1
|
Kiryaman G, Enabulele I, Banville ML, Divieti Pajevic P. The Evolving Role of PTH Signaling in Osteocytes. Endocrinology 2025; 166:bqaf034. [PMID: 39950982 PMCID: PMC12057396 DOI: 10.1210/endocr/bqaf034] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/25/2024] [Indexed: 05/09/2025]
Abstract
Over the past decade, advancements in cell line development and genetic tools have led to a wealth of new insights into the effects of parathyroid hormone (PTH), particularly on osteocytes-cells deeply embedded within the bone's mineral matrix. These cells were once believed to be inactive bystanders, with little, if any, role in skeletal and mineral homeostasis. This concept of passive osteocytes has been challenged in recent years and osteocytes are now recognized for their crucial functions in skeletal mechanotransduction, bone modeling and remodeling, mineral ion regulation, and hematopoiesis. Moreover, osteocytes are key targets of PTH, and studies utilizing genetically modified mice, in which the PTH receptor is either deleted or overexpressed, have shed light on the hormone's complex effects on these cells. Several signaling molecules, including salt kinase inhibitors and histone deacetylases, have been identified as part of PTH's intracellular signaling cascade. In addition to its effects on bone metabolism, PTH has also been implicated in regulating bone energy metabolism, skeletal aging, and hematopoiesis. This review summarizes both classical and emerging effects of PTH on osteocytes, highlights the limitations of current research, and offers perspectives for future investigations in the field.
Collapse
Affiliation(s)
- Gokce Kiryaman
- Translational Dental Medicine, Henry M. Goldman School of Dental Medicine, Boston University, Boston, MA 02118, USA
| | - Irobosa Enabulele
- Translational Dental Medicine, Henry M. Goldman School of Dental Medicine, Boston University, Boston, MA 02118, USA
| | - Myra L Banville
- Translational Dental Medicine, Henry M. Goldman School of Dental Medicine, Boston University, Boston, MA 02118, USA
| | - Paola Divieti Pajevic
- Translational Dental Medicine, Henry M. Goldman School of Dental Medicine, Boston University, Boston, MA 02118, USA
| |
Collapse
|
2
|
Kondo K, Otake K, Kaya T, Miwa S, Ueyama Y, Haruta T, Nishihata J, Nakagawa T, Azuma N, Takagi K, Urashima T, Kitao Y, Shiozaki M. Discovery of a Phosphodiesterase 7A Inhibitor of High Isozyme Selectivity Exhibiting In Vivo Anti-Osteoporotic Effects. ACS Med Chem Lett 2025; 16:167-173. [PMID: 39811123 PMCID: PMC11726384 DOI: 10.1021/acsmedchemlett.4c00570] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2024] [Revised: 12/17/2024] [Accepted: 12/23/2024] [Indexed: 01/16/2025] Open
Abstract
Phosphodiesterases (PDEs) have drawn attention due to their critical roles in physiological and pathological conditions. Many research groups have studied these hydrolytic enzymes to develop new drugs, including apremilast as a PDE4 inhibitor and sildenafil as a PDE5 inhibitor. Targeting PDE7 has also been deemed a rational strategy to ameliorate autoimmune conditions. However, to date, no successful clinical results have been reported. We postulated that progress in these studies with PDE7 had been hampered by the lack of a potent ligand with a reasonable selectivity for this PDE isozyme. Therefore, starting from a PDE7A/7B dual inhibitor, our investigations led to improved selectivity along with extended metabolic stability, resulting in a novel PDE7A inhibitor 26. This compound with high selectivity over the closest isozyme is an ideal chemical entity to unveil new pharmacological roles of PDE7A-dependent signaling, as exemplified by the in vivo antiosteoporotic effects.
Collapse
Affiliation(s)
- Kentaro Kondo
- Chemical
Research Laboratories, i2i-Labo, Biological Pharmacological Research Laboratories, and Drug Metabolism &
Pharma-cokinetics Research Laboratories, Central Pharmaceutical Research
Institute, Japan Tobacco, Inc., 1-1, Murasaki-cho, Takatsuki, Osaka 569-1125, Japan
| | - Kazuki Otake
- Chemical
Research Laboratories, i2i-Labo, Biological Pharmacological Research Laboratories, and Drug Metabolism &
Pharma-cokinetics Research Laboratories, Central Pharmaceutical Research
Institute, Japan Tobacco, Inc., 1-1, Murasaki-cho, Takatsuki, Osaka 569-1125, Japan
| | - Tetsudo Kaya
- Chemical
Research Laboratories, i2i-Labo, Biological Pharmacological Research Laboratories, and Drug Metabolism &
Pharma-cokinetics Research Laboratories, Central Pharmaceutical Research
Institute, Japan Tobacco, Inc., 1-1, Murasaki-cho, Takatsuki, Osaka 569-1125, Japan
| | - Shohei Miwa
- Chemical
Research Laboratories, i2i-Labo, Biological Pharmacological Research Laboratories, and Drug Metabolism &
Pharma-cokinetics Research Laboratories, Central Pharmaceutical Research
Institute, Japan Tobacco, Inc., 1-1, Murasaki-cho, Takatsuki, Osaka 569-1125, Japan
| | - Yoshifumi Ueyama
- Chemical
Research Laboratories, i2i-Labo, Biological Pharmacological Research Laboratories, and Drug Metabolism &
Pharma-cokinetics Research Laboratories, Central Pharmaceutical Research
Institute, Japan Tobacco, Inc., 1-1, Murasaki-cho, Takatsuki, Osaka 569-1125, Japan
| | - Tsunemitsu Haruta
- Chemical
Research Laboratories, i2i-Labo, Biological Pharmacological Research Laboratories, and Drug Metabolism &
Pharma-cokinetics Research Laboratories, Central Pharmaceutical Research
Institute, Japan Tobacco, Inc., 1-1, Murasaki-cho, Takatsuki, Osaka 569-1125, Japan
| | - Jun Nishihata
- i2i-Labo,
Central Pharmaceutical Research Institute, Japan Tobacco, Inc., 1-13-2, Fukuura, Kanazawa-ku, Yokohama Kanagawa 236-0004, Japan
| | - Takashi Nakagawa
- Chemical
Research Laboratories, i2i-Labo, Biological Pharmacological Research Laboratories, and Drug Metabolism &
Pharma-cokinetics Research Laboratories, Central Pharmaceutical Research
Institute, Japan Tobacco, Inc., 1-1, Murasaki-cho, Takatsuki, Osaka 569-1125, Japan
| | - Nobuhide Azuma
- Chemical
Research Laboratories, i2i-Labo, Biological Pharmacological Research Laboratories, and Drug Metabolism &
Pharma-cokinetics Research Laboratories, Central Pharmaceutical Research
Institute, Japan Tobacco, Inc., 1-1, Murasaki-cho, Takatsuki, Osaka 569-1125, Japan
| | - Kayoko Takagi
- Chemical
Research Laboratories, i2i-Labo, Biological Pharmacological Research Laboratories, and Drug Metabolism &
Pharma-cokinetics Research Laboratories, Central Pharmaceutical Research
Institute, Japan Tobacco, Inc., 1-1, Murasaki-cho, Takatsuki, Osaka 569-1125, Japan
| | - Toshiki Urashima
- Chemical
Research Laboratories, i2i-Labo, Biological Pharmacological Research Laboratories, and Drug Metabolism &
Pharma-cokinetics Research Laboratories, Central Pharmaceutical Research
Institute, Japan Tobacco, Inc., 1-1, Murasaki-cho, Takatsuki, Osaka 569-1125, Japan
| | - Yuki Kitao
- Chemical
Research Laboratories, i2i-Labo, Biological Pharmacological Research Laboratories, and Drug Metabolism &
Pharma-cokinetics Research Laboratories, Central Pharmaceutical Research
Institute, Japan Tobacco, Inc., 1-1, Murasaki-cho, Takatsuki, Osaka 569-1125, Japan
| | - Makoto Shiozaki
- Chemical
Research Laboratories, i2i-Labo, Biological Pharmacological Research Laboratories, and Drug Metabolism &
Pharma-cokinetics Research Laboratories, Central Pharmaceutical Research
Institute, Japan Tobacco, Inc., 1-1, Murasaki-cho, Takatsuki, Osaka 569-1125, Japan
| |
Collapse
|
3
|
Marino S, Bellido T. PTH receptor signalling, osteocytes and bone disease induced by diabetes mellitus. Nat Rev Endocrinol 2024; 20:661-672. [PMID: 39020007 DOI: 10.1038/s41574-024-01014-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 06/17/2024] [Indexed: 07/19/2024]
Abstract
Basic, translational and clinical research over the past few decades has provided new understanding on the mechanisms by which activation of the receptor of parathyroid hormone (parathyroid hormone 1 receptor (PTH1R)) regulates bone physiology and pathophysiology. A fundamental change in the field emerged upon the recognition that osteocytes, which are permanent residents of bone and the most abundant cells in bone, are targets of the actions of natural and synthetic ligands of PTH1R (parathyroid hormone and abaloparatide, respectively), and that these cells drive essential actions related to bone remodelling. Among the numerous genes regulated by PTH1R in osteocytes, SOST (which encodes sclerostin, the WNT signalling antagonist and inhibitor of bone formation) has a critical role in bone homeostasis and changes in its expression are associated with several bone pathologies. The bone fragility syndrome induced by diabetes mellitus is accompanied by increased osteocyte apoptosis and changes in the expression of osteocytic genes, including SOST. This Review will discuss advances in our knowledge of the role of osteocytes in PTH1R signalling and the new opportunities to restore bone health in diabetes mellitus by targeting the osteocytic PTH1R-sclerostin axis.
Collapse
Affiliation(s)
- Silvia Marino
- Department of Physiology and Cell Biology, University of Arkansas for Medical Sciences, Little Rock, AR, USA
- Central Arkansas Veterans Healthcare System, John L. McClellan Little Rock, Little Rock, AR, USA
| | - Teresita Bellido
- Department of Physiology and Cell Biology, University of Arkansas for Medical Sciences, Little Rock, AR, USA.
- Central Arkansas Veterans Healthcare System, John L. McClellan Little Rock, Little Rock, AR, USA.
- Winthrop P. Rockefeller Cancer Institute, University of Arkansas for Medical Sciences, Little Rock, AR, USA.
| |
Collapse
|
4
|
Hu L, Chen W, Qian A, Li YP. Wnt/β-catenin signaling components and mechanisms in bone formation, homeostasis, and disease. Bone Res 2024; 12:39. [PMID: 38987555 PMCID: PMC11237130 DOI: 10.1038/s41413-024-00342-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2023] [Revised: 04/27/2024] [Accepted: 05/12/2024] [Indexed: 07/12/2024] Open
Abstract
Wnts are secreted, lipid-modified proteins that bind to different receptors on the cell surface to activate canonical or non-canonical Wnt signaling pathways, which control various biological processes throughout embryonic development and adult life. Aberrant Wnt signaling pathway underlies a wide range of human disease pathogeneses. In this review, we provide an update of Wnt/β-catenin signaling components and mechanisms in bone formation, homeostasis, and diseases. The Wnt proteins, receptors, activators, inhibitors, and the crosstalk of Wnt signaling pathways with other signaling pathways are summarized and discussed. We mainly review Wnt signaling functions in bone formation, homeostasis, and related diseases, and summarize mouse models carrying genetic modifications of Wnt signaling components. Moreover, the therapeutic strategies for treating bone diseases by targeting Wnt signaling, including the extracellular molecules, cytosol components, and nuclear components of Wnt signaling are reviewed. In summary, this paper reviews our current understanding of the mechanisms by which Wnt signaling regulates bone formation, homeostasis, and the efforts targeting Wnt signaling for treating bone diseases. Finally, the paper evaluates the important questions in Wnt signaling to be further explored based on the progress of new biological analytical technologies.
Collapse
Affiliation(s)
- Lifang Hu
- Laboratory for Bone Metabolism, Xi'an Key Laboratory of Special Medicine and Health Engineering, Key Laboratory for Space Biosciences and Biotechnology, Research Center for Special Medicine and Health Systems Engineering, School of Life Sciences, Northwestern Polytechnical University, Xi'an, Shaanxi, 710072, China
| | - Wei Chen
- Division in Cellular and Molecular Medicine, Department of Pathology and Laboratory Medicine, Tulane University School of Medicine, Tulane University, New Orleans, LA, 70112, USA
| | - Airong Qian
- Laboratory for Bone Metabolism, Xi'an Key Laboratory of Special Medicine and Health Engineering, Key Laboratory for Space Biosciences and Biotechnology, Research Center for Special Medicine and Health Systems Engineering, School of Life Sciences, Northwestern Polytechnical University, Xi'an, Shaanxi, 710072, China.
| | - Yi-Ping Li
- Division in Cellular and Molecular Medicine, Department of Pathology and Laboratory Medicine, Tulane University School of Medicine, Tulane University, New Orleans, LA, 70112, USA.
| |
Collapse
|
5
|
Li M, Hasan AA, Chu C, Hocher JG, Liu Y, Zhang X, Chen X, Yard B, Krämer BK, Hocher B. Only bioactive forms of PTH (n-oxPTH and Met18(ox)-PTH) inhibit synthesis of sclerostin - evidence from in vitro and human studies. Pflugers Arch 2024; 476:889-899. [PMID: 38393416 PMCID: PMC11139748 DOI: 10.1007/s00424-024-02928-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2023] [Revised: 01/30/2024] [Accepted: 02/12/2024] [Indexed: 02/25/2024]
Abstract
Sclerostin (SOST) is produced by osteocytes and is known as a negative regulator of bone homeostasis. Parathyroid hormone (PTH) regulates calcium, phosphate as well as vitamin D metabolism, and is a strong inhibitor of SOST synthesis in vitro and in vivo. PTH has two methionine amino acids (positions 8 and 18) which can be oxidized. PTH oxidized at Met18 (Met18(ox)-PTH) continues to be bioactive, whereas PTH oxidized at Met8 (Met8(ox)-PTH) or PTH oxidized at Met8 and Met18 (Met8, Met18(di-ox)-PTH) has minor bioactivity. How non-oxidized PTH (n-oxPTH) and oxidized forms of PTH act on sclerostin synthesis is unknown. The effects of n-oxPTH and oxidized forms of PTH on SOST gene expression were evaluated in UMR106 osteoblast-like cells. Moreover, we analyzed the relationship of SOST with n-oxPTH and all forms of oxPTH in 516 stable kidney transplant recipients using an assay system that can distinguish in clinical samples between n-oxPTH and the sum of all oxidized PTH forms (Met8(ox)-PTH, Met18(ox)-PTH, and Met8, Met18(di-ox)-PTH). We found that both n-oxPTH and Met18(ox)-PTH at doses of 1, 3, 20, and 30 nmol/L significantly inhibit SOST gene expression in vitro, whereas Met8(ox)-PTH and Met8, Met18(di-ox)-PTH only have a weak inhibitory effect on SOST gene expression. In the clinical cohort, multivariate linear regression showed that only n-oxPTH, but not intact PTH (iPTH) nor oxPTH, is independently associated with circulating SOST after adjusting for known confounding factors. In conclusion, only bioactive PTH forms such as n-oxPTH and Met18(ox)-PTH, inhibit SOST synthesis.
Collapse
Affiliation(s)
- Mei Li
- Fifth Department of Medicine (Nephrology/Endocrinology/Rheumatology/Pneumology), University Medical Centre Mannheim, University of Heidelberg, Heidelberg, Germany
| | - Ahmed A Hasan
- Fifth Department of Medicine (Nephrology/Endocrinology/Rheumatology/Pneumology), University Medical Centre Mannheim, University of Heidelberg, Heidelberg, Germany
- Institute of Pharmacy, Freie Universität Berlin, Berlin, Germany
| | - Chang Chu
- Fifth Department of Medicine (Nephrology/Endocrinology/Rheumatology/Pneumology), University Medical Centre Mannheim, University of Heidelberg, Heidelberg, Germany
| | - Johann-Georg Hocher
- Fifth Department of Medicine (Nephrology/Endocrinology/Rheumatology/Pneumology), University Medical Centre Mannheim, University of Heidelberg, Heidelberg, Germany
| | - Yvonne Liu
- Fifth Department of Medicine (Nephrology/Endocrinology/Rheumatology/Pneumology), University Medical Centre Mannheim, University of Heidelberg, Heidelberg, Germany
- Charité - Universitätsmedizin Berlin, Berlin, Germany
| | - Xiaoli Zhang
- Fifth Department of Medicine (Nephrology/Endocrinology/Rheumatology/Pneumology), University Medical Centre Mannheim, University of Heidelberg, Heidelberg, Germany
- Institute of Pharmacy, Freie Universität Berlin, Berlin, Germany
| | - Xin Chen
- Fifth Department of Medicine (Nephrology/Endocrinology/Rheumatology/Pneumology), University Medical Centre Mannheim, University of Heidelberg, Heidelberg, Germany
| | - Benito Yard
- Fifth Department of Medicine (Nephrology/Endocrinology/Rheumatology/Pneumology), University Medical Centre Mannheim, University of Heidelberg, Heidelberg, Germany
| | - Bernhard K Krämer
- Fifth Department of Medicine (Nephrology/Endocrinology/Rheumatology/Pneumology), University Medical Centre Mannheim, University of Heidelberg, Heidelberg, Germany
| | - Berthold Hocher
- Fifth Department of Medicine (Nephrology/Endocrinology/Rheumatology/Pneumology), University Medical Centre Mannheim, University of Heidelberg, Heidelberg, Germany.
- Reproductive, Genetic Hospital of CITIC-Xiangya, Changsha, China.
- Institute of Medical Diagnostics, IMD Berlin-Potsdam, Berlin, Germany.
- Institute of Reproductive and Stem Cell Engineering, NHC Key Laboratory of Human Stem Cell and Reproductive Engineering, School of Basic Medical Science, Central South University, Changsha, Hunan, China.
| |
Collapse
|
6
|
Kim HY, Charton C, Shim JH, Lim SY, Kim J, Lee S, Ohn JH, Kim BK, Heo CY. Patient-Derived Organoids Recapitulate Pathological Intrinsic and Phenotypic Features of Fibrous Dysplasia. Cells 2024; 13:729. [PMID: 38727265 PMCID: PMC11083396 DOI: 10.3390/cells13090729] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2024] [Revised: 04/16/2024] [Accepted: 04/20/2024] [Indexed: 05/13/2024] Open
Abstract
Fibrous dysplasia (FD) is a rare bone disorder characterized by the replacement of normal bone with benign fibro-osseous tissue. Developments in our understanding of the pathophysiology and treatment options are impeded by the lack of suitable research models. In this study, we developed an in vitro organotypic model capable of recapitulating key intrinsic and phenotypic properties of FD. Initially, transcriptomic profiling of individual cells isolated from patient lesional tissues unveiled intralesional molecular and cellular heterogeneity. Leveraging these insights, we established patient-derived organoids (PDOs) using primary cells obtained from patient FD lesions. Evaluation of PDOs demonstrated preservation of fibrosis-associated constituent cell types and transcriptional signatures observed in FD lesions. Additionally, PDOs retained distinct constellations of genomic and metabolic alterations characteristic of FD. Histological evaluation further corroborated the fidelity of PDOs in recapitulating important phenotypic features of FD that underscore their pathophysiological relevance. Our findings represent meaningful progress in the field, as they open up the possibility for in vitro modeling of rare bone lesions in a three-dimensional context and may signify the first step towards creating a personalized platform for research and therapeutic studies.
Collapse
Affiliation(s)
- Ha-Young Kim
- Interdisciplinary Program in Bioengineering, Seoul National University, Seoul 08826, Republic of Korea;
- Department of Plastic and Reconstructive Surgery, College of Medicine, Seoul National University, Seoul 03080, Republic of Korea
| | - Clémentine Charton
- Precision Medicine Center, Future Innovation Research Division, Seoul National University Bundang Hospital, Seongnam 13605, Republic of Korea; (C.C.); (J.K.); (S.L.)
| | - Jung Hee Shim
- Department of Research Administration Team, Seoul National University Bundang Hospital, Seongnam 13620, Republic of Korea;
- Department of Plastic and Reconstructive Surgery, Seoul National University Bundang Hospital, Seongnam 13620, Republic of Korea;
| | - So Young Lim
- Department of Plastic and Reconstructive Surgery, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul 06351, Republic of Korea;
| | - Jinho Kim
- Precision Medicine Center, Future Innovation Research Division, Seoul National University Bundang Hospital, Seongnam 13605, Republic of Korea; (C.C.); (J.K.); (S.L.)
- Department of Laboratory Medicine, Seoul National University Bundang Hospital, Seoul National University College of Medicine, Seongnam 13620, Republic of Korea
| | - Sejoon Lee
- Precision Medicine Center, Future Innovation Research Division, Seoul National University Bundang Hospital, Seongnam 13605, Republic of Korea; (C.C.); (J.K.); (S.L.)
- Department of Pathology, Seoul National University Bundang Hospital, Seongnam 13620, Republic of Korea
| | - Jung Hun Ohn
- Department of Internal Medicine, Seoul National University Bundang Hospital, Seongnam 13620, Republic of Korea;
| | - Baek Kyu Kim
- Department of Plastic and Reconstructive Surgery, Seoul National University Bundang Hospital, Seongnam 13620, Republic of Korea;
| | - Chan Yeong Heo
- Interdisciplinary Program in Bioengineering, Seoul National University, Seoul 08826, Republic of Korea;
- Department of Plastic and Reconstructive Surgery, College of Medicine, Seoul National University, Seoul 03080, Republic of Korea
- Department of Plastic and Reconstructive Surgery, Seoul National University Bundang Hospital, Seongnam 13620, Republic of Korea;
| |
Collapse
|
7
|
Chen XF, Duan YY, Jia YY, Dong QH, Shi W, Zhang Y, Dong SS, Li M, Liu Z, Chen F, Huang XT, Hao RH, Zhu DL, Jing RH, Guo Y, Yang TL. Integrative high-throughput enhancer surveying and functional verification divulges a YY2-condensed regulatory axis conferring risk for osteoporosis. CELL GENOMICS 2024; 4:100501. [PMID: 38335956 PMCID: PMC10943593 DOI: 10.1016/j.xgen.2024.100501] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/16/2023] [Revised: 08/23/2023] [Accepted: 01/10/2024] [Indexed: 02/12/2024]
Abstract
The precise roles of chromatin organization at osteoporosis risk loci remain largely elusive. Here, we combined chromatin interaction conformation (Hi-C) profiling and self-transcribing active regulatory region sequencing (STARR-seq) to qualify enhancer activities of prioritized osteoporosis-associated single-nucleotide polymorphisms (SNPs). We identified 319 SNPs with biased allelic enhancer activity effect (baaSNPs) that linked to hundreds of candidate target genes through chromatin interactions across 146 loci. Functional characterizations revealed active epigenetic enrichment for baaSNPs and prevailing osteoporosis-relevant regulatory roles for their chromatin interaction genes. Further motif enrichment and network mapping prioritized several putative, key transcription factors (TFs) controlling osteoporosis binding to baaSNPs. Specifically, we selected one top-ranked TF and deciphered that an intronic baaSNP (rs11202530) could allele-preferentially bind to YY2 to augment PAPSS2 expression through chromatin interactions and promote osteoblast differentiation. Our results underline the roles of TF-mediated enhancer-promoter contacts for osteoporosis, which may help to better understand the intricate molecular regulatory mechanisms underlying osteoporosis risk loci.
Collapse
Affiliation(s)
- Xiao-Feng Chen
- Key Laboratory of Biomedical Information Engineering of Ministry of Education, Key Laboratory of Biology Multiomics and Diseases in Shaanxi Province Higher Education Institutions, Biomedical Informatics and Genomics Center, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an 710049, Shaanxi, China
| | - Yuan-Yuan Duan
- Key Laboratory of Biomedical Information Engineering of Ministry of Education, Key Laboratory of Biology Multiomics and Diseases in Shaanxi Province Higher Education Institutions, Biomedical Informatics and Genomics Center, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an 710049, Shaanxi, China
| | - Ying-Ying Jia
- Key Laboratory of Biomedical Information Engineering of Ministry of Education, Key Laboratory of Biology Multiomics and Diseases in Shaanxi Province Higher Education Institutions, Biomedical Informatics and Genomics Center, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an 710049, Shaanxi, China
| | - Qian-Hua Dong
- Key Laboratory of Biomedical Information Engineering of Ministry of Education, Key Laboratory of Biology Multiomics and Diseases in Shaanxi Province Higher Education Institutions, Biomedical Informatics and Genomics Center, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an 710049, Shaanxi, China
| | - Wei Shi
- Key Laboratory of Biomedical Information Engineering of Ministry of Education, Key Laboratory of Biology Multiomics and Diseases in Shaanxi Province Higher Education Institutions, Biomedical Informatics and Genomics Center, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an 710049, Shaanxi, China
| | - Yan Zhang
- Key Laboratory of Biomedical Information Engineering of Ministry of Education, Key Laboratory of Biology Multiomics and Diseases in Shaanxi Province Higher Education Institutions, Biomedical Informatics and Genomics Center, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an 710049, Shaanxi, China
| | - Shan-Shan Dong
- Key Laboratory of Biomedical Information Engineering of Ministry of Education, Key Laboratory of Biology Multiomics and Diseases in Shaanxi Province Higher Education Institutions, Biomedical Informatics and Genomics Center, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an 710049, Shaanxi, China
| | - Meng Li
- Department of Orthopedics, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an 710061, Shaanxi, China
| | - Zhongbo Liu
- Key Laboratory of Shaanxi Province for Craniofacial Precision Medicine Research, College of Stomatology, Xi'an Jiaotong University, Xi'an 710004, Shaanxi, China
| | - Fei Chen
- Key Laboratory of Biomedical Information Engineering of Ministry of Education, Key Laboratory of Biology Multiomics and Diseases in Shaanxi Province Higher Education Institutions, Biomedical Informatics and Genomics Center, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an 710049, Shaanxi, China
| | - Xiao-Ting Huang
- Key Laboratory of Biomedical Information Engineering of Ministry of Education, Key Laboratory of Biology Multiomics and Diseases in Shaanxi Province Higher Education Institutions, Biomedical Informatics and Genomics Center, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an 710049, Shaanxi, China
| | - Ruo-Han Hao
- Key Laboratory of Biomedical Information Engineering of Ministry of Education, Key Laboratory of Biology Multiomics and Diseases in Shaanxi Province Higher Education Institutions, Biomedical Informatics and Genomics Center, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an 710049, Shaanxi, China
| | - Dong-Li Zhu
- Key Laboratory of Biomedical Information Engineering of Ministry of Education, Key Laboratory of Biology Multiomics and Diseases in Shaanxi Province Higher Education Institutions, Biomedical Informatics and Genomics Center, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an 710049, Shaanxi, China
| | - Rui-Hua Jing
- Department of Ophthalmology, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an 710000, Shaanxi, China
| | - Yan Guo
- Key Laboratory of Biomedical Information Engineering of Ministry of Education, Key Laboratory of Biology Multiomics and Diseases in Shaanxi Province Higher Education Institutions, Biomedical Informatics and Genomics Center, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an 710049, Shaanxi, China.
| | - Tie-Lin Yang
- Key Laboratory of Biomedical Information Engineering of Ministry of Education, Key Laboratory of Biology Multiomics and Diseases in Shaanxi Province Higher Education Institutions, Biomedical Informatics and Genomics Center, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an 710049, Shaanxi, China; Department of Orthopedics, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an 710061, Shaanxi, China.
| |
Collapse
|
8
|
Chen Y, Tan J, Yang C, Ling Z, Xu J, Sun D, Luo F. Dynamic chromatin accessibility landscapes of osteoblast differentiation and mineralization. Biochim Biophys Acta Mol Basis Dis 2024; 1870:166938. [PMID: 37931716 DOI: 10.1016/j.bbadis.2023.166938] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2023] [Revised: 10/12/2023] [Accepted: 10/29/2023] [Indexed: 11/08/2023]
Abstract
Bone acts as a self-healing organ, which undergoes continuous regeneration process that is tightly regulated by the cooperation of osteoclasts with the capability of bone resorption and osteoblasts with the capability of bone formation. Generally, bone marrow derived mesenchymal stem cells (BMSCs) differentiated to final osteoblasts have been considered as critical role in bone remodeling. In this regard, several transcription factors (TFs) whose binding sites are initially hidden deep within accessible chromatin that participate in modulating osteoblast differentiation and bone matrix mineralization. Then, it is necessary to explore further the dynamic changes about the epigenetic transcription machinery during osteoblastogenesis. Here, we performed the chromatin accessibility and transcriptomic landscape of osteoblast differentiation and mineralization by using transposase-accessible chromatin sequencing (ATAC-seq) and RNA sequencing (RNA-Seq). Our data found that global chromatin accessibility during osteoblastogenesis was extensively improved. Above this, it is shown that key target genes including Col6a3, Serpina3n, Ms4a4d, Lyz2, Phf11b and Grin3a were enriched in differential loci RNA-seq and ATAC-Seq peaks with continuous changed tendency during osteoblasts differentiation and mineralization. In addition, Analysis of Motif Enrichment (AME) was used to elucidate TFs which modulated these target genes. In this study, it was shown for the first time that these important TFs including MEF2A, PRRX1, Shox2 and HOXB13 could alter promoter accessibility of target genes during osteoblastogenesis. This helps us understand how TF binding motif accessibility influences osteoblast differentiation. In addition, it also suggests that modulating the chromatin accessibility of osteogenesis could be developed as the promising strategies to regulate bone regeneration.
Collapse
Affiliation(s)
- Yueqi Chen
- Department of Orthopedics, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing, People's Republic of China; Department of Orthopedics, 76nd Group Army Hospital, Xining, People's Republic of China.
| | - Jiulin Tan
- Department of Orthopedics, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing, People's Republic of China
| | - Chuan Yang
- Department of Biomedical Materials Science, Third Military Medical University (Army Medical University), Chongqing, People's Republic of China
| | - Zhiguo Ling
- Institute of Immunology, Third Military Medical University (Army Medical University), Chongqing, People's Republic of China
| | - Jianzhong Xu
- Department of Orthopedics, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing, People's Republic of China
| | - Dong Sun
- Department of Orthopedics, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing, People's Republic of China.
| | - Fei Luo
- Department of Orthopedics, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing, People's Republic of China.
| |
Collapse
|
9
|
Morfin C, Sebastian A, Wilson SP, Amiri B, Murugesh DK, Hum NR, Christiansen BA, Loots GG. Mef2c regulates bone mass through Sost-dependent and -independent mechanisms. Bone 2024; 179:116976. [PMID: 38042445 DOI: 10.1016/j.bone.2023.116976] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/31/2023] [Revised: 11/16/2023] [Accepted: 11/17/2023] [Indexed: 12/04/2023]
Abstract
Mef2c is a transcription factor that mediates key cellular behaviors that promote endochondral ossification and bone formation. Previously, Mef2c has been shown to regulate Sost transcription via its osteocyte-specific enhancer, ECR5, and conditional deletions of Mef2cfl/fl with either Col1-Cre or Dmp1-Cre produced generalized high bone mass (HBM) consistent with Van Buchem Disease phenotypes. However, Sost-/-; Mef2cfl/fl; Dmp1-Cre mice produced a significantly higher bone mass phenotype that Sost-/- alone suggesting that Mef2c modulates bone mass through additional mechanisms, independent of Sost. To identify new Mef2c transcriptional targets important in bone metabolism, we profiled gene expression by single-cell RNA sequencing in subpopulations of cells isolated from Mef2cfl/fl; Dmp1-Cre and Mef2cfl/fl; Bglap-Cre femurs, both strains exhibiting similar high bone mass phenotypes. However, we found Mef2cfl/fl; Bglap-Cre to also display a growth plate defect characterized by an expansion of several osteoprogenitor subpopulations. Differential gene expression analysis identified a total of 96 up- and 2434 down- regulated genes in Mef2cfl/fl; Bglap-Cre and 176 up- and 1041 down- regulated genes in Mef2cfl/fl; Dmp1-Cre bone cell subpopulations compared to wildtype mice. Mef2c deletion affected the transcriptomes across several cell types including mesenchymal progenitors (MP), osteoprogenitors (OSP), osteoblast (OB), and osteocyte (OCY) subpopulations. Several energy metabolism genes such as Uqcrb, Ndufv2, Ndufs3, Ndufa13, Ndufb9, Ndufb5, Cox6a1, Cox5a, Atp5o, Atp5g2, Atp5b, Atp5 were significantly down regulated in Mef2c-deficient OBs and OCYs, in both strains. Binding motif analysis of promoter regions of differentially expressed genes identified Mef2c binding in Bone Sialoprotein (BSP/Ibsp), a gene known to cause increased trabecular BV/TV in the femurs of Ibsp-/- mice. Immunohistochemical analysis confirmed the absence of Ibsp protein in OBs and OCYs. These findings suggests that the HBM in Sost-/-; Mef2cfl/fl; Dmp1-Cre is caused by a multitude of transcriptional changes in genes that regulate bone formation, two of which are Sost and Ibsp.
Collapse
Affiliation(s)
- Cesar Morfin
- School of Natural Sciences, University of California, Merced, CA, United States; Physical and Life Sciences Directorate, Lawrence Livermore, National Laboratories, Livermore, CA, United States; Department of Orthopaedic Surgery, University of California Davis Health, Sacramento, CA, United States
| | - Aimy Sebastian
- Physical and Life Sciences Directorate, Lawrence Livermore, National Laboratories, Livermore, CA, United States
| | - Stephen P Wilson
- Physical and Life Sciences Directorate, Lawrence Livermore, National Laboratories, Livermore, CA, United States
| | - Beheshta Amiri
- Physical and Life Sciences Directorate, Lawrence Livermore, National Laboratories, Livermore, CA, United States
| | - Deepa K Murugesh
- Physical and Life Sciences Directorate, Lawrence Livermore, National Laboratories, Livermore, CA, United States
| | - Nicholas R Hum
- Physical and Life Sciences Directorate, Lawrence Livermore, National Laboratories, Livermore, CA, United States
| | - Blaine A Christiansen
- Department of Orthopaedic Surgery, University of California Davis Health, Sacramento, CA, United States
| | - Gabriela G Loots
- School of Natural Sciences, University of California, Merced, CA, United States; Physical and Life Sciences Directorate, Lawrence Livermore, National Laboratories, Livermore, CA, United States; Department of Orthopaedic Surgery, University of California Davis Health, Sacramento, CA, United States.
| |
Collapse
|
10
|
Hansen MS, Madsen K, Price M, Søe K, Omata Y, Zaiss MM, Gorvin CM, Frost M, Rauch A. Transcriptional reprogramming during human osteoclast differentiation identifies regulators of osteoclast activity. Bone Res 2024; 12:5. [PMID: 38263167 PMCID: PMC10806178 DOI: 10.1038/s41413-023-00312-6] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2023] [Revised: 11/08/2023] [Accepted: 12/15/2023] [Indexed: 01/25/2024] Open
Abstract
Enhanced osteoclastogenesis and osteoclast activity contribute to the development of osteoporosis, which is characterized by increased bone resorption and inadequate bone formation. As novel antiosteoporotic therapeutics are needed, understanding the genetic regulation of human osteoclastogenesis could help identify potential treatment targets. This study aimed to provide an overview of transcriptional reprogramming during human osteoclast differentiation. Osteoclasts were differentiated from CD14+ monocytes from eight female donors. RNA sequencing during differentiation revealed 8 980 differentially expressed genes grouped into eight temporal patterns conserved across donors. These patterns revealed distinct molecular functions associated with postmenopausal osteoporosis susceptibility genes based on RNA from iliac crest biopsies and bone mineral density SNPs. Network analyses revealed mutual dependencies between temporal expression patterns and provided insight into subtype-specific transcriptional networks. The donor-specific expression patterns revealed genes at the monocyte stage, such as filamin B (FLNB) and oxidized low-density lipoprotein receptor 1 (OLR1, encoding LOX-1), that are predictive of the resorptive activity of mature osteoclasts. The expression of differentially expressed G-protein coupled receptors was strong during osteoclast differentiation, and these receptors are associated with bone mineral density SNPs, suggesting that they play a pivotal role in osteoclast differentiation and activity. The regulatory effects of three differentially expressed G-protein coupled receptors were exemplified by in vitro pharmacological modulation of complement 5 A receptor 1 (C5AR1), somatostatin receptor 2 (SSTR2), and free fatty acid receptor 4 (FFAR4/GPR120). Activating C5AR1 enhanced osteoclast formation, while activating SSTR2 decreased the resorptive activity of mature osteoclasts, and activating FFAR4 decreased both the number and resorptive activity of mature osteoclasts. In conclusion, we report the occurrence of transcriptional reprogramming during human osteoclast differentiation and identified SSTR2 and FFAR4 as antiresorptive G-protein coupled receptors and FLNB and LOX-1 as potential molecular markers of osteoclast activity. These data can help future investigations identify molecular regulators of osteoclast differentiation and activity and provide the basis for novel antiosteoporotic targets.
Collapse
Affiliation(s)
- Morten S Hansen
- Molecular Endocrinology Laboratory (KMEB), Department of Endocrinology, Odense University Hospital, DK-5000, Odense C, Denmark
- Department of Clinical Research, Faculty of Health Sciences, University of Southern Denmark, DK-5000, Odense C, Denmark
- Clinical Cell Biology, Pathology Research Unit, Department of Clinical Research, University of Southern Denmark, DK-5000, Odense C, Denmark
| | - Kaja Madsen
- Molecular Endocrinology Laboratory (KMEB), Department of Endocrinology, Odense University Hospital, DK-5000, Odense C, Denmark
- Department of Clinical Research, Faculty of Health Sciences, University of Southern Denmark, DK-5000, Odense C, Denmark
| | - Maria Price
- Institute of Metabolism and Systems Research (IMSR) and Centre for Diabetes, Endocrinology and Metabolism (CEDAM), University of Birmingham, Birmingham, B15 2TT, UK
- Centre for Membrane Proteins and Receptors (COMPARE), Universities of Birmingham and Nottingham, Birmingham, B15 2TT, UK
| | - Kent Søe
- Clinical Cell Biology, Pathology Research Unit, Department of Clinical Research, University of Southern Denmark, DK-5000, Odense C, Denmark
- Department of Molecular Medicine, University of Southern Denmark, DK-5000, Odense C, Denmark
| | - Yasunori Omata
- Department of Orthopedic Surgery, Faculty of Medicine, The University of Tokyo, Tokyo, 113-8655, Japan
- Department of Internal Medicine 3, Rheumatology and Immunology, Friedrich-Alexander-University Erlangen-Nürnberg (FAU) and Universitätsklinikum Erlangen, D-91054, Erlangen, Germany
| | - Mario M Zaiss
- Department of Internal Medicine 3, Rheumatology and Immunology, Friedrich-Alexander-University Erlangen-Nürnberg (FAU) and Universitätsklinikum Erlangen, D-91054, Erlangen, Germany
- Deutsches Zentrum Immuntherapie (DZI), Friedrich-Alexander-University Erlangen-Nürnberg and Universitätsklinikum Erlangen, D-91054, Erlangen, Germany
| | - Caroline M Gorvin
- Institute of Metabolism and Systems Research (IMSR) and Centre for Diabetes, Endocrinology and Metabolism (CEDAM), University of Birmingham, Birmingham, B15 2TT, UK
- Centre for Membrane Proteins and Receptors (COMPARE), Universities of Birmingham and Nottingham, Birmingham, B15 2TT, UK
| | - Morten Frost
- Molecular Endocrinology Laboratory (KMEB), Department of Endocrinology, Odense University Hospital, DK-5000, Odense C, Denmark.
- Department of Clinical Research, Faculty of Health Sciences, University of Southern Denmark, DK-5000, Odense C, Denmark.
- Steno Diabetes Center Odense, Odense University Hospital, DK-5000, Odense C, Denmark.
| | - Alexander Rauch
- Molecular Endocrinology Laboratory (KMEB), Department of Endocrinology, Odense University Hospital, DK-5000, Odense C, Denmark.
- Department of Clinical Research, Faculty of Health Sciences, University of Southern Denmark, DK-5000, Odense C, Denmark.
- Steno Diabetes Center Odense, Odense University Hospital, DK-5000, Odense C, Denmark.
| |
Collapse
|
11
|
Takami K, Okamoto K, Etani Y, Hirao M, Miyama A, Okamura G, Goshima A, Miura T, Kurihara T, Fukuda Y, Kanamoto T, Nakata K, Okada S, Ebina K. Anti-NF-κB peptide derived from nuclear acidic protein attenuates ovariectomy-induced osteoporosis in mice. JCI Insight 2023; 8:e171962. [PMID: 37991021 PMCID: PMC10721323 DOI: 10.1172/jci.insight.171962] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2023] [Accepted: 10/10/2023] [Indexed: 11/23/2023] Open
Abstract
NF-κB is a transcription factor that is activated with aging. It plays a key role in the development of osteoporosis by promoting osteoclast differentiation and inhibiting osteoblast differentiation. In this study, we developed a small anti-NF-κB peptide called 6A-8R from a nuclear acidic protein (also known as macromolecular translocation inhibitor II, Zn2+-binding protein, or parathymosin) that inhibits transcriptional activity of NF-κB without altering its nuclear translocation and binding to DNA. Intraperitoneal injection of 6A-8R attenuated ovariectomy-induced osteoporosis in mice by inhibiting osteoclast differentiation, promoting osteoblast differentiation, and inhibiting sclerostin production by osteocytes in vivo with no apparent side effects. Conversely, in vitro, 6A-8R inhibited osteoclast differentiation by inhibiting NF-κB transcriptional activity, promoted osteoblast differentiation by promoting Smad1 phosphorylation, and inhibited sclerostin expression in osteocytes by inhibiting myocyte enhancer factors 2C and 2D. These findings suggest that 6A-8R has the potential to be an antiosteoporotic therapeutic agent with uncoupling properties.
Collapse
Affiliation(s)
- Kenji Takami
- Department of Orthopaedic Surgery, Osaka University Graduate School of Medicine, Suita, Osaka, Japan
- Department of Orthopaedic Surgery, Nippon Life Hospital, Nishi-ku, Osaka, Japan
| | - Kazuki Okamoto
- Department of Obstetrics and Gynecology, Osaka University Graduate School of Medicine, Suita, Osaka, Japan
| | - Yuki Etani
- Department of Orthopaedic Surgery, Osaka University Graduate School of Medicine, Suita, Osaka, Japan
| | - Makoto Hirao
- Department of Orthopaedic Surgery, National Hospital Organization Osaka Minami Medical Center, Kawachinagano, Osaka, Japan
| | - Akira Miyama
- Department of Orthopaedic Surgery, National Hospital Organization Osaka Toneyama Medical Center, Toyonaka, Osaka, Japan
| | - Gensuke Okamura
- Department of Orthopaedic Surgery, Osaka Rosai Hospital, Kita-ku, Sakai, Japan
| | - Atsushi Goshima
- Department of Orthopaedic Surgery, Osaka University Graduate School of Medicine, Suita, Osaka, Japan
| | - Taihei Miura
- Department of Orthopaedic Surgery, Osaka University Graduate School of Medicine, Suita, Osaka, Japan
| | - Takuya Kurihara
- Department of Orthopaedic Surgery, Osaka University Graduate School of Medicine, Suita, Osaka, Japan
| | - Yuji Fukuda
- Department of Orthopaedic Surgery, Osaka University Graduate School of Medicine, Suita, Osaka, Japan
| | | | - Ken Nakata
- Department of Health and Sport Sciences, and
| | - Seiji Okada
- Department of Orthopaedic Surgery, Osaka University Graduate School of Medicine, Suita, Osaka, Japan
| | - Kosuke Ebina
- Department of Orthopaedic Surgery, Osaka University Graduate School of Medicine, Suita, Osaka, Japan
- Department of Musculoskeletal Regenerative Medicine, Osaka University Graduate School of Medicine, Suita, Osaka, Japan
| |
Collapse
|
12
|
Zhang T, Wan L, Xiao H, Wang L, Hu J, Lu H. Single-cell RNA sequencing reveals cellular and molecular heterogeneity in fibrocartilaginous enthesis formation. eLife 2023; 12:e85873. [PMID: 37698466 PMCID: PMC10513478 DOI: 10.7554/elife.85873] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2022] [Accepted: 09/10/2023] [Indexed: 09/13/2023] Open
Abstract
The attachment site of the rotator cuff (RC) is a classic fibrocartilaginous enthesis, which is the junction between bone and tendon with typical characteristics of a fibrocartilage transition zone. Enthesis development has historically been studied with lineage tracing of individual genes selected a priori, which does not allow for the determination of single-cell landscapes yielding mature cell types and tissues. Here, in together with open-source GSE182997 datasets (three samples) provided by Fang et al., we applied Single-cell RNA sequencing (scRNA-seq) to delineate the comprehensive postnatal RC enthesis growth and the temporal atlas from as early as postnatal day 1 up to postnatal week 8. And, we furtherly performed single-cell spatial transcriptomic sequencing on postnatal day 1 mouse enthesis, in order to deconvolute bone-tendon junction (BTJ) chondrocytes onto spatial spots. In summary, we deciphered the cellular heterogeneity and the molecular dynamics during fibrocartilage differentiation. Combined with current spatial transcriptomic data, our results provide a transcriptional resource that will support future investigations of enthesis development at the mechanistic level and may shed light on the strategies for enhanced RC healing outcomes.
Collapse
Affiliation(s)
- Tao Zhang
- Department of Sports Medicine, Xiangya Hospital Central South UniversityChangshaChina
- Key Laboratory of Organ Injury, Aging and Regenerative Medicine of Hunan ProvinceChangshaChina
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South UniversityChangshaChina
| | - Liyang Wan
- Department of Sports Medicine, Xiangya Hospital Central South UniversityChangshaChina
- Key Laboratory of Organ Injury, Aging and Regenerative Medicine of Hunan ProvinceChangshaChina
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South UniversityChangshaChina
| | - Han Xiao
- Department of Sports Medicine, Xiangya Hospital Central South UniversityChangshaChina
- Key Laboratory of Organ Injury, Aging and Regenerative Medicine of Hunan ProvinceChangshaChina
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South UniversityChangshaChina
| | - Linfeng Wang
- Department of Sports Medicine, Xiangya Hospital Central South UniversityChangshaChina
- Key Laboratory of Organ Injury, Aging and Regenerative Medicine of Hunan ProvinceChangshaChina
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South UniversityChangshaChina
| | - Jianzhong Hu
- Key Laboratory of Organ Injury, Aging and Regenerative Medicine of Hunan ProvinceChangshaChina
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South UniversityChangshaChina
- Department of Spine Surgery and Orthopaedics, Xiangya Hospital, Central South UniversityChangshaChina
| | - Hongbin Lu
- Department of Sports Medicine, Xiangya Hospital Central South UniversityChangshaChina
- Key Laboratory of Organ Injury, Aging and Regenerative Medicine of Hunan ProvinceChangshaChina
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South UniversityChangshaChina
| |
Collapse
|
13
|
Lamandé SR, Ng ES, Cameron TL, Kung LHW, Sampurno L, Rowley L, Lilianty J, Patria YN, Stenta T, Hanssen E, Bell KM, Saxena R, Stok KS, Stanley EG, Elefanty AG, Bateman JF. Modeling human skeletal development using human pluripotent stem cells. Proc Natl Acad Sci U S A 2023; 120:e2211510120. [PMID: 37126720 PMCID: PMC10175848 DOI: 10.1073/pnas.2211510120] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2022] [Accepted: 04/04/2023] [Indexed: 05/03/2023] Open
Abstract
Chondrocytes and osteoblasts differentiated from induced pluripotent stem cells (iPSCs) will provide insights into skeletal development and genetic skeletal disorders and will generate cells for regenerative medicine applications. Here, we describe a method that directs iPSC-derived sclerotome to chondroprogenitors in 3D pellet culture then to articular chondrocytes or, alternatively, along the growth plate cartilage pathway to become hypertrophic chondrocytes that can transition to osteoblasts. Osteogenic organoids deposit and mineralize a collagen I extracellular matrix (ECM), mirroring in vivo endochondral bone formation. We have identified gene expression signatures at key developmental stages including chondrocyte maturation, hypertrophy, and transition to osteoblasts and show that this system can be used to model genetic cartilage and bone disorders.
Collapse
Affiliation(s)
- Shireen R. Lamandé
- Murdoch Children’s Research Institute, Parkville, VIC 3052, Australia
- Department of Paediatrics, University of Melbourne, Parkville, VIC 3052, Australia
- The Novo Nordisk Foundation Center for Stem Cell Medicine (reNEW), Murdoch Children’s Research Institute, Parkville, VIC 3052, Australia
| | - Elizabeth S. Ng
- Murdoch Children’s Research Institute, Parkville, VIC 3052, Australia
- Department of Paediatrics, University of Melbourne, Parkville, VIC 3052, Australia
- The Novo Nordisk Foundation Center for Stem Cell Medicine (reNEW), Murdoch Children’s Research Institute, Parkville, VIC 3052, Australia
| | - Trevor L. Cameron
- Murdoch Children’s Research Institute, Parkville, VIC 3052, Australia
| | - Louise H. W. Kung
- Murdoch Children’s Research Institute, Parkville, VIC 3052, Australia
| | - Lisa Sampurno
- Murdoch Children’s Research Institute, Parkville, VIC 3052, Australia
| | - Lynn Rowley
- Murdoch Children’s Research Institute, Parkville, VIC 3052, Australia
| | - Jinia Lilianty
- Murdoch Children’s Research Institute, Parkville, VIC 3052, Australia
- Department of Paediatrics, University of Melbourne, Parkville, VIC 3052, Australia
| | - Yudha Nur Patria
- Murdoch Children’s Research Institute, Parkville, VIC 3052, Australia
- Department of Paediatrics, University of Melbourne, Parkville, VIC 3052, Australia
- Department of Child Health, Universitas Gadjah Mada, Yogyakarta55281, Indonesia
| | - Tayla Stenta
- Murdoch Children’s Research Institute, Parkville, VIC 3052, Australia
| | - Eric Hanssen
- Ian Holmes Imaging Center and Department of Biochemistry and Pharmacology, Bio21 Institute, University of Melbourne, Parkville, VIC 3010, Australia
| | - Katrina M. Bell
- Murdoch Children’s Research Institute, Parkville, VIC 3052, Australia
| | - Ritika Saxena
- Murdoch Children’s Research Institute, Parkville, VIC 3052, Australia
- Department of Paediatrics, University of Melbourne, Parkville, VIC 3052, Australia
| | - Kathryn S. Stok
- Department of Biomedical Engineering, University of Melbourne, Parkville, VIC 3010, Australia
| | - Edouard G. Stanley
- Murdoch Children’s Research Institute, Parkville, VIC 3052, Australia
- Department of Paediatrics, University of Melbourne, Parkville, VIC 3052, Australia
- The Novo Nordisk Foundation Center for Stem Cell Medicine (reNEW), Murdoch Children’s Research Institute, Parkville, VIC 3052, Australia
| | - Andrew G. Elefanty
- Murdoch Children’s Research Institute, Parkville, VIC 3052, Australia
- Department of Paediatrics, University of Melbourne, Parkville, VIC 3052, Australia
- The Novo Nordisk Foundation Center for Stem Cell Medicine (reNEW), Murdoch Children’s Research Institute, Parkville, VIC 3052, Australia
| | - John F. Bateman
- Murdoch Children’s Research Institute, Parkville, VIC 3052, Australia
- Department of Paediatrics, University of Melbourne, Parkville, VIC 3052, Australia
| |
Collapse
|
14
|
Zupan A, Salapura V, Šekoranja D, Pižem J. Subcutaneous chondromyxoid fibroma with a novel PNISR::GRM1 fusion-report of a primary soft tissue tumour without connection to an underlying bone. Virchows Arch 2023; 482:917-921. [PMID: 36810795 PMCID: PMC10156755 DOI: 10.1007/s00428-023-03519-4] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2023] [Revised: 02/08/2023] [Accepted: 02/12/2023] [Indexed: 02/23/2023]
Abstract
Chondromyxoid fibroma (CMF) is a rare benign bone tumour. While CMF located entirely on the surface of a bone (i.e. juxtacortical CMF) has been well characterised, CMF has not so far been convincingly documented to arise in soft tissues without connection to an underlying bone.We report a subcutaneous CMF in a 34-year-old male, located on the distal medial aspect of the right thigh without any connection with the femur. The tumour measured 15 mm, it was well-circumscribed and displayed typical morphological features of a CMF. At the periphery, there was a small area of metaplastic bone. Immunohistochemically, the tumour cells were diffusely positive for smooth muscle actin and GRM1, and negative for S100 protein, desmin and cytokeratin AE1AE3. Whole transcriptome sequencing revealed a novel PNISR::GRM1 gene fusion.Our case indicates that CMF should be included in the differential diagnosis of soft tissue (including subcutaneous) tumours composed of spindle/ovoid cells, with a lobular architecture and chondromyxoid matrix. The diagnosis of CMF arising in soft tissues can be confirmed by identifying a GRM1 gene fusion or GRM1 expression by immunohistochemistry.
Collapse
Affiliation(s)
- Andrej Zupan
- Institute of Pathology, Faculty of Medicine, University of Ljubljana, Korytkova 2, 1000, Ljubljana, Slovenia
| | - Vladka Salapura
- Institute of Radiology, University Medical Centre Ljubljana, Zaloška 7, 1000, Ljubljana, Slovenia
- Faculty of Medicine, University of Ljubljana, Vrazov trg 2, 1000, Ljubljana, Slovenia
| | - Daja Šekoranja
- Institute of Pathology, Faculty of Medicine, University of Ljubljana, Korytkova 2, 1000, Ljubljana, Slovenia
| | - Jože Pižem
- Institute of Pathology, Faculty of Medicine, University of Ljubljana, Korytkova 2, 1000, Ljubljana, Slovenia.
| |
Collapse
|
15
|
Williams MJ, White SC, Joseph Z, Hruska KA. Updates in the chronic kidney disease-mineral bone disorder show the role of osteocytic proteins, a potential mechanism of the bone-Vascular paradox, a therapeutic target, and a biomarker. Front Physiol 2023; 14:1120308. [PMID: 36776982 PMCID: PMC9909112 DOI: 10.3389/fphys.2023.1120308] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2022] [Accepted: 01/17/2023] [Indexed: 01/27/2023] Open
Abstract
The chronic kidney disease-mineral bone disorder (CKD-MBD) is a complex multi-component syndrome occurring during kidney disease and its progression. Here, we update progress in the components of the syndrome, and synthesize recent investigations, which suggest a potential mechanism of the bone-vascular paradox. The discovery that calcified arteries in chronic kidney disease inhibit bone remodeling lead to the identification of factors produced by the vasculature that inhibit the skeleton, thus providing a potential explanation for the bone-vascular paradox. Among the factors produced by calcifying arteries, sclerostin secretion is especially enlightening. Sclerostin is a potent inhibitor of bone remodeling and an osteocyte specific protein. Its production by the vasculature in chronic kidney disease identifies the key role of vascular cell osteoblastic/osteocytic transdifferentiation in vascular calcification and renal osteodystrophy. Subsequent studies showing that inhibition of sclerostin activity by a monoclonal antibody improved bone remodeling as expected, but stimulated vascular calcification, demonstrate that vascular sclerostin functions to brake the Wnt stimulation of the calcification milieu. Thus, the target of therapy in the chronic kidney disease-mineral bone disorder is not inhibition of sclerostin function, which would intensify vascular calcification. Rather, decreasing sclerostin production by decreasing the vascular osteoblastic/osteocytic transdifferentiation is the goal. This might decrease vascular calcification, decrease vascular stiffness, decrease cardiac hypertrophy, decrease sclerostin production, reduce serum sclerostin and improve skeletal remodeling. Thus, the therapeutic target of the chronic kidney disease-mineral bone disorder may be vascular osteoblastic transdifferentiation, and sclerostin levels may be a useful biomarker for the diagnosis of the chronic kidney disease-mineral bone disorder and the progress of its therapy.
Collapse
Affiliation(s)
- Matthew J. Williams
- Division of Pediatric Nephrology, Department of Pediatrics, Washington University, Saint Louis, MO, United States
| | - Sarah C. White
- Division of Pediatric Nephrology, Department of Pediatrics, Washington University, Saint Louis, MO, United States
| | - Zachary Joseph
- Division of Pediatric Nephrology, Department of Pediatrics, Washington University, Saint Louis, MO, United States
| | - Keith A. Hruska
- Division of Pediatric Nephrology, Department of Pediatrics, Washington University, Saint Louis, MO, United States
- Departments of Medicine and Cell Biology, Washington University, Saint Louis, MO, United States
| |
Collapse
|
16
|
Osteocytic Sclerostin Expression as an Indicator of Altered Bone Turnover. Nutrients 2023; 15:nu15030598. [PMID: 36771305 PMCID: PMC9921466 DOI: 10.3390/nu15030598] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2022] [Revised: 01/17/2023] [Accepted: 01/20/2023] [Indexed: 01/25/2023] Open
Abstract
Renal osteodystrophy (ROD) is a complex and serious complication of chronic kidney disease (CKD), a major global health problem caused by loss of renal function. Currently, the gold standard to accurately diagnose ROD is based on quantitative histomorphometric analysis of trabecular bone. Although this analysis encompasses the evaluation of osteoblast and osteoclast number/activity, tfigurehe interest in osteocytes remains almost nihil. Nevertheless, this cell type is evidenced to perform a key role in bone turnover, particularly through its production of various bone proteins, such as sclerostin. In this study, we aim to investigate, in the context of ROD, to which extent an association exists between bone turnover and the abundance of osteocytes and osteocytic sclerostin expression in both the trabecular and cortical bone compartments. Additionally, the effect of parathyroid hormone (PTH) on bone sclerostin expression was examined in parathyroidectomized rats. Our results indicate that PTH exerts a direct inhibitory function on sclerostin, which in turn negatively affects bone turnover and mineralization. Moreover, this study emphasizes the functional differences between cortical and trabecular bone, as the number of (sclerostin-positive) osteocytes is dependent on the respective bone compartment. Finally, we evaluated the potential of sclerostin as a marker for CKD and found that the diagnostic performance of circulating sclerostin is limited and that changes in skeletal sclerostin expression occur more rapidly and more pronounced. The inclusion of osteocytic sclerostin expression and cortical bone analysis could be relevant when performing bone histomorphometric analysis for diagnostic purposes and to unravel pathological mechanisms of bone disease.
Collapse
|
17
|
Michigami T. Paracrine and endocrine functions of osteocytes. Clin Pediatr Endocrinol 2023; 32:1-10. [PMID: 36761497 PMCID: PMC9887291 DOI: 10.1297/cpe.2022-0053] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/19/2022] [Accepted: 08/30/2022] [Indexed: 11/04/2022] Open
Abstract
Osteocytes are dendritic-shaped cells embedded in the bone matrix and are terminally differentiated from osteoblasts. Inaccessibility due to their location has hindered the understanding of the molecular functions of osteocytes. However, scientific advances in the past few decades have revealed that osteocytes play critical roles in bone and mineral metabolism through their paracrine and endocrine functions. Sclerostin produced by osteocytes regulates bone formation and resorption by inhibiting Wnt/β-catenin signaling in osteoblast-lineage cells. Receptor activator of nuclear factor κ B ligand (RANKL) derived from osteocytes is essential for osteoclastogenesis and osteoclast activation during postnatal life. Osteocytes also secrete fibroblast growth factor 23 (FGF23), an endocrine FGF that regulates phosphate metabolism mainly by increasing phosphate excretion and decreasing 1, 25-dihydroxyvitamin D production in the kidneys. The regulation of FGF23 production in osteocytes is complex and multifactorial, involving many local and systemic regulators. Antibodies against sclerostin, RANKL, and FGF23 have emerged as new strategies for the treatment of metabolic bone diseases. Improved undrstanding of the paracrine and endocrine functions of osteocytes will provide insight into future therapeutic options.
Collapse
Affiliation(s)
- Toshimi Michigami
- Department of Bone and Mineral Research, Research Institute,
Osaka Women’s and Children’s Hospital, Osaka Prefectural Hospital Organization, Osaka,
Japan
| |
Collapse
|
18
|
Fang F, Xiao Y, Zelzer E, Leong KW, Thomopoulos S. A mineralizing pool of Gli1-expressing progenitors builds the tendon enthesis and demonstrates therapeutic potential. Cell Stem Cell 2022; 29:1669-1684.e6. [PMID: 36459968 PMCID: PMC10422080 DOI: 10.1016/j.stem.2022.11.007] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2022] [Revised: 09/27/2022] [Accepted: 11/08/2022] [Indexed: 12/03/2022]
Abstract
The enthesis, a fibrocartilaginous transition between tendon and bone, is necessary for force transfer from muscle to bone to produce joint motion. The enthesis is prone to injury due to mechanical demands, and it cannot regenerate. A better understanding of how the enthesis develops will lead to more effective therapies to prevent pathology and promote regeneration. Here, we used single-cell RNA sequencing to define the developmental transcriptome of the mouse entheses over postnatal stages. Six resident cell types, including enthesis progenitors and mineralizing chondrocytes, were identified along with their transcription factor regulons and temporal regulation. Following the prior discovery of the necessity of Gli1-lineage cells for mouse enthesis development and healing, we then examined their transcriptomes at single-cell resolution and demonstrated clonogenicity and multipotency of the Gli1-expressing progenitors. Transplantation of Gli1-lineage cells to mouse enthesis injuries improved healing, demonstrating their therapeutic potential for enthesis regeneration.
Collapse
Affiliation(s)
- Fei Fang
- Department of Orthopedic Surgery, Columbia University, New York, NY 10032, USA; Leni and Peter W. May Department of Orthopaedics, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Yang Xiao
- Department of Biomedical Engineering, Columbia University, New York, NY 10027, USA; Department of Systems Biology, Columbia University Irving Medical Center, New York, NY 10032, USA
| | - Elazar Zelzer
- Department of Molecular Genetics, Weizmann Institute of Science, Rehovot 7610001, Israel
| | - Kam W Leong
- Department of Biomedical Engineering, Columbia University, New York, NY 10027, USA; Department of Systems Biology, Columbia University Irving Medical Center, New York, NY 10032, USA
| | - Stavros Thomopoulos
- Department of Orthopedic Surgery, Columbia University, New York, NY 10032, USA; Department of Biomedical Engineering, Columbia University, New York, NY 10027, USA.
| |
Collapse
|
19
|
Jiang S, Yin C, Dang K, Zhang W, Huai Y, Qian A. Comprehensive ceRNA network for MACF1 regulates osteoblast proliferation. BMC Genomics 2022; 23:695. [PMID: 36207684 PMCID: PMC9541005 DOI: 10.1186/s12864-022-08910-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2022] [Accepted: 09/26/2022] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Previous studies have shown that microtubule actin crosslinking factor 1 (MACF1) can regulate osteoblast proliferation and differentiation through non-coding RNA (ncRNA) in bone-forming osteoblasts. However, the role of MACF1 in targeting the competing endogenous RNA (ceRNA) network to regulate osteoblast differentiation remains poorly understood. Here, we profiled messenger RNA (mRNA), microRNA (miRNA), and long ncRNA (lncRNA) expression in MACF1 knockdown MC3TC‑E1 pre‑osteoblast cells. RESULTS In total, 547 lncRNAs, 107 miRNAs, and 376 mRNAs were differentially expressed. Significantly altered lncRNAs, miRNAs, and mRNAs were primarily found on chromosome 2. A lncRNA-miRNA-mRNA network was constructed using a bioinformatics computational approach. The network indicated that mir-7063 and mir-7646 were the most potent ncRNA regulators and mef2c was the most potent target gene. Pathway enrichment analysis showed that the fluid shear stress and atherosclerosis, p53 signaling, and focal adhesion pathways were highly enriched and contributed to osteoblast proliferation. Importantly, the fluid shear stress and atherosclerosis pathway was co-regulated by lncRNAs and miRNAs. In this pathway, Dusp1 was regulated by AK079370, while Arhgef2 was regulated by mir-5101. Furthermore, Map3k5 was regulated by AK154638 and mir-466q simultaneously. AK003142 and mir-3082-5p as well as Ak141402 and mir-446 m-3p were identified as interacting pairs that regulate target genes. CONCLUSION This study revealed the global expression profile of ceRNAs involved in the differentiation of MC3TC‑E1 osteoblasts induced by MACF1 deletion. These results indicate that loss of MACF1 activates a comprehensive ceRNA network to regulate osteoblast proliferation.
Collapse
Affiliation(s)
- Shanfeng Jiang
- Lab for Bone Metabolism, Xi'an Key Laboratory of Special Medicine and Health Engineering, Key Lab for Space Biosciences and Biotechnology, School of Life Sciences, Northwestern Polytechnical University, 710072, Xi'an, Shaanxi, China
| | - Chong Yin
- Lab for Bone Metabolism, Xi'an Key Laboratory of Special Medicine and Health Engineering, Key Lab for Space Biosciences and Biotechnology, School of Life Sciences, Northwestern Polytechnical University, 710072, Xi'an, Shaanxi, China
- Research Center for Special Medicine and Health Systems Engineering, School of Life Sciences, Northwestern Polytechnical University, 710072, Xi'an, Shaanxi, China
- NPU-UAB Joint Laboratory for Bone Metabolism, School of Life Sciences, Northwestern Polytechnical University, 710072, Xi'an, Shaanxi, China
- Department of Clinical Laboratory, Academician (expert) workstation, Lab of epigenetics and RNA therapy, Affiliated Hospital of North Sichuan Medical College, 637000, Nanchong, China
| | - Kai Dang
- Lab for Bone Metabolism, Xi'an Key Laboratory of Special Medicine and Health Engineering, Key Lab for Space Biosciences and Biotechnology, School of Life Sciences, Northwestern Polytechnical University, 710072, Xi'an, Shaanxi, China
- Research Center for Special Medicine and Health Systems Engineering, School of Life Sciences, Northwestern Polytechnical University, 710072, Xi'an, Shaanxi, China
- NPU-UAB Joint Laboratory for Bone Metabolism, School of Life Sciences, Northwestern Polytechnical University, 710072, Xi'an, Shaanxi, China
| | - Wenjuan Zhang
- Lab for Bone Metabolism, Xi'an Key Laboratory of Special Medicine and Health Engineering, Key Lab for Space Biosciences and Biotechnology, School of Life Sciences, Northwestern Polytechnical University, 710072, Xi'an, Shaanxi, China
- Research Center for Special Medicine and Health Systems Engineering, School of Life Sciences, Northwestern Polytechnical University, 710072, Xi'an, Shaanxi, China
- NPU-UAB Joint Laboratory for Bone Metabolism, School of Life Sciences, Northwestern Polytechnical University, 710072, Xi'an, Shaanxi, China
| | - Ying Huai
- Lab for Bone Metabolism, Xi'an Key Laboratory of Special Medicine and Health Engineering, Key Lab for Space Biosciences and Biotechnology, School of Life Sciences, Northwestern Polytechnical University, 710072, Xi'an, Shaanxi, China
- Research Center for Special Medicine and Health Systems Engineering, School of Life Sciences, Northwestern Polytechnical University, 710072, Xi'an, Shaanxi, China
- NPU-UAB Joint Laboratory for Bone Metabolism, School of Life Sciences, Northwestern Polytechnical University, 710072, Xi'an, Shaanxi, China
| | - Airong Qian
- Lab for Bone Metabolism, Xi'an Key Laboratory of Special Medicine and Health Engineering, Key Lab for Space Biosciences and Biotechnology, School of Life Sciences, Northwestern Polytechnical University, 710072, Xi'an, Shaanxi, China.
- Research Center for Special Medicine and Health Systems Engineering, School of Life Sciences, Northwestern Polytechnical University, 710072, Xi'an, Shaanxi, China.
- NPU-UAB Joint Laboratory for Bone Metabolism, School of Life Sciences, Northwestern Polytechnical University, 710072, Xi'an, Shaanxi, China.
| |
Collapse
|
20
|
Abstract
Inorganic phosphate (Pi) in the mammalian body is balanced by its influx and efflux through the intestines, kidneys, bones, and soft tissues, at which several sodium/Pi co-transporters mediate its active transport. Pi homeostasis is achieved through the complex counter-regulatory feedback balance between fibroblast growth factor 23 (FGF23), 1,25-dihydroxyvitamin D (1,25(OH)2D), and parathyroid hormone. FGF23, which is mainly produced by osteocytes in bone, plays a central role in Pi homeostasis and exerts its effects by binding to the FGF receptor (FGFR) and αKlotho in distant target organs. In the kidneys, the main target, FGF23 promotes the excretion of Pi and suppresses the production of 1,25(OH)2D. Deficient and excess FGF23 result in hyperphosphatemia and hypophosphatemia, respectively. FGF23-related hypophosphatemic rickets/osteomalacia include tumor-induced osteomalacia and various genetic diseases, such as X-linked hypophosphatemic rickets. Coverage by the national health insurance system in Japan for the measurement of FGF23 and the approval of burosumab, an FGF23-neutralizing antibody, have had a significant impact on the diagnosis and treatment of FGF23-related hypophosphatemic rickets/osteomalacia. Some of the molecules responsible for genetic hypophosphatemic rickets/osteomalacia are highly expressed in osteocytes and function as local regulators of FGF23 production. A number of systemic factors also regulate FGF23 levels. Although the mechanisms responsible for Pi sensing in mammals have not yet been elucidated in detail, recent studies have suggested the involvement of FGFR1. The further clarification of the mechanisms by which osteocytes detect Pi levels and regulate FGF23 production will lead to the development of better strategies to treat hyperphosphatemic and hypophosphatemic conditions.
Collapse
Affiliation(s)
- Toshimi Michigami
- Department of Bone and Mineral Research, Research Institute, Osaka Women's and Children's Hospital, Osaka 594-1101, Japan
| |
Collapse
|
21
|
Yoon SH, Tang CC, Wein MN. Salt inducible kinases and PTH1R action. VITAMINS AND HORMONES 2022; 120:23-45. [PMID: 35953111 DOI: 10.1016/bs.vh.2022.04.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Parathyroid hormone is a central regulator of calcium homeostasis. PTH protects the organism from hypocalcemia through its actions in bone and kidney. Recent physiologic studies have revealed key target genes for PTH receptor (PTH1R) signaling in these target organs. However, the complete signal transduction cascade used by PTH1R to accomplish these physiologic actions has remained poorly defined. Here we will review recent studies that have defined an important role for salt inducible kinases downstream of PTH1R in bone, cartilage, and kidney. PTH1R signaling inhibits the activity of salt inducible kinases. Therefore, direct SIK inhibitors represent a promising novel strategy to mimic PTH actions using small molecules. Moreover, a detailed understanding of the molecular circuitry used by PTH1R to exert its biologic effects will afford powerful new models to better understand the diverse actions of this important G protein coupled receptor in health and disease.
Collapse
Affiliation(s)
- Sung-Hee Yoon
- Endocrine Unit, Massachusetts General Hospital, Harvard Medical School, Boston, MA, United States
| | - Cheng-Chia Tang
- Endocrine Unit, Massachusetts General Hospital, Harvard Medical School, Boston, MA, United States
| | - Marc N Wein
- Endocrine Unit, Massachusetts General Hospital, Harvard Medical School, Boston, MA, United States.
| |
Collapse
|
22
|
Kimura T, Panaroni C, Rankin EB, Purton LE, Wu JY. Loss of Parathyroid Hormone Receptor Signaling in Osteoprogenitors Is Associated With Accumulation of Multiple Hematopoietic Lineages in the Bone Marrow. J Bone Miner Res 2022; 37:1321-1334. [PMID: 35490308 PMCID: PMC11479576 DOI: 10.1002/jbmr.4568] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/19/2021] [Revised: 04/20/2022] [Accepted: 04/26/2022] [Indexed: 11/10/2022]
Abstract
Osteoblasts and their progenitors play an important role in the support of hematopoiesis within the bone marrow (BM) microenvironment. We have previously reported that parathyroid hormone receptor (PTH1R) signaling in osteoprogenitors is required for normal B cell precursor differentiation, and for trafficking of maturing B cells out of the BM. Cells of the osteoblast lineage have been implicated in the regulation of several other hematopoietic cell populations, but the effects of PTH1R signaling in osteoprogenitors on other maturing hematopoietic populations have not been investigated. Here we report that numbers of maturing myeloid, T cell, and erythroid populations were increased in the BM of mice lacking PTH1R in Osx-expressing osteoprogenitors (PTH1R-OsxKO mice; knockout [KO]). This increase in maturing hematopoietic populations was not associated with an increase in progenitor populations or proliferation. The spleens of PTH1R-OsxKO mice were small with decreased numbers of all hematopoietic populations, suggesting that trafficking of mature hematopoietic populations between BM and spleen is impaired in the absence of PTH1R in osteoprogenitors. RNA sequencing (RNAseq) of osteoprogenitors and their descendants in bone and BM revealed increased expression of vascular cell adhesion protein 1 (VCAM-1) and C-X-C motif chemokine ligand 12 (CXCL12), factors that are involved in trafficking of several hematopoietic populations. © 2022 American Society for Bone and Mineral Research (ASBMR).
Collapse
Affiliation(s)
- Takaharu Kimura
- Department of Medicine (Endocrinology), Stanford University School of Medicine, Stanford, CA, USA
| | - Cristina Panaroni
- Department of Medicine (Endocrinology), Stanford University School of Medicine, Stanford, CA, USA
| | - Erinn B Rankin
- Department of Radiation Oncology, Stanford University School of Medicine, Stanford, CA, USA
| | - Louise E Purton
- St Vincent's Institute of Medical Research, Fitzroy, VIC, Australia
- The University of Melbourne, Department of Medicine at St Vincent's Hospital, Fitzroy, VIC, Australia
| | - Joy Y Wu
- Department of Medicine (Endocrinology), Stanford University School of Medicine, Stanford, CA, USA
| |
Collapse
|
23
|
Ikezaki-Amada K, Miyamoto Y, Sasa K, Yamada A, Kinoshita M, Yoshimura K, Kawai R, Yano F, Shirota T, Kamijo R. Extracellular acidification augments sclerostin and osteoprotegerin production by Ocy454 mouse osteocytes. Biochem Biophys Res Commun 2022; 597:44-51. [PMID: 35123265 DOI: 10.1016/j.bbrc.2022.01.111] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2022] [Accepted: 01/28/2022] [Indexed: 11/21/2022]
Abstract
Osteocytes sense the microenvironmental stimuli, including mechanical stress, and regulate bone resorption by osteoclasts and bone formation by osteoblasts. Diabetes and cancer metastasis to bone raise l-lactic acid in the bone tissue, causing acidification. Here, we investigated the effects of l-lactic acid and extracellular acidification on the function of mouse Ocy454 osteocytes. L- and d-lactic acid with low chiral selectivity and acidification of the medium raised the production of sclerostin and osteoprotegerin by Ocy454 cells. The mRNA expression of their genes increased after either treatment of L- and d-lactic acid or acidification of the medium. Furthermore, the conditioned medium of Ocy454 cells cultured in an acidic environment suppressed the induction of alkaline phosphatase activity in MC3T3-E1 cells, which was recovered by the anti-sclerostin antibody. While it is reported that HDAC5 inhibits the transcription of the sclerostin gene, extracellular acidification reduced the nuclear localization of HDAC5 in Ocy454 cells. While calmodulin kinase II (CaMKII) is known to phosphorylate and induce extranuclear translocation of HDAC5, KN-62, an inhibitor of CaMKII lowered the expression of the sclerostin gene in Ocy454 cells. Collectively, extracellular acidification is a microenvironmental factor that modulates osteocyte functions.
Collapse
Affiliation(s)
- Kaori Ikezaki-Amada
- Department of Biochemistry, Showa University School of Dentistry, Tokyo, Japan; Department of Oral and Maxillofacial Surgery, Showa University School of Dentistry, Tokyo, Japan
| | - Yoichi Miyamoto
- Department of Biochemistry, Showa University School of Dentistry, Tokyo, Japan.
| | - Kiyohito Sasa
- Department of Biochemistry, Showa University School of Dentistry, Tokyo, Japan
| | - Atsushi Yamada
- Department of Biochemistry, Showa University School of Dentistry, Tokyo, Japan
| | - Mitsuhiro Kinoshita
- Department of Biochemistry, Showa University School of Dentistry, Tokyo, Japan
| | - Kentaro Yoshimura
- Department of Biochemistry, Showa University School of Dentistry, Tokyo, Japan
| | - Ryota Kawai
- Department of Biochemistry, Showa University School of Dentistry, Tokyo, Japan; Department of Orthodontics, Showa University School of Dentistry, Tokyo, Japan
| | - Fumiko Yano
- Department of Biochemistry, Showa University School of Dentistry, Tokyo, Japan
| | - Tatsuo Shirota
- Department of Oral and Maxillofacial Surgery, Showa University School of Dentistry, Tokyo, Japan
| | - Ryutaro Kamijo
- Department of Biochemistry, Showa University School of Dentistry, Tokyo, Japan
| |
Collapse
|
24
|
FUJIWARA Y, KO Y, SONODA M, ICHI I, ISHIKAWA T. Effects of Vitamin E and Dietary Conditions on the Differentiation and Maturation of Osteoclast. J Nutr Sci Vitaminol (Tokyo) 2022; 68:73-77. [DOI: 10.3177/jnsv.68.73] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Affiliation(s)
- Yoko FUJIWARA
- Food and Nutritional Sciences, Graduate Course of Humanities and Sciences, Ochanomizu University
| | - Yuko KO
- Food and Nutritional Sciences, Graduate Course of Humanities and Sciences, Ochanomizu University
| | - Mariko SONODA
- Food and Nutritional Sciences, Graduate Course of Humanities and Sciences, Ochanomizu University
| | - Ikuyo ICHI
- Food and Nutritional Sciences, Graduate Course of Humanities and Sciences, Ochanomizu University
| | | |
Collapse
|
25
|
Krishnan RH, Sadu L, Das UR, Satishkumar S, Pranav Adithya S, Saranya I, Akshaya R, Selvamurugan N. Role of p300, a histone acetyltransferase enzyme, in osteoblast differentiation. Differentiation 2022; 124:43-51. [DOI: 10.1016/j.diff.2022.02.002] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2021] [Revised: 02/03/2022] [Accepted: 02/04/2022] [Indexed: 12/21/2022]
|
26
|
Abstract
Osteocytes are dendritic cells in the mineralized bone matrix that descend from osteoblasts. They play critical roles in controlling bone mass through the production of sclerostin, an inhibitor of bone formation, and receptor activator of nuclear factor κ B ligand, an inducer of osteoblastic bone resorption. Osteocytes also govern phosphate homeostasis through the production of fibroblast growth factor 23 (FGF23), which lowers serum phosphate levels by increasing renal phosphate excretion and reducing the synthesis of 1,25-dihydroxyvitamin D (1,25(OH)2D), an active metabolite of vitamin D. The production of FGF23 in osteocytes is regulated by various local and systemic factors. Phosphate-regulating gene homologous to endopeptidase on X chromosome (PHEX), dentin matrix protein 1 (DMP1), and family with sequence similarity 20, member C function as local negative regulators of FGF23 production in osteocytes, and their inactivation causes the overproduction of FGF23 and hypophosphatemia. Sclerostin has been suggested to regulate the production of FGF23, which may link the two functions of osteocytes, namely, the control of bone mass and regulation of phosphate homeostasis. Systemic regulators of FGF23 production include 1,25(OH)2D, phosphate, parathyroid hormone, insulin, iron, and inflammation. Therefore, the regulation of FGF23 in osteocytes is complex and multifactorial. Recent mouse studies have suggested that decreases in serum phosphate levels from youth to adulthood are caused by growth-related increases in FGF23 production by osteocytes, which are associated with the down-regulation of Phex and Dmp1.
Collapse
|
27
|
Abstract
Osteocytes, former osteoblasts encapsulated by mineralized bone matrix, are far from being passive and metabolically inactive bone cells. Instead, osteocytes are multifunctional and dynamic cells capable of integrating hormonal and mechanical signals and transmitting them to effector cells in bone and in distant tissues. Osteocytes are a major source of molecules that regulate bone homeostasis by integrating both mechanical cues and hormonal signals that coordinate the differentiation and function of osteoclasts and osteoblasts. Osteocyte function is altered in both rare and common bone diseases, suggesting that osteocyte dysfunction is directly involved in the pathophysiology of several disorders affecting the skeleton. Advances in osteocyte biology initiated the development of novel therapeutics interfering with osteocyte-secreted molecules. Moreover, osteocytes are targets and key distributors of biological signals mediating the beneficial effects of several bone therapeutics used in the clinic. Here we review the most recent discoveries in osteocyte biology demonstrating that osteocytes regulate bone homeostasis and bone marrow fat via paracrine signaling, influence body composition and energy metabolism via endocrine signaling, and contribute to the damaging effects of diabetes mellitus and hematologic and metastatic cancers in the skeleton.
Collapse
Affiliation(s)
- Jesus Delgado-Calle
- 1Department of Physiology and Cell Biology, University of Arkansas for Medical Sciences, Little Rock, Arkansas,2Winthrop P. Rockefeller Cancer Institute, University of Arkansas for Medical Sciences, Little Rock, Arkansas
| | - Teresita Bellido
- 1Department of Physiology and Cell Biology, University of Arkansas for Medical Sciences, Little Rock, Arkansas,2Winthrop P. Rockefeller Cancer Institute, University of Arkansas for Medical Sciences, Little Rock, Arkansas,3Central Arkansas Veterans Healthcare System, Little Rock, Arkansas
| |
Collapse
|
28
|
Yamazaki M, Michigami T. Osteocytes and the pathogenesis of hypophosphatemic rickets. Front Endocrinol (Lausanne) 2022; 13:1005189. [PMID: 36246908 PMCID: PMC9556901 DOI: 10.3389/fendo.2022.1005189] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/28/2022] [Accepted: 09/15/2022] [Indexed: 11/13/2022] Open
Abstract
Since phosphorus is a component of hydroxyapatite, its prolonged deprivation affects bone mineralization. Fibroblast growth factor 23 (FGF23) is essential for maintaining phosphate homeostasis and is mainly produced by osteocytes. FGF23 increases the excretion of inorganic phosphate (Pi) and decreases the production of 1,25-dihydroxyvitamin D in the kidneys. Osteocytes are cells of osteoblastic lineage that have undergone terminal differentiation and become embedded in mineralized bone matrix. Osteocytes express FGF23 and other multiple genes responsible for hereditary hypophosphatemic rickets, which include phosphate-regulating gene homologous to endopeptidase on X chromosome (PHEX), dentin matrix protein 1 (DMP1), and family with sequence similarity 20, member C (FAM20C). Since inactivating mutations in PHEX, DMP1, and FAM20C boost the production of FGF23, these molecules might be considered as local negative regulators of FGF23. Mouse studies have suggested that enhanced FGF receptor (FGFR) signaling is involved in the overproduction of FGF23 in PHEX-deficient X-linked hypophosphatemic rickets (XLH) and DMP1-deficient autosomal recessive hypophosphatemic rickets type 1. Since FGFR is involved in the transduction of signals evoked by extracellular Pi, Pi sensing in osteocytes may be abnormal in these diseases. Serum levels of sclerostin, an inhibitor Wnt/β-catenin signaling secreted by osteocytes, are increased in XLH patients, and mouse studies have suggested the potential of inhibiting sclerostin as a new therapeutic option for the disease. The elucidation of complex abnormalities in the osteocytes of FGF23-related hypophosphatemic diseases will provide a more detailed understanding of their pathogenesis and more effective treatments.
Collapse
|
29
|
Wang JS, Kamath T, Mazur CM, Mirzamohammadi F, Rotter D, Hojo H, Castro CD, Tokavanich N, Patel R, Govea N, Enishi T, Wu Y, da Silva Martins J, Bruce M, Brooks DJ, Bouxsein ML, Tokarz D, Lin CP, Abdul A, Macosko EZ, Fiscaletti M, Munns CF, Ryder P, Kost-Alimova M, Byrne P, Cimini B, Fujiwara M, Kronenberg HM, Wein MN. Control of osteocyte dendrite formation by Sp7 and its target gene osteocrin. Nat Commun 2021; 12:6271. [PMID: 34725346 PMCID: PMC8560803 DOI: 10.1038/s41467-021-26571-7] [Citation(s) in RCA: 53] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2021] [Accepted: 10/12/2021] [Indexed: 02/05/2023] Open
Abstract
Some osteoblasts embed within bone matrix, change shape, and become dendrite-bearing osteocytes. The circuitry that drives dendrite formation during "osteocytogenesis" is poorly understood. Here we show that deletion of Sp7 in osteoblasts and osteocytes causes defects in osteocyte dendrites. Profiling of Sp7 target genes and binding sites reveals unexpected repurposing of this transcription factor to drive dendrite formation. Osteocrin is a Sp7 target gene that promotes osteocyte dendrite formation and rescues defects in Sp7-deficient mice. Single-cell RNA-sequencing demonstrates defects in osteocyte maturation in the absence of Sp7. Sp7-dependent osteocyte gene networks are associated with human skeletal diseases. Moreover, humans with a SP7R316C mutation show defective osteocyte morphology. Sp7-dependent genes that mark osteocytes are enriched in neurons, highlighting shared features between osteocytic and neuronal connectivity. These findings reveal a role for Sp7 and its target gene Osteocrin in osteocytogenesis, revealing that pathways that control osteocyte development influence human bone diseases.
Collapse
Affiliation(s)
- Jialiang S Wang
- Endocrine Unit, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - Tushar Kamath
- Broad Institute of Harvard and MIT, Cambridge, MA, USA
- Stanley Center for Psychiatric Research, Broad Institute of Harvard and MIT, Cambridge, MA, USA
| | - Courtney M Mazur
- Endocrine Unit, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - Fatemeh Mirzamohammadi
- Endocrine Unit, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
- Department of Plastic and Reconstructive Surgery, Wright State University, Dayton, OH, USA
| | - Daniel Rotter
- Endocrine Unit, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
- University of Applied Sciences Technikum Wien, Vienna, Austria
| | - Hironori Hojo
- Center for Disease Biology and Integrative Medicine, The University of Tokyo Graduate School of Medicine, 7-3-1 Hongo, Bunkyo-ku, Tokyo, 113-8656, Japan
| | - Christian D Castro
- Endocrine Unit, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - Nicha Tokavanich
- Endocrine Unit, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - Rushi Patel
- Endocrine Unit, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - Nicolas Govea
- Endocrine Unit, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
- Department of Anesthesiology, Weill Cornell Medical School, New York, NY, USA
| | - Tetsuya Enishi
- Endocrine Unit, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
- Department of Orthopedic Surgery, Tokushima Municipal Hospital, Tokushima, Japan
| | - Yunshu Wu
- Endocrine Unit, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | | | - Michael Bruce
- Endocrine Unit, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - Daniel J Brooks
- Endocrine Unit, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
- Center for Advanced Orthopedic Studies, Department of Orthopedic Surgery, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MaA, USA
| | - Mary L Bouxsein
- Endocrine Unit, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
- Center for Advanced Orthopedic Studies, Department of Orthopedic Surgery, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MaA, USA
| | - Danielle Tokarz
- Advanced Microscopy Program, Center for Systems Biology and Wellman Center for Photomedicine, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
- Department of Chemistry, Saint Mary's University, Halifax, Canada
| | - Charles P Lin
- Advanced Microscopy Program, Center for Systems Biology and Wellman Center for Photomedicine, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - Abdul Abdul
- Broad Institute of Harvard and MIT, Cambridge, MA, USA
- Stanley Center for Psychiatric Research, Broad Institute of Harvard and MIT, Cambridge, MA, USA
| | - Evan Z Macosko
- Broad Institute of Harvard and MIT, Cambridge, MA, USA
- Stanley Center for Psychiatric Research, Broad Institute of Harvard and MIT, Cambridge, MA, USA
- Department of Psychiatry, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - Melissa Fiscaletti
- Pediatric Department, Sainte-Justine University Hospital Centre, Montreal, Canada
| | - Craig F Munns
- Institute of Endocrinology and Diabetes, The Children's Hospital at Westmead, Sydney, NSW, Australia
- Discipline of Paediatrics & Child Health, University of Sydney, Sydney, 2006, Australia
| | - Pearl Ryder
- Broad Institute of Harvard and MIT, Cambridge, MA, USA
- Broad Institute of Harvard and MIT, Imaging Platform, Cambridge, MA, USA
| | - Maria Kost-Alimova
- Broad Institute of Harvard and MIT, Cambridge, MA, USA
- Broad Institute of Harvard and MIT, Center for the Development of Therapeutics, Cambridge, MA, USA
| | - Patrick Byrne
- Broad Institute of Harvard and MIT, Cambridge, MA, USA
- Broad Institute of Harvard and MIT, Center for the Development of Therapeutics, Cambridge, MA, USA
| | - Beth Cimini
- Broad Institute of Harvard and MIT, Cambridge, MA, USA
- Broad Institute of Harvard and MIT, Imaging Platform, Cambridge, MA, USA
| | - Makoto Fujiwara
- Department of Pediatrics, Osaka University Graduate School of Medicine, Osaka, Japan
| | - Henry M Kronenberg
- Endocrine Unit, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - Marc N Wein
- Endocrine Unit, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA.
- Broad Institute of Harvard and MIT, Cambridge, MA, USA.
- Harvard Stem Cell Institute, Cambridge, MA, USA.
| |
Collapse
|
30
|
Martin TJ, Sims NA, Seeman E. Physiological and Pharmacological Roles of PTH and PTHrP in Bone Using Their Shared Receptor, PTH1R. Endocr Rev 2021; 42:383-406. [PMID: 33564837 DOI: 10.1210/endrev/bnab005] [Citation(s) in RCA: 50] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/24/2020] [Indexed: 12/13/2022]
Abstract
Parathyroid hormone (PTH) and the paracrine factor, PTH-related protein (PTHrP), have preserved in evolution sufficient identities in their amino-terminal domains to share equivalent actions upon a common G protein-coupled receptor, PTH1R, that predominantly uses the cyclic adenosine monophosphate-protein kinase A signaling pathway. Such a relationship between a hormone and local factor poses questions about how their common receptor mediates pharmacological and physiological actions of the two. Mouse genetic studies show that PTHrP is essential for endochondral bone lengthening in the fetus and is essential for bone remodeling. In contrast, the main postnatal function of PTH is hormonal control of calcium homeostasis, with no evidence that PTHrP contributes. Pharmacologically, amino-terminal PTH and PTHrP peptides (teriparatide and abaloparatide) promote bone formation when administered by intermittent (daily) injection. This anabolic effect is remodeling-based with a lesser contribution from modeling. The apparent lesser potency of PTHrP than PTH peptides as skeletal anabolic agents could be explained by lesser bioavailability to PTH1R. By contrast, prolongation of PTH1R stimulation by excessive dosing or infusion, converts the response to a predominantly resorptive one by stimulating osteoclast formation. Physiologically, locally generated PTHrP is better equipped than the circulating hormone to regulate bone remodeling, which occurs asynchronously at widely distributed sites throughout the skeleton where it is needed to replace old or damaged bone. While it remains possible that PTH, circulating within a narrow concentration range, could contribute in some way to remodeling and modeling, its main physiological role is in regulating calcium homeostasis.
Collapse
Affiliation(s)
- T John Martin
- St. Vincent's Institute of Medical Research, Fitzroy, Victoria, Australia.,The University of Melbourne, Department of Medicine at St. Vincent's Hospital, Fitzroy, Victoria, Australia
| | - Natalie A Sims
- St. Vincent's Institute of Medical Research, Fitzroy, Victoria, Australia.,The University of Melbourne, Department of Medicine at St. Vincent's Hospital, Fitzroy, Victoria, Australia
| | - Ego Seeman
- The University of Melbourne, Department of Medicine at Austin Health, Heidelberg, Victoria, Australia
| |
Collapse
|
31
|
Baroi S, Czernik PJ, Chougule A, Griffin PR, Lecka-Czernik B. PPARG in osteocytes controls sclerostin expression, bone mass, marrow adiposity and mediates TZD-induced bone loss. Bone 2021; 147:115913. [PMID: 33722775 PMCID: PMC8076091 DOI: 10.1016/j.bone.2021.115913] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/19/2021] [Revised: 03/05/2021] [Accepted: 03/06/2021] [Indexed: 01/07/2023]
Abstract
The peroxisome proliferator activated receptor gamma (PPARG) nuclear receptor regulates energy metabolism and insulin sensitivity. In this study, we present novel evidence for an essential role of PPARG in the regulation of osteocyte function, and support for the emerging concept of the conjunction between regulation of energy metabolism and bone mass. We report that PPARG is essential for sclerostin production, a recently approved target to treat osteoporosis. Our mouse model of osteocyte-specific PPARG deletion (Dmp1CrePparγflfl or γOTKO) is characterized with increased bone mass and reduced bone marrow adiposity, which is consistent with upregulation of WNT signaling and increased bone forming activity of endosteal osteoblasts. An analysis of osteocytes derived from γOTKO and control mice showed an excellent correlation between PPARG and SOST/sclerostin at the transcript and protein levels. The 8 kb sequence upstream of Sost gene transcription start site possesses multiple PPARG binding elements (PPREs) with at least two of them binding PPARG with dynamics reflecting its activation with full agonist rosiglitazone and correlating with increased levels of Sost transcript and sclerostin protein expression (Pearson's r = 0.991, p = 0.001). Older γOTKO female mice are largely protected from TZD-induced bone loss providing proof of concept that PPARG in osteocytes can be pharmacologically targeted. These findings demonstrate that transcriptional activities of PPARG are essential for sclerostin expression in osteocytes and support consideration of targeting PPARG activities with selective modulators to treat osteoporosis.
Collapse
Affiliation(s)
- Sudipta Baroi
- Department of Orthopaedic Surgery, University of Toledo, College of Medicine and Life Sciences, Toledo, OH, United States of America; Center for Diabetes and Endocrine Research, University of Toledo, College of Medicine and Life Sciences, Toledo, OH, United States of America
| | - Piotr J Czernik
- Department of Physiology and Pharmacology, University of Toledo, College of Medicine and Life Sciences, Toledo, OH, United States of America
| | - Amit Chougule
- Department of Orthopaedic Surgery, University of Toledo, College of Medicine and Life Sciences, Toledo, OH, United States of America; Center for Diabetes and Endocrine Research, University of Toledo, College of Medicine and Life Sciences, Toledo, OH, United States of America
| | - Patrick R Griffin
- The Scripps Research Institute, Jupiter, FL, University of Toledo, College of Medicine and Life Sciences, Toledo, OH, United States of America
| | - Beata Lecka-Czernik
- Department of Orthopaedic Surgery, University of Toledo, College of Medicine and Life Sciences, Toledo, OH, United States of America; Department of Physiology and Pharmacology, University of Toledo, College of Medicine and Life Sciences, Toledo, OH, United States of America; Center for Diabetes and Endocrine Research, University of Toledo, College of Medicine and Life Sciences, Toledo, OH, United States of America.
| |
Collapse
|
32
|
Nuts and bolts of the salt-inducible kinases (SIKs). Biochem J 2021; 478:1377-1397. [PMID: 33861845 PMCID: PMC8057676 DOI: 10.1042/bcj20200502] [Citation(s) in RCA: 71] [Impact Index Per Article: 17.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2021] [Revised: 03/29/2021] [Accepted: 03/31/2021] [Indexed: 12/24/2022]
Abstract
The salt-inducible kinases, SIK1, SIK2 and SIK3, most closely resemble the AMP-activated protein kinase (AMPK) and other AMPK-related kinases, and like these family members they require phosphorylation by LKB1 to be catalytically active. However, unlike other AMPK-related kinases they are phosphorylated by cyclic AMP-dependent protein kinase (PKA), which promotes their binding to 14-3-3 proteins and inactivation. The most well-established substrates of the SIKs are the CREB-regulated transcriptional co-activators (CRTCs), and the Class 2a histone deacetylases (HDAC4/5/7/9). Phosphorylation by SIKs promotes the translocation of CRTCs and Class 2a HDACs to the cytoplasm and their binding to 14-3-3s, preventing them from regulating their nuclear binding partners, the transcription factors CREB and MEF2. This process is reversed by PKA-dependent inactivation of the SIKs leading to dephosphorylation of CRTCs and Class 2a HDACs and their re-entry into the nucleus. Through the reversible regulation of these substrates and others that have not yet been identified, the SIKs regulate many physiological processes ranging from innate immunity, circadian rhythms and bone formation, to skin pigmentation and metabolism. This review summarises current knowledge of the SIKs and the evidence underpinning these findings, and discusses the therapeutic potential of SIK inhibitors for the treatment of disease.
Collapse
|
33
|
Oosthuyse T, Bosch AN, Kariem N, Millen AME. Mountain Bike Racing Stimulates Osteogenic Bone Signaling and Ingesting Carbohydrate-Protein Compared With Carbohydrate-Only Prevents Acute Recovery Bone Resorption Dominance. J Strength Cond Res 2021; 35:292-299. [PMID: 33337693 DOI: 10.1519/jsc.0000000000003928] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
ABSTRACT Oosthuyse, T, Bosch, AN, Kariem, N, and Millen, AME. Mountain bike racing stimulates osteogenic bone signaling and ingesting carbohydrate-protein compared with carbohydrate-only prevents acute recovery bone resorption dominance. J Strength Cond Res 35(2): 292-299, 2021-Mountain biking, unlike road cycling, includes vibrational accelerations but whether it stimulates osteogenic signaling remains unknown. Furthermore, exercise nutrition influences bone turnover, and the effect of ingesting protein during multiday racing was investigated. We measured plasma bone turnover markers, C-terminal telopeptide of type1-collagen (β-CTX) and N-terminal propeptides of type1-procollagen (P1NP), and osteocyte mechanosensory signaling factor, sclerostin (SOST), corrected for plasma volume change, before (pre-day 1) and 20-60 minutes after (post-day 3) a multiday mountain bike race in 18 male cyclists randomly assigned to ingest carbohydrate-only (CHO-only) or carbohydrate-with-casein protein hydrolysate (CHO-PRO) during racing. Fourteen cyclists (n = 7 per group) completed the race, and data were analyzed with p < 0.05 accepted as significant. Plasma SOST decreased similarly in both groups (mean ± SD, CHO-only: 877 ± 451 to 628 ± 473 pg·ml-1, p = 0.004; CHO-PRO: 888 ± 411 to 650 ± 443 pg·ml-1, p = 0.003), suggesting that osteocytes sense mountain biking as mechanical loading. However, the bone formation marker, P1NP, remained unchanged in both groups, whereas the bone resorption marker, β-CTX, increased in CHO-only (0.19 ± 0.034 to 0.31 ± 0.074 ng·ml-1, p = 0.0036) but remained unchanged in CHO-PRO (0.25 ± 0.079 to 0.26 ± 0.074 ng·ml-1, p = 0.95). Mountain bike racing does stimulate osteogenic bone signaling but bone formation is not increased acutely after multiday mountain biking; investigation for a delayed effect is warranted. The acute recovery increase in bone resorption with CHO-only is prevented by ingesting CHO-PRO during racing.
Collapse
Affiliation(s)
- Tanja Oosthuyse
- School of Physiology, Faculty of Health Sciences, University of the Witwatersrand, Medical School, Johannesburg, South Africa ; and
| | - Andrew N Bosch
- Division of Exercise Science and Sports Medicine, Department of Human Biology, University of Cape Town, Cape Town, South Africa
| | - Neezaam Kariem
- Division of Exercise Science and Sports Medicine, Department of Human Biology, University of Cape Town, Cape Town, South Africa
| | - Aletta M E Millen
- School of Physiology, Faculty of Health Sciences, University of the Witwatersrand, Medical School, Johannesburg, South Africa ; and
| |
Collapse
|
34
|
Udagawa N, Koide M, Nakamura M, Nakamichi Y, Yamashita T, Uehara S, Kobayashi Y, Furuya Y, Yasuda H, Fukuda C, Tsuda E. Osteoclast differentiation by RANKL and OPG signaling pathways. J Bone Miner Metab 2021; 39:19-26. [PMID: 33079279 DOI: 10.1007/s00774-020-01162-6] [Citation(s) in RCA: 388] [Impact Index Per Article: 97.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/19/2020] [Accepted: 09/22/2020] [Indexed: 12/19/2022]
Abstract
INTRODUCTION In bone tissue, bone resorption by osteoclasts and bone formation by osteoblasts are repeated continuously. Osteoclasts are multinucleated cells that derive from monocyte-/macrophage-lineage cells and resorb bone. In contrast, osteoblasts mediate osteoclastogenesis by expressing receptor activator of nuclear factor-kappa B ligand (RANKL), which is expressed as a membrane-associated cytokine. Osteoprotegerin (OPG) is a soluble RANKL decoy receptor that is predominantly produced by osteoblasts and which prevents osteoclast formation and osteoclastic bone resorption by inhibiting the RANKL-RANKL receptor interaction. MATERIALS AND METHODS In this review, we would like to summarize our experimental results on signal transduction that regulates the expression of RANKL and OPG. RESULTS Using OPG gene-deficient mice, we have demonstrated that OPG and sclerostin produced by osteocytes play an important role in the maintenance of cortical and alveolar bone. In addition, it was shown that osteoclast-derived leukemia inhibitory factor (LIF) reduces the expression of sclerostin in osteocytes and promotes bone formation. WP9QY (W9) is a peptide that was designed to be structurally similar to one of the cysteine-rich TNF-receptortype-I domains. Addition of the W9 peptide to bone marrow culture simultaneously inhibited osteoclast differentiation and stimulated osteoblastic cell proliferation. An anti-sialic acid-binding immunoglobulin-like lectin 15 (Siglec-15) antibody inhibited multinucleated osteoclast formation induced by RANKL and macrophage colony-stimulating factor (M-CSF). Pit-forming activity of osteoclasts was also inhibited by the anti-Siglec-15 antibody. In addition, anti-Siglec-15 antibody treatment stimulated the appearance of osteoblasts in cultures of mouse bone marrow cells in the presence of RANKL and M-CSF. CONCLUSIONS Bone mass loss depends on the RANK-RANKL-OPG system, which is a major regulatory system of osteoclast differentiation induction, activation, and survival.
Collapse
Affiliation(s)
- Nobuyuki Udagawa
- Department of Biochemistry, Matsumoto Dental University, 1780 Gobara, Hiro-oka, Shiojiri, Nagano, 399-0781, Japan.
- Division of Hard Tissue Research, I, nstitute for Oral Science, Matsumoto Dental University, Nagano, 399-0781, Japan.
| | - Masanori Koide
- Division of Hard Tissue Research, I, nstitute for Oral Science, Matsumoto Dental University, Nagano, 399-0781, Japan
| | - Midori Nakamura
- Department of Biochemistry, Matsumoto Dental University, 1780 Gobara, Hiro-oka, Shiojiri, Nagano, 399-0781, Japan
- Division of Hard Tissue Research, I, nstitute for Oral Science, Matsumoto Dental University, Nagano, 399-0781, Japan
| | - Yuko Nakamichi
- Division of Hard Tissue Research, I, nstitute for Oral Science, Matsumoto Dental University, Nagano, 399-0781, Japan
| | - Teruhito Yamashita
- Division of Hard Tissue Research, I, nstitute for Oral Science, Matsumoto Dental University, Nagano, 399-0781, Japan
| | - Shunsuke Uehara
- Department of Biochemistry, Matsumoto Dental University, 1780 Gobara, Hiro-oka, Shiojiri, Nagano, 399-0781, Japan
| | - Yasuhiro Kobayashi
- Division of Hard Tissue Research, I, nstitute for Oral Science, Matsumoto Dental University, Nagano, 399-0781, Japan
| | - Yuriko Furuya
- Nagahama Institute for Biochemical Science, Oriental Yeast Co., Ltd., Nagahama, Japan
| | - Hisataka Yasuda
- Nagahama Institute for Biochemical Science, Oriental Yeast Co., Ltd., Nagahama, Japan
| | - Chie Fukuda
- Specialty Medicine Research Laboratories 1, Daiichi Sankyo Co., Ltd., Tokyo, Japan
| | - Eisuke Tsuda
- Specialty Medicine Research Laboratories 1, Daiichi Sankyo Co., Ltd., Tokyo, Japan
| |
Collapse
|
35
|
Skarp S, Xia JH, Zhang Q, Löija M, Costantini A, Ruddock LW, Mäkitie O, Wei GH, Männikkö M. Exome Sequencing Reveals a Phenotype Modifying Variant in ZNF528 in Primary Osteoporosis With a COL1A2 Deletion. J Bone Miner Res 2020; 35:2381-2392. [PMID: 32722848 PMCID: PMC7757391 DOI: 10.1002/jbmr.4145] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/12/2020] [Revised: 06/30/2020] [Accepted: 07/23/2020] [Indexed: 12/12/2022]
Abstract
We studied a family with severe primary osteoporosis carrying a heterozygous p.Arg8Phefs*14 deletion in COL1A2, leading to haploinsufficiency. Three affected individuals carried the mutation and presented nearly identical spinal fractures but lacked other typical features of either osteogenesis imperfecta or Ehlers-Danlos syndrome. Although mutations leading to haploinsufficiency in COL1A2 are rare, mutations in COL1A1 that lead to less protein typically result in a milder phenotype. We hypothesized that other genetic factors may contribute to the severe phenotype in this family. We performed whole-exome sequencing in five family members and identified in all three affected individuals a rare nonsense variant (c.1282C > T/p.Arg428*, rs150257846) in ZNF528. We studied the effect of the variant using qPCR and Western blot and its subcellular localization with immunofluorescence. Our results indicate production of a truncated ZNF528 protein that locates in the cell nucleus as per the wild-type protein. ChIP and RNA sequencing analyses on ZNF528 and ZNF528-c.1282C > T indicated that ZNF528 binding sites are linked to pathways and genes regulating bone morphology. Compared with the wild type, ZNF528-c.1282C > T showed a global shift in genomic binding profile and pathway enrichment, possibly contributing to the pathophysiology of primary osteoporosis. We identified five putative target genes for ZNF528 and showed that the expression of these genes is altered in patient cells. In conclusion, the variant leads to expression of truncated ZNF528 and a global change of its genomic occupancy, which in turn may lead to altered expression of target genes. ZNF528 is a novel candidate gene for bone disorders and may function as a transcriptional regulator in pathways affecting bone morphology and contribute to the phenotype of primary osteoporosis in this family together with the COL1A2 deletion. © 2020 The Authors. Journal of Bone and Mineral Research published by Wiley Periodicals LLC on behalf of American Society for Bone and Mineral Research (ASBMR).
Collapse
Affiliation(s)
- Sini Skarp
- Infrastructure for Population Studies, Northern Finland Birth Cohorts, Faculty of Medicine, University of Oulu, Oulu, Finland.,Faculty of Biochemistry and Molecular Medicine, University of Oulu, Oulu, Finland.,Center for Life Course Health Research, Faculty of Medicine, University of Oulu, Oulu, Finland
| | - Ji-Han Xia
- Faculty of Biochemistry and Molecular Medicine, University of Oulu, Oulu, Finland.,Biocenter Oulu, University of Oulu, Oulu, Finland
| | - Qin Zhang
- Faculty of Biochemistry and Molecular Medicine, University of Oulu, Oulu, Finland.,Biocenter Oulu, University of Oulu, Oulu, Finland
| | - Marika Löija
- Faculty of Biochemistry and Molecular Medicine, University of Oulu, Oulu, Finland.,Center for Life Course Health Research, Faculty of Medicine, University of Oulu, Oulu, Finland
| | - Alice Costantini
- Department of Molecular Medicine and Surgery and Center for Molecular Medicine, Karolinska Institutet/Stockholm, Stockholm, Sweden
| | - Lloyd W Ruddock
- Faculty of Biochemistry and Molecular Medicine, University of Oulu, Oulu, Finland
| | - Outi Mäkitie
- Department of Molecular Medicine and Surgery and Center for Molecular Medicine, Karolinska Institutet/Stockholm, Stockholm, Sweden.,Department of Clinical Genetics, Karolinska University Hospital, Stockholm, Sweden.,Children's Hospital and Pediatric Research Center, University of Helsinki and Helsinki University Hospital, Helsinki, Finland.,Folkhälsan Research Center, Genetics Research Program, Helsinki, Finland.,Research Program for Clinical and Molecular Metabolism, Faculty of Medicine, University of Helsinki, Helsinki, Finland
| | - Gong-Hong Wei
- Faculty of Biochemistry and Molecular Medicine, University of Oulu, Oulu, Finland.,Biocenter Oulu, University of Oulu, Oulu, Finland.,Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences and Zhongshan Hospital, Fudan University, Shanghai, China
| | - Minna Männikkö
- Infrastructure for Population Studies, Northern Finland Birth Cohorts, Faculty of Medicine, University of Oulu, Oulu, Finland.,Center for Life Course Health Research, Faculty of Medicine, University of Oulu, Oulu, Finland
| |
Collapse
|
36
|
Zhao G, Kim EW, Jiang J, Bhoot C, Charles KR, Baek J, Mohan S, Adams JS, Tetradis S, Lyons KM. CCN1/Cyr61 Is Required in Osteoblasts for Responsiveness to the Anabolic Activity of PTH. J Bone Miner Res 2020; 35:2289-2300. [PMID: 32634285 PMCID: PMC9361511 DOI: 10.1002/jbmr.4128] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/08/2020] [Revised: 06/24/2020] [Accepted: 07/02/2020] [Indexed: 12/11/2022]
Abstract
CCN1/Cyr61 is a dynamically expressed matricellular protein that serves regulatory functions in multiple tissues. Previous studies from our laboratory demonstrated that CCN1 regulates bone maintenance. Using an osteoblast and osteocyte conditional knockout mouse model (Ccn1OCN ), we found a significant decrease in trabecular and cortical bone mass in vivo, in part through suppression of Wnt signaling since the expression of the Wnt antagonist sclerostin (SOST) is increased in osteoblasts lacking CCN1. It has been established that parathyroid hormone (PTH) signaling also suppresses SOST expression in bone. We therefore investigated the interaction between CCN1 and PTH-mediated responses in this study. We find that loss of Ccn1 in osteoblasts leads to impaired responsiveness to anabolic intermittent PTH treatment in Ccn1OCN mice in vivo and in osteoblasts from these mice in vitro. Analysis of Ccn1OCN mice demonstrated a significant decrease in parathyroid hormone receptor-1 (PTH1R) expression in osteoblasts in vivo and in vitro. We investigated the regulatory role of a non-canonical integrin-binding domain of CCN1 because several studies indicate that specific integrins are critical to mechanotransduction, a PTH-dependent response, in bone. These data suggest that CCN1 regulates the expression of PTH1R through interaction with the αvβ3 and/or αvβ5 integrin complexes. Osteoblasts that express a mutant form of CCN1 that cannot interact with αvβ3/β5 integrin demonstrate a significant decrease in mRNA and protein expression of both PTH1R and αv integrin. Overall, these data suggest that the αvβ3/β5-binding domain of CCN1 is required to endow PTH signaling with anabolic activity in bone cells. © 2020 American Society for Bone and Mineral Research (ASBMR).
Collapse
Affiliation(s)
- Gexin Zhao
- Department of Orthopaedic Surgery, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA, USA
| | - Elliot W Kim
- Department of Orthopaedic Surgery, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA, USA
| | - Jie Jiang
- Orthopaedic Institution for Children Foundation, Hemophilia Treatment Center, University of California, Los Angeles, Los Angeles, CA, USA
| | - Chimay Bhoot
- Department of Molecular Cell and Developmental Biology, University of California, Los Angeles, Los Angeles, CA, USA
| | - Kemberly R Charles
- Department of Molecular Cell and Developmental Biology, University of California, Los Angeles, Los Angeles, CA, USA
| | - Jongseung Baek
- Department of Orthopaedic Surgery, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA, USA
| | - Subburaman Mohan
- Musculoskeletal Disease Center, VA Loma Linda Healthcare Systems, Loma Linda, CA, USA
| | - John S Adams
- Department of Orthopaedic Surgery, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA, USA
| | - Sotirios Tetradis
- School of Dentistry, University of California, Los Angeles, Los Angeles, CA, USA
| | - Karen M Lyons
- Department of Orthopaedic Surgery, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA, USA.,Department of Molecular Cell and Developmental Biology, University of California, Los Angeles, Los Angeles, CA, USA
| |
Collapse
|
37
|
Sclerostin expression in trabecular bone is downregulated by osteoclasts. Sci Rep 2020; 10:13751. [PMID: 32792620 PMCID: PMC7426814 DOI: 10.1038/s41598-020-70817-1] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2020] [Accepted: 07/30/2020] [Indexed: 12/18/2022] Open
Abstract
Bone tissues have trabecular bone with a high bone turnover and cortical bone with a low turnover. The mechanisms by which the turnover rate of these bone tissues is determined remain unclear. Osteocytes secrete sclerostin, a Wnt/β-catenin signaling antagonist, and inhibit bone formation. We found that sclerostin expression in cortical bone is more marked than in trabecular bone in Sost reporter mice. Leukemia inhibitory factor (LIF) secreted from osteoclasts reportedly suppressed sclerostin expression and promoted bone formation. Here, we report that osteoclasts downregulate sclerostin expression in trabecular bone and promote bone turnover. Treatment of C57BL/6 mice with an anti-RANKL antibody eliminated the number of osteoclasts and LIF-positive cells in trabecular bone. The number of sclerostin-positive cells was increased in trabecular bone, while the number of β-catenin-positive cells and bone formation were decreased in trabecular bone. Besides, Tnfsf11 heterozygous (Rankl+/−) mice exhibited a decreased number of LIF-positive cells and increased number of sclerostin-positive cells in trabecular bone. Rankl+/− mice exhibited a decreased number of β-catenin-positive cells and reduced bone formation in trabecular bone. Furthermore, in cultured osteoclasts, RANKL stimulation increased Lif mRNA expression, suggesting that RANKL signal increased LIF expression. In conclusion, osteoclasts downregulate sclerostin expression and promote trabecular bone turnover.
Collapse
|
38
|
Physical Activity-Dependent Regulation of Parathyroid Hormone and Calcium-Phosphorous Metabolism. Int J Mol Sci 2020; 21:ijms21155388. [PMID: 32751307 PMCID: PMC7432834 DOI: 10.3390/ijms21155388] [Citation(s) in RCA: 62] [Impact Index Per Article: 12.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2020] [Revised: 07/09/2020] [Accepted: 07/23/2020] [Indexed: 12/14/2022] Open
Abstract
Exercise perturbs homeostasis, alters the levels of circulating mediators and hormones, and increases the demand by skeletal muscles and other vital organs for energy substrates. Exercise also affects bone and mineral metabolism, particularly calcium and phosphate, both of which are essential for muscle contraction, neuromuscular signaling, biosynthesis of adenosine triphosphate (ATP), and other energy substrates. Parathyroid hormone (PTH) is involved in the regulation of calcium and phosphate homeostasis. Understanding the effects of exercise on PTH secretion is fundamental for appreciating how the body adapts to exercise. Altered PTH metabolism underlies hyperparathyroidism and hypoparathyroidism, the complications of which affect the organs involved in calcium and phosphorous metabolism (bone and kidney) and other body systems as well. Exercise affects PTH expression and secretion by altering the circulating levels of calcium and phosphate. In turn, PTH responds directly to exercise and exercise-induced myokines. Here, we review the main concepts of the regulation of PTH expression and secretion under physiological conditions, in acute and chronic exercise, and in relation to PTH-related disorders.
Collapse
|
39
|
Abstract
Parathyroid hormone is an essential regulator of extracellular calcium and phosphate. PTH enhances calcium reabsorption while inhibiting phosphate reabsorption in the kidneys, increases the synthesis of 1,25-dihydroxyvitamin D, which then increases gastrointestinal absorption of calcium, and increases bone resorption to increase calcium and phosphate. Parathyroid disease can be an isolated endocrine disorder or part of a complex syndrome. Genetic mutations can account for diseases of parathyroid gland formulation, dysregulation of parathyroid hormone synthesis or secretion, and destruction of the parathyroid glands. Over the years, a number of different options are available for the treatment of different types of parathyroid disease. Therapeutic options include surgical removal of hypersecreting parathyroid tissue, administration of parathyroid hormone, vitamin D, activated vitamin D, calcium, phosphate binders, calcium-sensing receptor, and vitamin D receptor activators to name a few. The accurate assessment of parathyroid hormone also provides essential biochemical information to properly diagnose parathyroid disease. Currently available immunoassays may overestimate or underestimate bioactive parathyroid hormone because of interferences from truncated parathyroid hormone fragments, phosphorylation of parathyroid hormone, and oxidation of amino acids of parathyroid hormone.
Collapse
Affiliation(s)
- Edward Ki Yun Leung
- Department of Pathology and Laboratory Medicine, Children's Hospital Los Angeles, Los Angeles, CA, United States; Department of Pathology, Keck School of Medicine of University of Southern California, Los Angeles, CA, United States.
| |
Collapse
|
40
|
Sato T, Verma S, Andrade CDC, Omeara M, Campbell N, Wang JS, Cetinbas M, Lang A, Ausk BJ, Brooks DJ, Sadreyev RI, Kronenberg HM, Lagares D, Uda Y, Pajevic PD, Bouxsein ML, Gross TS, Wein MN. A FAK/HDAC5 signaling axis controls osteocyte mechanotransduction. Nat Commun 2020; 11:3282. [PMID: 32612176 PMCID: PMC7329900 DOI: 10.1038/s41467-020-17099-3] [Citation(s) in RCA: 58] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2019] [Accepted: 06/11/2020] [Indexed: 11/13/2022] Open
Abstract
Osteocytes, cells ensconced within mineralized bone matrix, are the primary skeletal mechanosensors. Osteocytes sense mechanical cues by changes in fluid flow shear stress (FFSS) across their dendritic projections. Loading-induced reductions of osteocytic Sclerostin (encoded by Sost) expression stimulates new bone formation. However, the molecular steps linking mechanotransduction and Sost suppression remain unknown. Here, we report that class IIa histone deacetylases (HDAC4 and HDAC5) are required for loading-induced Sost suppression and bone formation. FFSS signaling drives class IIa HDAC nuclear translocation through a signaling pathway involving direct HDAC5 tyrosine 642 phosphorylation by focal adhesion kinase (FAK), a HDAC5 post-translational modification that controls its subcellular localization. Osteocyte cell adhesion supports FAK tyrosine phosphorylation, and FFSS triggers FAK dephosphorylation. Pharmacologic FAK catalytic inhibition reduces Sost mRNA expression in vitro and in vivo. These studies demonstrate a role for HDAC5 as a transducer of matrix-derived cues to regulate cell type-specific gene expression.
Collapse
Affiliation(s)
- Tadatoshi Sato
- Endocrine Unit, Massachusetts General Hospital, Harvard Medical School, Boston, MA USA
| | - Shiv Verma
- Endocrine Unit, Massachusetts General Hospital, Harvard Medical School, Boston, MA USA
| | | | - Maureen Omeara
- Endocrine Unit, Massachusetts General Hospital, Harvard Medical School, Boston, MA USA
| | - Nia Campbell
- Endocrine Unit, Massachusetts General Hospital, Harvard Medical School, Boston, MA USA
| | - Jialiang S. Wang
- Endocrine Unit, Massachusetts General Hospital, Harvard Medical School, Boston, MA USA
| | - Murat Cetinbas
- Department of Molecular Biology and Department of Pathology, Massachusetts General Hospital, Harvard Medical School, Boston, MA USA
| | - Audrey Lang
- Endocrine Unit, Massachusetts General Hospital, Harvard Medical School, Boston, MA USA
| | - Brandon J. Ausk
- 0000000122986657grid.34477.33Department of Orthopaedics and Sports Medicine, University of Washington, Seattle, WA USA
| | - Daniel J. Brooks
- Endocrine Unit, Massachusetts General Hospital, Harvard Medical School, Boston, MA USA ,Center for Advanced Orthopaedic Studies, Department of Orthopedic Surgery, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA USA
| | - Ruslan I. Sadreyev
- Department of Molecular Biology and Department of Pathology, Massachusetts General Hospital, Harvard Medical School, Boston, MA USA
| | - Henry M. Kronenberg
- Endocrine Unit, Massachusetts General Hospital, Harvard Medical School, Boston, MA USA
| | - David Lagares
- Center for Immunology and Inflammatory Diseases, Fibrosis Research Center, Massachusetts General Hospital, Harvard Medical School, Boston, MA USA
| | - Yuhei Uda
- 0000 0004 1936 7558grid.189504.1Translational Dental Medicine, Henry M. Goldman School of Dental Medicine, Boston University, Boston, MA USA
| | - Paola Divieti Pajevic
- 0000 0004 1936 7558grid.189504.1Translational Dental Medicine, Henry M. Goldman School of Dental Medicine, Boston University, Boston, MA USA
| | - Mary L. Bouxsein
- Endocrine Unit, Massachusetts General Hospital, Harvard Medical School, Boston, MA USA ,Center for Advanced Orthopaedic Studies, Department of Orthopedic Surgery, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA USA
| | - Ted S. Gross
- 0000000122986657grid.34477.33Department of Orthopaedics and Sports Medicine, University of Washington, Seattle, WA USA
| | - Marc N. Wein
- Endocrine Unit, Massachusetts General Hospital, Harvard Medical School, Boston, MA USA ,grid.66859.34Broad Institute of Harvard and MIT, Cambridge, MA USA
| |
Collapse
|
41
|
Fouad-Elhady EA, Aglan HA, Hassan RE, Ahmed HH, Sabry GM. Modulation of bone turnover aberration: A target for management of primary osteoporosis in experimental rat model. Heliyon 2020; 6:e03341. [PMID: 32072048 PMCID: PMC7011045 DOI: 10.1016/j.heliyon.2020.e03341] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2019] [Revised: 01/14/2020] [Accepted: 01/29/2020] [Indexed: 12/12/2022] Open
Abstract
Osteoporosis is a skeletal degenerative disease characterised by abnormal bone turnover with scant bone formation and overabundant bone resorption. The present approach was intended to address the potency of nanohydroxyapatite (nHA), chitosan/hydroxyapatite nanocomposites (nCh/HA) and silver/hydroxyapatite nanoparticles (nAg/HA) to modulate bone turnover deviation in primary osteoporosis induced in the experimental model. Characterisation techniques such as TEM, zeta-potential, FT-IR and XRD were used to assess the morphology, the physical as well as the chemical features of the prepared nanostructures. The in vivo experiment was conducted on forty-eight adult female rats, randomised into 6 groups (8 rats/group), (1) gonad-intact, (2) osteoporotic group, (3) osteoporotic + nHA, (4) osteoporotic + nCh/HA, (5) osteoporotic + nAg/HA and (6) osteoporotic + alendronate (ALN). After three months of treatment, serum sclerostin (SOST), bone alkaline phosphatase (BALP) and bone sialoprotein (BSP) levels were quantified using ELISA. Femur bone receptor activator of nuclear factor-kappa B (NF-κB) ligand (RANKL) and cathepsin K (CtsK) mRNA levels were evaluated by quantitative RT-PCR. Moreover, alizarin red S staining was applied to determine the mineralisation intensity of femur bone. Findings in the present study indicated that treatment with nHA, nCh/HA or nAg/HA leads to significant repression of serum SOST, BALP and BSP levels parallel to a significant down-regulation of RANKL and CtsK gene expression levels. On the other side, significant enhancement in the calcification intensity of femur bone has been noticed. The outcomes of this experimental setting ascertained the potentiality of nHA, nCh/HA and nAg/HA as promising nanomaterials in attenuating the excessive bone turnover in the primary osteoporotic rat model. The mechanisms behind the efficacy of the investigated nanostructures involved the obstacle of serum and tissue indices of bone resorption besides the strengthening of bone mineralisation.
Collapse
Affiliation(s)
- Enas A Fouad-Elhady
- Biochemistry Department, Faculty of Science, Ain Shams University, Cairo, Egypt
| | - Hadeer A Aglan
- Hormones Department, Medical Research Division, National Research Centre, Giza, Egypt.,Stem Cells Lab, Center of Excellence for Advanced Sciences, National Research Centre, Giza, Egypt
| | - Rasha E Hassan
- Biochemistry Department, Faculty of Science, Ain Shams University, Cairo, Egypt
| | - Hanaa H Ahmed
- Hormones Department, Medical Research Division, National Research Centre, Giza, Egypt.,Stem Cells Lab, Center of Excellence for Advanced Sciences, National Research Centre, Giza, Egypt
| | - Gilane M Sabry
- Biochemistry Department, Faculty of Science, Ain Shams University, Cairo, Egypt
| |
Collapse
|
42
|
The Regulation of Bone Metabolism and Disorders by Wnt Signaling. Int J Mol Sci 2019; 20:ijms20225525. [PMID: 31698687 PMCID: PMC6888566 DOI: 10.3390/ijms20225525] [Citation(s) in RCA: 225] [Impact Index Per Article: 37.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2019] [Revised: 11/03/2019] [Accepted: 11/04/2019] [Indexed: 12/21/2022] Open
Abstract
Wnt, a secreted glycoprotein, has an approximate molecular weight of 40 kDa, and it is a cytokine involved in various biological phenomena including ontogeny, morphogenesis, carcinogenesis, and maintenance of stem cells. The Wnt signaling pathway can be classified into two main pathways: canonical and non-canonical. Of these, the canonical Wnt signaling pathway promotes osteogenesis. Sclerostin produced by osteocytes is an inhibitor of this pathway, thereby inhibiting osteogenesis. Recently, osteoporosis treatment using an anti-sclerostin therapy has been introduced. In this review, the basics of Wnt signaling, its role in bone metabolism and its involvement in skeletal disorders have been covered. Furthermore, the clinical significance and future scopes of Wnt signaling in osteoporosis, osteoarthritis, rheumatoid arthritis and neoplasia are discussed.
Collapse
|
43
|
Saito H, Gasser A, Bolamperti S, Maeda M, Matthies L, Jähn K, Long CL, Schlüter H, Kwiatkowski M, Saini V, Pajevic PD, Bellido T, van Wijnen AJ, Mohammad KS, Guise TA, Taipaleenmäki H, Hesse E. TG-interacting factor 1 (Tgif1)-deficiency attenuates bone remodeling and blunts the anabolic response to parathyroid hormone. Nat Commun 2019; 10:1354. [PMID: 30902975 PMCID: PMC6430773 DOI: 10.1038/s41467-019-08778-x] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2017] [Accepted: 01/29/2019] [Indexed: 01/29/2023] Open
Abstract
Osteoporosis is caused by increased bone resorption and decreased bone formation. Intermittent administration of a fragment of Parathyroid hormone (PTH) activates osteoblast-mediated bone formation and is used in patients with severe osteoporosis. However, the mechanisms by which PTH elicits its anabolic effect are not fully elucidated. Here we show that the absence of the homeodomain protein TG-interacting factor 1 (Tgif1) impairs osteoblast differentiation and activity, leading to a reduced bone formation. Deletion of Tgif1 in osteoblasts and osteocytes decreases bone resorption due to an increased secretion of Semaphorin 3E (Sema3E), an osteoclast-inhibiting factor. Tgif1 is a PTH target gene and PTH treatment failed to increase bone formation and bone mass in Tgif1-deficient mice. Thus, our study identifies Tgif1 as a novel regulator of bone remodeling and an essential component of the PTH anabolic action. These insights contribute to a better understanding of bone metabolism and the anabolic function of PTH.
Collapse
Affiliation(s)
- Hiroaki Saito
- Molecular Skeletal Biology Laboratory, Department of Trauma, Hand and Reconstructive Surgery, University Medical Center Hamburg-Eppendorf, Martinistr. 52, D-20246, Hamburg, Germany
| | - Andreas Gasser
- Molecular Skeletal Biology Laboratory, Department of Trauma, Hand and Reconstructive Surgery, University Medical Center Hamburg-Eppendorf, Martinistr. 52, D-20246, Hamburg, Germany
| | - Simona Bolamperti
- Molecular Skeletal Biology Laboratory, Department of Trauma, Hand and Reconstructive Surgery, University Medical Center Hamburg-Eppendorf, Martinistr. 52, D-20246, Hamburg, Germany
| | - Miki Maeda
- Molecular Skeletal Biology Laboratory, Department of Trauma, Hand and Reconstructive Surgery, University Medical Center Hamburg-Eppendorf, Martinistr. 52, D-20246, Hamburg, Germany
| | - Levi Matthies
- Molecular Skeletal Biology Laboratory, Department of Trauma, Hand and Reconstructive Surgery, University Medical Center Hamburg-Eppendorf, Martinistr. 52, D-20246, Hamburg, Germany
| | - Katharina Jähn
- Molecular Skeletal Biology Laboratory, Department of Trauma, Hand and Reconstructive Surgery, University Medical Center Hamburg-Eppendorf, Martinistr. 52, D-20246, Hamburg, Germany
| | - Courtney L Long
- Molecular Skeletal Biology Laboratory, Department of Trauma, Hand and Reconstructive Surgery, University Medical Center Hamburg-Eppendorf, Martinistr. 52, D-20246, Hamburg, Germany
| | - Hartmut Schlüter
- Mass Spectrometric Proteomics Laboratory, Institute for Clinical Chemistry and Laboratory Medicine, University Medical Center Hamburg-Eppendorf, Martinistr. 52, D-20246, Hamburg, Germany
| | - Marcel Kwiatkowski
- Mass Spectrometric Proteomics Laboratory, Institute for Clinical Chemistry and Laboratory Medicine, University Medical Center Hamburg-Eppendorf, Martinistr. 52, D-20246, Hamburg, Germany
| | - Vaibhav Saini
- Endocrine Unit, Massachusetts General Hospital, 55 Fruit St., Boston, MA, 02114, USA
| | - Paola Divieti Pajevic
- Endocrine Unit, Massachusetts General Hospital, 55 Fruit St., Boston, MA, 02114, USA
- Department of Molecular and Cell Biology, Boston University, School of Dental Medicine, 72 East Concord St., Boston, MA, 02118, USA
| | - Teresita Bellido
- Department of Anatomy and Cell Biology, Indiana University School of Medicine, 635 Barnhill Dr., Indianapolis, IN, 46202, USA
| | - Andre J van Wijnen
- Department of Orthopedic Surgery, Mayo Clinic, 200 1st St. SW, Rochester, MN, 55905, USA
| | - Khalid S Mohammad
- Division of Endocrinology, Department of Medicine, Indiana School of Medicine, 545 Barnhill Dr., Indianapolis, IN, 46202, USA
| | - Theresa A Guise
- Division of Endocrinology, Department of Medicine, Indiana School of Medicine, 545 Barnhill Dr., Indianapolis, IN, 46202, USA
| | - Hanna Taipaleenmäki
- Molecular Skeletal Biology Laboratory, Department of Trauma, Hand and Reconstructive Surgery, University Medical Center Hamburg-Eppendorf, Martinistr. 52, D-20246, Hamburg, Germany
| | - Eric Hesse
- Molecular Skeletal Biology Laboratory, Department of Trauma, Hand and Reconstructive Surgery, University Medical Center Hamburg-Eppendorf, Martinistr. 52, D-20246, Hamburg, Germany.
- Department of Anatomy and Cell Biology, Indiana University School of Medicine, 635 Barnhill Dr., Indianapolis, IN, 46202, USA.
| |
Collapse
|
44
|
Rauch A, Haakonsson AK, Madsen JGS, Larsen M, Forss I, Madsen MR, Van Hauwaert EL, Wiwie C, Jespersen NZ, Tencerova M, Nielsen R, Larsen BD, Röttger R, Baumbach J, Scheele C, Kassem M, Mandrup S. Osteogenesis depends on commissioning of a network of stem cell transcription factors that act as repressors of adipogenesis. Nat Genet 2019; 51:716-727. [PMID: 30833796 DOI: 10.1038/s41588-019-0359-1] [Citation(s) in RCA: 147] [Impact Index Per Article: 24.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2018] [Accepted: 01/22/2019] [Indexed: 12/19/2022]
Abstract
Mesenchymal (stromal) stem cells (MSCs) constitute populations of mesodermal multipotent cells involved in tissue regeneration and homeostasis in many different organs. Here we performed comprehensive characterization of the transcriptional and epigenomic changes associated with osteoblast and adipocyte differentiation of human MSCs. We demonstrate that adipogenesis is driven by considerable remodeling of the chromatin landscape and de novo activation of enhancers, whereas osteogenesis involves activation of preestablished enhancers. Using machine learning algorithms for in silico modeling of transcriptional regulation, we identify a large and diverse transcriptional network of pro-osteogenic and antiadipogenic transcription factors. Intriguingly, binding motifs for these factors overlap with SNPs related to bone and fat formation in humans, and knockdown of single members of this network is sufficient to modulate differentiation in both directions, thus indicating that lineage determination is a delicate balance between the activities of many different transcription factors.
Collapse
Affiliation(s)
- Alexander Rauch
- Functional Genomics and Metabolism Research Unit, Department of Biochemistry and Molecular Biology, University of Southern Denmark, Odense, Denmark
| | - Anders K Haakonsson
- Molecular Endocrinology and Stem Cell Research Unit (KMEB), Department of Endocrinology and Metabolism, Odense University Hospital and Department of Clinical Research, University of Southern Denmark, Odense, Denmark
| | - Jesper G S Madsen
- Functional Genomics and Metabolism Research Unit, Department of Biochemistry and Molecular Biology, University of Southern Denmark, Odense, Denmark
| | - Mette Larsen
- Functional Genomics and Metabolism Research Unit, Department of Biochemistry and Molecular Biology, University of Southern Denmark, Odense, Denmark
| | - Isabel Forss
- Functional Genomics and Metabolism Research Unit, Department of Biochemistry and Molecular Biology, University of Southern Denmark, Odense, Denmark
| | - Martin R Madsen
- Functional Genomics and Metabolism Research Unit, Department of Biochemistry and Molecular Biology, University of Southern Denmark, Odense, Denmark
| | - Elvira L Van Hauwaert
- Functional Genomics and Metabolism Research Unit, Department of Biochemistry and Molecular Biology, University of Southern Denmark, Odense, Denmark
| | - Christian Wiwie
- Department of Mathematics and Computer Science, University of Southern Denmark, Odense, Denmark
| | - Naja Z Jespersen
- Centre of Inflammation and Metabolism and Centre for Physical Activity Research, Rigshospitalet, University Hospital of Copenhagen, Copenhagen, Denmark.,Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark.,Danish Diabetes Academy, Odense University Hospital, Odense, Denmark
| | - Michaela Tencerova
- Molecular Endocrinology and Stem Cell Research Unit (KMEB), Department of Endocrinology and Metabolism, Odense University Hospital and Department of Clinical Research, University of Southern Denmark, Odense, Denmark
| | - Ronni Nielsen
- Functional Genomics and Metabolism Research Unit, Department of Biochemistry and Molecular Biology, University of Southern Denmark, Odense, Denmark
| | - Bjørk D Larsen
- Functional Genomics and Metabolism Research Unit, Department of Biochemistry and Molecular Biology, University of Southern Denmark, Odense, Denmark
| | - Richard Röttger
- Department of Mathematics and Computer Science, University of Southern Denmark, Odense, Denmark
| | - Jan Baumbach
- Department of Mathematics and Computer Science, University of Southern Denmark, Odense, Denmark.,Experimental Bioinformatics, TUM School of Life Sciences, Technical University of Munich, Freising-Weihenstephan, Germany
| | - Camilla Scheele
- Centre of Inflammation and Metabolism and Centre for Physical Activity Research, Rigshospitalet, University Hospital of Copenhagen, Copenhagen, Denmark.,Novo Nordisk Foundation Center for Basic Metabolic Research, University of Copenhagen, Copenhagen, Denmark
| | - Moustapha Kassem
- Molecular Endocrinology and Stem Cell Research Unit (KMEB), Department of Endocrinology and Metabolism, Odense University Hospital and Department of Clinical Research, University of Southern Denmark, Odense, Denmark
| | - Susanne Mandrup
- Functional Genomics and Metabolism Research Unit, Department of Biochemistry and Molecular Biology, University of Southern Denmark, Odense, Denmark.
| |
Collapse
|
45
|
Cao Y, Wang B, Wang D, Zhan D, Mai C, Wang P, Wei Q, Liu Y, Wang H, He W, Xu L. Expression of Sclerostin in Osteoporotic Fracture Patients Is Associated with DNA Methylation in the CpG Island of the SOST Gene. Int J Genomics 2019; 2019:7076513. [PMID: 30729116 PMCID: PMC6341240 DOI: 10.1155/2019/7076513] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2018] [Revised: 09/26/2018] [Accepted: 10/11/2018] [Indexed: 01/17/2023] Open
Abstract
PURPOSE SOST gene is one of the key factors in regulating bone absorption. Although there are reports showing diverse transcription factors, epigenetic modification could be responsible for regulating SOST gene expression. There is still little exploration on promoter methylation status of SOST gene in osteoporotic bone tissues. The aim of this study is to investigate the involvement of CpG methylation in regulation of SOST expression in patients with primary osteoporosis. METHODS The diagnosis of osteoporosis was established on the basis of dual energy X-ray absorptiometry to measure BMD. All femoral bone tissues were separated in surgeries. After extracting total RNA and protein, we checked the relative expression levels of SOST by quantitative real-time PCR and western blot. Also, immunohistochemical staining was performed to observe the expression of SOST protein in the bone samples. The genomic DNA of non-OPF (non-osteoporotic fracture bone tissues) and OPF (osteoporotic fracture bone tissues) were treated by bisulfite modification, and methylation status of CpG sites in the CpG island of SOST gene promoter was determined by DNA sequencing. RESULTS SOST gene expression in the non-OPF group was lower than that in OPF group. Bisulfite sequencing result showed that SOST gene promoter was slightly demethylated in the OPF group, as compared with non-OPF group. CONCLUSION Our study demonstrated that DNA methylation influenced the transcriptional expression of SOST gene, which probably may play an important role in the pathogenesis of primary osteoporosis.
Collapse
Affiliation(s)
- Yanming Cao
- Department of Orthopedics, The Second Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Bin Wang
- Department of Orthopedics, People's Hospital of Sanshui, Foshan, China
| | - Ding Wang
- Key Laboratory of Orthopaedics & Traumatology, The First Affiliated Hospital of Guangzhou University of Chinese Medicine, The First Clinical Medical College, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Dongxiang Zhan
- Key Laboratory of Orthopaedics & Traumatology, The First Affiliated Hospital of Guangzhou University of Chinese Medicine, The First Clinical Medical College, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Caiyuan Mai
- Department of Obstetrics, Guangdong Women and Children's Hospital, Guangzhou 510010, China
| | - Peng Wang
- Key Laboratory of Orthopaedics & Traumatology, The First Affiliated Hospital of Guangzhou University of Chinese Medicine, The First Clinical Medical College, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Qiushi Wei
- Key Laboratory of Orthopaedics & Traumatology, The First Affiliated Hospital of Guangzhou University of Chinese Medicine, The First Clinical Medical College, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Yamei Liu
- Departments of Diagnostics of Traditional Chinese Medicine, Guangzhou University of Traditional Chinese Medicine, Guangzhou, Guangdong 510006, China
| | - Haibin Wang
- Key Laboratory of Orthopaedics & Traumatology, The First Affiliated Hospital of Guangzhou University of Chinese Medicine, The First Clinical Medical College, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Wei He
- Key Laboratory of Orthopaedics & Traumatology, The First Affiliated Hospital of Guangzhou University of Chinese Medicine, The First Clinical Medical College, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Liangliang Xu
- Key Laboratory of Orthopaedics & Traumatology, The First Affiliated Hospital of Guangzhou University of Chinese Medicine, The First Clinical Medical College, Guangzhou University of Chinese Medicine, Guangzhou, China
- Laboratory of Orthopaedics & Traumatology, Lingnan Medical Research Center, Guangzhou University of Chinese Medicine, Guangzhou, China
| |
Collapse
|
46
|
Koide M, Kobayashi Y. Regulatory mechanisms of sclerostin expression during bone remodeling. J Bone Miner Metab 2019; 37:9-17. [PMID: 30357564 DOI: 10.1007/s00774-018-0971-7] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/12/2018] [Accepted: 10/14/2018] [Indexed: 11/28/2022]
Abstract
Osteocytes are embedded in bone matrices and are connected to each other to respond to mechanical loading on bone. Recent studies have demonstrated the roles of mechanical loading in bone accrual. Bone responds to mechanical loading by decreasing the expression of sclerostin, an inhibitor of Wnt/β-catenin signals, in osteocytes. This increases bone mass because the activation of Wnt/β-catenin signals in bone microenvironments promotes bone formation and suppresses bone resorption. Thus, in recent years, sclerostin have attracted increasing attention in bone metabolism. However, the regulatory mechanism of sclerostin expression during bone remodeling has not been fully elucidated. In this review, we summarized the regulation of bone formation and resorption by Wnt signals, a Wnt/β-catenin signal inhibitor sclerostin, and molecular mechanisms by which the expression of sclerostin is suppressed by mechanical loading and parathyroid hormone. We also discuss a possibility that osteoclasts suppress the expression of sclerostin during bone remodeling, which in turn, promote bone formation. The effectiveness of an anti-sclerostin antibody with anti-dickkopf-1 antibody for increasing bone mass was discussed.
Collapse
Affiliation(s)
- Masanori Koide
- Division of Hard Tissue Research, Institute for Oral Science, Matsumoto Dental University, 1780 Gobara, Hiro-oka, Shiojiri, Nagano, 399-0781, Japan
| | - Yasuhiro Kobayashi
- Division of Hard Tissue Research, Institute for Oral Science, Matsumoto Dental University, 1780 Gobara, Hiro-oka, Shiojiri, Nagano, 399-0781, Japan.
| |
Collapse
|
47
|
Fulzele K, Dedic C, Lai F, Bouxsein M, Lotinun S, Baron R, Divieti Pajevic P. Loss of Gsα in osteocytes leads to osteopenia due to sclerostin induced suppression of osteoblast activity. Bone 2018; 117:138-148. [PMID: 30266511 PMCID: PMC6207374 DOI: 10.1016/j.bone.2018.09.021] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/15/2018] [Revised: 09/06/2018] [Accepted: 09/24/2018] [Indexed: 10/28/2022]
Abstract
The stimulatory subunit of G-protein, Gsα, acts as a secondary messenger of G-protein coupled receptors (GPCRs) that primarily activates cAMP-induced signaling. GPCRs, such as the parathyroid hormone receptor (PTHR), are critical regulators of bone formation as shown by number of genetic manipulation studies targeting early osteoblast lineage cells. In this study, we have examined the role of Gsα in osteocytes, the terminally differentiated and most abundant cells of the osteoblast lineage. Mice lacking the stimulatory subunit of G-proteins (Gsα) in osteocytes (DMP1-GsαKO) have significant decrease of both trabecular and cortical bone, as assessed by μCT. Histomorphometric analysis showed that the osteopenia was mostly driven by more than 90% decrease in osteoblast numbers and activity whereas osteoclasts were only slightly decreased. The decrease in osteoblast number was associated with a striking lack of endocortical osteoblasts. We have previously shown that loss of the stimulatory subunit of G-proteins (Gsα) in osteocytes in vitro or in vivo induces high expression of sclerostin. To determine if the increased sclerostin levels contributed to the decreased endosteal bone lining cells and osteopenia, we treated wild-type mice with recombinant sclerostin and the DMP1-GsαKO mice with anti-sclerostin antibody. Treatment of wild-type mice with 100 μg/kg sclerostin for 3-weeks significantly reduced the numbers of bone lining cells and led to osteopenia. Next, the DMP1-GsαKO and control littermates were treated with the anti-sclerostin antibody (25 mg/kg, 2 times per week) for 4-weeks. Upon the antibody treatment, the endocortical osteoblasts reappeared in the DMP1-GsαKO mice to a comparable level to that of the vehicle treated control littermates. In control mice, E11/gp38 positive osteocytes were observed in parallel with the endocortical osteoblasts with higher dendrite density towards the endocortical osteoblasts. In DMP1-GsαKO mice, E11/gp38 positive osteocytes were lacking dendrites and were randomly scattered throughout the bone matrix. After treatment with anti-sclerostin antibody, DMP1-GsαKO mice showed increased E11/gp38 positive osteocytes near the endosteal bone surface and endosteal osteoblasts. The anti-sclerostin antibody treatment proportionally increased the bone volume but it could not completely rescue the osteopenia in the DMP1-GsαKO mice. Taken together, this data suggests that Gsα signaling in osteocytes leads to osteopenia driven, at least in part, by increased secretion of sclerostin.
Collapse
Affiliation(s)
- Keertik Fulzele
- Molecular and Cell Biology, Goldman School of Dental Medicine, Boston University, Boston, USA
| | - Christopher Dedic
- Molecular and Cell Biology, Goldman School of Dental Medicine, Boston University, Boston, USA
| | - Forest Lai
- Molecular and Cell Biology, Goldman School of Dental Medicine, Boston University, Boston, USA
| | - Mary Bouxsein
- Beth Israel Deaconess Hospital, Harvard Medical School, Boston, USA
| | - Sutada Lotinun
- Division of Bone and Mineral Research, Department of Oral Medicine, Infection and Immunity, Harvard School of Dental Medicine, Boston, MA, USA; Department of Physiology and Skeletal Disorders Research Unit, Faculty of Dentistry, Chulalongkorn University, Bangkok, Thailand
| | - Roland Baron
- Division of Bone and Mineral Research, Department of Oral Medicine, Infection and Immunity, Harvard School of Dental Medicine, Boston, MA, USA; Department of Medicine, Harvard Medical School, Boston, MA, USA
| | - Paola Divieti Pajevic
- Molecular and Cell Biology, Goldman School of Dental Medicine, Boston University, Boston, USA.
| |
Collapse
|
48
|
Abstract
Parathyroid hormone (PTH) is the major secretory product of the parathyroid glands, and in hypocalcemic conditions, can enhance renal calcium reabsorption, increase active vitamin D production to increase intestinal calcium absorption, and mobilize calcium from bone by increasing turnover, mainly but not exclusively in cortical bone. PTH has therefore found clinical use as replacement therapy in hypoparathyroidism. PTH also may have a physiologic role in augmenting bone formation, particularly in trabecular and to some extent in cortical bone. This action has been applied to the clinic to provide anabolic therapy for osteoporosis.
Collapse
Affiliation(s)
- David Goltzman
- Department of Medicine and Research Institute of the McGill University Health Centre, 1001 Decarie Boulevard, Montreal, Quebec H4A 3J1, Canada; Departments of Medicine and of Physiology, McGill University, 845 Sherbrooke St West, Montreal, Quebec H3A 0B9, Canada.
| |
Collapse
|
49
|
The Bromodomain Inhibitor N-Methyl pyrrolidone Prevents Osteoporosis and BMP-Triggered Sclerostin Expression in Osteocytes. Int J Mol Sci 2018; 19:ijms19113332. [PMID: 30366476 PMCID: PMC6275050 DOI: 10.3390/ijms19113332] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2018] [Revised: 10/09/2018] [Accepted: 10/23/2018] [Indexed: 12/13/2022] Open
Abstract
(1) Background: In an adult skeleton, bone is constantly renewed in a cycle of bone resorption, followed by bone formation. This coupling process, called bone remodeling, adjusts the quality and quantity of bone to the local needs. It is generally accepted that osteoporosis develops when bone resorption surpasses bone formation. Osteoclasts and osteoblasts, bone resorbing and bone forming cells respectively, are the major target in osteoporosis treatment. Inside bone and forming a complex network, the third and most abundant cells, the osteocytes, have long remained a mystery. Osteocytes are responsible for mechano-sensation and -transduction. Increased expression of the osteocyte-derived bone inhibitor sclerostin has been linked to estrogen deficiency-induced osteoporosis and is therefore a promising target for osteoporosis management. (2) Methods: Recently we showed in vitro and in vivo that NMP (N-Methyl-2-pyrrolidone) is a bioactive drug enhancing the BMP-2 (Bone Morphogenetic Protein 2) induced effect on bone formation while blocking bone resorption. Here we tested the effect of NMP on the expression of osteocyte-derived sclerostin. (3) Results: We found that NMP significantly decreased sclerostin mRNA and protein levels. In an animal model of osteoporosis, NMP prevented the estrogen deficiency-induced increased expression of sclerostin. (4) Conclusions: These results support the potential of NMP as a novel therapeutic compound for osteoporosis management, since it preserves bone by a direct interference with osteoblasts and osteoclasts and an indirect one via a decrease in sclerostin expression by osteocytes.
Collapse
|
50
|
Wein MN, Foretz M, Fisher DE, Xavier RJ, Kronenberg HM. Salt-Inducible Kinases: Physiology, Regulation by cAMP, and Therapeutic Potential. Trends Endocrinol Metab 2018; 29:723-735. [PMID: 30150136 PMCID: PMC6151151 DOI: 10.1016/j.tem.2018.08.004] [Citation(s) in RCA: 90] [Impact Index Per Article: 12.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/18/2018] [Revised: 08/02/2018] [Accepted: 08/06/2018] [Indexed: 12/15/2022]
Abstract
Salt-inducible kinases (SIKs) represent a subfamily of AMP-activated protein kinase (AMPK) family kinases. Initially named because SIK1 (the founding member of this kinase family) expression is regulated by dietary salt intake in the adrenal gland, it is now apparent that a major biological role of these kinases is to control gene expression in response to extracellular cues that increase intracellular levels of cAMP. Here, we review four physiologically relevant examples of how cAMP signaling impinges upon SIK cellular function. By focusing on examples of cAMP-mediated SIK regulation in gut myeloid cells, bone, liver, and skin, we highlight recent advances in G protein-coupled receptor (GPCR) signal transduction. New knowledge regarding the role of SIKs in GPCR signaling has led to therapeutic applications of novel small molecule SIK inhibitors.
Collapse
Affiliation(s)
- Marc N Wein
- Endocrine Unit, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA.
| | - Marc Foretz
- INSERM, U1016, Institut Cochin, Paris 75014, France; CNRS, UMR8104, Paris 75014, France; Université Paris Descartes, Sorbonne Paris Cité, Paris 75014, France
| | - David E Fisher
- Cutaneous Biology Research Center, Department of Dermatology, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - Ramnik J Xavier
- Gastrointestinal Unit and Center for the Study of Inflammatory Bowel Disease, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA; Center for Microbiome Informatics and Therapeutics, MIT, Cambridge, MA, USA; Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Henry M Kronenberg
- Endocrine Unit, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| |
Collapse
|