1
|
Krasnow SM, Rubin CT, Roeland EJ, Horak FB, Stoyles SA, Dieckmann NF, Braun KN, Winters-Stone KM. Low-Intensity Vibration to Reduce Symptoms and Improve Physical Functioning in Cancer Survivors With Chemotherapy-Induced Peripheral Neuropathy: A Pilot Randomized Trial. JCO Oncol Pract 2025:OP2400961. [PMID: 40373263 DOI: 10.1200/op-24-00961] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2024] [Revised: 02/10/2025] [Accepted: 04/14/2025] [Indexed: 05/17/2025] Open
Abstract
PURPOSE Chemotherapy-induced peripheral neuropathy (CIPN) can have deleterious effects on mobility and quality of life in people with cancer. Vibration therapy shows promise as a CIPN intervention but is understudied. We investigated the feasibility and preliminary efficacy of low-intensity vibration (LIV) in cancer survivors with CIPN. METHODS We conducted a pilot randomized controlled trial in adult cancer survivors with persistent CIPN symptoms. Participants were randomly assigned to twice-daily LIV sessions (10 min/session; 30 Hz, 0.4 g) for 12 weeks or usual care (UC). We assessed feasibility by accrual, retention, adherence, and adverse event (AE) reporting. We evaluated preliminary efficacy by changes in patient-reported CIPN symptoms (Functional Assessment of Cancer Therapy/Gynecologic Oncology Group Neurotoxicity), pain (Brief Pain Inventory), fatigue (Patient-Reported Outcome Measurement Information System Fatigue), and physical functioning (Late-Life Function and Disability Instrument) and objectively measured physical functioning (chair stand time, gait speed), stability (postural sway), and mobility (Timed-Up-and-Go). Linear regression models were used to generate effect size estimates (Cohen's d). RESULTS We accrued 95% of our target sample (n = 38, mean age: 62.6 ± 9.9 years, 89% female, median time since chemotherapy completion: 18 [6-39] months), with 20 participants randomly assigned to LIV and 18 to UC. Trial retention was 97% and mean adherence to LIV was 77% ± 18%. There were no serious AEs. Compared with UC, LIV participants reported greater improvements in sensory neuropathy symptoms (LIV, +1.4 ± 3.3 points; UC, +0.2 ± 2.8 points; Cohen's d = 0.45) and basic lower extremity function (LIV, +5.3 ± 8.5 points; UC, -0.7 ± 9.2 points; Cohen's d = 0.80), with moderate-to-large effect sizes for changes in stability, mobility, and gait (Cohen's d = 0.60-0.66). CONCLUSION LIV is safe, feasible, and shows preliminary efficacy for CIPN symptom relief and improving physical functioning in cancer survivors with CIPN.
Collapse
Affiliation(s)
- Stephanie M Krasnow
- Division of Oncological Sciences, Knight Cancer Institute, School of Medicine, Oregon Health & Science University, Portland, OR
| | | | - Eric J Roeland
- Division of Oncological Sciences, Knight Cancer Institute, School of Medicine, Oregon Health & Science University, Portland, OR
| | - Fay B Horak
- Department of Neurology, School of Medicine, Oregon Health & Science University, Portland, OR
- Clario APDM Precision Motion, Portland, OR
| | - Sydnee A Stoyles
- School of Nursing, Oregon Health & Science University, Portland, OR
| | | | - Kendra N Braun
- Division of Oncological Sciences, Knight Cancer Institute, School of Medicine, Oregon Health & Science University, Portland, OR
| | - Kerri M Winters-Stone
- Division of Oncological Sciences, Knight Cancer Institute, School of Medicine, Oregon Health & Science University, Portland, OR
| |
Collapse
|
2
|
Hoffman DB, Schifino AG, Cooley MA, Zhong RX, Heo J, Morris CM, Campbell MJ, Warren GL, Greising SM, Call JA. Low intensity, high frequency vibration training to improve musculoskeletal function in a mouse model of volumetric muscle loss. J Orthop Res 2025; 43:622-631. [PMID: 39610268 PMCID: PMC11806655 DOI: 10.1002/jor.26023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/15/2024] [Revised: 10/04/2024] [Accepted: 10/31/2024] [Indexed: 11/30/2024]
Abstract
This study's objective was to investigate the extent to which two different levels of low-intensity vibration training (0.6 g or 1.0 g) affected musculoskeletal structure and function after a volumetric muscle loss (VML) injury in male C57BL/6J mice. All mice received a unilateral VML injury to the posterior plantar flexors. Mice were randomized into a control group (no vibration; VML-noTX), or one of two experimental groups. The two experimental groups received vibration training for 15-min/day, 5-days/week for 8 weeks at either 0.6 g (VML-0.6 g) or 1.0 g (VML-1.0 g) beginning 3-days after induction of VML. Muscles were analyzed for contractile and metabolic adaptations. Tibial bone mechanical properties and geometric structure were assessed by a three-point bending test and microcomputed tomography (µCT). Body mass-normalized peak isometric-torque was 18% less in VML-0.6 g mice compared with VML-noTx mice (p = 0.030). There were no statistically significant differences of vibration intervention on contractile power or muscle oxygen consumption (p ≥ 0.191). Bone ultimate load, but not stiffness, was ~16% greater in tibias of VML-1.0 g mice compared with those from VML-noTx mice (p = 0.048). Cortical bone volume was ~12% greater in tibias of both vibration groups compared with VML-noTx mice (p = 0.003). Importantly, cross-section moment of inertia, the primary determinant of bone ultimate load, was 44% larger in tibias of VML-0.6 g mice compared with VML-noTx mice (p = 0.006). These changes indicate that following VML, bones are more responsive to the selected vibration training parameters than muscle. Vibration training represents a possible adjuvant intervention to address bone deficits following VML.
Collapse
Affiliation(s)
| | | | - Marion A. Cooley
- Department of Oral Biology and Diagnostic Sciences, Dental College of GeorgiaAugust UniversityAugustaGeorgiaUSA
| | - Roger X. Zhong
- Department of Neuroscience and Regenerative MedicineAugusta UniversityAugustaGeorgiaUSA
| | - Junwon Heo
- Department of Physiology & PharmacologyUniversity of GeorgiaAthensGeorgiaUSA
| | - Courtney M. Morris
- Department of Physiology & PharmacologyUniversity of GeorgiaAthensGeorgiaUSA
| | - Matthew J. Campbell
- Department of Physiology & PharmacologyUniversity of GeorgiaAthensGeorgiaUSA
| | - Gordon L. Warren
- Department of Physical TherapyGeorgia State UniversityAtlantaGeorgiaUSA
| | | | - Jarrod A. Call
- Department of Physiology & PharmacologyUniversity of GeorgiaAthensGeorgiaUSA
- Regenerative Bioscience CenterUniversity of GeorgiaAthensGeorgiaUSA
| |
Collapse
|
3
|
Regner AM, DeLeon M, Gibbons KD, Howard S, Nesbitt DQ, Darghiasi SF, Zavala AG, Lujan TJ, Fitzpatrick CK, Farach-Carson MC, Wu D, Uzer G. Increased deformations are dispensable for encapsulated cell mechanoresponse in engineered bone analogs mimicking aging bone marrow. MECHANOBIOLOGY IN MEDICINE 2025; 3:100097. [PMID: 40134991 PMCID: PMC11936507 DOI: 10.1016/j.mbm.2024.100097] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 03/27/2025]
Abstract
Aged individuals and astronauts experience bone loss despite rigorous physical activity. Bone mechanoresponse is in-part regulated by mesenchymal stem cells (MSCs) that respond to mechanical stimuli. Direct delivery of low intensity vibration (LIV) recovers MSC proliferation in senescence and simulated microgravity models, indicating that age-related reductions in mechanical signal delivery within bone marrow may contribute to declining bone mechanoresponse. To answer this question, we developed a 3D bone marrow analog that controls trabecular geometry, marrow mechanics and external stimuli. Validated finite element (FE) models were developed to quantify strain environment within hydrogels during LIV. Bone marrow analogs with gyroid-based trabeculae of scaffold volume fractions (SV/TV) corresponding to adult (25 %) and aged (13 %) mice were printed using polylactic acid (PLA). MSCs encapsulated in migration-permissive hydrogels within printed trabeculae showed robust cell populations on both PLA surface and hydrogel within a week. Following 14 days of LIV treatment (1 g, 100 Hz, 1 h/day), cell proliferation, type-I collagen (Collagen-I) and filamentous actin (F-actin) were quantified for the cells in the hydrogel fraction. While LIV increased all measured outcomes, FE models predicted higher von Mises strains for the 13 % SV/TV groups (0.2 %) when compared to the 25 % SV/TV group (0.1 %). While LIV increased collagen-I volume 34 % more in 13 % SV/TV groups when compared to 25 % SV/TV groups, collagen-I and F-actin measures remained lower in the 13 % SV/TV groups when compared to 25 % SV/TV counterparts, indicating that both LIV-induced strains and scaffold volume fraction (i.e. available scaffold surface) affect cell behavior in the hydrogel phase. Overall, bone marrow analogs offer a robust and repeatable platform to study bone mechanobiology.
Collapse
Affiliation(s)
- Alexander M. Regner
- Mechanical and Biomedical Engineering Department, Boise State University, USA
| | - Maximilien DeLeon
- Department of Diagnostic and Biomedical Sciences, UTHealth Houston School of Dentistry, USA
- Department of Bioengineering, Rice University, USA
| | - Kalin D. Gibbons
- Mechanical and Biomedical Engineering Department, Boise State University, USA
| | - Sean Howard
- Mechanical and Biomedical Engineering Department, Boise State University, USA
| | | | | | - Anamaria G. Zavala
- Mechanical and Biomedical Engineering Department, Boise State University, USA
| | - Trevor J. Lujan
- Mechanical and Biomedical Engineering Department, Boise State University, USA
| | | | - Mary C. Farach-Carson
- Department of Diagnostic and Biomedical Sciences, UTHealth Houston School of Dentistry, USA
- Department of Bioengineering, Rice University, USA
- Department of Biosciences, Rice University, USA
| | - Danielle Wu
- Department of Diagnostic and Biomedical Sciences, UTHealth Houston School of Dentistry, USA
- Department of Bioengineering, Rice University, USA
| | - Gunes Uzer
- Mechanical and Biomedical Engineering Department, Boise State University, USA
| |
Collapse
|
4
|
Wong RMY, Wong PY, Liu C, Chui CS, Liu WH, Tang N, Griffith J, Zhang N, Cheung WH. Vibration therapy as an intervention for trochanteric hip fractures - A randomized double-blinded, placebo-controlled trial. J Orthop Translat 2025; 51:51-58. [PMID: 39926341 PMCID: PMC11802369 DOI: 10.1016/j.jot.2025.01.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/19/2024] [Revised: 12/11/2024] [Accepted: 01/06/2025] [Indexed: 02/11/2025] Open
Abstract
Background Hip fractures are one of the most serious forms of fragility fractures. Low-magnitude high-frequency vibration (LMHFV) is a biophysical intervention that provides non-invasive, systemic mechanical stimulation. The objectives of this study were to investigate the efficacy of LMHFV in trochanteric hip fracture elderly patients to (i) accelerate trochanteric fracture healing and (ii) improve clinical and functional outcomes. Methods A randomized double-blinded, placebo-controlled clinical trial was conducted. Participants were randomly assigned into LMHFV or placebo intervention for 14 days. Primary outcome assessments were fracture healing assessed with CT scan and X-rays. Dual X-ray Absorptiometry (DXA) scan was performed to assess bone mineral density change. Secondary outcome assessments were clinical and functional outcomes with quadriceps muscle strength, balancing ability, handgrip strength, Time Up and Go (TUG) test, quality of life outcomes, pain, falls, and mortality. Results 237 patients were screened for eligibility by the inclusion and exclusion criteria. 62 patients were recruited and randomly assigned to placebo group (n = 32, mean age: 83.6 ± 7.0 years, women: 71.9 %) or LMHFV group (n = 30, mean age: 81.5 ± 5.7 years, women: 73.3 %). For fracture healing, CT scan at 6 weeks showed improved osseous union for the LMHFV group at 71.5 ± 19.4 % compared to placebo group at 58.8 ± 30.5 %, but no statistical significance detected. X-rays showed fractures healed at 12 months. LMHFV group had significantly higher quadriceps muscle strength compared to placebo group on affected leg using maximum reading (week 26: 8.8 ± 3.6 kg vs. 6.1 ± 4.1 kg; p = 0.011) and average reading (week 26: 8.0 ± 3.7 kg vs. 5.2 ± 3.3 kg; p = 0.008) amongst 3 trials. The balancing ability test could not be performed in most of the subjects at the baseline measurement. However, from week 6 to week 26, LMHFV group had significantly improved balancing compared to placebo group for overall stability index (week 26: 1.6 ± 1.1 vs. 3.4 ± 2.6; p = 0.006), anteroposterior stability index (week 26: 1.1 ± 0.7 vs. 2.1 ± 1.9; p = 0.048) and medial-lateral stability index (week 26: 0.9 ± 0.7 vs. 2.2 ± 2.2; p = 0.008). There was a significant increase in success in performing TUG test in LMHFV group from baseline (13.3 %) to 26 weeks (57.1 %) (p = 0.004). Quality-of-life outcomes by SF-36 showed LMHFV group had a significant improvement at a score of 62.1 ± 18.9 compared to control group at a score of 48.5 ± 18.9 after adjusting for the baseline measurement (p = 0.044). Conclusion A short duration of LMHFV during in-patient stay can improve clinical outcomes and can potentially be incorporated as a practical measure during the recovery of fragility hip fractures. The translational potential of this article 14 days of LMHFV treatment is generally within the common in-patient stay period for hip fracture patients and therefore can potentially be incorporated into clinical practice with physiotherapy to facilitate recovery of hip fracture patients. Clinical trial registration number NCT04063891.
Collapse
Affiliation(s)
- Ronald Man Yeung Wong
- Department of Orthopaedics & Traumatology, The Chinese University of Hong Kong, Hong Kong SAR, China
| | - Pui Yan Wong
- Department of Orthopaedics & Traumatology, The Chinese University of Hong Kong, Hong Kong SAR, China
| | - Chaoran Liu
- Department of Orthopaedics & Traumatology, The Chinese University of Hong Kong, Hong Kong SAR, China
| | - Chun Sing Chui
- Department of Orthopaedics & Traumatology, The Chinese University of Hong Kong, Hong Kong SAR, China
| | - Wing Hong Liu
- Department of Orthopaedics & Traumatology, Prince of Wales Hospital, Hospital Authority, Hong Kong SAR, China
| | - Ning Tang
- Department of Orthopaedics & Traumatology, Prince of Wales Hospital, Hospital Authority, Hong Kong SAR, China
| | - James Griffith
- Department of Imaging and Interventional Radiology, The Chinese University of Hong Kong, Hong Kong SAR, China
| | - Ning Zhang
- Department of Orthopaedics & Traumatology, The Chinese University of Hong Kong, Hong Kong SAR, China
| | - Wing Hoi Cheung
- Department of Orthopaedics & Traumatology, The Chinese University of Hong Kong, Hong Kong SAR, China
| |
Collapse
|
5
|
Khan OM, Gasperini W, Necessary C, Jacobs Z, Perry S, Rexroat J, Nelson K, Gamble P, Clements T, DeLeon M, Howard S, Zavala A, Farach-Carson M, Blaber E, Wu D, Satici A, Uzer G. Development and characterization of a low intensity vibrational system for microgravity studies. NPJ Microgravity 2024; 10:107. [PMID: 39567542 PMCID: PMC11579003 DOI: 10.1038/s41526-024-00444-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2024] [Accepted: 10/24/2024] [Indexed: 11/22/2024] Open
Abstract
Extended-duration human spaceflight necessitates a better understanding of the physiological impacts of microgravity. While the ground-based microgravity simulations identified low intensity vibration (LIV) as a possible countermeasure, how cells may respond to LIV under real microgravity remain unexplored. In this way, adaptation of LIV bioreactors for space remains limited, resulting in a significant gap in microgravity research. In this study, we introduce an LIV bioreactor designed specifically for the usage in the International Space Station. Our research covers the bioreactor's design process and evaluation of the short-term viability of cells encapsulated in hydrogel-laden 3D printed scaffolds under 0.7 g, 90 Hz LIV. An LIV bioreactor compatible with the operation requirements of space missions provides a robust platform to study cellular effects of LIV under real microgravity conditions.
Collapse
Affiliation(s)
- Omor M Khan
- Department of Mechanical and Biomedical Engineering, Boise State University, Boise, ID, 83725, USA
| | - Will Gasperini
- Department of Mechanical and Biomedical Engineering, Boise State University, Boise, ID, 83725, USA
| | | | - Zach Jacobs
- Space Tango Inc, 611 Winchester, Lexington, KY, 40505, USA
| | - Sam Perry
- Space Tango Inc, 611 Winchester, Lexington, KY, 40505, USA
| | - Jason Rexroat
- Space Tango Inc, 611 Winchester, Lexington, KY, 40505, USA
| | - Kendall Nelson
- Space Tango Inc, 611 Winchester, Lexington, KY, 40505, USA
| | - Paul Gamble
- Space Tango Inc, 611 Winchester, Lexington, KY, 40505, USA
| | | | - Maximilien DeLeon
- Department of Bioengineering, Rice University, Houston, TX, 77005, USA
| | - Sean Howard
- Department of Mechanical and Biomedical Engineering, Boise State University, Boise, ID, 83725, USA
| | - Anamaria Zavala
- Department of Mechanical and Biomedical Engineering, Boise State University, Boise, ID, 83725, USA
| | | | - Elizabeth Blaber
- Center for Biotechnology and Rd. Interdisciplinary Studies, Department of Biomedical Engineering, Rensselaer Polytechnic Institute, Troy, NY, 12180, USA
| | - Danielle Wu
- Department of Bioengineering, Rice University, Houston, TX, 77005, USA
| | - Aykut Satici
- Department of Mechanical and Biomedical Engineering, Boise State University, Boise, ID, 83725, USA.
| | - Gunes Uzer
- Department of Mechanical and Biomedical Engineering, Boise State University, Boise, ID, 83725, USA.
| |
Collapse
|
6
|
DiVasta AD, Stamoulis C, Rubin CT, Gallagher JS, Kiel DP, Snyder BD, Gordon CM. Low-Magnitude Mechanical Signals to Preserve Skeletal Health in Female Adolescents With Anorexia Nervosa: A Randomized Clinical Trial. JAMA Netw Open 2024; 7:e2441779. [PMID: 39480424 PMCID: PMC11528308 DOI: 10.1001/jamanetworkopen.2024.41779] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/11/2024] [Accepted: 08/30/2024] [Indexed: 11/03/2024] Open
Abstract
Importance Malnourished adolescents and young adults with anorexia nervosa (AN) are at high risk for skeletal deficits. Objective To examine whether low-magnitude mechanical signals (LMMS) could preserve bone mineral density (BMD) throughout 6 months in adolescents and young adults with AN. Design, Setting, and Participants This double-blind, sham-controlled randomized clinical trial, conducted in a hospital-based specialty clinic, assessed female adolescents and young women without medical comorbidity or medication use that would compromise bone health. A total of 837 female adolescents were screened from January 1, 2012, to December 31, 2019, of whom 317 met the study criteria. Data analysis was performed from 2020 to 2024. Intervention Platform delivering low-magnitude mechanical signals (LMMS) (0.3 g at 32-37 Hz) or sham (ie, placebo) signals for 10 minutes daily for 6 months. Main Outcomes and Measures The primary outcome was trabecular volumetric BMD (vBMD) as measured by peripheral quantitative computed tomography of the tibia at baseline and 6 months. Secondary outcomes included cortical vBMD, cross-sectional area (CSA), areal BMD and body composition measured by dual-energy x-ray absorptiometry, and serum bone turnover markers. Results Forty female adolescents and young women (median [IQR] age, 16.3 [15.1-17.6] years; median [IQR] percentage median BMI for age, 87.2% [81.0%-91.6%]) completed the trial. Total bone vBMD changes were nonsignificant in both groups (95% CI for difference in median change between groups, -57.11 to 2.49): in the LMMS group, vBMD decreased from a median (IQR) of 313.4 (292.9-344.6) to 309.4 (290.4-334.0) mg/cm3, and in the placebo group, it increased from a median (IQR) of 308.5 (276.7-348.0) to 319.2 (309.9-338.4) mg/cm3. Total CSA at the 4% tibia site increased from a median (IQR) of 795.8 (695.0-844.8) mm2 to 827.5 (803.0-839.4) mm2 in the LMMS group, whereas in the placebo group, it decreased from 847.3 (770.5-915.3) mm2 to 843.3 (828.9-857.7) mm2 (95% CI for difference in median change between groups, 2.94-162.53). Median (IQR) trabecular CSA at the 4% tibia site increased from 616.3 (534.8-672.3) mm2 to 649.2 (638.0-661.4) mm2 in the LMMS group but decreased in the placebo group from 686.4 (589.0-740.0) mm2 to 647.9 (637.3-661.9) mm2 (95% CI for difference in median change between groups, 2.80-139.68 mm2). Changes in cortical vBMD, cortical section modulus, and muscle CSA were not significant between groups. The 6-month changes in trabecular and total bone CSA at the tibia 4% site (weight-bearing trabecular bone) were significantly different between groups (these measures increased in the LMMS group but decreased in the placebo group; total bone CSA: 95% CI, 2.94-162.53; P = .01; trabecular CSA: 95% CI, 2.80-139.68; P = .02). Greater increases in body mass index were seen in the placebo group (median [IQR] gain, 0.5 [-0.3 to +2.1]) than in the LMMS group (median [IQR] gain, +0.4 [-0.3 to +2.1]), perhaps due to differences in fat mass accrual. No adverse events occurred related to the LMMS intervention. Conclusions and Relevance In this randomized clinical trial of female adolescents and young women with AN, a 6-month LMMS intervention did not yield improvement in tibial trabecular vBMD. However, LMMS led to increases in total and trabecular CSA at the tibia. These results suggest an early positive response of increased bone turnover and trabecular bone quantity due to the LMMS intervention. Future studies should use a longer duration of intervention, consider strategies to optimize adherence, and potentially focus on a more profoundly malnourished patient population. Trial Registration ClinicalTrials.gov Identifier: NCT01100567.
Collapse
Affiliation(s)
- Amy D. DiVasta
- Division of Adolescent Medicine, Boston Children’s Hospital, Boston, Massachusetts
- Harvard Medical School, Boston, Massachusetts
| | - Catherine Stamoulis
- Division of Adolescent Medicine, Boston Children’s Hospital, Boston, Massachusetts
- Harvard Medical School, Boston, Massachusetts
| | - Clinton T. Rubin
- Department of Biomedical Engineering, State University of New York at Stony Brook, Stony Brook
| | | | - Douglas P. Kiel
- Harvard Medical School, Boston, Massachusetts
- Hinda and Arthur Marcus Institute for Aging Research, Hebrew SeniorLife, Boston, Massachusetts
- Department of Medicine, Beth Israel Deaconess Medical Center, Boston, Massachusetts
| | - Brian D. Snyder
- Harvard Medical School, Boston, Massachusetts
- Department of Orthopedic Surgery, Boston Children’s Hospital, Boston, Massachusetts
| | - Catherine M. Gordon
- Eunice Kennedy Shriver National Institute of Child Health and Human Development, Bethesda, Maryland
| |
Collapse
|
7
|
Schlaff CD, Helgeson MD, Wagner SC. Pathophysiologic Spine Adaptations and Countermeasures for Prolonged Spaceflight. Clin Spine Surg 2024; 37:43-48. [PMID: 37459484 DOI: 10.1097/bsd.0000000000001488] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/22/2022] [Accepted: 06/21/2023] [Indexed: 02/28/2024]
Abstract
Low back pain due to spaceflight is a common complaint of returning astronauts. Alterations in musculoskeletal anatomy during spaceflight and the effects of microgravity (μg) have been well-studied; however, the mechanisms behind these changes remain unclear. The National Aeronautics and Space Administration has released the Human Research Roadmap to guide investigators in developing effective countermeasure strategies for the Artemis Program, as well as commercial low-orbit spaceflight. Based on the Human Research Roadmap, the existing literature was examined to determine the current understanding of the effects of microgravity on the musculoskeletal components of the spinal column. In addition, countermeasure strategies will be required to mitigate these effects for long-duration spaceflight. Current pharmacologic and nonpharmacologic countermeasure strategies are suboptimal, as evidenced by continued muscle and bone loss, alterations in muscle phenotype, and bone metabolism. However, studies incorporating the use of ultrasound, beta-blockers, and other pharmacologic agents have shown some promise. Understanding these mechanisms will not only benefit space technology but likely lead to a return on investment for the management of Earth-bound diseases.
Collapse
Affiliation(s)
- Cody D Schlaff
- Department of Orthopedic Surgery, Walter Reed National Military Medical Center, National Capital Consortium
- The Uniformed Services University of the Health Sciences, Bethesda, MD
| | - Melvin D Helgeson
- Department of Orthopedic Surgery, Walter Reed National Military Medical Center, National Capital Consortium
- The Uniformed Services University of the Health Sciences, Bethesda, MD
| | - Scott C Wagner
- Department of Orthopedic Surgery, Walter Reed National Military Medical Center, National Capital Consortium
- The Uniformed Services University of the Health Sciences, Bethesda, MD
| |
Collapse
|
8
|
Iyer P, Hwang M, Ridley L, Weisman MM. Biomechanics in the onset and severity of spondyloarthritis: a force to be reckoned with. RMD Open 2023; 9:e003372. [PMID: 37949613 PMCID: PMC10649803 DOI: 10.1136/rmdopen-2023-003372] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2023] [Accepted: 10/23/2023] [Indexed: 11/12/2023] Open
Abstract
Increasing evidence suggests that there is a pivotal role for physical force (mechanotransduction) in the initiation and/or the perpetuation of spondyloarthritis; the review contained herein examines that evidence. Furthermore, we know that damage and inflammation can limit spinal mobility, but is there a cycle created by altered spinal mobility leading to additional damage and inflammation?Over the past several years, mechanotransduction, the mechanism by which mechanical perturbation influences gene expression and cellular behaviour, has recently gained popularity because of emerging data from both animal models and human studies of the pathogenesis of ankylosing spondylitis (AS). In this review, we provide evidence towards an appreciation of the unsolved paradigm of how biomechanical forces may play a role in the initiation and propagation of AS.
Collapse
Affiliation(s)
- Priyanka Iyer
- Division of Rheumatology, Department of Medicine, UC Irvine Healthcare, Orange, California, USA
| | - Mark Hwang
- Rheumatology, The University of Texas Health Science Center at Houston John P and Katherine G McGovern Medical School, Houston, Texas, USA
| | - Lauren Ridley
- Rheumatology, The University of Texas Health Science Center at Houston John P and Katherine G McGovern Medical School, Houston, Texas, USA
| | | |
Collapse
|
9
|
Regner AM, DeLeon M, Gibbons KD, Howard S, Nesbitt DQ, Lujan TJ, Fitzpatrick CK, Farach-Carson MC, Wu D, Uzer G. Increased deformations are dispensable for cell mechanoresponse in engineered bone analogs mimicking aging bone marrow. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.09.24.559187. [PMID: 37905032 PMCID: PMC10614733 DOI: 10.1101/2023.09.24.559187] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/02/2023]
Abstract
Aged individuals and astronauts experience bone loss despite rigorous physical activity. Bone mechanoresponse is in-part regulated by mesenchymal stem cells (MSCs) that respond to mechanical stimuli. Direct delivery of low intensity vibration (LIV) recovers MSC proliferation in senescence and simulated microgravity models, indicating that age-related reductions in mechanical signal delivery within bone marrow may contribute to declining bone mechanoresponse. To answer this question, we developed a 3D bone marrow analog that controls trabecular geometry, marrow mechanics and external stimuli. Validated finite element (FE) models were developed to quantify strain environment within hydrogels during LIV. Bone marrow analogs with gyroid-based trabeculae of bone volume fractions (BV/TV) corresponding to adult (25%) and aged (13%) mice were printed using polylactic acid (PLA). MSCs encapsulated in migration-permissive hydrogels within printed trabeculae showed robust cell populations on both PLA surface and hydrogel within a week. Following 14 days of LIV treatment (1g, 100 Hz, 1 hour/day), type-I collagen and F-actin were quantified for the cells in the hydrogel fraction. While LIV increased all measured outcomes, FE models predicted higher von Mises strains for the 13% BV/TV groups (0.2%) when compared to the 25% BV/TV group (0.1%). Despite increased strains, collagen-I and F-actin measures remained lower in the 13% BV/TV groups when compared to 25% BV/TV counterparts, indicating that cell response to LIV does not depend on hydrogel strains and that bone volume fraction (i.e. available bone surface) directly affects cell behavior in the hydrogel phase independent of the external stimuli. Overall, bone marrow analogs offer a robust and repeatable platform to study bone mechanobiology.
Collapse
Affiliation(s)
- Alexander M Regner
- Mechanical and Biomedical Engineering Department, Boise State University
| | - Maximilien DeLeon
- Department of Diagnostic and Biomedical Sciences, UTHealth Houston School of Dentistry
- Department of Bioengineering, Rice University
- Department of Biosciences, Rice University
| | - Kalin D. Gibbons
- Mechanical and Biomedical Engineering Department, Boise State University
| | - Sean Howard
- Mechanical and Biomedical Engineering Department, Boise State University
| | | | - Trevor J. Lujan
- Mechanical and Biomedical Engineering Department, Boise State University
| | | | - Mary C Farach-Carson
- Department of Diagnostic and Biomedical Sciences, UTHealth Houston School of Dentistry
- Department of Bioengineering, Rice University
- Department of Biosciences, Rice University
| | - Danielle Wu
- Department of Diagnostic and Biomedical Sciences, UTHealth Houston School of Dentistry
- Department of Bioengineering, Rice University
- Department of Biosciences, Rice University
| | - Gunes Uzer
- Mechanical and Biomedical Engineering Department, Boise State University
| |
Collapse
|
10
|
Pagnotti GM, Trivedi T, Wright LE, John SK, Murthy S, Pattyn RR, Willis MS, She Y, Suresh S, Thompson WR, Rubin CT, Mohammad KS, Guise TA. Low-Magnitude Mechanical Signals Combined with Zoledronic Acid Reduce Musculoskeletal Weakness and Adiposity in Estrogen-Deprived Mice. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.03.12.531571. [PMID: 36993656 PMCID: PMC10054938 DOI: 10.1101/2023.03.12.531571] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/27/2023]
Abstract
UNLABELLED Combination treatment of Low-Intensity Vibration (LIV) with zoledronic acid (ZA) was hypothesized to preserve bone mass and muscle strength while reducing adipose tissue accrual associated with complete estrogen (E 2 )-deprivation in young and skeletally mature mice. Complete E 2 -deprivation (surgical-ovariectomy (OVX) and daily injection of aromatase inhibitor (AI) letrozole) were performed on 8-week-old C57BL/6 female mice for 4 weeks following commencement of LIV administration or control (no LIV), for 28 weeks. Additionally, 16-week-old C57BL/6 female E 2 -deprived mice were administered ±LIV twice daily and supplemented with ±ZA (2.5 ng/kg/week). By week 28, lean tissue mass quantified by dual-energy X-ray absorptiometry was increased in younger OVX/AI+LIV(y) mice, with increased myofiber cross-sectional area of quadratus femorii. Grip strength was greater in OVX/AI+LIV(y) mice than OVX/AI(y) mice. Fat mass remained lower in OVX/AI+LIV(y) mice throughout the experiment compared with OVX/AI(y) mice. OVX/AI+LIV(y) mice exhibited increased glucose tolerance and reduced leptin and free fatty acids than OVX/AI(y) mice. Trabecular bone volume fraction and connectivity density increased in the vertebrae of OVX/AI+LIV(y) mice compared to OVX/AI(y) mice; however, this effect was attenuated in the older cohort of E 2 -deprived mice, specifically in OVX/AI+ZA mice, requiring combined LIV with ZA to increase trabecular bone volume and strength. Similar improvements in cortical bone thickness and cross-sectional area of the femoral mid-diaphysis were observed in OVX/AI+LIV+ZA mice, resulting in greater fracture resistance. Our findings demonstrate that the combination of mechanical signals in the form of LIV and anti-resorptive therapy via ZA improve vertebral trabecular bone and femoral cortical bone, increase lean mass, and reduce adiposity in mice undergoing complete E 2 -deprivation. One Sentence Summary: Low-magnitude mechanical signals with zoledronic acid suppressed bone and muscle loss and adiposity in mice undergoing complete estrogen deprivation. TRANSLATIONAL RELEVANCE Postmenopausal patients with estrogen receptor-positive breast cancer treated with aromatase inhibitors to reduce tumor progression experience deleterious effects to bone and muscle subsequently develop muscle weakness, bone fragility, and adipose tissue accrual. Bisphosphonates (i.e., zoledronic acid) prescribed to inhibit osteoclast-mediated bone resorption are effective in preventing bone loss but may not address the non-skeletal effects of muscle weakness and fat accumulation that contribute to patient morbidity. Mechanical signals, typically delivered to the musculoskeletal system during exercise/physical activity, are integral for maintaining bone and muscle health; however, patients undergoing treatments for breast cancer often experience decreased physical activity which further accelerates musculoskeletal degeneration. Low-magnitude mechanical signals, in the form of low-intensity vibrations, generate dynamic loading forces similar to those derived from skeletal muscle contractility. As an adjuvant to existing treatment strategies, low-intensity vibrations may preserve or rescue diminished bone and muscle degraded by breast cancer treatment.
Collapse
|
11
|
Li F, Xie W, Han Y, Li Z, Xiao J. Bibliometric and visualized analysis of exercise and osteoporosis from 2002 to 2021. Front Med (Lausanne) 2022; 9:944444. [PMID: 36569140 PMCID: PMC9773261 DOI: 10.3389/fmed.2022.944444] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2022] [Accepted: 11/16/2022] [Indexed: 12/13/2022] Open
Abstract
Background Bibliometric analysis was designed to investigate a systematic understanding of developments in exercise and osteoporosis research over the past 20 years. Methods Relevant publications from the Web of Science Core Collection were downloaded on April 26, 2022. CiteSpace, VOSviewer, and the online bibliometric analysis platform were used to conduct this scientometric study. Results A total of 5518 publications were in 1202 academic journals with 137405 co-cited references in by 5637 institutions from 98 countries/regions. The country leading the research was the USA. The University of Melbourne was the most active institution. Osteoporosis International was the most productive journal concerning exercise and osteoporosis research. According to the burst references, "low-level vibration," "high-frequency" and "resistance exercise" have been recognized as the hotspots research in the domain. The keywords co-occurrence analysis identified "skeletal muscle," "sarcopenia" and "mesenchymal stem cell" as the important future research directions. Conclusion This study was the first comprehensive metrological and statistical analysis of exercise and osteoporosis research over the past 20 years. Our findings would provide guidance to understand the research frontiers and hot directions in the near future.
Collapse
Affiliation(s)
- Fan Li
- Department of Orthopedic Surgery, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Weixin Xie
- Department of Orthopedic Surgery, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Yi Han
- Department of Orthopedic Surgery, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Zhanchun Li
- Department of Orthopedic Surgery, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China,*Correspondence: Zhanchun Li,
| | - Jie Xiao
- Department of Anesthesiology, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China,Jie Xiao,
| |
Collapse
|
12
|
Ballinger TJ, Thompson WR, Guise TA. The bone-muscle connection in breast cancer: implications and therapeutic strategies to preserve musculoskeletal health. Breast Cancer Res 2022; 24:84. [PMID: 36419084 PMCID: PMC9686026 DOI: 10.1186/s13058-022-01576-2] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2022] [Accepted: 11/06/2022] [Indexed: 11/25/2022] Open
Abstract
Breast cancer and its therapies frequently result in significant musculoskeletal morbidity. Skeletal complications include bone metastases, pain, bone loss, osteoporosis, and fracture. In addition, muscle loss or weakness occurring in both the metastatic and curative setting is becoming increasingly recognized as systemic complications of disease and treatment, impacting quality of life, responsiveness to therapy, and survival. While the anatomical relationship between bone and muscle is well established, emerging research has led to new insights into the biochemical and molecular crosstalk between the skeletal and muscular systems. Here, we review the importance of both skeletal and muscular health in breast cancer, the significance of crosstalk between bone and muscle, and the influence of mechanical signals on this relationship. Therapeutic exploitation of signaling between bone and muscle has great potential to prevent the full spectrum of musculoskeletal complications across the continuum of breast cancer.
Collapse
Affiliation(s)
- Tarah J Ballinger
- Department of Medicine, Indiana University School of Medicine, 535 Barnhill Dr. RT 473, Indianapolis, IN, 46202, USA.
| | - William R Thompson
- Department of Medicine, Indiana University School of Medicine, 535 Barnhill Dr. RT 473, Indianapolis, IN, 46202, USA
| | - Theresa A Guise
- Department of Endocrine Neoplasia and Hormonal Disorders, MD Anderson Cancer Center, Houston, TX, USA
| |
Collapse
|
13
|
Rieder F, Wiesinger HP, Herfert J, Lampl K, Hecht S, Niebauer J, Maffulli N, Kösters A, Müller E, Seynnes OR. Whole body vibration for chronic patellar tendinopathy: A randomized equivalence trial. Front Physiol 2022; 13:1017931. [PMID: 36338477 PMCID: PMC9633993 DOI: 10.3389/fphys.2022.1017931] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2022] [Accepted: 10/06/2022] [Indexed: 02/02/2023] Open
Abstract
Purpose: Whole body vibration (WBV) triggers anabolic responses in various tissues, including tendons, without requiring high force production. In this waitlist-controlled equivalence trial, we tested its clinical effectiveness as an alternative treatment for patellar tendinopathy against conventional heavy slow resistance training (HSR). Methods: Thirty-nine patients were randomized to either 3 months of WBV training (n = 13), HSR training (n = 11), or a waitlist control (WLC) group (n = 15). In a partly cross-over design, 14 patients of the WLC group were redistributed to one of the two intervention groups (5 in WBV, 9 in HSR). Pre- and post-intervention testing included pain assessments (VAS), functional limitations (VISA-P), knee extension strength and tendon morphological, mechanical and material properties. Follow-up measurements (VAS, VISA-P) were performed in the WBV and HSR groups 6 months after the intervention. Results: Comparisons with the WLC group revealed significant improvements in VISA-P and VAS scores after HSR (41%, p = 003; 54%, p = 0.005) and WBV (22%, p = 0.022; 56%, p = 0.031) training. These improvements continued until follow-up (HSR: 43%, 56%; WBV: 24%, 37%). Pre-post improvements in VAS scores were equivalent between WBV and HSR groups but inconclusive for the VISA-P score and all pre-test to follow up comparisons. The mid-tendon cross-sectional area was significantly reduced after WBV (-5.7%, p = 0.004) and HSR (-3.0%, p = 0.004) training compared to WLC although the equivalence test between interventions was inconclusive. Conclusion: Whole body vibration improved symptoms typically associated with patellar tendinopathy. This type of intervention is as effective as HSR against maximum pain, although equivalence could not be confirmed for other variables. The beneficial responses to WBV and HSR treatments persisted for 6 months after the end of the intervention. Clinical Trial Registration: https://www.drks.de/drks_web/setLocale_EN.do, identifier DRKS00011338.
Collapse
Affiliation(s)
- Florian Rieder
- Institute of Physical Medicine and Rehabilitation, Paracelsus Medical University Salzburg, Salzburg, Austria,Department of Sport and Exercise Science, Paris-Lodron University Salzburg, Salzburg, Austria,*Correspondence: Florian Rieder,
| | - Hans-Peter Wiesinger
- Department of Sport and Exercise Science, Paris-Lodron University Salzburg, Salzburg, Austria
| | - Jürgen Herfert
- Institute of Physical Medicine and Rehabilitation, Paracelsus Medical University Salzburg, Salzburg, Austria,Red Bull Athlete Performance Center, Thalgau, Austria
| | - Katrin Lampl
- Institute of Physical Medicine and Rehabilitation, Paracelsus Medical University Salzburg, Salzburg, Austria
| | - Stefan Hecht
- Institute of Radiology, Paracelsus Medical University Salzburg, Salzburg, Austria
| | - Josef Niebauer
- Institute of Physical Medicine and Rehabilitation, Paracelsus Medical University Salzburg, Salzburg, Austria,Institute of Sports Medicine, Prevention and Rehabilitation, Paracelsus Medical University Salzburg, Salzburg, Austria
| | - Nicola Maffulli
- Department of Musculoskeletal Disorders, Faculty of Medicine and Surgery, University of Salerno, Salerno, Italy,Centre for Sports and Exercise Medicine, Barts and the London School of Medicine and Dentistry, Mile End Hospital, Queen Mary University of London, London, United Kingdom,School of Pharmacy and Bioengineering, Keele University School of Medicine, Staffordshire, United Kingdom
| | - Alexander Kösters
- Department of Sport and Exercise Science, Paris-Lodron University Salzburg, Salzburg, Austria
| | - Erich Müller
- Department of Sport and Exercise Science, Paris-Lodron University Salzburg, Salzburg, Austria
| | - Olivier R. Seynnes
- Department of Physical Performance, Norwegian School of Sport Science, Oslo, Norway
| |
Collapse
|
14
|
Amuk M, Gül Amuk N, Hacıoğlu Z. Effects of orofacial applications of low-magnitude, high-frequency mechanical vibration on cranial sutures and calvarial bones: A micro-computed tomography study in rats. Am J Orthod Dentofacial Orthop 2022; 162:459-468. [PMID: 35777991 DOI: 10.1016/j.ajodo.2021.04.032] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2020] [Revised: 04/04/2021] [Accepted: 04/04/2021] [Indexed: 11/20/2022]
Abstract
INTRODUCTION The purpose of this study was to assess the effects of orthodontically aimed low-magnitude, high-frequency mechanical vibration (OLMHFMV) on intact calvarial bone, specifically the parietal and temporal, and cranial sutures, including the sagittal and parietotemporal, of rats in differing stages of growth and development. METHODS Forty Wistar rats were divided into 4 groups: 2 control groups and 2 OLMHFMV groups. Subsequently, 0.3 cN of force with a frequency of 30 Hz was applied as OLMHFMV on the temporomandibular joint region in the rats in the OLMHFMV-1 group, with the protocol of 20 min/d for 5 d/wk for 1 month, whereas the rats in the OLMHFMV-2 group received mechanical stimuli for 2 months with the same protocol. Morphometric and structural analyses, including suture width, cranial width and height, bone mineral density, bone volume/tissue volume, trabecular number, trabecular separation, and trabecular thickness analyses, were carried out using micro-computed tomography. RESULTS The width of the parietotemporal and sagittal sutures and the cranial height and width increased significantly by OLMHFMV (P <0.021). The structural analysis revealed that trabecular number and trabecular separation increased, whereas trabecular thickness decreased in the OLMHFMV groups compared with the control groups (P <0.048). Bone volume/tissue volume remained unchanged despite reducing the bone mineral density of the OLMHFMV groups. CONCLUSIONS OLMHFMV had a potential for modulating sutural and cranial growth in adolescent rats. OLMHFMV increased the structural quality of the temporal and parietal bones. These effects may have clinical implications as a treatment option for patients suffering from craniofacial anomalies such as craniosynostosis or a supportive approach for dentofacial orthodontic treatments.
Collapse
Affiliation(s)
- Mehmet Amuk
- Department of Oral and Maxillofacial Radiology, Faculty of Dentistry, Erciyes University, Kayseri, Turkey
| | - Nisa Gül Amuk
- Department of Orthodontics, Faculty of Dentistry, Erciyes University, Kayseri, Turkey.
| | - Zeynep Hacıoğlu
- Department of Orthodontics, Faculty of Dentistry, Erciyes University, Kayseri, Turkey
| |
Collapse
|
15
|
Oroszi T, de Boer SF, Nyakas C, Schoemaker RG, van der Zee EA. Chronic whole body vibration ameliorates hippocampal neuroinflammation, anxiety-like behavior, memory functions and motor performance in aged male rats dose dependently. Sci Rep 2022; 12:9020. [PMID: 35637277 PMCID: PMC9151803 DOI: 10.1038/s41598-022-13178-1] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2022] [Accepted: 05/13/2022] [Indexed: 12/19/2022] Open
Abstract
AbstractWhole body vibration (WBV) is a form of passive exercise by the stimulation of mechanical vibration platform. WBV has been extensively investigated through clinical studies with main focus on the musculoskeletal system. However, pre-clinical data in the context of behavior, memory and motor functions with aged rodents are limited. The aim of this experiment was to investigate the dose dependent effects of a five weeks long WBV intervention with an aged animal model including anxiety-related behavior, memory and motor functions, as well as markers of (neuro)inflammation. Male Wistar rats (18 months) underwent 5 or 20 min daily vibration exposure or pseudo-treatment (i.e.: being subjected to the same environmental stimuli for 5 or 20 min, but without exposure to vibrations) 5 times per week. After 5 weeks treatment, cognitive functions, anxiety-like behavior and motor performance were evaluated. Finally, brain tissue was collected for immunohistological purposes to evaluate hippocampal (neuro)inflammation. Animals with 20 min daily session of WBV showed a decrease in their anxiety-like behavior and improvement in their spatial memory. Muscle strength in the grip hanging test was only significantly improved by 5 min daily WBV treatments, whereas motor coordination in the balance beam test was not significantly altered. Microglia activation showed a significant decrease in the CA1 and Dentate gyrus subregions by both dose of WBV. In contrast, these effects were less pronounced in the CA3 and Hilus subregions, where only 5 min dose showed a significant effect on microglia activation. Our results indicate, that WBV seems to be a comparable strategy on age-related anxiety, cognitive and motor decline, as well as alleviating age-related (neuro)inflammation.
Collapse
|
16
|
Burm SW, Hong N, Lee S, Kim GJ, Hwang SH, Jeong J, Rhee Y. Preoperative Thoracic Muscle Mass Predicts Bone Density Change After Parathyroidectomy in Primary Hyperparathyroidism. J Clin Endocrinol Metab 2022; 107:e2474-e2480. [PMID: 35148405 DOI: 10.1210/clinem/dgac083] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/24/2021] [Indexed: 11/19/2022]
Abstract
CONTEXT Predicting bone mineral density (BMD) gain after parathyroidectomy may influence individualized therapeutic approaches for treating patients with primary hyperparathyroidism (PHPT). OBJECTIVE This study aimed to assess whether skeletal muscle mass data could predict BMD change after parathyroidectomy in patients with PHPT. METHODS This retrospective study collected data from 2012 to 2021 at Severance Hospital, Seoul, Korea. A total of 130 patients (mean age, 64.7 years; 81.5% women) with PHPT who underwent parathyroidectomy were analyzed. Thoracic muscle volume (T6-T7 level) was estimated using noncontrast parathyroid single photon emission computed tomography/computed tomography (SPECT/CT) scans and an automated deep-learning-based software. The primary outcome assessed was the change in femoral neck BMD (FNBMD, %) 1 year after parathyroidectomy. RESULTS The median degree of FNBMD change after parathyroidectomy was + 2.7% (interquartile range: -0.9 to + 7.6%). Elevated preoperative PTH level was associated with lower thoracic muscle mass (adjusted β: -8.51 cm3 per one log-unit PTH increment, P = .045) after adjusting for age, sex, body mass index (BMI), and baseline FNBMD. One SD decrement in thoracic muscle mass was associated with lesser FNBMD (adjusted β: -2.35%, P = .034) gain and lumbar spine BMD gain (adjusted β: -2.51%, P = .044) post surgery after adjusting for covariates. CONCLUSION Lower thoracic skeletal muscle mass was associated with elevated preoperative PTH levels in patients with PHPT. Lower skeletal muscle mass was associated with lesser BMD gain after parathyroidectomy, independent of age, sex, BMI, preoperative BMD, and PTH level.
Collapse
Affiliation(s)
- Seung Won Burm
- Department of Internal Medicine, Endocrine Research Institute, Severance Hospital, Yonsei University College of Medicine, Seoul 03722, Korea
| | - Namki Hong
- Department of Internal Medicine, Endocrine Research Institute, Severance Hospital, Yonsei University College of Medicine, Seoul 03722, Korea
| | - Seunghyun Lee
- Department of Internal Medicine, Endocrine Research Institute, Severance Hospital, Yonsei University College of Medicine, Seoul 03722, Korea
| | - Gi Jeong Kim
- Department of Pathology, Severance Hospital, Yonsei University College of Medicine, Seoul 03722, Korea
| | - Sang Hyun Hwang
- Department of Nuclear Medicine, Severance Hospital, Yonsei University College of Medicine, Seoul 03722, Korea
| | - Jongju Jeong
- Department of Surgery, Severance Hospital, Yonsei University College of Medicine, Seoul 03722, Korea
| | - Yumie Rhee
- Department of Internal Medicine, Endocrine Research Institute, Severance Hospital, Yonsei University College of Medicine, Seoul 03722, Korea
| |
Collapse
|
17
|
Bodnyk KA, Kim DG, Pan X, Hart RT. The Long-Term Residual Effects of Low-Magnitude Mechanical Stimulation on Murine Femoral Mechanics. J Biomech Eng 2022; 144:1128892. [PMID: 34817049 DOI: 10.1115/1.4053101] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2021] [Indexed: 11/08/2022]
Abstract
As an alternative to drug treatments, low-magnitude mechanical stimulation (LMMS) may improve skeletal health without potential side effects from drugs. LMMS has been shown to increase bone health short term in both animal and clinical studies. Long-term changes to the mechanical properties of bone from LMMS are currently unknown, so the objective of this research was to establish the methodology and preliminary results for investigating the long-term effects of whole body vibration therapy on the elastic and viscoelastic properties of bone. In this study, 10-week-old female BALB/cByJ mice were given LMMS (15 min/day, 5 days/week, 0.3 g, 90 Hz) for 8 weeks; SHAM did not receive LMMS. Two sets of groups remained on study for an additional 8 or 16 weeks post-LMMS (N = 17). Micro-CT and fluorochrome histomorphology of these femurs were studied and results were published by Bodnyk et al. (2020, "The Long-Term Residual Effects of Low-Magnitude Mechanical Stimulation Therapy on Skeletal Health," J. Biol. Eng., 14, Article No. 9.). Femoral quasi-static bending stiffness trended 4.2% increase in stiffness after 8 weeks of LMMS and 1.3% increase 8 weeks post-LMMS compared to SHAM. Damping, tan delta, and loss stiffness significantly increased by 17.6%, 16.3%, and 16.6%, respectively, at 8 weeks LMMS compared to SHAM. Finite element models of applied LMMS signal showed decreased stress in the mid-diaphyseal region at both 8-week LMMS and 8-week post-LMMS compared to SHAM. Residual mechanical changes in bone during and post-LMMS indicate that LMMS could be used to increase long-term mechanical integrity of bone.
Collapse
Affiliation(s)
- Kyle A Bodnyk
- Department of Biomedical Engineering, The Ohio State University, Fontana Labs, 140 West 19th Street, Columbus OH 43210
| | - Do-Gyoon Kim
- Division of Orthodontics, The Ohio State University, 305 West 12th Avenue, 4088 Postle Hall, Columbus, OH 43210
| | - Xueliang Pan
- College of Medicine, Biomedical Informatics, The Ohio State University, 1800 Cannon Drive, Columbus, OH 43210
| | - Richard T Hart
- Department of Biomedical Engineering, Fontana Labs, The Ohio State University, 140 West 19th Street Columbus, OH 43210
| |
Collapse
|
18
|
Sithambaran S, Harrison R, Gopal‐Kothandapandi S, Rigby A, Bishop N. Bisphosphonate Treatment Alters the Skeletal Response to Mechanical Stimulation in Children With Osteogenesis Imperfecta: A Pilot Study. JBMR Plus 2022; 6:e10592. [PMID: 35309861 PMCID: PMC8914162 DOI: 10.1002/jbm4.10592] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/11/2021] [Accepted: 11/28/2021] [Indexed: 11/29/2022] Open
Abstract
Children with osteogenesis imperfecta (OI) are commonly treated with bisphosphonates. We investigated the skeletal response to mechanical stimulation in children with OI before and after bisphosphonate treatment. Twelve children with OI, naïve to bisphosphonate treatment, stood on a high‐frequency (30 Hz), low‐amplitude (50 to 200 μ) vibrating platform (Marodyne LivMD) for 10 minutes daily (2.5 minutes × 4 with interspersed 1‐minute rest periods) for 7 days (whole body vibration [WBV] 1; day (D) 1–7), followed successively by 5 weeks' monitoring without intervention, 6 weeks' risedronate treatment, 1 week of WBV (WBV2; D85–91), and 1 week without intervention (D92–98). Procollagen type I N‐terminal propeptide (P1NP), bone‐specific alkaline phosphatase (BSALP), and carboxy‐terminal telopeptide of type I collagen cross‐link (CTX) were measured at baseline and intervals bracketing periods of vibration and risedronate treatment. Both P1NP and CTX rose to D8 (18.4%, 13.8%, p < 0.05, respectively), plateaued, then rose again at D43 (19.8%, 19.2%, respectively, p < 0.05 versus baseline). At D85 (after risedronate) both P1NP and CTX had fallen to pre‐WBV1 levels. A significantly smaller increase in P1NP was found after WBV2 (D85–91) at D92 (3.5%, 9.2%, respectively) and D99 versus after WBV1 (both p < 0.05). BSALP changed little after WBV1, fell during risedronate, and rose toward baseline after WBV2. We thus showed that WBV increased bone formation and resorption; that increase was attenuated after risedronate. The early increase in P1NP and CTX (D8) after WBV1 suggests increased osteoid formation within existing remodeling units but not increased mineralization. Later increases in P1NP/CTX (D42) suggest increased remodeling cycle initiation after WBV. Risedronate suppressed both biomarkers. The lower increase in P1NP/CTX after WBV2 suggests limited capacity to increase osteoid formation from existing “early stage” osteoblasts and a possible “hangover” effect of risedronate on remodeling activation. These results provide insights into both the response to WBV, ie, mechanical stimulation, and the effect of antiresorptive therapy in children with OI. © 2021 The Authors. JBMR Plus published by Wiley Periodicals LLC. on behalf of American Society for Bone and Mineral Research.
Collapse
Affiliation(s)
- Siva Sithambaran
- Department of Oncology and Metabolism University of Sheffield Sheffield UK
| | | | | | - Alan Rigby
- University of Hull Hull UK
- Hull York Medical School Hull UK
| | - Nick Bishop
- Department of Oncology and Metabolism University of Sheffield Sheffield UK
- Sheffield Children's NHS FT Sheffield UK
| |
Collapse
|
19
|
Mayama A, Seiryu M, Takano-Yamamoto T. Effect of vibration on orthodontic tooth movement in a double blind prospective randomized controlled trial. Sci Rep 2022; 12:1288. [PMID: 35079071 PMCID: PMC8789833 DOI: 10.1038/s41598-022-05395-5] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2021] [Accepted: 01/10/2022] [Indexed: 01/17/2023] Open
Abstract
The purpose of the present study was to investigate the effect of vibration on orthodontic tooth movement and safety assessment based on our previous basic research in animal experiments. A double-blind prospective randomized controlled trial using split-mouth design was conducted in patients with malocclusion. The left and right sides of maxillary arch were randomly assigned to vibration (TM + V) and non-vibration (TM) groups. After leveling, vibrations (5.2 ± 0.5 g-forces (gf), 102.2 ± 2.6 Hertz (Hz)) were supplementary applied to the canine retracted with 100 gf in TM + V group for 3 min at the monthly visit under double-blind fashion, and the canine on the other side without vibration was used as TM group. The amount of tooth movement was measured blindly using a constructed three-dimensional dentition model. The amount of canine movement per visit was 0.89 ± 0.55 mm in TM group (n = 23) and 1.21 ± 0.60 mm in TM + V group (n = 23), respectively. There was no significant difference of pain and discomfort, and root resorption between the two groups. This study indicates that static orthodontic force with supplementary vibration significantly accelerated tooth movement in canine retraction and reduced the number of visits without causing side effects.
Collapse
Affiliation(s)
- Atsushi Mayama
- Division of Orthodontics and Dentofacial Orthopedics, Graduate School of Dentistry, Tohoku University, 4-1, Seiryomachi, Aoba-ku, Sendai, Miyagi, 980-8575, Japan
| | - Masahiro Seiryu
- Division of Orthodontics and Dentofacial Orthopedics, Graduate School of Dentistry, Tohoku University, 4-1, Seiryomachi, Aoba-ku, Sendai, Miyagi, 980-8575, Japan
| | - Teruko Takano-Yamamoto
- Division of Orthodontics and Dentofacial Orthopedics, Graduate School of Dentistry, Tohoku University, 4-1, Seiryomachi, Aoba-ku, Sendai, Miyagi, 980-8575, Japan. .,Department of Biomaterials and Bioengineering, Faculty of Dental Medicine, Hokkaido University, Hokkaido, 060-8586, Japan.
| |
Collapse
|
20
|
Oroszi T, Geerts E, de Boer SF, Schoemaker RG, van der Zee EA, Nyakas C. Whole Body Vibration Improves Spatial Memory, Anxiety-Like Behavior, and Motor Performance in Aged Male and Female Rats. Front Aging Neurosci 2022; 13:801828. [PMID: 35126091 PMCID: PMC8815031 DOI: 10.3389/fnagi.2021.801828] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2021] [Accepted: 12/17/2021] [Indexed: 12/26/2022] Open
Abstract
Aging is a progressive process leading to functional decline in many domains. Recent studies have shown that physical exercise (PE) has a positive influence on the progression of age-related functional decline, including motor and brain functions. Whole body vibration (WBV) is a form of passive stimulation by mechanical vibration platforms, which offers an alternative for PE interventions, especially for aged individuals. WBV has been demonstrated to mimic the beneficial effects of PE on the musculoskeletal system, as well on the central nervous system. However, preclinical data with aged rodents are very limited. Hence, the purpose of this experiment was to investigate the effects of a 5-week WBV intervention with an aged animal model on memory functions, anxiety-related behavior, and motor performance. The 18-month old male (N = 14) and female (N = 14) Wistar rats were divided into two groups, namely, vibration and pseudo-vibration. Animals underwent a 5-week WBV intervention protocol with low intensity (frequency of 30 Hz and amplitude of 50–200 μm) stimulation. After 5 weeks, the following cognitive and motor tests were administered: open-field, novel and spatial object recognition, grip-hanging, and balance-beam. WBV-treated rats showed a decrease in their anxiety level in the open field test compared with those in the pseudo-treated controls. In addition, WBV-treated male animals showed significantly increased rearing in the open-field test compared to their pseudo controls. Spatial memory was significantly improved by WBV treatment, whereas WBV had no effect on object memory. Regarding motor performance, both grip strength and motor coordination were improved by WBV treatment. Our results indicate that WBV seems to have comparable beneficial effects on age-related emotional, cognitive, and motor decline as what has been reported for active PE. No striking differences were found between the sexes. As such, these findings further support the idea that WBV could be considered as a useful alternative for PE in case active PE cannot be performed due to physical or mental issues.
Collapse
|
21
|
Beck B, Rubin C, Harding A, Paul S, Forwood M. The effect of low-intensity whole-body vibration with or without high-intensity resistance and impact training on risk factors for proximal femur fragility fracture in postmenopausal women with low bone mass: study protocol for the VIBMOR randomized controlled trial. Trials 2022; 23:15. [PMID: 34991684 PMCID: PMC8734256 DOI: 10.1186/s13063-021-05911-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2021] [Accepted: 12/03/2021] [Indexed: 11/24/2022] Open
Abstract
BACKGROUND The prevailing medical opinion is that medication is the primary (some might argue, only) effective intervention for osteoporosis. It is nevertheless recognized that osteoporosis medications are not universally effective, tolerated, or acceptable to patients. Mechanical loading, such as vibration and exercise, can also be osteogenic but the degree, relative efficacy, and combined effect is unknown. The purpose of the VIBMOR trial is to determine the efficacy of low-intensity whole-body vibration (LIV), bone-targeted, high-intensity resistance and impact training (HiRIT), or the combination of LIV and HiRIT on risk factors for hip fracture in postmenopausal women with osteopenia and osteoporosis. METHODS Postmenopausal women with low areal bone mineral density (aBMD) at the proximal femur and/or lumbar spine, with or without a history of fragility fracture, and either on or off osteoporosis medications will be recruited. Eligible participants will be randomly allocated to one of four trial arms for 9 months: LIV, HiRIT, LIV + HiRIT, or control (low-intensity, home-based exercise). Allocation will be block-randomized, stratified by use of osteoporosis medications. Testing will be performed at three time points: baseline (T0), post-intervention (T1; 9 months), and 1 year thereafter (T2; 21 months) to examine detraining effects. The primary outcome measure will be total hip aBMD determined by dual-energy X-ray absorptiometry (DXA). Secondary outcomes will include aBMD at other regions, anthropometrics, and other indices of bone strength, body composition, physical function, kyphosis, muscle strength and power, balance, falls, and intervention compliance. Exploratory outcomes include bone turnover markers, pelvic floor health, quality of life, physical activity enjoyment, adverse events, and fracture. An economic evaluation will also be conducted. DISCUSSION No previous studies have compared the effect of LIV alone or in combination with bone-targeted HiRIT (with or without osteoporosis medications) on risk factors for hip fracture in postmenopausal women with low bone mass. Should either, both, or combined mechanical interventions be safe and efficacious, alternative therapeutic avenues will be available to individuals at elevated risk of fragility fracture who are unresponsive to or unwilling or unable to take osteoporosis medications. TRIAL REGISTRATION Australian New Zealand Clinical Trials Registry (www. anzctr.org.au ) (Trial number ANZCTR12615000848505, https://www.anzctr.org.au/Trial/Registration/TrialReview.aspx?id = 368962 ); date of registration 14/08/2015 (prospectively registered). Universal Trial Number: U1111-1172-3652.
Collapse
Affiliation(s)
- Belinda Beck
- Menzies Health Institute Queensland, School of Health Sciences and Social Work, Griffith University, Gold Coast, QLD Australia
| | - Clinton Rubin
- Department of Biomedical Engineering, State University of New York at Stony Brook, New York, NY USA
| | - Amy Harding
- Menzies Health Institute Queensland, School of Health Sciences and Social Work, Griffith University, Gold Coast, QLD Australia
| | - Sanjoy Paul
- Melbourne EpiCentre, University of Melbourne and Melbourne Health, Melbourne, VIC Australia
| | - Mark Forwood
- School of Pharmacy and Medical Sciences, Gold Coast, QLD Australia
| |
Collapse
|
22
|
DadeMatthews OO, Agostinelli PJ, Neal FK, Oladipupo SO, Hirschhorn RM, Wilson AE, Sefton JM. Systematic Review and Meta-analyses on the Effects of Whole-body Vibration on Bone Health. Complement Ther Med 2022; 65:102811. [DOI: 10.1016/j.ctim.2022.102811] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2021] [Revised: 01/13/2022] [Accepted: 01/25/2022] [Indexed: 12/21/2022] Open
|
23
|
Campos MS, Volpon JB, Ximenez JPB, Franttini AP, Dalloul CE, Sousa-Neto MD, Silva RA, Kacena MA, Zamarioli A. Vibration therapy as an effective approach to improve bone healing in diabetic rats. Front Endocrinol (Lausanne) 2022; 13:909317. [PMID: 36060973 PMCID: PMC9437439 DOI: 10.3389/fendo.2022.909317] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/31/2022] [Accepted: 07/22/2022] [Indexed: 11/13/2022] Open
Abstract
OBJECTIVE To investigate the effects of vibration therapy on fracture healing in diabetic and non-diabetic rats. METHODS 148 rats underwent fracture surgery and were assigned to four groups: (1) SHAM: weight-matched non-diabetic rats, (2) SHAM+VT: non-diabetic rats treated with vibration therapy (VT), (3) DM: diabetic rats, and (4) DM+VT: diabetic rats treated with VT. Thirty days after diabetes induction with streptozotocin, animals underwent bone fracture, followed by surgical stabilization. Three days after bone fracture, rats began VT. Bone healing was assessed on days 14 and 28 post-fracture by serum bone marker analysis, and femurs collected for dual-energy X-ray absorptiometry, micro-computed tomography, histology, and gene expression. RESULTS Our results are based on 88 animals. Diabetes led to a dramatic impairment of bone healing as demonstrated by a 17% reduction in bone mineral density and decreases in formation-related microstructural parameters compared to non-diabetic control rats (81% reduction in bone callus volume, 69% reduction in woven bone fraction, 39% reduction in trabecular thickness, and 45% in trabecular number). These changes were accompanied by a significant decrease in the expression of osteoblast-related genes (Runx2, Col1a1, Osx), as well as a 92% reduction in serum insulin-like growth factor I (IGF-1) levels. On the other hand, resorption-related parameters were increased in diabetic rats, including a 20% increase in the callus porosity, a 33% increase in trabecular separation, and a 318% increase in serum C terminal telopeptide of type 1 collagen levels. VT augmented osteogenic and chondrogenic cell proliferation at the fracture callus in diabetic rats; increased circulating IGF-1 by 668%, callus volume by 52%, callus bone mineral content by 90%, and callus area by 72%; and was associated with a 19% reduction in circulating receptor activator of nuclear factor kappa beta ligand (RANK-L). CONCLUSIONS Diabetes had detrimental effects on bone healing. Vibration therapy was effective at counteracting the significant disruption in bone repair induced by diabetes, but did not improve fracture healing in non-diabetic control rats. The mechanical stimulus not only improved bone callus quality and quantity, but also partially restored the serum levels of IGF-1 and RANK-L, inducing bone formation and mineralization, thus creating conditions for adequate fracture repair in diabetic rats.
Collapse
Affiliation(s)
- Maysa S. Campos
- Department of Orthopaedics and Anaesthesiology, Ribeirão Preto Medical School, University of Sao Paulo, Ribeirão Preto, SP, Brazil
| | - José B. Volpon
- Department of Orthopaedics and Anaesthesiology, Ribeirão Preto Medical School, University of Sao Paulo, Ribeirão Preto, SP, Brazil
| | - João Paulo B. Ximenez
- Laboratory of Molecular Biology, Blood Center of Ribeirão Preto, Ribeirão Preto Medical School, Ribeirão Preto, SP, Brazil
- School of Pharmaceutical Sciences of Ribeirão Preto - University of São Paulo, Ribeirão Preto, SP, Brazil
| | - Ana Paula Franttini
- Department of Orthopaedics and Anaesthesiology, Ribeirão Preto Medical School, University of Sao Paulo, Ribeirão Preto, SP, Brazil
| | - Christopher E. Dalloul
- Department of Orthopaedic Surgery, Indiana University School of Medicine, Indianapolis, IN, United States
| | - Manoel D. Sousa-Neto
- School of Dentistry of Ribeirão Preto - University of São Paulo, Ribeirão Preto, SP, Brazil
| | - Raquel A. Silva
- School of Dentistry of Ribeirão Preto - University of São Paulo, Ribeirão Preto, SP, Brazil
| | - Melissa A. Kacena
- Department of Orthopaedic Surgery, Indiana University School of Medicine, Indianapolis, IN, United States
- Richard L. Roudebush Veterans Affairs Medical Center, Indianapolis, IN, United States
| | - Ariane Zamarioli
- Department of Orthopaedics and Anaesthesiology, Ribeirão Preto Medical School, University of Sao Paulo, Ribeirão Preto, SP, Brazil
- *Correspondence: Ariane Zamarioli,
| |
Collapse
|
24
|
Liu A, Liu Y, Su KJ, Greenbaum J, Bai Y, Tian Q, Zhao LJ, Deng HW, Shen H. A transcriptome-wide association study to detect novel genes for volumetric bone mineral density. Bone 2021; 153:116106. [PMID: 34252604 PMCID: PMC8478845 DOI: 10.1016/j.bone.2021.116106] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/26/2021] [Revised: 06/17/2021] [Accepted: 07/05/2021] [Indexed: 01/02/2023]
Abstract
Transcriptome-wide association studies (TWAS) systematically investigate the association of genetically predicted gene expression with disease risk, providing an effective approach to identify novel susceptibility genes. Osteoporosis is the most common metabolic bone disease, associated with reduced bone mineral density (BMD) and increased risk of osteoporotic fractures, whereas genetic factors explain approximately 70% of the variance in phenotypes associated with bone. BMD is commonly assessed using dual-energy X-ray absorptiometry (DXA) to obtain measurements (g/cm2) of areal BMD. However, quantitative computed tomography (QCT) measured 3D volumetric BMD (vBMD) (g/cm3) has important advantages compared with DXA since it can evaluate cortical and trabecular microstructural features of bone quality, which can be used to directly predict fracture risk. Here, we performed the first TWAS for volumetric BMD (vBMD) by integrating genome-wide association studies (GWAS) data from two independent cohorts, namely the Framingham Heart Study (FHS, n = 3298) and the Osteoporotic Fractures in Men (MrOS, n = 4641), with tissue-specific gene expression data from the Genotype-Tissue Expression (GTEx) project. We first used stratified linkage disequilibrium (LD) score regression approach to identify 12 vBMD-relevant tissues, for which vBMD heritability is enriched in tissue-specific genes of the given tissue. Focusing on these tissues, we subsequently leveraged GTEx expression reference panels to predict tissue-specific gene expression levels based on the genotype data from FHS and MrOS. The associations between predicted gene expression levels and vBMD variation were then tested by MultiXcan, an innovative TWAS method that integrates information available across multiple tissues. We identified 70 significant genes associated with vBMD, including some previously identified osteoporosis-related genes such as LYRM2 and NME8, as well as some novel loci such as DNAAF2 and SPAG16. Our findings provide novel insights into the pathophysiological mechanisms of osteoporosis and highlight several novel vBMD-associated genes that warrant further investigation.
Collapse
Affiliation(s)
- Anqi Liu
- Tulane Center for Biomedical Informatics and Genomics, Deming Department of Medicine, School of Medicine, Tulane University, New Orleans, LA, USA
| | - Yong Liu
- Center for System Biology, Data Sciences, and Reproductive Health, School of Basic Medical Science, Central South University, Yuelu, Changsha, Hunan Province, PR China
| | - Kuan-Jui Su
- Tulane Center for Biomedical Informatics and Genomics, Deming Department of Medicine, School of Medicine, Tulane University, New Orleans, LA, USA
| | - Jonathan Greenbaum
- Tulane Center for Biomedical Informatics and Genomics, Deming Department of Medicine, School of Medicine, Tulane University, New Orleans, LA, USA
| | - Yuntong Bai
- Tulane Center for Biomedical Informatics and Genomics, Deming Department of Medicine, School of Medicine, Tulane University, New Orleans, LA, USA; Department of Biomedical Engineering, Tulane University, New Orleans, LA, USA
| | - Qing Tian
- Tulane Center for Biomedical Informatics and Genomics, Deming Department of Medicine, School of Medicine, Tulane University, New Orleans, LA, USA
| | - Lan-Juan Zhao
- Tulane Center for Biomedical Informatics and Genomics, Deming Department of Medicine, School of Medicine, Tulane University, New Orleans, LA, USA
| | - Hong-Wen Deng
- Tulane Center for Biomedical Informatics and Genomics, Deming Department of Medicine, School of Medicine, Tulane University, New Orleans, LA, USA; Center for System Biology, Data Sciences, and Reproductive Health, School of Basic Medical Science, Central South University, Yuelu, Changsha, Hunan Province, PR China
| | - Hui Shen
- Tulane Center for Biomedical Informatics and Genomics, Deming Department of Medicine, School of Medicine, Tulane University, New Orleans, LA, USA.
| |
Collapse
|
25
|
Mechanobiology-based physical therapy and rehabilitation after orthobiologic interventions: a narrative review. INTERNATIONAL ORTHOPAEDICS 2021; 46:179-188. [PMID: 34709429 DOI: 10.1007/s00264-021-05253-5] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/01/2020] [Accepted: 10/19/2021] [Indexed: 10/20/2022]
Abstract
PURPOSE This review aims to summarize the evidence for the role of mechanotherapies and rehabilitation in supporting the synergy between regeneration and repair after an orthobiologic intervention. METHODS A selective literature search was performed using Web of Science, OVID, and PubMed to review research articles that discuss the effects of combining mechanotherapy with various forms of regenerative medicine. RESULTS Various mechanotherapies can encourage the healing process for patients at different stages. Taping, bracing, cold water immersion, and extracorporeal shockwave therapy can be used throughout the duration of acute inflammatory response. The regulation of angiogenesis can be sustained with blood flow restriction and resistance training, whereas heat therapy and tissue loading during exercise are recommended in the remodeling phase. CONCLUSION Combining mechanotherapy with various forms of regenerative medicine has shown promise for improving treatment outcomes. However, further studies that reveal a greater volume of evidence are needed to support clinical decisions.
Collapse
|
26
|
Abstract
The nuclear envelope and nucleoskeleton are emerging as signaling centers that regulate how physical information from the extracellular matrix is biochemically transduced into the nucleus, affecting chromatin and controlling cell function. Bone is a mechanically driven tissue that relies on physical information to maintain its physiological function and structure. Disorder that present with musculoskeletal and cardiac symptoms, such as Emery-Dreifuss muscular dystrophies and progeria, correlate with mutations in nuclear envelope proteins including Linker of Nucleoskeleton and Cytoskeleton (LINC) complex, Lamin A/C, and emerin. However, the role of nuclear envelope mechanobiology on bone function remains underexplored. The mesenchymal stem cell (MSC) model is perhaps the most studied relationship between bone regulation and nuclear envelope function. MSCs maintain the musculoskeletal system by differentiating into multiple cell types including osteocytes and adipocytes, thus supporting the bone's ability to respond to mechanical challenge. In this review, we will focus on how MSC function is regulated by mechanical challenges both in vitro and in vivo within the context of bone function specifically focusing on integrin, β-catenin and YAP/TAZ signaling. The importance of the nuclear envelope will be explored within the context of musculoskeletal diseases related to nuclear envelope protein mutations and nuclear envelope regulation of signaling pathways relevant to bone mechanobiology in vitro and in vivo.
Collapse
Affiliation(s)
- Scott Birks
- Boise State University, Micron School of Materials Science and Engineering, United States of America
| | - Gunes Uzer
- Boise State University, Mechanical and Biomedical Engineering, United States of America.
| |
Collapse
|
27
|
Pagnotti GM, Thompson WR, Guise TA, Rubin CT. Suppression of cancer-associated bone loss through dynamic mechanical loading. Bone 2021; 150:115998. [PMID: 33971314 PMCID: PMC10044486 DOI: 10.1016/j.bone.2021.115998] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/14/2021] [Revised: 04/30/2021] [Accepted: 05/03/2021] [Indexed: 02/06/2023]
Abstract
Patients afflicted with or being treated for cancer constitute a distinct and alarming subpopulation who exhibit elevated fracture risk and heightened susceptibility to developing secondary osteoporosis. Cancer cells uncouple the regulatory processes central for the adequate regulation of musculoskeletal tissue. Systemically taxing treatments to target tumors or disrupt the molecular elements driving tumor growth place considerable strain on recovery efforts. Skeletal tissue is inherently sensitive to mechanical forces, therefore attention to exercise and mechanical loading as non-pharmacological means to preserve bone during treatment and in post-treatment rehabilitative efforts have been topics of recent focus. This review discusses the dysregulation that cancers and the ensuing metabolic dysfunction that confer adverse effects on musculoskeletal tissues. Additionally, we describe foundational mechanotransduction pathways and the mechanisms by which they influence both musculoskeletal and cancerous cells. Functional and biological implications of mechanical loading at the tissue and cellular levels will be discussed, highlighting the current understanding in the field. Herein, in vitro, translational, and clinical data are summarized to consider the positive impact of exercise and low magnitude mechanical loading on tumor-bearing skeletal tissue.
Collapse
Affiliation(s)
- G M Pagnotti
- University of Texas - MD Anderson Cancer Center, Department of Endocrine, Neoplasia and Hormonal Disorders, Houston, TX, USA.
| | - W R Thompson
- Indiana University, Department of Physical Therapy, Indianapolis, IN, USA
| | - T A Guise
- University of Texas - MD Anderson Cancer Center, Department of Endocrine, Neoplasia and Hormonal Disorders, Houston, TX, USA
| | - C T Rubin
- Stony Brook University, Department of Biomedical Engineering, Stony Brook, NY, USA
| |
Collapse
|
28
|
Rajapakse CS, Johncola AJ, Batzdorf AS, Jones BC, Al Mukaddam M, Sexton K, Shults J, Leonard MB, Snyder PJ, Wehrli FW. Effect of Low-Intensity Vibration on Bone Strength, Microstructure, and Adiposity in Pre-Osteoporotic Postmenopausal Women: A Randomized Placebo-Controlled Trial. J Bone Miner Res 2021; 36:673-684. [PMID: 33314313 DOI: 10.1002/jbmr.4229] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/16/2020] [Revised: 11/21/2020] [Accepted: 11/27/2020] [Indexed: 12/31/2022]
Abstract
There has been evidence that cyclical mechanical stimulation may be osteogenic, thus providing opportunities for nonpharmacological treatment of degenerative bone disease. Here, we applied this technology to a cohort of postmenopausal women with varying bone mineral density (BMD) T-scores at the total hip (-0.524 ± 0.843) and spine (-0.795 ± 1.03) to examine the response to intervention after 1 year of daily treatment with 10 minutes of vibration therapy in a randomized double-blinded trial. The device operates either in an active mode (30 Hz and 0.3 g) or placebo. Primary endpoints were changes in bone stiffness at the distal tibia and marrow adiposity of the vertebrae, based on 3 Tesla high-resolution MRI and spectroscopic imaging, respectively. Secondary outcome variables included distal tibial trabecular microstructural parameters and vertebral deformity determined by MRI, volumetric and areal bone densities derived using peripheral quantitative computed tomography (pQCT) of the tibia, and dual-energy X-ray absorptiometry (DXA)-based BMD of the hip and spine. Device adherence was 83% in the active group (n = 42) and 86% in the placebo group (n = 38) and did not differ between groups (p = .7). The mean 12-month changes in tibial stiffness in the treatment group and placebo group were +1.31 ± 6.05% and -2.55 ± 3.90%, respectively (group difference 3.86%, p = .0096). In the active group, marrow fat fraction significantly decreased after 12 months of intervention (p = .0003), whereas no significant change was observed in the placebo group (p = .7; group difference -1.59%, p = .029). Mean differences of the changes in trabecular bone volume fraction (p = .048) and erosion index (p = .044) were also significant, as was pQCT-derived trabecular volumetric BMD (vBMD; p = .016) at the tibia. The data are commensurate with the hypothesis that vibration therapy is protective against loss in mechanical strength and, further, that the intervention minimizes the shift from the osteoblastic to the adipocytic lineage of mesenchymal stem cells. © 2020 American Society for Bone and Mineral Research (ASBMR).
Collapse
Affiliation(s)
- Chamith S Rajapakse
- Department of Radiology, University of Pennsylvania, Philadelphia, PA, USA.,Department of Orthopaedic Surgery, University of Pennsylvania, Philadelphia, PA, USA
| | - Alyssa J Johncola
- Department of Radiology, University of Pennsylvania, Philadelphia, PA, USA
| | | | - Brandon C Jones
- Department of Radiology, University of Pennsylvania, Philadelphia, PA, USA
| | - Mona Al Mukaddam
- Department of Orthopaedic Surgery, University of Pennsylvania, Philadelphia, PA, USA.,Department of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Kelly Sexton
- Department of Radiology, University of Pennsylvania, Philadelphia, PA, USA
| | - Justine Shults
- Department of Biostatistics, Epidemiology, and Informatics, University of Pennsylvania, Philadelphia, PA, USA
| | - Mary B Leonard
- Department of Pediatrics, Children's Hospital of Philadelphia, University of Pennsylvania, Philadelphia, PA, USA.,Department of Pediatrics, Stanford University School of Medicine, Stanford, CA, USA
| | - Peter J Snyder
- Department of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Felix W Wehrli
- Department of Radiology, University of Pennsylvania, Philadelphia, PA, USA
| |
Collapse
|
29
|
Spain L, Yang L, Wilkinson JM, McCloskey E. Transmission of whole body vibration - Comparison of three vibration platforms in healthy subjects. Bone 2021; 144:115802. [PMID: 33309990 DOI: 10.1016/j.bone.2020.115802] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/19/2020] [Revised: 12/07/2020] [Accepted: 12/07/2020] [Indexed: 12/21/2022]
Abstract
The potential of whole body vibration (WBV) to maintain or enhance musculoskeletal strength during ageing is of increasing interest, with both low and high magnitude WBV having been shown to maintain or increase bone mineral density (BMD) at the lumbar spine and femoral neck. The aim of this study was to determine how a range of side alternating and vertical WBV platforms deliver vibration stimuli up through the human body. Motion capture data were collected for 6 healthy adult participants whilst standing on the Galileo 900, Powerplate Pro 5 and Juvent 100 WBV platforms. The side alternating Galileo 900 WBV platform delivered WBV at 5-30 Hz and amplitudes of 0-5 mm. The Powerplate Pro 5 vertical WBV platform delivered WBV at 25 and 30 Hz and amplitude settings of 'Low' and 'High'. The Juvent 1000 vertical WBV platform delivered a stimulus at a frequency between 32 and 37 Hz and amplitude 10 fold lower than either the Galileo or Powerplate, resulting in accelerations of 0.3 g. Motion capture data were recorded using an 8 camera Vicon Nexus system with 21 reflective markers placed at anatomical landmarks between the toe and the forehead. Vibration was expressed as vertical RMS accelerations along the z-axis which were calculated as the square root of the mean of the squared acceleration values in g. The Juvent 1000 did not deliver detectable vertical RMS accelerations above the knees. In contrast, the Powerplate Pro 5 and Galileo 900 delivered vertical RMS accelerations sufficiently to reach the femoral neck and lumbar spine. The maximum vertical RMS accelerations at the anterior superior iliac spine (ASIS) were 1.00 g ±0.30 and 0.85 g ±0.49 for the Powerplate and Galileo respectively. For similar accelerations at the ASIS, the Galileo achieved greater accelerations within the lower limbs, whilst the Powerplate recorded higher accelerations in the thoracic spine at T10. The Powerplate Pro 5 and Galileo 900 deliver vertical RMS accelerations sufficiently to reach the femoral neck and lumbar spine, whereas the Juvent 1000 did not deliver detectable vertical RMS accelerations above the knee. The side alternating Galileo 900 showed greater attenuation of the input accelerations than the vertical vibrations of the Powerplate Pro 5. The platforms differ markedly in the transmission of vibration with strong influences of frequency and amplitude. Researchers need to take account of the differences in transmission between platforms when designing and comparing trials of whole body vibration.
Collapse
Affiliation(s)
- Lucy Spain
- Academic Unit of Bone Metabolism, Metabolic Bone Centre, Sorby Wing, EU14, E Floor, The Medical School, Beech Hill Road, Sheffield S10 2RX, UK; NIHR Bone Biomedical Research Unit, Northern General Hospital, Herries Road, Sheffield S5 7AU, UK
| | - Lang Yang
- Academic Unit of Bone Metabolism, Metabolic Bone Centre, Sorby Wing, EU14, E Floor, The Medical School, Beech Hill Road, Sheffield S10 2RX, UK; NIHR Bone Biomedical Research Unit, Northern General Hospital, Herries Road, Sheffield S5 7AU, UK
| | - J Mark Wilkinson
- Academic Unit of Bone Metabolism, Metabolic Bone Centre, Sorby Wing, EU14, E Floor, The Medical School, Beech Hill Road, Sheffield S10 2RX, UK; NIHR Bone Biomedical Research Unit, Northern General Hospital, Herries Road, Sheffield S5 7AU, UK
| | - Eugene McCloskey
- Academic Unit of Bone Metabolism, Metabolic Bone Centre, Sorby Wing, EU14, E Floor, The Medical School, Beech Hill Road, Sheffield S10 2RX, UK; NIHR Bone Biomedical Research Unit, Northern General Hospital, Herries Road, Sheffield S5 7AU, UK.
| |
Collapse
|
30
|
Lad SE, Anderson RJ, Cortese SA, Alvarez CE, Danison AD, Morris HM, Ravosa MJ. Bone remodeling and cyclical loading in maxillae of New Zealand white rabbits (Oryctolagus cuniculus). Anat Rec (Hoboken) 2021; 304:1927-1936. [PMID: 33586861 DOI: 10.1002/ar.24599] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2020] [Revised: 12/21/2020] [Accepted: 01/18/2021] [Indexed: 11/10/2022]
Abstract
Mammalian feeding behaviors are altered when mechanically challenging (e.g., tough, stiff) foods require large bite forces or prolonged mastication. Bony responses to high bite forces are well-documented for the mammalian skull, but osteogenesis due to cyclical loading, caused by repetitive chewing, is more poorly understood. Previous studies demonstrate that cyclical loading results in greater bone formation in the rabbit masticatory apparatus and in substantial Haversian remodeling in primate postcrania. Here we assess the relationship between cyclical loading and remodeling in the rabbit maxilla. Twenty male New Zealand white rabbits (Oryctolagus cuniculus) were raised on either an overuse or control diet (10 per group) for 48 weeks, beginning at weaning onset. The control group was raised on a diet of rabbit pellets (E = 29 MPa, R = 1031 J/m2 ), whereas the overuse group ate rabbit pellets and hay, which has high stiffness (E = 3336 MPa) and toughness (R = 2760 J/m2 ) properties. Hay requires greater chewing investment (475 chews/g) and longer chewing durations (568 s/g) than pellets (161 chews/g and 173 s/g), therefore causing cyclical loading of the jaws. Remodeling was measured as osteon population density (OPD), percent Haversian bone (%HAV), and osteon cross-sectional area (On.Ar). The only significant difference found was greater On.Ar in the alveolar region of the maxilla (p < 0.001) in the overuse group. The hypothesis that cyclical loading engenders Haversian remodeling in the developing maxilla is not supported. The continuation of modeling throughout the experimental duration may negate the need for remodeling as newly laid bone tends to be more compliant and resistant to crack propagation.
Collapse
Affiliation(s)
- Susan E Lad
- Department of Biological Sciences, University of Notre Dame, Notre Dame, Indiana, USA
| | - Rebecca J Anderson
- Department of Biological Sciences, University of Notre Dame, Notre Dame, Indiana, USA
| | - Stephen A Cortese
- Department of Biological Sciences, University of Notre Dame, Notre Dame, Indiana, USA
| | - Carmen E Alvarez
- Department of Biological Sciences, University of Notre Dame, Notre Dame, Indiana, USA
| | - Andrew D Danison
- Department of Biology, The College of Wooster, Wooster, Ohio, USA
| | - Hannah M Morris
- Department of Biological Sciences, University of Notre Dame, Notre Dame, Indiana, USA
| | - Matthew J Ravosa
- Department of Biological Sciences, University of Notre Dame, Notre Dame, Indiana, USA.,Department of Anthropology, University of Notre Dame, Notre Dame, Indiana, USA.,Department of Aerospace and Mechanical Engineering, University of Notre Dame, Notre Dame, Indiana, USA
| |
Collapse
|
31
|
Thompson M, Woods K, Newberg J, Oxford JT, Uzer G. Low-intensity vibration restores nuclear YAP levels and acute YAP nuclear shuttling in mesenchymal stem cells subjected to simulated microgravity. NPJ Microgravity 2020; 6:35. [PMID: 33298964 PMCID: PMC7708987 DOI: 10.1038/s41526-020-00125-5] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2020] [Accepted: 10/08/2020] [Indexed: 12/18/2022] Open
Abstract
Reducing the musculoskeletal deterioration that astronauts experience in microgravity requires countermeasures that can improve the effectiveness of otherwise rigorous and time-expensive exercise regimens in space. The ability of low-intensity vibrations (LIV) to activate force-responsive signaling pathways in cells suggests LIV as a potential countermeasure to improve cell responsiveness to subsequent mechanical challenge. Mechanoresponse of mesenchymal stem cells (MSC), which maintain bone-making osteoblasts, is in part controlled by the "mechanotransducer" protein YAP (Yes-associated protein), which is shuttled into the nucleus in response to cyto-mechanical forces. Here, using YAP nuclear shuttling as a measurement outcome, we tested the effect of 72 h of clinostat-induced simulated microgravity (SMG) and daily LIV application (LIVDT) on the YAP nuclear entry driven by either acute LIV (LIVAT) or Lysophosphohaditic acid (LPA), applied after the 72 h period. We hypothesized that SMG-induced impairment of acute YAP nuclear entry would be alleviated by the daily application of LIVDT. Results showed that while both acute LIVAT and LPA treatments increased nuclear YAP entry by 50 and 87% over the basal levels in SMG-treated MSCs, nuclear YAP levels of all SMG groups were significantly lower than non-SMG controls. LIVDT, applied in parallel to SMG, restored the SMG-driven decrease in basal nuclear YAP to control levels as well as increased the LPA-induced but not LIVAT-induced YAP nuclear entry over SMG only, counterparts. These cell-level observations suggest that daily LIV treatments are a feasible countermeasure for restoring basal nuclear YAP levels and increasing the YAP nuclear shuttling in MSCs under SMG.
Collapse
Affiliation(s)
- Matthew Thompson
- Mechanical and Biomedical Engineering, Boise State University, Boise, ID, USA
| | - Kali Woods
- Biomolecular Sciences Graduate Program, Boise State University, Boise, ID, USA
| | - Joshua Newberg
- Mechanical and Biomedical Engineering, Boise State University, Boise, ID, USA
| | - Julia Thom Oxford
- Biomolecular Sciences Graduate Program, Boise State University, Boise, ID, USA
| | - Gunes Uzer
- Mechanical and Biomedical Engineering, Boise State University, Boise, ID, USA.
| |
Collapse
|
32
|
Little-Letsinger SE, Pagnotti GM, McGrath C, Styner M. Exercise and Diet: Uncovering Prospective Mediators of Skeletal Fragility in Bone and Marrow Adipose Tissue. Curr Osteoporos Rep 2020; 18:774-789. [PMID: 33068251 PMCID: PMC7736569 DOI: 10.1007/s11914-020-00634-y] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 09/29/2020] [Indexed: 02/07/2023]
Abstract
PURPOSE OF REVIEW To highlight recent basic, translational, and clinical works demonstrating exercise and diet regulation of marrow adipose tissue (MAT) and bone and how this informs current understanding of the relationship between marrow adiposity and musculoskeletal health. RECENT FINDINGS Marrow adipocytes accumulate in the bone in the setting of not only hypercaloric intake (calorie excess; e.g., diet-induced obesity) but also with hypocaloric intake (calorie restriction; e.g., anorexia), despite the fact that these states affect bone differently. With hypercaloric intake, bone quantity is largely unaffected, whereas with hypocaloric intake, bone quantity and quality are greatly diminished. Voluntary running exercise in rodents was found to lower MAT and promote bone in eucaloric and hypercaloric states, while degrading bone in hypocaloric states, suggesting differential modulation of MAT and bone, dependent upon whole-body energy status. Energy status alters bone metabolism and bioenergetics via substrate availability or excess, which plays a key role in the response of bone and MAT to mechanical stimuli. Marrow adipose tissue (MAT) is a fat depot with a potential role in-as well as responsivity to-whole-body energy metabolism. Understanding the localized function of this depot in bone cell bioenergetics and substrate storage, principally in the exercised state, will aid to uncover putative therapeutic targets for skeletal fragility.
Collapse
Affiliation(s)
- Sarah E Little-Letsinger
- Department of Medicine, Division of Endocrinology & Metabolism, University of North Carolina, Chapel Hill, NC, USA.
| | - Gabriel M Pagnotti
- Department of Medicine, Division of Endocrinology, Indiana University, Indianapolis, IN, USA
| | - Cody McGrath
- Department of Medicine, Division of Endocrinology & Metabolism, University of North Carolina, Chapel Hill, NC, USA
| | - Maya Styner
- Department of Medicine, Division of Endocrinology & Metabolism, University of North Carolina, Chapel Hill, NC, USA
| |
Collapse
|
33
|
Low Intensity Vibrations Augment Mesenchymal Stem Cell Proliferation and Differentiation Capacity during in vitro Expansion. Sci Rep 2020; 10:9369. [PMID: 32523117 PMCID: PMC7286897 DOI: 10.1038/s41598-020-66055-0] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2019] [Accepted: 05/13/2020] [Indexed: 01/09/2023] Open
Abstract
A primary component of exercise, mechanical signals, when applied in the form of low intensity vibration (LIV), increases mesenchymal stem cell (MSC) osteogenesis and proliferation. While it is generally accepted that exercise effectively combats the deleterious effects of aging in the musculoskeletal system, how long-term exercise affects stem cell aging, which is typified by reduced proliferative and differentiative capacity, is not well explored. As a first step in understanding the effect of long-term application of mechanical signals on stem cell function, we investigated the effect of LIV during in vitro expansion of MSCs. Primary MSCs were subjected to either a control or to a twice-daily LIV regimen for up to sixty cell passages (P60) under in vitro cell expansion conditions. LIV effects were assessed at both early passage (EP) and late passage (LP). At the end of the experiment, P60 cultures exposed to LIV maintained a 28% increase of cell doubling and a 39% reduction in senescence-associated β-galactosidase activity (p < 0.01) but no changes in telomere lengths and p16INK4a levels were observed. Prolonged culture-associated decreases in osteogenic and adipogenic capacity were partially protected by LIV in both EP and LP groups (p < 0.05). Mass spectroscopy of late passage MSC indicated a synergistic decrease of actin and microtubule cytoskeleton-associated proteins in both control and LIV groups while LIV induced a recovery of proteins associated with oxidative reductase activity. In summary, our findings show that the application of long-term mechanical challenge (+LIV) during in vitro expansion of MSCs for sixty passages significantly alters MSC proliferation, differentiation and structure. This suggests LIV as a potential tool to investigate the role of physical activity during aging.
Collapse
|
34
|
Zürcher SJ, Jung R, Monnerat S, Schindera C, Eser P, Meier C, Rueegg CS, von der Weid NX, Kriemler S. High impact physical activity and bone health of lower extremities in childhood cancer survivors: A cross-sectional study of SURfit. Int J Cancer 2020; 147:1845-1854. [PMID: 32167159 DOI: 10.1002/ijc.32963] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2019] [Revised: 02/20/2020] [Accepted: 02/24/2020] [Indexed: 11/06/2022]
Abstract
Childhood cancer survivors (CCS) are at risk of reduced bone health and premature osteoporosis. As physical activity with high impact loading (IL-PA) is known to promote bone health, we compared bone densitometry and microstructure between groups of CCS who performed different amounts of physical activities in their daily life. We used baseline data of a single-center PA trial including 161 CCS from the Swiss Childhood Cancer Registry, aged <16 at diagnosis, ≥16 at study and ≥5 years since diagnosis. Lower body bone health was assessed with peripheral quantitative computed tomography (pQCT) and dual-energy X-ray absorptiometry (DXA). Daily IL-PA (duration in activities >2 g acceleration and numbers of vertical impacts/hr >2 g) was captured using hip-worn accelerometers (1-3 weeks). For both IL-PA approaches, we formed low, middle and high activity groups based on tertiles. Bone health of the high and middle active groups was compared to the low active group. 63% of CCS had indication of at least one bone mineral density z-score ≤ -1 measured by pQCT or DXA. The high IL-PA group performing 2.8 min/day or 19.1 impact peaks/hr > 2 g (median) showed about 3-13% better microstructural and densitometric bone health as compared to the low IL-PA group with 0.38 min/day or 0.85 peaks/hr > 2 g. Just a few minutes and repetitions of high IL-PA as easily modifiable lifestyle factor may be sufficient to improve bone health in adult CCS. Future longitudinal research is needed to better understand pattern and dosage of minimal impact loading needed to strengthen bone in growing and adult CCS.
Collapse
Affiliation(s)
- Simeon J Zürcher
- Department of Epidemiology, Biostatistics and Prevention Institute, University of Zurich, Zurich, Switzerland
| | - Ruedi Jung
- Department of Epidemiology, Biostatistics and Prevention Institute, University of Zurich, Zurich, Switzerland
| | - Sophie Monnerat
- Department of Pediatric Hematology and Oncology, University Children's Hospital Basel (UKBB) and the University of Basel, Basel, Switzerland
| | - Christina Schindera
- Department of Pediatric Hematology and Oncology, University Children's Hospital Basel (UKBB) and the University of Basel, Basel, Switzerland.,Swiss Childhood Cancer Registry, Institute of Social and Preventive Medicine, University of Bern, Bern, Switzerland
| | - Prisca Eser
- Preventive Cardiology and Sports Medicine, University Clinic of Cardiology, Inselspital, University Hospital Bern, Bern, Switzerland
| | - Christian Meier
- Division of Endocrinology, Diabetes and Metabolism, University Hospital Basel, Basel, Switzerland
| | - Corina S Rueegg
- Oslo Centre for Biostatistics and Epidemiology, Oslo University Hospital, Oslo, Norway
| | - Nicolas X von der Weid
- Department of Pediatric Hematology and Oncology, University Children's Hospital Basel (UKBB) and the University of Basel, Basel, Switzerland
| | - Susi Kriemler
- Department of Epidemiology, Biostatistics and Prevention Institute, University of Zurich, Zurich, Switzerland
| |
Collapse
|
35
|
Bodnyk KA, Kuchynsky KS, Balgemann M, Stephens B, Hart RT. The long-term residual effects of low-magnitude mechanical stimulation therapy on skeletal health. J Biol Eng 2020; 14:9. [PMID: 32190111 PMCID: PMC7073014 DOI: 10.1186/s13036-020-0232-x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2019] [Accepted: 03/02/2020] [Indexed: 11/10/2022] Open
Abstract
Background Low-magnitude mechanical stimulation (LMMS) may improve skeletal health. The objective of this research was to investigate the long-term residual effects of LMMS on bone health. 10-week old female mice were given LMMS for 8 weeks; SHAM did not receive LMMS. Some groups remained on study for an additional 8 or 16 weeks post treatment (N = 17). Results Epiphyseal trabecular mineralizing surface to bone surface ratio (MS/BS) and bone formation rate (BFR/BS) were significantly greater in the LMMS group compared to the SHAM group at 8 weeks by 92 and 128% respectively. Mineral apposition rate (MAR) was significantly greater in the LMMS group 16 weeks post treatment by 14%. Metaphyseal trabecular bone mineral density (BMD) increased by 18%, bone volume tissue volume ratio (BV/TV) increased by 37%, and trabecular thickness (Tb.Th.) increased by 10% with LMMS at 8 weeks post treatment. Significant effects 16 weeks post treatment were maintained for BV/TV and Tb.Th. The middle-cortical region bone volume (BV) increased by 4% and cortical thickness increased by 3% with 8-week LMMS. Conclusions LMMS improves bone morphological parameters immediately after and in some cases long-term post LMMS. Results from this work will be helpful in developing treatment strategies to increase bone health in younger individuals.
Collapse
Affiliation(s)
- Kyle A Bodnyk
- Department of Biomedical Engineering, The Ohio State University, 1080 Carmack Rd, Columbus, OH 43210 USA
| | - Kyle S Kuchynsky
- Department of Biomedical Engineering, The Ohio State University, 1080 Carmack Rd, Columbus, OH 43210 USA
| | - Megan Balgemann
- Department of Biomedical Engineering, The Ohio State University, 1080 Carmack Rd, Columbus, OH 43210 USA
| | - Brooke Stephens
- Department of Biomedical Engineering, The Ohio State University, 1080 Carmack Rd, Columbus, OH 43210 USA
| | - Richard T Hart
- Department of Biomedical Engineering, The Ohio State University, 1080 Carmack Rd, Columbus, OH 43210 USA
| |
Collapse
|
36
|
Sun T, Yan Z, Cai J, Shao X, Wang D, Ding Y, Feng Y, Yang J, Luo E, Feng X, Jing D. Effects of mechanical vibration on cell morphology, proliferation, apoptosis, and cytokine expression/secretion in osteocyte-like MLO-Y4 cells exposed to high glucose. Cell Biol Int 2020; 44:216-228. [PMID: 31448865 DOI: 10.1002/cbin.11221] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2019] [Accepted: 08/22/2019] [Indexed: 01/24/2023]
Abstract
Diabetic patients exhibit significant bone deterioration. Our recent findings demonstrate that mechanical vibration is capable of resisting diabetic bone loss, whereas the relevant mechanism remains unclear. We herein examined the effects of mechanical vibration on the activities and functions of osteocytes (the most abundant and well-recognized mechanosensitive cells in the bone) exposed to high glucose (HG). The osteocytic MLO-Y4 cells were incubated with 50 mM HG for 24 h, and then stimulated with 1 h/day mechanical vibration (0.5 g, 45 Hz) for 3 days. We found that mechanical vibration significantly increased the proliferation and viability of MLO-Y4 cells under the HG environment via the MTT, BrdU, and Cell Viability Analyzer assays. The apoptosis detection showed that HG-induced apoptosis in MLO-Y4 cells was inhibited by mechanical vibration. Moreover, increased cellular area, microfilament density, and anisotropy in HG-incubated MLO-Y4 cells were observed after mechanical vibration via the F-actin fluorescence staining. The real-time polymerase chain reaction and western blotting results demonstrated that mechanical vibration significantly upregulated the gene and protein expression of Wnt3a, β-catenin, and osteoprotegerin (OPG) and decreased the sclerostin, DKK1, and receptor activator for nuclear factor-κB ligand (RANKL) expression in osteocytes exposed to HG. The enzyme-linked immunosorbent assay assays showed that mechanical vibration promoted the secretion of prostaglandin E2 and OPG, and inhibited the secretion of tumor necrosis factor-α and RANKL in the supernatant of HG-treated MLO-Y4 cells. Together, this study demonstrates that mechanical vibration improves osteocytic architecture and viability, and regulates cytokine expression and secretion in the HG environment, and implies the potential great contribution of the modulation of osteocytic activities in resisting diabetic osteopenia/osteoporosis by mechanical vibration.
Collapse
Affiliation(s)
- Tao Sun
- Department of Biomedical Engineering, Fourth Military Medical University, Xi'an, China
| | - Zedong Yan
- Department of Biomedical Engineering, Fourth Military Medical University, Xi'an, China
| | - Jing Cai
- Department of Diagnosis, College of Basic Medicine, Shaanxi University of Chinese Medicine, Xianyang, China
| | - Xi Shao
- Department of Biomedical Engineering, Fourth Military Medical University, Xi'an, China
| | - Dan Wang
- Lab of Tissue Engineering, Faculty of Life Sciences, Northwest University, Xi'an, China
| | - Yuanjun Ding
- Department of Biomedical Engineering, Fourth Military Medical University, Xi'an, China
| | - Ying Feng
- Department of Diagnosis, College of Basic Medicine, Shaanxi University of Chinese Medicine, Xianyang, China
| | - Jingyue Yang
- Department of Oncology of Xijing Hospital, Fourth Military Medical University, Xi'an, China
| | - Erping Luo
- Department of Biomedical Engineering, Fourth Military Medical University, Xi'an, China
| | - Xue Feng
- Department of Cell Biology, School of Medicine, Northwest University, Xi'an, China
| | - Da Jing
- Department of Biomedical Engineering, Fourth Military Medical University, Xi'an, China
| |
Collapse
|
37
|
Cai J, Shao X, Yan Z, Liu X, Yang Y, Luo E, Jing D. Differential skeletal response in adult and aged rats to independent and combinatorial stimulation with pulsed electromagnetic fields and mechanical vibration. FASEB J 2019; 34:3037-3050. [DOI: 10.1096/fj.201902779r] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2019] [Revised: 12/09/2019] [Accepted: 12/16/2019] [Indexed: 12/19/2022]
Affiliation(s)
- Jing Cai
- College of Basic Medicine Shaanxi University of Chinese Medicine Xianyang China
- Department of Biomedical Engineering Fourth Military Medical University Xi'an China
| | - Xi Shao
- Department of Biomedical Engineering Fourth Military Medical University Xi'an China
| | - Zedong Yan
- Department of Biomedical Engineering Fourth Military Medical University Xi'an China
| | - Xiyu Liu
- Department of Biomedical Engineering Fourth Military Medical University Xi'an China
| | - Yongqing Yang
- Department of Biomedical Engineering Fourth Military Medical University Xi'an China
| | - Erping Luo
- Department of Biomedical Engineering Fourth Military Medical University Xi'an China
| | - Da Jing
- Department of Biomedical Engineering Fourth Military Medical University Xi'an China
| |
Collapse
|
38
|
Huseman CJ, Sigler DH, Welsh TH, Suva LJ, Vogelsang MM, Dominguez BJ, Huggins S, Paulk C. Skeletal response to whole body vibration and dietary calcium and phosphorus in growing pigs. J Anim Sci 2019; 97:3369-3378. [PMID: 31265734 DOI: 10.1093/jas/skz189] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2019] [Accepted: 05/21/2019] [Indexed: 11/13/2022] Open
Abstract
The quality and strength of the skeleton is regulated by mechanical loading and adequate mineral intake of calcium (Ca) and phosphorus (P). Whole body vibration (WBV) has been shown to elicit adaptive responses in the skeleton, such as increased bone mass and strength. This experiment was designed to determine the effects of WBV and dietary Ca and P on bone microarchitecture and turnover. A total of 26 growing pigs were utilized in a 60-d experiment. Pigs were randomly assigned within group to a 2 × 2 factorial design with dietary Ca and P concentration (low and adequate) as well as WBV. The adequate diet was formulated to meet all nutritional needs according to the NRC recommendations for growing pigs. Low Ca, P diets had 0.16% lower Ca and 0.13% lower P than the adequate diet. Pigs receiving WBV were vibrated 30 min/d, 3 d/wk at a magnitude of 1 to 2 mm and a frequency of 50 Hz. On days 0, 30, and 60, digital radiographs were taken to determine bone mineral content by radiographic bone aluminum equivalency (RBAE) and serum was collected to measure biochemical markers of bone formation (osteocalcin, OC) and bone resorption (carboxy-terminal collagen crosslinks, CTX-I). At day 60, pigs were euthanized and the left third metacarpal bone was excised for detailed analysis by microcomputed tomography (microCT) to measure trabecular microarchitecture and cortical bone geometry. Maximum RBAE values for the medial or lateral cortices were not affected (P > 0.05) by WBV. Pigs fed adequate Ca and P tended (P = 0.10) to have increased RBAE max values for the medial and lateral cortices. WBV pigs had significantly decreased serum CTX-1 concentrations (P = 0.044), whereas animals fed a low Ca and P diet had increased (P < 0.05) OC concentrations. In bone, WBV pigs showed a significantly lower trabecular number (P = 0.002) and increased trabecular separation (P = 0.003), whereas cortical bone parameters were not significantly altered by WBV or diet (P > 0.05). In summary, this study confirmed the normal physiological responses of the skeleton to a low Ca, P diet. Interestingly, although the WBV protocol utilized in this study did not elicit any significant osteogenic response, decreases in CTX-1 in response to WBV may have been an early local adaptive bone response. We interpret these data to suggest that the frequency and amplitude of WBV was likely sufficient to elicit a bone remodeling response, but the duration of the study may not have captured the full extent of an entire bone remodeling cycle.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Chad Paulk
- Texas A&M University, College Station, TX.,Kansas State University, Manhattan, KS
| |
Collapse
|
39
|
Bourzac C, Bensidhoum M, Pallu S, Portier H. Use of adult mesenchymal stromal cells in tissue repair: impact of physical exercise. Am J Physiol Cell Physiol 2019; 317:C642-C654. [PMID: 31241985 PMCID: PMC6850997 DOI: 10.1152/ajpcell.00530.2018] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2018] [Revised: 06/17/2019] [Accepted: 06/17/2019] [Indexed: 02/06/2023]
Abstract
Physical exercise (PE) has unquestionable beneficial effects on health, which likely extend into several organ-to-cell physiological processes. At the cell scale, endogenous mesenchymal stromal cells (MSCs) contribute to tissue repair, although their repair capacities may be insufficient in paucicellular or severely damaged tissues. For this reason, MSC transplantation holds great promise for tissue repair. With the goals of understanding if PE has beneficial effects on MSC biology and if PE potentiates their role in tissue repair, we reviewed literature reports regarding the effects of PE on MSC properties (specifically, proliferation, differentiation, and homing) and of a combination of PE and MSC transplantation on tissue repair (specifically neural, cartilage, and muscular tissues). Contradictory results have been reported; interpretation is complicated because various and different species, cell sources, and experimental protocols, specifically exercise programs, have been used. On the basis of these data, the effects of exercise on MSC proliferation and differentiation depend on exercise characteristics (type, intensity, duration, etc.) and on the characteristics of the tissue from which the MSCs were collected. For the in vitro studies, the level of strain (and other details of the mechanical stimulus), the time elapsed between the end of exposure to strain and MSC collection, the age of the donors, as well as the passage number at which the MSCs are evaluated also play a role. The combination of PE and MSC engraftment improves neural, cartilage, and muscular tissue recovery, but it is not clear whether the effects of MSCs and exercise are additive or synergistic.
Collapse
Affiliation(s)
- Celine Bourzac
- Université de Paris, CNRS, INSERM, Laboratoire de Biologie, Bioingenierie et Bioimagerie Osteoarticulaires (B3OA), Paris, France
- Ecole Nationale Vétérinaire d'Alfort, Laboratoire de Biologie, Bioingenierie et Bioimagerie Osteoarticulaires (B3OA), Maisons-Alfort, France
| | - Morad Bensidhoum
- Université de Paris, CNRS, INSERM, Laboratoire de Biologie, Bioingenierie et Bioimagerie Osteoarticulaires (B3OA), Paris, France
| | - Stephane Pallu
- Université de Paris, CNRS, INSERM, Laboratoire de Biologie, Bioingenierie et Bioimagerie Osteoarticulaires (B3OA), Paris, France
- Université d'Orléans, Le Collegium sciences et techniques (COST), Orléans, France
| | - Hugues Portier
- Université de Paris, CNRS, INSERM, Laboratoire de Biologie, Bioingenierie et Bioimagerie Osteoarticulaires (B3OA), Paris, France
- Université d'Orléans, Le Collegium sciences et techniques (COST), Orléans, France
| |
Collapse
|
40
|
Qin YX, Xia Y, Muir J, Lin W, Rubin CT. Quantitative ultrasound imaging monitoring progressive disuse osteopenia and mechanical stimulation mitigation in calcaneus region through a 90-day bed rest human study. J Orthop Translat 2019; 18:48-58. [PMID: 31508307 PMCID: PMC6718925 DOI: 10.1016/j.jot.2018.11.004] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/23/2018] [Revised: 11/21/2018] [Accepted: 11/28/2018] [Indexed: 11/24/2022] Open
Abstract
Background Osteoporosis parallels aging and functional mechanical unloading (e.g., space flight and bed rest), jeopardizing mineral density, microstructure, and integrity of bone and leading to an increased risk of fracture. A way to combat this deterioration is to harness the sensitivity of bone to mechanical signals. Objective This study evaluates the longitudinal effect of a dynamic mechanical loading through the heel on human bone in vivo during 90-day bed rest, monitored by quantitative ultrasound (QUS) imaging and dual-energy X-ray absorptiometry (DXA) in localized regions of interests, i.e., calcaneus. Methods A total of 29 bed rest individuals were evaluated (11 control and 18 treatment) with a brief (10-minute) daily low-intensity (0.3g), high-frequency (30Hz) dynamic mechanical stimulation countermeasure through vibrational inhibition bone erosion (VIBE). Both QUS and DXA detected longitudinal bone density and quality changes. Results Ultrasound velocity (UV) decreased in the control group and increased in the group treated with low-intensity loading. The UV increased by 1.9% and 1.6% at 60- and 90-day bed rest (p=0.01) in VIBE over control groups. A trend was found in broadband ultrasound attenuation (BUA), with a VIBE benefit of 1.8% at day 60 and 0.5% at day 90 in comparison with control (p=0.5). Bone mineral density (BMD) assessed by DXA decreased -4.50% for control individuals and -2.18% for VIBE individuals, showing a moderate effect of the mechanical intervention (p=0.19). Significant correlations between QUS and DXA were observed, with a combined BUA and UV vs. BMD: r2=0.70. Conclusion These results indicated that low-intensity, high-frequency loading has the potential to mitigate regional bone loss induced by long-term bed rest and that QUS imaging may be able to assess the subtle changes in bone alteration. Translational potential of this article Quantitative ultrasound has shown the efficacy of noninvasively assessing bone mass and structural properties in cadaver and isolated trabecular bone samples. While its ability in measuring in vivo bone quality and density is still unclear, a scanning confocal ultrasound imaging is developed and can perform an instant assessment for the subtle changes of such bone loss. This ultrasound imaging modality can potentially be used in the clinical assessment of bone mass. Moreover, physical stimulation has shown the ability to prevent bone loss induced by functional disuse and estrogen deficiency in animal models. However, its treatment capability is unclear. This study has shown that low-magnitude mechanical signals, introduced using low-intensity vibration (LIV), can mitigate regional bone loss caused by functional disuse. Thus localized mechanical treatment, and the quantitative ultrasound imaging have shown translational potential to noninvasively attenuate bone loss, and assess bone mass in the clinic, e.g., in an extreme condition such as long-term space mission, and long-term bedrest such as in case of spinal cord injury.
Collapse
Affiliation(s)
- Yi-Xian Qin
- Department of Biomedical Engineering, Stony Brook University, Stony Brook, NY 11794-5281, USA
| | - Yi Xia
- Department of Biomedical Engineering, Stony Brook University, Stony Brook, NY 11794-5281, USA
| | - Jesse Muir
- Department of Biomedical Engineering, Stony Brook University, Stony Brook, NY 11794-5281, USA
| | - Wei Lin
- Department of Biomedical Engineering, Stony Brook University, Stony Brook, NY 11794-5281, USA
| | - Clinton T Rubin
- Department of Biomedical Engineering, Stony Brook University, Stony Brook, NY 11794-5281, USA
| |
Collapse
|
41
|
Curtis KJ, Oberman AG, Niebur GL. Effects of mechanobiological signaling in bone marrow on skeletal health. Ann N Y Acad Sci 2019; 1460:11-24. [PMID: 31508828 DOI: 10.1111/nyas.14232] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2019] [Revised: 08/09/2019] [Accepted: 08/15/2019] [Indexed: 01/27/2023]
Abstract
Bone marrow is a cellular tissue that forms within the pore space and hollow diaphysis of bones. As a tissue, its primary function is to support the hematopoietic progenitor cells that maintain the populations of both erythroid and myeloid lineage cells in the bone marrow, making it an essential element of normal mammalian physiology. However, bone's primary function is load bearing, and deformations induced by external forces are transmitted to the encapsulated marrow. Understanding the effects of these mechanical inputs on marrow function and adaptation requires knowledge of the material behavior of the marrow at multiple scales, the loads that are applied, and the mechanobiology of the cells. This paper reviews the current state of knowledge of each of these factors. Characterization of the marrow mechanical environment and its role in skeletal health and other marrow functions remains incomplete, but research on the topic is increasing, driven by interest in skeletal adaptation and the mechanobiology of cancer metastasis.
Collapse
Affiliation(s)
- Kimberly J Curtis
- Tissue Mechanics Laboratory, Bioengineering Graduate Program, University of Notre Dame, Notre Dame, Indiana.,Advanced Diagnostics and Therapeutics Initiative, University of Notre Dame, Notre Dame, Indiana
| | - Alyssa G Oberman
- Tissue Mechanics Laboratory, Bioengineering Graduate Program, University of Notre Dame, Notre Dame, Indiana
| | - Glen L Niebur
- Tissue Mechanics Laboratory, Bioengineering Graduate Program, University of Notre Dame, Notre Dame, Indiana.,Harper Cancer Research Institute, University of Notre Dame, Notre Dame, Indiana.,Department of Aerospace and Mechanical Engineering, University of Notre Dame, Notre Dame, Indiana
| |
Collapse
|
42
|
Shipley T, Farouk K, El-Bialy T. Effect of high-frequency vibration on orthodontic tooth movement and bone density. J Orthod Sci 2019; 8:15. [PMID: 31497574 PMCID: PMC6702681 DOI: 10.4103/jos.jos_17_19] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
OBJECTIVES: Previous reports have shown that high-frequency vibration can increase bone remodeling and accelerate tooth movement. The aim of this study was to evaluate the effects of high-frequency vibration on treatment phase tooth movement, and post-treatment bone density at initiation of retention, with cone-beam computed tomography (CBCT). MATERIALS AND METHODS: Thirty patients with initial Class I skeletal relationships, initial minimum-moderate crowding (3–5 mm), treated to completion with clear aligners and adjunctive high-frequency vibration, (HFV group) or no vibration, (Control group) were evaluated. The patients were instructed to change aligners as soon as they become loose. Changes in bone density associated with orthodontic treatment were evaluated using i-CAT cone-beam computed tomography (CBCT) and InVivo Anatomage® software to quantify density using Hounsfield units (HU) between treated teeth in 10 different regions. HU values were averaged and compared against baseline (T1) and between the groups at initiation of retention (T2). RESULTS: The average time for aligner change was 5.2 days in the HFV group, and 8.7 days in the control group (P = 0.0001). There was significant T1 to T2 increase of HU values in the upper arch (P = 0.0001) and the lower arch (P = 0.008) in the HFV group. There was no significant change in average HU values in the upper (P = 0.83) or lower arches (P = 0.33) in the control group. The intergroup comparison revealed a significant difference in the upper, (P = 0.0001) and lower arches (P = 0.007). CONCLUSION: High-frequency vibration adjunctive to clear aligners, allowed early aligner changes that led to shorter treatment time in minimum-moderate crowded cases. At initiation of retention, the HFV group demonstrated statistically significant increase as compared with pre-treatment bone density, whereas control subjects showed no significant change from pre-treatment bone density.
Collapse
Affiliation(s)
- Thomas Shipley
- Department of Dentistry, Division of Orthodontics, Arizona School of Dentistry and Oral Health, A.T. Still University, Mesa, Arizona, USA.,Department of Orthodontics, Mesa, Arizona, USA
| | - Khaled Farouk
- Department of Orthodontics, Faculty of Dental Medicine, Al-Azhar University, Cairo, Egypt.,Department of Dentistry, Division of Orthodontics, University of Alberta, Edmonton, Canada
| | - Tarek El-Bialy
- Department of Dentistry, Division of Orthodontics, 7-020D Katz Group Centre for Pharmacy and Health Research, University of Alberta, Edmonton, Alberta, Canada
| |
Collapse
|
43
|
Pagnotti GM, Styner M, Uzer G, Patel VS, Wright LE, Ness KK, Guise TA, Rubin J, Rubin CT. Combating osteoporosis and obesity with exercise: leveraging cell mechanosensitivity. Nat Rev Endocrinol 2019; 15:339-355. [PMID: 30814687 PMCID: PMC6520125 DOI: 10.1038/s41574-019-0170-1] [Citation(s) in RCA: 150] [Impact Index Per Article: 25.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Osteoporosis, a condition of skeletal decline that undermines quality of life, is treated with pharmacological interventions that are associated with poor adherence and adverse effects. Complicating efforts to improve clinical outcomes, the incidence of obesity is increasing, predisposing the population to a range of musculoskeletal complications and metabolic disorders. Pharmacological management of obesity has yet to deliver notable reductions in weight and debilitating complications are rarely avoided. By contrast, exercise shows promise as a non-invasive and non-pharmacological method of regulating both osteoporosis and obesity. The principal components of exercise - mechanical signals - promote bone and muscle anabolism while limiting formation and expansion of fat mass. Mechanical regulation of bone and marrow fat might be achieved by regulating functions of differentiated cells in the skeletal tissue while biasing lineage selection of their common progenitors - mesenchymal stem cells. An inverse relationship between adipocyte versus osteoblast fate selection from stem cells is implicated in clinical conditions such as childhood obesity and increased marrow adiposity in type 2 diabetes mellitus, as well as contributing to skeletal frailty. Understanding how exercise-induced mechanical signals can be used to improve bone quality while decreasing fat mass and metabolic dysfunction should lead to new strategies to treat chronic diseases such as osteoporosis and obesity.
Collapse
Affiliation(s)
- Gabriel M Pagnotti
- School of Medicine, Division of Endocrinology, Indiana University, Indianapolis, IN, USA
| | - Maya Styner
- Department of Medicine, Division of Endocrinology and Metabolism, University of North Carolina, Chapel Hill, NC, USA
| | - Gunes Uzer
- College of Mechanical and Biomedical Engineering, Boise State University, Boise, ID, USA
| | - Vihitaben S Patel
- Department of Biomedical Engineering, Stony Brook University, Stony Brook, NY, USA
| | - Laura E Wright
- School of Medicine, Division of Endocrinology, Indiana University, Indianapolis, IN, USA
| | - Kirsten K Ness
- Department of Epidemiology and Cancer Control, St. Jude Children's Research Hospital, Memphis, TN, USA
| | - Theresa A Guise
- School of Medicine, Division of Endocrinology, Indiana University, Indianapolis, IN, USA
| | - Janet Rubin
- Department of Medicine, Division of Endocrinology and Metabolism, University of North Carolina, Chapel Hill, NC, USA
| | - Clinton T Rubin
- Department of Biomedical Engineering, Stony Brook University, Stony Brook, NY, USA.
| |
Collapse
|
44
|
Touchstone H, Bryd R, Loisate S, Thompson M, Kim S, Puranam K, Senthilnathan AN, Pu X, Beard R, Rubin J, Alwood J, Oxford JT, Uzer G. Recovery of stem cell proliferation by low intensity vibration under simulated microgravity requires LINC complex. NPJ Microgravity 2019; 5:11. [PMID: 31123701 PMCID: PMC6520402 DOI: 10.1038/s41526-019-0072-5] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2018] [Accepted: 03/20/2019] [Indexed: 12/20/2022] Open
Abstract
Mesenchymal stem cells (MSC) rely on their ability to integrate physical and spatial signals at load bearing sites to replace and renew musculoskeletal tissues. Designed to mimic unloading experienced during spaceflight, preclinical unloading and simulated microgravity models show that alteration of gravitational loading limits proliferative activity of stem cells. Emerging evidence indicates that this loss of proliferation may be linked to loss of cellular cytoskeleton and contractility. Low intensity vibration (LIV) is an exercise mimetic that promotes proliferation and differentiation of MSCs by enhancing cell structure. Here, we asked whether application of LIV could restore the reduced proliferative capacity seen in MSCs that are subjected to simulated microgravity. We found that simulated microgravity (sMG) decreased cell proliferation and simultaneously compromised cell structure. These changes included increased nuclear height, disorganized apical F-actin structure, reduced expression, and protein levels of nuclear lamina elements LaminA/C LaminB1 as well as linker of nucleoskeleton and cytoskeleton (LINC) complex elements Sun-2 and Nesprin-2. Application of LIV restored cell proliferation and nuclear proteins LaminA/C and Sun-2. An intact LINC function was required for LIV effect; disabling LINC functionality via co-depletion of Sun-1, and Sun-2 prevented rescue of cell proliferation by LIV. Our findings show that sMG alters nuclear structure and leads to decreased cell proliferation, but does not diminish LINC complex mediated mechanosensitivity, suggesting LIV as a potential candidate to combat sMG-induced proliferation loss.
Collapse
Affiliation(s)
- H. Touchstone
- Department of Mechanical and Biomedical Engineering, Boise State University, Boise, ID 83725 USA
| | - R. Bryd
- Department of Mechanical and Biomedical Engineering, Boise State University, Boise, ID 83725 USA
| | - S. Loisate
- Department of Mechanical and Biomedical Engineering, Boise State University, Boise, ID 83725 USA
| | - M. Thompson
- Department of Mechanical and Biomedical Engineering, Boise State University, Boise, ID 83725 USA
| | - S. Kim
- Department of Medicine, University of North Carolina Chapel Hill, Chapel Hill, NC 27599 USA
| | - K. Puranam
- Department of Medicine, University of North Carolina Chapel Hill, Chapel Hill, NC 27599 USA
| | - A. N. Senthilnathan
- Department of Medicine, University of North Carolina Chapel Hill, Chapel Hill, NC 27599 USA
| | - X. Pu
- Biomolecular Research Center, Boise State University, Boise, ID 83725 USA
| | - R. Beard
- Biomolecular Research Center, Boise State University, Boise, ID 83725 USA
| | - J. Rubin
- Department of Medicine, University of North Carolina Chapel Hill, Chapel Hill, NC 27599 USA
| | - J. Alwood
- Space Biosciences Division, NASA-Ames Research Center, Mountain View, CA 94035 USA
| | - J. T. Oxford
- Biomolecular Research Center, Boise State University, Boise, ID 83725 USA
| | - G. Uzer
- Department of Mechanical and Biomedical Engineering, Boise State University, Boise, ID 83725 USA
| |
Collapse
|
45
|
Tiede-Lewis LM, Dallas SL. Changes in the osteocyte lacunocanalicular network with aging. Bone 2019; 122:101-113. [PMID: 30743014 PMCID: PMC6638547 DOI: 10.1016/j.bone.2019.01.025] [Citation(s) in RCA: 73] [Impact Index Per Article: 12.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/23/2019] [Accepted: 01/28/2019] [Indexed: 12/22/2022]
Abstract
Osteoporosis is an aging-related disease of reduced bone mass that is particularly prevalent in post-menopausal women, but also affects the aged male population and is associated with increased fracture risk. Osteoporosis is the result of an imbalance whereby bone formation by osteoblasts no longer keeps pace with resorption of bone by osteoclasts. Osteocytes are the most abundant cells in bone and, although previously thought to be quiescent, they are now known to be active, multifunctional cells that play a key role in the maintenance of bone mass by regulating both osteoblast and osteoclast activity. They are also thought to regulate bone mass through their role as mechanoresponsive cells in bone that coordinate adaptive responses to mechanical loading. Osteocytes form an extensive interconnected network throughout the mineralized bone matrix and receive their nutrients as well as hormones and signaling factors through the lacunocanalicular system. Several studies have shown that the extent and connectivity of the lacunocanalicular system and osteocyte networks degenerates in aged humans as well as in animal models of aging. It is also known that the bone anabolic response to loading is decreased with aging. This review summarizes recent research on the degenerative changes that occur in osteocytes and their lacunocanalicular system as a result of aging and discusses the implications for skeletal health and homeostasis as well as potential mechanisms that may underlie these degenerative changes. Since osteocytes are such key regulators of skeletal homeostasis, maintaining the health of the osteocyte network would seem critical for maintenance of bone health. Therefore, a more complete understanding of the structure and function of the osteocyte network, its lacunocanalicular system, and the degenerative changes that occur with aging should lead to advances in our understanding of age related bone loss and potentially lead to improved therapies.
Collapse
Affiliation(s)
- LeAnn M Tiede-Lewis
- Department of Oral and Craniofacial Sciences, School of Dentistry, University of Missouri-Kansas City, Kansas City, MO 64108, United States of America
| | - Sarah L Dallas
- Department of Oral and Craniofacial Sciences, School of Dentistry, University of Missouri-Kansas City, Kansas City, MO 64108, United States of America.
| |
Collapse
|
46
|
Zaidell LN, Pollock RD, James DC, Bowtell JL, Newham DJ, Sumners DP, Mileva KN. Lower Body Acceleration and Muscular Responses to Rotational and Vertical Whole-Body Vibration at Different Frequencies and Amplitudes. Dose Response 2019; 17:1559325818819946. [PMID: 30670936 PMCID: PMC6327349 DOI: 10.1177/1559325818819946] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2018] [Revised: 10/23/2018] [Accepted: 11/20/2018] [Indexed: 12/02/2022] Open
Abstract
Aim: The aim of this study was to characterize acceleration transmission and neuromuscular responses to rotational vibration (RV) and vertical vibration (VV) at different frequencies and amplitudes. Methods: Twelve healthy males completed 2 experimental trials (RV vs VV) during which vibration was delivered during either squatting (30°; RV vs VV) or standing (RV only) with 20, 25, and 30 Hz, at 1.5 and 3.0 mm peak-to-peak amplitude. Vibration-induced accelerations were assessed with triaxial accelerometers mounted on the platform and bony landmarks at ankle, knee, and lumbar spine. Results: At all frequency/amplitude combinations, accelerations at the ankle were greater during RV (all P < .03) with the greatest difference observed at 30 Hz, 1.5 mm. Transmission of RV was also influenced by body posture (standing vs squatting, P < .03). Irrespective of vibration type, vibration transmission to all skeletal sites was generally greater at higher amplitudes but not at higher frequencies, especially above the ankle joint. Acceleration at the lumbar spine increased with greater vibration amplitude but not frequency and was highest with RV during standing. Conclusions/Implications: The transmission of vibration during whole-body vibration (WBV) is dependent on intensity and direction of vibration as well as body posture. For targeted mechanical loading at the lumbar spine, RV of higher amplitude and lower frequency vibration while standing is recommended. These results will assist with the prescription of WBV to achieve desired levels of mechanical loading at specific sites in the human body.
Collapse
Affiliation(s)
- Lisa N Zaidell
- Sport and Exercise Science Research Centre, London South Bank University, London, United Kingdom
| | - Ross D Pollock
- Centre of Human and Applied Physiological Sciences, King's College London, London, United Kingdom
| | - Darren C James
- Sport and Exercise Science Research Centre, London South Bank University, London, United Kingdom
| | - Joanna L Bowtell
- Sport and Health Sciences, University of Exeter, Exeter, United Kingdom
| | - Di J Newham
- Centre of Human and Applied Physiological Sciences, King's College London, London, United Kingdom
| | | | - Katya N Mileva
- Sport and Exercise Science Research Centre, London South Bank University, London, United Kingdom
| |
Collapse
|
47
|
Shekarforoush S, Naghii MR. Whole-Body Vibration Training Increases Myocardial Salvage Against Acute Ischemia in Adult Male Rats. Arq Bras Cardiol 2018; 112:32-37. [PMID: 30570068 PMCID: PMC6317615 DOI: 10.5935/abc.20180252] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2018] [Accepted: 07/23/2018] [Indexed: 12/13/2022] Open
Abstract
Background Whole body vibration training (WBV) is a new training program, which is safe
and effective. It can be followed by the public. However, data on the safety
and efficacy of vibration on myocardial ischemia reperfusion (IR) injury are
lacking. Objective To examine the effect of WBV on the tolerance of the myocardium to acute IR
injury in an experimental rat model. Methods Twenty-four male Wistar rats were divided into control and vibration groups.
Vibration training consisted of vertical sinusoidal whole body vibration for
30 min per day, 6 days per week, for 1 or 3 weeks (WBV1 and WBV3 groups,
respectively). All the rats were submitted to myocardial IR injury.
Myocardial infarct size and ischemia-induced arrhythmias were assessed.
Differences between variables were considered significant when p <
0.05. Results No differences were observed between the groups regarding the baseline
hemodynamic parameters. Infarct size was smaller in the experimental group
(control, 47 ± 2%; WBV1, 39 ± 2%; WBV3, 37 ± 2%; p <
0.05, vs. control). Vibration produced a significant decrease in the number
and duration of ventricular tachycardia (VT) episodes compared to the
control value. All ventricular fibrillation (VF) episodes in the vibration
groups were self-limited, while 33% of the rats in the control group died
due to irreversible VF (p = 0.02). Conclusion The data showed that vibration training significantly increased cardiac
tolerance to IR injury in rats, as evidenced by reduction in the infarct
size and cardiac arrhythmias, and by facilitating spontaneous
defibrillation.
Collapse
Affiliation(s)
| | - Mohammad Reza Naghii
- Sport Physiology Research Center, Baqiyatallah University of Medical Sciences, Teerã - Iran
| |
Collapse
|
48
|
Bergmann G, Kutzner I, Bender A, Dymke J, Trepczynski A, Duda GN, Felsenberg D, Damm P. Loading of the hip and knee joints during whole body vibration training. PLoS One 2018; 13:e0207014. [PMID: 30540775 PMCID: PMC6291191 DOI: 10.1371/journal.pone.0207014] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2018] [Accepted: 10/23/2018] [Indexed: 11/18/2022] Open
Abstract
During whole body vibrations, the total contact force in knee and hip joints consists of a static component plus the vibration-induced dynamic component. In two different cohorts, these forces were measured with instrumented joint implants at different vibration frequencies and amplitudes. For three standing positions on two platforms, the dynamic forces were compared to the static forces, and the total forces were related to the peak forces during walking. A biomechanical model served for estimating muscle force increases from contact force increases. The median static forces were 122% to 168% (knee), resp. 93% to 141% (hip), of the body weight. The same accelerations produced higher dynamic forces for alternating than for parallel foot movements. The dynamic forces individually differed much between 5.3% to 27.5% of the static forces in the same positions. On the Powerplate, they were even close to zero in some subjects. The total forces were always below 79% of the forces during walking. The dynamic forces did not rise proportionally to platform accelerations. During stance (Galileo, 25 Hz, 2 mm), the damping of dynamic forces was only 8% between foot and knee but 54% between knee and hip. The estimated rises in muscle forces due to the vibrations were in the same ranges as the contact force increases. These rises were much smaller than the vibration-induced EMG increases, reported for the same platform accelerations. These small muscle force increases, along with the observation that the peak contact and muscle forces during vibrations remained far below those during walking, indicate that dynamic muscle force amplitudes cannot be the reason for positive effects of whole body vibrations on muscles, bone remodelling or arthritic joints. Positive effects of vibrations must be caused by factors other than raised forces amplitudes.
Collapse
Affiliation(s)
- Georg Bergmann
- Julius Wolff Institute, Charité – Universitätsmedizin Berlin, Berlin, Germany
| | - Ines Kutzner
- Julius Wolff Institute, Charité – Universitätsmedizin Berlin, Berlin, Germany
| | - Alwina Bender
- Julius Wolff Institute, Charité – Universitätsmedizin Berlin, Berlin, Germany
| | - Jörn Dymke
- Julius Wolff Institute, Charité – Universitätsmedizin Berlin, Berlin, Germany
| | - Adam Trepczynski
- Julius Wolff Institute, Charité – Universitätsmedizin Berlin, Berlin, Germany
| | - Georg N. Duda
- Julius Wolff Institute, Charité – Universitätsmedizin Berlin, Berlin, Germany
| | - Dieter Felsenberg
- Center for Muscle and Bone Research, Charité – Universitätsmedizin Berlin, Berlin, Germany
| | - Philipp Damm
- Julius Wolff Institute, Charité – Universitätsmedizin Berlin, Berlin, Germany
| |
Collapse
|
49
|
Marin-Puyalto J, Gomez-Cabello A, Gonzalez-Agüero A, Gomez-Bruton A, Matute-Llorente A, Casajús JA, Vicente-Rodríguez G. Is Vibration Training Good for Your Bones? An Overview of Systematic Reviews. BIOMED RESEARCH INTERNATIONAL 2018; 2018:5178284. [PMID: 30519579 PMCID: PMC6241242 DOI: 10.1155/2018/5178284] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/09/2018] [Revised: 09/24/2018] [Accepted: 10/23/2018] [Indexed: 01/08/2023]
Abstract
Whole-body vibration (WBV) intervention studies and reviews have been increasing lately. However, the results regarding its effects on bone tissue in different populations are still inconclusive. The goal of this overview was to summarize systematic reviews assessing the effects of WBV training on bone parameters. Three electronic databases were scanned for systematic reviews and meta-analyses evaluating the effects of WBV on bone tissue. The search had no time restrictions and was limited to articles written in English. Vibration protocols and the main bone parameters included in each review were extracted. Methodological quality was assessed and analyses were conducted stratifying by age. 17 reviews and meta-analyses fulfilled the inclusion criteria. No increase or small improvements in bone mineral density (BMD) after WBV interventions were observed in reviews regarding postmenopausal women. One intervention study regarding young adults was included and reported no bone-related benefits from WBV. Most reviews including children and adolescents with compromised bone mass showed an improvement of BMD at lower limbs, lumbar spine, and whole body. In conclusion, WBV interventions seem to help children and adolescents with compromised bone mass to increase their BMD, but these improvements are limited in postmenopausal women and there is insufficient evidence for young adults. Further research is also needed to identify the ideal parameters of WBV training focused on bone health.
Collapse
Affiliation(s)
- Jorge Marin-Puyalto
- Faculty of Health and Sport Science (FCSD), Department of Physiatry and Nursing. Universidad de Zaragoza, Ronda Misericordia 5, 22001 Huesca, Spain
- GENUD (Growth, Exercise, Nutrition and Development) Research Group, Zaragoza, Spain
- Instituto Agroalimentario de Aragón (IA2), Zaragoza, Spain
- EXERNET Red de Investigación en Ejercicio Físico y Salud para Poblaciones Especiales, Spain
| | - Alba Gomez-Cabello
- GENUD (Growth, Exercise, Nutrition and Development) Research Group, Zaragoza, Spain
- Instituto Agroalimentario de Aragón (IA2), Zaragoza, Spain
- EXERNET Red de Investigación en Ejercicio Físico y Salud para Poblaciones Especiales, Spain
- Centro Universitario de la Defensa, Zaragoza, Spain
- Centro de Investigación Biomédica en Red de Fisiopatología de la Obesidad y Nutrición (CIBEROBN), Spain
| | - Alejandro Gonzalez-Agüero
- Faculty of Health and Sport Science (FCSD), Department of Physiatry and Nursing. Universidad de Zaragoza, Ronda Misericordia 5, 22001 Huesca, Spain
- GENUD (Growth, Exercise, Nutrition and Development) Research Group, Zaragoza, Spain
- Instituto Agroalimentario de Aragón (IA2), Zaragoza, Spain
- EXERNET Red de Investigación en Ejercicio Físico y Salud para Poblaciones Especiales, Spain
- Centro de Investigación Biomédica en Red de Fisiopatología de la Obesidad y Nutrición (CIBEROBN), Spain
| | - Alejandro Gomez-Bruton
- Faculty of Health and Sport Science (FCSD), Department of Physiatry and Nursing. Universidad de Zaragoza, Ronda Misericordia 5, 22001 Huesca, Spain
- GENUD (Growth, Exercise, Nutrition and Development) Research Group, Zaragoza, Spain
- Instituto Agroalimentario de Aragón (IA2), Zaragoza, Spain
- EXERNET Red de Investigación en Ejercicio Físico y Salud para Poblaciones Especiales, Spain
- Centro de Investigación Biomédica en Red de Fisiopatología de la Obesidad y Nutrición (CIBEROBN), Spain
| | - Angel Matute-Llorente
- Faculty of Health and Sport Science (FCSD), Department of Physiatry and Nursing. Universidad de Zaragoza, Ronda Misericordia 5, 22001 Huesca, Spain
- GENUD (Growth, Exercise, Nutrition and Development) Research Group, Zaragoza, Spain
- Instituto Agroalimentario de Aragón (IA2), Zaragoza, Spain
- EXERNET Red de Investigación en Ejercicio Físico y Salud para Poblaciones Especiales, Spain
- Centro de Investigación Biomédica en Red de Fisiopatología de la Obesidad y Nutrición (CIBEROBN), Spain
| | - Jose A. Casajús
- Faculty of Health and Sport Science (FCSD), Department of Physiatry and Nursing. Universidad de Zaragoza, Ronda Misericordia 5, 22001 Huesca, Spain
- GENUD (Growth, Exercise, Nutrition and Development) Research Group, Zaragoza, Spain
- Instituto Agroalimentario de Aragón (IA2), Zaragoza, Spain
- EXERNET Red de Investigación en Ejercicio Físico y Salud para Poblaciones Especiales, Spain
- Centro de Investigación Biomédica en Red de Fisiopatología de la Obesidad y Nutrición (CIBEROBN), Spain
| | - German Vicente-Rodríguez
- Faculty of Health and Sport Science (FCSD), Department of Physiatry and Nursing. Universidad de Zaragoza, Ronda Misericordia 5, 22001 Huesca, Spain
- GENUD (Growth, Exercise, Nutrition and Development) Research Group, Zaragoza, Spain
- Instituto Agroalimentario de Aragón (IA2), Zaragoza, Spain
- EXERNET Red de Investigación en Ejercicio Físico y Salud para Poblaciones Especiales, Spain
- Centro de Investigación Biomédica en Red de Fisiopatología de la Obesidad y Nutrición (CIBEROBN), Spain
| |
Collapse
|
50
|
Edwards WB, Simonian N, Haider IT, Anschel AS, Chen D, Gordon KE, Gregory EK, Kim KH, Parachuri R, Troy KL, Schnitzer TJ. Effects of Teriparatide and Vibration on Bone Mass and Bone Strength in People with Bone Loss and Spinal Cord Injury: A Randomized, Controlled Trial. J Bone Miner Res 2018; 33:1729-1740. [PMID: 29905973 DOI: 10.1002/jbmr.3525] [Citation(s) in RCA: 42] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/15/2018] [Revised: 05/21/2018] [Accepted: 06/03/2018] [Indexed: 01/29/2023]
Abstract
Spinal cord injury (SCI) is associated with marked bone loss and an increased risk of fracture. We randomized 61 individuals with chronic SCI and low bone mass to receive either teriparatide 20 μg/d plus sham vibration 10 min/d (n = 20), placebo plus vibration 10 min/d (n = 20), or teriparatide 20 μg/d plus vibration 10 min/d (n = 21). Patients were evaluated for 12 months; those who completed were given the opportunity to participate in an open-label extension where all participants (n = 25) received teriparatide 20 μg/d for an additional 12 months and had the optional use of vibration (10 min/d). At the end of the initial 12 months, both groups treated with teriparatide demonstrated a significant increase in areal bone mineral density (aBMD) at the spine (4.8% to 5.5%). The increase in spine aBMD was consistent with a marked response in serum markers of bone metabolism (ie, CTX, P1NP, BSAP), but no treatment effect was observed at the hip. A small but significant increase (2.2% to 4.2%) in computed tomography measurements of cortical bone at the knee was observed in all groups after 12 months; however, the magnitude of response was not different amongst treatment groups and improvements to finite element-predicted bone strength were not observed. Teriparatide treatment after the 12-month extension resulted in further increases to spine aBMD (total increase from baseline 7.1% to 14.4%), which was greater in patients initially randomized to teriparatide. Those initially randomized to teriparatide also demonstrated 4.4% to 6.7% improvements in hip aBMD after the 12-month extension, while all groups displayed increases in cortical bone measurements at the knee. To summarize, teriparatide exhibited skeletal activity in individuals with chronic SCI that was not augmented by vibration stimulation. Without additional confirmatory data, the location-specific responses to teriparatide would not be expected to provide clinical benefit in this population. © 2018 American Society for Bone and Mineral Research.
Collapse
Affiliation(s)
- W Brent Edwards
- Human Performance Laboratory, Faculty of Kinesiology, University of Calgary, Calgary, Canada.,McCaig Institute for Bone and Joint Health, Cumming School of Medicine, University of Calgary, Calgary, Canada
| | - Narina Simonian
- Department of Physical Medicine and Rehabilitation, Northwestern University Feinberg School of Medicine, Chicago, IL, USA.,Northwestern University Clinical and Translational Sciences Institute, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
| | - Ifaz T Haider
- Human Performance Laboratory, Faculty of Kinesiology, University of Calgary, Calgary, Canada.,McCaig Institute for Bone and Joint Health, Cumming School of Medicine, University of Calgary, Calgary, Canada
| | - Alan S Anschel
- Department of Physical Medicine and Rehabilitation, Northwestern University Feinberg School of Medicine, Chicago, IL, USA.,Rehabilitation Institute of Chicago (d.b.a. Shirley Ryan AbilityLab), Chicago, IL, USA
| | - David Chen
- Department of Physical Medicine and Rehabilitation, Northwestern University Feinberg School of Medicine, Chicago, IL, USA.,Rehabilitation Institute of Chicago (d.b.a. Shirley Ryan AbilityLab), Chicago, IL, USA
| | - Keith E Gordon
- Department of Physical Therapy and Human Movement Sciences, Northwestern University Feinberg School of Medicine, Chicago, IL, USA.,Edward Hines Jr. VA Hospital, Hines, IL, USA
| | - Elaine K Gregory
- Department of Physical Medicine and Rehabilitation, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
| | - Ki H Kim
- Department of Physical Medicine and Rehabilitation, Northwestern University Feinberg School of Medicine, Chicago, IL, USA.,Rehabilitation Institute of Chicago (d.b.a. Shirley Ryan AbilityLab), Chicago, IL, USA
| | | | - Karen L Troy
- Department of Biomedical Engineering, Worcester Polytechnic Institute, Worcester, MA, USA
| | - Thomas J Schnitzer
- Department of Physical Medicine and Rehabilitation, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
| |
Collapse
|