare, John G. Shedd Aquarium, Chicago, IL, United States of America
| | - Michael J. Adkesson
- Chicago Zoological Society, Brookfield Zoo, Brookfield, IL, United States of America
| | - Susana Cárdenas-Alayza
- Centro para la Sostenibilidad Ambiental, Universidad Peruana Cayetano Heredia, Lima, Peru
- Departamento de Ciencias Biológicas y Fisiológicas, Facultad de Ciencias y Filosofía, Universidad Peruana Cayetano Heredia, Lima, Peru
| | - Laura Adamovicz
- Wildlife Epidemiology Laboratory, University of Illinois College of Veterinary Medicine, Urbana, IL, United States of America
| | - Alissa C. Deming
- Pacific Marine Mammal Center, Laguna Beach, CA, United States of America
- Department of Comparative, Diagnostic, and Population Medicine, College of Veterinary Medicine, University of Florida, Gainesville, FL, United States of America
| | - James F. X. Wellehan
- Department of Comparative, Diagnostic, and Population Medicine, College of Veterinary Medicine, University of Florida, Gainesville, FL, United States of America
| | - April Childress
- Department of Comparative, Diagnostic, and Population Medicine, College of Veterinary Medicine, University of Florida, Gainesville, FL, United States of America
| | - Galaxia Cortes-Hinojosa
- Escuela de Medicina Veterinaria, Facultad de Agronomía e Ingeniería Forestal, Facultad de Ciencias Biológicas y Facultad de Medicina, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Kathleen Colegrove
- Zoological Pathology Program, Veterinary Diagnostic Laboratory, College of Veterinary Medicine, University of Illinois, Brookfield, IL, United States of America
| | - Jennifer N. Langan
- Chicago Zoological Society, Brookfield Zoo, Brookfield, IL, United States of America
- Department of Veterinary Clinical Medicine, College of Veterinary Medicine, University of Illinois, Urbana, IL, United States of America
| | - Matthew C. Allender
- Chicago Zoological Society, Brookfield Zoo, Brookfield, IL, United States of America
- Wildlife Epidemiology Laboratory, University of Illinois College of Veterinary Medicine, Urbana, IL, United States of America
| |
Collapse
|
2
|
Rothenberg SE, Beechler BR, Burco JD, Rae S, Steingass SM, Barton D, Johns JL, Russell DS, Deignan K, Blackledge MM, Nation A. Associations between urogenital carcinoma and DECA-BDE (BDE-209) among wild California Sea lions (Zalophus californianus) and Steller Sea lions (Eumetopias jubatus). THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 900:166412. [PMID: 37611708 DOI: 10.1016/j.scitotenv.2023.166412] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/03/2023] [Revised: 08/15/2023] [Accepted: 08/16/2023] [Indexed: 08/25/2023]
Abstract
Urogenital carcinoma (UGC) is prevalent among California sea lions (Zalophus californianus), while less is known concerning UGC among Steller sea lions (Eumetopias jubatus). Our objective was to investigate associations between UGC and polybrominated diphenyl ethers (PBDEs) among both sea lion species. Twenty-nine California sea lions and 20 Steller sea lions were lethally removed from the Columbia River Basin, Oregon, USA between 2020 and 2021, under Section 120 of the Marine Mammal Protection Act. UGC was diagnosed through gross necropsy and histopathology. Forty PBDE congeners were analyzed in blubber, including BDE-209, a potential carcinogen. Twenty (69 %) California sea lions and one (5 %) Steller sea lion were diagnosed with UGC. All cases were identified as early stage UGC, aside from one California sea lion with more advanced stage UGC. Among California sea lions, associations between PBDEs and UGC were analyzed using logistic regression. In the adjusted model, BDE-209 (log2-transformed) was associated with increased odds of UGC [Odds Ratio (OR): 4.68, 95 % confidence interval: 1.04, 21.0, OR p-value = 0.044). This is the first study to report BDE-209 concentrations in sea lion blubber. The percentages of California and Steller sea lions diagnosed with UGC were higher than expected for wild (non-stranded) sea lions. Our results suggested blubber BDE-209 was potentially associated with UGC in California sea lions in the Columbia River Basin.
Collapse
Affiliation(s)
- Sarah E Rothenberg
- Oregon State University, College of Public Health and Human Sciences, Corvallis, OR 97331, United States.
| | - Brianna R Beechler
- Oregon State University, Carlson College of Veterinary Medicine, Corvallis, OR 97331, United States.
| | - Julia D Burco
- Oregon Department of Fish and Wildlife, Corvallis, OR 97330, United States.
| | - Samantha Rae
- Oregon State University, Carlson College of Veterinary Medicine, Corvallis, OR 97331, United States.
| | - Sheanna M Steingass
- Oregon State University, College of Agricultural Sciences, Corvallis, OR 97331, United States.
| | - Dianne Barton
- Columbia River Inter-Tribal Fish Commission, Portland, OR 97232, United States.
| | - Jennifer L Johns
- Oregon State University, Carlson College of Veterinary Medicine, Corvallis, OR 97331, United States.
| | - Duncan S Russell
- Oregon State University, Carlson College of Veterinary Medicine, Corvallis, OR 97331, United States.
| | - Kristen Deignan
- Oregon State University, Carlson College of Veterinary Medicine, Corvallis, OR 97331, United States.
| | - Megan M Blackledge
- Oregon State University, College of Science, Corvallis, OR 97331, United States.
| | - Autumn Nation
- Oregon State University, Carlson College of Veterinary Medicine, Corvallis, OR 97331, United States.
| |
Collapse
|
3
|
Tanaka T, Asano T, Sano M, Takei J, Hosono H, Nanamiya R, Nakamura T, Yanaka M, Harada H, Fukui M, Suzuki H, Uchida K, Nakagawa T, Kato Y, Kaneko MK. Development of Monoclonal Antibody PMab-269 Against California Sea Lion Podoplanin. Monoclon Antib Immunodiagn Immunother 2021; 40:124-133. [PMID: 34042540 DOI: 10.1089/mab.2021.0011] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
The development of protein-specific antibodies is essential for understanding a wide variety of biological phenomena. Parasitic and viral infections and cancers are known to occur within California sea lion (Zalophus californianus) populations. However, sensitive and specific monoclonal antibodies (mAbs) for the pathophysiological analysis of California sea lion tissues have not yet been developed. A type I transmembrane glycoprotein, podoplanin (PDPN), is a known diagnostic marker of lymphatic endothelial cells. We have previously developed several anti-PDPN mAbs in various mammalian species, with applications in flow cytometry, Western blotting, and immunohistochemistry. In this study, we established a novel mAb against California sea lion PDPN (seaPDPN), clone PMab-269 (mouse IgG1, kappa), using a Cell-Based Immunization and Screening method. PMab-269 is specifically detected in seaPDPN-overexpressed Chinese hamster ovary (CHO)-K1 cells using flow cytometry and Western blotting. Moreover, PMab-269 clearly identified pulmonary type I alveolar cells, renal podocytes, and colon lymphatic endothelial cells in California sea lion tissues using immunohistochemistry. These findings demonstrate the usefulness of PMab-269 for the pathophysiological analysis of lung, kidney, and lymphatic tissues of the California sea lion.
Collapse
Affiliation(s)
- Tomohiro Tanaka
- Department of Antibody Drug Development, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Teizo Asano
- Department of Antibody Drug Development, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Masato Sano
- Department of Antibody Drug Development, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Junko Takei
- Department of Antibody Drug Development, Tohoku University Graduate School of Medicine, Sendai, Japan.,Department of Oral and Maxillofacial Surgery, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, Bunkyo-ku, Japan
| | - Hideki Hosono
- Department of Antibody Drug Development, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Ren Nanamiya
- Department of Antibody Drug Development, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Takuro Nakamura
- Department of Antibody Drug Development, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Miyuki Yanaka
- Department of Antibody Drug Development, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Hiroyuki Harada
- Department of Oral and Maxillofacial Surgery, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, Bunkyo-ku, Japan
| | | | - Hiroyoshi Suzuki
- Department of Pathology and Laboratory Medicine, Sendai Medical Center, Sendai, Japan
| | - Kazuyuki Uchida
- Laboratories of Veterinary Pathology, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Bunkyo-ku, Japan
| | - Takayuki Nakagawa
- Laboratories of Veterinary Surgery, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Bunkyo-ku, Japan
| | - Yukinari Kato
- Department of Antibody Drug Development, Tohoku University Graduate School of Medicine, Sendai, Japan.,New Industry Creation Hatchery Center, Tohoku University, Sendai, Japan
| | - Mika K Kaneko
- Department of Antibody Drug Development, Tohoku University Graduate School of Medicine, Sendai, Japan
| |
Collapse
|
4
|
Deming AC, Wellehan JFX, Colegrove KM, Hall A, Luff J, Lowenstine L, Duignan P, Cortés-Hinojosa G, Gulland FMD. Unlocking the Role of a Genital Herpesvirus, Otarine Herpesvirus 1, in California Sea Lion Cervical Cancer. Animals (Basel) 2021; 11:491. [PMID: 33668446 PMCID: PMC7918579 DOI: 10.3390/ani11020491] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2020] [Revised: 02/02/2021] [Accepted: 02/03/2021] [Indexed: 12/12/2022] Open
Abstract
Urogenital carcinoma in California sea lions (Zalophus californianus) is the most common cancer of marine mammals. Primary tumors occur in the cervix, vagina, penis, or prepuce and aggressively metastasize resulting in death. This cancer has been strongly associated with a sexually transmitted herpesvirus, otarine herpesvirus 1 (OtHV1), but the virus has been detected in genital tracts of sea lions without cancer and a causative link has not been established. To determine if OtHV1 has a role in causing urogenital carcinoma we sequenced the viral genome, quantified viral load from cervical tissue from sea lions with (n = 95) and without (n = 163) urogenital carcinoma, and measured viral mRNA expression using in situ mRNA hybridization (Basescope®) to quantify and identify the location of OtHV1 mRNA expression. Of the 95 sea lions diagnosed with urogenital carcinoma, 100% were qPCR positive for OtHV1, and 36% of the sea lions with a normal cervix were positive for the virus. The non-cancer OtHV1 positive cases had significantly lower viral loads in their cervix compared to the cervices from sea lions with urogenital carcinoma. The OtHV1 genome had several genes similar to the known oncogenes, and RNA in situ hybridization demonstrated high OtHV1 mRNA expression within the carcinoma lesions but not in normal cervical epithelium. The high viral loads, high mRNA expression of OtHV1 in the cervical tumors, and the presence of suspected OtHV1 oncogenes support the hypothesis that OtHV1 plays a significant role in the development of sea lion urogenital carcinoma.
Collapse
Affiliation(s)
- Alissa C. Deming
- The Pacific Mammal Center, Laguna Beach, CA 92651, USA
- Aquatic Animal Health and Comparative, Diagnostic and Population Medicine, College of Veterinary Medicine, University of Florida, Gainesville, FL 32608, USA; (J.F.X.W.); (G.C.-H.)
- Veterinary Sciences, The Marine Mammal Center, Sausalito, CA 94965, USA; (P.D.); (F.M.D.G.)
| | - James F. X. Wellehan
- Aquatic Animal Health and Comparative, Diagnostic and Population Medicine, College of Veterinary Medicine, University of Florida, Gainesville, FL 32608, USA; (J.F.X.W.); (G.C.-H.)
| | - Kathleen M. Colegrove
- Zoological Pathology Program, College of Veterinary Medicine, University of Illinois at Urbana-Champaign, Brookfield, IL 60513, USA;
| | - Ailsa Hall
- Sea Mammal Research Unit, Scottish Oceans Institute, School of Biology, University of St. Andrews, St. Andrews KY16 9AJ, UK;
| | - Jennifer Luff
- Population Health and Pathobiology, College of Veterinary Medicine, North Carolina State University, Raleigh, NC 27606, USA;
| | - Linda Lowenstine
- Pathology, Microbiology and Immunology and Karen C. Drayer Wildlife Health Center, School of Veterinary Medicine, University of California Davis, Davis, CA 95616, USA;
| | - Pádraig Duignan
- Veterinary Sciences, The Marine Mammal Center, Sausalito, CA 94965, USA; (P.D.); (F.M.D.G.)
| | - Galaxia Cortés-Hinojosa
- Aquatic Animal Health and Comparative, Diagnostic and Population Medicine, College of Veterinary Medicine, University of Florida, Gainesville, FL 32608, USA; (J.F.X.W.); (G.C.-H.)
- Current address: School of Veterinary Medicine, Pontificia Universidad Católica de Chile, Avenida Vicuña Mackenna 4860, Santiago 7820436, Chile
| | - Frances M. D. Gulland
- Veterinary Sciences, The Marine Mammal Center, Sausalito, CA 94965, USA; (P.D.); (F.M.D.G.)
- Pathology, Microbiology and Immunology and Karen C. Drayer Wildlife Health Center, School of Veterinary Medicine, University of California Davis, Davis, CA 95616, USA;
| |
Collapse
|
5
|
Abu-Helil B, van der Weyden L. Metastasis in the wild: investigating metastasis in non-laboratory animals. Clin Exp Metastasis 2019; 36:15-28. [PMID: 30739231 PMCID: PMC6394581 DOI: 10.1007/s10585-019-09956-3] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2018] [Accepted: 01/29/2019] [Indexed: 01/13/2023]
Abstract
Humans are not the only species to spontaneously develop metastatic cancer as cases of metastasis have been reported in a wide range of animals, including dinosaurs. Mouse models have been an invaluable tool in experimental and clinical metastasis research, with the use of genetically-engineered mouse models that spontaneously develop metastasis or ectopic/orthotopic transplantation of tumour cells to wildtype or immunodeficient mice being responsible for many key advances in our understanding of metastasis. However, are there other species that can also be relevant models? Similarities to humans in terms of environmental exposures, life-span, genetics, histopathology and available therapeutics are all factors that can be considered when looking at species other than the laboratory mouse. This review will explore the occurrence of metastasis in multiple species from a variety of domestic, captive and free-living veterinary cases to assist in identifying potential alternative experimental and clinical research models relevant to humans.
Collapse
Affiliation(s)
- Bushra Abu-Helil
- Experimental Cancer Genetics (T113), Wellcome Sanger Institute, Wellcome Genome Campus, Hinxton, Cambridge, CB10 1SA, UK.
| | - Louise van der Weyden
- Experimental Cancer Genetics (T113), Wellcome Sanger Institute, Wellcome Genome Campus, Hinxton, Cambridge, CB10 1SA, UK
| |
Collapse
|
6
|
Prevalence of Urogenital Carcinoma in Stranded California Sea Lions ( Zalophus californianus) from 2005-15. J Wildl Dis 2018; 54:581-586. [PMID: 29498901 DOI: 10.7589/2017-08-208] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Urogenital carcinoma is common in wild California sea lions ( Zalophus californianus) along the west coast of the US. From 1979 to 1994, this cancer was observed in 18% (66/370) of necropsied subadult and adult sea lions at The Marine Mammal Center in Sausalito, California. A retrospective review of records from 1 January 2005 to 31 December 2015 was performed to characterize prevalence and characteristics of cancer over this decade. Fourteen percent (263/1917) of necropsied sea lions had cancer, of which 90% (237/263) were urogenital carcinoma. The prevalence of urogenital carcinoma was significantly higher in adults compared to juveniles and subadults. Advanced-stage disease with metastases was identified histologically in 78% (182/232) of cases and was the cause of death in 95% (172/182) of these cases. Metastases were most common in lung and lymph nodes, and hydronephrosis, secondary to ureter obstruction by metastases, was identified in 62% (114/185) of animals with advanced disease. No significant temporal change in prevalence was detected over the decade, and this highly aggressive, fatal cancer remains common in stranded California sea lions.
Collapse
|
7
|
Colegrove KM, Burek-Huntington KA, Roe W, Siebert U. Pinnipediae. PATHOLOGY OF WILDLIFE AND ZOO ANIMALS 2018. [PMCID: PMC7150363 DOI: 10.1016/b978-0-12-805306-5.00023-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
This chapter reviews common diseases of pinnipeds, including species in the Otariidae (fur seals and sea lions), Phocidae (true seals), and Odobenidae (walrus) families. Much of the knowledge on pathologic conditions of pinnipeds comes from necropsies of stranded animals and those housed in captivity. As such, disease knowledge is biased toward species frequently housed in zoos and aquaria, those that strand more commonly, or those in which free-ranging populations are more easily accessible. Though historically systematic evaluations of wild populations have rarely been accomplished, in the past 10 years, with advances in marine mammal medicine and anesthesia, biologists and veterinarians more frequently completed live animal health field investigations to evaluate health and disease in free-ranging pinniped populations.
Collapse
|
8
|
Ní Leathlobhair M, Gulland FMD, Murchison EP. No evidence for clonal transmission of urogenital carcinoma in California sea lions ( Zalophus californianus). Wellcome Open Res 2017; 2:46. [PMID: 28948233 PMCID: PMC5527528 DOI: 10.12688/wellcomeopenres.11483.1] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/01/2017] [Indexed: 12/03/2022] Open
Abstract
Urogenital carcinoma is a highly metastatic cancer affecting California sea lions (
Zalophus californianus). The disease has high prevalence amongst stranded animals, and is one of the most commonly observed cancers in wildlife. The genital localisation of primary tumours suggests the possibility that coital transmission of an infectious agent could underlie this disease. Otarine herpesvirus type 1 has been associated with lesions, however a causative role for this virus has not been confirmed. We investigated the possibility that urogenital carcinoma might be clonally transmissible, spread by the direct transfer of cancer cells. Analysis of sequences at the mitochondrial DNA control region in seven matched tumour and host pairs confirmed that tumour genotypes were identical to those of their matched hosts and did not show similarity with tumours from other individuals. Thus our findings suggest that urogenital carcinoma in California sea lions is not clonally transmitted, but rather arises from transformed host cells.
Collapse
Affiliation(s)
- Máire Ní Leathlobhair
- Transmissible Cancer Group, Department of Veterinary Medicine, University of Cambridge, Cambridge, CB3 0ES, UK
| | | | - Elizabeth P Murchison
- Transmissible Cancer Group, Department of Veterinary Medicine, University of Cambridge, Cambridge, CB3 0ES, UK
| |
Collapse
|
9
|
Fravel VA, Lowenstine LJ, Koehne A. Ectopic pregnancy with associated gestational choriocarcinoma in a California sea lion (Zalophus californianus). DISEASES OF AQUATIC ORGANISMS 2016; 120:159-164. [PMID: 27409239 DOI: 10.3354/dao03014] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
A wild-born, captive-reared, 14 yr old, primiparous female California sea lion Zalophus californianus presented for anorexia of 14 d duration and abdominal distention. Routine complete blood cell count revealed leukocytosis with a neutrophilia, and serum chemistry revealed hypoalbumenemia and hyponatremia. Treatment with broad spectrum antibiotics and non-steroidal anti-inflammatories were started, but the animal continued to decline. Abdominal radiographs revealed a mature mineralized fetal skull and spine in the caudal abdomen and abdominal ultrasound revealed ascites but could not confirm the fetus. The patient was taken to surgery where a full term fetus was found outside of the uterus but within the fetal membranes, representing a secondary ectopic pregnancy. The patient passed away during surgery and was taken to necropsy. Gross necropsy revealed a diffuse peritonitis with yellow deposits over the serosal surfaces of the abdominal organs. The uterus appeared intact grossly and the ovaries appeared abnormal. The mesenteric, renal, and sub-lumbar nodes were enlarged and edematous. Histopathology revealed choriocarcinoma in the right uterine horn with evidence of chronic uterine rupture and protrusion of the placental tissue into the abdomen. The choriocarcinoma had metastasized locally as well as to the liver, spleen and lung. Choriocarcinoma is a highly malignant trophoblastic neoplasm that is rare in domestic animals. This case represents, to the authors' knowledge, the first report of gestational choriocarcinoma causing secondary ectopic pregnancy in a California sea lion and presents questions regarding pregnancy monitoring and management in a population of captive, minimally trained California sea lions.
Collapse
Affiliation(s)
- Vanessa A Fravel
- Six Flags Discovery Kingdom, 1001 Fairgrounds Drive, Vallejo, CA 94589, USA
| | | | | |
Collapse
|
10
|
Browning HM, Gulland FMD, Hammond JA, Colegrove KM, Hall AJ. Common cancer in a wild animal: the California sea lion (Zalophus californianus) as an emerging model for carcinogenesis. Philos Trans R Soc Lond B Biol Sci 2016; 370:rstb.2014.0228. [PMID: 26056370 DOI: 10.1098/rstb.2014.0228] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023] Open
Abstract
Naturally occurring cancers in non-laboratory species have great potential in helping to decipher the often complex causes of neoplasia. Wild animal models could add substantially to our understanding of carcinogenesis, particularly of genetic and environmental interactions, but they are currently underutilized. Studying neoplasia in wild animals is difficult and especially challenging in marine mammals owing to their inaccessibility, lack of exposure history, and ethical, logistical and legal limits on experimentation. Despite this, California sea lions (Zalophus californianus) offer an opportunity to investigate risk factors for neoplasia development that have implications for terrestrial mammals and humans who share much of their environment and diet. A relatively accessible California sea lion population on the west coast of the USA has a high prevalence of urogenital carcinoma and is regularly sampled during veterinary care in wildlife rehabilitation centres. Collaborative studies have revealed that genotype, persistent organic pollutants and a herpesvirus are all associated with this cancer. This paper reviews research to date on the epidemiology and pathogenesis of urogenital carcinoma in this species, and presents the California sea lion as an important and currently underexploited wild animal model of carcinogenesis.
Collapse
Affiliation(s)
- Helen M Browning
- Sea Mammal Research Unit, Scottish Oceans Institute, University of St Andrews, St Andrews KY16 8LB, UK
| | | | | | - Kathleen M Colegrove
- Zoological Pathology Program, College of Veterinary Medicine, University of Illinois at Urbana-Champaign, Maywood, IL 60153, USA
| | - Ailsa J Hall
- Sea Mammal Research Unit, Scottish Oceans Institute, University of St Andrews, St Andrews KY16 8LB, UK
| |
Collapse
|
11
|
Barragán-Vargas C, Montano-Frías J, Ávila Rosales G, Godínez-Reyes CR, Acevedo-Whitehouse K. Transformation of the genital epithelial tract occurs early in California sea lion development. ROYAL SOCIETY OPEN SCIENCE 2016; 3:150419. [PMID: 27069641 PMCID: PMC4821252 DOI: 10.1098/rsos.150419] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/21/2015] [Accepted: 02/12/2016] [Indexed: 05/08/2023]
Abstract
An unusually high prevalence of metastatic urogenital carcinoma has been observed in free-ranging California sea lions stranded off the coast of California in the past two decades. No cases have been reported for sea lions in the relatively unpolluted Gulf of California. We investigated occurrence of genital epithelial transformation in 60 sea lions (n=57 pups and 3 adult females) from the Gulf of California and examined whether infection by a viral pathogen previously found to be associated with urogenital carcinoma accounted for such alterations. We also explored the contribution of MHC class II gene expression on transformation. Cellular alterations, such as squamous cell atypia (ASC), atypical squamous cells of undetermined significance (ASCUS) and low-grade squamous intraepithelial lesions were observed in 42% of the pups and in 67% of the adult females. Normal genital epithelium was more common in male than female pups. ASC was five times more likely to occur in older pups. Epithelial alterations were unrelated to infection by the potentially oncogenic otarine type I gammaherpesvirus (OtHV-1), but ASCUS was more common in pups with marked and severe inflammation. Expression of MHC class II DRB loci (Zaca DRB-D) by peripheral antigen-presenting leucocytes showed a slightly 'protective' effect for ASC. We propose that transformation of the California sea lion genital epithelium is relatively common in young animals, increases with age and is probably the result of infection by an unidentified pathogen. Expression of a specific MHC class II gene, suggestive of presentation of specific antigenic peptides to immune effectors, appears to lower the risk of transformation. Our study provides the first evidence that epithelial transformation of the California sea lion genital tract is relatively common, even from an early age, and raises questions regarding differences in sea lion cancer-detection and -repair success between geographical regions.
Collapse
Affiliation(s)
- Cecilia Barragán-Vargas
- Unit for Basic and Applied Microbiology, School of Natural Sciences, Autonomous University of Queretaro, Avenida de las Ciencias S/N, Queretaro 76230, Mexico
| | - Jorge Montano-Frías
- Unit for Basic and Applied Microbiology, School of Natural Sciences, Autonomous University of Queretaro, Avenida de las Ciencias S/N, Queretaro 76230, Mexico
| | - Germán Ávila Rosales
- Department of Pathology, Instituto Mexicano del Seguro Social, Queretaro 76000, Mexico
| | - Carlos R. Godínez-Reyes
- Cabo Pulmo National Park, Comisión Nacional de Áreas Naturales Protegidas, SEMARNAT, La Ribera, BCS, Mexico
| | - Karina Acevedo-Whitehouse
- Unit for Basic and Applied Microbiology, School of Natural Sciences, Autonomous University of Queretaro, Avenida de las Ciencias S/N, Queretaro 76230, Mexico
- The Marine Mammal Center, 2000 Bunker Road, Sausalito, CA 94965, USA
- Sea Lion Cancer Consortium. http://www.smru.st-andrews.ac.uk/slicc
- Author for correspondence: Karina Acevedo-Whitehouse e-mail:
| |
Collapse
|
12
|
Moriarty ME, Vickers TW, Clifford DL, Garcelon DK, Gaffney PM, Lee KW, King JL, Duncan CL, Boyce WM. Ear Mite Removal in the Santa Catalina Island Fox (Urocyon littoralis catalinae): Controlling Risk Factors for Cancer Development. PLoS One 2015; 10:e0144271. [PMID: 26641820 PMCID: PMC4671584 DOI: 10.1371/journal.pone.0144271] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2015] [Accepted: 11/16/2015] [Indexed: 11/18/2022] Open
Abstract
Ear mites (Otodectes cynotis) and ear canal tumors are highly prevalent among federally endangered Island foxes (Urocyon littoralis catalinae) living on Santa Catalina Island off the coast of Southern California. Since studies began in the 1990s, nearly all foxes examined were found to be infected with ear mites, and ceruminous gland tumors (carcinomas and adenomas) were detected in approximately half of all foxes ≥ 4 years of age. We hypothesized that reduction of ear mite infection would reduce otitis externa and ceruminous gland hyperplasia, a risk factor for tumor development. In this study, we conducted a randomized field trial to assess the impact of acaricide treatment on ear mite prevalence and intensity of infection, otitis externa, ceruminous gland hyperplasia, and mite-specific IgG and IgE antibody levels. Treatment was highly effective at eliminating mites and reducing otitis externa and ceruminous gland hyperplasia, and mite-specific IgG antibody levels were significantly lower among uninfected foxes. Ceruminous gland hyperplasia increased in the chronically infected, untreated foxes during the six month study. Our results provide compelling evidence that acaricide treatment is an effective means of reducing ear mites, and that mite removal in turn reduces ear lesions and mite-specific IgG antibody levels in Santa Catalina Island foxes. This study has advanced our understanding of the underlying pathogenesis which results in ceruminous gland tumors, and has helped inform management decisions that impact species conservation.
Collapse
Affiliation(s)
- Megan E. Moriarty
- Karen C. Drayer Wildlife Health Center, School of Veterinary Medicine, University of California Davis, Davis, California, United States of America
| | - T. Winston Vickers
- Karen C. Drayer Wildlife Health Center, School of Veterinary Medicine, University of California Davis, Davis, California, United States of America
- Institute for Wildlife Studies, Arcata, California, United States of America
| | - Deana L. Clifford
- Karen C. Drayer Wildlife Health Center, School of Veterinary Medicine, University of California Davis, Davis, California, United States of America
- Wildlife Investigations Laboratory, California Department of Fish and Wildlife, Rancho Cordova, California, United States of America
| | - David K. Garcelon
- Institute for Wildlife Studies, Arcata, California, United States of America
| | - Patricia M. Gaffney
- Department of Pathology, Microbiology, and Immunology, School of Veterinary Medicine, University of California Davis, Davis, California, United States of America
- Departments of Pathology and Medicine, University of California San Diego, San Diego, California, United States of America
| | - Kenneth W. Lee
- Greer Laboratory, Lenoir, North Carolina, United States of America
| | - Julie L. King
- Catalina Island Conservancy, Avalon, California, United States of America
| | - Calvin L. Duncan
- Catalina Island Conservancy, Avalon, California, United States of America
| | - Walter M. Boyce
- Karen C. Drayer Wildlife Health Center, School of Veterinary Medicine, University of California Davis, Davis, California, United States of America
- Department of Pathology, Microbiology, and Immunology, School of Veterinary Medicine, University of California Davis, Davis, California, United States of America
| |
Collapse
|
13
|
A NOVEL GAMMAHERPESVIRUS IN NORTHERN FUR SEALS (CALLORHINUS URSINUS) IS CLOSELY RELATED TO THE CALIFORNIA SEA LION (ZALOPHUS CALIFORNIANUS) CARCINOMA-ASSOCIATED OTARINE HERPESVIRUS-1. J Wildl Dis 2015; 52:88-95. [PMID: 26555110 DOI: 10.7589/2015-03-060] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Otarine herpesvirus 1 (OtHV1) is strongly associated with California sea lion (CSL, Zalophus californianus) urogenital carcinoma, the most common cancer documented in marine mammals. In addition to CSL, OtHV1 has also been found in association with carcinoma in South American fur seals (Arctocephalus australis), demonstrating it can infect related species. Northern fur seals (NFS, Callorhinus ursinus) are sympatric with CSL, and copulation between these species has been observed; yet, there are no reports of urogenital carcinoma in NFS. We describe a new Otarine herpesvirus found in vaginal swabs from NFS, herein called OtHV4. Partial sequencing of the polymerase gene and the glycoprotein B gene revealed OtHV4 is closely related to OtHV1, with 95% homology in the region of polymerase sequenced, and phylogenetic analyses demonstrate that they are sister taxa. An OtHV4-specific hydrolysis probe quantitative PCR was developed and validated, and its use on vaginal swabs revealed 16 of 50 (32%) wild adult female NFS were positive for OtHV4. The identification of a virus highly similar to the carcinoma-associated OtHV1 in a sympatric species without carcinoma suggests that comparative genomics of OtHV1 and OtHV4 may identify candidate viral oncogenes.
Collapse
|
14
|
Lair S, Measures LN, Martineau D. Pathologic Findings and Trends in Mortality in the Beluga (Delphinapterus leucas) Population of the St Lawrence Estuary, Quebec, Canada, From 1983 to 2012. Vet Pathol 2015; 53:22-36. [PMID: 26374277 DOI: 10.1177/0300985815604726] [Citation(s) in RCA: 54] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
An isolated population of beluga (Delphinapterus leucas) inhabits the St Lawrence Estuary, Quebec, Canada. This population has failed to recover despite the prohibition of hunting >30 years ago, suggesting the presence of other limiting factors. The authors summarize the reported causes of death and propose risk factors to explain the lack of recovery of this population. From 1983 to 2012, a total of 472 beluga were found stranded. Complete necropsies were carried out on 222 beluga, including 178 adults, 25 juveniles, and 19 newborn calves. Infectious diseases, the most prevalent cause of mortality in this population, accounted for the death of one-third of all beluga (32%). Verminous pneumonia was the cause of mortality of 13 juvenile beluga (52% of juvenile beluga). A total of 39 malignant neoplasms, diagnosed in 35 beluga, caused the death of 31 beluga (20% of beluga >19 years old). Median age at diagnosis of cancer was 48 years (range, 30-61 years). Dystocia and postpartum complications were the cause of death in 18 beluga, accounting for 19% of the females >19 years old examined. The occurrence of parturition-associated complications, as well as mortality of calves <1 year old, have increased recently in this population and may be the probable cause of the recent decrease in the size of this population. One of the hypotheses proposed to explain the unusually high occurrence of some of the pathologic conditions observed in this population is chronic exposure to environmental contaminants.
Collapse
Affiliation(s)
- S Lair
- Centre québécois sur la santé des animaux sauvages / Canadian Wildlife Health Cooperative, Département de sciences cliniques, Faculté de médecine vétérinaire, Université de Montréal, St Hyacinthe, Canada
| | - L N Measures
- Fisheries and Oceans Canada, Maurice Lamontagne Institute, Mont-Joli, Canada
| | - D Martineau
- Département de pathologie et microbiologie, Faculté de médecine vétérinaire, Université de Montréal, St Hyacinthe, Canada
| |
Collapse
|
15
|
Browning HM, Acevedo-Whitehouse K, Gulland FMD, Hall AJ, Finlayson J, Dagleish MP, Billington KJ, Colegrove K, Hammond JA. Evidence for a genetic basis of urogenital carcinoma in the wild California sea lion. Proc Biol Sci 2015; 281:20140240. [PMID: 25339718 PMCID: PMC4213630 DOI: 10.1098/rspb.2014.0240] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023] Open
Abstract
Although neoplasia is a major cause of mortality in humans and domestic animals, it has rarely been described in wildlife species. One of the few examples is a highly prevalent urogenital carcinoma in California sea lions (CSLs). Although the aetiology of this carcinoma is clearly multifactorial, inbreeding depression, as estimated using levels of microsatellite multilocus heterozygosity, is identified as predictive for this neoplasia. On further analysis, this relationship appears to be largely driven by one marker, suggesting that a single locus might be associated with the occurrence of this disease in CSLs. In a case–control study, carcinoma was significantly associated with homozygosity at the Pv11 microsatellite locus. Pv11 was mapped to intron 9 of the heparanase 2 gene (HPSE2) locus, a very large gene encoding heparanase 2, which in humans is associated with multiple carcinomas. Correspondingly, immunohistochemical labelling in tissues was present in carcinoma cases within a single homozygous Pv11 genotype. To our knowledge, this is the first report of an individual locus being associated with cancer in any wildlife species. This adds emphasis to the study of HPSE2 in other species, including humans and will guide future studies on this sentinel species that shares much of its diet and environment with humans
Collapse
Affiliation(s)
- Helen M Browning
- Sea Mammal Research Unit, Scottish Oceans Institute, University of St Andrews, Fife, UK
| | | | | | - Ailsa J Hall
- Sea Mammal Research Unit, Scottish Oceans Institute, University of St Andrews, Fife, UK
| | - Jeanie Finlayson
- The Moredun Research Institute, Pentlands Science Park, Bush Loan, Penicuik, Midlothian, UK
| | - Mark P Dagleish
- The Moredun Research Institute, Pentlands Science Park, Bush Loan, Penicuik, Midlothian, UK
| | | | - Kathleen Colegrove
- Zoological Pathology Program, College of Veterinary Medicine, University of Illinois at Urbana-Champaign, Maywood, IL, USA
| | - John A Hammond
- Pirbright Laboratory, The Pirbright Institute, Surrey, UK
| |
Collapse
|
16
|
Hansen M, Poulsen R, Luong X, Sedlak DL, Hayes T. Liquid chromatography tandem mass spectrometry method using solid-phase extraction and bead-beating-assisted matrix solid-phase dispersion to quantify the fungicide tebuconazole in controlled frog exposure study: analysis of water and animal tissue. Anal Bioanal Chem 2014; 406:7677-85. [DOI: 10.1007/s00216-014-8207-8] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2014] [Revised: 09/12/2014] [Accepted: 09/19/2014] [Indexed: 10/24/2022]
|
17
|
Dagleish M, Barrows M, Maley M, Killick R, Finlayson J, Goodchild R, Valentine A, Saunders R, Willoughby K, Smith K, Stidworthy M. The First Report of Otarine Herpesvirus-1-Associated Urogenital Carcinoma in a South American Fur Seal (Arctocephalus australis). J Comp Pathol 2013; 149:119-25. [DOI: 10.1016/j.jcpa.2012.10.002] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2012] [Revised: 09/10/2012] [Accepted: 10/16/2012] [Indexed: 11/30/2022]
|
18
|
Colegrove KM, Wellehan JFX, Rivera R, Moore PF, Gulland FMD, Lowenstine LJ, Nordhausen RW, Nollens HH. Polyomavirus infection in a free-ranging California sea lion (Zalophus californianus) with intestinal T-cell lymphoma. J Vet Diagn Invest 2010; 22:628-32. [PMID: 20622238 DOI: 10.1177/104063871002200422] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Abstract
An adult female California sea lion (Zalophus californianus) that stranded in central California was found to have a small glossal polypoid mass on gross necropsy. Histologically, the mass was consistent with a fibropapilloma, and intranuclear inclusions were found within endothelial cells lining small arterioles within the mass. Electron microscopy revealed 40-nm virions within endothelial intranuclear inclusions. Rolling circle amplification was used to obtain a partial viral genomic sequence. Sequence analysis identified the virus as a novel polyomavirus, tentatively named California sea lion polyomavirus 1. In addition, the sea lion had a severely thickened small intestine and swollen pale kidneys on gross examination. Severe renal amyloidosis with chronic interstitial nephritis was diagnosed histologically as well as T-cell intestinal lymphoma, which was confirmed via immunophenotyping and molecular clonality. The relationship, if any, between polyomavirus infection and the other disease processes in this sea lion is not known, but it is considered unlikely that the polyomavirus induced the lymphoma.
Collapse
Affiliation(s)
- Kathleen M Colegrove
- Zoological Pathology Program, University of Illinois, Loyola University Medical Center, Building 101, Room 0745, 2160 South First Avenue, Maywood, IL 60153, USA.
| | | | | | | | | | | | | | | |
Collapse
|
19
|
|
20
|
Acevedo-Whitehouse K, Duffus ALJ. Effects of environmental change on wildlife health. Philos Trans R Soc Lond B Biol Sci 2010; 364:3429-38. [PMID: 19833653 DOI: 10.1098/rstb.2009.0128] [Citation(s) in RCA: 211] [Impact Index Per Article: 14.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Environmental change has negatively affected most biological systems on our planet and is becoming of increasing concern for the well-being and survival of many species. At an organism level, effects encompass not only endocrine disruptions, sex-ratio changes and decreased reproductive parameters, but also include teratogenic and genotoxic effects, immunosuppression and other immune-system impairments that can lead directly to disease or increase the risk of acquiring disease. Living organisms will strive to maintain health by recognizing and resolving abnormal situations, such as the presence of invading microorganisms or harmful peptides, abnormal cell replication and deleterious mutations. However, fast-paced environmental changes may pose additional pressure on immunocompetence and health maintenance, which may seriously impact population viability and persistence. Here, we outline the importance of a functional immune system for survival and examine the effects that exposure to a rapidly changing environment might exert on immunocompetence. We then address the various levels at which anthropogenic environmental change might affect wildlife health and identify potential deficits in reproductive parameters that might arise owing to new immune challenges in the context of a rapidly changing environment. Throughout the paper, a series of examples and case studies are used to illustrate the impact of environmental change on wildlife health.
Collapse
|