1
|
Uthaiah CA, Beeraka NM, Rajalakshmi R, Ramya CM, Madhunapantula SV. Role of Neural Stem Cells and Vitamin D Receptor (VDR)-Mediated Cellular Signaling in the Mitigation of Neurological Diseases. Mol Neurobiol 2022; 59:4065-4105. [PMID: 35476289 DOI: 10.1007/s12035-022-02837-z] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2022] [Accepted: 04/09/2022] [Indexed: 12/19/2022]
Abstract
Specific stem cell-based therapies for treating Alzheimer's disease, Parkinson's disease, and schizophrenia are gaining importance in recent years. Accumulating data is providing further support by demonstrating the efficacy of neural stem cells in enhancing the neurogenesis in the aging brain. In addition to stem cells, recent studies have shown the efficacy of supplementing vitamin D in promoting neurogenesis and neuronal survival. Studies have also demonstrated the presence of mutational variants and single-nucleotide polymorphisms of the vitamin D receptor (VDR) in neurological disorders; however, implications of these mutations in the pathophysiology and response to drug treatment are yet to be explored. Hence, in this article, we have reviewed recent reports pertaining to the role of neural stem cells and VDR-mediated cellular signaling cascades that are involved in enhancing the neurogenesis through Wnt/β-catenin and Sonic Hedgehog pathways. This review benefits neurobiologists and pharmaceutical industry experts to develop stem cell-based and vitamin D-based therapies to better treat the patients suffering from neurological diseases.
Collapse
Affiliation(s)
- Chinnappa A Uthaiah
- Center of Excellence in Molecular Biology and Regenerative Medicine (CEMR, DST-FIST Supported Center), Department of Biochemistry (DST-FIST Supported Department), JSS Medical College, JSS Academy of Higher Education & Research (JSS AHER), Mysuru, 570015, Karnataka, India
| | - Narasimha M Beeraka
- Center of Excellence in Molecular Biology and Regenerative Medicine (CEMR, DST-FIST Supported Center), Department of Biochemistry (DST-FIST Supported Department), JSS Medical College, JSS Academy of Higher Education & Research (JSS AHER), Mysuru, 570015, Karnataka, India
| | - R Rajalakshmi
- Department of Physiology, JSS Medical College, JSS Academy of Higher Education & Research (JSS AHER), Mysuru, 570015, Karnataka, India
| | - C M Ramya
- Department of Physiology, JSS Medical College, JSS Academy of Higher Education & Research (JSS AHER), Mysuru, 570015, Karnataka, India
| | - SubbaRao V Madhunapantula
- Center of Excellence in Molecular Biology and Regenerative Medicine (CEMR, DST-FIST Supported Center), Department of Biochemistry (DST-FIST Supported Department), JSS Medical College, JSS Academy of Higher Education & Research (JSS AHER), Mysuru, 570015, Karnataka, India.
- Special Interest Group in Cancer Biology and Cancer Stem Cells (SIG-CBCSC), JSS Academy of Higher Education & Research (JSS AHER), Mysuru, 570015, Karnataka, India.
| |
Collapse
|
2
|
Abstract
Rickets refers to deficient mineralization at the growth plate and is usually associated with abnormal serum calcium and/or phosphate. There are several subtypes of rickets, including hypophosphatemic rickets (vitamin-D-resistant rickets secondary to renal phosphate wasting), vitamin D-dependent rickets (defects of vitamin D metabolism) and nutritional rickets (caused by dietary deficiency of vitamin D, and/or calcium, and/or phosphate). Most rickets manifest as bone deformities, bone pain, and impaired growth velocity. Diagnosis of rickets is established through the medical history, physical examination, biochemical tests and radiographs. It is of crucial importance to determine the cause of rickets, including the molecular characterization in case of vitamin D resistant rickets, and initiate rapidly the appropriate therapy. In this review, we describe the different causes and therapies of genetic and nutritional rickets, supported by the recent progress in genetics and development of novel molecules such as anti-FGF23 antibody.
Collapse
Affiliation(s)
- A S Lambert
- APHP, Department of Pediatric Endocrinology and Diabetology for Children, Bicêtre Paris-Sud, Le Kremlin-Bicêtre, France; APHP, Reference Center for Rare Disorders of Calcium and Phosphate Metabolism, Filière OSCAR and Plateforme D'Expertise Maladies Rares Paris-Sud, Bicêtre Paris-Sud, Le Kremlin Bicêtre, France.
| | - A Linglart
- APHP, Department of Pediatric Endocrinology and Diabetology for Children, Bicêtre Paris-Sud, Le Kremlin-Bicêtre, France; APHP, Reference Center for Rare Disorders of Calcium and Phosphate Metabolism, Filière OSCAR and Plateforme D'Expertise Maladies Rares Paris-Sud, Bicêtre Paris-Sud, Le Kremlin Bicêtre, France
| |
Collapse
|
3
|
Hanna AE, Sanjad S, Andary R, Nemer G, Ghafari JG. Tooth Development Associated with Mutations in Hereditary Vitamin D-Resistant Rickets. JDR Clin Trans Res 2018; 3:28-34. [PMID: 30938651 DOI: 10.1177/2380084417732510] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Abstract
Hereditary vitamin D-resistant rickets (HVDRR) is a rare genetic disorder caused by mutations at the level of the vitamin D receptor ( VDR) gene. The disease is characterized by refractory hypocalcemia, elevated serum levels of 1,25-dihydroxy-vitamin D, retarded growth, sparse body hair (sometimes alopecia), premature tooth loss, enlarged pulp chambers, thin dentine, and hypoplastic enamel. The aims of this study were 1) to document the dental development of children with HVDRR in association with the mutation type within the VDR and 2) to evaluate the association between dental development and the timing of and response to HVDRR treatment. Genome analysis was performed for 4 affected children (2 y 2 mo to 6 y 8 mo) under treatment with high doses of vitamin D and calcium. Longitudinal records of clinical and radiographic data on their dental development were assessed in relation to genetic profile and response to treatment. Treatment success depended on the position of the mutation within the VDR protein: children with the p.R391S mutation had a favorable outcome but maintained alopecia totalis, while 1 child with the p.H397P mutation and normal hair had no response to very high doses of vitamin D. The primary incisors, formed prenatally and first to emerge, were missing in 3 children and mobile in 1 child; parents reported loss within months posteruption. Posterior teeth were present, having erupted after treatment initiation. Hypoplastic enamel in emerging teeth was associated with late treatment onset. Mutation type in the VDR gene appears to be related to differences in the disease phenotype and response to treatment. Dental development represents an indicator of the disease process, initially protected by maternal blood levels of calcium and later restored by therapeutic supplies that normalize these levels. Knowledge Transfer Statement: Two novel mutations were associated with different HVDRR phenotypes, one of which responded positively to treatment. Early detection of the mutation should help pediatricians forecast treatment protocol and response. The results also highlight the direct relationship between dental development and blood calcium levels, underscoring the importance of early diagnosis and treatment of HVDRR to minimize the loss of primary teeth and reduce structural abnormalities of permanent teeth.
Collapse
Affiliation(s)
- A E Hanna
- 1 Division of Orthodontics and Dentofacial Orthopedics, Department of Otolaryngology and Head and Neck Surgery, American University of Beirut Medical Center, Beirut, Lebanon
| | - S Sanjad
- 2 Department of Pediatrics and Adolescent Medicine, American University of Beirut Medical Center, Beirut, Lebanon
| | - R Andary
- 3 Private practice, Aley Mount, Lebanon
| | - G Nemer
- 4 Department of Biochemistry and Molecular Genetics, American University of Beirut Medical Center, Beirut, Lebanon
| | - J G Ghafari
- 1 Division of Orthodontics and Dentofacial Orthopedics, Department of Otolaryngology and Head and Neck Surgery, American University of Beirut Medical Center, Beirut, Lebanon
- 5 School of Dentistry, Lebanese University, Beirut, Lebanon
- 6 Department of Orthodontics, School of Dental Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| |
Collapse
|
4
|
Functional Analysis of VDR Gene Mutation R343H in A Child with Vitamin D-Resistant Rickets with Alopecia. Sci Rep 2017; 7:15337. [PMID: 29127362 PMCID: PMC5681508 DOI: 10.1038/s41598-017-15692-z] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2017] [Accepted: 11/01/2017] [Indexed: 11/09/2022] Open
Abstract
The functional study of different mutations on vitamin D receptor (VDR) gene causing hereditary vitamin D-resistant rickets (HVDRR) remains limited. This study was to determine the VDR mutation and the mechanisms of this mutation-causing phenotype in a family with HVDRR and alopecia. Phenotype was analyzed, and in vitro functional studies were performed. The proband and his affected sister exhibited typical HVDRR with alopecia, and their biochemical and radiographic abnormalities but not alopecia responded to supraphysiological doses of active vitamin D3. A novel homozygous missense R343H mutation in the exon 9 of VDR residing in the retinoid X receptor (RXR)-binding domain was identified. The expression level and C-terminal conformation of R343H mutant are not different from the wild-type VDR. This mutant had no effect on the nuclear localization of VDR, VDR-RXR heterodimerization, but it impaired CYP24A1 promoter activity in the presence of 1,25 (OH)2 vitamin D3, at least in part, mediated through specific nuclear receptor coactivator. Simulation models revealed the vanished interaction between guanidinium group of R343 and carboxyl group of E269. Without affecting the expression, conformation, nuclear location of VDR or heteridimerization with RXR, VDR-R343H impairs the transactivation activity of VDR on downstream transcription, accounting for HVDRR features with alopecia.
Collapse
|
5
|
Rochel N, Molnár F. Structural aspects of Vitamin D endocrinology. Mol Cell Endocrinol 2017; 453:22-35. [PMID: 28257826 DOI: 10.1016/j.mce.2017.02.046] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/22/2016] [Revised: 02/27/2017] [Accepted: 02/27/2017] [Indexed: 12/12/2022]
Abstract
1α,25-Dihydroxvitamin D3 (1,25(OH)2D3) is the hormonally active form of vitamin D3. Its synthesis and its metabolites, their transport and elimination as well as action on transcriptional regulation involves the harmonic cooperation of diverse proteins with vitamin D binding capacities such as vitamin D binding protein (DBP), cytochrome P450 enzymes or the nuclear vitamin receptor (VDR). The genomic mechanism of 1,25(OH)2D3 action involves its binding to VDR that functionally acts as a heterodimer with retinoid X receptor. The crystal structures of the most important proteins for vitamin D3, VDR, DBP, CYP2R1 and CYP24A1, have provided identification of mechanisms of actions of these proteins and those mediating VDR-regulated transcription. This review will present the structural information on recognition of the vitamin D3 and metabolites by CYP proteins and DBP as well as the structural basis of VDR activation by 1,25(OH)2D3 and metabolites. Additionally, we will describe, the implications of the VDR mutants associated with hereditary vitamin D-resistant rickets (HVDRR) that display impaired function.
Collapse
Affiliation(s)
- Natacha Rochel
- Institut de Génétique et de Biologie Moléculaire et Cellulaire (IGBMC), Institut National de La Santé et de La Recherche Médicale (INSERM), U964/Centre National de Recherche Scientifique (CNRS), UMR7104/Université de Strasbourg, 67404 Illkirch, France.
| | - Ferdinand Molnár
- Institute of Biopharmacy, School of Pharmacy, Faculty of Heath Science, University of Eastern Finland, Yliopistonranta 1C, Canthia 2036, 70210 Kuopio, Finland.
| |
Collapse
|
6
|
Tamura M, Ishizawa M, Isojima T, Özen S, Oka A, Makishima M, Kitanaka S. Functional analyses of a novel missense and other mutations of the vitamin D receptor in association with alopecia. Sci Rep 2017; 7:5102. [PMID: 28698609 PMCID: PMC5505967 DOI: 10.1038/s41598-017-05081-x] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2017] [Accepted: 05/23/2017] [Indexed: 01/08/2023] Open
Abstract
Hereditary 1,25-dihydroxyvitamin D-resistant rickets (HVDRR) is a rare disorder, caused by bialellic mutations of the vitamin D receptor (VDR) gene, sometimes associated with alopecia. The aim of this study is to elucidate the mechanism of functional disruption of a novel mutation, detected in a patient with HVDRR, comparing to other mutations with or without alopecia. The patient was a 2-year-old girl with alopecia, who was clinically diagnosed as HVDRR. Genetic analysis revealed a novel homozygous mutation, S360P, located in ligand binding domain (LBD). The mutation was predicted as not disease causing by Polyphen2 and SIFT. But the transcriptional activity of S360P was disrupted as well as other reported mutations, Q152X (located in the hinge lesion), and R274L, H305Q (located in LBD). Following assays revealed no ligand binding affinity, no interaction with cofactors or RXR and no functioning of nuclear localization signals. Our results provide an additional evidence for the previous findings suggesting that DNA binding by the VDR/RXR heterodimer is essential for the function of the VDR in hair development. In conclusion, we identified a novel missense mutation of VDR causing HVDRR with alopecia. Functional analyses revealed that the single amino acid substitution could disrupt the function of the protein.
Collapse
Affiliation(s)
- Mayuko Tamura
- Department of Pediatrics, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan.,The Japan Society for the Promotion of Science, Tokyo, Japan
| | - Michiyasu Ishizawa
- Division of Biochemistry, Department of Biochemical Sciences, Nihon University School of Medicine, Tokyo, Japan
| | - Tsuyoshi Isojima
- Department of Pediatrics, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| | - Samim Özen
- Department of Pediatric Endocrinology, School of Medicine, Ege University, Izmir, Turkey
| | - Akira Oka
- Department of Pediatrics, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| | - Makoto Makishima
- Division of Biochemistry, Department of Biochemical Sciences, Nihon University School of Medicine, Tokyo, Japan
| | - Sachiko Kitanaka
- Department of Pediatrics, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan.
| |
Collapse
|
7
|
Wang Z, Sadovnick AD, Traboulsee AL, Ross JP, Bernales CQ, Encarnacion M, Yee IM, de Lemos M, Greenwood T, Lee JD, Wright G, Ross CJ, Zhang S, Song W, Vilariño-Güell C. Nuclear Receptor NR1H3 in Familial Multiple Sclerosis. Neuron 2017; 90:948-54. [PMID: 27253448 DOI: 10.1016/j.neuron.2016.04.039] [Citation(s) in RCA: 70] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2015] [Revised: 01/25/2016] [Accepted: 04/20/2016] [Indexed: 01/17/2023]
Abstract
Multiple sclerosis (MS) is an inflammatory disease characterized by myelin loss and neuronal dysfunction. Despite the aggregation observed in some families, pathogenic mutations have remained elusive. In this study, we describe the identification of NR1H3 p.Arg415Gln in seven MS patients from two multi-incident families presenting severe and progressive disease, with an average age at onset of 34 years. Additionally, association analysis of common variants in NR1H3 identified rs2279238 conferring a 1.35-fold increased risk of developing progressive MS. The p.Arg415Gln position is highly conserved in orthologs and paralogs, and disrupts NR1H3 heterodimerization and transcriptional activation of target genes. Protein expression analysis revealed that mutant NR1H3 (LXRA) alters gene expression profiles, suggesting a disruption in transcriptional regulation as one of the mechanisms underlying MS pathogenesis. Our study indicates that pharmacological activation of LXRA or its targets may lead to effective treatments for the highly debilitating and currently untreatable progressive phase of MS.
Collapse
Affiliation(s)
- Zhe Wang
- Townsend Family Laboratories, Department of Psychiatry, University of British Columbia, Vancouver, BC V6T 1Z3, Canada
| | - A Dessa Sadovnick
- Department of Medical Genetics, University of British Columbia, Vancouver, BC V6T 1Z3, Canada; Division of Neurology, Faculty of Medicine, University of British Columbia, Vancouver, BC V6T 1Z3, Canada
| | - Anthony L Traboulsee
- Division of Neurology, Faculty of Medicine, University of British Columbia, Vancouver, BC V6T 1Z3, Canada
| | - Jay P Ross
- Department of Medical Genetics, University of British Columbia, Vancouver, BC V6T 1Z3, Canada
| | - Cecily Q Bernales
- Department of Medical Genetics, University of British Columbia, Vancouver, BC V6T 1Z3, Canada
| | - Mary Encarnacion
- Department of Medical Genetics, University of British Columbia, Vancouver, BC V6T 1Z3, Canada
| | - Irene M Yee
- Department of Medical Genetics, University of British Columbia, Vancouver, BC V6T 1Z3, Canada
| | - Madonna de Lemos
- Department of Medical Genetics, University of British Columbia, Vancouver, BC V6T 1Z3, Canada
| | - Talitha Greenwood
- Department of Medical Genetics, University of British Columbia, Vancouver, BC V6T 1Z3, Canada
| | - Joshua D Lee
- Department of Medical Genetics, University of British Columbia, Vancouver, BC V6T 1Z3, Canada
| | - Galen Wright
- Department of Medical Genetics, University of British Columbia, Vancouver, BC V6T 1Z3, Canada
| | - Colin J Ross
- Faculty of Pharmaceutical Sciences, University of British Columbia, Vancouver, BC V6T 1Z3, Canada
| | - Si Zhang
- Townsend Family Laboratories, Department of Psychiatry, University of British Columbia, Vancouver, BC V6T 1Z3, Canada
| | - Weihong Song
- Townsend Family Laboratories, Department of Psychiatry, University of British Columbia, Vancouver, BC V6T 1Z3, Canada.
| | - Carles Vilariño-Güell
- Department of Medical Genetics, University of British Columbia, Vancouver, BC V6T 1Z3, Canada.
| |
Collapse
|
8
|
Penna-Martinez M, Badenhoop K. Inherited Variation in Vitamin D Genes and Type 1 Diabetes Predisposition. Genes (Basel) 2017; 8:genes8040125. [PMID: 28425954 PMCID: PMC5406872 DOI: 10.3390/genes8040125] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2017] [Revised: 04/11/2017] [Accepted: 04/12/2017] [Indexed: 12/17/2022] Open
Abstract
The etiology and pathophysiology of type 1 diabetes remain largely elusive with no established concepts for a causal therapy. Efforts to clarify genetic susceptibility and screening for environmental factors have identified the vitamin D system as a contributory pathway that is potentially correctable. This review aims at compiling all genetic studies addressing the vitamin D system in type 1 diabetes. Herein, association studies with case control cohorts are presented as well as family investigations with transmission tests, meta-analyses and intervention trials. Additionally, rare examples of inborn errors of vitamin D metabolism manifesting with type 1 diabetes and their immune status are discussed. We find a majority of association studies confirming a predisposing role for vitamin D receptor (VDR) polymorphisms and those of the vitamin D metabolism, particularly the CYP27B1 gene encoding the main enzyme for vitamin D activation. Associations, however, are tenuous in relation to the ethnic background of the studied populations. Intervention trials identify the specific requirements of adequate vitamin D doses to achieve vitamin D sufficiency. Preliminary evidence suggests that doses may need to be individualized in order to achieve target effects due to pharmacogenomic variation.
Collapse
Affiliation(s)
- Marissa Penna-Martinez
- Division of Endocrinology, Diabetes and Metabolism, Department of Medicine 1, University Hospital Frankfurt, Theodor-Stern-Kai 7, D-60590 Frankfurt am Main, Germany.
| | - Klaus Badenhoop
- Division of Endocrinology, Diabetes and Metabolism, Department of Medicine 1, University Hospital Frankfurt, Theodor-Stern-Kai 7, D-60590 Frankfurt am Main, Germany.
| |
Collapse
|
9
|
Andary R, El-Hage-Sleiman AK, Farhat T, Sanjad S, Nemer G. Hereditary vitamin D-resistant rickets in Lebanese patients: the p.R391S and p.H397P variants have different phenotypes. J Pediatr Endocrinol Metab 2017; 30:437-444. [PMID: 28301319 DOI: 10.1515/jpem-2016-0338] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/26/2016] [Accepted: 01/31/2017] [Indexed: 11/15/2022]
Abstract
BACKGROUND Hereditary vitamin D-resistant rickets (HVDRR) is an autosomal recessive disorder caused by mutations in the vitamin D receptor (VDR) gene. Variable phenotypes have been associated with these mutations, and some of these were linked to the effects they have on the interacting partners of VDR, mainly the retinoic X receptor (RXR). METHODS We examined four patients with HVDRR from three unrelated Lebanese families. All parents were consanguineous with normal phenotype. We used Sanger sequencing to identify mutations in the coding exons of VDR. RESULTS Two homozygous mutations (p.R391S and p.H397P), both in exon 9 of the VDR gene, were identified. Phenotype/genotype association was not possible even for the same mutation. Alopecia was seen only with the p.R391S mutation. Despite a comparable rachitic bone disease, the patients showed different responsiveness to large doses of alfacalcidol (1-α-hydroxy vitamin D3) supplementation. CONCLUSIONS This is the first report of VDR mutations in Lebanon with promising clinical outcomes despite the severity of the phenotypes.
Collapse
Affiliation(s)
- Rabih Andary
- Department of Biochemistry and Molecular Genetics, American University of Beirut, Beirut
| | | | - Theresa Farhat
- Department of Biochemistry and Molecular Genetics, American University of Beirut, Beirut
| | - Sami Sanjad
- Department of Pediatrics and Adolescent Medicine, American University of Beirut, Bliss Street, Beirut
| | - Georges Nemer
- Department of Biochemistry and Molecular Genetics, American University of Beirut, Bliss Street P.O. Box 11-0236, Beirut
| |
Collapse
|
10
|
Nagamani S, Singh KD, Muthusamy K. Combined sequence and sequence-structure based methods for analyzing FGF23, CYP24A1 and VDR genes. Meta Gene 2016; 9:26-36. [PMID: 27114920 PMCID: PMC4833053 DOI: 10.1016/j.mgene.2016.03.005] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2016] [Revised: 03/16/2016] [Accepted: 03/23/2016] [Indexed: 01/22/2023] Open
Abstract
FGF23, CYP24A1 and VDR altogether play a significant role in genetic susceptibility to chronic kidney disease (CKD). Identification of possible causative mutations may serve as therapeutic targets and diagnostic markers for CKD. Thus, we adopted both sequence and sequence-structure based SNP analysis algorithm in order to overcome the limitations of both methods. We explore the functional significance towards the prediction of risky SNPs associated with CKD. We assessed the performance of four widely used pathogenicity prediction methods. We compared the performances of the programs using Mathews correlation Coefficient ranged from poor (MCC = 0.39) to reasonably good (MCC = 0.42). However, we got the best results for the combined sequence and structure based analysis method (MCC = 0.45). 4 SNPs from FGF23 gene, 8 SNPs from VDR gene and 13 SNPs from CYP24A1 gene were predicted to be the causative agents for human diseases. This study will be helpful in selecting potential SNPs for experimental study from the SNP pool and also will reduce the cost for identification of potential SNPs as a genetic marker.
Collapse
Affiliation(s)
- Selvaraman Nagamani
- Department of Bioinformatics, Alagappa University, Karaikudi 630 004, Tamilnadu, India
| | - Kh Dhanachandra Singh
- Department of Bioinformatics, Alagappa University, Karaikudi 630 004, Tamilnadu, India
| | - Karthikeyan Muthusamy
- Department of Bioinformatics, Alagappa University, Karaikudi 630 004, Tamilnadu, India
| |
Collapse
|
11
|
Christakos S, Dhawan P, Verstuyf A, Verlinden L, Carmeliet G. Vitamin D: Metabolism, Molecular Mechanism of Action, and Pleiotropic Effects. Physiol Rev 2016; 96:365-408. [PMID: 26681795 PMCID: PMC4839493 DOI: 10.1152/physrev.00014.2015] [Citation(s) in RCA: 1190] [Impact Index Per Article: 132.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
1,25-Dihydroxvitamin D3 [1,25(OH)2D3] is the hormonally active form of vitamin D. The genomic mechanism of 1,25(OH)2D3 action involves the direct binding of the 1,25(OH)2D3 activated vitamin D receptor/retinoic X receptor (VDR/RXR) heterodimeric complex to specific DNA sequences. Numerous VDR co-regulatory proteins have been identified, and genome-wide studies have shown that the actions of 1,25(OH)2D3 involve regulation of gene activity at a range of locations many kilobases from the transcription start site. The structure of the liganded VDR/RXR complex was recently characterized using cryoelectron microscopy, X-ray scattering, and hydrogen deuterium exchange. These recent technological advances will result in a more complete understanding of VDR coactivator interactions, thus facilitating cell and gene specific clinical applications. Although the identification of mechanisms mediating VDR-regulated transcription has been one focus of recent research in the field, other topics of fundamental importance include the identification and functional significance of proteins involved in the metabolism of vitamin D. CYP2R1 has been identified as the most important 25-hydroxylase, and a critical role for CYP24A1 in humans was noted in studies showing that inactivating mutations in CYP24A1 are a probable cause of idiopathic infantile hypercalcemia. In addition, studies using knockout and transgenic mice have provided new insight on the physiological role of vitamin D in classical target tissues as well as evidence of extraskeletal effects of 1,25(OH)2D3 including inhibition of cancer progression, effects on the cardiovascular system, and immunomodulatory effects in certain autoimmune diseases. Some of the mechanistic findings in mouse models have also been observed in humans. The identification of similar pathways in humans could lead to the development of new therapies to prevent and treat disease.
Collapse
Affiliation(s)
- Sylvia Christakos
- Department of Microbiology, Biochemistry and Molecular Genetics, Rutgers, The State University of New Jersey, New Jersey Medical School, Newark, New Jersey; and Laboratory of Clinical and Experimental Endocrinology, KU Leuven, Leuven, Belgium
| | - Puneet Dhawan
- Department of Microbiology, Biochemistry and Molecular Genetics, Rutgers, The State University of New Jersey, New Jersey Medical School, Newark, New Jersey; and Laboratory of Clinical and Experimental Endocrinology, KU Leuven, Leuven, Belgium
| | - Annemieke Verstuyf
- Department of Microbiology, Biochemistry and Molecular Genetics, Rutgers, The State University of New Jersey, New Jersey Medical School, Newark, New Jersey; and Laboratory of Clinical and Experimental Endocrinology, KU Leuven, Leuven, Belgium
| | - Lieve Verlinden
- Department of Microbiology, Biochemistry and Molecular Genetics, Rutgers, The State University of New Jersey, New Jersey Medical School, Newark, New Jersey; and Laboratory of Clinical and Experimental Endocrinology, KU Leuven, Leuven, Belgium
| | - Geert Carmeliet
- Department of Microbiology, Biochemistry and Molecular Genetics, Rutgers, The State University of New Jersey, New Jersey Medical School, Newark, New Jersey; and Laboratory of Clinical and Experimental Endocrinology, KU Leuven, Leuven, Belgium
| |
Collapse
|
12
|
Belorusova AY, Rochel N. Structural Studies of Vitamin D Nuclear Receptor Ligand-Binding Properties. VITAMINS AND HORMONES 2015; 100:83-116. [PMID: 26827949 DOI: 10.1016/bs.vh.2015.10.003] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
The vitamin D nuclear receptor (VDR) and its natural ligand, 1α,25-dihydroxyvitamin D3 hormone (1,25(OH)2D3, or calcitriol), classically regulate mineral homeostasis and metabolism but also much broader range of biological functions, such as cell growth, differentiation, antiproliferation, apoptosis, adaptive/innate immune responses. Being widely expressed in various tissues, VDR represents an important therapeutic target in the treatment of diverse disorders. Since ligand binding is a key step in VDR-mediated signaling, numerous 1,25(OH)2D3 analogs have been synthesized in order to selectively modulate the receptor activity. Most of the synthetic analogs have been developed by modification of a parental compound and some of them mimic 1,25(OH)2D3 scaffold without being structurally related to it. The ability of ligands that have different size and conformation to bind to VDR and to demonstrate biological effects is intriguing, and therefore, ligand-binding properties of the receptor have been extensively investigated using a variety of biochemical, biophysical, and computational methods. In this chapter, we describe different aspects of the structure-function relationship of VDR in complex with natural and synthetic ligands coming from structural analysis. With the emphasis on the binding modes of the most promising compounds, such as secosteroidal agonists and 1,25(OH)2D3 mimics, we also highlight the action of VDR antagonists and the evidence for the existence of an alternative ligand-binding site within the receptor. Additionally, we describe the crystal structures of VDR mutants associated with hereditary vitamin D-resistant rickets that display impaired ligand-binding function.
Collapse
Affiliation(s)
- Anna Y Belorusova
- Department of Integrative Structural Biology, Institut de Génétique et de Biologie Moléculaire et Cellulaire (IGBMC), Institut National de Santé et de Recherche Médicale (INSERM) U964, Centre National de Recherche Scientifique (CNRS) UMR 7104, Université de Strasbourg, Illkirch, France
| | - Natacha Rochel
- Department of Integrative Structural Biology, Institut de Génétique et de Biologie Moléculaire et Cellulaire (IGBMC), Institut National de Santé et de Recherche Médicale (INSERM) U964, Centre National de Recherche Scientifique (CNRS) UMR 7104, Université de Strasbourg, Illkirch, France.
| |
Collapse
|
13
|
Papadopoulou A, Bountouvi E, Gole E, Doulgeraki A, Tournis S, Papadimitriou A, Nicolaidou P. Identification of a novel nonsense mutation in the ligand-binding domain of the vitamin d receptor gene and clinical description of two greek patients with hereditary vitamin d-resistant rickets and alopecia. Horm Res Paediatr 2015; 82:206-12. [PMID: 25060608 DOI: 10.1159/000362618] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/05/2013] [Accepted: 04/01/2014] [Indexed: 11/19/2022] Open
Abstract
BACKGROUND/AIMS We analyzed the vitamin D receptor (VDR) gene in 2 Greek patients who exhibited the classical features of hereditary vitamin D-resistant rickets (HVDRR) type II, including severe bone deformities and alopecia. We also describe the clinical phenotypes and the response to treatment of our patients. METHODS Genomic DNA was extracted from peripheral blood samples of both patients. Coding region and flanking introns of VDR gDNA was amplified and direct sequenced. RESULTS A unique cytosine to thymine (C>T) transition was identified at nucleotide position 1066 (c.1066C>T) in the ligand-binding domain of the VDR gene of both patients, predicting the substitution of a glutamine to a terminal codon at position 356 (Gln356stop). CONCLUSIONS The novel nonsense mutation c.1066C>T (Gln356stop) is expected to result in a VDR protein 71 amino acids shorter and thus to affect the normal VDR function. In particular, the missing protein part alters the VDR heterodimerization with the retinoid X receptor which has been correlated with the presence of alopecia. Both patients were introduced to treatment with supraphysiological doses of 1α-calcidiol which improved their clinical phenotypes except for alopecia.
Collapse
Affiliation(s)
- Anna Papadopoulou
- Third Department of Pediatrics, Athens University Medical School, 'Attikon' University General Hospital, Athens, Greece
| | | | | | | | | | | | | |
Collapse
|
14
|
Goltzman D, Hendy GN, White JH. Vitamin D and its receptor during late development. BIOCHIMICA ET BIOPHYSICA ACTA-GENE REGULATORY MECHANISMS 2014; 1849:171-80. [PMID: 24939836 DOI: 10.1016/j.bbagrm.2014.05.026] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/27/2014] [Revised: 05/06/2014] [Accepted: 05/27/2014] [Indexed: 12/26/2022]
Abstract
Expression of the vitamin D receptor (VDR) is widespread but may vary depending on the developmental stage of the animal, and therefore may differentially influence phenotypic function. Thus, the major role of the 1,25-dihydroxyvitamin D [1,25(OH)2D]/VDR system is to regulate mineral and skeletal homeostasis, although mainly after birth. Post-natally, under conditions of low dietary calcium, the 1,25(OH)2D/VDR system enhances intestinal transcellular transport of calcium and possibly paracellular calcium entry by regulating genes that are critical for these functions. This process, by providing adequate calcium, is essential for normal development of the skeletal growth plate and mineralization of bone. Furthermore, blood calcium and phosphorus homeostasis is maintained by an interplay between feedback loops of the 1,25(OH)2D/VDR system with parathyroid hormone and with fibroblast-growth factor (FGF) 23 respectively. The 1,25(OH)2D/VDR system can also modulate the expression of genes involved in both bone formation and resorption post-natally. Ligand independent activity of the VDR normally influences mammalian hair cycling after birth by potentiating Wnt and bone morphogenetic protein (BMP) signaling. Nevertheless ligand bound VDR may also modulate epidermal cell proliferation/differentiation by regulating the balance in function of c-MYC and its antagonist the transcriptional repressor MAD1/MXD1 in skin epithelia. The 1,25(OH)2D/VDR system can also modulate innate immune cells and promote a more tolerogenic immunological status and may therefore influence inflammation and the development of autoimmunity; whether this impacts the fetus is uncertain. This article is part of a Special Issue entitled: Nuclear receptors in animal development.
Collapse
Affiliation(s)
- D Goltzman
- Department of Medicine, McGill University, Montreal, QC H3A1A1, Canada; Department of Physiology, McGill University, Montreal, QC H3A1A1, Canada
| | - G N Hendy
- Department of Medicine, McGill University, Montreal, QC H3A1A1, Canada; Department of Physiology, McGill University, Montreal, QC H3A1A1, Canada
| | - J H White
- Department of Medicine, McGill University, Montreal, QC H3A1A1, Canada; Department of Physiology, McGill University, Montreal, QC H3A1A1, Canada
| |
Collapse
|
15
|
Mutations in the vitamin D receptor and hereditary vitamin D-resistant rickets. BONEKEY REPORTS 2014; 3:510. [PMID: 24818002 DOI: 10.1038/bonekey.2014.5] [Citation(s) in RCA: 73] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/01/2013] [Accepted: 09/27/2013] [Indexed: 12/24/2022]
Abstract
Heterogeneous loss of function mutations in the vitamin D receptor (VDR) interfere with vitamin D signaling and cause hereditary vitamin D-resistant rickets (HVDRR). HVDRR is characterized by hypocalcemia, secondary hyperparathyroidism and severe early-onset rickets in infancy and is often associated with consanguinity. Affected children may also exhibit alopecia of the scalp and total body. The children usually fail to respond to treatment with calcitriol; in fact, their endogenous levels are often very elevated. Successful treatment requires reversal of hypocalcemia and secondary hyperparathyroidism and is usually accomplished by administration of high doses of calcium given either intravenously or sometimes orally to bypass the intestinal defect in VDR signaling.
Collapse
|
16
|
Malloy PJ, Tasic V, Taha D, Tütüncüler F, Ying GS, Yin LK, Wang J, Feldman D. Vitamin D receptor mutations in patients with hereditary 1,25-dihydroxyvitamin D-resistant rickets. Mol Genet Metab 2014; 111:33-40. [PMID: 24246681 PMCID: PMC3933290 DOI: 10.1016/j.ymgme.2013.10.014] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/05/2013] [Revised: 10/22/2013] [Accepted: 10/23/2013] [Indexed: 02/06/2023]
Abstract
CONTEXT Hereditary vitamin D resistant rickets (HVDRR), also known as vitamin D-dependent rickets type II, is an autosomal recessive disorder characterized by the early onset of rickets with hypocalcemia, secondary hyperparathyroidism and hypophosphatemia and is caused by mutations in the vitamin D receptor (VDR) gene. The human gene encoding the VDR is located on chromosome 12 and comprises eight coding exons and seven introns. OBJECTIVES, PATIENTS, AND METHODS We analyzed the VDR gene of 5 previously unreported patients, two from Singapore and one each from Macedonia (former Yugoslav Republic), Saudi Arabia and Turkey. Each patient had clinical and radiographic features of rickets, hypocalcemia, and the 4 cases that had the measurement showed elevated serum concentrations of 1,25-dihydroxyvitamin D (1,25(OH)(2)D). Mutations were re-created in the WT VDR cDNA and examined for 1,25(OH)(2)D(3)-mediated transactivation in COS-7 monkey kidney cells. RESULTS Direct sequencing identified four novel mutations and two previously described mutations in the VDR gene. The novel mutations included a missense mutation in exon 3 causing the amino acid change C60W; a missense mutation in exon 4 causing the amino acid change D144N; a missense mutation in exon 7 causing the amino acid change N276Y; and a 2bp deletion in exon 3 5'-splice site (IVS3∆+4-5) leading to a premature stop. CONCLUSIONS These 4 unique mutations add to the previous 45 mutations identified in the VDR gene in patients with HVDRR.
Collapse
Affiliation(s)
- Peter J Malloy
- Department of Medicine, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Velibor Tasic
- Department of Pediatric Nephrology, Clinic for Children's Diseases, University Children's Hospital, Medical School of Skopje, Skopje, Macedonia
| | - Doris Taha
- Department of Endocrinology, Children's Hospital of Michigan, Detroit, MI 48201, USA
| | - Filiz Tütüncüler
- Pediatric Endocrinology, Trakya University, Faculty of Medicine, Edirne, Turkey
| | - Goh Siok Ying
- Department of Pediatrics, University Children's Medical Institute, National University Hospital, Singapore
| | - Loke Kah Yin
- Department of Pediatrics, University Children's Medical Institute, National University Hospital, Singapore
| | - Jining Wang
- Department of Medicine, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - David Feldman
- Department of Medicine, Stanford University School of Medicine, Stanford, CA 94305, USA
| |
Collapse
|
17
|
Reeves I, Rosario G, Young M, Lewis K, Washington K, Millis RM. Hemodynamic correlates of low umbilical cord vitamin D and ionized calcium. Clin Exp Hypertens 2013; 36:459-64. [PMID: 24164451 DOI: 10.3109/10641963.2013.846361] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
Vitamin D deficiency and hypocalcemia are associated with gestational hypertension. Therefore, we hypothesized that umbilical cord [Ca(2+)] and [vitamin D] are correlated with perinatal blood pressures. Mothers and newborns comprised vitamin D sufficient (vitamin D ≥ 50 nM, range 52-111 nM, n = 14), and vitamin D deficient groups (vitamin D < 50 nM, range 13-49 nM, n = 29). Cord [Ca²⁺] was negatively correlated with maternal systolic pressure (SBP) (r = -0.56, p < 0.01) and positively correlated with neonatal SBP (r = +0.55, p < 0.01) in the vitamin D deficient group. We conclude that low umbilical cord [vitamin D] and [Ca²⁺] may predispose mothers to higher and newborns to lower blood pressures.
Collapse
Affiliation(s)
- Inez Reeves
- Division of Neonatology, Department of Pediatrics and Child Health
| | | | | | | | | | | |
Collapse
|
18
|
Ramagopalan SV, Goldacre R, Disanto G, Giovannoni G, Goldacre MJ. Hospital admissions for vitamin D related conditions and subsequent immune-mediated disease: record-linkage studies. BMC Med 2013; 11:171. [PMID: 23885887 PMCID: PMC3729414 DOI: 10.1186/1741-7015-11-171] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/13/2013] [Accepted: 07/05/2013] [Indexed: 12/03/2022] Open
Abstract
BACKGROUND Previous studies have suggested that there may be an association between vitamin D deficiency and the risk of developing immune-mediated diseases. METHODS We analyzed a database of linked statistical records of hospital admissions and death registrations for the whole of England (from 1999 to 2011). Rate ratios for immune-mediated disease were determined, comparing vitamin D deficient cohorts (individuals admitted for vitamin D deficiency or markers of vitamin D deficiency) with comparison cohorts. RESULTS After hospital admission for either vitamin D deficiency, osteomalacia or rickets, there were significantly elevated rates of Addison's disease, ankylosing spondylitis, autoimmune hemolytic anemia, chronic active hepatitis, celiac disease, Crohn's disease, diabetes mellitus, pemphigoid, pernicious anemia, primary biliary cirrhosis, rheumatoid arthritis, Sjogren's syndrome, systemic lupus erythematosus, thyrotoxicosis, and significantly reduced risks for asthma and myxoedema. CONCLUSIONS This study shows that patients with vitamin D deficiency may have an increased risk of developing some immune-mediated diseases, although we cannot rule out reverse causality or confounding. Further study of these associations is warranted and these data may aid further public health studies.
Collapse
Affiliation(s)
- Sreeram V Ramagopalan
- Department of Physiology, Anatomy and Genetics and Medical Research Council Functional Genomics Unit, University of Oxford, Oxford, UK
| | | | | | | | | |
Collapse
|
19
|
Abstract
Vitamin D is a key nutrient for both healthy children and those with chronic illnesses. Understanding its roles in health and disease has become one of the most important issues in the nutritional management of children. Formal guidelines related to nutrient requirements for vitamin D in healthy children, recommending dietary intakes of 400 IU per day for infants and 600 IU per day for children over 1 year of age, were released by the Institute of Medicine in November 2010. However, application of these guidelines to children with acute and chronic illnesses is less clear. In this Review, we consider major illness categories and specific examples of conditions in children that might be affected by vitamin D. This information can be used in developing both model systems of investigation and clinical trials of vitamin D in children with acute and chronic illnesses.
Collapse
Affiliation(s)
- Steven A Abrams
- United States Department of Agriculture/Agriculture Research Service, Children's Nutrition Research Center Department of Pediatrics, Baylor College of Medicine, TX 77030, USA.
| | | | | |
Collapse
|
20
|
Abstract
Vitamin D is a secosteroid hormone that resembles other nuclear steroid hormones such as thyroid, gluco-, and mineralocorticoids, as well as gonadal effector systems. Primarily understood as a master regulator of bone and calcium/phosphate physiology, it is now increasingly recognized as orchestrating numerous aspects of cell growth and differentiation in many tissues, including those of innate and acquired immunity. This review addresses recently discovered aspects that highlight vitamin D's potential for immune intervention and how the vitamin D pathway is utilized for anti-infective and antineoplastic immunity. This provides the rationale for novel therapeutic strategies in the context both of prevention and of therapy of immune dysregulation in type 1 diabetes.
Collapse
Affiliation(s)
- Klaus Badenhoop
- Division Endocrinology & Diabetology, Medical Department 1, Goethe-University Hospital Frankfurt am Main, Theodor-Stern-Kai 7, D-60590, Frankfurt am Main, Germany.
| | | | | |
Collapse
|
21
|
Abstract
The biochemical and genetic analysis of the VDR in patients with HVDRR has yielded important insights into the structure and function of the receptor in mediating 1,25(OH)2D3 action. Similarly, study of children affected by HVDRR continues to provide a more complete understanding of the biologic role of 1,25(OH)2D3 in vivo. A concerted investigative approach to HVDRR at the clinical, cellular, and molecular levels has proved valuable in gaining knowledge of the functions of the domains of the VDR and elucidating the detailed mechanism of action of 1,25(OH)2D3. These studies have been essential to promote the well-being of the families with HVDRR and in improving the diagnostic and clinical management of this rare genetic disease.
Collapse
|
22
|
|
23
|
Forghani N, Lum C, Krishnan S, Wang J, Wilson DM, Blackett PR, Malloy PJ, Feldman D. Two new unrelated cases of hereditary 1,25-dihydroxyvitamin D-resistant rickets with alopecia resulting from the same novel nonsense mutation in the vitamin D receptor gene. J Pediatr Endocrinol Metab 2010; 23:843-50. [PMID: 21073129 DOI: 10.1515/jpem.2010.136] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
1,25-Dihydroxyvitamin D3 (1,25(OH)2D3) an important regulator of bone homeostasis, mediates its actions by binding to the vitamin D receptor (VDR), a nuclear transcription factor. Mutations in the VDR cause the rare genetic disease hereditary vitamin D resistant rickets (HVDRR). In this study, we examined two unrelated young female patients who exhibited severe early onset rickets, hypocalcemia, and hypophosphatemia. Both patients had partial alopecia but with different unusual patterns of scant hair. Sequencing of the VDR gene showed that both patients harbored the same unique nonsense mutation that resulted in a premature stop codon (R50X). Skin fibroblasts from patient #1 were devoid of VDR protein and 1,25(OH)2D3 treatment of these cells failed to induce CYP24A1 gene expression, a marker of 1,25(OH)2D3 action. In conclusion, we identified a novel nonsense mutation in the VDR gene in two patients with HVDRR and alopecia. The mutation truncates the VDR protein and causes 1,25(OH)2D3 resistance.
Collapse
Affiliation(s)
- Nikta Forghani
- Department of Pediatrics, Stanford University School of Medicine, Stanford, CA 94305, USA
| | | | | | | | | | | | | | | |
Collapse
|
24
|
Abstract
Two rare genetic diseases can cause rickets in children. The critical enzyme to synthesize calcitriol from 25-hydroxyvitamin D, the circulating hormone precursor, is 25-hydroxyvitamin D-1alpha-hydroxylase (1alpha-hydroxylase). When this enzyme is defective and calcitriol can no longer be synthesized, the disease 1alpha-hydroxylase deficiency develops. The disease is also known as vitamin D-dependent rickets type 1 or pseudovitamin D deficiency rickets. When the VDR is defective, the disease hereditary vitamin D-resistant rickets, also known as vitamin D-dependent rickets type 2, develops. Both diseases are rare autosomal recessive disorders characterized by hypocalcemia, secondary hyperparathyroidism, and early onset severe rickets. In this article, these 2 genetic childhood diseases, which present similarly with hypocalcemia and rickets in infancy, are discussed and compared.
Collapse
Affiliation(s)
- Peter J Malloy
- Division of Endocrinology, Gerontology and Metabolism, Stanford University School of Medicine, Stanford University, S-025 Endocrinology, Stanford, CA 94305-5103, USA.
| | | |
Collapse
|
25
|
Kanakamani J, Tomar N, Kaushal E, Tandon N, Goswami R. Presence of a deletion mutation (c.716delA) in the ligand binding domain of the vitamin D receptor in an Indian patient with vitamin D-dependent rickets type II. Calcif Tissue Int 2010; 86:33-41. [PMID: 19921089 DOI: 10.1007/s00223-009-9310-2] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/10/2009] [Accepted: 10/15/2009] [Indexed: 10/20/2022]
Abstract
Vitamin D-dependent rickets type II (VDDR-type II) is a rare disorder caused by mutations in the vitamin D receptor (VDR) gene. Here, we describe a patient with VDDR-type II with severe alopecia and rickets. She had hypocalcemia, hypophosphatemia, secondary hyperparathyroidism, and elevated serum alkaline phosphatase and 1,25-dihydroxyvitamin D(3). Sequence analysis of the lymphocyte VDR cDNA revealed deletion mutation c.716delA. Sequence analysis of her genomic DNA fragment amplified from exon 6 of the VDR gene incorporating this mutation confirmed the presence of the mutation in homozygous form. This frameshift mutation in the ligand binding domain (LBD) resulted in premature termination (p.Lys240Argfs) of the VDR protein. The mutant protein contained 246 amino acids, with 239 normal amino acids at the N terminus, followed by seven changed amino acids resulting in complete loss of its LBD. The mutant VDR protein showed evidence of 50% reduced binding with VDR response elements on electrophoretic mobility assay in comparison to the wild-type VDR protein. She was treated with high-dose calcium infusion and oral phosphate. After 18 months of treatment, she gained 6 cm of height, serum calcium and phosphorus improved, alkaline phosphatase levels decreased, and intact PTH normalized. Radiologically, there were signs of healing of rickets. Her parents and one of her siblings had the same c.716delA mutation in heterozygous form. Despite the complete absence of LBD, the rickets showed signs of healing with intravenous calcium.
Collapse
Affiliation(s)
- Jeyaraman Kanakamani
- Department of Endocrinology and Metabolism, All India Institute of Medical Sciences, New Delhi 110029, India.
| | | | | | | | | |
Collapse
|
26
|
Kahles H, Morahan G, Todd JA, Badenhoop K. Association analyses of the vitamin D receptor gene in 1654 families with type I diabetes. Genes Immun 2009; 10 Suppl 1:S60-3. [PMID: 19956103 PMCID: PMC2805827 DOI: 10.1038/gene.2009.93] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Type I diabetes (T1D) results from interactions between environmental exposures and genetic susceptibility leading to immune dysfunction and destruction of the insulin-producing beta cells of the pancreas. Vitamin D deficiency is likely to be one of the many environmental factors influencing T1D development and diagnosis, and, hence, the hormone receptor gene, VDR, was examined for association with T1D risk. The Type I Diabetes Genetics Consortium genotyped 38 single nucleotide polymorphisms (SNPs) in 1654 T1D nuclear families (6707 individuals, 3399 affected). Genotypes for 38 SNPs were assigned using the Illumina (ILMN) and Sequenom (SQN) technology. The analysis of data release as of July 2008 is reported for both platforms. No evidence of association of VDR SNPs with T1D at P<0.01 was obtained in the overall sample set, nor in subgroups analyses of the parent-of-origin, sex of offspring and HLA risk once adjusted for multiple testing.
Collapse
Affiliation(s)
- H Kahles
- Division of Endocrinology, Diabetes and Metabolism, Department of Internal Medicine I, University Hospital Frankfurt, Frankfurt am Main, Germany
| | - G Morahan
- Centre for Diabetes Research, The Western Australian Institute for Medical Research, University of Western Australia, Perth, Western Australia, Australia
| | - JA Todd
- Department of Medical Genetics, Juvenile Diabetes Research Foundation/Wellcome Trust Diabetes Inflammation Laboratory, University of Cambridge, Cambridge, UK
| | - K Badenhoop
- Division of Endocrinology, Diabetes and Metabolism, Department of Internal Medicine I, University Hospital Frankfurt, Frankfurt am Main, Germany
| |
Collapse
|
27
|
Shiizaki K, Hatamura I, Imazeki I, Moriguchi Y, Sakaguchi T, Saji F, Nakazawa E, Kato S, Akizawa T, Kusano E. Improvement of impaired calcium and skeletal homeostasis in vitamin D receptor knockout mice by a high dose of calcitriol and maxacalcitol. Bone 2009; 45:964-71. [PMID: 19631778 DOI: 10.1016/j.bone.2009.07.013] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/19/2009] [Revised: 06/29/2009] [Accepted: 07/03/2009] [Indexed: 10/20/2022]
Abstract
Vitamin D plays a major role in mineral and skeletal homeostasis through interaction with the nuclear vitamin D receptor (VDR) of target cells. Recent reports have indicated that some cellular effects of vitamin D may occur via alternative signaling pathways, but concrete evidence for mineral homeostasis has not been shown in vivo. To investigate this issue, the actions of calcitriol (1,25D) and maxacalcitol (OCT), which were developed for treatment of uremia-induced secondary hyperparathyroidism, were analyzed in VDR knockout (VDR(-/-)) mice. The VDR(-/-) mice were fed a rescue diet immediately after weaning. 1,25D, OCT or a control solution was administered intraperitoneally to these mice three times a week for eight weeks. Biological markers and bone growth were measured and bone histomorphometric analysis of the calcein-labeled tibia was performed 24 h after the final administration. Significantly higher levels of serum Ca(2+) were observed in 1,25D- and OCT-treated mice, but the serum parathyroid hormone level was unchanged by both agents. Impaired bone growth, enlarged and distorted cartilaginous growth plates, morphological abnormalities of cancellous and cortical bones; a morbid osteoid increase, lack of calcein labeling, and thinning of cortical bone, were all significantly improved by 1,25D and OCT. The significance of these effects was confirmed by bone histomorphometrical analysis. Upregulation of the calbindin D(9k) mRNA expression level in the duodenum may explain these findings, since this protein is a major modulator of Ca transport in the small intestine. We conclude that 1,25D and OCT both at a high dose exert significant effects on Ca and skeletal homeostasis with the principal improvement of Ca status in VDR(-/-) mice, and some of these effects may occur through an alternative vitamin D signaling pathway.
Collapse
Affiliation(s)
- Kazuhiro Shiizaki
- Division of Nephrology, Department of Internal Medicine, Jichi Medical University, 3311-1 Yakushiji, Shimotsuke, Tochigi 329-0498, Japan.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
28
|
Compound heterozygous mutations in the vitamin D receptor in a patient with hereditary 1,25-dihydroxyvitamin D-resistant rickets with alopecia. J Bone Miner Res 2009; 24:643-51. [PMID: 19049339 PMCID: PMC2659515 DOI: 10.1359/jbmr.081216] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Hereditary vitamin D-resistant rickets (HVDRR) is a rare recessive genetic disorder caused by mutations in the vitamin D receptor (VDR). In this study, we examined the VDR in a young girl with clinical features of HVDRR including rickets, hypophosphatemia, and elevated serum 1,25(OH)(2)D. The girl also had total alopecia. Two mutations were found in the VDR gene: a nonsense mutation (R30X) in the DNA-binding domain and a unique 3-bp in-frame deletion in exon 6 that deleted the codon for lysine at amino acid 246 (DeltaK246). The child and her mother were both heterozygous for the 3-bp deletion, whereas the child and her father were both heterozygous for the R30X mutation. Fibroblasts from the patient were unresponsive to 1,25(OH)(2)D(3) as shown by their failure to induce CYP24A1 gene expression, a marker of 1,25(OH)(2)D(3) responsiveness. [(3)H]1,25(OH)(2)D(3) binding and immunoblot analysis showed that the patient's cells expressed the VDRDeltaK246 mutant protein; however, the amount of VDRDeltaK246 mutant protein was significantly reduced compared with wildtype controls. In transactivation assays, the recreated VDRDeltaK246 mutant was unresponsive to 1,25(OH)(2)D(3). The DeltaK246 mutation abolished heterodimerization of the mutant VDR with RXRalpha and binding to the coactivators DRIP205 and SRC-1. However, the DeltaK246 mutation did not affect the interaction of the mutant VDR with the corepressor Hairless (HR). In summary, we describe a patient with compound heterozygous mutations in the VDR that results in HVDRR with alopecia. The R30X mutation truncates the VDR, whereas the DeltaK246 mutation prevents heterodimerization with RXR and disrupts coactivator interactions.
Collapse
|
29
|
Baeke F, Etten EV, Gysemans C, Overbergh L, Mathieu C. Vitamin D signaling in immune-mediated disorders: Evolving insights and therapeutic opportunities. Mol Aspects Med 2008; 29:376-87. [DOI: 10.1016/j.mam.2008.05.004] [Citation(s) in RCA: 71] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2008] [Accepted: 05/20/2008] [Indexed: 12/17/2022]
|
30
|
Bouillon R, Carmeliet G, Verlinden L, van Etten E, Verstuyf A, Luderer HF, Lieben L, Mathieu C, Demay M. Vitamin D and human health: lessons from vitamin D receptor null mice. Endocr Rev 2008; 29:726-76. [PMID: 18694980 PMCID: PMC2583388 DOI: 10.1210/er.2008-0004] [Citation(s) in RCA: 1183] [Impact Index Per Article: 69.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/30/2008] [Accepted: 07/08/2008] [Indexed: 02/06/2023]
Abstract
The vitamin D endocrine system is essential for calcium and bone homeostasis. The precise mode of action and the full spectrum of activities of the vitamin D hormone, 1,25-dihydroxyvitamin D [1,25-(OH)(2)D], can now be better evaluated by critical analysis of mice with engineered deletion of the vitamin D receptor (VDR). Absence of a functional VDR or the key activating enzyme, 25-OHD-1alpha-hydroxylase (CYP27B1), in mice creates a bone and growth plate phenotype that mimics humans with the same congenital disease or severe vitamin D deficiency. The intestine is the key target for the VDR because high calcium intake, or selective VDR rescue in the intestine, restores a normal bone and growth plate phenotype. The VDR is nearly ubiquitously expressed, and almost all cells respond to 1,25-(OH)(2)D exposure; about 3% of the mouse or human genome is regulated, directly and/or indirectly, by the vitamin D endocrine system, suggesting a more widespread function. VDR-deficient mice, but not vitamin D- or 1alpha-hydroxylase-deficient mice, and man develop total alopecia, indicating that the function of the VDR and its ligand is not fully overlapping. The immune system of VDR- or vitamin D-deficient mice is grossly normal but shows increased sensitivity to autoimmune diseases such as inflammatory bowel disease or type 1 diabetes after exposure to predisposing factors. VDR-deficient mice do not have a spontaneous increase in cancer but are more prone to oncogene- or chemocarcinogen-induced tumors. They also develop high renin hypertension, cardiac hypertrophy, and increased thrombogenicity. Vitamin D deficiency in humans is associated with increased prevalence of diseases, as predicted by the VDR null phenotype. Prospective vitamin D supplementation studies with multiple noncalcemic endpoints are needed to define the benefits of an optimal vitamin D status.
Collapse
Affiliation(s)
- Roger Bouillon
- Katholieke Universiteit Leuven, Laboratory of Experimental Medicine and Endocrinology, Herestraat 49, O&N 1 bus 902, 3000 Leuven, Belgium.
| | | | | | | | | | | | | | | | | |
Collapse
|
31
|
Ramasamy I. Inherited disorders of calcium homeostasis. Clin Chim Acta 2008; 394:22-41. [PMID: 18474231 DOI: 10.1016/j.cca.2008.04.011] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2008] [Revised: 03/30/2008] [Accepted: 04/14/2008] [Indexed: 12/19/2022]
Abstract
In mammals a complicated homeostatic mechanism has evolved to maintain near consistency of extracellular calcium ion levels. The homeostatic mechanism involves several hormones, which comprise among others, parathyroid hormone and vitamin D. The recent resurge in vitamin D deficiency, as a global health issue, has increased interest in the hormone. In addition to vitamin D deficiency, other causes of rickets are calcium deficiency and inherited disorders of vitamin D and phosphorus metabolism. Vitamin D-resistant syndromes are caused by hereditary defects in metabolic activation of the hormone or by mutations in the vitamin D receptor, which binds the hormone with high affinity and regulates the expression of genes through zinc finger mediated DNA binding and protein-protein interaction. Current interest is to correlate the type/position of mutations that result in disorders of vitamin D metabolism or in vitamin D receptor function with the variable phenotypic features and clinical presentation. The calcium sensing receptor plays a key role in calcium homeostasis. Loss of function mutations in the calcium sensing receptor can cause familial benign hypocalciuric hypercalcemia in heterozygotes and neonatal severe hyperparathyroidism when homozygous mutations occur in the calcium sensing receptor. Gain of function mutation can cause the opposite effect causing autosomal dominant hypocalcemia. Mouse models using targeted gene disruption strategies have been valuable tools to study the effect of mutations on the calcium sensing receptor or in the vitamin D activation pathway. Dysfunctional calcium sensing receptors with function altering mutations may be responsive to treatment with allosteric modulators of the calcium sensing receptor. Vitamin D analogs which induce unusual structural conformations on the vitamin D receptor may have a variety of therapeutic indications. This review summarises recent advances in knowledge of the molecular pathology of inherited disorders of calcium homeostasis.
Collapse
Affiliation(s)
- Indra Ramasamy
- Department of Chemical Pathology, Dumfries and Galloway District Hospital, Bankend Road, Dumfries, UK.
| |
Collapse
|
32
|
Valrance ME, Brunet AH, Acosta A, Welsh J. Dissociation of growth arrest and CYP24 induction by VDR ligands in mammary tumor cells. J Cell Biochem 2008; 101:1505-19. [PMID: 17286279 DOI: 10.1002/jcb.21263] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
Murine mammary tumor cells with differential vitamin D receptor (VDR) expression were used to study the mechanisms of growth inhibition by vitamin D steroids. In VDR-expressing WT145 cells, 1,25D and its synthetic analog EB1089 induce growth arrest and transcriptionally upregulate the well-characterized VDR target gene CYP24. 1,25D also induces apoptosis in WT145 cells through activation of initiator and executioner caspases and the calcium-dependent protease calpain. We also demonstrate that WT145 cells express CYP27B1, the enzyme that converts 25-hydroxyvitamin D(3) (25D) to 1,25D, and that 25D inhibits growth of these cells but does not trigger apoptosis or induce CYP24 expression. Comparative studies were conducted in KO240 cells, which were derived from VDR knockout mice and found to retain expression of CYP27B1. KO240 cells were not growth inhibited nor rendered apoptotic by any of the tested vitamin D compounds. These data conclusively demonstrate that VDR mediates the anti-proliferative and pro-apoptotic effects of vitamin D metabolites and analogs, but that the potency of a vitamin D compound to induce the VDR target gene CYP24 does not accurately predict its potency in mediating growth regulation.
Collapse
Affiliation(s)
- Meggan E Valrance
- Department of Biological Sciences, University of Notre Dame, Notre Dame, Indiana 46556, USA
| | | | | | | |
Collapse
|
33
|
Abstract
Hereditary vitamin D receptor defects (HVDRDs) is a more appropriate and precise title for an inborn error of metabolism commonly known as pseudo-vitamin D deficiency or vitamin D dependency, type II. It is a rare autosomal recessive disorder, approximately 70 kindreds were described, but its main importance is elucidating the physiology of vitamin D and calcium homeostasis in humans. Patients usually develop the clinical and biochemical aberrations, identical to vitamin D deficiency, but with high serum levels of calcitriol, within the first year of life (i.e., muscle weakness, bone pain, deformities, and fractures). Defective calcium gut absorption leads to hypocalcemia, secondary hyperparathyroidism, hypophosphatemia, and defective mineralization of newly formed bone matrix. The disease is not cured by vitamin D replacement therapy, although some patients respond to very high doses of vitamin D or its metabolites. Cells derived from patients, mainly cultured skin fibroblasts, were used to assess steps in calcitriol action from cellular uptake to bioresponse and to elucidate the molecular aberrations in the vitamin D receptor (VDR). Point mutations in the VDR gene were identified in every patient examined, and the same defect was observed in the obligatory heterozygotes. The functional characterization of the patient's VDR reflected the localization of the mutation (18 different ones described to date), thus providing vital information about the structure-function relationship in the human VDR and the essentiality of the VDR as the mediator of vitamin D action.
Collapse
|
34
|
Arita K, Nanda A, Wessagowit V, Akiyama M, Alsaleh QA, McGrath JA. A novel mutation in the VDR gene in hereditary vitamin D-resistant rickets. Br J Dermatol 2007; 158:168-71. [PMID: 17970811 DOI: 10.1111/j.1365-2133.2007.08232.x] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- K Arita
- Genetic Skin Disease Group, St John's Institute of Dermatology, Division of Genetics and Molecular Medicine, The Guy's, King's College and St Thomas' School of Medicine, London, UK.
| | | | | | | | | | | |
Collapse
|