1
|
Krasnow SM, Rubin CT, Roeland EJ, Horak FB, Stoyles SA, Dieckmann NF, Braun KN, Winters-Stone KM. Low-Intensity Vibration to Reduce Symptoms and Improve Physical Functioning in Cancer Survivors With Chemotherapy-Induced Peripheral Neuropathy: A Pilot Randomized Trial. JCO Oncol Pract 2025:OP2400961. [PMID: 40373263 DOI: 10.1200/op-24-00961] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2024] [Revised: 02/10/2025] [Accepted: 04/14/2025] [Indexed: 05/17/2025] Open
Abstract
PURPOSE Chemotherapy-induced peripheral neuropathy (CIPN) can have deleterious effects on mobility and quality of life in people with cancer. Vibration therapy shows promise as a CIPN intervention but is understudied. We investigated the feasibility and preliminary efficacy of low-intensity vibration (LIV) in cancer survivors with CIPN. METHODS We conducted a pilot randomized controlled trial in adult cancer survivors with persistent CIPN symptoms. Participants were randomly assigned to twice-daily LIV sessions (10 min/session; 30 Hz, 0.4 g) for 12 weeks or usual care (UC). We assessed feasibility by accrual, retention, adherence, and adverse event (AE) reporting. We evaluated preliminary efficacy by changes in patient-reported CIPN symptoms (Functional Assessment of Cancer Therapy/Gynecologic Oncology Group Neurotoxicity), pain (Brief Pain Inventory), fatigue (Patient-Reported Outcome Measurement Information System Fatigue), and physical functioning (Late-Life Function and Disability Instrument) and objectively measured physical functioning (chair stand time, gait speed), stability (postural sway), and mobility (Timed-Up-and-Go). Linear regression models were used to generate effect size estimates (Cohen's d). RESULTS We accrued 95% of our target sample (n = 38, mean age: 62.6 ± 9.9 years, 89% female, median time since chemotherapy completion: 18 [6-39] months), with 20 participants randomly assigned to LIV and 18 to UC. Trial retention was 97% and mean adherence to LIV was 77% ± 18%. There were no serious AEs. Compared with UC, LIV participants reported greater improvements in sensory neuropathy symptoms (LIV, +1.4 ± 3.3 points; UC, +0.2 ± 2.8 points; Cohen's d = 0.45) and basic lower extremity function (LIV, +5.3 ± 8.5 points; UC, -0.7 ± 9.2 points; Cohen's d = 0.80), with moderate-to-large effect sizes for changes in stability, mobility, and gait (Cohen's d = 0.60-0.66). CONCLUSION LIV is safe, feasible, and shows preliminary efficacy for CIPN symptom relief and improving physical functioning in cancer survivors with CIPN.
Collapse
Affiliation(s)
- Stephanie M Krasnow
- Division of Oncological Sciences, Knight Cancer Institute, School of Medicine, Oregon Health & Science University, Portland, OR
| | | | - Eric J Roeland
- Division of Oncological Sciences, Knight Cancer Institute, School of Medicine, Oregon Health & Science University, Portland, OR
| | - Fay B Horak
- Department of Neurology, School of Medicine, Oregon Health & Science University, Portland, OR
- Clario APDM Precision Motion, Portland, OR
| | - Sydnee A Stoyles
- School of Nursing, Oregon Health & Science University, Portland, OR
| | | | - Kendra N Braun
- Division of Oncological Sciences, Knight Cancer Institute, School of Medicine, Oregon Health & Science University, Portland, OR
| | - Kerri M Winters-Stone
- Division of Oncological Sciences, Knight Cancer Institute, School of Medicine, Oregon Health & Science University, Portland, OR
| |
Collapse
|
2
|
Song X, Hao P, Gao L, Li X, Zhang C. Effects on Mass Transfer in the Bone Lacunar-Canalicular System under Different Radial Extracorporeal Shock Waves. Tissue Eng Regen Med 2025; 22:297-308. [PMID: 39979553 PMCID: PMC11926316 DOI: 10.1007/s13770-025-00707-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2024] [Revised: 12/22/2024] [Accepted: 01/13/2025] [Indexed: 02/22/2025] Open
Abstract
BACKGROUND The bone lacunar-canalicular system (LCS) is an important microscopic infrastructure for signaling and solute transport in bone tissue, which guarantees the normal physiological processes of bone tissue, and there is a direct relationship between osteoporosis and intrabody mass transfer; however, the mass transfer pattern of the LCS has not yet been clarified under different intensities of in extracorporeal shock waves. The present study aims to assess the effect of extracorporeal shock waves on mass transfer in LCS. METHODS Sodium fluorescein tracer was taken as the transport substance, and the fluorescence intensities of osteocytes at lacuna in bovine cortical bone were used to indicate the mass transfer effect. The free diffusion and different extracorporeal shock waves were performed in LCS experiments and the fluorescence intensities of the superficial, shallow, middle, and deep layers of osteocytes, which were arranged in a proximity-to-distant order away from the Haversian canal, were detected by laser scanning confocal microscopy. RESULTS The results showed that, under different shock waves, the fluorescence intensities of superficial lacunae were the highest in an osteon, followed by shallow and middle layers, and the fluorescence intensities of deep lacunae furthest from the Haversian canal were the lowest, with a decreasing trend and a decreased range of 44.75-97.11%. Relative to free diffusion, the fluorescence intensities of the lacunae in each layer increased by 33.16%, 20.56%, 16.11%, and 26.64% in the superficial, shallow, middle, and deep layers of osteocytes, respectively, under the effect of the extracorporeal shock waves at 1 bar; the fluorescence intensities of the middle layer increased by 100.03% when the intensity was 5 bar, and average fluorescence intensities increased the most with an incremental value of 81.34% in all different shock waves; the fluorescence intensities of the lacunae of each layer was enhanced with a range of 110.93-161.03% by 8 bar. CONCLUSION Extracorporeal shock waves promoted tracer mass transfer within the LCS, and the higher the shock wave magnitudes, the larger the mass transfer in LCS. The transport of solute molecules, nutrients, and signaling molecules within the LCS was facilitated by the extracorporeal shock waves, which may help to address bone diseases such as osteoporosis from the direction of mass transfer in LCS.
Collapse
Affiliation(s)
- Xinlei Song
- Tianjin Key Laboratory for Advanced Mechatronic System Design and Intelligent Control, National Demonstration Center for Experimental Mechanical and Electrical Engineering Education, School of Mechanical Engineering, Tianjin University of Technology, Tianjin, 300384, China
| | - Pujun Hao
- Tianjin Key Laboratory for Advanced Mechatronic System Design and Intelligent Control, National Demonstration Center for Experimental Mechanical and Electrical Engineering Education, School of Mechanical Engineering, Tianjin University of Technology, Tianjin, 300384, China.
| | - Lilan Gao
- Tianjin Key Laboratory for Advanced Mechatronic System Design and Intelligent Control, National Demonstration Center for Experimental Mechanical and Electrical Engineering Education, School of Mechanical Engineering, Tianjin University of Technology, Tianjin, 300384, China
| | - Xuejin Li
- School of Aeronautics and Astronautics, Zhejiang University, 38 Zheda Road Hangzhou, Zhejiang, 310027, China
| | - Chunqiu Zhang
- Tianjin Key Laboratory for Advanced Mechatronic System Design and Intelligent Control, National Demonstration Center for Experimental Mechanical and Electrical Engineering Education, School of Mechanical Engineering, Tianjin University of Technology, Tianjin, 300384, China.
| |
Collapse
|
3
|
Maïmoun L, Gelis A, Serrand C, Mura T, Brabant S, Garnero P, Mariano-Goulart D, Fattal C. Whole-body vibration may not affect bone mineral density and bone turnover in persons with chronic spinal cord injury: A preliminary study. J Spinal Cord Med 2025; 48:259-271. [PMID: 37930641 PMCID: PMC11864013 DOI: 10.1080/10790268.2023.2268893] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/07/2023] Open
Abstract
CONTEXT Spinal-cord injury (SCI) induces bone loss and dramatically increases the risk of fracture. OBJECTIVES Determine the effects of whole-body vibration (WBV) on areal bone mineral density (aBMD), whole body composition and bone biological parameters in individuals with chronic-state SCI. DESIGN Randomized study. SETTING Centre Neurologique PROPARA. PARTICIPANTS Fourteen subjects were randomly assigned to a WBV or a control group. INTERVENTIONS WBV (20-45 min, 30-45 Hz, 0.5 g) was performed in verticalized persons twice weekly for 6 months. OUTCOME MEASURES aBMD was measured by DXA at baseline and 6 months and bone biological parameters at baseline, 1, 3 and 6 months. RESULTS No significant aBMD change was found in either the WBV or control group after 6 months of follow-up. Similarly, periostin, sclerostin and bone turnover markers remained relatively stable throughout follow-up and no difference in variation was observed within-group and between groups. Except for whole-body fat mass, which showed a significant decrease in the WBV group compared to controls, no difference in changes was observed, whatever the localization for fat and lean body mass. CONCLUSIONS During the chronic phase, aBMD and bone remodeling reach a new steady state. However, the DXA technique and the bone markers, including sclerostin and periostin, both of which reflect bone cell activity influenced by mechanical strain, showed that the bone tissue of individuals with SCI was insensitive to 6 months of WBV training at the study dose. Nevertheless, results of this preliminary study that was underpowered need to be confirmed and other modalities of WBV may be more effective in improving aBMD of this population. TRIALS REGISTRATION N°IDRCB:2011-A00224-37.
Collapse
Affiliation(s)
- Laurent Maïmoun
- Département de Médecine Nucléaire, Hôpital Lapeyronie, CHU Montpellier, Montpellier, France
- PhyMedExp, INSERM, CNRS, Université de Montpellier, Montpellier, France
| | | | - Chris Serrand
- Unité de Recherche Clinique et Epidémiologie, Hôpital La Colombière, CHU Montpellier, Montpellier, France
| | - Thibault Mura
- BESPIM -Hôpital Caremeau, CHRU de Nîmes, Nîmes, France
| | - Severine Brabant
- Laboratoire des Explorations Fonctionnelles, Hôpital Necker, Paris, France
| | | | - Denis Mariano-Goulart
- Département de Médecine Nucléaire, Hôpital Lapeyronie, CHU Montpellier, Montpellier, France
- PhyMedExp, INSERM, CNRS, Université de Montpellier, Montpellier, France
| | | |
Collapse
|
4
|
Hoffman DB, Schifino AG, Cooley MA, Zhong RX, Heo J, Morris CM, Campbell MJ, Warren GL, Greising SM, Call JA. Low intensity, high frequency vibration training to improve musculoskeletal function in a mouse model of volumetric muscle loss. J Orthop Res 2025; 43:622-631. [PMID: 39610268 PMCID: PMC11806655 DOI: 10.1002/jor.26023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/15/2024] [Revised: 10/04/2024] [Accepted: 10/31/2024] [Indexed: 11/30/2024]
Abstract
This study's objective was to investigate the extent to which two different levels of low-intensity vibration training (0.6 g or 1.0 g) affected musculoskeletal structure and function after a volumetric muscle loss (VML) injury in male C57BL/6J mice. All mice received a unilateral VML injury to the posterior plantar flexors. Mice were randomized into a control group (no vibration; VML-noTX), or one of two experimental groups. The two experimental groups received vibration training for 15-min/day, 5-days/week for 8 weeks at either 0.6 g (VML-0.6 g) or 1.0 g (VML-1.0 g) beginning 3-days after induction of VML. Muscles were analyzed for contractile and metabolic adaptations. Tibial bone mechanical properties and geometric structure were assessed by a three-point bending test and microcomputed tomography (µCT). Body mass-normalized peak isometric-torque was 18% less in VML-0.6 g mice compared with VML-noTx mice (p = 0.030). There were no statistically significant differences of vibration intervention on contractile power or muscle oxygen consumption (p ≥ 0.191). Bone ultimate load, but not stiffness, was ~16% greater in tibias of VML-1.0 g mice compared with those from VML-noTx mice (p = 0.048). Cortical bone volume was ~12% greater in tibias of both vibration groups compared with VML-noTx mice (p = 0.003). Importantly, cross-section moment of inertia, the primary determinant of bone ultimate load, was 44% larger in tibias of VML-0.6 g mice compared with VML-noTx mice (p = 0.006). These changes indicate that following VML, bones are more responsive to the selected vibration training parameters than muscle. Vibration training represents a possible adjuvant intervention to address bone deficits following VML.
Collapse
Affiliation(s)
| | | | - Marion A. Cooley
- Department of Oral Biology and Diagnostic Sciences, Dental College of GeorgiaAugust UniversityAugustaGeorgiaUSA
| | - Roger X. Zhong
- Department of Neuroscience and Regenerative MedicineAugusta UniversityAugustaGeorgiaUSA
| | - Junwon Heo
- Department of Physiology & PharmacologyUniversity of GeorgiaAthensGeorgiaUSA
| | - Courtney M. Morris
- Department of Physiology & PharmacologyUniversity of GeorgiaAthensGeorgiaUSA
| | - Matthew J. Campbell
- Department of Physiology & PharmacologyUniversity of GeorgiaAthensGeorgiaUSA
| | - Gordon L. Warren
- Department of Physical TherapyGeorgia State UniversityAtlantaGeorgiaUSA
| | | | - Jarrod A. Call
- Department of Physiology & PharmacologyUniversity of GeorgiaAthensGeorgiaUSA
- Regenerative Bioscience CenterUniversity of GeorgiaAthensGeorgiaUSA
| |
Collapse
|
5
|
Chan ME, Ashdown C, Strait L, Pasumarthy S, Hassan A, Crimarco S, Singh C, Patel VS, Pagnotti G, Khan O, Uzer G, Rubin CT. Low intensity mechanical signals promote proliferation in a cell-specific manner: Tailoring a non-drug strategy to enhance biomanufacturing yields. MECHANOBIOLOGY IN MEDICINE 2024; 2:100080. [PMID: 39717386 PMCID: PMC11666124 DOI: 10.1016/j.mbm.2024.100080] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/25/2024]
Abstract
Biomanufacturing relies on living cells to produce biotechnology-based therapeutics, tissue engineering constructs, vaccines, and a vast range of agricultural and industrial products. With the escalating demand for these bio-based products, any process that could improve yields and shorten outcome timelines by accelerating cell proliferation would have a significant impact across the discipline. While these goals are primarily achieved using biological or chemical strategies, harnessing cell mechanosensitivity represents a promising - albeit less studied - physical pathway to promote bioprocessing endpoints, yet identifying which mechanical parameters influence cell activities has remained elusive. We tested the hypothesis that mechanical signals, delivered non-invasively using low-intensity vibration (LIV; <1 g, 10-500 Hz), will enhance cell expansion, and determined that any unique signal configuration was not equally influential across a range of cell types. Varying frequency, intensity, duration, refractory period, and daily doses of LIV increased proliferation in Chinese Hamster Ovary (CHO)-adherent cells (+79% in 96 hr) using a particular set of LIV parameters (0.2 g, 500 Hz, 3 × 30 min/d, 2 hr refractory period), yet this same mechanical input suppressed proliferation in CHO-suspension cells (-13%). Another set of LIV parameters (30 Hz, 0.7 g, 2 × 60 min/d, 2 hr refractory period) however, were able to increase the proliferation of CHO-suspension cells by 210% and T-cells by 20.3%. Importantly, we also reported that T-cell response to LIV was in-part dependent upon AKT phosphorylation, as inhibiting AKT phosphorylation reduced the proliferative effect of LIV by over 60%, suggesting that suspension cells utilize mechanism(s) similar to adherent cells to sense specific LIV signals. Particle image velocimetry combined with finite element modeling showed high transmissibility of these signals across fluids (>90%), and LIV effectively scaled up to T75 flasks. Ultimately, when LIV is tailored to the target cell population, it's highly efficient transmission across media represents a means to non-invasively augment biomanufacturing endpoints for both adherent and suspended cells, and holds immediate applications, ranging from small-scale, patient-specific personalized medicine to large-scale commercial biocentric production challenges.
Collapse
Affiliation(s)
- M. Ete Chan
- Department of Biomedical Engineering, College of Engineering and Applied Sciences, Renaissance School of Medicine, Stony Brook University, Stony Brook, NY, 11794-5280, USA
| | - Christopher Ashdown
- Department of Biomedical Engineering, College of Engineering and Applied Sciences, Renaissance School of Medicine, Stony Brook University, Stony Brook, NY, 11794-5280, USA
- Medical Scientist Training Program, Renaissance School of Medicine, Stony Brook University, Stony Brook, NY, 11794, USA
| | - Lia Strait
- Department of Biomedical Engineering, College of Engineering and Applied Sciences, Renaissance School of Medicine, Stony Brook University, Stony Brook, NY, 11794-5280, USA
| | - Sishir Pasumarthy
- Department of Biomedical Engineering, College of Engineering and Applied Sciences, Renaissance School of Medicine, Stony Brook University, Stony Brook, NY, 11794-5280, USA
| | - Abdullah Hassan
- Department of Biomedical Engineering, College of Engineering and Applied Sciences, Renaissance School of Medicine, Stony Brook University, Stony Brook, NY, 11794-5280, USA
| | - Steven Crimarco
- Department of Biomedical Engineering, College of Engineering and Applied Sciences, Renaissance School of Medicine, Stony Brook University, Stony Brook, NY, 11794-5280, USA
| | - Chanpreet Singh
- Department of Biomedical Engineering, College of Engineering and Applied Sciences, Renaissance School of Medicine, Stony Brook University, Stony Brook, NY, 11794-5280, USA
| | - Vihitaben S. Patel
- Department of Biomedical Engineering, College of Engineering and Applied Sciences, Renaissance School of Medicine, Stony Brook University, Stony Brook, NY, 11794-5280, USA
| | - Gabriel Pagnotti
- Department of Endocrine Neoplasia and Hormonal Disorders, MD Anderson Cancer Center, Houston, TX, 77030, USA
| | - Omor Khan
- Department of Mechanical and Biomedical Engineering, College of Engineering, Boise State University, Boise, ID, 83725-205, USA
| | - Gunes Uzer
- Department of Mechanical and Biomedical Engineering, College of Engineering, Boise State University, Boise, ID, 83725-205, USA
| | - Clinton T. Rubin
- Department of Biomedical Engineering, College of Engineering and Applied Sciences, Renaissance School of Medicine, Stony Brook University, Stony Brook, NY, 11794-5280, USA
- Center for Biotechnology, New York State Center for Advanced Technology in Medical Biotechnology, Stony Brook University, Stony Brook, NY, 11794-5281, USA
| |
Collapse
|
6
|
Akan Begoğlu F, Yılmaz F, Öncü Alptekin J, Kuran B, Ünal M, Elik MH. Effects of whole-body vibration in horizontal position on bone, quality of life, and balance in postmenopausal osteoporosis. Turk J Phys Med Rehabil 2024; 70:433-442. [PMID: 40028398 PMCID: PMC11868865 DOI: 10.5606/tftrd.2024.12726] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2023] [Accepted: 01/03/2024] [Indexed: 03/05/2025] Open
Abstract
Objectives The present study aimed to analyze the effect of high-frequency, low-magnitude whole-body vibration (WBV) therapy in horizontal position on bone, quality of life, pain, and balance in postmenopausal women. Patients and methods Sixty postmenopausal women were included in this prospective, randomized controlled study between May 2015 to September 2015. The patients were randomized into three groups, with 20 participants in each group: (i) WBV + infrared group, (ii) infrared group, and (iii) control group. Bone mineral density of the lumbar and femoral regions of all the patients was measured using dual-energy X-ray absorptiometry. In addition, osteocalcin and hydroxyproline values were measured. Quality of life was assessed using the Short Form-36, pain was assessed using the Visual Analog Scale, and balance was assessed based on the participants' performance in the Berg balance test. Results Seven patients (two from the vibration + infrared group and five from the infrared group) could not continue the study, and the analyses were conducted with the remaining 53 patients (mean age: 56.9±5.1 years; range, 45 to 65 years). At the end of a three-month treatment period, no statistically significant difference was found in bone mineral density, bone turnover markers, pain, and quality of life of the patients in all three groups compared to the pretreatment values. Berg balance test results showed a statistically significant increase after treatment in all three groups. Conclusion High-frequency, low-magnitude WBV performed under supervision in postmenopausal women was not found to be effective in improving bone, quality of life, pain, and balance. Future studies for determining effective vibration protocols having a longer duration and higher frequency of sessions are warranted.
Collapse
Affiliation(s)
- Feyza Akan Begoğlu
- Department of Physical Medicine and Rehabilitation, University of HealthSciences, Fatih Sultan Mehmet Training and ResearchHospital, İstanbul, Türkiye
| | - Figen Yılmaz
- Department of Physical Medicine and Rehabilitation, University of Health Sciences, Hamidiye Şişli Etfal Training and Research Hospital, İstanbul, Türkiye
| | - Julide Öncü Alptekin
- Department of Physical Medicine and Rehabilitation, University of Health Sciences, Ümraniye Training and Research Hospital, İstanbul, Türkiye
| | - Banu Kuran
- Department of Physical Medicine and Rehabilitation, University of Health Sciences, Hamidiye Şişli Etfal Training and Research Hospital, İstanbul, Türkiye
| | - Mehmet Ünal
- Department of Physical Medicine and Rehabilitation, Yeni Yüzyil University, Faculty of Health Science, İstanbul, Türkiye
| | - Mehmet Hüseyin Elik
- Department of Physical Medicine and Rehabilitation, Siverek State Hospital, İstanbul, Türkiye
| |
Collapse
|
7
|
Peng Y, Bramlett HM, Dietrich WD, Marcillo A, Sanchez-Molano J, Furones-Alonso O, Cao JJ, Huang J, Li AA, Feng JQ, Bauman WA, Qin W. Administration of low intensity vibration and a RANKL inhibitor, alone or in combination, reduces bone loss after spinal cord injury-induced immobilization in rats. Bone Rep 2024; 23:101808. [PMID: 39429803 PMCID: PMC11489065 DOI: 10.1016/j.bonr.2024.101808] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/06/2024] [Revised: 09/30/2024] [Accepted: 10/01/2024] [Indexed: 10/22/2024] Open
Abstract
We previously reported an ability of low-intensity vibration (LIV) to improve selected biomarkers of bone turnover and gene expression and reduce osteoclastogenesis but lacking of evident bone accrual. In this study, we demonstrate that a prolonged course of LIV that initiated at 2 weeks post-injury and continued for 8 weeks can protect against bone loss after SCI in rats. LIV stimulates bone formation and improves osteoblast differentiation potential of bone marrow stromal stem cells while inhibiting osteoclast differentiation potential of marrow hematopoietic progenitors to reduce bone resorption. We further demonstrate that the combination of LIV and RANKL antibody reduces SCI-related bone loss more than each intervention alone. Our findings that LIV is efficacious in maintaining sublesional bone mass suggests that such physical-based intervention approach would be a noninvasive, simple, inexpensive and practical intervention to treat bone loss after SCI. Because the combined administration of LIV and RANKL inhibition better preserved sublesional bone after SCI than either intervention alone, this work provides the impetus for the development of future clinical protocols based on the potential greater therapeutic efficacy of combining non-pharmacological (e.g., LIV) and pharmacological (e.g., RANKL inhibitor or other agents) approaches to treat osteoporosis after SCI or other conditions associated with severe immobilization.
Collapse
Affiliation(s)
- Yuanzhen Peng
- Spinal Cord Damage Research Center, James J. Peters Veteran Affairs Medical Center, Bronx, New York, USA
| | - Helen M. Bramlett
- Bruce W. Carter Miami VA Medical Center, Miami, Florida, USA
- Miami Project to Cure Paralysis, USA
- Department of Neurological Surgery, University of Miami Miller School of Medicine, Miami, Florida, USA
| | - W. Dalton Dietrich
- Miami Project to Cure Paralysis, USA
- Department of Neurological Surgery, University of Miami Miller School of Medicine, Miami, Florida, USA
| | - Alex Marcillo
- Miami Project to Cure Paralysis, USA
- Department of Neurological Surgery, University of Miami Miller School of Medicine, Miami, Florida, USA
| | - Juliana Sanchez-Molano
- Miami Project to Cure Paralysis, USA
- Department of Neurological Surgery, University of Miami Miller School of Medicine, Miami, Florida, USA
| | - Ofelia Furones-Alonso
- Miami Project to Cure Paralysis, USA
- Department of Neurological Surgery, University of Miami Miller School of Medicine, Miami, Florida, USA
| | - Jay J. Cao
- USDA-ARS Grand Forks Human Nutrition Research Center, Grand Forks, North Dakota, USA
| | | | | | - Jian Q. Feng
- Baylor College of Dentistry, TX A&M, Dallas, TX, USA
| | - William A. Bauman
- Departments of Medicine, USA
- Rehabilitation and Human Performance, Icahn School of Medicine at Mount Sinai, New York, USA
| | - Weiping Qin
- Spinal Cord Damage Research Center, James J. Peters Veteran Affairs Medical Center, Bronx, New York, USA
- Departments of Medicine, USA
| |
Collapse
|
8
|
DiVasta AD, Stamoulis C, Rubin CT, Gallagher JS, Kiel DP, Snyder BD, Gordon CM. Low-Magnitude Mechanical Signals to Preserve Skeletal Health in Female Adolescents With Anorexia Nervosa: A Randomized Clinical Trial. JAMA Netw Open 2024; 7:e2441779. [PMID: 39480424 PMCID: PMC11528308 DOI: 10.1001/jamanetworkopen.2024.41779] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/11/2024] [Accepted: 08/30/2024] [Indexed: 11/03/2024] Open
Abstract
Importance Malnourished adolescents and young adults with anorexia nervosa (AN) are at high risk for skeletal deficits. Objective To examine whether low-magnitude mechanical signals (LMMS) could preserve bone mineral density (BMD) throughout 6 months in adolescents and young adults with AN. Design, Setting, and Participants This double-blind, sham-controlled randomized clinical trial, conducted in a hospital-based specialty clinic, assessed female adolescents and young women without medical comorbidity or medication use that would compromise bone health. A total of 837 female adolescents were screened from January 1, 2012, to December 31, 2019, of whom 317 met the study criteria. Data analysis was performed from 2020 to 2024. Intervention Platform delivering low-magnitude mechanical signals (LMMS) (0.3 g at 32-37 Hz) or sham (ie, placebo) signals for 10 minutes daily for 6 months. Main Outcomes and Measures The primary outcome was trabecular volumetric BMD (vBMD) as measured by peripheral quantitative computed tomography of the tibia at baseline and 6 months. Secondary outcomes included cortical vBMD, cross-sectional area (CSA), areal BMD and body composition measured by dual-energy x-ray absorptiometry, and serum bone turnover markers. Results Forty female adolescents and young women (median [IQR] age, 16.3 [15.1-17.6] years; median [IQR] percentage median BMI for age, 87.2% [81.0%-91.6%]) completed the trial. Total bone vBMD changes were nonsignificant in both groups (95% CI for difference in median change between groups, -57.11 to 2.49): in the LMMS group, vBMD decreased from a median (IQR) of 313.4 (292.9-344.6) to 309.4 (290.4-334.0) mg/cm3, and in the placebo group, it increased from a median (IQR) of 308.5 (276.7-348.0) to 319.2 (309.9-338.4) mg/cm3. Total CSA at the 4% tibia site increased from a median (IQR) of 795.8 (695.0-844.8) mm2 to 827.5 (803.0-839.4) mm2 in the LMMS group, whereas in the placebo group, it decreased from 847.3 (770.5-915.3) mm2 to 843.3 (828.9-857.7) mm2 (95% CI for difference in median change between groups, 2.94-162.53). Median (IQR) trabecular CSA at the 4% tibia site increased from 616.3 (534.8-672.3) mm2 to 649.2 (638.0-661.4) mm2 in the LMMS group but decreased in the placebo group from 686.4 (589.0-740.0) mm2 to 647.9 (637.3-661.9) mm2 (95% CI for difference in median change between groups, 2.80-139.68 mm2). Changes in cortical vBMD, cortical section modulus, and muscle CSA were not significant between groups. The 6-month changes in trabecular and total bone CSA at the tibia 4% site (weight-bearing trabecular bone) were significantly different between groups (these measures increased in the LMMS group but decreased in the placebo group; total bone CSA: 95% CI, 2.94-162.53; P = .01; trabecular CSA: 95% CI, 2.80-139.68; P = .02). Greater increases in body mass index were seen in the placebo group (median [IQR] gain, 0.5 [-0.3 to +2.1]) than in the LMMS group (median [IQR] gain, +0.4 [-0.3 to +2.1]), perhaps due to differences in fat mass accrual. No adverse events occurred related to the LMMS intervention. Conclusions and Relevance In this randomized clinical trial of female adolescents and young women with AN, a 6-month LMMS intervention did not yield improvement in tibial trabecular vBMD. However, LMMS led to increases in total and trabecular CSA at the tibia. These results suggest an early positive response of increased bone turnover and trabecular bone quantity due to the LMMS intervention. Future studies should use a longer duration of intervention, consider strategies to optimize adherence, and potentially focus on a more profoundly malnourished patient population. Trial Registration ClinicalTrials.gov Identifier: NCT01100567.
Collapse
Affiliation(s)
- Amy D. DiVasta
- Division of Adolescent Medicine, Boston Children’s Hospital, Boston, Massachusetts
- Harvard Medical School, Boston, Massachusetts
| | - Catherine Stamoulis
- Division of Adolescent Medicine, Boston Children’s Hospital, Boston, Massachusetts
- Harvard Medical School, Boston, Massachusetts
| | - Clinton T. Rubin
- Department of Biomedical Engineering, State University of New York at Stony Brook, Stony Brook
| | | | - Douglas P. Kiel
- Harvard Medical School, Boston, Massachusetts
- Hinda and Arthur Marcus Institute for Aging Research, Hebrew SeniorLife, Boston, Massachusetts
- Department of Medicine, Beth Israel Deaconess Medical Center, Boston, Massachusetts
| | - Brian D. Snyder
- Harvard Medical School, Boston, Massachusetts
- Department of Orthopedic Surgery, Boston Children’s Hospital, Boston, Massachusetts
| | - Catherine M. Gordon
- Eunice Kennedy Shriver National Institute of Child Health and Human Development, Bethesda, Maryland
| |
Collapse
|
9
|
Simon AB, Bajaj P, Samson J, Harris RA. The Clinical Utility of Whole Body Vibration: A Review of the Different Types and Dosing for Application in Metabolic Diseases. J Clin Med 2024; 13:5249. [PMID: 39274463 PMCID: PMC11396361 DOI: 10.3390/jcm13175249] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2024] [Revised: 08/19/2024] [Accepted: 09/03/2024] [Indexed: 09/16/2024] Open
Abstract
Whole body vibration (WBV) is an innovative exercise mimetic that utilizes a vibrating platform to transmit mechanical vibrations throughout the body. WBV has been a popular area of research in recent years due to its potential physiological and therapeutic benefits in both health and disease. The utility of WBV is rooted in the various parameters (i.e., frequency, amplitude, duration) that affect the overall dose of vibration delivered to the body. Each type of WBV, coupled with these aforementioned parameters, should be considered when evaluating the use of WBV in the clinical setting. Thus, the purpose of this review is to provide an overview of recent literature detailing the different types of WBV, the various parameters that contribute to WBV efficacy, and the evidence of WBV in metabolic disease. A systematic search was conducted using Medline, Embase, Cochrane, CINAHL, and PubMed. All types of study designs were considered, with exclusions made for animal studies, duplicates, and study protocols without data. Thirty-four studies were included. In conclusion, as a modern exercise mimetic with therapeutic potential for metabolic diseases, understanding the interplay between the types and dosing of WBV is critical for determining its utility and efficacy. Further studies are certainly needed to elucidate the full therapeutic potential of WBV in metabolic diseases.
Collapse
Affiliation(s)
- Abigayle B Simon
- Georgia Prevention Institute, Medical College of Georgia, Augusta University, Augusta, GA 30912, USA
| | - Pratima Bajaj
- Georgia Prevention Institute, Medical College of Georgia, Augusta University, Augusta, GA 30912, USA
| | - Joe Samson
- Department of Medical Illustration, Augusta University, Augusta, GA 30912, USA
| | - Ryan A Harris
- Georgia Prevention Institute, Medical College of Georgia, Augusta University, Augusta, GA 30912, USA
| |
Collapse
|
10
|
Yin S, Liu Y, Zhong Y, Zhu F. Effects of whole-body vibration on bone mineral density in postmenopausal women: an overview of systematic reviews. BMC Womens Health 2024; 24:444. [PMID: 39107743 PMCID: PMC11302093 DOI: 10.1186/s12905-024-03290-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2024] [Accepted: 08/01/2024] [Indexed: 08/10/2024] Open
Abstract
OBJECTIVE The aim of this study is to evaluate the findings of existing systematic reviews (SRs) and provide scientific evidence on the efficacy and safety of whole-body vibration (WBV) in improving bone mineral density (BMD) in postmenopausal women, to provide recommendations and guidance for future high-quality clinical research and SRs. METHODS We conducted searches in six databases (SinoMed, CNKI, Cochrane Library, Embase, PubMed, Web of Science) from the inception of the databases until July 31, 2023. The language was limited to Chinese or English. The methodological quality, risk of bias, and evidence grade of outcomes were evaluated using AMSTAR-2, ROBIS, and GRADE, respectively. Additionally, the degree of overlap in randomized controlled trials (RCTs) among the SRs was calculated using corrected covered area (CCA). Furthermore, we performed quantitative synthesis or descriptive analysis of the relevant data. All relevant operations were independently conducted by two individuals. RESULTS A total of 15 SRs were included in the analysis, out of which three were qualitative descriptions and 12 were meta-analyses. According to AMSTAR-2, only two SRs were rated as low or moderate, while the remaining 13 SRs were rated as critically low quality. The ROBIS assessment indicated that seven SRs had a low risk of bias, while 8 SRs had a high risk of bias. The overall findings suggest that WBV does not have a significant advantage in improving BMD in postmenopausal women. Furthermore, the CCA results revealed a high overlap in RCTs across five outcomes among the 15 SRs. Only five SRs reported specific adverse reactions/events experienced by participants after WBV interventions, and none of the SRs reported any severe adverse events. CONCLUSION The existing evidence cannot establish definitive advantages of WBV in improving BMD in postmenopausal women. Therefore, we do not recommend the use of WBV for improving BMD in postmenopausal women. However, WBV may have potential value in maintaining BMD in postmenopausal women, further research is needed to confirm these findings.
Collapse
Affiliation(s)
- Shao Yin
- Hospital of Chengdu University of Traditional Chinese Medicine, No.39 Twelve Bridges Road, Jinniu District, Chengdu City, 610000, China
| | - Ying Liu
- Hospital of Chengdu University of Traditional Chinese Medicine, No.39 Twelve Bridges Road, Jinniu District, Chengdu City, 610000, China
| | - Yue Zhong
- Zigong First People's Hospital, No. 42, Shangyihao Yizhi Road, Ziliujing District, Zigong City, 641000, China
| | - Fengya Zhu
- Zigong First People's Hospital, No. 42, Shangyihao Yizhi Road, Ziliujing District, Zigong City, 641000, China.
| |
Collapse
|
11
|
Kumar R. Computer model of non-Newtonian canalicular fluid flow in lacunar-canalicular system of bone tissue. Comput Methods Biomech Biomed Engin 2024:1-15. [PMID: 38372236 DOI: 10.1080/10255842.2024.2317442] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2023] [Accepted: 02/03/2024] [Indexed: 02/20/2024]
Abstract
Brittle bone diseases are a global healthcare problem for orthopaedic clinicians, that reduces bone strength and promotes bone fracture risk. In vivo studies reported that loading-induced fluid flow through the lacunar-canalicular channel (LCS) of bone tissue inhibit such bone loss and encourages osteogenesis i.e. new bone formation. Canalicular fluid flow converts mechanical signals into biological signals and regulates bone reconstruction by releasing signalling molecules responsible for mechanotransduction. In-silico model mostly considers canalicular fluid is Newtonian, however, physiological canalicular fluid may be non-Newtonian in nature as it contains nutrients and supplements. Accordingly, this study attempts to develop a two-dimensional in-silico model to compute loading-induced non-Newtonian canalicular fluid flow in a complex LCS of bone tissue. Moreover, canalicular fluid is considered as a Jeffery fluid, that can easily be reduced to Newtonian fluid as a special case. The results show that physiological loading modulates the canalicular fluid flow, wall shear stress (WSS) and streamline in bone LCS. Fluid velocity and WSS increases with increase in non-dimensional frequency and non-Newtonian parameter (Jeffery fluid parameters) and reduce with change in permeability. The outcomes of this study may provide new insights in the role of mechanical loading-induced non-Newtonian canalicular fluid flow dynamics in bone LCS. The key findings of this study can be used to improve the understanding of osteocyte mechanobiology involved inside the bone tissue.
Collapse
Affiliation(s)
- Rakesh Kumar
- Department of Mechanical Engineering, Manipal University Jaipur, Jaipur-303007, Rajasthan, India
| |
Collapse
|
12
|
Steppe L, Megafu M, Tschaffon-Müller ME, Ignatius A, Haffner-Luntzer M. Fracture healing research: Recent insights. Bone Rep 2023; 19:101686. [PMID: 38163010 PMCID: PMC10757288 DOI: 10.1016/j.bonr.2023.101686] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/29/2023] [Revised: 05/16/2023] [Accepted: 05/18/2023] [Indexed: 01/03/2024] Open
Abstract
Bone has the rare capability of scarless regeneration that enables the complete restoration of the injured bone area. In recent decades, promising new technologies have emerged from basic, translational and clinical research for fracture treatment; however, 5-10 % of all bone fractures still fail to heal successfully or heal in a delayed manner. Several comorbidities and risk factors have been identified which impair bone healing and might lead to delayed bone union or non-union. Therefore, a considerable amount of research has been conducted to elucidate molecular mechanisms of successful and delayed fracture healing to gain further insights into this complex process. One focus of recent research is to investigate the complex interactions of different cell types and the action of progenitor cells during the healing process. Of particular interest is also the identification of patient-specific comorbidities and how these affect fracture healing. In this review, we discuss the recent knowledge about progenitor cells for long bone repair and the influence of comorbidities such as diabetes, postmenopausal osteoporosis, and chronic stress on the healing process. The topic selection for this review was made based on the presented studies at the 2022 annual meeting of the European Calcified Tissue Society (ECTS) in Helsinki.
Collapse
Affiliation(s)
- Lena Steppe
- Institute of Orthopaedic Research and Biomechanics, University Medical Center Ulm, Germany
| | - Michael Megafu
- A.T. Still University Kirksville College of Osteopathic Medicine, USA
| | | | - Anita Ignatius
- Institute of Orthopaedic Research and Biomechanics, University Medical Center Ulm, Germany
| | | |
Collapse
|
13
|
Iyer P, Hwang M, Ridley L, Weisman MM. Biomechanics in the onset and severity of spondyloarthritis: a force to be reckoned with. RMD Open 2023; 9:e003372. [PMID: 37949613 PMCID: PMC10649803 DOI: 10.1136/rmdopen-2023-003372] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2023] [Accepted: 10/23/2023] [Indexed: 11/12/2023] Open
Abstract
Increasing evidence suggests that there is a pivotal role for physical force (mechanotransduction) in the initiation and/or the perpetuation of spondyloarthritis; the review contained herein examines that evidence. Furthermore, we know that damage and inflammation can limit spinal mobility, but is there a cycle created by altered spinal mobility leading to additional damage and inflammation?Over the past several years, mechanotransduction, the mechanism by which mechanical perturbation influences gene expression and cellular behaviour, has recently gained popularity because of emerging data from both animal models and human studies of the pathogenesis of ankylosing spondylitis (AS). In this review, we provide evidence towards an appreciation of the unsolved paradigm of how biomechanical forces may play a role in the initiation and propagation of AS.
Collapse
Affiliation(s)
- Priyanka Iyer
- Division of Rheumatology, Department of Medicine, UC Irvine Healthcare, Orange, California, USA
| | - Mark Hwang
- Rheumatology, The University of Texas Health Science Center at Houston John P and Katherine G McGovern Medical School, Houston, Texas, USA
| | - Lauren Ridley
- Rheumatology, The University of Texas Health Science Center at Houston John P and Katherine G McGovern Medical School, Houston, Texas, USA
| | | |
Collapse
|
14
|
Chan ME, Strait L, Ashdown C, Pasumarthy S, Hassan A, Crimarco S, Singh C, Patel VS, Pagnotti G, Khan O, Uzer G, Rubin CT. Low intensity mechanical signals promote proliferation in a cell-specific manner: Tailoring a non-drug strategy to enhance biomanufacturing yields. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.07.05.547864. [PMID: 37461507 PMCID: PMC10350023 DOI: 10.1101/2023.07.05.547864] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/28/2024]
Abstract
Biomanufacturing relies on living cells to produce biotechnology-based therapeutics, tissue engineering constructs, vaccines, and a vast range of agricultural and industrial products. With the escalating demand for these bio-based products, any process that could improve yields and shorten outcome timelines by accelerating cell proliferation would have a significant impact across the discipline. While these goals are primarily achieved using biological or chemical strategies, harnessing cell mechanosensitivity represents a promising - albeit less studied - physical pathway to promote bioprocessing endpoints, yet identifying which mechanical parameters influence cell activities has remained elusive. We tested the hypothesis that mechanical signals, delivered non-invasively using low-intensity vibration (LIV; <1g, 10-500Hz), will enhance cell expansion, and determined that any unique signal configuration was not equally influential across a range of cell types. Varying frequency, intensity, duration, refractory period, and daily doses of LIV increased proliferation in CHO-adherent cells (+79% in 96h) using a particular set of LIV parameters (0.2g, 500Hz, 3x30 min/d, 2h refractory period), yet this same mechanical input suppressed proliferation in CHO-suspension cells (-13%). Exposing these same CHO-suspension cells to distinct LIV parameters (30Hz, 0.7g, 2x60 min/d, 2h refractory period) increased proliferation by 210%. Particle image velocimetry combined with finite element modeling showed high transmissibility of these signals across fluids (>90%), and LIV effectively scaled up to T75 flasks. Ultimately, when LIV is tailored to the target cell population, its highly efficient transmission across media represents a means to non-invasively augment biomanufacturing endpoints for both adherent and suspended cells, and holds immediate applications, ranging from small-scale, patient-specific personalized medicine to large-scale commercial bio-centric production challenges.
Collapse
|
15
|
Steppe L, Krüger B, Tschaffon-Müller MEA, Ramge JM, Schoppa A, Ignatius A, Haffner-Luntzer M. Activation function 2 (AF2) domain of estrogen receptor-α regulates mechanotransduction during bone fracture healing in estrogen-competent mice. Bone 2023; 172:116781. [PMID: 37100360 DOI: 10.1016/j.bone.2023.116781] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/02/2023] [Revised: 04/20/2023] [Accepted: 04/20/2023] [Indexed: 04/28/2023]
Abstract
External mechanostimulation applied by whole-body low-magnitude high-frequency vibration (LMHFV) was demonstrated to cause no or negative effects on fracture healing in estrogen-competent rodents, while in ovariectomized (OVX), estrogen-deficient rodents bone formation after fracture was improved. Using mice with an osteoblast-specific deletion of the estrogen receptor α (ERα), we demonstrated that ERα signaling in osteoblasts is required for both the anabolic and catabolic effects of LMHFV during bone fracture healing in OVX and non-OVX mice, respectively. Because the vibration effects mediated by ERα were strictly dependent on the estrogen status, we hypothesized different roles of ligand-dependent and -independent ERα signaling. To investigate this assumption in the present study, we used mice with a deletion of the C-terminal activation function (AF) domain-2 of the ERα receptor, which mediated ligand-dependent ERα signaling (ERαAF-20). OVX and non-OVX ERαAF-20 animals were subjected to femur osteotomy followed by vibration treatment. We revealed that estrogen-competent mice lacking the AF-2 domain were protected from LMHFV-induced impaired bone regeneration, while the anabolic effects of vibration in OVX mice were not affected by the AF-2 knockout. RNA sequencing further showed that genes involved in Hippo/Yap1-Taz and Wnt signaling were significantly downregulated upon LMHFV in the presence of estrogen in vitro. In conclusion, we demonstrated that the AF-2 domain is crucial for the negative effects of vibration during bone fracture healing in estrogen-competent mice suggesting that the osteoanabolic effects of vibration are rather mediated by ligand-independent ERα signaling.
Collapse
Affiliation(s)
- Lena Steppe
- Institute of Orthopedic Research and Biomechanics, University Medical Center Ulm, Helmholtzstraße 14, 89081 Ulm, Germany
| | - Benjamin Krüger
- Institute of Orthopedic Research and Biomechanics, University Medical Center Ulm, Helmholtzstraße 14, 89081 Ulm, Germany
| | | | - Jan-Moritz Ramge
- Institute of Orthopedic Research and Biomechanics, University Medical Center Ulm, Helmholtzstraße 14, 89081 Ulm, Germany
| | - Astrid Schoppa
- Institute of Orthopedic Research and Biomechanics, University Medical Center Ulm, Helmholtzstraße 14, 89081 Ulm, Germany
| | - Anita Ignatius
- Institute of Orthopedic Research and Biomechanics, University Medical Center Ulm, Helmholtzstraße 14, 89081 Ulm, Germany
| | - Melanie Haffner-Luntzer
- Institute of Orthopedic Research and Biomechanics, University Medical Center Ulm, Helmholtzstraße 14, 89081 Ulm, Germany.
| |
Collapse
|
16
|
Jin LY, Yin HL, Xu YQ, Xu S, Song XX, Luo Y, Li XF. Long-term whole-body vibration induces degeneration of intervertebral disc and facet joint in a bipedal mouse model. Front Bioeng Biotechnol 2023; 11:1069568. [PMID: 37008038 PMCID: PMC10063969 DOI: 10.3389/fbioe.2023.1069568] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2022] [Accepted: 02/24/2023] [Indexed: 03/19/2023] Open
Abstract
Background: Whole body vibration (WBV) has been used to treat various musculoskeletal diseases in recent years. However, there is limited knowledge about its effects on the lumbar segments in upright posture mice. This study was performed to investigate the effects of axial Whole body vibration on the intervertebral disc (IVD) and facet joint (FJ) in a novel bipedal mouse model.Methods: Six-week-old male mice were divided into control, bipedal, and bipedal + vibration groups. Taking advantage of the hydrophobia of mice, mice in the bipedal and bipedal + vibration groups were placed in a limited water container and were thus built standing posture for a long time. The standing posture was conducted twice a day for a total of 6 hours per day, 7 days per week. Whole body vibration was conducted during the first stage of bipedal building for 30 min per day (45 Hz with peak acceleration at 0.3 g). The mice of the control group were placed in a water-free container. At the 10th-week after experimentation, intervertebral disc and facet joint were examined by micro-computed tomography (micro-CT), histologic staining, and immunohistochemistry (IHC), and gene expression was quantified using real-time polymerase chain reaction. Further, a finite element (FE) model was built based on the micro-CT, and dynamic Whole body vibration was loaded on the spine model at 10, 20, and 45 Hz.Results: Following 10 weeks of model building, intervertebral disc showed histological markers of degeneration, such as disorders of annulus fibrosus and increased cell death. Catabolism genes’ expression, such as Mmp13, and Adamts 4/5, were enhanced in the bipedal groups, and Whole body vibration promoted these catabolism genes’ expression. Examination of the facet joint after 10 weeks of bipedal with/without Whole body vibration loading revealed rough surface and hypertrophic changes at the facet joint cartilage resembling osteoarthritis. Moreover, immunohistochemistry results demonstrated that the protein level of hypertrophic markers (Mmp13 and Collagen X) were increased by long-durationstanding posture, and Whole body vibration also accelerated the degenerative changes of facet joint induced by bipedal postures. No changes in the anabolism of intervertebral disc and facet joint were observed in the present study. Furthermore, finite element analysis revealed that a larger frequency of Whole body vibration loading conditions induced higher Von Mises stresses on intervertebral disc, contact force, and displacement on facet joint.Conclusion: The present study revealed significant damage effects of Whole body vibration on intervertebral disc and facet joint in a bipedal mouse model. These findings suggested the need for further studies of the effects of Whole body vibration on lumbar segments of humans.
Collapse
|
17
|
Tseng SY, Lai CL, Ko CP, Chang YK, Fan HC, Wang CH. The Effectiveness of Whole-Body Vibration and Heat Therapy on the Muscle Strength, Flexibility, and Balance Abilities of Elderly Groups. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2023; 20:1650. [PMID: 36674404 PMCID: PMC9861224 DOI: 10.3390/ijerph20021650] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/02/2022] [Revised: 01/12/2023] [Accepted: 01/13/2023] [Indexed: 05/22/2023]
Abstract
Whole-body vibration (WBV) is a novel exercise training measure that promotes the muscle strength, flexibility, and balance abilities of elderly groups. The feasibility and applicability of 20-30 min (lowering a heat pack at 73 °C by wrapping it in multiple layers of towels to 40-43 °C before it touched the skin) thermotherapy are increasingly being demonstrated by applications and clinical trials. Studies show that it increases the flexibility of macules and ligament. However, no studies have examined the interactions between the pre-exercise and post-exercise application of heat therapy (duration a training course). Therefore, this study investigates the effects of WBV and heat therapy on the muscle strength, flexibility, and balance abilities of elderly groups. Eighty middle-age and elderly participants with no regular exercise habits were enrolled in this study. They were randomly assigned to a WBV group, a WBV plus heat therapy group, a heat therapy alone group, and a control group. The WBV groups underwent 5-min, fixed-amplitude (4 mm), thrice-weekly WBV training sessions for 3 consecutive months on a WBV training machine. Participants' balance was measured using the limits of stability (LOS) test on a balance system. The pretest and posttest knee extensor and flexor strength were tested using an isokinetic lower extremity dynamometer. Pretest and posttest flexibility changes were measured using the sit-and-reach test. Significantly larger pretest and posttest differences in flexibility and muscle strength were observed in the WBV and WBV plus heat therapy groups. The addition of heat therapy to WBV resulted in the largest flexibility improvements.
Collapse
Affiliation(s)
- Shiuan-Yu Tseng
- Department of Senior Services Industry Management, Minghsin University of Science and Technology, Hsinchu 30401, Taiwan
| | - Chung-Liang Lai
- Department of Occupational Therapy, Asia University, Taichung 41354, Taiwan
- Department of Physical Medicine and Rehabilitation, Puzi Hospital, Ministry of Health and Welfare, Chiayi 61347, Taiwan
| | - Chung-Po Ko
- Department of Neurosurgery, Tungs’ Taichung MetroHarbor Hospital, Taichung 43503, Taiwan
- Department of Post-Baccalaureate Medicine, College of Medicine, National Chung Hsing University, Taichung 40227, Taiwan
| | - Yu-Kang Chang
- Department of Post-Baccalaureate Medicine, College of Medicine, National Chung Hsing University, Taichung 40227, Taiwan
- Department of Medical Research, Tungs’ Taichung MetroHarbor Hospital, Taichung 43503, Taiwan
- Nursing and Management, Jenteh Junior College of Medicine, Miaoli 35664, Taiwan
| | - Hueng-Chuen Fan
- Nursing and Management, Jenteh Junior College of Medicine, Miaoli 35664, Taiwan
- Department of Pediatrics, Tungs’ Taichung MetroHarbor Hospital, Taichung 43503, Taiwan
| | - Chun-Hou Wang
- Department of Physical Therapy, Chung Shan Medical University, Taichung 40201, Taiwan
- Physical Therapy Room, Chung Shan Medical University Hospital, Taichung 40201, Taiwan
| |
Collapse
|
18
|
de Oliveira RDJ, de Oliveira RG, de Oliveira LC, Santos-Filho SD, Sá-Caputo DC, Bernardo-Filho M. Effectiveness of whole-body vibration on bone mineral density in postmenopausal women: a systematic review and meta-analysis of randomized controlled trials. Osteoporos Int 2023; 34:29-52. [PMID: 36282343 DOI: 10.1007/s00198-022-06556-y] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/07/2022] [Accepted: 09/16/2022] [Indexed: 01/07/2023]
Abstract
The present study observed significant effects of whole-body vibration (WBV) on bone mineral density (BMD) in postmenopausal women, with high-quality evidence for high-frequency, low-magnitude, and high-cumulative-dose use. The aim was to update a previous systematic review with meta-analysis to observe the effects of WBV on BMD in postmenopausal women. For the meta-analysis, the weighted mean difference between WBV and control groups, or WBV and conventional exercise, was used for the area of bone mineral density (aBMD) of the lumbar spine, femoral neck, total hip, trochanter, intertrochanter, and Ward's area, or volumetric trabecular bone mineral density (vBMDt) of the radius and tibia. Methodological quality was assessed using the PEDro scale and the quality of evidence using the GRADE system. In total, 23 studies were included in the systematic review and 20 in the meta-analysis. Thirteen studies showed high methodological quality. WBV compared with control groups showed significant effects on aBMD in the primary analysis (lumbar spine and trochanter), sensitivity (lumbar spine), side-alternating vibration (lumbar spine and trochanter), synchronous vibration (lumbar spine), low frequency and high magnitude (lumbar spine and trochanter), high frequency and low magnitude (lumbar spine), high frequency and high magnitude (lumbar spine, trochanter, and Ward's area), high cumulative dose and low magnitude (lumbar spine), low cumulative dose and high magnitude (lumbar spine and trochanter), and positioning with semi-flexed knees (trochanter). Of these results, only high frequency associated with low magnitude and high cumulative dose with low magnitude showed high-quality evidence. At this time, considering the high quality of evidence, it is possible to recommend WBV using high frequency (≈ 30 Hz), low magnitude (≈ 0.3 g), and high cumulative dose (≈ 7000 min) to improve lumbar spine aBMD in postmenopausal women. Other parameters, although promising, need to be better investigated, considering, when applicable, the safety of the participants, especially in vibrations with higher magnitudes (≥ 1 g).
Collapse
Affiliation(s)
| | - Raphael Gonçalves de Oliveira
- Programa de Pós-Graduação em Ciências do Movimento Humano, Centro de Ciências da Saúde, Universidade Estadual do Norte do Paraná (UENP), Alameda Padre Magno, CEP: 86.400-000, Jacarezinho, Nova Alcântara PR, 841, Brazil.
| | - Laís Campos de Oliveira
- Programa de Pós-Graduação em Ciências do Movimento Humano, Centro de Ciências da Saúde, Universidade Estadual do Norte do Paraná (UENP), Alameda Padre Magno, CEP: 86.400-000, Jacarezinho, Nova Alcântara PR, 841, Brazil
| | - Sebastião David Santos-Filho
- Laboratório de Vibrações Mecânicas e Práticas Integrativas, Instituto de Biologia Roberto Alcântara Gomes e Policlínica Piquet Carneiro, Universidade do Estado do Rio de Janeiro, Rio de Janeiro, RJ, Brazil
| | - Danúbia Cunha Sá-Caputo
- Laboratório de Vibrações Mecânicas e Práticas Integrativas, Instituto de Biologia Roberto Alcântara Gomes e Policlínica Piquet Carneiro, Universidade do Estado do Rio de Janeiro, Rio de Janeiro, RJ, Brazil
- Programa de Pós-Graduação em Fisiopatologia Clínica e Experimental, Universidade do Estado do Rio de Janeiro, Rio de Janeiro, RJ, Brazil
| | - Mario Bernardo-Filho
- Programa de Pós-Graduação em Ciências da Saúde, Universidade Federal do Rio Grande do Norte, Natal, RN, Brazil
- Laboratório de Vibrações Mecânicas e Práticas Integrativas, Instituto de Biologia Roberto Alcântara Gomes e Policlínica Piquet Carneiro, Universidade do Estado do Rio de Janeiro, Rio de Janeiro, RJ, Brazil
| |
Collapse
|
19
|
Li F, Xie W, Han Y, Li Z, Xiao J. Bibliometric and visualized analysis of exercise and osteoporosis from 2002 to 2021. Front Med (Lausanne) 2022; 9:944444. [PMID: 36569140 PMCID: PMC9773261 DOI: 10.3389/fmed.2022.944444] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2022] [Accepted: 11/16/2022] [Indexed: 12/13/2022] Open
Abstract
Background Bibliometric analysis was designed to investigate a systematic understanding of developments in exercise and osteoporosis research over the past 20 years. Methods Relevant publications from the Web of Science Core Collection were downloaded on April 26, 2022. CiteSpace, VOSviewer, and the online bibliometric analysis platform were used to conduct this scientometric study. Results A total of 5518 publications were in 1202 academic journals with 137405 co-cited references in by 5637 institutions from 98 countries/regions. The country leading the research was the USA. The University of Melbourne was the most active institution. Osteoporosis International was the most productive journal concerning exercise and osteoporosis research. According to the burst references, "low-level vibration," "high-frequency" and "resistance exercise" have been recognized as the hotspots research in the domain. The keywords co-occurrence analysis identified "skeletal muscle," "sarcopenia" and "mesenchymal stem cell" as the important future research directions. Conclusion This study was the first comprehensive metrological and statistical analysis of exercise and osteoporosis research over the past 20 years. Our findings would provide guidance to understand the research frontiers and hot directions in the near future.
Collapse
Affiliation(s)
- Fan Li
- Department of Orthopedic Surgery, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Weixin Xie
- Department of Orthopedic Surgery, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Yi Han
- Department of Orthopedic Surgery, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Zhanchun Li
- Department of Orthopedic Surgery, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China,*Correspondence: Zhanchun Li,
| | - Jie Xiao
- Department of Anesthesiology, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China,Jie Xiao,
| |
Collapse
|
20
|
Tian S, Gao J, Gong H, Zhang X, Wang S. Effects of whole-body vibration at different periods on lumbar vertebrae in female rats. Med Eng Phys 2022; 110:103918. [PMID: 36564133 DOI: 10.1016/j.medengphy.2022.103918] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2022] [Revised: 11/01/2022] [Accepted: 11/02/2022] [Indexed: 11/06/2022]
Abstract
The current study aimed to investigate the effects of whole-body vibration (WBV) before and after ovariectomy on lumbar vertebrae, and to observe whether the positive effects of WBV before and after ovariectomy on lumbar vertebrae in rats could be maintained after vibration stopped. Three-month-old female rats were divided into four groups (n = 45/group): control (CON), ovariectomy (OVA), WBV before ovariectomy (WBV-BO), and WBV after ovariectomy (WBV-AO) groups. For 1-8 weeks, WBV-BO group was subjected to vertical WBV. At the 9th week, the rats in WBV-BO, WBV-AO, and OVA groups were ovariectomized. During 11-18 weeks, WBV-AO group was subjected to vibration. For 19-26 weeks, no intervention was done for rats. The lumbar vertebrae were examined by Micro-CT, compressive test, creep test, and microindentation test. At the 8th week, the displacement of the L1-L2 annulus fibrosus in WBV-BO group was 18% smaller compared with CON group (p<0.05). At the 18th week, the elastic modulus of the L5 vertebral body in WBV-BO and WBV-AO groups was 53% and 57% higher than that in CON group, respectively (p<0.05); the displacement of the L1-L2 annulus fibrosus in WBV-BO group was 25% smaller than those in the other groups (p<0.05). At the 26th week, there was no significant difference in the displacement of the L1-L2 annulus fibrosus between WBV-BO group and other groups (p>0.05); the elastic modulus of the L5 vertebral body had no significant difference between WBV-AO group and CON group (p>0.05). Our results demonstrated that WBV before ovariectomy effectively prevented disc degeneration with significant effects up to 8 weeks after ovariectomy. The vertebral mechanical properties could be significantly improved by WBV after ovariectomy, but the residual effect did not maintain after WBV stopped.
Collapse
Affiliation(s)
- Sujing Tian
- Department of Engineering Mechanics, Jilin University, Changchun, Jilin, 130025, China
| | - Jiazi Gao
- Department of Engineering Mechanics, Jilin University, Changchun, Jilin, 130025, China
| | - He Gong
- Department of Engineering Mechanics, Jilin University, Changchun, Jilin, 130025, China.
| | - Xiang Zhang
- Department of Engineering Mechanics, Jilin University, Changchun, Jilin, 130025, China
| | - Shuai Wang
- Department of Engineering Mechanics, Jilin University, Changchun, Jilin, 130025, China
| |
Collapse
|
21
|
Bonanni R, Cariati I, Romagnoli C, D’Arcangelo G, Annino G, Tancredi V. Whole Body Vibration: A Valid Alternative Strategy to Exercise? J Funct Morphol Kinesiol 2022; 7:jfmk7040099. [PMID: 36412761 PMCID: PMC9680512 DOI: 10.3390/jfmk7040099] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/01/2022] [Revised: 10/26/2022] [Accepted: 10/28/2022] [Indexed: 11/06/2022] Open
Abstract
Several studies agree that mechanical vibration can induce physiological changes at different levels, improving neuromuscular function through postural control strategies, muscle tuning mechanisms and tonic vibration reflexes. Whole-body vibration has also been reported to increase bone mineral density and muscle mass and strength, as well as to relieve pain and modulate proprioceptive function in patients with osteoarthritis or lower back pain. Furthermore, vibratory training was found to be an effective strategy for improving the physical performance of healthy athletes in terms of muscle strength, agility, flexibility, and vertical jump height. Notably, several benefits have also been observed at the brain level, proving to be an important factor in protecting and/or preventing the development of age-related cognitive disorders. Although research in this field is still debated, certain molecular mechanisms responsible for the response to whole-body vibration also appear to be involved in physiological adaptations to exercise, suggesting the possibility of using it as an alternative or reinforcing strategy to canonical training. Understanding these mechanisms is crucial for the development of whole body vibration protocols appropriately designed based on individual needs to optimize these effects. Therefore, we performed a narrative review of the literature, consulting the bibliographic databases MEDLINE and Google Scholar, to i) summarize the most recent scientific evidence on the effects of whole-body vibration and the molecular mechanisms proposed so far to provide a useful state of the art and ii) assess the potential of whole-body vibration as a form of passive training in place of or in association with exercise.
Collapse
Affiliation(s)
- Roberto Bonanni
- Department of Clinical Sciences and Translational Medicine, “Tor Vergata” University of Rome, Via Montpellier 1, 00133 Rome, Italy
| | - Ida Cariati
- Department of Clinical Sciences and Translational Medicine, “Tor Vergata” University of Rome, Via Montpellier 1, 00133 Rome, Italy
- Correspondence:
| | - Cristian Romagnoli
- Sport Engineering Lab, Department of Industrial Engineering, “Tor Vergata” University of Rome, Via Politecnico 1, 00133 Rome, Italy
| | - Giovanna D’Arcangelo
- Department of Systems Medicine, “Tor Vergata” University of Rome, Via Montpellier 1, 00133 Rome, Italy
- Centre of Space Bio-Medicine, “Tor Vergata” University of Rome, Via Montpellier 1, 00133 Rome, Italy
| | - Giuseppe Annino
- Department of Systems Medicine, “Tor Vergata” University of Rome, Via Montpellier 1, 00133 Rome, Italy
- Centre of Space Bio-Medicine, “Tor Vergata” University of Rome, Via Montpellier 1, 00133 Rome, Italy
| | - Virginia Tancredi
- Department of Systems Medicine, “Tor Vergata” University of Rome, Via Montpellier 1, 00133 Rome, Italy
- Centre of Space Bio-Medicine, “Tor Vergata” University of Rome, Via Montpellier 1, 00133 Rome, Italy
| |
Collapse
|
22
|
Sasaki K, Takeshita N, Fukunaga T, Seiryu M, Sakamoto M, Oyanagi T, Maeda T, Takano-Yamamoto T. Vibration accelerates orthodontic tooth movement by inducing osteoclastogenesis via transforming growth factor-β signalling in osteocytes. Eur J Orthod 2022; 44:698-704. [DOI: 10.1093/ejo/cjac036] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022]
Abstract
Abstract
Background
We previously found the conditions of supplementary vibration that accelerated tooth movement and induced bone resorption in an experimental rat tooth movement model. However, the molecular biological mechanisms underlying supplementary vibration-induced orthodontic tooth movement are not fully understood. Transforming growth factor (TGF)-β upregulates osteoclastogenesis via induction of the receptor activator of nuclear factor kappa B ligand expression, thus TGF-β is considered an essential cytokine to induce bone resorption.
Objectives
The aim of this study is to examine the role of TGF-β during the acceleration of orthodontic tooth movement by supplementary vibration.
Materials and methods
In experimental tooth movement, 15 g of orthodontic force was loaded onto the maxillary right first molar for 28 days. Supplementary vibration (3 g, 70 Hz) was applied to the maxillary first molar for 3 min on days 0, 7, 14, and 21. TGF-β receptor inhibitor SB431542 was injected into the submucosal palatal and buccal areas of the maxillary first molars once every other day. The co-culture of RAW264.7 cells and MLO-Y4 cells was used as an in vitro osteoclastogenesis model.
Results
SB431542 suppressed the acceleration of tooth movement and the increase in the number of osteoclasts by supplementary vibration in our experimental rat tooth movement model. Immunohistochemical analysis showed supplementary vibration increased the number of TGF-β1-positive osteocytes in the alveolar bone on the compression side during the experimental tooth movement. Moreover, vibration-upregulated TGF-β1 in MLO-Y4 cells induced osteoclastogenesis.
Conclusions
Orthodontic tooth movement was accelerated by supplementary vibration through the promotion of the production of TGF-β1 in osteocytes and subsequent osteoclastogenesis.
Collapse
Affiliation(s)
- Kiyo Sasaki
- Division of Orthodontics and Dentofacial Orthopedics, Graduate School of Dentistry, Tohoku University , Sendai, Miyagi , Japan
| | - Nobuo Takeshita
- Division of Orthodontics and Dentofacial Orthopedics, Graduate School of Dentistry, Tohoku University , Sendai, Miyagi , Japan
- Section of Orthodontics and Dentofacial Orthopedics, Faculty of Dental Science, Kyushu University , Fukuoka, Fukuoka , Japan
| | - Tomohiro Fukunaga
- Division of Orthodontics and Dentofacial Orthopedics, Graduate School of Dentistry, Tohoku University , Sendai, Miyagi , Japan
| | - Masahiro Seiryu
- Division of Orthodontics and Dentofacial Orthopedics, Graduate School of Dentistry, Tohoku University , Sendai, Miyagi , Japan
| | - Mayuri Sakamoto
- Division of Orthodontics and Dentofacial Orthopedics, Graduate School of Dentistry, Tohoku University , Sendai, Miyagi , Japan
| | - Toshihito Oyanagi
- Division of Orthodontics and Dentofacial Orthopedics, Graduate School of Dentistry, Tohoku University , Sendai, Miyagi , Japan
| | - Toshihiro Maeda
- Division of Orthodontics and Dentofacial Orthopedics, Graduate School of Dentistry, Tohoku University , Sendai, Miyagi , Japan
| | - Teruko Takano-Yamamoto
- Division of Orthodontics and Dentofacial Orthopedics, Graduate School of Dentistry, Tohoku University , Sendai, Miyagi , Japan
- Department of Biomaterials and Bioengineering, Faculty of Dental Medicine, Hokkaido University , Sapporo, Hokkaido , Japan
| |
Collapse
|
23
|
Fernandez P, Pasqualini M, Locrelle H, Normand M, Bonneau C, Lafage Proust MH, Marotte H, Thomas T, Vico L. The effects of combined amplitude and high-frequency vibration on physically inactive osteopenic postmenopausal women. Front Physiol 2022; 13:952140. [PMID: 36160873 PMCID: PMC9491321 DOI: 10.3389/fphys.2022.952140] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2022] [Accepted: 08/01/2022] [Indexed: 11/13/2022] Open
Abstract
Purpose: To evaluate whole-body vibration (WBV) osteogenic potential in physically inactive postmenopausal women using high-frequency and combined amplitude stimuli. Methods: Two-hundred fifty-five physically inactive postmenopausal women (55–75 years) with 10-year major osteoporotic fracture risk (3%–35%) participated in this 18-month study. For the first 12 months, the vibration group experienced progressive 20-min WBV sessions (up to 3 sessions/week) with rest periods (30–60 s) between exercises. Frequencies (30–50 Hz), with low (0.2–0.4 mm) and high (0.6–0.8 mm) amplitude stimuli were delivered via PowerPlate Pro5 platforms producing accelerations of (0.75–7.04 g). The last 6 months for the treatment group were a follow-up period similar to control. Serum bone remodelling markers [C-terminal crosslinked telopeptide of type-1 collagen (CTX), procollagen type-1 N-terminal propeptide (P1NP), bone alkaline phosphatase (BAP) and sclerostin] were measured at fasting. CTX and P1NP were determined by automated chemiluminescence immunoassay, bone alkaline phosphatase (BAP) by automated spectrophotometric immunoassay, and sclerostin by an enzyme-immunoassay. Bone mineral density (BMD) of the whole-body, proximal femur and lumbar vertebrae was measured by dual-energy X-ray absorptiometry (DXA). Bone microarchitecture of the distal non-dominant radius and tibia was measured by high-resolution peripheral quantitative computed tomography (HR-pQCT). Results: Femoral neck (p = 0.520) and spine BMD (p = 0.444) failed to improve after 12 months of WBV. Bone macro and microstructural parameters were not impacted by WBV, as well as estimated failure load at the distal radius (p = 0.354) and tibia (p = 0.813). As expected, most DXA and HR-pQCT parameters displayed age-related degradation in this postmenopausal population. BAP and CTX increased over time in both groups, with CTX more marginally elevated in the vibration group when comparing baseline changes to month-12 (480.80 pmol/L; p = 0.039) and month-18 (492.78 pmol/L; p = 0.075). However, no differences were found when comparing group concentrations only at month-12 (506.35 pmol/L; p = 0.415) and month-18 (518.33 pmol/L; p = 0.480), indicating differences below the threshold of clinical significance. Overall, HR-pQCT, DXA bone parameters and bone turnover markers remained unaffected. Conclusion: Combined amplitude and high-frequency training for one year had no ameliorating effect on DXA and HR-pQCT bone parameters in physically inactive postmenopausal women. Serum analysis did not display any significant improvement in formation and resorption markers and also failed to alter sclerostin concentrations between groups.
Collapse
Affiliation(s)
- Peter Fernandez
- SAINBIOSE, U1059, Laboratory of Osteoarticular Tissue Biology, INSERM, University of Lyon, Saint-Etienne, France
- *Correspondence: Peter Fernandez,
| | - Marion Pasqualini
- SAINBIOSE, U1059, Laboratory of Osteoarticular Tissue Biology, INSERM, University of Lyon, Saint-Etienne, France
| | - Hervé Locrelle
- Rheumatology Department, University Hospital of Saint-Etienne, Saint-Etienne, France
| | - Myriam Normand
- SAINBIOSE, U1059, Laboratory of Osteoarticular Tissue Biology, INSERM, University of Lyon, Saint-Etienne, France
| | - Christine Bonneau
- Biology and Pathology Department, University Hospital of Saint-Etienne, Saint-Etienne, France
| | - Marie-Hélène Lafage Proust
- SAINBIOSE, U1059, Laboratory of Osteoarticular Tissue Biology, INSERM, University of Lyon, Saint-Etienne, France
- Rheumatology Department, University Hospital of Saint-Etienne, Saint-Etienne, France
| | - Hubert Marotte
- SAINBIOSE, U1059, Laboratory of Osteoarticular Tissue Biology, INSERM, University of Lyon, Saint-Etienne, France
- Rheumatology Department, University Hospital of Saint-Etienne, Saint-Etienne, France
| | - Thierry Thomas
- SAINBIOSE, U1059, Laboratory of Osteoarticular Tissue Biology, INSERM, University of Lyon, Saint-Etienne, France
- Rheumatology Department, University Hospital of Saint-Etienne, Saint-Etienne, France
| | - Laurence Vico
- SAINBIOSE, U1059, Laboratory of Osteoarticular Tissue Biology, INSERM, University of Lyon, Saint-Etienne, France
| |
Collapse
|
24
|
Lin CY, Song X, Ke Y, Raha A, Wu Y, Wasi M, Wang L, Geng F, You L. Yoda1 Enhanced Low-Magnitude High-Frequency Vibration on Osteocytes in Regulation of MDA-MB-231 Breast Cancer Cell Migration. Cancers (Basel) 2022; 14:3395. [PMID: 35884459 PMCID: PMC9324638 DOI: 10.3390/cancers14143395] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2022] [Revised: 07/07/2022] [Accepted: 07/07/2022] [Indexed: 02/05/2023] Open
Abstract
Low-magnitude (≤1 g) high-frequency (≥30 Hz) (LMHF) vibration has been shown to enhance bone mineral density. However, its regulation in breast cancer bone metastasis remains controversial for breast cancer patients and elder populations. Yoda1, an activator of the mechanosensitive Piezo1 channel, could potentially intensify the effect of LMHF vibration by enhancing the mechanoresponse of osteocytes, the major mechanosensory bone cells with high expression of Piezo1. In this study, we treated osteocytes with mono- (Yoda1 only or vibration only) or combined treatment (Yoda1 and LMHF vibration) and examined the further regulation of osteoclasts and breast cancer cells through the conditioned medium. Moreover, we studied the effects of combined treatment on breast cancer cells in regulation of osteocytes. Combined treatment on osteocytes showed beneficial effects, including increasing the nuclear translocation of Yes-associated protein (YAP) in osteocytes (488.0%, p < 0.0001), suppressing osteoclastogenesis (34.3%, p = 0.004), and further reducing migration of MDA-MB-231 (15.1%, p = 0.02) but not Py8119 breast cancer cells (4.2%, p = 0.66). Finally, MDA-MB-231 breast cancer cells subjected to the combined treatment decreased the percentage of apoptotic osteocytes (34.5%, p = 0.04) but did not affect the intracellular calcium influx. This study showed the potential of stimulating Piezo1 in enhancing the mechanoresponse of osteocytes to LMHF vibration and further suppressing breast cancer migration via osteoclasts.
Collapse
Affiliation(s)
- Chun-Yu Lin
- Institute of Biomedical Engineering, University of Toronto, Toronto, ON M5S 3G9, Canada; (C.-Y.L.); (Y.K.)
| | - Xin Song
- Mechanical and Industrial Engineering, University of Toronto, Toronto, ON M5S 3G8, Canada;
| | - Yaji Ke
- Institute of Biomedical Engineering, University of Toronto, Toronto, ON M5S 3G9, Canada; (C.-Y.L.); (Y.K.)
| | - Arjun Raha
- W Booth School of Engineering Practice and Technology, McMaster University, Hamilton, ON L8S 4L7, Canada; (A.R.); (Y.W.); (F.G.)
| | - Yuning Wu
- W Booth School of Engineering Practice and Technology, McMaster University, Hamilton, ON L8S 4L7, Canada; (A.R.); (Y.W.); (F.G.)
| | - Murtaza Wasi
- Department of Mechanical Engineering, University of Delaware, Newark, DE 19716, USA; (M.W.); (L.W.)
| | - Liyun Wang
- Department of Mechanical Engineering, University of Delaware, Newark, DE 19716, USA; (M.W.); (L.W.)
| | - Fei Geng
- W Booth School of Engineering Practice and Technology, McMaster University, Hamilton, ON L8S 4L7, Canada; (A.R.); (Y.W.); (F.G.)
| | - Lidan You
- Institute of Biomedical Engineering, University of Toronto, Toronto, ON M5S 3G9, Canada; (C.-Y.L.); (Y.K.)
- Mechanical and Industrial Engineering, University of Toronto, Toronto, ON M5S 3G8, Canada;
| |
Collapse
|
25
|
Frequency-specific sensitivity of 3T3-L1 preadipocytes to low-intensity vibratory stimulus during adipogenesis. In Vitro Cell Dev Biol Anim 2022; 58:452-461. [PMID: 35713773 DOI: 10.1007/s11626-022-00696-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2022] [Accepted: 05/20/2022] [Indexed: 11/05/2022]
Abstract
Adipocyte accumulation in the bone marrow is a severe complication leading to bone defects and reduced regenerative capacity. Application of external mechanical signals to bone marrow cellular niche is a non-invasive and non-pharmaceutical methodology to improve osteogenesis and suppress adipogenesis. However, in the literature, the specific parameters related to the nature of low-intensity vibratory (LIV) signals appear to be arbitrarily selected for amplitude, bouts, and applied frequency. In this study, we performed a LIV frequency sweep ranging from 30 to 120 Hz with increments of 15 Hz applied onto preadipocytes during adipogenesis for 10 d. We addressed the effect of LIV with different frequencies on single-cell density, adipogenic gene expression, lipid morphology, and triglycerides content. Results showed that LIV signals with 75-Hz frequency had the most significant suppressive effect during adipogenesis. Our results support the premise that mechanical-based interventions for suppressing adipogenesis may benefit from optimizing input parameters.
Collapse
|
26
|
Influence of 40 Hz and 100 Hz Vibration on SH-SY5Y Cells Growth and Differentiation-A Preliminary Study. Molecules 2022; 27:molecules27103337. [PMID: 35630814 PMCID: PMC9143216 DOI: 10.3390/molecules27103337] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2022] [Revised: 05/17/2022] [Accepted: 05/19/2022] [Indexed: 02/05/2023] Open
Abstract
(1) Background: A novel bioreactor platform of neuronal cell cultures using low-magnitude, low-frequency (LMLF) vibrational stimulation was designed to discover vibration influence and mimic the dynamic environment of the in vivo state. To better understand the impact of 40 Hz and 100 Hz vibration on cell differentiation, we join biotechnology and advanced medical technology to design the nano-vibration system. The influence of vibration on the development of nervous tissue on the selected cell line SH-SY5Y (experimental research model in Alzheimer’s and Parkinson’s) was investigated. (2) Methods: The vibration stimulation of cell differentiation and elongation of their neuritis were monitored. We measured how vibrations affect the morphology and differentiation of nerve cells in vitro. (3) Results: The highest average length of neurites was observed in response to the 40 Hz vibration on the collagen surface in the differentiating medium, but cells response did not increase with vibration frequency. Also, vibrations at a frequency of 40 Hz or 100 Hz did not affect the average density of neurites. 100 Hz vibration increased the neurites density significantly with time for cultures on collagen and non-collagen surfaces. The exposure of neuronal cells to 40 Hz and 100 Hz vibration enhanced cell differentiation. The 40 Hz vibration has the best impact on neuronal-like cell growth and differentiation. (4) Conclusions: The data demonstrated that exposure to neuronal cells to 40 Hz and 100 Hz vibration enhanced cell differentiation and proliferation. This positive impact of vibration can be used in tissue engineering and regenerative medicine. It is planned to optimize the processes and study its molecular mechanisms concerning carrying out the research.
Collapse
|
27
|
Abstract
Disuse osteoporosis describes a state of bone loss due to local skeletal unloading or systemic immobilization. This review will discuss advances in the field that have shed light on clinical observations, mechanistic insights and options for the treatment of disuse osteoporosis. Clinical settings of disuse osteoporosis include spinal cord injury, other neurological and neuromuscular disorders, immobilization after fractures and bed rest (real or modeled). Furthermore, spaceflight-induced bone loss represents a well-known adaptive process to microgravity. Clinical studies have outlined that immobilization leads to immediate bone loss in both the trabecular and cortical compartments accompanied by relatively increased bone resorption and decreased bone formation. The fact that the low bone formation state has been linked to high levels of the osteocyte-secreted protein sclerostin is one of the many findings that has brought matrix-embedded, mechanosensitive osteocytes into focus in the search for mechanistic principles. Previous basic research has primarily involved rodent models based on tail suspension, spaceflight and other immobilization methods, which have underlined the importance of osteocytes in the pathogenesis of disuse osteoporosis. Furthermore, molecular-based in vitro and in vivo approaches have revealed that osteocytes sense mechanical loading through mechanosensors that translate extracellular mechanical signals to intracellular biochemical signals and regulate gene expression. Osteocytic mechanosensors include the osteocyte cytoskeleton and dendritic processes within the lacuno-canalicular system (LCS), ion channels (e.g., Piezo1), extracellular matrix, primary cilia, focal adhesions (integrin-based) and hemichannels and gap junctions (connexin-based). Overall, disuse represents one of the major factors contributing to immediate bone loss and osteoporosis, and alterations in osteocytic pathways appear crucial to the bone loss associated with unloading.
Collapse
Affiliation(s)
- Tim Rolvien
- Division of Orthopaedics, Department of Trauma and Orthopaedic Surgery, University Medical Center Hamburg-Eppendorf, Martinistrasse 52, 20246, Hamburg, Germany.
| | - Michael Amling
- Department of Osteology and Biomechanics, University Medical Center Hamburg-Eppendorf, Lottestrasse 59, 22529, Hamburg, Germany.
| |
Collapse
|
28
|
Bodnyk KA, Kim DG, Pan X, Hart RT. The Long-Term Residual Effects of Low-Magnitude Mechanical Stimulation on Murine Femoral Mechanics. J Biomech Eng 2022; 144:1128892. [PMID: 34817049 DOI: 10.1115/1.4053101] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2021] [Indexed: 11/08/2022]
Abstract
As an alternative to drug treatments, low-magnitude mechanical stimulation (LMMS) may improve skeletal health without potential side effects from drugs. LMMS has been shown to increase bone health short term in both animal and clinical studies. Long-term changes to the mechanical properties of bone from LMMS are currently unknown, so the objective of this research was to establish the methodology and preliminary results for investigating the long-term effects of whole body vibration therapy on the elastic and viscoelastic properties of bone. In this study, 10-week-old female BALB/cByJ mice were given LMMS (15 min/day, 5 days/week, 0.3 g, 90 Hz) for 8 weeks; SHAM did not receive LMMS. Two sets of groups remained on study for an additional 8 or 16 weeks post-LMMS (N = 17). Micro-CT and fluorochrome histomorphology of these femurs were studied and results were published by Bodnyk et al. (2020, "The Long-Term Residual Effects of Low-Magnitude Mechanical Stimulation Therapy on Skeletal Health," J. Biol. Eng., 14, Article No. 9.). Femoral quasi-static bending stiffness trended 4.2% increase in stiffness after 8 weeks of LMMS and 1.3% increase 8 weeks post-LMMS compared to SHAM. Damping, tan delta, and loss stiffness significantly increased by 17.6%, 16.3%, and 16.6%, respectively, at 8 weeks LMMS compared to SHAM. Finite element models of applied LMMS signal showed decreased stress in the mid-diaphyseal region at both 8-week LMMS and 8-week post-LMMS compared to SHAM. Residual mechanical changes in bone during and post-LMMS indicate that LMMS could be used to increase long-term mechanical integrity of bone.
Collapse
Affiliation(s)
- Kyle A Bodnyk
- Department of Biomedical Engineering, The Ohio State University, Fontana Labs, 140 West 19th Street, Columbus OH 43210
| | - Do-Gyoon Kim
- Division of Orthodontics, The Ohio State University, 305 West 12th Avenue, 4088 Postle Hall, Columbus, OH 43210
| | - Xueliang Pan
- College of Medicine, Biomedical Informatics, The Ohio State University, 1800 Cannon Drive, Columbus, OH 43210
| | - Richard T Hart
- Department of Biomedical Engineering, Fontana Labs, The Ohio State University, 140 West 19th Street Columbus, OH 43210
| |
Collapse
|
29
|
BASKAN OZNUR, OZCIVICI ENGIN. VIABILITY OF 3T3-L1 PREADIPOCYTES IS MODULATED BY THE APPLIED FREQUENCY BUT NOT THE EXPOSURE DURATION OF LOW INTENSITY VIBRATORY STIMULATION. J MECH MED BIOL 2022. [DOI: 10.1142/s0219519422500063] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Mechanical forces are the integral determinants in cell and tissue homeostasis and regeneration, and they can affect numerous biological process from proliferation to fate determination. Mechanical forces that possess low magnitude and high frequency characteristics are also known as low intensity vibrations (LIVs). These signals were studied widely on many cell types for regenerative purposes, however most of these studies select components of LIV signals (e.g., magnitude, frequency, duration, etc.) arbitrarily. Here, we addressed the effect of LIV applied frequency, LIV daily exposure time and fate induction on the viability of preadipocyte 3T3-L1 cells. For this, we performed a frequency sweep that was ranging from 30[Formula: see text]Hz to 120[Formula: see text]Hz with 15[Formula: see text]Hz increments applied for 5, 10 or 20[Formula: see text]min during quiescent growth or adipogenesis for up to 10 days. Results suggest that the applied frequency and fate induction was an important determinant of cell viability while daily exposure time had no effect. These findings contribute to the effort of optimizing a relevant mechanical stimulus that can inhibit adipogenesis.
Collapse
Affiliation(s)
- OZNUR BASKAN
- Department of Bioengineering, Izmir Institute of Technology Urla, Izmir 35430, Turkey
| | - ENGIN OZCIVICI
- Department of Bioengineering, Izmir Institute of Technology Urla, Izmir 35430, Turkey
| |
Collapse
|
30
|
Mayama A, Seiryu M, Takano-Yamamoto T. Effect of vibration on orthodontic tooth movement in a double blind prospective randomized controlled trial. Sci Rep 2022; 12:1288. [PMID: 35079071 PMCID: PMC8789833 DOI: 10.1038/s41598-022-05395-5] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2021] [Accepted: 01/10/2022] [Indexed: 01/17/2023] Open
Abstract
The purpose of the present study was to investigate the effect of vibration on orthodontic tooth movement and safety assessment based on our previous basic research in animal experiments. A double-blind prospective randomized controlled trial using split-mouth design was conducted in patients with malocclusion. The left and right sides of maxillary arch were randomly assigned to vibration (TM + V) and non-vibration (TM) groups. After leveling, vibrations (5.2 ± 0.5 g-forces (gf), 102.2 ± 2.6 Hertz (Hz)) were supplementary applied to the canine retracted with 100 gf in TM + V group for 3 min at the monthly visit under double-blind fashion, and the canine on the other side without vibration was used as TM group. The amount of tooth movement was measured blindly using a constructed three-dimensional dentition model. The amount of canine movement per visit was 0.89 ± 0.55 mm in TM group (n = 23) and 1.21 ± 0.60 mm in TM + V group (n = 23), respectively. There was no significant difference of pain and discomfort, and root resorption between the two groups. This study indicates that static orthodontic force with supplementary vibration significantly accelerated tooth movement in canine retraction and reduced the number of visits without causing side effects.
Collapse
Affiliation(s)
- Atsushi Mayama
- Division of Orthodontics and Dentofacial Orthopedics, Graduate School of Dentistry, Tohoku University, 4-1, Seiryomachi, Aoba-ku, Sendai, Miyagi, 980-8575, Japan
| | - Masahiro Seiryu
- Division of Orthodontics and Dentofacial Orthopedics, Graduate School of Dentistry, Tohoku University, 4-1, Seiryomachi, Aoba-ku, Sendai, Miyagi, 980-8575, Japan
| | - Teruko Takano-Yamamoto
- Division of Orthodontics and Dentofacial Orthopedics, Graduate School of Dentistry, Tohoku University, 4-1, Seiryomachi, Aoba-ku, Sendai, Miyagi, 980-8575, Japan. .,Department of Biomaterials and Bioengineering, Faculty of Dental Medicine, Hokkaido University, Hokkaido, 060-8586, Japan.
| |
Collapse
|
31
|
Beck B, Rubin C, Harding A, Paul S, Forwood M. The effect of low-intensity whole-body vibration with or without high-intensity resistance and impact training on risk factors for proximal femur fragility fracture in postmenopausal women with low bone mass: study protocol for the VIBMOR randomized controlled trial. Trials 2022; 23:15. [PMID: 34991684 PMCID: PMC8734256 DOI: 10.1186/s13063-021-05911-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2021] [Accepted: 12/03/2021] [Indexed: 11/24/2022] Open
Abstract
BACKGROUND The prevailing medical opinion is that medication is the primary (some might argue, only) effective intervention for osteoporosis. It is nevertheless recognized that osteoporosis medications are not universally effective, tolerated, or acceptable to patients. Mechanical loading, such as vibration and exercise, can also be osteogenic but the degree, relative efficacy, and combined effect is unknown. The purpose of the VIBMOR trial is to determine the efficacy of low-intensity whole-body vibration (LIV), bone-targeted, high-intensity resistance and impact training (HiRIT), or the combination of LIV and HiRIT on risk factors for hip fracture in postmenopausal women with osteopenia and osteoporosis. METHODS Postmenopausal women with low areal bone mineral density (aBMD) at the proximal femur and/or lumbar spine, with or without a history of fragility fracture, and either on or off osteoporosis medications will be recruited. Eligible participants will be randomly allocated to one of four trial arms for 9 months: LIV, HiRIT, LIV + HiRIT, or control (low-intensity, home-based exercise). Allocation will be block-randomized, stratified by use of osteoporosis medications. Testing will be performed at three time points: baseline (T0), post-intervention (T1; 9 months), and 1 year thereafter (T2; 21 months) to examine detraining effects. The primary outcome measure will be total hip aBMD determined by dual-energy X-ray absorptiometry (DXA). Secondary outcomes will include aBMD at other regions, anthropometrics, and other indices of bone strength, body composition, physical function, kyphosis, muscle strength and power, balance, falls, and intervention compliance. Exploratory outcomes include bone turnover markers, pelvic floor health, quality of life, physical activity enjoyment, adverse events, and fracture. An economic evaluation will also be conducted. DISCUSSION No previous studies have compared the effect of LIV alone or in combination with bone-targeted HiRIT (with or without osteoporosis medications) on risk factors for hip fracture in postmenopausal women with low bone mass. Should either, both, or combined mechanical interventions be safe and efficacious, alternative therapeutic avenues will be available to individuals at elevated risk of fragility fracture who are unresponsive to or unwilling or unable to take osteoporosis medications. TRIAL REGISTRATION Australian New Zealand Clinical Trials Registry (www. anzctr.org.au ) (Trial number ANZCTR12615000848505, https://www.anzctr.org.au/Trial/Registration/TrialReview.aspx?id = 368962 ); date of registration 14/08/2015 (prospectively registered). Universal Trial Number: U1111-1172-3652.
Collapse
Affiliation(s)
- Belinda Beck
- Menzies Health Institute Queensland, School of Health Sciences and Social Work, Griffith University, Gold Coast, QLD Australia
| | - Clinton Rubin
- Department of Biomedical Engineering, State University of New York at Stony Brook, New York, NY USA
| | - Amy Harding
- Menzies Health Institute Queensland, School of Health Sciences and Social Work, Griffith University, Gold Coast, QLD Australia
| | - Sanjoy Paul
- Melbourne EpiCentre, University of Melbourne and Melbourne Health, Melbourne, VIC Australia
| | - Mark Forwood
- School of Pharmacy and Medical Sciences, Gold Coast, QLD Australia
| |
Collapse
|
32
|
Campos MS, Volpon JB, Ximenez JPB, Franttini AP, Dalloul CE, Sousa-Neto MD, Silva RA, Kacena MA, Zamarioli A. Vibration therapy as an effective approach to improve bone healing in diabetic rats. Front Endocrinol (Lausanne) 2022; 13:909317. [PMID: 36060973 PMCID: PMC9437439 DOI: 10.3389/fendo.2022.909317] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/31/2022] [Accepted: 07/22/2022] [Indexed: 11/13/2022] Open
Abstract
OBJECTIVE To investigate the effects of vibration therapy on fracture healing in diabetic and non-diabetic rats. METHODS 148 rats underwent fracture surgery and were assigned to four groups: (1) SHAM: weight-matched non-diabetic rats, (2) SHAM+VT: non-diabetic rats treated with vibration therapy (VT), (3) DM: diabetic rats, and (4) DM+VT: diabetic rats treated with VT. Thirty days after diabetes induction with streptozotocin, animals underwent bone fracture, followed by surgical stabilization. Three days after bone fracture, rats began VT. Bone healing was assessed on days 14 and 28 post-fracture by serum bone marker analysis, and femurs collected for dual-energy X-ray absorptiometry, micro-computed tomography, histology, and gene expression. RESULTS Our results are based on 88 animals. Diabetes led to a dramatic impairment of bone healing as demonstrated by a 17% reduction in bone mineral density and decreases in formation-related microstructural parameters compared to non-diabetic control rats (81% reduction in bone callus volume, 69% reduction in woven bone fraction, 39% reduction in trabecular thickness, and 45% in trabecular number). These changes were accompanied by a significant decrease in the expression of osteoblast-related genes (Runx2, Col1a1, Osx), as well as a 92% reduction in serum insulin-like growth factor I (IGF-1) levels. On the other hand, resorption-related parameters were increased in diabetic rats, including a 20% increase in the callus porosity, a 33% increase in trabecular separation, and a 318% increase in serum C terminal telopeptide of type 1 collagen levels. VT augmented osteogenic and chondrogenic cell proliferation at the fracture callus in diabetic rats; increased circulating IGF-1 by 668%, callus volume by 52%, callus bone mineral content by 90%, and callus area by 72%; and was associated with a 19% reduction in circulating receptor activator of nuclear factor kappa beta ligand (RANK-L). CONCLUSIONS Diabetes had detrimental effects on bone healing. Vibration therapy was effective at counteracting the significant disruption in bone repair induced by diabetes, but did not improve fracture healing in non-diabetic control rats. The mechanical stimulus not only improved bone callus quality and quantity, but also partially restored the serum levels of IGF-1 and RANK-L, inducing bone formation and mineralization, thus creating conditions for adequate fracture repair in diabetic rats.
Collapse
Affiliation(s)
- Maysa S. Campos
- Department of Orthopaedics and Anaesthesiology, Ribeirão Preto Medical School, University of Sao Paulo, Ribeirão Preto, SP, Brazil
| | - José B. Volpon
- Department of Orthopaedics and Anaesthesiology, Ribeirão Preto Medical School, University of Sao Paulo, Ribeirão Preto, SP, Brazil
| | - João Paulo B. Ximenez
- Laboratory of Molecular Biology, Blood Center of Ribeirão Preto, Ribeirão Preto Medical School, Ribeirão Preto, SP, Brazil
- School of Pharmaceutical Sciences of Ribeirão Preto - University of São Paulo, Ribeirão Preto, SP, Brazil
| | - Ana Paula Franttini
- Department of Orthopaedics and Anaesthesiology, Ribeirão Preto Medical School, University of Sao Paulo, Ribeirão Preto, SP, Brazil
| | - Christopher E. Dalloul
- Department of Orthopaedic Surgery, Indiana University School of Medicine, Indianapolis, IN, United States
| | - Manoel D. Sousa-Neto
- School of Dentistry of Ribeirão Preto - University of São Paulo, Ribeirão Preto, SP, Brazil
| | - Raquel A. Silva
- School of Dentistry of Ribeirão Preto - University of São Paulo, Ribeirão Preto, SP, Brazil
| | - Melissa A. Kacena
- Department of Orthopaedic Surgery, Indiana University School of Medicine, Indianapolis, IN, United States
- Richard L. Roudebush Veterans Affairs Medical Center, Indianapolis, IN, United States
| | - Ariane Zamarioli
- Department of Orthopaedics and Anaesthesiology, Ribeirão Preto Medical School, University of Sao Paulo, Ribeirão Preto, SP, Brazil
- *Correspondence: Ariane Zamarioli,
| |
Collapse
|
33
|
Ebid A, El-Boshy M, El-Shamy S, Thabet A, Abedalla M, Ali T. Long-term effect of full-body pulsed electromagnetic field and exercise protocol in the treatment of men with osteopenia or osteoporosis: A randomized placebo-controlled trial. F1000Res 2021; 10:649. [PMID: 34900231 PMCID: PMC8637238 DOI: 10.12688/f1000research.54519.3] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 11/26/2021] [Indexed: 11/25/2022] Open
Abstract
Background: Osteoporosis is the most prevalent metabolic disease affecting bones.
Objective: To investigate the long-term effect of pulsed electromagnetic field (PEMF) combined with exercise protocol on bone mineral density (BMD) and bone markers in men with osteopenia or osteoporosis.
Methods: Ninety-five males with osteopenia or osteoporosis (mean age, 51.26 ± 2.41 years; mean height, 176 ± 2.02 cm; mean weight, 83.08 ± 2.60 kg; mean body–mass index (BMI), 26.08 ± 1.09 kg/m
2) participated in the study, and they were randomly assigned to one of three groups: Group 1 received a full-body PEMF and exercise protocol (PEMF +EX), Group 2 received a placebo full-body PEMF and exercise protocol (PPEMF +EX), and Group 3 received a full-body PEMF alone (PEMF). PEMF was applied for the whole body using a full-body mat three times per week for 12 weeks, with an exercise protocol that includes flexibility, aerobic exercise, strengthening, weight-bearing, and balance exercises followed by whole-body vibration (WBV) training. Outcome measures include BMD of total hip and lumbar spine and bone markers [serum osteocalcin (s-OC), Serum amino-terminal cross-linking telopeptide of type I collagen (s-NTX), Serum carboxy-terminal cross-linking telopeptide of type I collagen (s-CTX), Parathyroid hormones (PTH), Bone-specific Alkaline Phosphatase (BSAP), and 25-hydroxy vitamin D (Vit D)].
Results: The
BMD of total hip and lumbar spine was significantly increased post-treatment in all groups, and more so in Group 1 and Group 2 than Group 3. There was a significant difference in bone markers in all groups, more so in Group 1 and Group 2 than in Group 3.
Conclusion: PEMF combined with exercise protocol exerts a potent role for treating OP, is more effective than exercise and PEMF alone for increasing BMD and enhancing bone formation, and suppresses bone-resorption markers after 12-weeks of treatment with the impact lasting up to 6 months.
Collapse
Affiliation(s)
- Anwar Ebid
- Physical Therapy, Umm Al-Qura University, Makkah, Saudi Arabia
| | - Mohamed El-Boshy
- Laboratory Medicine, Umm Al-Qura University, Makkah, Saudi Arabia
| | | | - Ali Thabet
- Physical Therapy, Umm Al-Qura University, Makkah, Saudi Arabia
| | | | - Tariq Ali
- Umm Al-Qura University Medical Center, Umm Al-Qura University, Makkah, Saudi Arabia
| |
Collapse
|
34
|
Steppe L, Krüger BT, Tschaffon MEA, Fischer V, Tuckermann J, Ignatius A, Haffner-Luntzer M. Estrogen Receptor α Signaling in Osteoblasts is Required for Mechanotransduction in Bone Fracture Healing. Front Bioeng Biotechnol 2021; 9:782355. [PMID: 34950644 PMCID: PMC8689144 DOI: 10.3389/fbioe.2021.782355] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2021] [Accepted: 11/24/2021] [Indexed: 12/15/2022] Open
Abstract
Biomechanical stimulation by whole-body low-magnitude high-frequency vibration (LMHFV) has demonstrated to provoke anabolic effects on bone metabolism in both non-osteoporotic and osteoporotic animals and humans. However, preclinical studies reported that vibration improved fracture healing and bone formation in osteoporotic, ovariectomized (OVX) mice representing an estrogen-deficient hormonal status, but impaired bone regeneration in skeletally healthy non-OVX mice. These effects were abolished in general estrogen receptor α (ERα)-knockout (KO) mice. However, it remains to be elucidated which cell types in the fracture callus are targeted by LMHFV during bone healing. To answer this question, we generated osteoblast lineage-specific ERα-KO mice that were subjected to ovariectomy, femur osteotomy and subsequent vibration. We found that the ERα specifically on osteoblastic lineage cells facilitated the vibration-induced effects on fracture healing, because in osteoblast lineage-specific ERα-KO (ERαfl/fl; Runx2Cre) mice the negative effects in non-OVX mice were abolished, whereas the positive effects of vibration in OVX mice were reversed. To gain greater mechanistic insights, the influence of vibration on murine and human osteogenic cells was investigated in vitro by whole genome array analysis and qPCR. The results suggested that particularly canonical WNT and Cox2/PGE2 signaling is involved in the mechanotransduction of LMHFV under estrogen-deficient conditions. In conclusion, our study demonstrates a critical role of the osteoblast lineage-specific ERα in LMHFV-induced effects on fracture healing and provides further insights into the molecular mechanism behind these effects.
Collapse
Affiliation(s)
- Lena Steppe
- Institute of Orthopedic Research and Biomechanics, University Medical Center Ulm, Ulm, Germany
| | - Benjamin Thilo Krüger
- Institute of Orthopedic Research and Biomechanics, University Medical Center Ulm, Ulm, Germany
| | | | - Verena Fischer
- Institute of Orthopedic Research and Biomechanics, University Medical Center Ulm, Ulm, Germany
| | - Jan Tuckermann
- Institute of Comparative Molecular Endocrinology (CME), Ulm University, Ulm, Germany
| | - Anita Ignatius
- Institute of Orthopedic Research and Biomechanics, University Medical Center Ulm, Ulm, Germany
| | - Melanie Haffner-Luntzer
- Institute of Orthopedic Research and Biomechanics, University Medical Center Ulm, Ulm, Germany
| |
Collapse
|
35
|
Fu Z, Huang X, Zhou P, Wu B, Cheng L, Wang X, Zhu D. Protective effects of low-magnitude high-frequency vibration on high glucose-induced osteoblast dysfunction and bone loss in diabetic rats. J Orthop Surg Res 2021; 16:650. [PMID: 34717702 PMCID: PMC8557505 DOI: 10.1186/s13018-021-02803-w] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/08/2021] [Accepted: 10/18/2021] [Indexed: 01/07/2023] Open
Abstract
Objective Low-magnitude high-frequency vibration (LMHFV) has been reported to be capable of promoting osteoblast proliferation and differentiation. Reduced osteoblast activity and impaired bone formation were related to diabetic bone loss. We investigated the potential protective effects of LMHFV on high-glucose (HG)-induced osteoblasts in this study. In addition, the assessment of LMHFV treatment for bone loss attributed to diabetes was also performed in vivo.
Method MC3T3-E1 cells induced by HG only or treated with LMHFV were treated in vitro. The experiments performed in this study included the detection of cell proliferation, migration and differentiation, as well as protein expression. Diabetic bone loss induced by streptozotocin (STZ) in rats was established. Combined with bone morphometric, microstructure, biomechanical properties and matrix composition tests, the potential of LMHFV in treating diabetes bone loss was explored. Results After the application of LMHFV, the inhibiting effects of HG on the proliferation, migration and differentiation of osteoblasts were alleviated. The GSK3β/β-catenin pathway was involved in the protective effect of LMHFV. Impaired microstructure and biomechanical properties attributed to diabetes were ameliorated by LMHFV treatment. The improvement of femur biomechanical properties might be associated with the alteration of the matrix composition by the LMHFV. Conclusion LMHFV exhibited a protective effect on osteoblasts against HG by regulating the proliferation, migration and differentiation of osteoblasts. The function of promoting bone formation and reinforcing bone strength made it possible for LMHFV to alleviate diabetic bone loss. Supplementary Information The online version contains supplementary material available at 10.1186/s13018-021-02803-w.
Collapse
Affiliation(s)
- Zhaoyu Fu
- Department of Orthopaedic Trauma, The First Hospital of Jilin University, Changchun, Jilin, China
| | - Xu Huang
- Department of Radiology, The First Hospital of Jilin University, Changchun, Jilin, China
| | - Pengcheng Zhou
- Department of Orthopaedic Trauma, The First Hospital of Jilin University, Changchun, Jilin, China
| | - Bo Wu
- Department of Orthopaedic Trauma, The First Hospital of Jilin University, Changchun, Jilin, China
| | - Long Cheng
- Department of Orthopaedic Trauma, The First Hospital of Jilin University, Changchun, Jilin, China
| | - Xinyu Wang
- Department of Orthopaedic Trauma, The First Hospital of Jilin University, Changchun, Jilin, China
| | - Dong Zhu
- Department of Orthopaedic Trauma, The First Hospital of Jilin University, Changchun, Jilin, China.
| |
Collapse
|
36
|
Song W, Yang Y. The effect of whole-body vibration training with different amplitudes on bone mineral density in elderly women. ISOKINET EXERC SCI 2021. [DOI: 10.3233/ies-200271] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
BACKGROUND: The effects of whole-body vibration training (WBVT) with same frequency and different amplitudes on bone mineral density (BMD) in the elderly is not reported. OBJECTIVE: To compare the effect of 45-Hz WBVT with different amplitudes on the BMD in elderly women. METHODS: Age-, height-, and weight-matched patients were assigned to a low-amplitude group (n= 19, amplitude of 2 mm), medium-amplitude group (n= 18, amplitude of 3 mm), high-amplitude group (n= 19, amplitude 4 mm), and control group (n= 20). The WBVT was conducted for 24 weeks in the three amplitude groups. The BMD at lumbar vertebrae L2-4 and the proximal femur was measured at 0 and 24 weeks. RESULTS: The BMD at lumbar vertebrae L2-4 was higher in the high-amplitude group than in the low-amplitude and middle-amplitude groups, and the BMD of the greater trochanter was significantly higher than that in the low-amplitude group (p< 0.05). The BMD of the greater trochanter was significantly higher in the middle- than low-amplitude group (p< 0.05). CONCLUSION: A higher amplitude should be considered when WBVT is performed in elderly patients to increase bone density and prevent osteoporosis.
Collapse
|
37
|
The Osteogenic Differentiation of Human Dental Pulp Stem Cells through G0/G1 Arrest and the p-ERK/Runx-2 Pathway by Sonic Vibration. Int J Mol Sci 2021; 22:ijms221810167. [PMID: 34576330 PMCID: PMC8471578 DOI: 10.3390/ijms221810167] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2021] [Revised: 09/16/2021] [Accepted: 09/16/2021] [Indexed: 02/06/2023] Open
Abstract
Mechanical/physical stimulations modulate tissue metabolism, and this process involves multiple cellular mechanisms, including the secretion of growth factors and the activation of mechano-physically sensitive kinases. Cells and tissue can be modulated through specific vibration-induced changes in cell activity, which depend on the vibration frequency and occur via differential gene expression. However, there are few reports about the effects of medium-magnitude (1.12 g) sonic vibration on the osteogenic differentiation of human dental pulp stem cells (HDPSCs). In this study, we investigated whether medium-magnitude (1.12 g) sonic vibration with a frequency of 30, 45, or 100 Hz could affect the osteogenic differentiation of HDPSCs. Their cell morphology changed to a cuboidal shape at 45 Hz and 100 Hz, but the cells in the other groups were elongated. FACS analysis showed decreased CD 73, CD 90, and CD 105 expression at 45 Hz and 100 Hz. Additionally, the proportions of cells in the G0/G1 phase in the control, 30 Hz, 45 Hz, and 100 Hz groups after vibration were 60.7%, 65.9%, 68.3%, and 66.7%, respectively. The mRNA levels of osteogenic-specific markers, including osteonectin, osteocalcin, BMP-2, ALP, and Runx-2, increased at 45 and 100 Hz, and the ALP and calcium content was elevated in the vibration groups compared with those in the control. Additionally, the western blotting results showed that p-ERK, BSP, osteoprotegerin, and osteonectin proteins were upregulated at 45 Hz compared with the other groups. The vibration groups showed higher ALP and calcium content than the control. Vibration, especially at 100 Hz, increased the number of calcified nodes relative to the control group, as evidenced by von Kossa staining. Immunohistochemical staining demonstrated that type I and III collagen, osteonectin, and osteopontin were upregulated at 45 Hz and 100 Hz. These results suggest that medium magnitude vibration at 45 Hz induces the G0/G1 arrest of HDPSCs through the p-ERK/Runx-2 pathway and can serve as a potent stimulator of differentiation and extracellular matrix production.
Collapse
|
38
|
Effects of Extracellular Osteoanabolic Agents on the Endogenous Response of Osteoblastic Cells. Cells 2021; 10:cells10092383. [PMID: 34572032 PMCID: PMC8471159 DOI: 10.3390/cells10092383] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2021] [Revised: 08/31/2021] [Accepted: 09/07/2021] [Indexed: 12/27/2022] Open
Abstract
The complex multidimensional skeletal organization can adapt its structure in accordance with external contexts, demonstrating excellent self-renewal capacity. Thus, optimal extracellular environmental properties are critical for bone regeneration and inextricably linked to the mechanical and biological states of bone. It is interesting to note that the microstructure of bone depends not only on genetic determinants (which control the bone remodeling loop through autocrine and paracrine signals) but also, more importantly, on the continuous response of cells to external mechanical cues. In particular, bone cells sense mechanical signals such as shear, tensile, loading and vibration, and once activated, they react by regulating bone anabolism. Although several specific surrounding conditions needed for osteoblast cells to specifically augment bone formation have been empirically discovered, most of the underlying biomechanical cellular processes underneath remain largely unknown. Nevertheless, exogenous stimuli of endogenous osteogenesis can be applied to promote the mineral apposition rate, bone formation, bone mass and bone strength, as well as expediting fracture repair and bone regeneration. The following review summarizes the latest studies related to the proliferation and differentiation of osteoblastic cells, enhanced by mechanical forces or supplemental signaling factors (such as trace metals, nutraceuticals, vitamins and exosomes), providing a thorough overview of the exogenous osteogenic agents which can be exploited to modulate and influence the mechanically induced anabolism of bone. Furthermore, this review aims to discuss the emerging role of extracellular stimuli in skeletal metabolism as well as their potential roles and provide new perspectives for the treatment of bone disorders.
Collapse
|
39
|
Pagnotti GM, Thompson WR, Guise TA, Rubin CT. Suppression of cancer-associated bone loss through dynamic mechanical loading. Bone 2021; 150:115998. [PMID: 33971314 PMCID: PMC10044486 DOI: 10.1016/j.bone.2021.115998] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/14/2021] [Revised: 04/30/2021] [Accepted: 05/03/2021] [Indexed: 02/06/2023]
Abstract
Patients afflicted with or being treated for cancer constitute a distinct and alarming subpopulation who exhibit elevated fracture risk and heightened susceptibility to developing secondary osteoporosis. Cancer cells uncouple the regulatory processes central for the adequate regulation of musculoskeletal tissue. Systemically taxing treatments to target tumors or disrupt the molecular elements driving tumor growth place considerable strain on recovery efforts. Skeletal tissue is inherently sensitive to mechanical forces, therefore attention to exercise and mechanical loading as non-pharmacological means to preserve bone during treatment and in post-treatment rehabilitative efforts have been topics of recent focus. This review discusses the dysregulation that cancers and the ensuing metabolic dysfunction that confer adverse effects on musculoskeletal tissues. Additionally, we describe foundational mechanotransduction pathways and the mechanisms by which they influence both musculoskeletal and cancerous cells. Functional and biological implications of mechanical loading at the tissue and cellular levels will be discussed, highlighting the current understanding in the field. Herein, in vitro, translational, and clinical data are summarized to consider the positive impact of exercise and low magnitude mechanical loading on tumor-bearing skeletal tissue.
Collapse
Affiliation(s)
- G M Pagnotti
- University of Texas - MD Anderson Cancer Center, Department of Endocrine, Neoplasia and Hormonal Disorders, Houston, TX, USA.
| | - W R Thompson
- Indiana University, Department of Physical Therapy, Indianapolis, IN, USA
| | - T A Guise
- University of Texas - MD Anderson Cancer Center, Department of Endocrine, Neoplasia and Hormonal Disorders, Houston, TX, USA
| | - C T Rubin
- Stony Brook University, Department of Biomedical Engineering, Stony Brook, NY, USA
| |
Collapse
|
40
|
Psychological Effects of Whole-Body Vibration Training in Frail Older Adults: An Open, Randomized Control Trial. J Aging Phys Act 2021; 30:54-64. [PMID: 34348227 DOI: 10.1123/japa.2020-0400] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2020] [Revised: 12/17/2020] [Accepted: 02/03/2021] [Indexed: 11/18/2022]
Abstract
The aim of this study was to identify the psychological effects of whole-body vibration (WBV) exercise in frail older adults. About 117 male and female volunteers (82.5 ± 7.9 years) from residential care facilities were randomized and assigned to control, simulated exercise (SIM), or WBV exercise (WBV) groups. All received regular care, while exercise groups also underwent 16 weeks of training (3 × 20 min/week). WBV exercise began with 5 × 1 min bouts (6 Hz/2 mm, 1:1 min exercise:rest), self-progressing to 10 × 1 min (up to 26 Hz/4 mm), and maintaining knee flexion. SIM training mimicked exercise stance and duration. Pre- and post-measures of falls-confidence, quality of life, and functional independence were completed using validated questionnaires. Functional independence and falls-confidence scores increased by 5.8% and 17.4% respectively with WBV exercise, compared with declines in SIM (p = .074/p = .035, respectively) and control (p = .000/p = .000, respectively) participants. Beneficial effects remained for at least 6-month post-intervention. Further WBV benefits were observed in activity, mobility, and self-care elements of quality of life. Sixteen weeks of low-level WBV exercise is sufficient to enhance frail older adults' falls-related confidence, quality of life, and functional independence.
Collapse
|
41
|
Annino G, Manzi V, Buselli P, Ruscello B, Franceschetti F, Romagnoli C, Cotelli F, Casasco M, Padua E, Iellamo F. Acute effects of whole-body vibrations on the fatigue induced by multiple repeated sprint ability test in soccer players. J Sports Med Phys Fitness 2021; 62:788-794. [PMID: 34156181 DOI: 10.23736/s0022-4707.21.12349-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
BACKGROUND We tested the hypothesis that Whole Body Vibration (WBV) positively affects the fatigue process ensuing from repeated bouts of maximal efforts, as induced by repeated sprints ability (RSA). Eleven male soccer players performed three sets of six repeated shuttle sprints (40 metres). METHODS Eleven male soccer players (age 23,6±4,5 years) were cross-randomized to perform WBW before RSA and during the recovery between sets (WBV-with) or to warm-up and passive recovery between sets (WBV-without). The effects of WBV were quantified by sprint time (ST) and blood lactate concentration (LA), collected up to 15th min after completion of tests. RESULTS ST during RSA showed a better maintenance of performance in the WBV-with compared to WBV-without condition in all three sets, reaching a statistical significance between-groups during the 2nd and 3rd set (P< 0.05). No significant differences in ST over the sets were detected in WBVwith, whereas a significant decrease was observed in the WBV-without condition (P<0.001). LA recovered significantly faster from the 9th to 15th minute of recovery in WBV-with as compared to WBV-without (P<0.05). CONCLUSIONS These findings would indicate that WBV performed during recovery between RSA sets is capable of delaying the onset of muscle fatigue resulting in a better maintenance of sprint performance.
Collapse
Affiliation(s)
- Giuseppe Annino
- Department of Medicine Systems, University of Rome Tor Vergata, Rome, Italy - .,School of Human Movement Science, University of Rome Tor Vergata, Rome, Italy - .,Centro di Biomedicina Spaziale, University of Rome Tor Vergata, Rome, Italy -
| | - Vincenzo Manzi
- Dipartimento di Scienze Umanistiche, Università Telematica Pegaso, Naples, Italy
| | - Paolo Buselli
- Physical and Rehabilitation Medicine Department, Hospital Istituti Ospitalieri di Cremona, Cremona, Italy
| | - Bruno Ruscello
- School of Human Movement Science, University of Rome Tor Vergata, Rome, Italy
| | | | - Cristian Romagnoli
- School of Human Movement Science, University of Rome Tor Vergata, Rome, Italy.,Department for Life Quality Studies, University of Bologna, Rimini, Italy
| | - Franco Cotelli
- High Performance Lab, S. Caterina Valfurva, Sondrio, Italy
| | | | - Elvira Padua
- School of Human Movement Science, University of Rome Tor Vergata, Rome, Italy.,Department of Science and Human Promotion of the Quality of Life, San Raffaele University online, Rome, Italy
| | - Ferdinando Iellamo
- Department of Clinical Sciences and Translational Medicine, University of Rome Tor Vergata, Rome, Italy.,Scientific Institute of Research and Care, San Raffaele Pisana, Rome, Italy
| |
Collapse
|
42
|
Three-dimensional imaging and molecular analysis of the effects of photobiomodulation and mechanical vibration on orthodontic retention treatment in rats : Effects of photobiomodulation and mechanical vibration on orthodontic retention treatment. J Orofac Orthop 2021; 83:24-41. [PMID: 34009424 DOI: 10.1007/s00056-021-00296-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2020] [Accepted: 03/15/2021] [Indexed: 10/21/2022]
Abstract
PURPOSE We aimed to evaluate and compare effects of photobiomodulation (PBM) and low-magnitude high-frequency mechanical vibration (HFMV) on orthodontic retention. METHODS Sixty-four female Wistar albino rats were divided into 9 groups (2 negative and positive controls each, 3 PBM and 2 HFMV groups) and studied for 25 days. In the experimental groups, closed nickel-titanium closed coil springs with a 50 cN force were placed for 10 days between the maxillary incisor and molar. PBM and HFMV were applied daily over long- (15 days) and short-term (7 days) retention periods. The PBM groups received PBM with a single wavelength (650 nm) or higher wavelengths (532, 650, 940 nm) for 9 min per day. HFMV groups received HFMV of 10, 20, and 30 Hz for 10 min per day. Right and left maxilla were assessed using micro-computed tomography imaging and real-time polymerase chain reaction. The amount of tooth movement during the retention period, expression levels of cyclooxygenase‑2 (COX-2), osteoprotegerin (OPG), and receptor activator of nuclear factor-kappa B ligand (RANKL) mRNA gene expression levels, OPG/RANKL ratios, alveolar bone trabecular thickness (Tb.Th), trabecular number (Tb.N), and structure model index were analyzed. Kruskal-Wallis and Mann-Whitney U tests were used for multiple comparisons of the nonparametric distributed data and binary comparisons, respectively. RESULTS When using the long-term retention protocol, PBM and HFMV treatment increased Tb.N (p < 0.05) and decreased COX‑2 mRNA gene expression levels (p < 0.05) and Tb.Th (p < 0.05) compared to controls. For short-term retention, PBM and HFMV decreased the amount of relapse tooth movement compared to controls. In addition, Tb.Th (p < 0.05) and the mRNA gene expression levels of COX‑2 and RANKL (p < 0.05) were decreased. CONCLUSION PBM and HFMV might be able to support retention after orthodontic tooth movement by reducing bone resorption and increasing bone quality.
Collapse
|
43
|
Possible Mechanisms for the Effects of Sound Vibration on Human Health. Healthcare (Basel) 2021; 9:healthcare9050597. [PMID: 34069792 PMCID: PMC8157227 DOI: 10.3390/healthcare9050597] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2021] [Revised: 05/05/2021] [Accepted: 05/10/2021] [Indexed: 12/17/2022] Open
Abstract
This paper presents a narrative review of research literature to “map the landscape” of the mechanisms of the effect of sound vibration on humans including the physiological, neurological, and biochemical. It begins by narrowing music to sound and sound to vibration. The focus is on low frequency sound (up to 250 Hz) including infrasound (1–16 Hz). Types of application are described and include whole body vibration, vibroacoustics, and focal applications of vibration. Literature on mechanisms of response to vibration is categorized into hemodynamic, neurological, and musculoskeletal. Basic mechanisms of hemodynamic effects including stimulation of endothelial cells and vibropercussion; of neurological effects including protein kinases activation, nerve stimulation with a specific look at vibratory analgesia, and oscillatory coherence; of musculoskeletal effects including muscle stretch reflex, bone cell progenitor fate, vibration effects on bone ossification and resorption, and anabolic effects on spine and intervertebral discs. In every category research on clinical applications are described. The conclusion points to the complexity of the field of vibrational medicine and calls for specific comparative research on type of vibration delivery, amount of body or surface being stimulated, effect of specific frequencies and intensities to specific mechanisms, and to greater interdisciplinary cooperation and focus.
Collapse
|
44
|
Du J, Li S, Silberschmidt VV. Remodelling of trabecular bone in human distal tibia: A model based on an in-vivo HR-pQCT study. J Mech Behav Biomed Mater 2021; 119:104506. [PMID: 33865068 DOI: 10.1016/j.jmbbm.2021.104506] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2021] [Revised: 03/28/2021] [Accepted: 03/30/2021] [Indexed: 11/28/2022]
Abstract
An abnormal remodelling process of bones can lead to various bone disorders, such as osteoporosis, making them prone to fracture. Simulations of load-induced remodelling of trabecular bone were used to investigate its response to mechanical signal. However, the role of mechanostat in trabecular-bone remodelling has not yet been investigated in simulations underpinned by a longitudinal in-vivo study in humans. In this work, a finite-element model based on a 6-month longitudinal in-vivo HR-pQCT study was developed and validated to investigate the effect of mechanical stimuli on bone remodelling. The simulated changes in microstructural parameters and density of trabecular bone were compared with respective experimental results. A maximum principal strain (MPS) and a maximum principal strain gradient (∇MPS) were used as mechanical signals to drive a five-stage mechanostat remodelling model, including additional over-strain and damage stages. It was found that the density distribution varied with the studied mechanical signals, along with decreasing with time levels of bone volume fraction BV/TV, trabecular thickness Tb.Th and bone surface area Tb.BS as well as increased trabecular separation Tb.Sp. Among these parameters, BV/TV and Tb.Th together with the bone-remodelling parameters from the MPS model demonstrated a significant correlation with the experimental data. The developed model provides a good foundation for further development and investigation of the relationships between mechanical loading and human-bone microarchitecture.
Collapse
Affiliation(s)
- Juan Du
- Academy of Medical Engineering and Translational Medicine, Tianjin University, Tianjin, China; Wolfson School of Mechanical, Electrical and Manufacturing Engineering, Loughborough University, Loughborough, UK.
| | - Simin Li
- Wolfson School of Mechanical, Electrical and Manufacturing Engineering, Loughborough University, Loughborough, UK
| | - Vadim V Silberschmidt
- Wolfson School of Mechanical, Electrical and Manufacturing Engineering, Loughborough University, Loughborough, UK
| |
Collapse
|
45
|
Rajapakse CS, Johncola AJ, Batzdorf AS, Jones BC, Al Mukaddam M, Sexton K, Shults J, Leonard MB, Snyder PJ, Wehrli FW. Effect of Low-Intensity Vibration on Bone Strength, Microstructure, and Adiposity in Pre-Osteoporotic Postmenopausal Women: A Randomized Placebo-Controlled Trial. J Bone Miner Res 2021; 36:673-684. [PMID: 33314313 DOI: 10.1002/jbmr.4229] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/16/2020] [Revised: 11/21/2020] [Accepted: 11/27/2020] [Indexed: 12/31/2022]
Abstract
There has been evidence that cyclical mechanical stimulation may be osteogenic, thus providing opportunities for nonpharmacological treatment of degenerative bone disease. Here, we applied this technology to a cohort of postmenopausal women with varying bone mineral density (BMD) T-scores at the total hip (-0.524 ± 0.843) and spine (-0.795 ± 1.03) to examine the response to intervention after 1 year of daily treatment with 10 minutes of vibration therapy in a randomized double-blinded trial. The device operates either in an active mode (30 Hz and 0.3 g) or placebo. Primary endpoints were changes in bone stiffness at the distal tibia and marrow adiposity of the vertebrae, based on 3 Tesla high-resolution MRI and spectroscopic imaging, respectively. Secondary outcome variables included distal tibial trabecular microstructural parameters and vertebral deformity determined by MRI, volumetric and areal bone densities derived using peripheral quantitative computed tomography (pQCT) of the tibia, and dual-energy X-ray absorptiometry (DXA)-based BMD of the hip and spine. Device adherence was 83% in the active group (n = 42) and 86% in the placebo group (n = 38) and did not differ between groups (p = .7). The mean 12-month changes in tibial stiffness in the treatment group and placebo group were +1.31 ± 6.05% and -2.55 ± 3.90%, respectively (group difference 3.86%, p = .0096). In the active group, marrow fat fraction significantly decreased after 12 months of intervention (p = .0003), whereas no significant change was observed in the placebo group (p = .7; group difference -1.59%, p = .029). Mean differences of the changes in trabecular bone volume fraction (p = .048) and erosion index (p = .044) were also significant, as was pQCT-derived trabecular volumetric BMD (vBMD; p = .016) at the tibia. The data are commensurate with the hypothesis that vibration therapy is protective against loss in mechanical strength and, further, that the intervention minimizes the shift from the osteoblastic to the adipocytic lineage of mesenchymal stem cells. © 2020 American Society for Bone and Mineral Research (ASBMR).
Collapse
Affiliation(s)
- Chamith S Rajapakse
- Department of Radiology, University of Pennsylvania, Philadelphia, PA, USA.,Department of Orthopaedic Surgery, University of Pennsylvania, Philadelphia, PA, USA
| | - Alyssa J Johncola
- Department of Radiology, University of Pennsylvania, Philadelphia, PA, USA
| | | | - Brandon C Jones
- Department of Radiology, University of Pennsylvania, Philadelphia, PA, USA
| | - Mona Al Mukaddam
- Department of Orthopaedic Surgery, University of Pennsylvania, Philadelphia, PA, USA.,Department of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Kelly Sexton
- Department of Radiology, University of Pennsylvania, Philadelphia, PA, USA
| | - Justine Shults
- Department of Biostatistics, Epidemiology, and Informatics, University of Pennsylvania, Philadelphia, PA, USA
| | - Mary B Leonard
- Department of Pediatrics, Children's Hospital of Philadelphia, University of Pennsylvania, Philadelphia, PA, USA.,Department of Pediatrics, Stanford University School of Medicine, Stanford, CA, USA
| | - Peter J Snyder
- Department of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Felix W Wehrli
- Department of Radiology, University of Pennsylvania, Philadelphia, PA, USA
| |
Collapse
|
46
|
Shobara K, Ogawa T, Shibamoto A, Miyashita M, Ito A, Sitalaksmi RM. Osteogenic effect of low-intensity pulsed ultrasound and whole-body vibration on peri-implant bone. An experimental in vivo study. Clin Oral Implants Res 2021; 32:641-650. [PMID: 33711168 DOI: 10.1111/clr.13738] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2020] [Revised: 01/24/2021] [Accepted: 03/02/2021] [Indexed: 12/14/2022]
Abstract
OBJECTIVES The aims of this study were (i) to compare the osteogenic impact of low-intensity pulsed ultrasound (LIPUS) and low-magnitude high-frequency (LMHF) loading achieved with whole-body vibration (WBV) on peri-implant bone healing and implant osseointegration in rat tibiae, and (ii) to examine their combined effect on these processes. MATERIAL AND METHODS Titanium implants were inserted in the bilateral tibiae of 28 Wistar rats. Rats were randomly divided into four groups: LIPUS + WBV, LIPUS, WBV, and control. LIPUS was applied to the implant placement site for 20 min/day on 5 days/week (1.5 MHz and 30 mW/cm2 ). WBV was applied for 15 min/day on 5 days/week (50 Hz and 0.5 g). In the LIPUS + WBV group, both stimuli were applied under the same stimulation conditions as in the LIPUS and WBV groups. After 4 weeks of treatment, peri-implant bone healing and implant osseointegration were assessed using removal torque (RT) tests, micro-CT analyses of relative gray (RG) value, and histomorphometrical analyses of bone-to-implant contact (BIC) and peri-implant bone formation (BV/TV). RESULTS The LIPUS + WBV group had significantly greater BIC than the WBV and control groups. Although there were no significant intergroup differences in RT, RG value, and BV/TV, these variables tended to be greater in the LIPUS + WBV group than the other groups. CONCLUSIONS The combination of LIPUS and LMHF loading may promote osteogenic activity around the implant. However, further study of the stimulation conditions of LIPUS and LMHF loading is necessary to better understand the osteogenic effects and the relationship between the two stimuli.
Collapse
Affiliation(s)
- Kenta Shobara
- Division of Advanced Prosthetic Dentistry, Tohoku University Graduate School of Dentistry, Sendai, Japan
| | - Toru Ogawa
- Division of Advanced Prosthetic Dentistry, Tohoku University Graduate School of Dentistry, Sendai, Japan
| | - Aya Shibamoto
- Division of Advanced Prosthetic Dentistry, Tohoku University Graduate School of Dentistry, Sendai, Japan
| | - Makiko Miyashita
- Division of Advanced Prosthetic Dentistry, Tohoku University Graduate School of Dentistry, Sendai, Japan
| | - Akiyo Ito
- Division of Advanced Prosthetic Dentistry, Tohoku University Graduate School of Dentistry, Sendai, Japan
| | - Ratri M Sitalaksmi
- Division of Advanced Prosthetic Dentistry, Tohoku University Graduate School of Dentistry, Sendai, Japan.,Faculty of Dental Medicine, Department of Prosthodontics, Universitas Airlangga, Surabaya, Indonesia
| |
Collapse
|
47
|
Spain L, Yang L, Wilkinson JM, McCloskey E. Transmission of whole body vibration - Comparison of three vibration platforms in healthy subjects. Bone 2021; 144:115802. [PMID: 33309990 DOI: 10.1016/j.bone.2020.115802] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/19/2020] [Revised: 12/07/2020] [Accepted: 12/07/2020] [Indexed: 12/21/2022]
Abstract
The potential of whole body vibration (WBV) to maintain or enhance musculoskeletal strength during ageing is of increasing interest, with both low and high magnitude WBV having been shown to maintain or increase bone mineral density (BMD) at the lumbar spine and femoral neck. The aim of this study was to determine how a range of side alternating and vertical WBV platforms deliver vibration stimuli up through the human body. Motion capture data were collected for 6 healthy adult participants whilst standing on the Galileo 900, Powerplate Pro 5 and Juvent 100 WBV platforms. The side alternating Galileo 900 WBV platform delivered WBV at 5-30 Hz and amplitudes of 0-5 mm. The Powerplate Pro 5 vertical WBV platform delivered WBV at 25 and 30 Hz and amplitude settings of 'Low' and 'High'. The Juvent 1000 vertical WBV platform delivered a stimulus at a frequency between 32 and 37 Hz and amplitude 10 fold lower than either the Galileo or Powerplate, resulting in accelerations of 0.3 g. Motion capture data were recorded using an 8 camera Vicon Nexus system with 21 reflective markers placed at anatomical landmarks between the toe and the forehead. Vibration was expressed as vertical RMS accelerations along the z-axis which were calculated as the square root of the mean of the squared acceleration values in g. The Juvent 1000 did not deliver detectable vertical RMS accelerations above the knees. In contrast, the Powerplate Pro 5 and Galileo 900 delivered vertical RMS accelerations sufficiently to reach the femoral neck and lumbar spine. The maximum vertical RMS accelerations at the anterior superior iliac spine (ASIS) were 1.00 g ±0.30 and 0.85 g ±0.49 for the Powerplate and Galileo respectively. For similar accelerations at the ASIS, the Galileo achieved greater accelerations within the lower limbs, whilst the Powerplate recorded higher accelerations in the thoracic spine at T10. The Powerplate Pro 5 and Galileo 900 deliver vertical RMS accelerations sufficiently to reach the femoral neck and lumbar spine, whereas the Juvent 1000 did not deliver detectable vertical RMS accelerations above the knee. The side alternating Galileo 900 showed greater attenuation of the input accelerations than the vertical vibrations of the Powerplate Pro 5. The platforms differ markedly in the transmission of vibration with strong influences of frequency and amplitude. Researchers need to take account of the differences in transmission between platforms when designing and comparing trials of whole body vibration.
Collapse
Affiliation(s)
- Lucy Spain
- Academic Unit of Bone Metabolism, Metabolic Bone Centre, Sorby Wing, EU14, E Floor, The Medical School, Beech Hill Road, Sheffield S10 2RX, UK; NIHR Bone Biomedical Research Unit, Northern General Hospital, Herries Road, Sheffield S5 7AU, UK
| | - Lang Yang
- Academic Unit of Bone Metabolism, Metabolic Bone Centre, Sorby Wing, EU14, E Floor, The Medical School, Beech Hill Road, Sheffield S10 2RX, UK; NIHR Bone Biomedical Research Unit, Northern General Hospital, Herries Road, Sheffield S5 7AU, UK
| | - J Mark Wilkinson
- Academic Unit of Bone Metabolism, Metabolic Bone Centre, Sorby Wing, EU14, E Floor, The Medical School, Beech Hill Road, Sheffield S10 2RX, UK; NIHR Bone Biomedical Research Unit, Northern General Hospital, Herries Road, Sheffield S5 7AU, UK
| | - Eugene McCloskey
- Academic Unit of Bone Metabolism, Metabolic Bone Centre, Sorby Wing, EU14, E Floor, The Medical School, Beech Hill Road, Sheffield S10 2RX, UK; NIHR Bone Biomedical Research Unit, Northern General Hospital, Herries Road, Sheffield S5 7AU, UK.
| |
Collapse
|
48
|
Wenger KH, Heringer D, Lloyd T, Johnson MS, DesJardins JD, Stanley SE, Remeniuk B, Szivek JA. Repair and remodeling of partial-weightbearing, uninstrumented long bone fracture model in mice treated with low intensity vibration therapy. Clin Biomech (Bristol, Avon) 2021; 81:105244. [PMID: 33341522 DOI: 10.1016/j.clinbiomech.2020.105244] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/22/2020] [Revised: 12/02/2020] [Accepted: 12/02/2020] [Indexed: 02/07/2023]
Abstract
BACKGROUND While vibration therapy has shown encouraging results across many fields of medicine in the last decade, its role as originally envisioned for bone health remains uncertain. Especially regarding its efficacy in promoting fracture healing, mixed and incomplete outcomes suggest a need to clarify its potential. In particular, the definitive effect of vibration, when isolated from the confounding mechanical inputs of gait and stabilizing instrumentation, remains largely unknown. METHODS Four cohorts of C57BL/6 male mice underwent single-leg, open fibula fracture. Vibration was applied at 0.3 g to two groups for 20 min/d. At 3 and 6 weeks, fibulae were harvested for microcomputed tomography and 3-point bending to failure. FINDINGS In bone volume and tissue volume, the groups at each healing time point were statistically not different. At 3 weeks, however, the ratio of bone-to-tissue volume was lower for the vibrated group than control. Likewise, while bone mineral density did not differ, tissue volume density was lowest with vibration. At 6 weeks, mean differences were nominal. Biomechanically, vibration consistently trended ahead of control in strength and stiffness, but did not achieve statistical significance. INTERPRETATION At this stage of therapeutic development, vibration therapy in isolation does not demonstrate a clear efficacy for bone healing, although further treatment permutations and translational uses remain open for investigation.
Collapse
Affiliation(s)
- Karl H Wenger
- Regencor LLC, Augusta, GA 30904, USA; Department of Clinical Investigation, Dwight D. Eisenhower Army Medical Center, Fort Gordon, GA 30905, USA.
| | - Diana Heringer
- College of Medicine, University of Arizona, Tucson, AZ 85724, USA.
| | | | - Maria S Johnson
- Small Animal Phenotyping Core Facility, University of Alabama at Birmingham, USA.
| | - John D DesJardins
- Department of Bioengineering, 301 Rhodes Building, Clemson, SC 29634, USA.
| | - Scott E Stanley
- Department of Bioengineering, 301 Rhodes Building, Clemson, SC 29634, USA.
| | - Bethany Remeniuk
- Department of Pharmacology, University of Arizona, Tucson, AZ 85724, USA.
| | - John A Szivek
- Department of Orthopedic Surgery, College of Medicine, University of Arizona, Tucson, AZ 85724, USA.
| |
Collapse
|
49
|
Chow SKH, Ho CY, Wong HW, Chim YN, Wong RMY, Cheung WH. Efficacy of low-magnitude high-frequency vibration (LMHFV) on musculoskeletal health of participants on wheelchair: a study protocol for a single-blinded randomised controlled study. BMJ Open 2020; 10:e038578. [PMID: 33323430 PMCID: PMC7745337 DOI: 10.1136/bmjopen-2020-038578] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/21/2023] Open
Abstract
BACKGROUND Osteoporosis is an age-related disease with progressive loss of bone, leading to fragile bone. It is one of the major health issues in older adults and causes medical, social and economic impacts globally. Patients with osteoporosis have high risk of osteoporotic fractures. Low-magnitude high-frequency vibration (LMHFV) is a non-invasive biophysical intervention providing whole-body mechanical stimulation. Previous studies showed that LMHFV is beneficial to muscle strength, postural control, balancing ability, new bone formation, spinal bone mineral density (BMD) and blood circulation. During the LMHFV treatment, older adults need to stand upright on the platform for 20 min/day. However, some physically weak elderlies with poor musculoskeletal ability cannot stand for a long period. Therefore, the design of vibration platform is modified for the disabled patients to treat at sitting position and the efficacy of LMHFV on this group of elderlies will be verified. It is hypothesised that new design of LMHFV is beneficial to wheelchair users in terms of vertebral BMD, muscle health and musculoskeletal functions. METHODS This study is a single-blinded randomised controlled trial to investigate the effect of LMHFV on vertebral BMD, muscle health, balancing ability and functional ability in wheelchair users (mainly on wheelchair for outdoor activities). Healthy elderlies aged 65 years or above with walking difficulties and using wheelchair are eligible. Exclusion criteria are those: (1) who cannot stand and walk independently, (2) who have vibration treatment before, (3) with malignancy, (4) with acute fractures or severe osteoarthritis, (5) with cardiovascular concern such as with pacemaker in situ, (6) with chronic inflammatory conditions known to affect muscle metabolism such as rheumatoid arthritis and (7) with high frequency of physical activities, such as participants who participated in regular exercise five times a week or more. Recruited participants will be randomised to either LMHFV or control group. Participant assigned to LMHFV group will receive LMHFV (35 Hz, 0.3g (g=gravitational acceleration), 20 min/day, at least three times/week) for 6 months. The primary outcome is BMD at the lumbar spine to be assessed by dual-energy X-ray absorptiometry that is clinically recommended for the diagnosis of osteoporosis. All primary and secondary outcome assessments for all groups will be performed in the investigators' institute at baseline and 6 months post treatment. DISCUSSION This study aims to investigate the effects of LMHFV on wheelchair users. The findings of this study will help to confirm the efficacy of LMHFV on vertebral BMD, muscle health, balancing ability and functional outcomes in wheelchair using elderlies. LMHFV therapy is an intervention strategy that is easy to implement at the community healthcare level or individually at home that has previously been proven to reduce fall risk and muscle strength at the lower limb. The ultimate goal is to improve their bone and muscle quality of wheelchair users, as well as enhancing their quality of life. TRIAL REGISTRATION NUMBER ClinicalTrials.gov (NCT04180267).
Collapse
Affiliation(s)
- Simon Kwoon Ho Chow
- Department of Orthopaedics and Traumatology, The Chinese University of Hong Kong, New Territories, Hong Kong
| | - Chung Yan Ho
- Department of Orthopaedics and Traumatology, The Chinese University of Hong Kong, New Territories, Hong Kong
| | - Hiu Wun Wong
- Department of Orthopaedics and Traumatology, The Chinese University of Hong Kong, New Territories, Hong Kong
| | - Yu Ning Chim
- Department of Orthopaedics and Traumatology, The Chinese University of Hong Kong, New Territories, Hong Kong
| | - Ronald Man Yeung Wong
- Department of Orthopaedics and Traumatology, The Chinese University of Hong Kong, New Territories, Hong Kong
| | - Wing Hoi Cheung
- Department of Orthopaedics and Traumatology, The Chinese University of Hong Kong, New Territories, Hong Kong
| |
Collapse
|
50
|
Thompson M, Woods K, Newberg J, Oxford JT, Uzer G. Low-intensity vibration restores nuclear YAP levels and acute YAP nuclear shuttling in mesenchymal stem cells subjected to simulated microgravity. NPJ Microgravity 2020; 6:35. [PMID: 33298964 PMCID: PMC7708987 DOI: 10.1038/s41526-020-00125-5] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2020] [Accepted: 10/08/2020] [Indexed: 12/18/2022] Open
Abstract
Reducing the musculoskeletal deterioration that astronauts experience in microgravity requires countermeasures that can improve the effectiveness of otherwise rigorous and time-expensive exercise regimens in space. The ability of low-intensity vibrations (LIV) to activate force-responsive signaling pathways in cells suggests LIV as a potential countermeasure to improve cell responsiveness to subsequent mechanical challenge. Mechanoresponse of mesenchymal stem cells (MSC), which maintain bone-making osteoblasts, is in part controlled by the "mechanotransducer" protein YAP (Yes-associated protein), which is shuttled into the nucleus in response to cyto-mechanical forces. Here, using YAP nuclear shuttling as a measurement outcome, we tested the effect of 72 h of clinostat-induced simulated microgravity (SMG) and daily LIV application (LIVDT) on the YAP nuclear entry driven by either acute LIV (LIVAT) or Lysophosphohaditic acid (LPA), applied after the 72 h period. We hypothesized that SMG-induced impairment of acute YAP nuclear entry would be alleviated by the daily application of LIVDT. Results showed that while both acute LIVAT and LPA treatments increased nuclear YAP entry by 50 and 87% over the basal levels in SMG-treated MSCs, nuclear YAP levels of all SMG groups were significantly lower than non-SMG controls. LIVDT, applied in parallel to SMG, restored the SMG-driven decrease in basal nuclear YAP to control levels as well as increased the LPA-induced but not LIVAT-induced YAP nuclear entry over SMG only, counterparts. These cell-level observations suggest that daily LIV treatments are a feasible countermeasure for restoring basal nuclear YAP levels and increasing the YAP nuclear shuttling in MSCs under SMG.
Collapse
Affiliation(s)
- Matthew Thompson
- Mechanical and Biomedical Engineering, Boise State University, Boise, ID, USA
| | - Kali Woods
- Biomolecular Sciences Graduate Program, Boise State University, Boise, ID, USA
| | - Joshua Newberg
- Mechanical and Biomedical Engineering, Boise State University, Boise, ID, USA
| | - Julia Thom Oxford
- Biomolecular Sciences Graduate Program, Boise State University, Boise, ID, USA
| | - Gunes Uzer
- Mechanical and Biomedical Engineering, Boise State University, Boise, ID, USA.
| |
Collapse
|