1
|
Fameli AF, Edson J, Banfield JE, Rosenberry CS, Walter WD. Variability in prion protein genotypes by spatial unit to inform susceptibility to chronic wasting disease. Prion 2022; 16:254-264. [PMID: 36104983 PMCID: PMC9481152 DOI: 10.1080/19336896.2022.2117535] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
Chronic wasting disease (CWD) is a fatal encephalopathy affecting North American cervids. Certain alleles in a host's prion protein gene are responsible for reduced susceptibility to CWD. We assessed for the first time variability in the prion protein gene of elk (Cervus canadensis) present in Pennsylvania, United States of America, a reintroduced population for which CWD cases have never been reported. We sequenced the prion protein gene (PRNP) of 565 elk samples collected over 7 years (2014-2020) and found two polymorphic sites (codon 21 and codon 132). The allele associated with reduced susceptibility to CWD is present in the population, and there was no evidence of deviations from Hardy-Weinberg equilibrium in any of our sampling years (p-values between 0.14 and 1), consistent with the lack of selective pressure on the PRNP. The less susceptible genotypes were found in a frequency similar to the ones reported for elk populations in the states of Wyoming and South Dakota before CWD was detected. We calculated the proportion of less susceptible genotypes in each hunt zone in Pennsylvania as a proxy for their vulnerability to the establishment of CWD, and interpolated these results to obtain a surface representing expected proportion of the less susceptible genotypes across the area. Based on this analysis, hunt zones located in the southern part of our study area have a low proportion of less susceptible genotypes, which is discouraging for elk persistence in Pennsylvania given that these hunt zones are adjacent to the deer Disease Management Area 3, where CWD has been present since 2014.
Collapse
Affiliation(s)
- Alberto F. Fameli
- Pennsylvania Cooperative Fish and Wildlife Research Unit, The Pennsylvania State University, University Park, PA, USA,CONTACT Alberto F. Fameli Pennsylvania Cooperative Fish and Wildlife Research Unit, The Pennsylvania State University, University Park, PA16802, USA
| | - Jessie Edson
- Pennsylvania Cooperative Fish and Wildlife Research Unit, The Pennsylvania State University, University Park, PA, USA
| | - Jeremiah E. Banfield
- Pennsylvania Game Commission, Bureau of Wildlife Management, 2001 Elmerton Avenue,Harrisburg, PA, USA
| | - Christopher S. Rosenberry
- Pennsylvania Game Commission, Bureau of Wildlife Management, 2001 Elmerton Avenue,Harrisburg, PA, USA
| | - W. David Walter
- U.S. Geological Survey, Pennsylvania Cooperative Fish and Wildlife Research Unit, 403 Forest Resources Building, The Pennsylvania State University, University Park, PA, USA
| |
Collapse
|
2
|
Differential Accumulation of Misfolded Prion Strains in Natural Hosts of Prion Diseases. Viruses 2021; 13:v13122453. [PMID: 34960722 PMCID: PMC8706046 DOI: 10.3390/v13122453] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2021] [Revised: 12/01/2021] [Accepted: 12/03/2021] [Indexed: 01/01/2023] Open
Abstract
Prion diseases, also known as transmissible spongiform encephalopathies (TSEs), are a group of neurodegenerative protein misfolding diseases that invariably cause death. TSEs occur when the endogenous cellular prion protein (PrPC) misfolds to form the pathological prion protein (PrPSc), which templates further conversion of PrPC to PrPSc, accumulates, and initiates a cascade of pathologic processes in cells and tissues. Different strains of prion disease within a species are thought to arise from the differential misfolding of the prion protein and have different clinical phenotypes. Different strains of prion disease may also result in differential accumulation of PrPSc in brain regions and tissues of natural hosts. Here, we review differential accumulation that occurs in the retinal ganglion cells, cerebellar cortex and white matter, and plexuses of the enteric nervous system in cattle with bovine spongiform encephalopathy, sheep and goats with scrapie, cervids with chronic wasting disease, and humans with prion diseases. By characterizing TSEs in their natural host, we can better understand the pathogenesis of different prion strains. This information is valuable in the pursuit of evaluating and discovering potential biomarkers and therapeutics for prion diseases.
Collapse
|
3
|
Viljugrein H, Hopp P, Benestad SL, Våge J, Mysterud A. Risk-based surveillance of chronic wasting disease in semi-domestic reindeer. Prev Vet Med 2021; 196:105497. [PMID: 34564054 DOI: 10.1016/j.prevetmed.2021.105497] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2021] [Revised: 08/27/2021] [Accepted: 09/15/2021] [Indexed: 10/20/2022]
Abstract
Reindeer pastoralism is a widespread practise across Fennoscandia and Russia. An outbreak of chronic wasting disease (CWD) among wild reindeer (Rangifer tarandus) poses a severe threat to the semi-domestic reindeer herding culture. Establishing surveillance is therefore key, but current models for surveillance of CWD are designed for wild cervids and rely on samples obtained from recreational hunters. Targeting animal groups with a higher infection probability is often used for more efficient disease surveillance. CWD has a long incubation period of 2-3 years, and the animals show clinical signs in the later stages of the infection i.e. 1-4 months prior to death. The semi-domestic reindeer are free-ranging most of the year, but during slaughtering in late fall, herders stress the animals in penned areas. This allows removal of animals with deviant behaviour or physical appearance, and such removals are likely to include animals in the clinical stages of CWD if the population is infected. In Norway, the semi-domestic reindeer in Filefjell is adjacent to a previously CWD infected wild population. We developed a risk-based surveillance method for this semi-domestic setting to establish the probability of freedom from infection over time, or enable early disease detection and mitigation. The surveillance scheme with a scenario tree using three risk categories (sample category, demographic group, and deviations in behaviour or physical appearance) was more effective and less invasive as compared to the surveillance method developed for wild reindeer. We also simulated how variation in susceptibility, incubation period and time for onset of clinical signs (linked to variation in the prion protein gene, PRNP) would potentially affect surveillance. Surveillance for CWD was mandatory within EU-member states with reindeer (2018-2020). The diversity of management systems and epidemiological settings will require the development of a set of surveillance systems suitable for each different context. Our surveillance model is designed for a population with a high risk of CWD introduction requiring massive sampling, while at the same time aiming to limit adverse effects to the populations in areas of surveillance.
Collapse
Affiliation(s)
- Hildegunn Viljugrein
- Norwegian Veterinary Institute, P.O. Box 64, NO-1431, Ås, Norway; Centre for Ecological and Evolutionary Synthesis (CEES), Department of Biosciences, University of Oslo, P.O. Box 1066, Blindern, NO-0316, Oslo, Norway.
| | - Petter Hopp
- Norwegian Veterinary Institute, P.O. Box 64, NO-1431, Ås, Norway
| | | | - Jørn Våge
- Norwegian Veterinary Institute, P.O. Box 64, NO-1431, Ås, Norway
| | - Atle Mysterud
- Centre for Ecological and Evolutionary Synthesis (CEES), Department of Biosciences, University of Oslo, P.O. Box 1066, Blindern, NO-0316, Oslo, Norway; Norwegian Institute for Nature Research (NINA), P. O. Box 5685, Sluppen, NO-7485, Trondheim, Norway
| |
Collapse
|
4
|
Ding M, Teruya K, Zhang W, Lee HW, Yuan J, Oguma A, Foutz A, Camacho MV, Mitchell M, Greenlee JJ, Kong Q, Doh-Ura K, Cui L, Zou WQ. Decrease in Skin Prion-Seeding Activity of Prion-Infected Mice Treated with a Compound Against Human and Animal Prions: a First Possible Biomarker for Prion Therapeutics. Mol Neurobiol 2021; 58:4280-4292. [PMID: 33983547 PMCID: PMC8487418 DOI: 10.1007/s12035-021-02418-6] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2020] [Accepted: 04/30/2021] [Indexed: 11/26/2022]
Abstract
Previous studies have revealed that the infectious scrapie isoform of prion protein (PrPSc) harbored in the skin tissue of patients or animals with prion diseases can be amplified and detected through the serial protein misfolding cyclic amplification (sPMCA) or real-time quaking-induced conversion (RT-QuIC) assays. These findings suggest that skin PrPSc-seeding activity may serve as a biomarker for the diagnosis of prion diseases; however, its utility as a biomarker for prion therapeutics remains largely unknown. Cellulose ethers (CEs, such as TC-5RW), widely used as food and pharmaceutical additives, have recently been shown to prolong the lifespan of prion-infected mice and hamsters. Here we report that in transgenic (Tg) mice expressing hamster cellular prion protein (PrPC) infected with the 263K prion, the prion-seeding activity becomes undetectable in the skin tissues of TC-5RW-treated Tg mice by both sPMCA and RT-QuIC assays, whereas such prion-seeding activity is readily detectable in the skin of untreated mice. Notably, TC-5RW exhibits an inhibitory effect on the in vitro amplification of PrPSc in both skin and brain tissues by sPMCA and RT-QuIC. Moreover, we reveal that TC-5RW is able to directly decrease protease-resistant PrPSc and inhibit the seeding activity of PrPSc from chronic wasting disease and various human prion diseases. Our results suggest that the level of prion-seeding activity in the skin may serve as a useful biomarker for assessing the therapeutic efficacy of compounds in a clinical trial of prion diseases and that TC-5RW may have the potential for the prevention/treatment of human prion diseases.
Collapse
Affiliation(s)
- Mingxuan Ding
- Department of Neurology, The First Hospital of Jilin University, Changchun, 130021, Jilin Province, China
- Departments of Pathology and Neurology, Case Western Reserve University School of Medicine, Cleveland, OH, 44106, USA
| | - Kenta Teruya
- Department of Neurochemistry, Tohoku University Graduate School of Medicine, 2-1 Seiryo-machi, Aoba-ku, Sendai, Miyagi, 980-8575, Japan
| | - Weiguanliu Zhang
- Department of Neurology, The First Hospital of Jilin University, Changchun, 130021, Jilin Province, China
- Departments of Pathology and Neurology, Case Western Reserve University School of Medicine, Cleveland, OH, 44106, USA
| | - Hae Weon Lee
- Departments of Pathology and Neurology, Case Western Reserve University School of Medicine, Cleveland, OH, 44106, USA
| | - Jue Yuan
- Departments of Pathology and Neurology, Case Western Reserve University School of Medicine, Cleveland, OH, 44106, USA
| | - Ayumi Oguma
- Department of Neurochemistry, Tohoku University Graduate School of Medicine, 2-1 Seiryo-machi, Aoba-ku, Sendai, Miyagi, 980-8575, Japan
| | - Aaron Foutz
- Departments of Pathology and Neurology, Case Western Reserve University School of Medicine, Cleveland, OH, 44106, USA
| | - Manuel V Camacho
- Departments of Pathology and Neurology, Case Western Reserve University School of Medicine, Cleveland, OH, 44106, USA
| | - Marcus Mitchell
- Departments of Pathology and Neurology, Case Western Reserve University School of Medicine, Cleveland, OH, 44106, USA
| | - Justin J Greenlee
- Virus and Prion Research Unit, Agricultural Research Service, National Animal Disease Center, USDA, 1920 Dayton Avenue, Ames, IA, 50010, USA
| | - Qingzhong Kong
- Departments of Pathology and Neurology, Case Western Reserve University School of Medicine, Cleveland, OH, 44106, USA
- National Prion Disease Pathology Surveillance Center, Case Western Reserve University School of Medicine, Cleveland, OH, 44106, USA
| | - Katsumi Doh-Ura
- Department of Neurochemistry, Tohoku University Graduate School of Medicine, 2-1 Seiryo-machi, Aoba-ku, Sendai, Miyagi, 980-8575, Japan.
| | - Li Cui
- Department of Neurology, The First Hospital of Jilin University, Changchun, 130021, Jilin Province, China.
| | - Wen-Quan Zou
- Departments of Pathology and Neurology, Case Western Reserve University School of Medicine, Cleveland, OH, 44106, USA.
- National Prion Disease Pathology Surveillance Center, Case Western Reserve University School of Medicine, Cleveland, OH, 44106, USA.
| |
Collapse
|
5
|
Mammadova N, West Greenlee MH, Moore SJ, Hwang S, Lehmkuhl AD, Nicholson EM, Greenlee JJ. Evaluation of Antemortem Diagnostic Techniques in Goats Naturally Infected With Scrapie. Front Vet Sci 2020; 7:517862. [PMID: 33240943 PMCID: PMC7677257 DOI: 10.3389/fvets.2020.517862] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2019] [Accepted: 10/12/2020] [Indexed: 12/30/2022] Open
Abstract
Scrapie is a naturally occurring transmissible spongiform encephalopathy (TSE) that affects sheep and goats. Sheep and goats can be infected with scrapie as lambs or kids via contact with the placenta or placental fluids, or from ingestion of prions shed in the environment and/or bodily fluids (e.g., saliva, urine, and feces). Like other TSEs, scrapie is generally not diagnosed before extensive and irreversible brain damage has occurred. Therefore, a reliable method to screen animals may facilitate diagnosis. Additionally, while natural scrapie in sheep has been widely described, naturally acquired goat scrapie is less well-characterized. The purpose of this study was to better understand natural goat scrapie in regard to disease phenotype (i.e., incubation period, clinical signs, neuroanatomical deposition patterns of PrPSc, and molecular profile as detected by Western blot) and to evaluate the efficacy of antemortem tests to detect scrapie-positive animals in a herd of goats. Briefly, 28 scrapie-exposed goats were removed from a farm depopulated due to previous diagnoses of scrapie on the premises and observed daily for 30 months. Over the course of the observation period, antemortem biopsies of recto-anal mucosa-associated lymphoid tissue (RAMALT) were taken and tested using immunohistochemistry and real-time quaking-induced conversion (RT-QuIC), and retinal thickness was measured in vivo using optical coherence tomography (OCT). Following the observation period, immunohistochemistry and Western blot were performed to assess neuroanatomical deposition patterns of PrPSc and molecular profile. Our results demonstrate that antemortem rectal biopsy was 77% effective in identifying goats naturally infected with scrapie and that a positive antemortem rectal biopsy was associated with the presence of clinical signs of neurologic disease and a positive dam status. We report that changes in retinal thickness are not detectable over the course of the observation period in goats naturally infected with scrapie. Finally, our results indicate that the accumulation of PrPSc in central nervous system (CNS) and non-CNS tissues is consistent with previous reports of scrapie in sheep and goats.
Collapse
Affiliation(s)
- Najiba Mammadova
- Virus and Prion Research Unit, National Animal Disease Center, Agricultural Research Service, United States Department of Agriculture, Ames, IA, United States
| | - M Heather West Greenlee
- Department of Biomedical Sciences, Iowa State University College of Veterinary Medicine, Ames, IA, United States
| | - S Jo Moore
- Virus and Prion Research Unit, National Animal Disease Center, Agricultural Research Service, United States Department of Agriculture, Ames, IA, United States
| | - Soyoun Hwang
- Virus and Prion Research Unit, National Animal Disease Center, Agricultural Research Service, United States Department of Agriculture, Ames, IA, United States
| | - Aaron D Lehmkuhl
- National Veterinary Services Laboratories (NVSL) Diagnostic Bacteriology and Pathology Laboratory, Animal and Plant Health Inspection Service, United States Department of Agriculture, Ames, IA, United States
| | - Eric M Nicholson
- Virus and Prion Research Unit, National Animal Disease Center, Agricultural Research Service, United States Department of Agriculture, Ames, IA, United States
| | - Justin J Greenlee
- Virus and Prion Research Unit, National Animal Disease Center, Agricultural Research Service, United States Department of Agriculture, Ames, IA, United States
| |
Collapse
|
6
|
Denkers ND, Hoover CE, Davenport KA, Henderson DM, McNulty EE, Nalls AV, Mathiason CK, Hoover EA. Very low oral exposure to prions of brain or saliva origin can transmit chronic wasting disease. PLoS One 2020; 15:e0237410. [PMID: 32817706 PMCID: PMC7446902 DOI: 10.1371/journal.pone.0237410] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2020] [Accepted: 07/24/2020] [Indexed: 11/19/2022] Open
Abstract
The minimum infectious dose required to induce CWD infection in cervids remains unknown, as does whether peripherally shed prions and/or multiple low dose exposures are important factors in CWD transmission. With the goal of better understand CWD infection in nature, we studied oral exposures of deer to very low doses of CWD prions and also examined whether the frequency of exposure or prion source may influence infection and pathogenesis. We orally inoculated white-tailed deer with either single or multiple divided doses of prions of brain or saliva origin and monitored infection by serial longitudinal tissue biopsies spanning over two years. We report that oral exposure to as little as 300 nanograms (ng) of CWD-positive brain or to saliva containing seeding activity equivalent to 300 ng of CWD-positive brain, were sufficient to transmit CWD disease. This was true whether the inoculum was administered as a single bolus or divided as three weekly 100 ng exposures. However, when the 300 ng total dose was apportioned as 10, 30 ng doses delivered over 12 weeks, no infection occurred. While low-dose exposures to prions of brain or saliva origin prolonged the time from inoculation to first detection of infection, once infection was established, we observed no differences in disease pathogenesis. These studies suggest that the CWD minimum infectious dose approximates 100 to 300 ng CWD-positive brain (or saliva equivalent), and that CWD infection appears to conform more with a threshold than a cumulative dose dynamic.
Collapse
Affiliation(s)
- Nathaniel D. Denkers
- Department of Microbiology, Immunology, and Pathology, Prion Research Center, College of Veterinary Medicine and Biomedical Sciences, Colorado State University, Fort Collins, Colorado, United States of America
| | - Clare E. Hoover
- AstraZeneca Inc., Waltham, Massachusetts, United States of America
| | - Kristen A. Davenport
- Department of Biochemistry, School of Medicine, University of Utah, Salt Lake City, Utah, United States of America
| | - Davin M. Henderson
- Department of Microbiology, Immunology, and Pathology, Prion Research Center, College of Veterinary Medicine and Biomedical Sciences, Colorado State University, Fort Collins, Colorado, United States of America
| | - Erin E. McNulty
- Department of Microbiology, Immunology, and Pathology, Prion Research Center, College of Veterinary Medicine and Biomedical Sciences, Colorado State University, Fort Collins, Colorado, United States of America
| | - Amy V. Nalls
- Department of Microbiology, Immunology, and Pathology, Prion Research Center, College of Veterinary Medicine and Biomedical Sciences, Colorado State University, Fort Collins, Colorado, United States of America
| | - Candace K. Mathiason
- Department of Microbiology, Immunology, and Pathology, Prion Research Center, College of Veterinary Medicine and Biomedical Sciences, Colorado State University, Fort Collins, Colorado, United States of America
| | - Edward A. Hoover
- Department of Microbiology, Immunology, and Pathology, Prion Research Center, College of Veterinary Medicine and Biomedical Sciences, Colorado State University, Fort Collins, Colorado, United States of America
- * E-mail:
| |
Collapse
|
7
|
Escobar LE, Pritzkow S, Winter SN, Grear DA, Kirchgessner MS, Dominguez-Villegas E, Machado G, Peterson AT, Soto C. The ecology of chronic wasting disease in wildlife. Biol Rev Camb Philos Soc 2020; 95:393-408. [PMID: 31750623 PMCID: PMC7085120 DOI: 10.1111/brv.12568] [Citation(s) in RCA: 42] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2019] [Revised: 10/11/2019] [Accepted: 10/16/2019] [Indexed: 12/13/2022]
Abstract
Prions are misfolded infectious proteins responsible for a group of fatal neurodegenerative diseases termed transmissible spongiform encephalopathy or prion diseases. Chronic Wasting Disease (CWD) is the prion disease with the highest spillover potential, affecting at least seven Cervidae (deer) species. The zoonotic potential of CWD is inconclusive and cannot be ruled out. A risk of infection for other domestic and wildlife species is also plausible. Here, we review the current status of the knowledge with respect to CWD ecology in wildlife. Our current understanding of the geographic distribution of CWD lacks spatial and temporal detail, does not consider the biogeography of infectious diseases, and is largely biased by sampling based on hunters' cooperation and funding available for each region. Limitations of the methods used for data collection suggest that the extent and prevalence of CWD in wildlife is underestimated. If the zoonotic potential of CWD is confirmed in the short term, as suggested by recent results obtained in experimental animal models, there will be limited accurate epidemiological data to inform public health. Research gaps in CWD prion ecology include the need to identify specific biological characteristics of potential CWD reservoir species that better explain susceptibility to spillover, landscape and climate configurations that are suitable for CWD transmission, and the magnitude of sampling bias in our current understanding of CWD distribution and risk. Addressing these research gaps will help anticipate novel areas and species where CWD spillover is expected, which will inform control strategies. From an ecological perspective, control strategies could include assessing restoration of natural predators of CWD reservoirs, ultrasensitive CWD detection in biotic and abiotic reservoirs, and deer density and landscape modification to reduce CWD spread and prevalence.
Collapse
Affiliation(s)
- Luis E. Escobar
- Department of Fish and Wildlife Conservation, Virginia Tech, Blacksburg, VA, 24061, U.S.A
| | - Sandra Pritzkow
- Mitchell Center for Alzheimer’s Disease and Related Brain Disorders, Department of Neurology, University of Texas Medical School at Houston, Houston, TX, 77030, U.S.A
| | - Steven N. Winter
- Department of Fish and Wildlife Conservation, Virginia Tech, Blacksburg, VA, 24061, U.S.A
| | - Daniel A. Grear
- US Geological Survey National Wildlife Health Center, Madison, WI, 59711, U.S.A
| | | | | | - Gustavo Machado
- Department of Population Health and Pathobiology, College of Veterinary Medicine, North Carolina State University, Raleigh, NC, 27606, U.S.A
| | - A. Townsend Peterson
- Biodiversity Institute and Department of Ecology and Evolutionary Biology, The University of Kansas, Lawrence, KS, 66045, U.S.A
| | - Claudio Soto
- Mitchell Center for Alzheimer’s Disease and Related Brain Disorders, Department of Neurology, University of Texas Medical School at Houston, Houston, TX, 77030, U.S.A
| |
Collapse
|
8
|
Hwang S, Greenlee JJ, Nicholson EM. Role of donor genotype in RT-QuIC seeding activity of chronic wasting disease prions using human and bank vole substrates. PLoS One 2020; 15:e0227487. [PMID: 31910440 PMCID: PMC6946595 DOI: 10.1371/journal.pone.0227487] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2019] [Accepted: 12/19/2019] [Indexed: 01/11/2023] Open
Abstract
Chronic wasting disease is a transmissible spongiform encephalopathy of cervids. This fatal neurodegenerative disease is caused by misfolding of the cellular prion protein (PrPC) to pathogenic conformers (PrPSc), and the pathogenic forms accumulate in the brain and other tissues. Real-time Quaking Induced Conversion (RT-QuIC) can be used for the detection of prions and for prion strain discrimination in a variety of biological tissues from humans and animals. In this study, we evaluated how either PrPSc from cervids of different genotypes or PrPSc from different sources of CWD influence the fibril formation of recombinant bank vole (BV) or human prion proteins using RT-QuIC. We found that reaction mixtures seeded with PrPSc from different genotypes of white-tailed deer or reindeer brains have similar conversion efficiency with both substrates. Also, we observed similar results when assays were seeded with different sources of CWD. Thus, we conclude that the genotypes of all sources of CWD used in this study do not influence the level of conversion of PrPC to PrPSc.
Collapse
Affiliation(s)
- Soyoun Hwang
- United States Department of Agriculture, Agricultural Research Service, National Animal Disease Center, Virus and Prion Research Unit, Ames, Iowa, United States of America
| | - Justin J. Greenlee
- United States Department of Agriculture, Agricultural Research Service, National Animal Disease Center, Virus and Prion Research Unit, Ames, Iowa, United States of America
| | - Eric M. Nicholson
- United States Department of Agriculture, Agricultural Research Service, National Animal Disease Center, Virus and Prion Research Unit, Ames, Iowa, United States of America
- * E-mail:
| |
Collapse
|
9
|
Moore SJ, Smith JD, Richt JA, Greenlee JJ. Raccoons accumulate PrP Sc after intracranial inoculation of the agents of chronic wasting disease or transmissible mink encephalopathy but not atypical scrapie. J Vet Diagn Invest 2019; 31:200-209. [PMID: 30694116 DOI: 10.1177/1040638718825290] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Abstract
Prion diseases are neurodegenerative diseases characterized by the accumulation of misfolded prion protein (PrPSc) in the brain and other tissues. Animal prion diseases include scrapie in sheep, chronic wasting disease (CWD) in cervids, and transmissible mink encephalopathy (TME) in ranch-raised mink. We investigated the susceptibility of raccoons to various prion disease agents and compared the clinicopathologic features of the resulting disease. Raccoon kits were inoculated intracranially with the agents of raccoon-passaged TME (TMERac), bovine-passaged TME (TMEBov), hamster-adapted drowsy (TMEDY) or hyper TME (TMEHY), CWD from white-tailed deer (CWDWtd) or elk (CWDElk), or atypical (Nor98) scrapie. Raccoons were euthanized when they developed clinical signs of prion disease or at study endpoint (<82 mo post-inoculation). Brain was examined for the presence of spongiform change, and disease-associated PrPSc was detected using an enzyme immunoassay, western blot, and immunohistochemistry. All raccoons inoculated with the agents of TMERac and TMEBov developed clinical disease at ~6.6 mo post-inoculation, with widespread PrPSc accumulation in central nervous system tissues. PrPSc was detected in the brain of 1 of 4 raccoons in each of the CWDWtd-, CWDElk-, and TMEHY-inoculated groups. None of the raccoons inoculated with TMEDY or atypical scrapie agents developed clinical disease or detectable PrPSc accumulation. Our results indicate that raccoons are highly susceptible to infection with raccoon- and bovine-passaged TME agents, whereas CWD isolates from white-tailed deer or elk and hamster-adapted TMEHY transmit poorly. Raccoons appear to be resistant to infection with hamster-adapted TMEDY and atypical scrapie agents.
Collapse
Affiliation(s)
- S Jo Moore
- National Animal Disease Center, Ames, IA (Moore, Greenlee).,Iowa State University, College of Veterinary Medicine, Ames, IA (Smith).,Kansas State University, College of Veterinary Medicine, Manhattan, KS (Richt)
| | - Jodi D Smith
- National Animal Disease Center, Ames, IA (Moore, Greenlee).,Iowa State University, College of Veterinary Medicine, Ames, IA (Smith).,Kansas State University, College of Veterinary Medicine, Manhattan, KS (Richt)
| | - Jürgen A Richt
- National Animal Disease Center, Ames, IA (Moore, Greenlee).,Iowa State University, College of Veterinary Medicine, Ames, IA (Smith).,Kansas State University, College of Veterinary Medicine, Manhattan, KS (Richt)
| | - Justin J Greenlee
- National Animal Disease Center, Ames, IA (Moore, Greenlee).,Iowa State University, College of Veterinary Medicine, Ames, IA (Smith).,Kansas State University, College of Veterinary Medicine, Manhattan, KS (Richt)
| |
Collapse
|
10
|
Moore SJ, West Greenlee MH, Kondru N, Manne S, Smith JD, Kunkle RA, Kanthasamy A, Greenlee JJ. Experimental Transmission of the Chronic Wasting Disease Agent to Swine after Oral or Intracranial Inoculation. J Virol 2017; 91:e00926-17. [PMID: 28701407 PMCID: PMC5599732 DOI: 10.1128/jvi.00926-17] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2017] [Accepted: 07/06/2017] [Indexed: 01/01/2023] Open
Abstract
Chronic wasting disease (CWD) is a naturally occurring, fatal neurodegenerative disease of cervids. The potential for swine to serve as hosts for the agent of CWD is unknown. The purpose of this study was to investigate the susceptibility of swine to the CWD agent following experimental oral or intracranial inoculation. Crossbred piglets were assigned to three groups, intracranially inoculated (n = 20), orally inoculated (n = 19), and noninoculated (n = 9). At approximately the age at which commercial pigs reach market weight, half of the pigs in each group were culled ("market weight" groups). The remaining pigs ("aged" groups) were allowed to incubate for up to 73 months postinoculation (mpi). Tissues collected at necropsy were examined for disease-associated prion protein (PrPSc) by Western blotting (WB), antigen capture enzyme immunoassay (EIA), immunohistochemistry (IHC), and in vitro real-time quaking-induced conversion (RT-QuIC). Brain samples from selected pigs were also bioassayed in mice expressing porcine prion protein. Four intracranially inoculated aged pigs and one orally inoculated aged pig were positive by EIA, IHC, and/or WB. By RT-QuIC, PrPSc was detected in lymphoid and/or brain tissue from one or more pigs in each inoculated group. The bioassay was positive in four out of five pigs assayed. This study demonstrates that pigs can support low-level amplification of CWD prions, although the species barrier to CWD infection is relatively high. However, detection of infectivity in orally inoculated pigs with a mouse bioassay raises the possibility that naturally exposed pigs could act as a reservoir of CWD infectivity.IMPORTANCE We challenged domestic swine with the chronic wasting disease agent by inoculation directly into the brain (intracranially) or by oral gavage (orally). Disease-associated prion protein (PrPSc) was detected in brain and lymphoid tissues from intracranially and orally inoculated pigs as early as 8 months of age (6 months postinoculation). Only one pig developed clinical neurologic signs suggestive of prion disease. The amount of PrPSc in the brains and lymphoid tissues of positive pigs was small, especially in orally inoculated pigs. Regardless, positive results obtained with orally inoculated pigs suggest that it may be possible for swine to serve as a reservoir for prion disease under natural conditions.
Collapse
Affiliation(s)
- S Jo Moore
- Virus and Prion Research Unit, National Animal Disease Center, USDA, Agricultural Research Service, Ames, Iowa, USA
- Oak Ridge Institute for Science and Education, Oak Ridge, Tennessee, USA
| | - M Heather West Greenlee
- Department of Biomedical Sciences, Iowa State University College of Veterinary Medicine, Ames, Iowa, USA
| | - Naveen Kondru
- Department of Biomedical Sciences, Iowa State University College of Veterinary Medicine, Ames, Iowa, USA
| | - Sireesha Manne
- Department of Biomedical Sciences, Iowa State University College of Veterinary Medicine, Ames, Iowa, USA
| | - Jodi D Smith
- Virus and Prion Research Unit, National Animal Disease Center, USDA, Agricultural Research Service, Ames, Iowa, USA
| | - Robert A Kunkle
- Virus and Prion Research Unit, National Animal Disease Center, USDA, Agricultural Research Service, Ames, Iowa, USA
| | - Anumantha Kanthasamy
- Department of Biomedical Sciences, Iowa State University College of Veterinary Medicine, Ames, Iowa, USA
| | - Justin J Greenlee
- Virus and Prion Research Unit, National Animal Disease Center, USDA, Agricultural Research Service, Ames, Iowa, USA
| |
Collapse
|
11
|
Plummer IH, Wright SD, Johnson CJ, Pedersen JA, Samuel MD. Temporal patterns of chronic wasting disease prion excretion in three cervid species. J Gen Virol 2017; 98:1932-1942. [PMID: 28708047 DOI: 10.1099/jgv.0.000845] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Chronic wasting disease (CWD) is the only naturally occurring transmissible spongiform encephalopathy affecting free-ranging wildlife populations. Transmission of CWD occurs by direct contact or through contaminated environments; however, little is known about the temporal patterns of CWD prion excretion and shedding in wild cervids. We tested the urine and faeces of three species of captive cervids (elk, mule and white-tailed deer) at 6, 12, 18 and 24 months after oral inoculation to evaluate the temporal, species- and genotype-specific factors affecting the excretion of CWD prions. Although none of the animals exhibited clinical signs of CWD during the study, we determined that all three cervid species were excreting CWD prions by 6 months post-inoculation. Faecal samples were consistently positive for CWD prions for all three cervid species (88 %), and were more likely to be positive than urine samples (28 %). Cervids with genotypes encoding for the prion protein (PRNP) that were considered to be more susceptible to CWD were more likely to excrete CWD prions (94 %) than cervids with genotypes considered to be less susceptible (64 %). All cervids with CWD prions in their urine also had positive faeces (n=5), but the converse was not true. Our study is the first to demonstrate CWD prion excretion in urine by asymptomatic elk and mule deer. Our results indicate that the excretion of CWD prions in faeces and, to a lesser extent, urine may provide an important avenue for depositing prions in the environment.
Collapse
Affiliation(s)
- Ian H Plummer
- Department of Forest and Wildlife Ecology, University of Wisconsin - Madison, 1630 Linden Drive, Madison, WI 53706, USA
| | - Scott D Wright
- US Geological Survey, National Wildlife Health Center, 6006 Schroeder Road, Madison, Wisconsin 53711, USA.,Present address: 4730 Toepfer Road, Middleton, Wisconsin 53562, USA
| | - Chad J Johnson
- Departments of Soil Science, Civil and Environmental Engineering, and Chemistry, University of Wisconsin - Madison, 1525 Observatory Drive, Madison, Wisconsin 53706, USA
| | - Joel A Pedersen
- Departments of Soil Science, Civil and Environmental Engineering, and Chemistry, University of Wisconsin - Madison, 1525 Observatory Drive, Madison, Wisconsin 53706, USA
| | - Michael D Samuel
- Retired, US Geological Survey, Wisconsin Cooperative Wildlife Research Unit, University of Wisconsin - Madison, 204 Russell Labs, 1630 Linden Drive, Madison, WI 53706, USA
| |
Collapse
|
12
|
Abstract
Prions cause fatal neurodegenerative diseases in humans and animals and can be transmitted zoonotically. Chronic wasting disease (CWD) is a highly transmissible prion disease of wild deer and elk that affects cervids over extensive regions of the United States and Canada. The risk of cross-species CWD transmission has been experimentally evaluated in a wide array of mammals, including non-human primates and mouse models expressing human cellular prion protein. Here we review the determinants of cross-species CWD transmission, and propose a model that may explain a structural barrier for CWD transmission to humans.
Collapse
Affiliation(s)
- Timothy D Kurt
- a Departments of Pathology and Medicine , UC San Diego , La Jolla , CA , USA
| | - Christina J Sigurdson
- a Departments of Pathology and Medicine , UC San Diego , La Jolla , CA , USA.,b Department of Pathology, Immunology, and Microbiology , UC Davis , Davis , CA , USA
| |
Collapse
|
13
|
Ricci A, Allende A, Bolton D, Chemaly M, Davies R, Fernández Escámez PS, Gironés R, Herman L, Koutsoumanis K, Lindqvist R, Nørrung B, Robertson L, Sanaa M, Skandamis P, Snary E, Speybroeck N, Ter Kuile B, Threlfall J, Wahlström H, Benestad S, Gavier-Widen D, Miller MW, Ru G, Telling GC, Tryland M, Ortiz Pelaez A, Simmons M. Chronic wasting disease (CWD) in cervids. EFSA J 2017; 15:e04667. [PMID: 32625260 PMCID: PMC7010154 DOI: 10.2903/j.efsa.2017.4667] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
In April and May of 2016, Norway confirmed two cases of chronic wasting disease (CWD) in a wild reindeer and a wild moose, respectively. In the light of this emerging issue, the European Commission requested EFSA to recommend surveillance activities and, if necessary, additional animal health risk-based measures to prevent the introduction of the disease and the spread into/within the EU, specifically Estonia, Finland, Iceland, Latvia, Lithuania, Norway, Poland and Sweden, and considering seven wild, semidomesticated and farmed cervid species (Eurasian tundra reindeer, Finnish (Eurasian) forest reindeer, moose, roe deer, white-tailed deer, red deer and fallow deer). It was also asked to assess any new evidence on possible public health risks related to CWD. A 3-year surveillance system is proposed, differing for farmed and wild or semidomesticated cervids, with a two-stage sampling programme at the farm/geographically based population unit level (random sampling) and individual level (convenience sampling targeting high-risk animals). The current derogations of Commission Implementing Decision (EU) 2016/1918 present a risk of introduction of CWD into the EU. Measures to prevent the spread of CWD within the EU are dependent upon the assumption that the disease is already present; this is currently unknown. The measures listed are intended to contain (limit the geographic extent of a focus) and/or to control (actively stabilise/reduce infection rates in an affected herd or population) the disease where it occurs. With regard to the zoonotic potential, the human species barrier for CWD prions does not appear to be absolute. These prions are present in the skeletal muscle and other edible tissues, so humans may consume infected material in enzootic areas. Epidemiological investigations carried out to date make no association between the occurrence of sporadic Creutzfeldt-Jakob disease in humans and exposure to CWD prions.
Collapse
|
14
|
Tyshenko MG, Oraby T, Darshan S, Westphal M, Croteau MC, Aspinall W, Elsaadany S, Krewski D, Cashman N. Expert elicitation on the uncertainties associated with chronic wasting disease. JOURNAL OF TOXICOLOGY AND ENVIRONMENTAL HEALTH. PART A 2016; 79:729-45. [PMID: 27556566 DOI: 10.1080/15287394.2016.1174007] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
A high degree of uncertainty exists for chronic wasting disease (CWD) transmission factors in farmed and wild cervids. Evaluating the factors is important as it helps to inform future risk management strategies. Expert opinion is often used to assist decision making in a number of health, science, and technology domains where data may be sparse or missing. Using the "Classical Model" of elicitation, a group of experts was asked to estimate the most likely values for several risk factors affecting CWD transmission. The formalized expert elicitation helped structure the issues and hence provide a rational basis for estimating some transmission risk factors for which evidence is lacking. Considered judgments regarding environmental transmission, latency of CWD transmission, management, and species barrier were provided by the experts. Uncertainties for many items were determined to be large, highlighting areas requiring more research. The elicited values may be used as surrogate values until research evidence becomes available.
Collapse
Affiliation(s)
- Michael G Tyshenko
- a McLaughlin Centre for Population Health Risk Assessment , Institute of Population Health, University of Ottawa , Ottawa , Ontario , Canada
| | - Tamer Oraby
- b Department of Mathematics , University of Texas-Pan American , Edinburg , Texas , USA
| | - Shalu Darshan
- a McLaughlin Centre for Population Health Risk Assessment , Institute of Population Health, University of Ottawa , Ottawa , Ontario , Canada
| | - Margit Westphal
- a McLaughlin Centre for Population Health Risk Assessment , Institute of Population Health, University of Ottawa , Ottawa , Ontario , Canada
| | - Maxine C Croteau
- a McLaughlin Centre for Population Health Risk Assessment , Institute of Population Health, University of Ottawa , Ottawa , Ontario , Canada
| | - Willy Aspinall
- c Aspinall and Associates , Tisbury , United Kingdom
- d School of Earth Sciences and Cabot Institute , University of Bristol , Bristol , United Kingdom
| | - Susie Elsaadany
- e Professional Guidelines and Public Health Practice Division, Centre for Infectious Disease Prevention and Control , Public Health Agency of Canada , Ottawa , Ontario , Canada
| | - Daniel Krewski
- a McLaughlin Centre for Population Health Risk Assessment , Institute of Population Health, University of Ottawa , Ottawa , Ontario , Canada
- f Department of Epidemiology and Community Medicine , University of Ottawa , Ottawa , Ontario , Canada
| | - Neil Cashman
- g Brain Research Centre , University of British Columbia , Vancouver , British Columbia , Canada
| |
Collapse
|
15
|
Al-Arydah M, Croteau MC, Oraby T, Smith RJ, Krewski D. Applications of mathematical modeling in managing the spread of chronic wasting disease (CWD) in wild deer under alternative harvesting scenarios. JOURNAL OF TOXICOLOGY AND ENVIRONMENTAL HEALTH. PART A 2016; 79:690-699. [PMID: 27556563 DOI: 10.1080/15287394.2016.1174001] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
The application of a recently developed mathematical model for predicting the spread of chronic wasting disease (CWD) in wild deer was assessed under different scenarios where harvesting is employed in disease management. A process-based mathematical model for CWD transmission in wild deer populations was recently developed and parameterized by Al-arydah et al. (2011) to provide a scientific basis for understanding the factors that affect spread of CWD and evaluate concomitant disease-control strategies. The impact of gender on CWD transmission was shown to have a significant influence on the spread of the disease in the wild. Our model demonstrates a range of harvesting rates in which CWD is controlled and deer populations survive. However, if harvesting rates are too low, the disease remains endemic for decades. Conversely, the Canadian deer population is eradicated if harvesting rates are excessive. Future investigation includes building the model to assess the spread of CWD under different disease-management scenarios.
Collapse
Affiliation(s)
- M Al-Arydah
- a Masdar Institute of Science and Technology , Abu Dhabi , UAE
| | - M C Croteau
- b McLaughlin Centre for Population Health Risk Assessment , University of Ottawa , Ottawa , Ontario , Canada
| | - T Oraby
- c School of Mathematical and Statistical Sciences , University of Texas Rio Grande Valley , Edinburg , Texas , USA
| | - R J Smith
- d Department of Mathematics and Faculty of Medicine , University of Ottawa , Ottawa , Ontario , Canada
| | - D Krewski
- b McLaughlin Centre for Population Health Risk Assessment , University of Ottawa , Ottawa , Ontario , Canada
| |
Collapse
|
16
|
Lesion of the olfactory epithelium accelerates prion neuroinvasion and disease onset when prion replication is restricted to neurons. PLoS One 2015; 10:e0119863. [PMID: 25822718 PMCID: PMC4379011 DOI: 10.1371/journal.pone.0119863] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2014] [Accepted: 01/17/2015] [Indexed: 11/29/2022] Open
Abstract
Natural prion diseases of ruminants are moderately contagious and while the gastrointestinal tract is the primary site of prion agent entry, other mucosae may be entry sites in a subset of infections. In the current study we examined prion neuroinvasion and disease induction following disruption of the olfactory epithelium in the nasal mucosa since this site contains environmentally exposed olfactory sensory neurons that project directly into the central nervous system. Here we provide evidence for accelerated prion neuroinvasion and clinical onset from the olfactory mucosa after disruption and regeneration of the olfactory epithelium and when prion replication is restricted to neurons. In transgenic mice with neuron restricted replication of prions, there was a reduction in survival when the olfactory epithelium was disrupted prior to intranasal inoculation and there was >25% decrease in the prion incubation period. In a second model, the neurotropic DY strain of transmissible mink encephalopathy was not pathogenic in hamsters by the nasal route, but 50% of animals exhibited brain infection and/or disease when the olfactory epithelium was disrupted prior to intranasal inoculation. A time course analysis of prion deposition in the brain following loss of the olfactory epithelium in models of neuron-restricted prion replication suggests that neuroinvasion from the olfactory mucosa is via the olfactory nerve or brain stem associated cranial nerves. We propose that induction of neurogenesis after damage to the olfactory epithelium can lead to prion infection of immature olfactory sensory neurons and accelerate prion spread to the brain.
Collapse
|
17
|
West Greenlee MH, Smith JD, Platt EM, Juarez JR, Timms LL, Greenlee JJ. Changes in retinal function and morphology are early clinical signs of disease in cattle with bovine spongiform encephalopathy. PLoS One 2015; 10:e0119431. [PMID: 25756286 PMCID: PMC4355414 DOI: 10.1371/journal.pone.0119431] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2014] [Accepted: 01/13/2015] [Indexed: 11/19/2022] Open
Abstract
Bovine spongiform encephalopathy (BSE) belongs to a group of fatal, transmissible protein misfolding diseases known as transmissible spongiform encephalopathies (TSEs). All TSEs are caused by accumulation of misfolded prion protein (PrPSc) throughout the central nervous system (CNS), which results in neuronal loss and ultimately death. Like other protein misfolding diseases including Parkinson's disease and Alzheimer's disease, TSEs are generally not diagnosed until the onset of disease after the appearance of unequivocal clinical signs. As such, identification of the earliest clinical signs of disease may facilitate diagnosis. The retina is the most accessible part of the central nervous system, and retinal pathology in TSE affected animals has been previously reported. Here we describe antemortem changes in retinal function and morphology that are detectable in BSE inoculated animals several months (up to 11 months) prior to the appearance of any other signs of clinical disease. We also demonstrate that differences in the severity of these clinical signs reflect the amount of PrPSc accumulation in the retina and the resulting inflammatory response of the tissue. These results are the earliest reported clinical signs associated with TSE infection and provide a basis for understanding the pathology and evaluating therapeutic interventions.
Collapse
Affiliation(s)
- M. Heather West Greenlee
- Department of Biomedical Sciences and Interdepartmental Toxicology Program, Iowa State University, Ames, IA 50010, United States of America
- * E-mail:
| | - Jodi D. Smith
- Virus and Prion Research Unit, National Animal Disease Center, Ames, IA 50010, United States of America
| | - Ekundayo M. Platt
- Department of Genetics and Cell Biology and Interdepartmental Toxicology Program, Iowa State University, Ames, IA 50010, United States of America
| | - Jessica R. Juarez
- Department of Animal Science, Iowa State University, Ames, IA 50010, United States of America
| | - Leo L. Timms
- Department of Animal Science, Iowa State University, Ames, IA 50010, United States of America
| | - Justin J. Greenlee
- Virus and Prion Research Unit, National Animal Disease Center, Ames, IA 50010, United States of America
| |
Collapse
|
18
|
Di Bari MA, Nonno R, Castilla J, D'Agostino C, Pirisinu L, Riccardi G, Conte M, Richt J, Kunkle R, Langeveld J, Vaccari G, Agrimi U. Chronic wasting disease in bank voles: characterisation of the shortest incubation time model for prion diseases. PLoS Pathog 2013; 9:e1003219. [PMID: 23505374 PMCID: PMC3591354 DOI: 10.1371/journal.ppat.1003219] [Citation(s) in RCA: 77] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2012] [Accepted: 01/12/2013] [Indexed: 01/17/2023] Open
Abstract
In order to assess the susceptibility of bank voles to chronic wasting disease (CWD), we inoculated voles carrying isoleucine or methionine at codon 109 (Bv109I and Bv109M, respectively) with CWD isolates from elk, mule deer and white-tailed deer. Efficient transmission rate (100%) was observed with mean survival times ranging from 156 to 281 days post inoculation. Subsequent passages in Bv109I allowed us to isolate from all CWD sources the same vole-adapted CWD strain (Bv(109I)CWD), typified by unprecedented short incubation times of 25-28 days and survival times of ∼35 days. Neuropathological and molecular characterisation of Bv(109I)CWD showed that the classical features of mammalian prion diseases were all recapitulated in less than one month after intracerebral inoculation. Bv(109I)CWD was characterised by a mild and discrete distribution of spongiosis and relatively low levels of protease-resistant PrP(Sc) (PrP(res)) in the same brain regions. Despite the low PrP(res) levels and the short time lapse available for its accumulation, end-point titration revealed that brains from terminally-ill voles contained up to 10(8,4) i.c. ID50 infectious units per gram. Bv(109I)CWD was efficiently replicated by protein misfolding cyclic amplification (PMCA) and the infectivity faithfully generated in vitro, as demonstrated by the preservation of the peculiar Bv(109I)CWD strain features on re-isolation in Bv109I. Overall, we provide evidence that the same CWD strain was isolated in Bv109I from the three-cervid species. Bv(109I)CWD showed unique characteristics of "virulence", low PrP(res) accumulation and high infectivity, thus providing exceptional opportunities to improve basic knowledge of the relationship between PrP(Sc), neurodegeneration and infectivity.
Collapse
Affiliation(s)
- Michele Angelo Di Bari
- Department of Veterinary Public Health and Food Safety, Istituto Superiore di Sanità, Rome, Italy.
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
19
|
Al-Arydah M, Smith RJ, Lutscher F. Modeling Gender-Structured Wildlife Diseases with Harvesting: Chronic Wasting Disease as an Example. ACTA ACUST UNITED AC 2012. [DOI: 10.5402/2012/802450] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
Chronic wasting disease (CWD) is a prion infectious disease that affects members of the deer family in North America. Concerns about the economic consequences of the presence of CWD have led management agencies to seek effective strategies to control CWD distribution and prevalence. Current mathematical models are either based on complex simulations or overly simplified compartmental models. We develop a mathematical model that includes gender structure to describe CWD in a logistically growing population. The model includes harvesting as a management strategy for the disease. We determine the stability conditions of the disease-free equilibrium for the model and calculate the basic reproduction number. We find an optimum interval of harvesting: with too little harvesting, the disease persists, whereas too much harvesting results in extinction of the population. A sensitivity analysis shows that the disease threshold is more sensitive to female than male harvesting and that harvesting has the greatest effect on the basic reproduction number. However, while harvesting may be a way to control CWD, the range of admissible harvesting rates may be very narrow, depending on other parameters.
Collapse
Affiliation(s)
- Mo'tassem Al-Arydah
- Department of Mathematics, The University of Ottawa, Ottawa, ON, Canada K1N 6N5
| | - Robert J. Smith
- Department of Mathematics and Faculty of Medicine, The University of Ottawa, Ottawa, ON, Canada K1N 6N5
| | - Frithjof Lutscher
- Department of Mathematics, The University of Ottawa, Ottawa, ON, Canada K1N 6N5
| |
Collapse
|
20
|
Greenlee JJ, Smith JD, Kunkle RA. White-tailed deer are susceptible to the agent of sheep scrapie by intracerebral inoculation. Vet Res 2011; 42:107. [PMID: 21988781 PMCID: PMC3199251 DOI: 10.1186/1297-9716-42-107] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2011] [Accepted: 10/11/2011] [Indexed: 11/10/2022] Open
Abstract
Interspecies transmission studies afford the opportunity to better understand the potential host range and origins of prion diseases. The purpose of this experiment was to determine susceptibility of white-tailed deer to the agent of scrapie after intracerebral inoculation and to compare clinical signs and lesions to those reported for chronic wasting disease (CWD). Deer (n = 5) were inoculated with 1 mL of a 10% (wt/vol) brain homogenate derived from a sheep clinically affected with scrapie. A non-inoculated deer was maintained as a negative control. Deer were observed daily for clinical signs of disease and euthanized and necropsied when unequivocal signs of scrapie were noted. One animal died 7 months post inoculation (pi) due to intercurrent disease. Examinations of brain tissue for the presence of the disease-associated abnormal prion protein (PrPSc) by western blot (WB) and immunohistochemistry (IHC) were negative whereas IHC of lymphoid tissues was positive. Deer necropsied at 15-22 months pi were positive for scrapie by IHC and WB. Deer necropsied after 20 months pi had clinical signs of depression and progressive weight loss. Tissues with PrPSc immunoreactivity included brain (at levels of cerebrum, hippocampus, colliculus, cerebellum, and brainstem), trigeminal ganglion, neurohypophysis, retina, spinal cord, and various lymphoid tissues including tonsil, retropharyngeal and mesenteric lymph nodes, Peyer's patches, and spleen. This work demonstrates for the first time that white-tailed deer are susceptible to sheep scrapie by intracerebral inoculation. To further test the susceptibility of white-tailed deer to scrapie these experiments will be repeated with a more natural route of inoculation.
Collapse
Affiliation(s)
- Justin J Greenlee
- Virus and Prion Research Unit, National Animal Disease Center, ARS, USDA, Ames, IA 50010, USA.
| | | | | |
Collapse
|
21
|
Daus ML, Breyer J, Wagenfuehr K, Wemheuer WM, Thomzig A, Schulz-Schaeffer WJ, Beekes M. Presence and seeding activity of pathological prion protein (PrP(TSE)) in skeletal muscles of white-tailed deer infected with chronic wasting disease. PLoS One 2011; 6:e18345. [PMID: 21483771 PMCID: PMC3069970 DOI: 10.1371/journal.pone.0018345] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2010] [Accepted: 03/01/2011] [Indexed: 12/20/2022] Open
Abstract
Chronic wasting disease (CWD) is a contagious, rapidly spreading transmissible spongiform encephalopathy (TSE), or prion disease, occurring in cervids such as white tailed-deer (WTD), mule deer or elk in North America. Despite efficient horizontal transmission of CWD among cervids natural transmission of the disease to other species has not yet been observed. Here, we report for the first time a direct biochemical demonstration of pathological prion protein PrPTSE and of PrPTSE-associated seeding activity, the static and dynamic biochemical markers for biological prion infectivity, respectively, in skeletal muscles of CWD-infected cervids, i. e. WTD for which no clinical signs of CWD had been recognized. The presence of PrPTSE was detected by Western- and postfixed frozen tissue blotting, while the seeding activity of PrPTSE was revealed by protein misfolding cyclic amplification (PMCA). Semi-quantitative Western blotting indicated that the concentration of PrPTSE in skeletal muscles of CWD-infected WTD was approximately 2000-10000 -fold lower than in brain tissue. Tissue-blot-analyses revealed that PrPTSE was located in muscle-associated nerve fascicles but not, in detectable amounts, in myocytes. The presence and seeding activity of PrPTSE in skeletal muscle from CWD-infected cervids suggests prevention of such tissue in the human diet as a precautionary measure for food safety, pending on further clarification of whether CWD may be transmissible to humans.
Collapse
Affiliation(s)
- Martin L. Daus
- P24 - Transmissible Spongiform Encephalopathies, Robert Koch-Institut, Berlin, Germany
| | - Johanna Breyer
- Prion and Dementia Research Unit, Department of Neuropathology, University Medical Center Göttingen, Göttingen, Germany
| | - Katja Wagenfuehr
- P24 - Transmissible Spongiform Encephalopathies, Robert Koch-Institut, Berlin, Germany
| | - Wiebke M. Wemheuer
- Prion and Dementia Research Unit, Department of Neuropathology, University Medical Center Göttingen, Göttingen, Germany
| | - Achim Thomzig
- P24 - Transmissible Spongiform Encephalopathies, Robert Koch-Institut, Berlin, Germany
| | - Walter J. Schulz-Schaeffer
- Prion and Dementia Research Unit, Department of Neuropathology, University Medical Center Göttingen, Göttingen, Germany
| | - Michael Beekes
- P24 - Transmissible Spongiform Encephalopathies, Robert Koch-Institut, Berlin, Germany
- * E-mail:
| |
Collapse
|