1
|
Gibson FG, Paggiosi MA, Handforth C, Brown JE, Li X, Dall'Ara E, Verbruggen SW. Altered vertebral biomechanical properties in prostate cancer patients following androgen deprivation therapy. Bone 2025; 195:117465. [PMID: 40118263 DOI: 10.1016/j.bone.2025.117465] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/10/2024] [Revised: 02/26/2025] [Accepted: 03/18/2025] [Indexed: 03/23/2025]
Abstract
Androgen deprivation therapy (ADT) for localised and metastatic prostate cancer (PCa) is known to improve survival in patients but has been associated with negative long-term impacts on the skeleton, including decreased bone mineral density (BMD) and increased fracture risk. Generally, dual-enery X-ray absorptiometry (DXA) measurements of areal BMD (aBMD) of vertebrae are used clinically to assess bone health. However, a prediction of vertebral bone strength requires information that aBMD cannot provide, such as geometry and volumetric BMD (vBMD). This study aims to investigate the effect of ADT on the densitometric (aBMD, trabecular vBMD, integral vBMD) and mechanical integrity (failure load and failure strength) of vertebrae, using a combination of DXA, quantitative computed tomography (QCT) and finite element (FE) modelling. For the FE analyses, 3D models were reconstructed from QCT images of 26 ADT treated patients, and their matched controls, collected as part of the ANTELOPE clinical trial. The ADT treated group experienced significantly decreased trabecular and integral vBMD (trabecular vBMD: -18 %, p < 0.001, integral vBMD: -11 %, p < 0.001) compared to control patients that showed no significant temporal changes (trabecular vBMD p = 0.037, integral vBMD p = 0.56). A similar trend was seen in the ADT treated group for the failure load and failure strength, where a decrease of 14 % was observed (p < 0.001). When comparing the proficiency in predicting the mechanical properties from densitometric properties, the integral vBMD performed best in the pooled data (r = 0.86-0.87, p < 0.001) closely followed by trabecular vBMD (r = 0.73-0.75, p < 0.001) with aBMD having a much weaker predictive ability (r = 0.19-0.21, p < 0.01). In conclusion, ADT significantly reduced both the densitometric properties and the mechanical strength of vertebrae. A stronger relationship between both trabecular vBMD and integral vBMD with the mechanical properties than the aBMD was observed, suggesting that such clinical measurements could improve predictions of fracture risk in prostate cancer patients treated with ADT.
Collapse
Affiliation(s)
- Fiona G Gibson
- School of Mechanical, Aerospace and Civil Engineering, The University of Sheffield, Sheffield, United Kingdom; INSIGNEO Institute for in silico Medicine, The University of Sheffield, Sheffield, United Kingdom
| | - Margaret A Paggiosi
- Division of Clinical Medicine, School of Medicine & Population Health, The University of Sheffield, Sheffield, United Kingdom
| | - Catherine Handforth
- Division of Clinical Medicine, School of Medicine & Population Health, The University of Sheffield, Sheffield, United Kingdom
| | - Janet E Brown
- Division of Clinical Medicine, School of Medicine & Population Health, The University of Sheffield, Sheffield, United Kingdom
| | - Xinshan Li
- School of Mechanical, Aerospace and Civil Engineering, The University of Sheffield, Sheffield, United Kingdom; INSIGNEO Institute for in silico Medicine, The University of Sheffield, Sheffield, United Kingdom
| | - Enrico Dall'Ara
- INSIGNEO Institute for in silico Medicine, The University of Sheffield, Sheffield, United Kingdom; Division of Clinical Medicine, School of Medicine & Population Health, The University of Sheffield, Sheffield, United Kingdom
| | - Stefaan W Verbruggen
- School of Mechanical, Aerospace and Civil Engineering, The University of Sheffield, Sheffield, United Kingdom; INSIGNEO Institute for in silico Medicine, The University of Sheffield, Sheffield, United Kingdom; Centre for Bioengineering, School of Engineering and Materials Science, Queen Mary University of London, London, United Kingdom.
| |
Collapse
|
2
|
Jung GH, Zahedi B, Bouxsein ML, Yu EW. Load-to-strength ratio as an estimate of wrist facture after gastric bypass vs gastric banding. JBMR Plus 2025; 9:ziae175. [PMID: 39906259 PMCID: PMC11791783 DOI: 10.1093/jbmrpl/ziae175] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/05/2024] [Revised: 12/20/2024] [Accepted: 12/27/2024] [Indexed: 02/06/2025] Open
Abstract
Bariatric surgeries such as Roux-en-Y gastric bypass (RYGB) and adjustable gastric banding (AGB) lead to long-term deficits in bone density but are also accompanied by decreased weight, which may lower the impact force with falls. The aim of this study was to compare the long-term skeletal impact of RYGB and AGB using a biomechanical evaluation of load-to-strength ratio at the distal radius as a surrogate for wrist fracture risk. We conducted a cross-sectional study evaluating bone microarchitectural parameters and bone turnover in adults who received either RYGB or AGB surgery ≥10 yr ago (RYGB: n = 22; AGB: n = 23). Bone strength at the distal radius was estimated by microfinite element analysis from HR-pQCT. We used a single-spring biomechanical model to estimate impact force and then calculated load-to-strength ratio as a ratio of impact force to bone strength, with higher load-to-strength ratios representing a higher susceptibility to fracture. In multivariable analyses, the RYGB group had higher bone resorption marker C-telopeptide (CTX) levels, lower volumetric bone density, and worse cortical and trabecular microarchitectural parameters than the AGB group. Furthermore, estimated bone strength at the radius was lower in the RYGB group (3725 ± 139 N vs 4141 ± 157 N, p = .030), and the load-to-strength ratio was higher in RYGB group as compared with AGB (0.84 ± 0.04 vs 0.72 ± 0.05, p = .035), suggestive of higher propensity for wrist fracture. Taken together, these results indicate the long-term deleterious skeletal effects are more concerning with RYGB than AGB.
Collapse
Affiliation(s)
- Grace H Jung
- Endocrine Unit, Department of Medicine, Massachusetts General Hospital, Boston, MA 02114, United States
| | - Bita Zahedi
- Endocrine Unit, Department of Medicine, Massachusetts General Hospital, Boston, MA 02114, United States
- Harvard Medical School, Boston, MA 02115, United States
| | - Mary L Bouxsein
- Endocrine Unit, Department of Medicine, Massachusetts General Hospital, Boston, MA 02114, United States
- Harvard Medical School, Boston, MA 02115, United States
- Department of Orthopedic Surgery, Beth Israel Deaconess Medical Center, Boston, MA 02115, United States
| | - Elaine W Yu
- Endocrine Unit, Department of Medicine, Massachusetts General Hospital, Boston, MA 02114, United States
- Harvard Medical School, Boston, MA 02115, United States
| |
Collapse
|
3
|
Anderson DE, Keko M, James J, Allaire BT, Kozono D, Doyle PF, Kang H, Caplan S, Balboni T, Spektor A, Huynh MA, Hackney DB, Alkalay RN. Metastatic spine disease alters spinal load-to-strength ratios in patients compared to healthy individuals. MEDRXIV : THE PREPRINT SERVER FOR HEALTH SCIENCES 2025:2025.01.06.25320075. [PMID: 39830276 PMCID: PMC11741471 DOI: 10.1101/2025.01.06.25320075] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 01/22/2025]
Abstract
Pathologic vertebral fractures (PVF) are common and serious complications in patients with metastatic lesions affecting the spine. Accurate assessment of cancer patients' PVF risk is an unmet clinical need. Load-to-strength ratios (LSRs) evaluated in vivo by estimating vertebral loading from biomechanical modeling and strength from computed tomography imaging (CT) have been associated with osteoporotic vertebral fractures in older adults. Here, for the first time, we investigate LSRs of thoracic and lumbar vertebrae of 135 spine metastases patients compared to LSRs of 246 healthy adults, comparable by age and sex, from the Framingham Heart Study under four loading tasks. Findings include: (1) Osteolytic vertebrae have higher LSRs than osteosclerotic and mixed vertebrae; (2). In patients' vertebrae without CT observed metastases, LSRs were greater than healthy controls. (3) LSRs depend on the spinal region (Thoracic, Thoracolumbar, Lumbar). These findings suggest that LSRs may contribute to identifying patients at risk of incident PVF in metastatic spine disease patients. The lesion-mediated difference suggests that risk thresholds should be established based on spinal region, simulated task, and metastatic lesion type.
Collapse
Affiliation(s)
- Dennis E. Anderson
- Center for Advanced Orthopedic Studies, Department of Orthopedic Surgery, Beth Israel Deaconess Medical Center and Harvard Medical School, Boston, MA
- Harvard Medical School, Boston, MA, USA
| | - Mario Keko
- Department of Orthopedics, Beth Israel Deaconess Medical Center, Boston, MA, USA
| | - Joanna James
- Center for Advanced Orthopedic Studies, Department of Orthopedic Surgery, Beth Israel Deaconess Medical Center and Harvard Medical School, Boston, MA
| | - Brett T. Allaire
- Center for Advanced Orthopedic Studies, Department of Orthopedic Surgery, Beth Israel Deaconess Medical Center and Harvard Medical School, Boston, MA
| | - David Kozono
- Department of Radiation Oncology, Brigham and Women’s Hospital, Boston, MA, USA
- Harvard Medical School, Boston, MA, USA
| | - Patrick F Doyle
- Department of Radiation Oncology, Brigham and Women’s Hospital, Boston, MA, USA
| | - Heejoo Kang
- Department of Radiation Oncology, Brigham and Women’s Hospital, Boston, MA, USA
| | - Sarah Caplan
- Department of Radiation Oncology, Brigham and Women’s Hospital, Boston, MA, USA
| | - Tracy Balboni
- Department of Radiation Oncology, Brigham and Women’s Hospital, Boston, MA, USA
- Harvard Medical School, Boston, MA, USA
| | - Alexander Spektor
- Department of Radiation Oncology, Brigham and Women’s Hospital, Boston, MA, USA
- Harvard Medical School, Boston, MA, USA
| | - Mai Anh Huynh
- Department of Radiation Oncology, Brigham and Women’s Hospital, Boston, MA, USA
- Harvard Medical School, Boston, MA, USA
| | - David B. Hackney
- Department of Radiology, Beth Israel Deaconess Medical Center and Harvard Medical School, Boston, MA, USA
- Harvard Medical School, Boston, MA, USA
| | - Ron N. Alkalay
- Center for Advanced Orthopedic Studies, Department of Orthopedic Surgery, Beth Israel Deaconess Medical Center and Harvard Medical School, Boston, MA
- Harvard Medical School, Boston, MA, USA
| |
Collapse
|
4
|
Galbusera F, Cina A, O'Riordan D, Vitale JA, Loibl M, Fekete TF, Kleinstück F, Haschtmann D, Mannion AF. Estimating lumbar bone mineral density from conventional MRI and radiographs with deep learning in spine patients. EUROPEAN SPINE JOURNAL : OFFICIAL PUBLICATION OF THE EUROPEAN SPINE SOCIETY, THE EUROPEAN SPINAL DEFORMITY SOCIETY, AND THE EUROPEAN SECTION OF THE CERVICAL SPINE RESEARCH SOCIETY 2024; 33:4092-4103. [PMID: 39212711 DOI: 10.1007/s00586-024-08463-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/21/2024] [Revised: 08/05/2024] [Accepted: 08/20/2024] [Indexed: 09/04/2024]
Abstract
PURPOSE This study aimed to develop machine learning methods to estimate bone mineral density and detect osteopenia/osteoporosis from conventional lumbar MRI (T1-weighted and T2-weighted images) and planar radiography in combination with clinical data and imaging parameters of the acquisition protocol. METHODS A database of 429 patients subjected to lumbar MRI, radiographs and dual-energy x-ray absorptiometry within 6 months was created from an institutional database. Several machine learning models were trained and tested (373 patients for training, 86 for testing) with the following objectives: (1) direct estimation of the vertebral bone mineral density; (2) classification of T-score lower than - 1 or (3) lower than - 2.5. The models took as inputs either the images or radiomics features derived from them, alone or in combination with metadata (age, sex, body size, vertebral level, parameters of the imaging protocol). RESULTS The best-performing models achieved mean absolute errors of 0.15-0.16 g/cm2 for the direct estimation of bone mineral density, and areas under the receiver operating characteristic curve of 0.82 (MRIs) - 0.80 (radiographs) for the classification of T-scores lower than - 1, and 0.80 (MRIs) - 0.65 (radiographs) for T-scores lower than - 2.5. CONCLUSIONS The models showed good discriminative performances in detecting cases of low bone mineral density, and more limited capabilities for the direct estimation of its value. Being based on routine imaging and readily available data, such models are promising tools to retrospectively analyse existing datasets as well as for the opportunistic investigation of bone disorders.
Collapse
Affiliation(s)
- Fabio Galbusera
- Department of Teaching, Research and Development, Schulthess Clinic, Lengghalde 2, Zurich, 8008, Switzerland.
| | - Andrea Cina
- Department of Teaching, Research and Development, Schulthess Clinic, Lengghalde 2, Zurich, 8008, Switzerland
- Department of Health Sciences and Technology (D-HEST), ETH Zürich, Zurich, Switzerland
| | - Dave O'Riordan
- Department of Teaching, Research and Development, Schulthess Clinic, Lengghalde 2, Zurich, 8008, Switzerland
| | - Jacopo A Vitale
- Department of Teaching, Research and Development, Schulthess Clinic, Lengghalde 2, Zurich, 8008, Switzerland
| | - Markus Loibl
- Department of Teaching, Research and Development, Schulthess Clinic, Lengghalde 2, Zurich, 8008, Switzerland
| | - Tamás F Fekete
- Department of Teaching, Research and Development, Schulthess Clinic, Lengghalde 2, Zurich, 8008, Switzerland
| | - Frank Kleinstück
- Department of Teaching, Research and Development, Schulthess Clinic, Lengghalde 2, Zurich, 8008, Switzerland
| | - Daniel Haschtmann
- Department of Teaching, Research and Development, Schulthess Clinic, Lengghalde 2, Zurich, 8008, Switzerland
| | - Anne F Mannion
- Department of Teaching, Research and Development, Schulthess Clinic, Lengghalde 2, Zurich, 8008, Switzerland
| |
Collapse
|
5
|
Martini ML, Mikula AL, Lakomkin N, Pennington Z, Everson MC, Hamouda AM, Bydon M, Freedman B, Sebastian AS, Nassr A, Anderson PA, Baffour F, Kennel KA, Fogelson J, Elder B. Opportunistic CT-Based Hounsfield Units Strongly Correlate with Biomechanical CT Measurements in the Thoracolumbar Spine. Spine (Phila Pa 1976) 2024; 49:1021-1028. [PMID: 37678376 DOI: 10.1097/brs.0000000000004822] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/22/2023] [Accepted: 08/28/2023] [Indexed: 09/09/2023]
Abstract
STUDY DESIGN Retrospective cohort study. OBJECTIVE Hounsfield units (HUs) are known to correlate with clinical outcomes, but no study has evaluated how they correlate with biomechanical computed tomography (BCT) and dual-energy x-ray absorptiometry (DXA) measurements. SUMMARY OF BACKGROUND Low bone mineral density (BMD) represents a major risk factor for fracture and poor outcomes following spine surgery. DXA can provide regional BMD measurements but has limitations. Opportunistic HUs provide targeted BMD estimates; however, they are not formally accepted for diagnosing osteoporosis in current guidelines. More recently, BCT analysis has emerged as a new modality endorsed by the International Society for Clinical Densitometry for assessing bone strength. METHODS Consecutive cases from 2017 to 2022 at a single institution were reviewed for patients who underwent BCT in the thoracolumbar spine. BCT-measured vertebral strength, trabecular BMD, and the corresponding American College of Radiology Classification were recorded. DXA studies within three months of the BCT were reviewed. Pearson Correlation Coefficients were calculated, and receiver-operating characteristic curves were constructed to assess the predictive capacity of HUs. Threshold analysis was performed to identify optimal HU values for identifying osteoporosis and low BMD. RESULTS Correlation analysis of 114 cases revealed a strong relationship between HUs and BCT vertebral strength ( r =0.69; P <0.0001; R2 =0.47) and trabecular BMD ( r =0.76; P <0.0001; R2 =0.58). However, DXA poorly correlated with opportunistic HUs and BCT measurements. HUs accurately predicted osteoporosis and low BMD (Osteoporosis: C =0.95, 95% CI 0.89-1.00; Low BMD: C =0.87, 95% CI 0.79-0.96). Threshold analysis revealed that 106 and 122 HUs represent optimal thresholds for detecting osteoporosis and low BMD. CONCLUSION Opportunistic HUs strongly correlated with BCT-based measures, while neither correlated strongly with DXA-based BMD measures in the thoracolumbar spine. HUs are easy to perform at no additional cost and provide accurate BMD estimates at noninstrumented vertebral levels across all American College of Radiology-designated BMD categories.
Collapse
Affiliation(s)
| | | | - Nikita Lakomkin
- Department of Neurologic Surgery, Mayo Clinic, Rochester, MN
| | - Zach Pennington
- Department of Neurologic Surgery, Mayo Clinic, Rochester, MN
| | - Megan C Everson
- Department of Neurologic Surgery, Mayo Clinic, Rochester, MN
| | | | - Mohamad Bydon
- Department of Neurologic Surgery, Mayo Clinic, Rochester, MN
| | - Brett Freedman
- Department of Orthopedic Surgery, Mayo Clinic, Rochester, MN
| | | | - Ahmad Nassr
- Department of Orthopedic Surgery, Mayo Clinic, Rochester, MN
| | - Paul A Anderson
- Department of Orthopedic Surgery & Rehabilitation, University of Wisconsin UWMF, Centennial Bldg, Madison, WI
| | | | - Kurt A Kennel
- Division of Endocrinology, Mayo Clinic, Rochester, MN
| | - Jeremy Fogelson
- Department of Neurologic Surgery, Mayo Clinic, Rochester, MN
| | - Benjamin Elder
- Department of Neurologic Surgery, Mayo Clinic, Rochester, MN
| |
Collapse
|
6
|
Yan C, Lynch AC, Alemi MM, Banks JJ, Bouxsein ML, Anderson DE. Validity of evaluating spinal kinetics without participant-specific kinematics. J Biomech 2023; 161:111821. [PMID: 37805384 DOI: 10.1016/j.jbiomech.2023.111821] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2023] [Revised: 09/12/2023] [Accepted: 09/26/2023] [Indexed: 10/09/2023]
Abstract
Musculoskeletal models are commonly used to estimate in vivo spinal loads under various loading conditions. Typically, participant-specific measured kinematics (PSMK) are coupled with participant-specific models, but obtaining PSMK data can be costly and infeasible in large studies or clinical practice. Thus, we evaluated two alternative methods to estimate spinal loads without PSMK: 1) ensemble average kinematics (EAK) based on kinematics from all participants; and 2) using separately measured individual kinematics (SMIK) from multiple other participants as inputs, then averaging the resulting loads. This study compares the dynamic spine loading patterns and peak loads in older adults performing five lifting tasks using PSMK, EAK and SMIK. Median root mean square errors of EAK and SMIK methods versus PSMK ranged from 18 to 72% body weight for compressive loads and from 2 to 25% body weight for shear loads, with median cross-correlations ranging from 0.931 to 0.991. The root mean square errors and cross-correlations between repeated PSMK trials fell within similar ranges. Compressive peak loads evaluated by EAK and SMIK were not different than PSMK in 12 of 15 cases, while by comparison repeated PSMK trials were not different in 13 of 15 cases. Overall, the resulting spine loading magnitudes and profiles using EAK or SMIK were not notably different than using a PSMK approach, and differences were not greater than between two PSMK trials. Thus, these findings indicate that these approaches may be used to make reasonable estimates of dynamic spinal loading without direct measurement of participant kinematics.
Collapse
Affiliation(s)
- Chenxi Yan
- Center for Advanced Orthopaedic Studies, Beth Israel Deaconess Medical Center, Boston, MA, United States; Department of Orthopedic Surgery, Harvard Medical School, Boston, MA, United States
| | - Andrew C Lynch
- Center for Advanced Orthopaedic Studies, Beth Israel Deaconess Medical Center, Boston, MA, United States
| | - Mohammad Mehdi Alemi
- Center for Advanced Orthopaedic Studies, Beth Israel Deaconess Medical Center, Boston, MA, United States; Department of Orthopedic Surgery, Harvard Medical School, Boston, MA, United States
| | - Jacob J Banks
- Center for Advanced Orthopaedic Studies, Beth Israel Deaconess Medical Center, Boston, MA, United States; Department of Orthopedic Surgery, Harvard Medical School, Boston, MA, United States
| | - Mary L Bouxsein
- Center for Advanced Orthopaedic Studies, Beth Israel Deaconess Medical Center, Boston, MA, United States; Department of Orthopedic Surgery, Harvard Medical School, Boston, MA, United States
| | - Dennis E Anderson
- Center for Advanced Orthopaedic Studies, Beth Israel Deaconess Medical Center, Boston, MA, United States; Department of Orthopedic Surgery, Harvard Medical School, Boston, MA, United States.
| |
Collapse
|
7
|
Huber FA, Singhal V, Tuli S, Stanford FC, Carmine B, Bouxsein ML, Misra M, Bredella MA. Biomechanical CT to Assess Bone After Sleeve Gastrectomy in Adolescents With Obesity: A Prospective Longitudinal Study. J Bone Miner Res 2023; 38:933-942. [PMID: 37073493 PMCID: PMC10363214 DOI: 10.1002/jbmr.4784] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/10/2022] [Revised: 01/28/2023] [Accepted: 02/01/2023] [Indexed: 04/20/2023]
Abstract
Sleeve gastrectomy (SG) is effective in treating cardiometabolic complications of obesity but is associated with bone loss. Our aim was to determine the effect of SG on the lumbar spine by biomechanical CT analysis in adolescents/young adults with obesity. We hypothesized that SG would lead to a decrease in strength and bone mineral density (BMD) compared with nonsurgical controls. In a 12-month prospective nonrandomized study, adolescents/young adults with obesity underwent SG (n = 29, 18.0 ± 2.1 years, 23 female) or were followed without surgery (controls, n = 30, 17.95 ± 3.0 years, 22 female). At baseline and 12 months, participants underwent quantitative computed tomography (QCT) of L1 and L2 for biomechanical assessment and MRI of the abdomen and mid-thigh for body composition assessment. Twelve-month changes between groups and within groups were assessed. Analyses were controlled for baseline and 12-month changes in body mass index (BMI) by multivariable analyses. Regression analysis was performed to evaluate the effect of body composition on bone parameters. Our institutional review board (IRB) approved the study, and informed consent/assent was obtained. Participants in the SG group had a higher baseline BMI than controls (p = 0.01) and lost an average of 34.3 ± 13.6 kg 12 months after surgery, whereas weight was unchanged in controls (p < 0.001). There were significant reductions in abdominal adipose tissue and thigh muscle area in the SG group compared with controls (p < 0.001). Bone strength, bending stiffness, and average and trabecular volumetric BMD decreased in the SG group compared with controls (p < 0.001). After controlling for change in BMI, a 12-month reduction in cortical BMD was significant in the SG group compared with controls (p = 0.02). Reductions in strength and trabecular BMD were associated with reductions in BMI, visceral adipose tissue, and muscle (p ≤ 0.03). In conclusion, SG in adolescents decreased strength and volumetric BMD of the lumbar spine compared with nonsurgical controls. These changes were associated with decreases in visceral fat and muscle mass. © 2023 American Society for Bone and Mineral Research (ASBMR).
Collapse
Affiliation(s)
- Florian A. Huber
- Department of Radiology, Massachusetts General Hospital, and Harvard Medical School, Boston, Massachusetts
- Institute of Diagnostic and Interventional Radiology, University Hospital Zurich, University of Zurich, Zurich, Switzerland
| | - Vibha Singhal
- Neuroendocrine Unit, Massachusetts General Hospital and Harvard Medical School, Boston, Massachusetts
- Division of Pediatric Endocrinology, Massachusetts General Hospital and Harvard Medical School, Boston, Massachusetts
- MGH Weight Center, Boston, Massachusetts
| | - Shubhangi Tuli
- Neuroendocrine Unit, Massachusetts General Hospital and Harvard Medical School, Boston, Massachusetts
| | - Fatima C. Stanford
- Neuroendocrine Unit, Massachusetts General Hospital and Harvard Medical School, Boston, Massachusetts
- Division of Pediatric Endocrinology, Massachusetts General Hospital and Harvard Medical School, Boston, Massachusetts
- MGH Weight Center, Boston, Massachusetts
| | - Brian Carmine
- Department of Surgery, Boston University Medical Center, Boston, Massachusetts
| | - Mary L. Bouxsein
- Endocrine Unit, Massachusetts General Hospital and Harvard Medical School, Boston, Massachusetts
| | - Madhusmita Misra
- Neuroendocrine Unit, Massachusetts General Hospital and Harvard Medical School, Boston, Massachusetts
- Division of Pediatric Endocrinology, Massachusetts General Hospital and Harvard Medical School, Boston, Massachusetts
| | - Miriam A. Bredella
- Department of Radiology, Massachusetts General Hospital, and Harvard Medical School, Boston, Massachusetts
| |
Collapse
|
8
|
Levy RV, McMahon DJ, Agarwal S, Dempster D, Zhou H, Misof BM, Guo X, Kamanda-Kosseh M, Aponte MA, Reidy K, Kumar J, Fusaro M, Brown DD, Melamed ML, Nickolas TL. Comprehensive Associations between Acidosis and the Skeleton in Patients with Kidney Disease. J Am Soc Nephrol 2023; 34:668-681. [PMID: 36749125 PMCID: PMC10103353 DOI: 10.1681/asn.0000000000000085] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2022] [Accepted: 01/10/2023] [Indexed: 02/08/2023] Open
Abstract
SIGNIFICANCE STATEMENT Renal osteodystrophy (ROD) contributes substantially to morbidity in CKD, including increased fracture risk. Metabolic acidosis (MA) contributes to the development of ROD, but an up-to-date skeletal phenotype in CKD-associated acidosis has not been described. We comprehensively studied associations between acidosis and bone in patients with CKD using advanced methods to image the skeleton and analyze bone-tissue, along with biochemical testing. Cross-sectionally, acidosis was associated with higher markers of bone remodeling and female-specific impairments in cortical and trabecular bone quality. Prospectively, acidosis was associated with cortical expansion and trabecular microarchitectural deterioration. At the bone-tissue level, acidosis was associated with deficits in bone mineral content. Future work investigating acidosis correction on bone quality is warranted. BACKGROUND Renal osteodystrophy is a state of impaired bone quality and strength. Metabolic acidosis (MA) is associated with alterations in bone quality including remodeling, microarchitecture, and mineralization. No studies in patients with CKD have provided a comprehensive multimodal skeletal phenotype of MA. We aim to describe the structure and makeup of bone in patients with MA in the setting of CKD using biochemistry, noninvasive imaging, and histomorphometry. METHODS The retrospective cross-sectional analyses included 180 patients with CKD. MA was defined as bicarbonate ≤22 mEq/L. We evaluated circulating bone turnover markers and skeletal imaging with dual energy x-ray absorptiometry and high-resolution peripheral computed tomography. A subset of 54 participants had follow-up. We assessed associations between baseline and change in bicarbonate with change in bone outcomes. Histomorphometry, microCT, and quantitative backscatter electron microscopy assessed bone biopsy outcomes in 22 participants. RESULTS The mean age was 68±10 years, 54% of participants were male, and 55% were White. At baseline, acidotic subjects had higher markers of bone turnover, lower areal bone mineral density at the radius by dual energy x-ray absorptiometry, and lower cortical and trabecular volumetric bone mineral density and impaired trabecular microarchitecture. Over time, acidosis was associated with opposing cortical and trabecular effects: cortical expansion but trabecular deterioration. Bone-tissue analyses showed reduced tissue mineral density with increased heterogeneity of calcium distribution in acidotic participants. CONCLUSIONS MA is associated with multiple impairments in bone quality. Future work should examine whether correction of acidosis improves bone quality and strength in patients with CKD.
Collapse
Affiliation(s)
- Rebecca V. Levy
- Nephrology, Department of Medicine, University of Rochester Medical Center Rochester, New York, USA
- Pediatric Nephrology, Department of Pediatrics, University of Rochester Medical Center, Rochester, New York, USA
| | | | | | - David Dempster
- Columbia University Irving Medical Center, New York, USA
| | - Hua Zhou
- Columbia University Irving Medical Center, New York, USA
| | - Barbara M. Misof
- Ludwig Boltzmann Institute for Osteology at the Hanusch Hospital of OEGK and AUVA Trauma Centre Meidling, 1st Medical Department, Hanusch Hospital, Vienna, Austria
| | - X.E. Guo
- Columbia University Biomedical Engineering, New York, New York, USA
| | | | | | - Kimberly Reidy
- Nephrology, Department of Medicine, Albert Einstein College of Medicine/Montefiore Medical Center, Bronx, New York
| | - Juhi Kumar
- Nephrology, Department of Pediatrics, Weill-Cornell Medical Center, New York, New York
| | - Maria Fusaro
- National Research Council (CNR), Institute of Clinical Physiology (IFC), Pisa, Italy
- Department of Medicine, University of Padova, Padova, Padua, Italy
| | - Denver D. Brown
- Division of Nephrology, Children's National Hospital, Washington, DC
| | - Michal L. Melamed
- Nephrology, Department of Medicine, Albert Einstein College of Medicine/Montefiore Medical Center, Bronx, New York
| | | |
Collapse
|
9
|
Keaveny TM, Adams AL, Fischer H, Brara HS, Burch S, Guppy KH, Kopperdahl DL. Increased risks of vertebral fracture and reoperation in primary spinal fusion patients who test positive for osteoporosis by Biomechanical Computed Tomography analysis. Spine J 2023; 23:412-424. [PMID: 36372353 DOI: 10.1016/j.spinee.2022.10.018] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/08/2022] [Revised: 10/29/2022] [Accepted: 10/31/2022] [Indexed: 11/13/2022]
Abstract
BACKGROUND CONTEXT While osteoporosis is a risk factor for adverse outcomes in spinal fusion patients, diagnosing osteoporosis reliably in this population has been challenging due to degenerative changes and spinal deformities. Addressing that challenge, biomechanical computed tomography analysis (BCT) is a CT-based diagnostic test for osteoporosis that measures both bone mineral density and bone strength (using finite element analysis) at the spine; CT scans taken for spinal evaluation or previous care can be repurposed for the analysis. PURPOSE Assess the effectiveness of BCT for preoperatively identifying spinal fusion patients with osteoporosis who are at high risk of reoperation or vertebral fracture. STUDY DESIGN Observational cohort study in a multi-center integrated managed care system using existing data from patient medical records and imaging archives. PATIENT SAMPLE We studied a randomly sampled subset of all adult patients who had any type of primary thoracic (T4 or below) or lumbar fusion between 2005 and 2018. For inclusion, patients with accessible study data needed a preop CT scan without intravenous contrast that contained images (before any instrumentation) of the upper instrumented vertebral level. OUTCOME MEASURES Reoperation for any reason (primary outcome) or a newly documented vertebral fracture (secondary outcome) occurring up to 5 years after the primary surgery. METHODS All study data were extracted using available coded information and CT scans from the medical records. BCT was performed at a centralized lab blinded to the clinical outcomes; patients could test positive for osteoporosis based on either low values of bone strength (vertebral strength ≤ 4,500 N women or 6,500 N men) and/or bone mineral density (vertebral trabecular bone mineral density ≤ 80 mg/cm3 both sexes). Cox proportional hazard ratios were adjusted by age, presence of obesity, and whether the fusion was long (four or more levels fused) or short (3 or fewer levels fused); Kaplan-Meier survival was compared by the log rank test. This project was funded by NIH (R44AR064613) and all physician co-authors and author 1 received salary support from their respective departments. Author 6 is employed by, and author 1 has equity in and consults for, the company that provides the BCT test; the other authors declare no conflicts of interest. RESULTS For the 469 patients analyzed (298 women, 171 men), median follow-up time was 44.4 months, 11.1% had a reoperation (median time 14.5 months), and 7.7% had a vertebral fracture (median time 2.0 months). Overall, 25.8% of patients tested positive for osteoporosis and no patients under age 50 tested positive. Compared to patients without osteoporosis, those testing positive were at almost five-fold higher risk for vertebral fracture (adjusted hazard ratio 4.7, 95% confidence interval = 2.2-9.7; p<.0001 Kaplan-Meier survival). Of those positive-testing patients, those who tested positive concurrently for low values of both bone strength and bone mineral density (12.6% of patients overall) were at almost four-fold higher risk for reoperation (3.7, 1.9-7.2; Kaplan-Meier survival p<.0001); the remaining positive-testing patients (those who tested positive for low values of either bone strength or bone mineral density but not both) were not at significantly higher risk for reoperation (1.6, 0.7-3.7) but were for vertebral fracture (4.3, 1.9-10.2). For both clinical outcomes, risk remained high for patients who underwent short or long fusion. CONCLUSION In a real-world clinical setting, BCT was effective in identifying primary spinal fusion patients aged 50 or older with osteoporosis who were at elevated risks of reoperation and vertebral fracture.
Collapse
Affiliation(s)
- Tony M Keaveny
- Departments of Mechanical Engineering and Bioengineering, University of California, Berkeley, CA, USA.
| | - Annette L Adams
- Department of Research and Evaluation, Kaiser Permanente Southern California, Pasadena, CA, USA
| | - Heidi Fischer
- Department of Research and Evaluation, Kaiser Permanente Southern California, Pasadena, CA, USA
| | - Harsimran S Brara
- Department of Neurosurgery, Southern California Permanente Medical Group, Los Angeles, CA, USA
| | - Shane Burch
- Department of Orthopaedic Surgery, University of California, San Francisco, CA, USA
| | - Kern H Guppy
- Department of Neurosurgery, Kaiser Permanente Medical Group, Sacramento, CA, USA
| | | |
Collapse
|
10
|
Singhal V, Huynh C, Nimmala S, Mitchell DM, Pedreira CC, Bader A, Flanders K, Zheng J, Bouxsein ML, Misra M, Bredella MA. Load-to-strength ratio at the radius is higher in adolescent and young adult females with obesity compared to normal-weight controls. Bone 2022; 164:116515. [PMID: 35948256 PMCID: PMC9826712 DOI: 10.1016/j.bone.2022.116515] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/02/2022] [Revised: 08/03/2022] [Accepted: 08/05/2022] [Indexed: 01/11/2023]
Abstract
BACKGROUND Among adolescents with extremity fractures, individuals with obesity have greater representation compared with individuals of normal-weight, despite having higher areal and volumetric bone mineral density (aBMD, vBMD) than their normal-weight counterparts. The relative increase in BMD in individuals with obesity may thus be insufficient to support the greater force generated upon falling. The load-to-strength ratio is a biomechanical approach for assessing the risk of fracture by comparing applied force to bone strength, with higher load-to-strength ratios indicating higher fracture risk. OBJECTIVE To assess the load-to-strength ratio at the distal radius in adolescent and young adult females with severe obesity (OB) compared with normal-weight healthy controls (HC). We hypothesized that OB have a higher load-to-strength ratio compared to HC. METHODS We examined bone parameters in 65 girls 14-21 years old: 33 OB and 32 HC. We used dual-energy X-ray absorptiometry (DXA) to assess body composition, high resolution peripheral quantitative CT (HR-pQCT) to estimate vBMD, and microfinite element analysis (μFEA) to assess bone strength at the distal radius. To quantify fracture risk, we computed the load-to-strength ratio, where the numerator is defined as the load applied to the outstretched hand during a forward fall and the denominator is the bone strength, as estimated by μFEA. RESULTS Although OB had higher total vBMD than HC (368.3 vs. 319.9 mgHA/cm3, p = 0.002), load-to-strength ratio at the radius was greater in OB than HC after controlling for age and race (0.66 vs. 0.54, p < 0.0001). In OB, impact force and load-to-strength ratio were associated negatively with % lean mass (r = -0.49; p = 0.003 and r = -0.65; p < 0.0001 respectively) and positively with visceral fat (r = 0.65; p < 0.0001 and r = 0.36; p = 0.04 respectively). CONCLUSIONS Adolescent and young adult females with obesity have higher load-to-strength ratio at the distal radius due to higher forces applied to bone in a fall combined with incomplete adaptation of bone to increasing body weight. This is differentially affected by lean mass, fat mass, and visceral fat mass.
Collapse
Affiliation(s)
- Vibha Singhal
- Neuroendocrine Unit, Massachusetts General Hospital and Harvard Medical School, United States of America; Division of Pediatric Endocrinology, Massachusetts General for Children, Harvard Medical School, United States of America; Massachusetts General Hospital Weight Center, United States of America.
| | - Carolyn Huynh
- Neuroendocrine Unit, Massachusetts General Hospital and Harvard Medical School, United States of America
| | - Supritha Nimmala
- Neuroendocrine Unit, Massachusetts General Hospital and Harvard Medical School, United States of America
| | - Deborah M Mitchell
- Division of Pediatric Endocrinology, Massachusetts General for Children, Harvard Medical School, United States of America; Endocrine Unit, Massachusetts General Hospital, Harvard Medical School, United States of America
| | - Clarissa C Pedreira
- Division of Pediatric Endocrinology, Massachusetts General for Children, Harvard Medical School, United States of America
| | - Abeer Bader
- Massachusetts General Hospital Weight Center, United States of America
| | - Karen Flanders
- Massachusetts General Hospital Weight Center, United States of America
| | - Jane Zheng
- Neuroendocrine Unit, Massachusetts General Hospital and Harvard Medical School, United States of America
| | - Mary L Bouxsein
- Endocrine Unit, Massachusetts General Hospital, Harvard Medical School, United States of America
| | - Madhusmita Misra
- Neuroendocrine Unit, Massachusetts General Hospital and Harvard Medical School, United States of America; Division of Pediatric Endocrinology, Massachusetts General for Children, Harvard Medical School, United States of America
| | - Miriam A Bredella
- Department of Radiology, Massachusetts General Hospital, Harvard Medical School, United States of America
| |
Collapse
|
11
|
Anderson DE, Groff MW, Flood TF, Allaire BT, Davis RB, Stadelmann MA, Zysset PK, Alkalay RN. Evaluation of Load-To-Strength Ratios in Metastatic Vertebrae and Comparison With Age- and Sex-Matched Healthy Individuals. Front Bioeng Biotechnol 2022; 10:866970. [PMID: 35992350 PMCID: PMC9388746 DOI: 10.3389/fbioe.2022.866970] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2022] [Accepted: 06/01/2022] [Indexed: 11/13/2022] Open
Abstract
Vertebrae containing osteolytic and osteosclerotic bone metastases undergo pathologic vertebral fracture (PVF) when the lesioned vertebrae fail to carry daily loads. We hypothesize that task-specific spinal loading patterns amplify the risk of PVF, with a higher degree of risk in osteolytic than in osteosclerotic vertebrae. To test this hypothesis, we obtained clinical CT images of 11 cadaveric spines with bone metastases, estimated the individual vertebral strength from the CT data, and created spine-specific musculoskeletal models from the CT data. We established a musculoskeletal model for each spine to compute vertebral loading for natural standing, natural standing + weights, forward flexion + weights, and lateral bending + weights and derived the individual vertebral load-to-strength ratio (LSR). For each activity, we compared the metastatic spines' predicted LSRs with the normative LSRs generated from a population-based sample of 250 men and women of comparable ages. Bone metastases classification significantly affected the CT-estimated vertebral strength (Kruskal-Wallis, p < 0.0001). Post-test analysis showed that the estimated vertebral strength of osteosclerotic and mixed metastases vertebrae was significantly higher than that of osteolytic vertebrae (p = 0.0016 and p = 0.0003) or vertebrae without radiographic evidence of bone metastasis (p = 0.0010 and p = 0.0003). Compared with the median (50%) LSRs of the normative dataset, osteolytic vertebrae had higher median (50%) LSRs under natural standing (p = 0.0375), natural standing + weights (p = 0.0118), and lateral bending + weights (p = 0.0111). Surprisingly, vertebrae showing minimal radiographic evidence of bone metastasis presented significantly higher median (50%) LSRs under natural standing (p < 0.0001) and lateral bending + weights (p = 0.0009) than the normative dataset. Osteosclerotic vertebrae had lower median (50%) LSRs under natural standing (p < 0.0001), natural standing + weights (p = 0.0005), forward flexion + weights (p < 0.0001), and lateral bending + weights (p = 0.0002), a trend shared by vertebrae with mixed lesions. This study is the first to apply musculoskeletal modeling to estimate individual vertebral loading in pathologic spines and highlights the role of task-specific loading in augmenting PVF risk associated with specific bone metastatic types. Our finding of high LSRs in vertebrae without radiologically observed bone metastasis highlights that patients with metastatic spine disease could be at an increased risk of vertebral fractures even at levels where lesions have not been identified radiologically.
Collapse
Affiliation(s)
- Dennis E. Anderson
- Department of Orthopedic Surgery, Center for Advanced Orthopedic Studies, Beth Israel Deaconess Medical Center and Harvard Medical School, Boston, MA, United States
| | - Michael W. Groff
- Department of Neurosurgery, Brigham and Women’s Hospital, Boston, MA, United States
| | - Thomas F. Flood
- Department of Radiology, Brigham and Women’s Hospital, Boston, MA, United States
| | - Brett T. Allaire
- Department of Orthopedic Surgery, Center for Advanced Orthopedic Studies, Beth Israel Deaconess Medical Center and Harvard Medical School, Boston, MA, United States
| | - Roger B. Davis
- Department of Medicine, Beth Israel Deaconess Medical Center and Harvard Medical School, Boston, MA, United States
| | - Marc A. Stadelmann
- ARTORG Center for Biomedical Engineering Research, University of Bern, Bern, Switzerland
| | - Philippe K. Zysset
- ARTORG Center for Biomedical Engineering Research, University of Bern, Bern, Switzerland
| | - Ron N. Alkalay
- Department of Orthopedic Surgery, Center for Advanced Orthopedic Studies, Beth Israel Deaconess Medical Center and Harvard Medical School, Boston, MA, United States
| |
Collapse
|
12
|
Letter to the Editor concerning "Best Practice Guidelines for Assessment and Management of Osteoporosis in Adult Patients Undergoing Elective Spinal Reconstruction". Spine (Phila Pa 1976) 2022; 47:E466-E467. [PMID: 35066536 DOI: 10.1097/brs.0000000000004323] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
|
13
|
Martel D, Monga A, Chang G. Osteoporosis Imaging. Radiol Clin North Am 2022; 60:537-545. [DOI: 10.1016/j.rcl.2022.02.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
14
|
SEABRA ODIVAL, PEREIRA VANDAIRG, ESPINDULA ANAPAULA, CARDOSO FABRIZIOA, VOLPON JOSÉB, PEREIRA SANÍVIAA, ROSA RODRIGOC. Even without changing the bone mineral density, alcohol consumption decreases the percentage of collagen, the thickness of bone trabeculae, and increases bone fragility. AN ACAD BRAS CIENC 2022; 94:e20210661. [DOI: 10.1590/0001-3765202220210661] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2021] [Accepted: 01/12/2022] [Indexed: 11/22/2022] Open
Affiliation(s)
- ODIVAL SEABRA
- Universidade Federal do Triângulo Mineiro (UFTM), Brazil
| | | | | | | | | | - SANÍVIA A.L. PEREIRA
- Universidade de Uberaba (UNIUBE), Brazil; Universidade Federal do Triângulo Mineiro (UFTM), Brazil
| | | |
Collapse
|
15
|
Cheung WH, Hung VWY, Cheuk KY, Chau WW, Tsoi KKF, Wong RMY, Chow SKH, Lam TP, Yung PSH, Law SW, Qin L. Best Performance Parameters of HR-pQCT to Predict Fragility Fracture: Systematic Review and Meta-Analysis. J Bone Miner Res 2021; 36:2381-2398. [PMID: 34585784 PMCID: PMC9298023 DOI: 10.1002/jbmr.4449] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/19/2021] [Revised: 08/30/2021] [Accepted: 09/24/2021] [Indexed: 01/11/2023]
Abstract
Osteoporosis is a systemic skeletal disease characterized by low bone mass and bone structural deterioration that may result in fragility fractures. Use of bone imaging modalities to accurately predict fragility fractures is always an important issue, yet the current gold standard of dual-energy X-ray absorptiometry (DXA) for diagnosis of osteoporosis cannot fully satisfy this purpose. The latest high-resolution peripheral quantitative computed tomography (HR-pQCT) is a three-dimensional (3D) imaging device to measure not only volumetric bone density, but also the bone microarchitecture in a noninvasive manner that may provide a better fracture prediction power. This systematic review and meta-analysis was designed to investigate which HR-pQCT parameters at the distal radius and/or distal tibia could best predict fragility fractures. A systematic literature search was conducted in Embase, PubMed, and Web of Science with relevant keywords by two independent reviewers. Original clinical studies using HR-pQCT to predict fragility fractures with available full text in English were included. Information was extracted from the included studies for further review. In total, 25 articles were included for the systematic review, and 16 articles for meta-analysis. HR-pQCT was shown to significantly predict incident fractures and/or major osteoporotic fractures (MOFs). Of all the HR-pQCT parameters, our meta-analysis revealed that cortical volumetric bone mineral density (Ct.vBMD), trabecular thickness (Tb.Th), and stiffness were better predictors. Meanwhile, HR-pQCT parameters indicated better performance in predicting MOFs than incident fractures. Between the two standard measurement sites of HR-pQCT, the non-weight-bearing distal radius was a more preferable site than distal tibia for fracture prediction. Furthermore, most of the included studies were white-based, whereas very few studies were from Asia or South America. These regions should build up their densitometric databases and conduct related prediction studies. It is expected that HR-pQCT can be used widely for the diagnosis of osteoporosis and prediction of future fragility fractures. © 2021 The Authors. Journal of Bone and Mineral Research published by Wiley Periodicals LLC on behalf of American Society for Bone and Mineral Research (ASBMR).
Collapse
Affiliation(s)
- Wing-Hoi Cheung
- Musculoskeletal Research Laboratory, Department of Orthopaedics and Traumatology, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong, China.,Bone Quality and Health Centre, Department of Orthopaedics and Traumatology, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong, China
| | - Vivian Wing-Yin Hung
- Musculoskeletal Research Laboratory, Department of Orthopaedics and Traumatology, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong, China.,Bone Quality and Health Centre, Department of Orthopaedics and Traumatology, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong, China
| | - Ka-Yee Cheuk
- Musculoskeletal Research Laboratory, Department of Orthopaedics and Traumatology, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong, China
| | - Wai-Wang Chau
- Musculoskeletal Research Laboratory, Department of Orthopaedics and Traumatology, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong, China
| | - Kelvin Kam-Fai Tsoi
- JC School of Public Health and Primary Care, The Chinese University of Hong Kong, Hong Kong, China
| | - Ronald Man-Yeung Wong
- Musculoskeletal Research Laboratory, Department of Orthopaedics and Traumatology, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong, China.,Bone Quality and Health Centre, Department of Orthopaedics and Traumatology, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong, China
| | - Simon Kwoon-Ho Chow
- Musculoskeletal Research Laboratory, Department of Orthopaedics and Traumatology, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong, China.,Bone Quality and Health Centre, Department of Orthopaedics and Traumatology, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong, China
| | - Tsz-Ping Lam
- Musculoskeletal Research Laboratory, Department of Orthopaedics and Traumatology, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong, China.,Bone Quality and Health Centre, Department of Orthopaedics and Traumatology, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong, China
| | - Patrick Shu-Hang Yung
- Musculoskeletal Research Laboratory, Department of Orthopaedics and Traumatology, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong, China.,Bone Quality and Health Centre, Department of Orthopaedics and Traumatology, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong, China
| | - Sheung-Wai Law
- Musculoskeletal Research Laboratory, Department of Orthopaedics and Traumatology, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong, China.,Bone Quality and Health Centre, Department of Orthopaedics and Traumatology, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong, China
| | - Ling Qin
- Musculoskeletal Research Laboratory, Department of Orthopaedics and Traumatology, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong, China.,Bone Quality and Health Centre, Department of Orthopaedics and Traumatology, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong, China
| |
Collapse
|
16
|
Experimental testing and biomechanical CT analysis of Chinese cadaveric vertebrae with different modeling approaches. Med Eng Phys 2021; 93:8-16. [PMID: 34154778 DOI: 10.1016/j.medengphy.2021.05.008] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2021] [Revised: 05/10/2021] [Accepted: 05/11/2021] [Indexed: 11/23/2022]
Abstract
Osteoporosis is characterized by reduced bone strength predisposing to an increased risk of fracture. Biomechanical computed tomography (BCT), predicting bone strength via CT-based finite element analysis (FEA), is now clinically available in the USA for diagnosing osteoporosis or assessing fracture risk. However, it has not been previously validated using a cohort of only Chinese subjects. Additionally, the effect of various modeling approaches on BCT outcomes remains elusive. To address these issues, we performed DXA and QCT scanning, compression testing, and BCT analyses on thirteen vertebrae derived from Chinese donors. Three BCT models were created (voxBCT and tetBCT: voxel-based and tetrahedral element-based FE models generated by a commercial software; matBCT: tetrahedral element-based FE model generated by a custom MATLAB program). BCT-computed outcomes were compared with experimental measures or between different BCT models. Results showed that, DXA-measured areal bone mineral density (aBMD) showed weak correlations with experimentally-measured vertebral stiffness (R2 = 0.28) and strength (R2 = 0.34). Compared to DXA-aBMD, BCT-computed stiffness provided improved correlations with experimentally-measured stiffness (voxBCT: R2 = 0.82; tetBCT: R2 = 0.77; matBCT: R2 = 0.76) and strength (voxBCT: R2 = 0.55; tetBCT: R2 = 0.57; matBCT: R2 = 0.53); BCT-computed mechanical parameters (stiffness, stress and strain) of the three different models were highly correlated with each other, with coefficient of determination (R2) values of 0.89-0.98. These results, based on a cohort of Chinese vertebral cadavers, suggest that BCT is superior over aBMD to consistently predict vertebral mechanical characteristics, regardless of the modeling approaches of choice.
Collapse
Key Words
- A(min), vertebral minimum cross-sectional area
- BCT, biomechanical computed tomography
- Bone strength Abbreviations: OP, osteoporosis
- CT-FEA, CT-based finite element analysis
- D, vertebral body midline, anterior-posterior depth
- DXA, dual-energy X-ray absorption
- Finite element analysis
- H, vertebral body height
- HU, hounsfield unit
- Osteoporosis
- PMMA, polymethylmethacrylate
- QCT, quantitative computed tomography
- Quantitative computed tomography
- Vertebral fracture risk
- aBMD, areal bone mineral density
- matBCT model, tetrahedral FE models created with a custom MATLAB program
- tetBCT model, tetrahedral FE models created in mimics
- vBMD, volumetric bone mineral density
- voxBCT model, voxel-based hexahedral FE models
- ε(hr, comp), high risk compressive strain
- ε(hr, tens), high risk tensile strain
- σ(hr, comp), high risk compressive stress
- σ(hr, tens), high risk tensile stress
Collapse
|
17
|
Wu S, Todo M, Umebayashi D, Yamamoto Y. Risk assessment of vertebral compressive fracture using bone mass index and strength predicted by computed tomography image based finite element analysis. Clin Biomech (Bristol, Avon) 2021; 85:105365. [PMID: 33964689 DOI: 10.1016/j.clinbiomech.2021.105365] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/22/2020] [Revised: 04/18/2021] [Accepted: 04/20/2021] [Indexed: 02/07/2023]
Abstract
BACKGROUND A main purpose of osteoporosis diagnosis is to evaluate the bone fracture risk. Some bone mass indices evaluated using bone mineral density has been utilized clinically to assess the degree of osteoporosis. On the other hand, Computed tomography image based finite element analysis has been developed to evaluate bone strength of vertebral bodies. The strength of a vertebra is defined as the load at the onset of compressive fracture. The objective of this study was therefore to propose a new feasible method to combine the advantages of the two osteoporotic indices such as the bone mass index and the bone strength. METHODS Three-dimensional finite element models of 246 vertebral bodies from 88 patients were constructed using the computed tomography images. Finite element analysis was then conducted to evaluate their strength values. The Pearson's correlation analysis was also conducted between the vertebral strength and bone mass indices. FINDINGS It was found that relatively weak positive correlations existed between the strength and the bone mass indices. A new assessment method was then proposed by combining the strength and the bone mass index. "high risk zone" corresponding to low strength with normal bone mass was found from the assessment method. INTERPRETATION Singe bone mass index cannot predict the fracture risk with high standard. The results of fracture risk assessment conducted by the new method clearly indicated the necessity and effectiveness to take both the strength and the bone mass index into account.
Collapse
Affiliation(s)
- Shun Wu
- Department of Molecular and Material Science, Interdisciplinary Graduate School of Engineering Sciences, Kyushu University, 6-1, Kasuga-koen, Kasuga, Fukuoka 816-8580, Japan
| | - Mitsugu Todo
- Department of Molecular and Material Science, Interdisciplinary Graduate School of Engineering Sciences, Kyushu University, 6-1, Kasuga-koen, Kasuga, Fukuoka 816-8580, Japan; Research Institute for Applied Mechanics, Kyushu University, 6-1 Kasuga-koen, Kasuga, Fukuoka 816-8580, Japan.
| | - Daisuke Umebayashi
- Department of Neurosurgery, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, Kyoto 602-8566, Japan
| | - Yu Yamamoto
- Inazawa Municipal Hospital, Department of Neurosurgery, Inazawa, Aichi 492-8510, Japan
| |
Collapse
|
18
|
Mokhtarzadeh H, Anderson DE, Allaire BT, Bouxsein ML. Patterns of Load-to-Strength Ratios Along the Spine in a Population-Based Cohort to Evaluate the Contribution of Spinal Loading to Vertebral Fractures. J Bone Miner Res 2021; 36:704-711. [PMID: 33253414 PMCID: PMC8383210 DOI: 10.1002/jbmr.4222] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/12/2020] [Revised: 11/12/2020] [Accepted: 11/19/2020] [Indexed: 12/20/2022]
Abstract
Vertebral fractures (VFx) are common among older adults. Epidemiological studies report high occurrence of VFx at mid-thoracic and thoracolumbar regions of the spine; however, reasons for this observation remain poorly understood. Prior reports of high ratios of spinal loading to vertebral strength in the thoracolumbar region suggest a possible biomechanical explanation. However, no studies have evaluated load-to-strength ratios (LSRs) throughout the spine for a large number of activities in a sizeable cohort. Thus, we performed a cross-sectional study in a sample of adult men and women from a population-based cohort to: 1) determine which activities cause the largest vertebral LSRs, and 2) examine patterns of LSRs along the spine for these high-load activities. We used subject-specific musculoskeletal models of the trunk to determine vertebral compressive loads for 109 activities in 250 individuals (aged 41 to 90 years, 50% women) from the Framingham Heart Study. Vertebral compressive strengths from T4 to L4 were calculated from computed tomography-based vertebral size and bone density measurements. We determined which activities caused maximum LSRs at each of these spinal levels. We identified nine activities that accounted for >95% of the maximum LSRs overall and at least 89.6% at each spinal level. The activity with the highest LSR varied by spinal level, and three distinct spinal regions could be identified by the activity producing maximum LSRs: lateral bending with a weight in one hand (upper thoracic), holding weights with elbows flexed (lower thoracic), and forward flexion with weight (lumbar). This study highlights the need to consider a range of lifting, holding, and non-symmetric activities when evaluating vertebral LSRs. Moreover, we identified key activities that produce higher loading in multiple regions of the spine. These results provide the first guidance on what activities to consider when evaluating vertebral load-to-strength ratios in future studies, including those examining dynamic motions and the biomechanics of VFx. © 2020 American Society for Bone and Mineral Research (ASBMR).
Collapse
Affiliation(s)
- Hossein Mokhtarzadeh
- Department of Biomedical Engineering, Melbourne School of Engineering, The University of Melbourne, Melbourne, Australia
| | - Dennis E Anderson
- Center for Advanced Orthopaedic Studies, Beth Israel Deaconess Medical Center, Boston, MA, USA.,Department of Orthopedic Surgery, Harvard Medical School, Boston, MA, USA
| | - Brett T Allaire
- Center for Advanced Orthopaedic Studies, Beth Israel Deaconess Medical Center, Boston, MA, USA
| | - Mary L Bouxsein
- Center for Advanced Orthopaedic Studies, Beth Israel Deaconess Medical Center, Boston, MA, USA.,Department of Orthopedic Surgery, Harvard Medical School, Boston, MA, USA.,Harvard-MIT Health Sciences and Technology Program, Cambridge, MA, USA
| |
Collapse
|
19
|
Ma C, Wu F, Pan F, Laslett L, Shah A, Squibb K, Winzenberg T, Jones G. Bone Microarchitecture, Volumetric or Areal Bone Mineral Density for Discrimination of Vertebral Deformity in Adults: A Cross-sectional Study. J Clin Densitom 2021; 24:190-199. [PMID: 32586682 DOI: 10.1016/j.jocd.2020.05.005] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/03/2020] [Revised: 05/02/2020] [Accepted: 05/05/2020] [Indexed: 11/24/2022]
Abstract
INTRODUCTION/BACKGROUND Both areal bone mineral density (aBMD) and bone microarchitecture have been associated with vertebral deformity (VD), but there are limited data on the utility of bone microarchitecture measures in combination with aBMD in discriminating VD. This study aimed to describe whether radial bone microarchitecture measures alone or in combinations with radial volumetric bone mineral density (vBMD) or spine aBMD can improve discrimination of VD in adults. METHODS Data on 196 subjects (mean age (standard deviation, SD) = 72 (7) years, female 46%) were utilized. VD of T4-L4 and spine aBMD were measured using dual-energy X-ray absorptiometry. VD was defined if anterior to posterior height ratio was more than 3-SD, 4-SD below, or >25% decrease compared with the sex-matched normal means. Bone microarchitecture parameters at distal radius were collected using high-resolution peripheral quantitative computed tomography and analyzed using StrAx. RESULTS The strongest associations were seen for the cortical thickness (odds ratios (ORs): 2.63/SD decrease for 25% and 2.38/SD decrease for 3-SD criterion) and compact cortical area (OR: 3.33/SD decrease for 4-SD criterion). The area under the receiver operating characteristic curve (AUC) for spine aBMD for VD was 0.594, 0.597, and 0.634 for 25%, 3-SD and 4-SD criteria, respectively (all p < 0.05). Compact cortical area, cortical thickness and compact cortical thickness alone had the largest AUCs for VD (0.680-0.685 for 25% criterion, 0.659-0.674 for 3-SD criterion, and 0.699-0.707 for 4-SD criterion). Adding spine aBMD or radial vBMD to each cortical measure did not improve VD discrimination (∆ AUC 0.8%-2.1%). CONCLUSIONS Cortical measures had the best utility for discriminating VD when used alone. Adding either spine aBMD or radial vBMD did not improve the utility of cortical measures.
Collapse
Affiliation(s)
- Canchen Ma
- Menzies Institute for Medical Research, University of Tasmania, Hobart, Tasmania, Australia
| | - Feitong Wu
- Menzies Institute for Medical Research, University of Tasmania, Hobart, Tasmania, Australia
| | - Feng Pan
- Menzies Institute for Medical Research, University of Tasmania, Hobart, Tasmania, Australia
| | - Laura Laslett
- Menzies Institute for Medical Research, University of Tasmania, Hobart, Tasmania, Australia
| | - Anuj Shah
- Menzies Institute for Medical Research, University of Tasmania, Hobart, Tasmania, Australia
| | - Kathryn Squibb
- Menzies Institute for Medical Research, University of Tasmania, Hobart, Tasmania, Australia
| | - Tania Winzenberg
- Menzies Institute for Medical Research, University of Tasmania, Hobart, Tasmania, Australia
| | - Graeme Jones
- Menzies Institute for Medical Research, University of Tasmania, Hobart, Tasmania, Australia.
| |
Collapse
|
20
|
The relationship between orthopedic clinical imaging and bone strength prediction. MEDICINE IN NOVEL TECHNOLOGY AND DEVICES 2021. [DOI: 10.1016/j.medntd.2021.100060] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
|
21
|
Hong N, Lee DC, Khosla S, Keaveny TM, Rhee Y. Comparison of Vertebral and Femoral Strength Between White and Asian Adults Using Finite Element Analysis of Computed Tomography Scans. J Bone Miner Res 2020; 35:2345-2354. [PMID: 32750185 PMCID: PMC9260814 DOI: 10.1002/jbmr.4149] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/15/2020] [Revised: 07/20/2020] [Accepted: 07/30/2020] [Indexed: 11/09/2022]
Abstract
Given non-optimal testing rates for dual-energy X-ray absorptiometry (DXA) and the high use of computed tomography (CT) in some Asian countries, biomechanical computed tomography analysis (BCT)-based bone strength testing, which utilizes previously taken clinical CT scans, may improve osteoporosis testing rates. However, an understanding of ethnic differences in such bone strength measurements between Whites and Asians is lacking, which is an obstacle to clinical interpretation. Using previously taken CT and DXA scans, we analyzed bone strength and bone mineral density (BMD) at the hip and spine in two sex- and age-matched community-based cohorts, aged 40 to 80 years: Whites (Rochester, MN, USA) and Koreans (Seoul, South Korea). For both the spine and femur, the age dependence of bone strength was similar for both groups, White (n = 371; women n = 202, 54.5%) and Korean (n = 396; women n = 199, 50.3%). For both sexes, mean spine strength did not differ between groups, but femur strength was 9% to 14% higher in Whites (p ≤ 0.001), an effect that became non-significant after weight adjustment (p = 0.375). For Koreans of both sexes, the fragile bone strength thresholds for classifying osteoporosis, when derived from regional DXA BMD T-score references, equaled the clinically validated thresholds for Whites (in women and men, femoral strength, 3000 N and 3500 N; vertebral strength 4500 N and 6500 N, respectively). Using these thresholds, classifications for osteoporosis for Koreans based on bone strength versus based on DXA BMD T-scores were consistent (89.1% to 94.4% agreement) at both the hip and spine and for both sexes. The BCT-based, clinically validated bone strength thresholds for Whites also applied to Koreans, which may facilitate clinical interpretation of CT-based bone strength measurements for Koreans. © 2020 American Society for Bone and Mineral Research (ASBMR).
Collapse
Affiliation(s)
- Namki Hong
- Department of Internal Medicine, Endocrine Research Institute, Severance Hospital, Yonsei University College of Medicine, Seoul, Korea
| | | | - Sundeep Khosla
- Division of Endocrinology, Diabetes, Metabolism, and Nutrition, Mayo Clinic, Rochester, MN, USA
| | - Tony M Keaveny
- Departments of Mechanical Engineering and Bioengineering, University of California, Berkeley, CA, USA
| | - Yumie Rhee
- Department of Internal Medicine, Endocrine Research Institute, Severance Hospital, Yonsei University College of Medicine, Seoul, Korea
| |
Collapse
|
22
|
Shirley M, Wanderman N, Keaveny T, Anderson P, Freedman BA. Opportunistic Computed Tomography and Spine Surgery: A Narrative Review. Global Spine J 2020; 10:919-928. [PMID: 32905730 PMCID: PMC7485075 DOI: 10.1177/2192568219889362] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/13/2023] Open
Abstract
STUDY DESIGN Narrative review. OBJECTIVE This article seeks to provide a narrative review regarding the ability of opportunistic information available from computed tomography (CT) scans to guide decisions in spine surgery related to patient bone quality. METHODS A review of the literature (limited to human and English language) was performed via PubMed and Google Scholar using the search terms; "osteoporosis" AND "opportunistic" AND "computed tomography" AND "spine surgery." The titles and then abstracts of all identified citations were reviewed for inclusion by 2 of the authors (MS, BAF). Relevant articles were then studied in full text. RESULTS A review of the literature found 25 articles that were selected for inclusion in this narrative review. These articles were broadly divided into 4 subcategories: (1) opportunistic CT (oCT) and osteoporosis detection, (2) oCT data and the quality of screw fixation, (3) utilization of Hounsfield units to assess clinical and/or radiographic outcomes following spine fusion, and (4) virtual stress testing in spine surgery. CONCLUSION The literature on oCT, as well as associated virtual stress-testing techniques, demonstrate the potential to enhance spine surgery outcomes by preoperatively identifying at-risk patients in need of bone health optimization and informing best techniques for performing spinal fusion surgery on patients with diminished bone quality. While our narrative summary of the limited literature to date suggests a promising future for oCT data, significant additional research and/or radiographic workflow standardization is needed to validate these methods for clinical use.
Collapse
Affiliation(s)
| | | | - Tony Keaveny
- University of California at Berkeley, Berkeley, CA, USA
| | | | - Brett A. Freedman
- Mayo Clinic, Rochester, MN, USA,Brett A. Freedman, Department of Orthopedics, Mayo Clinic, 200 1st Street SW, Rochester, MN 55905, USA.
| |
Collapse
|
23
|
Keaveny TM, Clarke BL, Cosman F, Orwoll ES, Siris ES, Khosla S, Bouxsein ML. Biomechanical Computed Tomography analysis (BCT) for clinical assessment of osteoporosis. Osteoporos Int 2020; 31:1025-1048. [PMID: 32335687 PMCID: PMC7237403 DOI: 10.1007/s00198-020-05384-2] [Citation(s) in RCA: 66] [Impact Index Per Article: 13.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/27/2019] [Accepted: 03/09/2020] [Indexed: 12/12/2022]
Abstract
The surgeon general of the USA defines osteoporosis as "a skeletal disorder characterized by compromised bone strength, predisposing to an increased risk of fracture." Measuring bone strength, Biomechanical Computed Tomography analysis (BCT), namely, finite element analysis of a patient's clinical-resolution computed tomography (CT) scan, is now available in the USA as a Medicare screening benefit for osteoporosis diagnostic testing. Helping to address under-diagnosis of osteoporosis, BCT can be applied "opportunistically" to most existing CT scans that include the spine or hip regions and were previously obtained for an unrelated medical indication. For the BCT test, no modifications are required to standard clinical CT imaging protocols. The analysis provides measurements of bone strength as well as a dual-energy X-ray absorptiometry (DXA)-equivalent bone mineral density (BMD) T-score at the hip and a volumetric BMD of trabecular bone at the spine. Based on both the bone strength and BMD measurements, a physician can identify osteoporosis and assess fracture risk (high, increased, not increased), without needing confirmation by DXA. To help introduce BCT to clinicians and health care professionals, we describe in this review the currently available clinical implementation of the test (VirtuOst), its application for managing patients, and the underlying supporting evidence; we also discuss its main limitations and how its results can be interpreted clinically. Together, this body of evidence supports BCT as an accurate and convenient diagnostic test for osteoporosis in both sexes, particularly when used opportunistically for patients already with CT. Biomechanical Computed Tomography analysis (BCT) uses a patient's CT scan to measure both bone strength and bone mineral density at the hip or spine. Performing at least as well as DXA for both diagnosing osteoporosis and assessing fracture risk, BCT is particularly well-suited to "opportunistic" use for the patient without a recent DXA who is undergoing or has previously undergone CT testing (including hip or spine regions) for an unrelated medical condition.
Collapse
Affiliation(s)
- T M Keaveny
- Departments of Mechanical Engineering and Bioengineering, University of California, Berkeley, CA, USA.
| | - B L Clarke
- Division of Endocrinology, Diabetes, Metabolism, and Nutrition, Mayo Clinic, Rochester, MN, USA
| | - F Cosman
- Department of Medicine, Columbia University College of Physicians and Surgeons, New York, NY, USA
| | - E S Orwoll
- Bone and Mineral Unit, Oregon Health and Science University, Portland, OR, USA
| | - E S Siris
- Toni Stabile Osteoporosis Center, Department of Medicine, Columbia University Medical Center, New York, NY, USA
| | - S Khosla
- Division of Endocrinology, Diabetes, Metabolism, and Nutrition, Mayo Clinic, Rochester, MN, USA
| | - M L Bouxsein
- Orthopedic Biomechanics Laboratory, Beth Israel Deaconess Medical Center and Harvard Medical School, Boston, MA, USA
| |
Collapse
|
24
|
Howe JG, Hill RS, Stroncek JD, Shaul JL, Favell D, Cheng RR, Engelke K, Genant HK, Lee DC, Keaveny TM, Bouxsein ML, Huber B. Treatment of bone loss in proximal femurs of postmenopausal osteoporotic women with AGN1 local osteo-enhancement procedure (LOEP) increases hip bone mineral density and hip strength: a long-term prospective cohort study. Osteoporos Int 2020; 31:921-929. [PMID: 31802158 PMCID: PMC7170985 DOI: 10.1007/s00198-019-05230-0] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/10/2019] [Accepted: 11/07/2019] [Indexed: 12/14/2022]
Abstract
UNLABELLED This first-in-human study of AGN1 LOEP demonstrated that this minimally-invasive treatment durably increased aBMD in femurs of osteoporotic postmenopausal women. AGN1 resorption was coupled with new bone formation by 12 weeks and that new bone was maintained for at least 5-7 years resulting in substantially increased FEA-estimated femoral strength. INTRODUCTION This first-in-human study evaluated feasibility, safety, and in vivo response to treating proximal femurs of postmenopausal osteoporotic women with a minimally-invasive local osteo-enhancement procedure (LOEP) to inject a resorbable triphasic osteoconductive implant material (AGN1). METHODS This prospective cohort study enrolled 12 postmenopausal osteoporotic (femoral neck T-score ≤ - 2.5) women aged 56 to 89 years. AGN1 LOEP was performed on left femurs; right femurs were untreated controls. Subjects were followed-up for 5-7 years. Outcomes included adverse events, proximal femur areal bone mineral density (aBMD), AGN1 resorption, and replacement with bone by X-ray and CT, and finite element analysis (FEA) estimated hip strength. RESULTS Baseline treated and control femoral neck aBMD was equivalent. Treated femoral neck aBMD increased by 68 ± 22%, 59 ± 24%, and 58 ± 27% over control at 12 and 24 weeks and 5-7 years, respectively (p < 0.001, all time points). Using conservative assumptions, FEA-estimated femoral strength increased by 41%, 37%, and 22% at 12 and 24 weeks and 5-7 years, respectively (p < 0.01, all time points). Qualitative analysis of X-ray and CT scans demonstrated that AGN1 resorption and replacement with bone was nearly complete by 24 weeks. By 5-7 years, AGN1 appeared to be fully resorbed and replaced with bone integrated with surrounding trabecular and cortical bone. No procedure- or device-related serious adverse events (SAEs) occurred. CONCLUSIONS Treating femurs of postmenopausal osteoporotic women with AGN1 LOEP results in a rapid, durable increase in aBMD and femoral strength. These results support the use and further clinical study of this approach in osteoporotic patients at high risk of hip fracture.
Collapse
Affiliation(s)
- J G Howe
- AgNovos Healthcare LLC, Rockville, MD, USA
| | - R S Hill
- AgNovos Healthcare LLC, Rockville, MD, USA.
| | | | - J L Shaul
- AgNovos Healthcare LLC, Rockville, MD, USA
| | - D Favell
- AgNovos Healthcare LLC, Rockville, MD, USA
| | - R R Cheng
- AgNovos Healthcare LLC, Rockville, MD, USA
| | - K Engelke
- Bioclinica-Synarc, Inc., Hamburg, Germany
- FAU University Erlangen-Nürnberg and Universitätsklinikum Erlangen, Erlangen, Germany
| | - H K Genant
- University of California San Francisco, San Francisco, CA, USA
- Bioclinica-Synarc, Inc., Newark, CA, USA
| | - D C Lee
- O.N. Diagnostics, Berkeley, CA, USA
| | - T M Keaveny
- University of California Berkeley, Berkley, CA, USA
| | - M L Bouxsein
- Beth Israel Deaconess Medical Center and Harvard Medical School, Boston, MA, USA
| | - B Huber
- Mansfield Orthopedics, Morrisville, VT, USA
| |
Collapse
|
25
|
Kaiser J, Allaire B, Fein PM, Lu D, Adams A, Kiel DP, Jarraya M, Guermazi A, Demissie S, Samelson EJ, Bouxsein ML, Morgan EF. Heterogeneity and Spatial Distribution of Intravertebral Trabecular Bone Mineral Density in the Lumbar Spine Is Associated With Prevalent Vertebral Fracture. J Bone Miner Res 2020; 35:641-648. [PMID: 31886907 PMCID: PMC7145746 DOI: 10.1002/jbmr.3946] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/26/2019] [Revised: 12/12/2019] [Accepted: 12/14/2019] [Indexed: 01/25/2023]
Abstract
The spatial heterogeneity in trabecular bone density within the vertebral centrum is associated with vertebral strength and could explain why volumetric bone mineral density (vBMD) exhibits low sensitivity in identifying fracture risk. This study evaluated whether the heterogeneity and spatial distribution of trabecular vBMD are associated with prevalent vertebral fracture. We examined the volumetric quantitative computed tomography (QCT) scans of the L3 vertebra in 148 participants in the Framingham Heart Study Multidetector CT study. Of these individuals, 37 were identified as cases of prevalent fracture, and 111 were controls, matched on sex and age with three controls per case. vBMD was calculated within 5-mm contiguous cubic regions of the centrum. Two measures of heterogeneity were calculated: (i) interquartile range (IQR); and (ii) quartile coefficient of variation (QCV). Ratios in the spatial distributions of the trabecular vBMD were also calculated: anterior/posterior, central/outer, superior/mid-transverse, and inferior/mid-transverse. Heterogeneity and spatial distributions were compared between cases and controls using Wilcoxon rank sum tests and t tests and tested for association with prevalent fractures with conditional logistic regressions independent of integral vBMD. Prevalent fracture cases had lower mean ± SD integral vBMD (134 ± 38 versus165 ± 42 mg/cm3 , p < .001), higher QCV (0.22 ± 0.13 versus 0.17 ± 0.09, p = .003), and lower anterior/posterior rBMD (0.65 ± 0.13 versus 0.78 ± 0.16, p < .001) than controls. QCV was positively associated with increased odds of prevalent fracture (OR 1.61; 95% CI, 1.04 to 2.49; p = .034), but this association was not independent of integral vBMD (p = .598). Increased anterior/posterior trabecular vBMD ratio was associated with decreased odds of prevalent fracture independent of integral vBMD (OR 0.38; 95% CI, 0.20 to 0.71; p = .003). In conclusion, increased trabecular vBMD in the anterior versus posterior centrum, but not trabecular vBMD heterogeneity, was associated with decreased risk of prevalent fracture independent of integral vBMD. Regional measurements of trabecular vBMD could aid in determining the risk and underlying mechanisms of vertebral fracture. © 2019 American Society for Bone and Mineral Research.
Collapse
Affiliation(s)
- Jarred Kaiser
- Department of Mechanical Engineering, Boston University, Boston, MA, USA
| | - Brett Allaire
- Department of Medicine, Beth Israel Deaconess Medical Center, Boston, MA, USA
| | - Paul M Fein
- Department of Mechanical Engineering, Boston University, Boston, MA, USA
| | - Darlene Lu
- Department of Biostatistics, Boston University, Boston, MA, USA
| | - Alexander Adams
- Department of Mechanical Engineering, Boston University, Boston, MA, USA
| | - Douglas P Kiel
- Department of Medicine, Beth Israel Deaconess Medical Center, Boston, MA, USA
- Department of Medicine, Harvard Medical School, Boston, MA, USA
- Hinda and Arthur Marcus Institute for Aging Research, Hebrew SeniorLife, Roslindale, MA, USA
| | - Mohamed Jarraya
- Department of Radiology, Boston University School of Medicine, Boston, MA, USA
- Department of Radiology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Ali Guermazi
- Department of Radiology, Boston University School of Medicine, Boston, MA, USA
| | | | - Elizabeth J Samelson
- Department of Biostatistics, Boston University, Boston, MA, USA
- Department of Medicine, Harvard Medical School, Boston, MA, USA
- Hinda and Arthur Marcus Institute for Aging Research, Hebrew SeniorLife, Roslindale, MA, USA
| | - Mary L Bouxsein
- Department of Medicine, Beth Israel Deaconess Medical Center, Boston, MA, USA
- Department of Orthopedic Surgery, Harvard Medical School, Boston, MA, USA
| | - Elise F Morgan
- Department of Mechanical Engineering, Boston University, Boston, MA, USA
| |
Collapse
|
26
|
Paggiosi MA, Debono M, Walsh JS, Peel NFA, Eastell R. Quantitative computed tomography discriminates between postmenopausal women with low spine bone mineral density with vertebral fractures and those with low spine bone mineral density only: the SHATTER study. Osteoporos Int 2020; 31:667-675. [PMID: 31993717 DOI: 10.1007/s00198-020-05317-z] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/07/2019] [Accepted: 01/23/2020] [Indexed: 01/08/2023]
Abstract
UNLABELLED Lumbar spine volumetric bone mineral density (BMD) measured using quantitative computed tomography (QCT) can discriminate between postmenopausal women with low areal BMD with and without vertebral fractures. QCT provides a 3D measure of BMD, excludes the vertebral posterior elements and accounts for bone size. This knowledge could contribute to effective treatment targeting of patients with low BMD. INTRODUCTION We evaluated the ability of lumbar spine bone mineral apparent density (BMAD), trabecular bone score (TBS) and volumetric bone mineral density (vBMD) to discriminate between postmenopausal women with low areal bone mineral density (aBMD) by dual-energy X-ray absorptiometry (DXA) with and without vertebral fractures. The discriminatory ability of lumbar spine aBMD was compared with that of BMAD, TBS and vBMD. METHODS We studied three groups of postmenopausal women, i.e. group 1, aBMD T-score < - 1.0 and ≥ 1 vertebral fracture (n = 39); group 2, aBMD T-score < - 1.0 and no vertebral fracture, age- and aBMD-matched to group 1 (n = 34); group 3, aBMD score > - 1 and no vertebral fracture, age-matched to group 1 (n = 37). Lumbar spine aBMD was measured by DXA. BMAD was calculated using the DXA scan results. TBS was derived following DXA scan image reanalysis. Lumbar spine vBMD was assessed by quantitative computed tomography and Mindways Pro software. Differences in variables between groups 1, 2 and 3 were examined using general linear univariate modelling approaches. Area under the receiver operating characteristic (ROC) curve was calculated for BMAD, TBS and vBMD to determine the ability of lumbar spine measurement variables to discriminate between group 1 and group 2. A comparison of ROCs was performed. RESULTS Lumbar spine BMAD and TBS measurement variables were similar for groups 1 and 2. However, vBMD was significantly lower in group 1 and could discriminate between those women with low aBMD with (group 1) and without vertebral fractures (group 2). CONCLUSIONS We conclude that lumbar spine vBMD may discriminate well between postmenopausal women with low aBMD with and without vertebral fractures as it provides a 3D measure of bone mineral density, excludes the posterior elements of the vertebrae and takes into account bone size. A unique feature of the SHATTER study is that groups 1 and 2 were matched for aBMD, thus our study findings are independent of aBMD. Furthermore, we observed that neither BMAD nor TBS could distinguish between women with low aBMD with and without vertebral fractures. The knowledge gained from the SHATTER study will influence clinical and therapeutic decision-making, thereby optimising the care of patients with and without vertebral and other fragility fractures.
Collapse
Affiliation(s)
- M A Paggiosi
- The Mellanby Centre for Bone Research, Academic Unit of Bone Metabolism, Department of Oncology and Metabolism, The University of Sheffield, Sheffield, UK.
| | - M Debono
- Department of Endocrinology, Sheffield Teaching Hospitals NHS Foundation Trust, Sheffield, UK
| | - J S Walsh
- The Mellanby Centre for Bone Research, Academic Unit of Bone Metabolism, Department of Oncology and Metabolism, The University of Sheffield, Sheffield, UK
- The MRC-Arthritis Research UK Centre for Integrated Research into Musculoskeletal Ageing (CIMA), Liverpool, UK
| | - N F A Peel
- The Mellanby Centre for Bone Research, Metabolic Bone Centre, Sheffield Teaching Hospitals NHS Foundation Trust, Sheffield, UK
| | - R Eastell
- The Mellanby Centre for Bone Research, Academic Unit of Bone Metabolism, Department of Oncology and Metabolism, The University of Sheffield, Sheffield, UK
- The MRC-Arthritis Research UK Centre for Integrated Research into Musculoskeletal Ageing (CIMA), Liverpool, UK
| |
Collapse
|
27
|
Michalski AS, Besler BA, Michalak GJ, Boyd SK. CT-based internal density calibration for opportunistic skeletal assessment using abdominal CT scans. Med Eng Phys 2020; 78:55-63. [DOI: 10.1016/j.medengphy.2020.01.009] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2019] [Revised: 01/16/2020] [Accepted: 01/26/2020] [Indexed: 01/22/2023]
|
28
|
Shah GM, Gong HS, Chae YJ, Kim YS, Kim J, Baek GH. Evaluation and Management of Osteoporosis and Sarcopenia in Patients with Distal Radius Fractures. Clin Orthop Surg 2020; 12:9-21. [PMID: 32117533 PMCID: PMC7031429 DOI: 10.4055/cios.2020.12.1.9] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/29/2019] [Accepted: 10/21/2019] [Indexed: 11/17/2022] Open
Abstract
Distal radius fractures (DRFs) are one of the most common fractures seen in elderly people. Patients with DRFs have a high incidence of osteoporosis and an increased risk of subsequent fractures, subtle early physical performance changes, and a high prevalence of sarcopenia. Since DRFs typically occur earlier than vertebral or hip fractures, they reflect early changes of the bone and muscle frailty and provide physicians with an opportunity to prevent progression of frailty and secondary fractures. In this review, we will discuss the concept of DRFs as a medical condition that is at the start of the fragility fracture cascade, recent advances in the diagnosis of bone fragility including emerging importance of cortical porosity, fracture healing with osteoporosis medications, and recent progress in research on sarcopenia in patients with DRFs.
Collapse
Affiliation(s)
- Gajendra Mani Shah
- Department of Orthopedics and Trauma Surgery, Patan Academy of Health Sciences, Lalitpur, Nepal
| | - Hyun Sik Gong
- Department of Orthopedic Surgery, Seoul National University Bundang Hospital, Seongnam, Korea
| | - Young Ju Chae
- Department of Orthopedic Surgery, Seoul National University Bundang Hospital, Seongnam, Korea
| | - Yeun Soo Kim
- Department of Orthopedic Surgery, Seoul National University Bundang Hospital, Seongnam, Korea
| | - Jihyeung Kim
- Department of Orthopedic Surgery, Seoul National University Hospital, Seoul, Korea
| | - Goo Hyun Baek
- Department of Orthopedic Surgery, Seoul National University Hospital, Seoul, Korea
| |
Collapse
|
29
|
Burkhart K, Allaire B, Anderson DE, Lee D, Keaveny TM, Bouxsein ML. Effects of Long-Duration Spaceflight on Vertebral Strength and Risk of Spine Fracture. J Bone Miner Res 2020; 35:269-276. [PMID: 31670861 DOI: 10.1002/jbmr.3881] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/29/2019] [Revised: 09/12/2019] [Accepted: 09/15/2019] [Indexed: 12/18/2022]
Abstract
Although the negative impact of long-duration spaceflight on spine BMD has been reported, its impact on vertebral strength and risk of vertebral fracture remains unknown. This study examined 17 crewmembers with long-duration service on the International Space Station in whom computed tomography (CT) scans of the lumbar spine (L1 and L2 ) were collected preflight, immediately postflight and 1 to 4 years after return to Earth. We assessed vertebral strength via CT-based finite element analysis (CT-FEA) and spinal loading during different activities via subject-specific musculoskeletal models. Six months of spaceflight reduced vertebral strength by 6.1% (-2.3%, -8.7%) (median [interquartile range]) compared to preflight (p < 0.05), with 65% of subjects experiencing deficits of greater than 5%, and strengths were not recovered up to 4 years after the mission. This decline in vertebral strength exceeded (p < 0.05) the 2.2% (-1.3%, -6.0%) decline in lumbar spine DXA-BMD. Further, the subject-specific changes in vertebral strength were not correlated with the changes in DXA-BMD. Although spinal loading increased slightly postflight, the ratio of vertebral compressive load to vertebral strength for typical daily activities remained well below a value of 1.0, indicating a low risk of vertebral fracture despite the loss in vertebral strength. However, for more strenuous activity, the postflight load-to-strength ratios ranged from 0.3 to 0.7, indicating a moderate risk of vertebral fracture in some individuals. Our findings suggest persistent deficits in vertebral strength following long-duration spaceflight, and although risk of vertebral fracture remains low for typical activities, the risk of vertebral fracture is notable in some crewmembers for strenuous exercise requiring maximal effort. © 2019 American Society for Bone and Mineral Research.
Collapse
Affiliation(s)
- Katelyn Burkhart
- Harvard-MIT Health Sciences and Technology Program, Massachusetts Institute of Technology, Cambridge, MA, USA.,Center for Advanced Orthopaedic Studies, Beth Israel Deaconess Medical Center, Boston, MA, USA
| | - Brett Allaire
- Center for Advanced Orthopaedic Studies, Beth Israel Deaconess Medical Center, Boston, MA, USA
| | - Dennis E Anderson
- Center for Advanced Orthopaedic Studies, Beth Israel Deaconess Medical Center, Boston, MA, USA.,Department of Orthopaedic Surgery, Harvard Medical School, Boston, MA, USA
| | | | - Tony M Keaveny
- Department of Mechanical Engineering, University of California, Berkeley, CA, USA.,Department of Bioengineering, University of California, Berkeley, CA, USA
| | - Mary L Bouxsein
- Harvard-MIT Health Sciences and Technology Program, Massachusetts Institute of Technology, Cambridge, MA, USA.,Center for Advanced Orthopaedic Studies, Beth Israel Deaconess Medical Center, Boston, MA, USA.,Department of Orthopaedic Surgery, Harvard Medical School, Boston, MA, USA
| |
Collapse
|
30
|
López Picazo M, Humbert L, Di Gregorio S, González Ballester MA, Del Río Barquero LM. Discrimination of osteoporosis-related vertebral fractures by DXA-derived 3D measurements: a retrospective case-control study. Osteoporos Int 2019; 30:1099-1110. [PMID: 30770938 DOI: 10.1007/s00198-019-04894-y] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/07/2018] [Accepted: 02/08/2019] [Indexed: 01/30/2023]
Abstract
UNLABELLED A retrospective case-control study assessing the association of DXA-derived 3D measurements with osteoporosis-related vertebral fractures was performed. Trabecular volumetric bone mineral density was the measurement that best discriminates between fracture and control groups. INTRODUCTION The aim of the present study was to evaluate the association of DXA-derived 3D measurements at the lumbar spine with osteoporosis-related vertebral fractures. METHODS We retrospectively analyzed a database of 74 postmenopausal women: 37 subjects with incident vertebral fractures and 37 age-matched controls without any type of fracture. DXA scans at the lumbar spine were acquired at baseline (i.e., before the fracture event for subjects in the fracture group), and areal bone mineral density (aBMD) was measured. DXA-derived 3D measurements, such as volumetric BMD (vBMD), were assessed using a DXA-based 3D modeling software (3D-SHAPER). vBMD was computed at the trabecular, cortical, and integral bone. Cortical thickness and cortical surface BMD were also measured. Differences in DXA-derived measurements between fracture and control groups were evaluated using unpaired t test. Odds ratio (OR) and area under the receiver operating curve (AUC) were also computed. Subgroup analyses according to fractured vertebra were performed. RESULTS aBMD of fracture group was 9.3% lower compared with control group (p < 0.01); a higher difference was found for trabecular vBMD in the vertebral body (- 16.1%, p < 0.001). Trabecular vBMD was the measurement that best discriminates between fracture and control groups, with an AUC of 0.733, against 0.682 for aBMD. Overall, similar findings were observed within the subgroup analyses. The L1 vertebral fractures subgroup had the highest AUC at trabecular vBMD (0.827), against aBMD (0.758). CONCLUSION This study showed the ability of cortical and trabecular measurements from DXA-derived 3D models to discriminate between fracture and control groups. Large cohorts need to be analyzed to determine if these measurements could improve fracture risk prediction in clinical practice.
Collapse
Affiliation(s)
- M López Picazo
- Musculoskeletal Unit, Galgo Medical, Barcelona, Spain.
- BCN Medtech, Universitat Pompeu Fabra, Barcelona, Spain.
| | - L Humbert
- Musculoskeletal Unit, Galgo Medical, Barcelona, Spain
| | | | | | | |
Collapse
|
31
|
Michalski AS, Edwards WB, Boyd SK. The Influence of Reconstruction Kernel on Bone Mineral and Strength Estimates Using Quantitative Computed Tomography and Finite Element Analysis. J Clin Densitom 2019; 22:219-228. [PMID: 29054559 DOI: 10.1016/j.jocd.2017.09.001] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/29/2017] [Revised: 08/31/2017] [Accepted: 09/07/2017] [Indexed: 11/15/2022]
Abstract
Quantitative computed tomography has been posed as an alternative imaging modality to investigate osteoporosis. We examined the influence of computed tomography convolution back-projection reconstruction kernels on the analysis of bone quantity and estimated mechanical properties in the proximal femur. Eighteen computed tomography scans of the proximal femur were reconstructed using both a standard smoothing reconstruction kernel and a bone-sharpening reconstruction kernel. Following phantom-based density calibration, we calculated typical bone quantity outcomes of integral volumetric bone mineral density, bone volume, and bone mineral content. Additionally, we performed finite element analysis in a standard sideways fall on the hip loading configuration. Significant differences for all outcome measures, except integral bone volume, were observed between the 2 reconstruction kernels. Volumetric bone mineral density measured using images reconstructed by the standard kernel was significantly lower (6.7%, p < 0.001) when compared with images reconstructed using the bone-sharpening kernel. Furthermore, the whole-bone stiffness and the failure load measured in images reconstructed by the standard kernel were significantly lower (16.5%, p < 0.001, and 18.2%, p < 0.001, respectively) when compared with the image reconstructed by the bone-sharpening kernel. These data suggest that for future quantitative computed tomography studies, a standardized reconstruction kernel will maximize reproducibility, independent of the use of a quantitative calibration phantom.
Collapse
Affiliation(s)
- Andrew S Michalski
- Department of Radiology, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada; McCaig Institute for Bone and Joint Health, University of Calgary, Calgary, Alberta, Canada
| | - W Brent Edwards
- McCaig Institute for Bone and Joint Health, University of Calgary, Calgary, Alberta, Canada; Human Performance Laboratory, Faculty of Kinesiology, University of Calgary, Calgary, Alberta, Canada
| | - Steven K Boyd
- Department of Radiology, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada; McCaig Institute for Bone and Joint Health, University of Calgary, Calgary, Alberta, Canada; Human Performance Laboratory, Faculty of Kinesiology, University of Calgary, Calgary, Alberta, Canada.
| |
Collapse
|
32
|
Lee EM, Kim B. Clinical significance of trabecular bone score for prediction of pathologic fracture risk in patients with multiple myeloma. Osteoporos Sarcopenia 2019; 4:73-76. [PMID: 30775546 PMCID: PMC6362949 DOI: 10.1016/j.afos.2018.05.003] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/23/2018] [Revised: 05/16/2018] [Accepted: 05/28/2018] [Indexed: 12/16/2022] Open
Abstract
Objectives Osteolytic bone lesions are common complications in multiple myeloma (MM), and can have an impact on quality of life due to the risk of fractures. Trabecular bone score (TBS) is a novel texture index derived from dual energy x-ray absorptiometry (DXA) of lumbar spine (LS) images that provides information about bone microarchitecture. The aim of this study was to evaluate whether TBS is useful in predicting bone fractures in MM patients. Methods TBS was calculated retrospectively from existing DXA images of the LS, in 20 patients with newly diagnosed MM. We analyzed the development of fractures in these patients. Results The median age of the patients was 66 years (range, 49–77 years). Osteolytic bone lesions were observed in 18 patients (90%) at the time of diagnosis. The median duration of follow-up was 40.0 months (95% confidence interval [CI], 33.2–46.2), 6 fracture events (long-bone fractures in 5 events, vertebral fracture in 1) occurred in 5 patients (25%). There were no significant differences between patients who experienced new onset fractures and patients who did not for all TBSs and T-scores, although the fracture group had lower levels than the no fracture group. However, among TBSs of individual LSs, only L2 showed significantly lower scores in patients who developed fractures (1.135 ± 0.085 [95% CI, 1.030–1.241] vs. 1.243 ± 0.169 [95% CI, 1.149–1.336], P = 0.032). Conclusions TBS of the LS in MM patients may be helpful in predicting development of fractures; however, further investigation is needed.
Collapse
Affiliation(s)
| | - Bukyung Kim
- Corresponding author. Department of Internal Medicine, Kosin University College of Medicine, 262 Gamcheon-ro, Seo-gu, Busan, 49267, Korea.
| |
Collapse
|
33
|
Allaire BT, Lu D, Johannesdottir F, Kopperdahl D, Keaveny TM, Jarraya M, Guermazi A, Bredella MA, Samelson EJ, Kiel DP, Anderson DE, Demissie S, Bouxsein ML. Prediction of incident vertebral fracture using CT-based finite element analysis. Osteoporos Int 2019; 30:323-331. [PMID: 30306225 PMCID: PMC6450770 DOI: 10.1007/s00198-018-4716-1] [Citation(s) in RCA: 53] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/21/2017] [Accepted: 09/19/2018] [Indexed: 01/24/2023]
Abstract
UNLABELLED Prior studies show vertebral strength from computed tomography-based finite element analysis may be associated with vertebral fracture risk. We found vertebral strength had a strong association with new vertebral fractures, suggesting that vertebral strength measures identify those at risk for vertebral fracture and may be a useful clinical tool. INTRODUCTION We aimed to determine the association between vertebral strength by quantitative computed tomography (CT)-based finite element analysis (FEA) and incident vertebral fracture (VF). In addition, we examined sensitivity and specificity of previously proposed diagnostic thresholds for fragile bone strength and low BMD in predicting VF. METHODS In a case-control study, 26 incident VF cases (13 men, 13 women) and 62 age- and sex-matched controls aged 50 to 85 years were selected from the Framingham multi-detector computed tomography cohort. Vertebral compressive strength, integral vBMD, trabecular vBMD, CT-based BMC, and CT-based aBMD were measured from CT scans of the lumbar spine. RESULTS Lower vertebral strength at baseline was associated with an increased risk of new or worsening VF after adjusting for age, BMI, and prevalent VF status (odds ratio (OR) = 5.2 per 1 SD decrease, 95% CI 1.3-19.8). Area under receiver operating characteristic (ROC) curve comparisons revealed that vertebral strength better predicted incident VF than CT-based aBMD (AUC = 0.804 vs. 0.715, p = 0.05) but was not better than integral vBMD (AUC = 0.815) or CT-based BMC (AUC = 0.794). Additionally, proposed fragile bone strength thresholds trended toward better sensitivity for identifying VF than that of aBMD-classified osteoporosis (0.46 vs. 0.23, p = 0.09). CONCLUSION This study shows an association between vertebral strength measures and incident vertebral fracture in men and women. Though limited by a small sample size, our findings also suggest that bone strength estimates by CT-based FEA provide equivalent or better ability to predict incident vertebral fracture compared to CT-based aBMD. Our study confirms that CT-based estimates of vertebral strength from FEA are useful for identifying patients who are at high risk for vertebral fracture.
Collapse
Affiliation(s)
- B T Allaire
- Center for Advanced Orthopaedic Studies, Beth Israel Deaconess Medical Center, 330 Brookline Avenue, RN 115, Boston, MA, 02215, USA
| | - D Lu
- Boston University, Boston, MA, USA
| | - F Johannesdottir
- Center for Advanced Orthopaedic Studies, Beth Israel Deaconess Medical Center, 330 Brookline Avenue, RN 115, Boston, MA, 02215, USA
- Department of Orthopedic Surgery, Harvard Medical School, Boston, MA, USA
| | | | - T M Keaveny
- Department of Mechanical Engineering, University of California, Berkeley, CA, USA
- Department of Bioengineering, University of California, Berkeley, CA, USA
| | - M Jarraya
- Department of Radiology, Mercy Catholic Medical Center, Darby, PA, USA
- Boston University School of Medicine, Boston, MA, USA
| | - A Guermazi
- Boston University School of Medicine, Boston, MA, USA
| | - M A Bredella
- Department of Radiology, Massachusetts General Hospital, Boston, MA, USA
| | - E J Samelson
- Institute for Aging Research, Hebrew SeniorLife, Boston, MA, USA
- Department of Medicine, Beth Israel Deaconess Medical Center and Harvard Medical School, Boston, MA, USA
| | - D P Kiel
- Institute for Aging Research, Hebrew SeniorLife, Boston, MA, USA
- Department of Medicine, Beth Israel Deaconess Medical Center and Harvard Medical School, Boston, MA, USA
| | - D E Anderson
- Center for Advanced Orthopaedic Studies, Beth Israel Deaconess Medical Center, 330 Brookline Avenue, RN 115, Boston, MA, 02215, USA
- Department of Orthopedic Surgery, Harvard Medical School, Boston, MA, USA
| | | | - M L Bouxsein
- Center for Advanced Orthopaedic Studies, Beth Israel Deaconess Medical Center, 330 Brookline Avenue, RN 115, Boston, MA, 02215, USA.
- Department of Orthopedic Surgery, Harvard Medical School, Boston, MA, USA.
| |
Collapse
|
34
|
Gehweiler D, Teunis T, Varjas V, Kerstan D, Gueorguiev B, Kamer L, Noser H. Computerized anatomy of the distal radius and its relevance to volar plating, research, and teaching. Clin Anat 2018; 32:361-368. [PMID: 30521090 PMCID: PMC7379250 DOI: 10.1002/ca.23320] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2018] [Revised: 11/26/2018] [Accepted: 12/02/2018] [Indexed: 11/09/2022]
Abstract
Distal radius fractures are common and fracture patterns and fixation can be complex. Computerized anatomy evaluation (CAE) might offer non-invasive and enhanced anatomy assessment that might help with implant selection and placement and screw length determination. Our goal was to test the accuracy of two CAE methods for anatomical volar plate positioning and screw lengths measurement of the distal radius. We included 56 high-resolution peripheral quantitative computed tomography scans of intact, human distal radii. Plates were placed manually onto 3D printed models (method 1), which was compared with automated computerized plate placement onto the 3D computer models (method 2). Subsequently, screw lengths were determined digitally for both methods. Screw lengths evaluations were compared via Bland-Altman plots. Both CAE methods resulted in identical volar plate selection and in anatomical plate positioning. For screw length the concordance correlation coefficient was ≥0.91, the location shift ≤0.22 mm, and the scale shift ≤0.16. The differences were smaller than ±1 mm in all samples. Both CAE methods allow for comparable plate positioning and subsequent screw length measurement in distal radius volar plating. Both can be used as a non-invasive teaching environment for volar plate fixation. Method 2 even offers fully computerized assessments. Future studies could compare our models to other anatomical areas, post-operative volar plate positioning, and model performance in actual distal radius fracture instead of intact radii. Clin. Anat. 32:361-368, 2019. © 2018 The Authors. Clinical Anatomy published by Wiley Periodicals, Inc. on behalf of American Association of Clinical Anatomists.
Collapse
Affiliation(s)
| | - Teun Teunis
- Plastic Surgery Department, University Medical Center Utrecht, Utrecht, The Netherlands
| | | | | | | | - Lukas Kamer
- AO Research Institute Davos, Davos, Switzerland
| | | |
Collapse
|
35
|
Cervinka T, Giangregorio L, Sievanen H, Cheung AM, Craven BC. Peripheral Quantitative Computed Tomography: Review of Evidence and Recommendations for Image Acquisition, Analysis, and Reporting, Among Individuals With Neurological Impairment. J Clin Densitom 2018; 21:563-582. [PMID: 30196052 DOI: 10.1016/j.jocd.2018.07.003] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/16/2018] [Revised: 05/07/2018] [Accepted: 10/07/2018] [Indexed: 02/06/2023]
Abstract
In 2015, the International Society for Clinical Densitometry (ISCD) position statement regarding peripheral quantitative computed tomography (pQCT) did not recommend routine use of pQCT, in clinical settings until consistency in image acquisition and analysis protocols are reached, normative studies conducted, and treatment thresholds identified. To date, the lack of consensus-derived recommendations regarding pQCT implementation remains a barrier to implementation of pQCT technology. Thus, based on description of available evidence and literature synthesis, this review recommends the most appropriate pQCT acquisition and analysis protocols for clinical care and research purposes, and recommends specific measures for diagnosis of osteoporosis, assigning fracture risk, and monitoring osteoporosis treatment effectiveness, among patients with neurological impairment. A systematic literature search of MEDLINE, EMBASE©, CINAHL, and PubMed for available pQCT studies assessing bone health was carried out from inception to August 8th, 2017. The search was limited to individuals with neurological impairment (spinal cord injury, stroke, and multiple sclerosis) as these groups have rapid and severe regional declines in bone mass. Of 923 references, we identified 69 that met review inclusion criteria. The majority of studies (n = 60) used the Stratec XCT 2000/3000 pQCT scanners as reflected in our evaluation of acquisition and analysis protocols. Overall congruence with the ISCD Official Positions was poor. Only 11% (n = 6) studies met quality reporting criteria for image acquisition and 32% (n = 19) reported their data analysis in a format suitable for reproduction. Therefore, based on current literature synthesis, ISCD position statement standards and the authors' expertise, we propose acquisition and analysis protocols at the radius, tibia, and femur sites using Stratec XCT 2000/3000 pQCT scanners among patients with neurological impairment for clinical and research purposes in order to drive practice change, develop normative datasets and complete future meta-analysis to inform fracture risk and treatment efficacy evaluation.
Collapse
Affiliation(s)
- T Cervinka
- Neural Engineering and Therapeutics Team, Toronto Rehabilitation Research Institute-University Health Network, Toronto, Ontario, Canada.
| | - L Giangregorio
- Neural Engineering and Therapeutics Team, Toronto Rehabilitation Research Institute-University Health Network, Toronto, Ontario, Canada; Department of Kinesiology, University of Waterloo, Waterloo, Ontario, Canada
| | - H Sievanen
- Bone Research Group, UKK Institute, Tampere, Finland
| | - A M Cheung
- Centre of Excellence in Skeletal Health Assessment, University Health Network, Toronto, Ontario, Canada; Department of Medicine, University of Toronto, Toronto, Ontario, Canada
| | - B C Craven
- Neural Engineering and Therapeutics Team, Toronto Rehabilitation Research Institute-University Health Network, Toronto, Ontario, Canada; Department of Kinesiology, University of Waterloo, Waterloo, Ontario, Canada; Centre of Excellence in Skeletal Health Assessment, University Health Network, Toronto, Ontario, Canada; Brain and Spinal Cord Rehabilitation Program, Toronto Rehabilitation Institute-University Health Network, Toronto, Canada; Department of Medicine, University of Toronto, Toronto, Ontario, Canada
| |
Collapse
|
36
|
Fink HA, Langsetmo L, Vo TN, Orwoll ES, Schousboe JT, Ensrud KE. Association of High-resolution Peripheral Quantitative Computed Tomography (HR-pQCT) bone microarchitectural parameters with previous clinical fracture in older men: The Osteoporotic Fractures in Men (MrOS) study. Bone 2018; 113:49-56. [PMID: 29751130 PMCID: PMC6040812 DOI: 10.1016/j.bone.2018.05.005] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/08/2018] [Revised: 05/02/2018] [Accepted: 05/07/2018] [Indexed: 01/09/2023]
Abstract
High-resolution peripheral quantitative computed tomography (HR-pQCT) assesses both volumetric bone mineral density (vBMD) and trabecular and cortical microarchitecture. However, studies of the association of HR-pQCT parameters with fracture history have been small, predominantly limited to postmenopausal women, often performed limited adjustment for potential confounders including for BMD, and infrequently assessed strength or failure measures. We used data from the Osteoporotic Fractures in Men (MrOS) study, a prospective cohort study of community-dwelling men aged ≥65 years, to evaluate the association of distal radius, proximal (diaphyseal) tibia and distal tibia HR-pQCT parameters measured at the Year 14 (Y14) study visit with prior clinical fracture. The primary HR-pQCT exposure variables were finite element analysis estimated failure loads (EFL) for each skeletal site; secondary exposure variables were total vBMD, total bone area, trabecular vBMD, trabecular bone area, trabecular thickness, trabecular number, cortical vBMD, cortical bone area, cortical thickness, and cortical porosity. Clinical fractures were ascertained from questionnaires administered every 4 months between MrOS study baseline and the Y14 visit and centrally adjudicated by masked review of radiographic reports. We used multivariate-adjusted logistic regression to estimate the odds of prior clinical fracture per 1 SD decrement for each Y14 HR-pQCT parameter. Three hundred forty-four (19.2%) of the 1794 men with available HR-pQCT measures had a confirmed clinical fracture between baseline and Y14. After multivariable adjustment, including for total hip areal BMD, decreased HR-pQCT finite element analysis EFL for each site was associated with significantly greater odds of prior confirmed clinical fracture and major osteoporotic fracture. Among other HR-pQCT parameters, decreased cortical area appeared to have the strongest independent association with prior clinical fracture. Future studies should explore associations of HR-pQCT parameters with specific fracture types and risk of incident fractures and the impact of age and sex on these relationships.
Collapse
Affiliation(s)
- Howard A Fink
- Geriatric Research Education & Clinical Center, Veterans Affairs Health Care System, Minneapolis, MN, USA; Center for Chronic Disease Outcomes Research, Veterans Affairs Health Care System, Minneapolis, MN, USA; Department of Medicine, University of Minnesota, Minneapolis, MN, USA; Division of Epidemiology and Community Health, School of Public Health, University of Minnesota, Minneapolis, MN, USA.
| | - Lisa Langsetmo
- Division of Epidemiology and Community Health, School of Public Health, University of Minnesota, Minneapolis, MN, USA
| | - Tien N Vo
- Division of Epidemiology and Community Health, School of Public Health, University of Minnesota, Minneapolis, MN, USA
| | - Eric S Orwoll
- Bone and Mineral Unit, Oregon Health & Science University, Portland, OR, USA
| | - John T Schousboe
- Park Nicollet Institute, Minneapolis, MN, USA; Division of Health Policy and Management, University of Minnesota, Minneapolis, MN, USA
| | - Kristine E Ensrud
- Center for Chronic Disease Outcomes Research, Veterans Affairs Health Care System, Minneapolis, MN, USA; Department of Medicine, University of Minnesota, Minneapolis, MN, USA; Division of Epidemiology and Community Health, School of Public Health, University of Minnesota, Minneapolis, MN, USA
| |
Collapse
|
37
|
Johansson L, Sundh D, Zoulakis M, Rudäng R, Darelid A, Brisby H, Nilsson AG, Mellström D, Lorentzon M. The Prevalence of Vertebral Fractures Is Associated With Reduced Hip Bone Density and Inferior Peripheral Appendicular Volumetric Bone Density and Structure in Older Women. J Bone Miner Res 2018; 33:250-260. [PMID: 28926125 DOI: 10.1002/jbmr.3297] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/15/2017] [Revised: 09/04/2017] [Accepted: 09/17/2017] [Indexed: 02/05/2023]
Abstract
Vertebral fractures (VFs) are among the most severe and prevalent osteoporotic fractures. Their association with bone microstructure have been investigated in several retrospective case-control studies with spine radiography for diagnosis of VF. The aim of this population-based cross-sectional study of 1027 women aged 75 to 80 years was to investigate if prevalent VF, identified by vertebral fracture assessment (VFA) by dual-energy X-ray absorptiometry (DXA), was associated with appendicular volumetric bone density, structure, and bone material strength index (BMSi), independently of hip areal bone mineral density (aBMD). aBMD was measured using DXA (Discovery; Hologic); BMSi with microindentation (Osteoprobe); and bone geometry, volumetric BMD, and microstructure with high-resolution peripheral quantitative computed tomography (HRpQCT) (XtremeCT; Scanco Medical AG). aBMD was lower (spine 3.2%, total hip [TH] 3.8%) at all sites in women with VF, but tibia BMSi did not differ significantly compared to women without VF. In multivariable adjusted logistic regression models, radius trabecular bone volume fraction and tibia cortical area (odds ratio [OR] 1.26; 95% confidence interval [CI], [1.06 to 1.49]; and OR 1.27 [95% CI, 1.08 to 1.49], respectively) were associated with VF prevalence, whereas BMSi and cortical porosity were not. The risk of having one, two, or more than two VFs was increased 1.27 (95% CI, 1.04 to 1.54), 1.83 (95% CI, 1.28 to 2.61), and 1.78 (95% CI, 1.03 to 3.09) times, respectively, for each SD decrease in TH aBMD. When including either cortical area, trabecular bone volume fraction or TBS in the model together with TH aBMD and covariates, only TH aBMD remained independently associated with presence of any VF. In conclusion, TH aBMD was consistently associated with prevalent VFA-verified VF, whereas neither trabecular bone volume fraction, cortical area, cortical porosity, nor BMSi were independently associated with VF in older women. © 2017 American Society for Bone and Mineral Research.
Collapse
Affiliation(s)
- Lisa Johansson
- Geriatric Medicine, Department of Internal Medicine and Clinical Nutrition, Institute of Medicine, University of Gothenburg, Gothenburg, Sweden.,Department of Orthopaedics, Sahlgrenska University Hospital, Gothenburg, Sweden
| | - Daniel Sundh
- Geriatric Medicine, Department of Internal Medicine and Clinical Nutrition, Institute of Medicine, University of Gothenburg, Gothenburg, Sweden
| | - Michael Zoulakis
- Geriatric Medicine, Department of Internal Medicine and Clinical Nutrition, Institute of Medicine, University of Gothenburg, Gothenburg, Sweden
| | - Robert Rudäng
- Geriatric Medicine, Department of Internal Medicine and Clinical Nutrition, Institute of Medicine, University of Gothenburg, Gothenburg, Sweden
| | - Anna Darelid
- Geriatric Medicine, Department of Internal Medicine and Clinical Nutrition, Institute of Medicine, University of Gothenburg, Gothenburg, Sweden
| | - Helena Brisby
- Department of Orthopaedics, Sahlgrenska University Hospital, Gothenburg, Sweden.,Department of Orthopaedics, Institute of Clinical Sciences, University of Gothenburg, Gothenburg, Sweden
| | - Anna G Nilsson
- Geriatric Medicine, Department of Internal Medicine and Clinical Nutrition, Institute of Medicine, University of Gothenburg, Gothenburg, Sweden
| | - Dan Mellström
- Geriatric Medicine, Department of Internal Medicine and Clinical Nutrition, Institute of Medicine, University of Gothenburg, Gothenburg, Sweden.,Geriatric Medicine, Sahlgrenska University Hospital, Mölndal, Sweden
| | - Mattias Lorentzon
- Geriatric Medicine, Department of Internal Medicine and Clinical Nutrition, Institute of Medicine, University of Gothenburg, Gothenburg, Sweden.,Geriatric Medicine, Sahlgrenska University Hospital, Mölndal, Sweden
| |
Collapse
|
38
|
The protective effects of triptolide on age-related bone loss in old male rats. Biomed Pharmacother 2017; 98:280-285. [PMID: 29274584 DOI: 10.1016/j.biopha.2017.12.072] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2017] [Revised: 12/01/2017] [Accepted: 12/15/2017] [Indexed: 02/01/2023] Open
Abstract
BACKGROUND Previous studies have showed that triptolide have a critical role in inhibiting osteoclast formation, bone resorption and attenuating regional osteoporosis. However, the protective role of triptolide on age-related bone loss has not been investigated. In the study, we assessed the effect of triptolide supplementation on bone microstructure and bone remolding in old male rat lumbars. METHODS Fifty-two 22-month-old male Sprague-Dawley rats were randomly assigned to either triptolide treatment group or control group. Triptolide (15 μg/kg/d) or normal saline was administered to the rats of assigned group for 8 weeks. Lumbar bone mineral density (BMD) and bone microstructure were analyzed by micro-CT. Fluorochrome labeling of the bones was performed to measure the mineral apposition rate (MAR) and bone formation rate (BFR). Osteoclast number was also measured by TRAP staining. Plasma level of osteocalcin and tartrate-resistant acid phosphatase 5b (Tracp 5b) was also analyzed. RESULTS Micro-CT results revealed that triptolide-treated rats had significant higher BMD, bone volume over total volume (BV/TV), trabecular thickness (Tb.Th), bone trabecular number (Tb.N), and lower trabecular separation (Tb.Sp) compared to the control group. Although fluorochrome labeling result showed no significant difference in MAR and BFR between the groups, triptolide decreased osteoclast number in vivo. In addition, a significant higher level of plasma Tracp 5b was observed in the triptolide-treated rats. Furthermore, triptolide also reduced the expression of receptor for activation of NF-κB ligand (RANKL) and increased osteoprotegerin (OPG) expression in the lumbars. CONCLUSION These results suggested that triptolide had a protective effect on age-related bone loss at least in part by reducing osteoclast number in elder rats. Therefore, triptolide might be a feasible therapeutic approach for senile osteoporosis.
Collapse
|
39
|
Lee DC, Hoffmann PF, Kopperdahl DL, Keaveny TM. Phantomless calibration of CT scans for measurement of BMD and bone strength-Inter-operator reanalysis precision. Bone 2017; 103:325-333. [PMID: 28778598 PMCID: PMC5636218 DOI: 10.1016/j.bone.2017.07.029] [Citation(s) in RCA: 69] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/21/2016] [Revised: 06/01/2017] [Accepted: 07/21/2017] [Indexed: 01/22/2023]
Abstract
Patient-specific phantomless calibration of computed tomography (CT) scans has the potential to simplify and expand the use of pre-existing clinical CT for quantitative bone densitometry and bone strength analysis for diagnostic and monitoring purposes. In this study, we quantified the inter-operator reanalysis precision errors for a novel implementation of patient-specific phantomless calibration, using air and either aortic blood or hip adipose tissue as internal calibrating reference materials, and sought to confirm the equivalence between phantomless and (traditional) phantom-based measurements. CT scans of the spine and hip for 25 women and 15 men (mean±SD age of 67±9years, range 41-86years), one scan per anatomic site per patient, were analyzed independently by two analysts using the VirtuOst software (O.N. Diagnostics, Berkeley, CA). The scans were acquired at 120kVp, with a slice thickness/increment of 3mm or less, on nine different CT scanner models across 24 different scanners. The main parameters assessed were areal bone mineral density (BMD) at the hip (total hip and femoral neck), trabecular volumetric BMD at the spine, and vertebral and femoral strength by finite element analysis; other volumetric BMD measures were also assessed. We found that the reanalysis precision errors for all phantomless measurements were ≤0.5%, which was as good as for phantom calibration. Regression analysis indicated equivalence of the phantom- versus phantomless-calibrated measurements (slope not different than unity, R2≥0.98). Of the main parameters assessed, non-significant paired mean differences (n=40) between the two measurements ranged from 0.6% for hip areal BMD to 1.1% for mid-vertebral trabecular BMD. These results indicate that phantom-equivalent measurements of both BMD and finite element-derived bone strength can be reliably obtained from CT scans using patient-specific phantomless calibration.
Collapse
Affiliation(s)
| | | | | | - Tony M Keaveny
- Department of Mechanical Engineering, University of California, Berkeley, CA, USA; Department of Bioengineering, University of California, Berkeley, CA, USA.
| |
Collapse
|
40
|
Keaveny TM, Crittenden DB, Bolognese MA, Genant HK, Engelke K, Oliveri B, Brown JP, Langdahl BL, Yan C, Grauer A, Libanati C. Greater Gains in Spine and Hip Strength for Romosozumab Compared With Teriparatide in Postmenopausal Women With Low Bone Mass. J Bone Miner Res 2017; 32:1956-1962. [PMID: 28543940 DOI: 10.1002/jbmr.3176] [Citation(s) in RCA: 58] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/24/2017] [Revised: 05/09/2017] [Accepted: 05/22/2017] [Indexed: 12/18/2022]
Abstract
Romosozumab is a monoclonal antibody that inhibits sclerostin and has been shown to reduce the risk of fractures within 12 months. In a phase II, randomized, placebo-controlled clinical trial of treatment-naïve postmenopausal women with low bone mass, romosozumab increased bone mineral density (BMD) at the hip and spine by the dual effect of increasing bone formation and decreasing bone resorption. In a substudy of that trial, which included placebo and teriparatide arms, here we investigated whether those observed increases in BMD also resulted in improvements in estimated strength, as assessed by finite element analysis. Participants received blinded romosozumab s.c. (210 mg monthly) or placebo, or open-label teriparatide (20 μg daily) for 12 months. CT scans, obtained at the lumbar spine (n = 82) and proximal femur (n = 46) at baseline and month 12, were analyzed with finite element software (VirtuOst, O.N. Diagnostics) to estimate strength for a simulated compression overload for the spine (L1 vertebral body) and a sideways fall for the proximal femur, all blinded to treatment assignment. We found that, at month 12, vertebral strength increased more for romosozumab compared with both teriparatide (27.3% versus 18.5%; p = 0.005) and placebo (27.3% versus -3.9%; p < 0.0001); changes in femoral strength for romosozumab showed similar but smaller changes, increasing more with romosozumab versus teriparatide (3.6% versus -0.7%; p = 0.027), and trending higher versus placebo (3.6% versus -0.1%; p = 0.059). Compartmental analysis revealed that the bone-strengthening effects for romosozumab were associated with positive contributions from both the cortical and trabecular bone compartments at both the lumbar spine and hip. Taken together, these findings suggest that romosozumab may offer patients with osteoporosis a new bone-forming therapeutic option that increases both vertebral and femoral strength within 12 months. © 2017 American Society for Bone and Mineral Research.
Collapse
Affiliation(s)
| | | | | | | | - Klaus Engelke
- Bioclinica, Hamburg, Germany, and Institute of Medical Physics, University of Erlangen, Erlangen, Germany
| | | | - Jacques P Brown
- CHU de Québec Research Centre and Laval University, Québec City, QC, Canada
| | | | | | | | | |
Collapse
|
41
|
Skeletal assessment with finite element analysis: relevance, pitfalls and interpretation. Curr Opin Rheumatol 2017; 29:402-409. [PMID: 28376059 DOI: 10.1097/bor.0000000000000405] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
|
42
|
Obesity and Obesity Shape Markedly Influence Spine Biomechanics: A Subject-Specific Risk Assessment Model. Ann Biomed Eng 2017; 45:2373-2382. [DOI: 10.1007/s10439-017-1868-7] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2017] [Accepted: 06/03/2017] [Indexed: 12/15/2022]
|
43
|
Lee CH, Landham PR, Eastell R, Adams MA, Dolan P, Yang L. Development and validation of a subject-specific finite element model of the functional spinal unit to predict vertebral strength. Proc Inst Mech Eng H 2017; 231:821-830. [DOI: 10.1177/0954411917708806] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Affiliation(s)
- Chu-Hee Lee
- The Mellanby Centre for Bone Research, The University of Sheffield, Sheffield, UK
| | | | - Richard Eastell
- The Mellanby Centre for Bone Research, The University of Sheffield, Sheffield, UK
- INSIGNEO Institute for in silico Medicine, The University of Sheffield, Sheffield, UK
| | - Michael A Adams
- Centre for Applied Anatomy, University of Bristol, Bristol, UK
| | - Patricia Dolan
- Centre for Applied Anatomy, University of Bristol, Bristol, UK
| | - Lang Yang
- The Mellanby Centre for Bone Research, The University of Sheffield, Sheffield, UK
- INSIGNEO Institute for in silico Medicine, The University of Sheffield, Sheffield, UK
| |
Collapse
|
44
|
Petfield JL, Hayeck GT, Kopperdahl DL, Nesti LJ, Keaveny TM, Hsu JR. Virtual stress testing of fracture stability in soldiers with severely comminuted tibial fractures. J Orthop Res 2017; 35:805-811. [PMID: 27302535 DOI: 10.1002/jor.23335] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/27/2016] [Accepted: 06/02/2016] [Indexed: 02/04/2023]
Abstract
Virtual stress testing (VST) provides a non-invasive estimate of the strength of a healing bone through a biomechanical analysis of a patient's computed tomography (CT) scan. We asked whether VST could improve management of patients who had a tibia fracture treated with external fixation. In a retrospective case-control study of 65 soldier-patients who had tibia fractures treated with an external fixator, we performed VST utilizing CT scans acquired prior to fixator removal. The strength of the healing bone and the amount of tissue damage after application of an overload were computed for various virtual loading cases. Logistic regression identified computed outcomes with the strongest association to clinical events related to nonunion within 2 months after fixator removal. Clinical events (n = 9) were associated with a low tibial strength for compression loading (p < 0.05, AUC = 0.74) or a low proportion of failed cortical bone tissue for torsional loading (p < 0.005, AUC = 0.84). Using post-hoc thresholds of a compressive strength of four times body-weight and a proportional of failed cortical bone tissue of 5%, the test identified all nine patients who failed clinically (100% sensitivity; 40.9% positive predictive value) and over three fourths of those (43 of 56) who progressed to successful healing (76.8% specificity; 100% negative predictive value). In this study, VST identified all patients who progressed to full, uneventful union after fixator removal; thus, we conclude that this new test has the potential to provide a quantitative, objective means of identifying tibia-fracture patients who can safely resume weight bearing. © 2016 Orthopaedic Research Society. Published by Wiley Periodicals, Inc. J Orthop Res 35:805-811, 2017.
Collapse
Affiliation(s)
- Joseph L Petfield
- Department of Orthopaedics and Rehabilitation, San Antonio Military Medical Center, San Antonio, Texas
| | - Garry T Hayeck
- O. N. Diagnostics, 2150 Shattuck Ave. Ste 610, Berkeley, California, 94704
| | - David L Kopperdahl
- O. N. Diagnostics, 2150 Shattuck Ave. Ste 610, Berkeley, California, 94704
| | - Leon J Nesti
- Department of Orthopaedic Surgery, Walter Reed National Military Medical Center, Bethesda, Maryland.,Department of Surgery, Uniformed Services University of the Health Sciences, Bethesda, Maryland
| | - Tony M Keaveny
- O. N. Diagnostics, 2150 Shattuck Ave. Ste 610, Berkeley, California, 94704.,Departments of Mechanical Engineering and Bioengineering, University of California, Berkeley, California
| | | | | |
Collapse
|
45
|
Abstract
PURPOSE OF REVIEW This paper seeks to evaluate and compare recent advances in the clinical assessment of the changes in bone mechanical properties that take place as a result of osteoporosis and other metabolic bone diseases and their treatments. RECENT FINDINGS In addition to the standard of DXA-based areal bone mineral density (aBMD), a variety of methods, including imaging-based structural measurements, finite element analysis (FEA)-based techniques, and alternate methods including ultrasound, bone biopsy, reference point indentation, and statistical shape and density modeling, have been developed which allow for reliable prediction of bone strength and fracture risk. These methods have also shown promise in the evaluation of treatment-induced changes in bone mechanical properties. Continued technological advances allowing for increasingly high-resolution imaging with low radiation dose, together with the expanding adoption of DXA-based predictions of bone structure and mechanics, as well as the increasing awareness of the importance of bone material properties in determining whole-bone mechanics, lead us to anticipate substantial future advances in this field.
Collapse
Affiliation(s)
- Chantal M J de Bakker
- McKay Orthopaedic Research Laboratory, Department of Orthopaedic Surgery, Perelman School of Medicine, University of Pennsylvania, 426C Stemmler Hall, 36th Street and Hamilton Walk, Philadelphia, PA, 19104, USA
| | - Wei-Ju Tseng
- McKay Orthopaedic Research Laboratory, Department of Orthopaedic Surgery, Perelman School of Medicine, University of Pennsylvania, 426C Stemmler Hall, 36th Street and Hamilton Walk, Philadelphia, PA, 19104, USA
| | - Yihan Li
- McKay Orthopaedic Research Laboratory, Department of Orthopaedic Surgery, Perelman School of Medicine, University of Pennsylvania, 426C Stemmler Hall, 36th Street and Hamilton Walk, Philadelphia, PA, 19104, USA
| | - Hongbo Zhao
- McKay Orthopaedic Research Laboratory, Department of Orthopaedic Surgery, Perelman School of Medicine, University of Pennsylvania, 426C Stemmler Hall, 36th Street and Hamilton Walk, Philadelphia, PA, 19104, USA
| | - X Sherry Liu
- McKay Orthopaedic Research Laboratory, Department of Orthopaedic Surgery, Perelman School of Medicine, University of Pennsylvania, 426C Stemmler Hall, 36th Street and Hamilton Walk, Philadelphia, PA, 19104, USA.
| |
Collapse
|
46
|
Anitha D, Thomas B, Jan KS, Subburaj K. Risk of vertebral compression fractures in multiple myeloma patients: A finite-element study. Medicine (Baltimore) 2017; 96:e5825. [PMID: 28079810 PMCID: PMC5266172 DOI: 10.1097/md.0000000000005825] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/25/2022] Open
Abstract
The purpose of this study was to develop and validate a finite element (FE) model to predict vertebral bone strength in vitro using multidetector computed tomography (MDCT) images in multiple myeloma (MM) patients, to serve as a complementing tool to assess fracture risk. In addition, it also aims to differentiate MM patients with and without vertebral compression fractures (VCFs) by performing FE analysis on vertebra segments (T1-L5) obtained from in vivo routine MDCT imaging scans. MDCT-based FE models were developed from the in vitro vertebrae samples and were then applied to the in vivo vertebrae segments of MM patients (n = 4) after validation. Predicted fracture load using FE models correlated significantly with experimentally measured failure load (r = 0.85, P < 0.001). Interestingly, an erratic behavior was observed in patients with fractures (n = 2) and a more gradual change in FE-predicted strength values in patients without fractures (n = 2). Severe geometric deformations were also observed in models that have already attained fractures. Since BMD is not a reliable parameter for fracture risk prediction in MM subjects, it is necessary to use advanced tools such as FE analysis to predict individual fracture risk. If peaks are observed between adjacent segments in an MM patient, it can be safe to conclude that the spine is experiencing regions of structural instability. Such an FE visualization may have therapeutic consequences to prevent MM associated vertebral fractures.
Collapse
Affiliation(s)
- D. Anitha
- Engineering Product Development (EPD), Singapore University of Technology and Design (SUTD), Singapore
| | - Baum Thomas
- Department of Radiology, Klinikum rechts der Isar, Technische Universitaet Muenchen, Muenchen, Germany
| | - Kirschke S. Jan
- Department of Radiology, Klinikum rechts der Isar, Technische Universitaet Muenchen, Muenchen, Germany
| | - Karupppasamy Subburaj
- Engineering Product Development (EPD), Singapore University of Technology and Design (SUTD), Singapore
| |
Collapse
|
47
|
Effects of dose reduction on bone strength prediction using finite element analysis. Sci Rep 2016; 6:38441. [PMID: 27934902 PMCID: PMC5146932 DOI: 10.1038/srep38441] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2016] [Accepted: 11/08/2016] [Indexed: 01/29/2023] Open
Abstract
This study aimed to evaluate the effect of dose reduction, by means of tube exposure reduction, on bone strength prediction from finite-element (FE) analysis. Fresh thoracic mid-vertebrae specimens (n = 11) were imaged, using multi-detector computed tomography (MDCT), at different intensities of X-ray tube exposures (80, 150, 220 and 500 mAs). Bone mineral density (BMD) was estimated from the mid-slice of each specimen from MDCT images. Differences in image quality and geometry of each specimen were measured. FE analysis was performed on all specimens to predict fracture load. Paired t-tests were used to compare the results obtained, using the highest CT dose (500 mAs) as reference. Dose reduction had no significant impact on FE-predicted fracture loads, with significant correlations obtained with reference to 500 mAs, for 80 mAs (R2 = 0.997, p < 0.001), 150 mAs (R2 = 0.998, p < 0.001) and 220 mAs (R2 = 0.987, p < 0.001). There were no significant differences in volume quantification between the different doses examined. CT imaging radiation dose could be reduced substantially to 64% with no impact on strength estimates obtained from FE analysis. Reduced CT dose will enable early diagnosis and advanced monitoring of osteoporosis and associated fracture risk.
Collapse
|
48
|
Wong AKO. A Comparison of Peripheral Imaging Technologies for Bone and Muscle Quantification: a Mixed Methods Clinical Review. Curr Osteoporos Rep 2016; 14:359-373. [PMID: 27796924 DOI: 10.1007/s11914-016-0334-z] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
PURPOSE OF REVIEW Bone and muscle peripheral imaging technologies are reviewed for their association with fractures and frailty. A narrative systematized review was conducted for bone and muscle parameters from each imaging technique. In addition, meta-analyses were performed across all bone quality parameters. RECENT FINDINGS The current body of evidence for bone quality's association with fractures is strong for (high-resolution) peripheral quantitative computed tomography (pQCT), with trabecular separation (Tb.Sp) and integral volumetric bone mineral density (vBMD) reporting consistently large associations with various fracture types across studies. Muscle has recently been linked to fractures and frailty, but the quality of evidence remains weaker from studies of small sample sizes. It is increasingly apparent that musculoskeletal tissues have a complex relationship with interrelated clinical endpoints such as fractures and frailty. Future studies must concurrently address these relationships in order to decipher the relative importance of one causal pathway from another.
Collapse
Affiliation(s)
- Andy Kin On Wong
- Joint Department of Medical Imaging, Toronto General Research Institute, University Health Network, Toronto General Hospital, 200 Elizabeth St. 7EN-238, Toronto, ON, M5G 2C4, Canada.
- McMaster University, Department of Medicine, Faculty of Health Sciences, Hamilton, ON, Canada.
| |
Collapse
|
49
|
Kamer L, Noser H, Blauth M, Lenz M, Windolf M, Popp AW. Bone Mass Distribution of the Distal Tibia in Normal, Osteopenic, and Osteoporotic Conditions: An Ex Vivo Assessment Using HR-pQCT, DXA, and Computational Modelling. Calcif Tissue Int 2016; 99:588-597. [PMID: 27572994 DOI: 10.1007/s00223-016-0188-5] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/10/2016] [Accepted: 08/08/2016] [Indexed: 11/28/2022]
Abstract
Osteoporosis leads to bone loss and structural deterioration, which increase the risk of fractures. The aim of this study was to characterize the three-dimensional (3D) bone mass distributions of the distal tibia in normal, osteopenic, and osteoporotic conditions. High-resolution peripheral quantitative computed tomography (HR-pQCT) of the 33 % of the distal tibia and local dual-energy X-ray absorptiometry were applied to 53 intact, fresh-frozen tibiae. The HR-pQCTs were graded to assign local T-scores and merged into three equally sized average normal, osteopenic, and osteoporotic surface models. Volumetric bone mineral density (vBMD) was determined using categorized T-scores, volumetric visualization, and virtual bore probes at the dia-, meta-, and epiphyseal sites (T-DIA, T-META, and T-EPI). We observed a distinct 3D bone mass distribution that was gradually uninfluenced by T-score categories. T-DIA was characterized by the lowest bone mass located in the medullary cavity and a wide homogenous cortex containing the maximum vBMD. The T-META showed decreased cortical thickness and maximal vBMD. At the T-EPI, the relatively low vBMD of the mostly trabecular bone was similar to the maximal cortical vBMD in this sub-region. Four trabecular regions of low bone mass were identified in the recesses. The bone content gradually decreased at all sites, whereas the pattern of bone mass distribution remained essentially unchanged, with the exception of disproportionate losses at T-DIA, T-META, and T-EPI that consistently showed increased endocortical, intracortical, and trabecular bone loss. Extra information can be obtained from the specific pattern of bone mass distribution, potential disproportionate bone losses, and method used.
Collapse
Affiliation(s)
- Lukas Kamer
- AO Research Institute Davos, Clavadelerstrasse 8, 7270, Davos, Switzerland.
| | - Hansrudi Noser
- AO Research Institute Davos, Clavadelerstrasse 8, 7270, Davos, Switzerland
| | - Michael Blauth
- Department of Trauma Surgery and Sports Medicine, Medical University of Innsbruck, 6020, Innsbruck, Austria
| | - Mark Lenz
- Department of Trauma, Hand and Reconstructive Surgery, University Hospital of Jena, 07747, Jena, Germany
| | - Markus Windolf
- AO Research Institute Davos, Clavadelerstrasse 8, 7270, Davos, Switzerland
| | - Albrecht W Popp
- Department of Osteoporosis, Inselspital, Bern University Hospital, University of Bern, 3010, Bern, Switzerland
| |
Collapse
|
50
|
Sundh D, Mellström D, Ljunggren Ö, Karlsson MK, Ohlsson C, Nilsson M, Nilsson AG, Lorentzon M. Low serum vitamin D is associated with higher cortical porosity in elderly men. J Intern Med 2016; 280:496-508. [PMID: 27196563 DOI: 10.1111/joim.12514] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
Abstract
BACKGROUND Bone loss at peripheral sites in the elderly is mainly cortical and involves increased cortical porosity. However, an association between bone loss at these sites and 25-hydroxyvitamin D has not been reported. OBJECTIVE To investigate the association between serum levels of 25-hydroxyvitamin D, bone microstructure and areal bone mineral density (BMD) in elderly men. METHODS A population-based cohort of 444 elderly men (mean ± SD age 80.2 ± 3.5 years) was investigated. Bone microstructure was measured by high-resolution peripheral quantitative computed tomography, areal BMD by dual-energy X-ray absorptiometry and serum 25-hydroxyvitamin D and parathyroid hormone levels by immunoassay. RESULTS Mean cortical porosity at the distal tibia was 14.7% higher (12.5 ± 4.3% vs. 10.9 ± 4.1%, P < 0.05) whilst cortical volumetric BMD, area, trabecular bone volume fraction and femoral neck areal BMD were lower in men in the lowest quartile of vitamin D levels compared to the highest. In men with vitamin D deficiency (<25 nmol L-1 ) or insufficiency [25-49 nmol L-1 , in combination with an elevated serum level of parathyroid hormone (>6.8 pmol L-1 )], cortical porosity was 17.2% higher than in vitamin D-sufficient men (P < 0.01). A linear regression model including age, weight, height, daily calcium intake, physical activity, smoking vitamin D supplementation and parathyroid hormone showed that 25-hydroxyvitamin D independently predicted cortical porosity (standardized β = -0.110, R2 = 1.1%, P = 0.024), area (β = 0.123, R2 = 1.4%, P = 0.007) and cortical volumetric BMD (β = 0.125, R2 = 1.4%, P = 0.007) of the tibia as well as areal BMD of the femoral neck (β = 0.102, R2 = 0.9%, P = 0.04). CONCLUSION Serum vitamin D is associated with cortical porosity, area and density, indicating that bone fragility as a result of low vitamin D could be due to changes in cortical bone microstructure and geometry.
Collapse
Affiliation(s)
- D Sundh
- Geriatric Medicine, Department of Internal Medicine and Clinical Nutrition, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden.,Center for Bone and Arthritis Research, Institute of Medicine, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - D Mellström
- Geriatric Medicine, Department of Internal Medicine and Clinical Nutrition, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden.,Center for Bone and Arthritis Research, Institute of Medicine, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Ö Ljunggren
- Department of Medical Sciences, Uppsala University, Uppsala, Sweden
| | - M K Karlsson
- Clinical and Molecular Osteoporosis Research Unit, Department of Clinical Sciences, Lund University, Lund, Sweden.,Department of Orthopaedics, Skåne University Hospital, Malmö, Sweden
| | - C Ohlsson
- Center for Bone and Arthritis Research, Institute of Medicine, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - M Nilsson
- Geriatric Medicine, Department of Internal Medicine and Clinical Nutrition, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden.,Center for Bone and Arthritis Research, Institute of Medicine, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - A G Nilsson
- Geriatric Medicine, Department of Internal Medicine and Clinical Nutrition, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden.,Center for Bone and Arthritis Research, Institute of Medicine, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - M Lorentzon
- Geriatric Medicine, Department of Internal Medicine and Clinical Nutrition, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden. .,Center for Bone and Arthritis Research, Institute of Medicine, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden.
| |
Collapse
|