1
|
Comeras-Chueca C, Villalba-Heredia L, Lozano-Berges G, Matute-Llorente Á, Marín-Puyalto J, Vicente-Rodríguez G, Casajús JA, González-Agüero A. High muscular fitness level may positively affect bone strength and body composition in children with overweight and obesity. Arch Osteoporos 2024; 19:47. [PMID: 38856950 PMCID: PMC11164759 DOI: 10.1007/s11657-024-01405-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/22/2023] [Accepted: 05/23/2024] [Indexed: 06/11/2024]
Abstract
Muscular fitness plays a major role in bone health and body composition in overweight and obese children. It is key that the development of this muscle fitness is affected by absolute isometric strength and dynamic strength. PURPOSE To compare bone health and body composition between overweight/obese children considering muscular fitness (MF) levels, and to investigate whether weight-bearing dynamic or absolute isometric strength, both involved in the development of this muscular fitness, are more related with bone health. METHODS MF of 59 overweight or obese children (10.1 ± 0.9 years, 27 females) was measured by a countermovement jump (CMJ), handgrip, and maximal isometric strength of knee extension. Participants were divided into four groups depending on their MF level performing a cluster analysis: 16 children with high MF (HMF) in all tests, 18 with high performance in isometric strength (HIS), 15 with high performance in CMJ (HCMJ) and 10 low isometric and low dynamic force values (LMF). Body composition values were measured by dual energy X-ray absorptiometry, and bone strength values were assessed by peripheral quantitative computed tomography. Motor skills were evaluated using TGMD-3. Multivariate analysis of covariance test was applied to analyse bone strength differences between children in the different MF groups, using maturity offset, height and weight as covariates, and correlations were investigated. RESULTS HMF excelled in bone health. HIS had higher cortical bone area, periosteal circumference, bone mass, polar strength strain index and fracture load than LMF, while HCMJ only showed better results in trabecular bone area than LMF. HMF had significantly better values of fracture load and periosteal and endosteal circumferences than HCMJ, but not than HIS. CONCLUSIONS High MF level shows positive effects on bone health in overweight/obese children. Those with highest isometric strength had better bone health compared to those with higher dynamic strength. TRIAL REGISTRATION The research project was registered in a public database Clinicaltrials.gov in June 2020 with the identification number NCT04418713.
Collapse
Affiliation(s)
- Cristina Comeras-Chueca
- EXER-GENUD "Growth, Exercise, NUtrition and Development" Research Group, Universidad de Zaragoza, C/ Pedro Cerbuna Nº 12, 50009, Saragossa, Spain
- EXERNET Red de Investigación en Ejercicio Físico y Salud, Saragossa, Spain
| | - Lorena Villalba-Heredia
- EXER-GENUD "Growth, Exercise, NUtrition and Development" Research Group, Universidad de Zaragoza, C/ Pedro Cerbuna Nº 12, 50009, Saragossa, Spain
- EXERNET Red de Investigación en Ejercicio Físico y Salud, Saragossa, Spain
- Faculty of Health Science, Faculty of Medicine, Universidad de Zaragoza, Saragossa, Spain
| | - Gabriel Lozano-Berges
- EXER-GENUD "Growth, Exercise, NUtrition and Development" Research Group, Universidad de Zaragoza, C/ Pedro Cerbuna Nº 12, 50009, Saragossa, Spain
- EXERNET Red de Investigación en Ejercicio Físico y Salud, Saragossa, Spain
- Department of Physiatry and Nursing, Faculty of Health and Sport Science (FCSD), Universidad de Zaragoza, Saragossa, Spain
- Instituto Agroalimentario de Aragón-IA2 (Universidad de Zaragoza-CITA), Saragossa, Spain
- Centro de Investigación Biomédica en Red de Fisiopatología de La Obesidad y Nutrición (CIBERObn), Madrid, Spain
| | - Ángel Matute-Llorente
- EXER-GENUD "Growth, Exercise, NUtrition and Development" Research Group, Universidad de Zaragoza, C/ Pedro Cerbuna Nº 12, 50009, Saragossa, Spain
- EXERNET Red de Investigación en Ejercicio Físico y Salud, Saragossa, Spain
- Department of Physiatry and Nursing, Faculty of Health and Sport Science (FCSD), Universidad de Zaragoza, Saragossa, Spain
| | - Jorge Marín-Puyalto
- EXER-GENUD "Growth, Exercise, NUtrition and Development" Research Group, Universidad de Zaragoza, C/ Pedro Cerbuna Nº 12, 50009, Saragossa, Spain
- EXERNET Red de Investigación en Ejercicio Físico y Salud, Saragossa, Spain
- Faculty of Health Science, Faculty of Medicine, Universidad de Zaragoza, Saragossa, Spain
| | - Germán Vicente-Rodríguez
- EXER-GENUD "Growth, Exercise, NUtrition and Development" Research Group, Universidad de Zaragoza, C/ Pedro Cerbuna Nº 12, 50009, Saragossa, Spain
- EXERNET Red de Investigación en Ejercicio Físico y Salud, Saragossa, Spain
- Department of Physiatry and Nursing, Faculty of Health and Sport Science (FCSD), Universidad de Zaragoza, Saragossa, Spain
- Instituto Agroalimentario de Aragón-IA2 (Universidad de Zaragoza-CITA), Saragossa, Spain
- Centro de Investigación Biomédica en Red de Fisiopatología de La Obesidad y Nutrición (CIBERObn), Madrid, Spain
| | - José A Casajús
- EXER-GENUD "Growth, Exercise, NUtrition and Development" Research Group, Universidad de Zaragoza, C/ Pedro Cerbuna Nº 12, 50009, Saragossa, Spain
- EXERNET Red de Investigación en Ejercicio Físico y Salud, Saragossa, Spain
- Faculty of Health Science, Faculty of Medicine, Universidad de Zaragoza, Saragossa, Spain
- Instituto Agroalimentario de Aragón-IA2 (Universidad de Zaragoza-CITA), Saragossa, Spain
- Centro de Investigación Biomédica en Red de Fisiopatología de La Obesidad y Nutrición (CIBERObn), Madrid, Spain
| | - Alejandro González-Agüero
- EXER-GENUD "Growth, Exercise, NUtrition and Development" Research Group, Universidad de Zaragoza, C/ Pedro Cerbuna Nº 12, 50009, Saragossa, Spain.
- EXERNET Red de Investigación en Ejercicio Físico y Salud, Saragossa, Spain.
- Department of Physiatry and Nursing, Faculty of Health and Sport Science (FCSD), Universidad de Zaragoza, Saragossa, Spain.
- Instituto Agroalimentario de Aragón-IA2 (Universidad de Zaragoza-CITA), Saragossa, Spain.
- Centro de Investigación Biomédica en Red de Fisiopatología de La Obesidad y Nutrición (CIBERObn), Madrid, Spain.
| |
Collapse
|
2
|
Liu J, Su Y. Factors which can influence elastic stable intramedullary nailing removal in healed bone cysts in children. Sci Rep 2024; 14:11129. [PMID: 38750240 PMCID: PMC11096159 DOI: 10.1038/s41598-024-61828-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2024] [Accepted: 05/10/2024] [Indexed: 05/18/2024] Open
Abstract
Elastic stable intramedullary nailing (ESIN) internal fixation is used clinically to treat pathological fractures of bone cysts in children. However, one of the most important complications was removal difficulty. In this study, we aim to analyse the factors which can influence ESIN removal in healed bone cysts in children. From April 2014 to November 2020, the clinical data of 49 children who underwent elastic stable intramedullary nail removal for pathological fractures of the bone cysts in our hospital were retrospectively analysed. The following data, including age, sex, pathological fracture site, with bone graft, number of ESINs, ESIN indwelling time, and extraosseous length of ESIN were collected, and univariate analysis and logistic regression analysis was performed. The frequency of difficulty in ESIN extraction was 44.90% (22/49). The univariate logistic regression analysis showed that age,ESIN indwelling time,with bone garft and extraosseous length of ESIN may be correlated with the difficulty in removing ESIN (P < 0.05), while sex, pathological fracture site, number of ESIN may not be correlated with the difficulty in removing ESIN (P > 0.05).The multivariate logistic regression analysis showed that the ESIN indwelling time was the independent influencing factor for difficulty in removing ESIN (P < 0.05). The factors influencing the ESIN removal in healed bone cysts in children include over 11.79 years old, the long indwelling time of the ESIN(over 10.5 months),with bone graft and short extraosseous length of ESIN(≤ 0.405 cm). These factors influencing ESIN removal in healed bone cysts in children should be considered.
Collapse
Affiliation(s)
- Jiao Liu
- Orthopedics Department, Children's Hospital of Chongqing Medical University; Chongqing Key Laboratory of Pediatrics, Ministry of Education Key Laboratory of Child Development and Disorders; National Clinical Research Center for Child Health and Disorders; China International Science and Technology Cooperation Base of Child Development and Critical Disorders, Jiangxi Hospital Affiliated Children's Hospital of Chongqing Medical University, Zhongshan 2Road 136#, Yuzhong District, Chongqing, 400014, People's Republic of China
| | - Yuxi Su
- Orthopedics Department, Children's Hospital of Chongqing Medical University; Chongqing Key Laboratory of Pediatrics, Ministry of Education Key Laboratory of Child Development and Disorders; National Clinical Research Center for Child Health and Disorders; China International Science and Technology Cooperation Base of Child Development and Critical Disorders, Jiangxi Hospital Affiliated Children's Hospital of Chongqing Medical University, Zhongshan 2Road 136#, Yuzhong District, Chongqing, 400014, People's Republic of China.
| |
Collapse
|
3
|
Zhang N, Wang G. From Metabolically Healthy Obesity to Metabolically Unhealthy Obesity Populations: Decreased Bone Turnover Bioactivity. Diabetes Metab Syndr Obes 2023; 16:3657-3667. [PMID: 38028998 PMCID: PMC10659145 DOI: 10.2147/dmso.s431194] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/09/2023] [Accepted: 11/10/2023] [Indexed: 12/01/2023] Open
Abstract
Purpose A bone turnover marker reflects bone bioactivity. The effects of metabolically healthy compared with metabolically unhealthy obesity phenotypes on bone metabolism are not well understood. The aim of the study was to evaluate differences of bone transformation indexes in these two obesity phenotypes. Patients and Methods A total of 419 obese subjects were recruited, 64 with metabolically healthy obesity (MHO) and 351 with metabolically unhealthy obesity (MuHO). BTMs and clinical parameters were measured. Results Bone metabolism indexes, including tartrate resistant acid phosphatase (TRACP, p < 0.05), β carboxyl terminal peptide of collagen (β-CTX, p < 0.01), and bone alkaline phosphatase (BAP, p < 0.01), were higher in subjects with MHO than MuHO, but parathyroid hormone (PTH) was lower (p < 0.05). The between-group difference in serum calcium was not significant. Low bone turnover activity was associated with significant hyperglycemia, insulin resistance, and body fat index (p < 0.05). Multivariate logistic regression found that TRACP, β-CTX, and BAP were independently associated with the presence of MHO. Receiver operating characteristic curve analysis found that the maximum area under the curve value for the definition of MHO was (0.8221) and was obtained when sex, age, body mass index (BMI), TRACP, β-CTX and BAP were included simultaneously, resulting in a sensitivity of 81.25% and specificity: 72.3%. Conclusion The MHO group had significantly increased circulating TRACP and β-CTX compared with the MuHO group and BAP levels were within the physiological range. Obesity with the metabolically healthy phenotype had slightly increased bone turnover activity that may be an early compensatory response of skeletal metabolism to the increased BMI.
Collapse
Affiliation(s)
- Ning Zhang
- Department of Endocrinology, Beijing Chao-yang Hospital, Capital Medical University, Beijing, People’s Republic of China
| | - Guang Wang
- Department of Endocrinology, Beijing Chao-yang Hospital, Capital Medical University, Beijing, People’s Republic of China
| |
Collapse
|
4
|
Cathey A, Tamayo-Ortiz M, Tamayo-Orozco J, Meeker JD, Peterson KE, Trejo-Valdivia B, Téllez-Rojo MM, Watkins DJ. Calcium supplementation and body mass index modify associations between prenatal phthalate exposure and perinatal bone ultrasound measures among pregnant women. ENVIRONMENTAL RESEARCH 2023; 233:116513. [PMID: 37385416 PMCID: PMC10529894 DOI: 10.1016/j.envres.2023.116513] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/27/2023] [Revised: 06/09/2023] [Accepted: 06/24/2023] [Indexed: 07/01/2023]
Abstract
Phthalates have endocrine activity that may interfere with bone health, particularly during pregnancy and the early postpartum period, when bone resorption increases. We evaluated associations between prenatal phthalate exposure and perinatal bone health among 289 mothers in the ELEMENT birth cohort in Mexico City who were randomized upon recruitment to receive 1,200 mg daily calcium supplementation or placebo throughout pregnancy. Spot urine samples at up to three timepoints during pregnancy were assayed for 9 phthalate metabolites. Bone integrity was assessed by quantitative ultrasound speed of sound (SOS) measurements of the phalange and distal radius at 3, 6, and 8 months of pregnancy and 1, 3, 7, and 12 months postpartum. Geometric means of specific gravity-corrected phthalate concentrations were used as overall measures of prenatal exposure. Linear mixed effect models estimated associations between phthalate exposure and repeated perinatal bone SOS measures, adjusting for age, pre-pregnancy body mass index (BMI), education, parity, calcium supplementation, and month of pregnancy/postpartum. Effect modification by calcium supplementation and BMI were assessed in sensitivity analyses. An interquartile range increase in MEP and MiBP increased pregnancy phalange z-scores (β: 0.11; 95%CI: 0.003, 0.31 and β: 0.15; 95%CI: 0.00,0.42, respectively). Higher concentrations of several phthalate metabolites resulted in lower SOS measures among women who received calcium supplements (compared to placebo group) but higher SOS measures among women with a BMI≥25 (compared to BMI<25). These results suggest that phthalate exposure may interfere with bone remodeling during pregnancy, and that consideration of effect modifiers is paramount to fully understand the effects of environmental exposures on bone health.
Collapse
Affiliation(s)
- Amber Cathey
- Department of Environmental Health Sciences, University of Michigan School of Public Health, Ann Arbor, MI, 48109, USA
| | - Marcela Tamayo-Ortiz
- Occupational Health Research Unit, Mexican Social Security Institute, Mexico City, Mexico.
| | - Juan Tamayo-Orozco
- Mexican Committee for the Prevention of Osteoporosis, Mexico City, Mexico
| | - John D Meeker
- Department of Environmental Health Sciences, University of Michigan School of Public Health, Ann Arbor, MI, 48109, USA
| | - Karen E Peterson
- Department of Nutritional Sciences, University of Michigan School of Public Health, Ann Arbor, MI, 48109, USA
| | - Belem Trejo-Valdivia
- Center for Nutrition and Health Research, National Institute of Public Health, Cuernavaca, Mexico
| | - Martha Maria Téllez-Rojo
- Center for Nutrition and Health Research, National Institute of Public Health, Cuernavaca, Mexico
| | - Deborah J Watkins
- Department of Environmental Health Sciences, University of Michigan School of Public Health, Ann Arbor, MI, 48109, USA
| |
Collapse
|
5
|
Singhal V, Kaur S, Haidar LA, Lee H, Bredella MA, Misra M. Differences in bone accrual over one year in young girls with obesity compared to Normal weight controls. Bone 2023; 172:116757. [PMID: 37030498 PMCID: PMC10198942 DOI: 10.1016/j.bone.2023.116757] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/30/2022] [Revised: 03/14/2023] [Accepted: 03/31/2023] [Indexed: 04/10/2023]
Abstract
Despite higher bone mineral density (BMD), women with obesity are at an increased risk of fracture compared to normal-weight women. Optimal adolescent bone accrual is critical for normal peak bone mass acquisition and future bone health. Whereas several studies have examined the impact of low body weight on bone accrual in youth, data are lacking regarding the impact of obesity on bone accrual. We examined bone accrual over one year in young women with moderate to severe obesity (OB) (n = 21) versus normal-weight controls (NWC) (n = 50). Participants were 13-25 years old. We used dual-energy X-ray absorptiometry to assess areal BMD (aBMD) and high resolution peripheral quantitative computed tomography (distal radius and tibia) to assess volumetric BMD (vBMD), bone geometry, and microarchitecture. Analyses were controlled for age and race. The mean age was 18.7 ± 2.7 years. OB and NWC were similar for age, race, height, and physical activity. OB had a higher BMI (p < 0.0001) and younger menarchal age (p = 0.022) than NWC. Over one year, OB did not demonstrate the increase in total hip BMD observed in NWC (p = 0.03). Increases in percent cortical area and cortical thickness, and cortical and total vBMD at the radius were lower in OB than in NWC (p ≤ 0.037). Groups did not differ for tibial bone accrual. We demonstrate that longitudinal bone accrual is impaired at the total hip and radial cortex in young women with obesity, raising concerns regarding their future bone health.
Collapse
Affiliation(s)
- Vibha Singhal
- Division of Pediatric Endocrinology, Massachusetts General Hospital and Harvard Medical School, Boston, MA, United States of America; MGH Weight Center, Boston, MA, United States of America; Neuroendocrine Unit, Massachusetts General Hospital and Harvard Medical School, Boston, MA, United States of America.
| | - Snimarjot Kaur
- Neuroendocrine Unit, Massachusetts General Hospital and Harvard Medical School, Boston, MA, United States of America
| | - Lea Abou Haidar
- Neuroendocrine Unit, Massachusetts General Hospital and Harvard Medical School, Boston, MA, United States of America
| | - Hang Lee
- MGH Biostatistics Center and Harvard Medical School, Boston, MA, United States of America; Department of Medicine and Harvard Medical School, Boston, MA, United States of America
| | - Miriam A Bredella
- Department of Radiology, Massachusetts General Hospital and Harvard Medical School, Boston, MA, United States of America
| | - Madhusmita Misra
- Division of Pediatric Endocrinology, Massachusetts General Hospital and Harvard Medical School, Boston, MA, United States of America; Neuroendocrine Unit, Massachusetts General Hospital and Harvard Medical School, Boston, MA, United States of America
| |
Collapse
|
6
|
Hu L, Lu J, Guo L, Tan J, Sun H, Zhou Y, Wu Y, Wei H, Jiang S, Peng J. Factors influencing the bone mineral density in Duroc boars. Porcine Health Manag 2023; 9:22. [PMID: 37221632 DOI: 10.1186/s40813-023-00318-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2023] [Accepted: 05/08/2023] [Indexed: 05/25/2023] Open
Abstract
BACKGROUND Leg weakness affects animal welfare and is one of the primary reasons for culling of boars. Low bone mineral density (BMD) is one of the primary factors contributing to leg weakness. Low BMD also appeared to be associated with severe bone pain and has the highest risk of skeletal fragility. Surprisingly, few studies have been performed on the factors influencing BMD in pigs. Therefore, the primary aim of this study was to identify the influencing factors on boar BMD. Herein, the BMD data were determined through the use of ultrasonography from 893 Duroc boars. Logistic regression model was utilized in the analysis of BMD, in which the explanatory variables in the model were lines, ages, body weights, backfat thicknesses and serum mineral element concentrations (Ca, P, Mg, Cu, Fe, Zn, Mn, Se, Pb and Cd). RESULTS Results showed that factors significantly influencing BMD included serum Ca, P concentrations, ages and backfat thicknesses (P < 0.05), in which serum Ca concentrations were positively correlated with BMD (P < 0.01), whereas increasing concentrations of serum P decreased BMD (P < 0.01). The serum Ca/P ratio showed significant quadratic effects on BMD (r = 0.28, P < 0.01), and the Ca/P ratio to achieve the best BMD was determined to be 3.7. Furthermore, BMD also changed with age quadratically (r = 0.40, P < 0.01), and reached a peak value around 47 months. Interestingly, a quadratic (r = 0.26, P < 0.01) increase in the BMD was observed as backfat thickness increased, and the inflection point was calculated at around 17 mm. CONCLUSION In conclusion, BMD characteristics of boars could be detected by ultrasonic method, and serum Ca, serum P, age, and backfat thickness contributed to the greatest effect on BMD.
Collapse
Affiliation(s)
- Lingling Hu
- Department of Animal Nutrition and Feed Science, College of Animal Science and Technology, Huazhong Agricultural University, Wuhan, 430070, China
| | - Jinxin Lu
- Department of Animal Nutrition and Feed Science, College of Animal Science and Technology, Huazhong Agricultural University, Wuhan, 430070, China
| | - Liangliang Guo
- Department of Animal Nutrition and Feed Science, College of Animal Science and Technology, Huazhong Agricultural University, Wuhan, 430070, China
| | - Jiajian Tan
- YangXiang Joint Stock Company, Guigang, 537000, China
| | - Haiqing Sun
- YangXiang Joint Stock Company, Guigang, 537000, China
| | - Yuanfei Zhou
- Department of Animal Nutrition and Feed Science, College of Animal Science and Technology, Huazhong Agricultural University, Wuhan, 430070, China
| | - Yinghui Wu
- Department of Animal Nutrition and Feed Science, College of Animal Science and Technology, Huazhong Agricultural University, Wuhan, 430070, China
| | - Hongkui Wei
- Department of Animal Nutrition and Feed Science, College of Animal Science and Technology, Huazhong Agricultural University, Wuhan, 430070, China
| | - Siwen Jiang
- Key Lab of Agricultural Animal Genetics, Breeding and Reproduction of Ministry of Education & Key Lab of Swine Genetics and Breeding of Ministry of Agriculture, Huazhong Agricultural University, Wuhan, 430070, China
- The Cooperative Innovation Center for Sustainable Pig Production, Wuhan, 430070, China
| | - Jian Peng
- Department of Animal Nutrition and Feed Science, College of Animal Science and Technology, Huazhong Agricultural University, Wuhan, 430070, China.
- The Cooperative Innovation Center for Sustainable Pig Production, Wuhan, 430070, China.
| |
Collapse
|
7
|
Singhal V, Huynh C, Nimmala S, Mitchell DM, Pedreira CC, Bader A, Flanders K, Zheng J, Bouxsein ML, Misra M, Bredella MA. Load-to-strength ratio at the radius is higher in adolescent and young adult females with obesity compared to normal-weight controls. Bone 2022; 164:116515. [PMID: 35948256 PMCID: PMC9826712 DOI: 10.1016/j.bone.2022.116515] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/02/2022] [Revised: 08/03/2022] [Accepted: 08/05/2022] [Indexed: 01/11/2023]
Abstract
BACKGROUND Among adolescents with extremity fractures, individuals with obesity have greater representation compared with individuals of normal-weight, despite having higher areal and volumetric bone mineral density (aBMD, vBMD) than their normal-weight counterparts. The relative increase in BMD in individuals with obesity may thus be insufficient to support the greater force generated upon falling. The load-to-strength ratio is a biomechanical approach for assessing the risk of fracture by comparing applied force to bone strength, with higher load-to-strength ratios indicating higher fracture risk. OBJECTIVE To assess the load-to-strength ratio at the distal radius in adolescent and young adult females with severe obesity (OB) compared with normal-weight healthy controls (HC). We hypothesized that OB have a higher load-to-strength ratio compared to HC. METHODS We examined bone parameters in 65 girls 14-21 years old: 33 OB and 32 HC. We used dual-energy X-ray absorptiometry (DXA) to assess body composition, high resolution peripheral quantitative CT (HR-pQCT) to estimate vBMD, and microfinite element analysis (μFEA) to assess bone strength at the distal radius. To quantify fracture risk, we computed the load-to-strength ratio, where the numerator is defined as the load applied to the outstretched hand during a forward fall and the denominator is the bone strength, as estimated by μFEA. RESULTS Although OB had higher total vBMD than HC (368.3 vs. 319.9 mgHA/cm3, p = 0.002), load-to-strength ratio at the radius was greater in OB than HC after controlling for age and race (0.66 vs. 0.54, p < 0.0001). In OB, impact force and load-to-strength ratio were associated negatively with % lean mass (r = -0.49; p = 0.003 and r = -0.65; p < 0.0001 respectively) and positively with visceral fat (r = 0.65; p < 0.0001 and r = 0.36; p = 0.04 respectively). CONCLUSIONS Adolescent and young adult females with obesity have higher load-to-strength ratio at the distal radius due to higher forces applied to bone in a fall combined with incomplete adaptation of bone to increasing body weight. This is differentially affected by lean mass, fat mass, and visceral fat mass.
Collapse
Affiliation(s)
- Vibha Singhal
- Neuroendocrine Unit, Massachusetts General Hospital and Harvard Medical School, United States of America; Division of Pediatric Endocrinology, Massachusetts General for Children, Harvard Medical School, United States of America; Massachusetts General Hospital Weight Center, United States of America.
| | - Carolyn Huynh
- Neuroendocrine Unit, Massachusetts General Hospital and Harvard Medical School, United States of America
| | - Supritha Nimmala
- Neuroendocrine Unit, Massachusetts General Hospital and Harvard Medical School, United States of America
| | - Deborah M Mitchell
- Division of Pediatric Endocrinology, Massachusetts General for Children, Harvard Medical School, United States of America; Endocrine Unit, Massachusetts General Hospital, Harvard Medical School, United States of America
| | - Clarissa C Pedreira
- Division of Pediatric Endocrinology, Massachusetts General for Children, Harvard Medical School, United States of America
| | - Abeer Bader
- Massachusetts General Hospital Weight Center, United States of America
| | - Karen Flanders
- Massachusetts General Hospital Weight Center, United States of America
| | - Jane Zheng
- Neuroendocrine Unit, Massachusetts General Hospital and Harvard Medical School, United States of America
| | - Mary L Bouxsein
- Endocrine Unit, Massachusetts General Hospital, Harvard Medical School, United States of America
| | - Madhusmita Misra
- Neuroendocrine Unit, Massachusetts General Hospital and Harvard Medical School, United States of America; Division of Pediatric Endocrinology, Massachusetts General for Children, Harvard Medical School, United States of America
| | - Miriam A Bredella
- Department of Radiology, Massachusetts General Hospital, Harvard Medical School, United States of America
| |
Collapse
|
8
|
López-Peralta S, Romero-Velarde E, Vásquez-Garibay EM, González-Hita M, Robles-Robles LC, Ruiz-González FJ, Pérez-Romero MA. Bone mineral density and body composition in normal weight, overweight and obese children. BMC Pediatr 2022; 22:249. [PMID: 35513881 PMCID: PMC9074210 DOI: 10.1186/s12887-022-03317-y] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/09/2021] [Accepted: 04/21/2022] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND There is a possibility that excess body fat affects bone mass gain and may compromise skeletal health in obese children. The purpose of the study was to identify the relationship between bone mineral density (BMD) and body composition in normal weight, overweight and obese children. METHODS This was a cross-sectional study of 6- to 11-year-old children who attended the hospital's outpatient clinic. They were apparently healthy and had no history of prematurity, low birth weight, or chronic diseases. Body mass index (BMI) was used to identify subjects as normal weight, overweight or obese. BMD and body composition were assessed by dual energy X-ray absorptiometry. The BMD values (total and lumbar spine) were compared between normal weight, overweight and obese children. Correlation coefficients were calculated, and multivariate models were performed. RESULTS Forty-nine children were included: 16 with normal weight, 15 that were overweight and 18 with obesity; the mean age was 8.4 ± 1.7 years. All the participants had a normal BMD (> - 2 SD). BMD was higher in obese children and had a positive correlation with total and trunk lean mass in the three study groups (p < 0.001). In obese children, an inverse correlation of lumbar spine BMD (Z score) with total and trunk fat mass (p < 0.05) was identified. In the multivariate models (with the whole group), the total lean mass was the only significant variable that explained BMD variability. CONCLUSIONS BMD in obese children was higher than that in normal weight children, which is explained by their greater lean mass and not by excess body fat. In obese children, a higher fat mass was related to a lower lumbar spine BMD. Lean mass had a direct correlation with BMD in the three study groups and was the most important predictor of BMD, reflecting the importance of strengthening the muscular system through performing physical activity and practicing a healthy lifestyle.
Collapse
Affiliation(s)
- Samantha López-Peralta
- Departamento de Reproducción Humana Crecimiento Y Desarrollo Infantil, Instituto de Nutrición Humana, Guadalajara, Jalisco, México
| | - Enrique Romero-Velarde
- Departamento de Reproducción Humana Crecimiento Y Desarrollo Infantil, Instituto de Nutrición Humana, Guadalajara, Jalisco, México. .,División de Pediatría del Hospital Civil de Guadalajara "Dr. Juan I. Menchaca", Guadalajara, Jalisco, México.
| | - Edgar M Vásquez-Garibay
- Departamento de Reproducción Humana Crecimiento Y Desarrollo Infantil, Instituto de Nutrición Humana, Guadalajara, Jalisco, México
| | - Mercedes González-Hita
- Departamento de Biología Molecular Y Genómica, Centro Universitario de Ciencias de La Salud de La Universidad de Guadalajara, Guadalajara, Jalisco, México
| | - Laura C Robles-Robles
- División de Pediatría del Hospital Civil de Guadalajara "Dr. Juan I. Menchaca", Guadalajara, Jalisco, México
| | - Francisco J Ruiz-González
- Clínica de Osteoporosis del Hospital Civil de Guadalajara "Fray Antonio Alcalde", Guadalajara, Jalisco, México
| | | |
Collapse
|
9
|
Zhang Y, Jia X, Liu X, An W, Li J, Zhang W. Relationship between different body composition and bone mineral density in Qinhuangdao city. REVISTA DA ASSOCIAÇÃO MÉDICA BRASILEIRA 2022; 68:445-449. [PMID: 35649065 DOI: 10.1590/1806-9282.20210669] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/08/2021] [Accepted: 12/10/2021] [Indexed: 11/22/2022]
Affiliation(s)
| | | | - Xin Liu
- The First Hospital of Qinhuangdao, China
| | - Wen An
- The First Hospital of Qinhuangdao, China
| | - Jiaqi Li
- The First Hospital of Qinhuangdao, China
| | | |
Collapse
|
10
|
Qi W, Jiang Y, Liu W, Chi Y, Jiajue R, Pang Q, Wang O, Li M, Xing X, Yu W, Xia W. Bone Microarchitecture in Obese Postmenopausal Chinese Women: The Chinese Vertebral Osteoporosis Study (ChiVOS). Front Endocrinol (Lausanne) 2022; 13:891413. [PMID: 35865318 PMCID: PMC9294215 DOI: 10.3389/fendo.2022.891413] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/07/2022] [Accepted: 06/02/2022] [Indexed: 11/24/2022] Open
Abstract
BACKGROUND Obesity is associated with improved bone mass and microarchitecture in Caucasian individuals, but evidence in obese Asian individuals is lacking. OBJECTIVE To analyze the areal bone mineral density (aBMD) and bone microarchitecture in normal-weight, overweight, and obese postmenopausal Chinese women. METHODS A total of 243 postmenopausal women from the Chinese Vertebral Osteoporosis Study (ChiVOS) were included and were divided into three groups (OB, obese group; OW, overweight group; NW, normal weight group) by BMI level. aBMD, trabecular bone score (TBS), and appendicular lean mass (ALM) were measured by dual-energy X-ray absorptiometry (DXA). Bone microarchitecture was measured by HR-pQCT at the distal radius and tibia. X-ray was performed to confirm vertebral fractures (VFs). Multiple linear regression was used to evaluate the correlations between bone parameters and ALM after adjusting for confounding variables. RESULTS The prevalence of VFs and clinical fractures were similar among the groups. Participants in the OB group showed a lower level of osteocalcin with comparable levels of other bone turnover markers (BTMs). The aBMD at several skeletal sites was higher in the OB group than in the NW group after adjusting for age (p<0.01 for all comparisons). At the radius, the OB group had a higher Ct.Ar, Tb.vBMD, Tb.BV/TV, Tb.N, Tb.Th, and Ct.Th than the NW group after adjusting for covariates (p<0.05 for all). Differences of a similar magnitude were found at the distal tibia. There was a trend of decreasing trend in Tb.Sp, Tb.1/N/SD, and Ct.Po among groups at both sites. However, the bone microarchitecture did not differ between participants with severe obesity (BMI≥35.0kg/m2) and those with 30.0≤BMI<35 kg/m2. Multiple linear regression revealed that the associations between ALM and most of the bone microarchitecture parameters at both sites were much stronger than the association between body weight and bone parameters. CONCLUSION We have observed significant improvements in aBMD, bone geometry, and bone microarchitecture in obese postmenopausal Chinese women. Except for a lower level of osteocalcin in the OB group, no significant differences in BTMs were found among the groups. Compared with body weight, ALM may explain greater variance in the improvement of bone microarchitecture parameters.
Collapse
Affiliation(s)
- Wenting Qi
- Department of Endocrinology, Key Laboratory of Endocrinology of National Health Commission, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Science and Peking Union Medical College, Beijing, China
| | - Yan Jiang
- Department of Endocrinology, Key Laboratory of Endocrinology of National Health Commission, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Science and Peking Union Medical College, Beijing, China
| | - Wei Liu
- Department of Endocrinology, Key Laboratory of Endocrinology of National Health Commission, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Science and Peking Union Medical College, Beijing, China
| | - Yue Chi
- Department of Endocrinology, Key Laboratory of Endocrinology of National Health Commission, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Science and Peking Union Medical College, Beijing, China
| | - Ruizhi Jiajue
- Department of Endocrinology, Key Laboratory of Endocrinology of National Health Commission, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Science and Peking Union Medical College, Beijing, China
| | - Qianqian Pang
- Department of Endocrinology, Key Laboratory of Endocrinology of National Health Commission, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Science and Peking Union Medical College, Beijing, China
| | - Ou Wang
- Department of Endocrinology, Key Laboratory of Endocrinology of National Health Commission, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Science and Peking Union Medical College, Beijing, China
| | - Mei Li
- Department of Endocrinology, Key Laboratory of Endocrinology of National Health Commission, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Science and Peking Union Medical College, Beijing, China
| | - Xiaoping Xing
- Department of Endocrinology, Key Laboratory of Endocrinology of National Health Commission, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Science and Peking Union Medical College, Beijing, China
| | - Wei Yu
- Department of Radiology, Peking Union Medical College Hospital, Chinese Academy of Medical Science and Peking Union Medical College, Beijing, China
| | - Weibo Xia
- Department of Endocrinology, Key Laboratory of Endocrinology of National Health Commission, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Science and Peking Union Medical College, Beijing, China
- *Correspondence: Weibo Xia,
| |
Collapse
|
11
|
Abstract
Bone mass is a key determinant of osteoporosis and fragility fractures. Epidemiologic studies have shown that a 10% increase in peak bone mass (PBM) at the population level reduces the risk of fracture later in life by 50%. Low PBM is possibly due to the bone loss caused by various conditions or processes that occur during adolescence and young adulthood. Race, gender, and family history (genetics) are responsible for the majority of PBM, but other factors, such as physical activity, calcium and vitamin D intake, weight, smoking and alcohol consumption, socioeconomic status, age at menarche, and other secondary causes (diseases and medications), play important roles in PBM gain during childhood and adolescence. Hence, the optimization of lifestyle factors that affect PBM and bone strength is an important strategy to maximize PBM among adolescents and young people, and thus to reduce the low bone mass or osteoporosis risk in later life. This review aims to summarize the available evidence for the common but important factors that influence bone mass gain during growth and development and discuss the advances of developing high PBM.
Collapse
Affiliation(s)
- Xiaowei Zhu
- Disease & Population (DaP) Geninfo Lab, School of Life Sciences, Westlake University, Hangzhou, 310024, China
- Institute of Basic Medical Sciences, Westlake Institute for Advanced Study, Westlake University, Hangzhou, 310024, China
- School of Life Sciences, Fudan University, Shanghai, 200433, China
| | - Houfeng Zheng
- Disease & Population (DaP) Geninfo Lab, School of Life Sciences, Westlake University, Hangzhou, 310024, China.
- Institute of Basic Medical Sciences, Westlake Institute for Advanced Study, Westlake University, Hangzhou, 310024, China.
- School of Life Sciences, Fudan University, Shanghai, 200433, China.
| |
Collapse
|
12
|
Bland VL, Bea JW, Blew RM, Roe DJ, Lee VR, Funk JL, Going SB. Influence of Changes in Soft Tissue Composition on Changes in Bone Strength in Peripubertal Girls: The STAR Longitudinal Study. J Bone Miner Res 2021; 36:123-132. [PMID: 32810295 DOI: 10.1002/jbmr.4168] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/24/2019] [Revised: 08/11/2020] [Accepted: 08/14/2020] [Indexed: 01/09/2023]
Abstract
Obesity and osteoporosis remain two major public health concerns. Soft tissue composition and bone are interrelated; however, it is still not well understood how changes in adiposity during adolescence affect bone development. The aim of this study was to assess how changes in DXA-derived total body lean mass (TBLM) and total body fat mass (TBFM) associate with 2-year changes in bone outcomes at the 20% femur, 66% tibia, 66% radius, and 4% tibia, as measured by pQCT, during the years surrounding the onset of menarche in a cohort of 9- to 12-year-old (baseline) adolescent girls (70% Hispanic). From baseline to 2-year follow-up, girls showed statistically significant increases in all bone outcomes, except radial endosteal circumference. In separate linear regression models, change in TBLM and change in TBFM were both positively associated with 2-year changes in bone outcomes at all measured bone sites, after controlling for relevant covariates. However, when change in TBLM and change in TBFM were included in the same model, change in TBLM was the predominant predictor of bone outcomes, explaining 4% to 14% of the variance in bone strength outcomes. Change in TBFM remained a positive predictor of tibia polar strength strain index (SSIp) (2% variance explained). A significant interaction between change in TBFM and menarcheal status was identified at the radius for SSIp and indicated that greater gains in TBFM were beneficial for SSIp in girls that were premenarcheal at baseline but detrimental for girls who were postmenarcheal at baseline. The overall findings suggest that changes in TBLM during the peripubertal years have a greater influence on bone outcomes than changes in TBFM. While gains in TBFM might benefit the weight bearing 66% tibia, greater gains in TBFM may be detrimental to bone development at the non-weight bearing 66% radius after the onset of menarche. © 2020 American Society for Bone and Mineral Research (ASBMR).
Collapse
Affiliation(s)
- Victoria L Bland
- Department of Nutritional Sciences, University of Arizona, Tucson, AZ, USA
| | - Jennifer W Bea
- Department of Nutritional Sciences, University of Arizona, Tucson, AZ, USA.,Department of Medicine, University of Arizona, Tucson, AZ, USA.,The University of Arizona Cancer Center, Tucson, AZ, USA
| | - Robert M Blew
- Department of Nutritional Sciences, University of Arizona, Tucson, AZ, USA
| | - Denise J Roe
- The University of Arizona Cancer Center, Tucson, AZ, USA.,Department of Epidemiology and Biostatistics, University of Arizona, Tucson, AZ, USA
| | - Vinson R Lee
- Department of Nutritional Sciences, University of Arizona, Tucson, AZ, USA
| | - Janet L Funk
- Department of Nutritional Sciences, University of Arizona, Tucson, AZ, USA.,Department of Medicine, University of Arizona, Tucson, AZ, USA
| | - Scott B Going
- Department of Nutritional Sciences, University of Arizona, Tucson, AZ, USA
| |
Collapse
|
13
|
Cheng L, Pohlabeln H, Ahrens W, Lauria F, Veidebaum T, Chadjigeorgiou C, Molnár D, Eiben G, Michels N, Moreno LA, Page AS, Pitsiladis Y, Hebestreit A. Cross-sectional and longitudinal associations between physical activity, sedentary behaviour and bone stiffness index across weight status in European children and adolescents. Int J Behav Nutr Phys Act 2020; 17:54. [PMID: 32345301 PMCID: PMC7189536 DOI: 10.1186/s12966-020-00956-1] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2019] [Accepted: 04/13/2020] [Indexed: 12/15/2022] Open
Abstract
Background The associations between physical activity (PA), sedentary behaviour (SB) and bone health may be differentially affected by weight status during growth. This study aims to assess the cross-sectional and longitudinal associations between PA, SB and bone stiffness index (SI) in European children and adolescents, taking the weight status into consideration. Methods Calcaneus SI was first measured by quantitative ultrasound among children aged 2–9 years old in 2007/08. It was measured again after 2 years in the IDEFICS study and after 6 years in the I. Family study. A sample of 2008 participants with time spent at sports clubs, watching TV and playing computer/games self-reported by questionnaire, and a subsample of 1037 participants with SB, light PA (LPA) and moderate-to-vigorous PA (MVPA) objectively measured using Actigraph accelerometers were included in the analyses. Weight status was defined as thin/normal and overweight/obese according to the extended International Obesity Task Force criteria. Linear mixed-effects models were used to estimate the cross-sectional and longitudinal associations between PA, SB and SI percentiles, stratified by weight status. Results The cross-sectional association between weekly duration of watching TV and SI percentiles was negative in thin/normal weight group (β = − 0.35, p = 0.008). However, baseline weekly duration of watching TV (β = − 0.63, p = 0.021) and change after 2 years (β = − 0.63, p = 0.022) as well as the change in weekly duration of playing computer/games after 6 years (β = − 0.75, p = 0.019) were inversely associated with corresponding changes in SI percentiles in overweight/obese group. Change in time spent at sports clubs was positively associated with change in SI percentiles after 2 years (β = 1.28, p = 0.001), with comparable effect sizes across weight status. In the subsample with accelerometer data, we found a positive cross-sectional association between MVPA and SI percentiles in thin/normal weight group. Baseline MVPA predicted changes in SI percentiles after 2 and 6 years in all groups. Conclusions Our results suggested the beneficial effect of PA on SI. However, the increasing durations of screen-based SB might be risk factors for SI development, especially in overweight/obese children and adolescents.
Collapse
Affiliation(s)
- Lan Cheng
- Leibniz Institute for Prevention Research and Epidemiology - BIPS, Achterstraße 30, 28359, Bremen, Germany.,Faculty of Mathematics and Computer Science, University of Bremen, Bremen, Germany
| | - Hermann Pohlabeln
- Leibniz Institute for Prevention Research and Epidemiology - BIPS, Achterstraße 30, 28359, Bremen, Germany
| | - Wolfgang Ahrens
- Leibniz Institute for Prevention Research and Epidemiology - BIPS, Achterstraße 30, 28359, Bremen, Germany.,Faculty of Mathematics and Computer Science, University of Bremen, Bremen, Germany
| | - Fabio Lauria
- Institute of Food Sciences, National Research Council, Avellino, Italy
| | - Toomas Veidebaum
- Department of Chronic Diseases, National Institute for Health Development, Tallinn, Estonia
| | | | - Dénes Molnár
- Department of Pediatrics, Medical School, University of Pécs, Pécs, Hungary
| | - Gabriele Eiben
- Department of Public Health, School of Health Sciences, University of Skövde, Skövde, Sweden
| | - Nathalie Michels
- Department of Public Health, Faculty of Medicine and Health Sciences, Ghent University, 9000, Ghent, Belgium
| | - Luis A Moreno
- GENUD (Growth, Exercise, Nutrition and Development) Research Group, Instituto Agroalimentario de Aragón (IA2), Instituto de Investigación Sanitaria Aragón (IIS Aragón), Centro de Investigación Biomédica en Red Fisiopatología de la Obesidad y Nutrición (CIBERObn), University of Zaragoza, 50009, Zaragoza, Spain
| | - Angie S Page
- Centre for Exercise, Nutrition & Health Sciences, University of Bristol, Bristol, UK
| | - Yannis Pitsiladis
- Collaborating Centre of Sports Medicine, University of Brighton, Brighton, UK
| | - Antje Hebestreit
- Leibniz Institute for Prevention Research and Epidemiology - BIPS, Achterstraße 30, 28359, Bremen, Germany.
| | | |
Collapse
|
14
|
Cheng L, Pohlabeln H, Ahrens W, Russo P, Veidebaum T, Chadjigeorgiou C, Molnár D, Eiben G, De Henauw S, Moreno L, Page A, Hebestreit A. Sex differences in the longitudinal associations between body composition and bone stiffness index in European children and adolescents. Bone 2020; 131:115162. [PMID: 31760215 DOI: 10.1016/j.bone.2019.115162] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/31/2019] [Revised: 10/20/2019] [Accepted: 11/20/2019] [Indexed: 10/25/2022]
Abstract
Fat mass (FM) and fat free mass (FFM) may influence bone health differentially. However, existing evidences on associations between FM, FFM and bone health are inconsistent and vary according to sex and maturity. The present study aims to evaluate longitudinal associations between FM, FFM and bone stiffness index (SI) among European children and adolescents with 6 years follow-up. A sample of 2468 children from the IDEFICS/I.Family was included, with repeated measurements of SI using calcaneal quantitative ultrasound, body composition using skinfold thickness, sedentary behaviors and physical activity using self-administrated questionnaires. Regression coefficients (β) and 99%-confidence intervals (99% CI) were calculated by sex-specified generalized linear mixed effects models to analyze the longitudinal associations between FM and FFM z-scores (zFM and zFFM) and SI percentiles, and to explore the possible interactions between zFM, zFFM and maturity. Baseline zFFM was observed to predict the change in SI percentiles in both boys (β = 4.57, 99% CI: 1.36, 7.78) and girls (β = 3.42, 99% CI: 0.05, 6.79) after 2 years. Moreover, baseline zFFM (β = 8.72, 99% CI: 3.18, 14.27 in boys and β = 5.89, 99% CI: 0.34, 11.44 in girls) and the change in zFFM (β = 6.58, 99% CI: 0.83, 12.34 in boys and β = 4.81, 99% CI: -0.41, 10.02 in girls) were positively associated with the change in SI percentiles after 6 years. In contrast, a negative association was observed between the change in zFM and SI percentiles in boys after 6 years (β = -3.70, 99% CI: -6.99, -0.42). Besides, an interaction was observed between the change in zFM and menarche on the change in SI percentiles in girls at 6 years follow-up (p = .009), suggesting a negative association before menarche while a positive association after menarche. Our findings support the existing evidences for a positive relationship between FFM and SI during growth. Furthermore, long-term FM gain was inversely associated with SI in boys, whereas opposing associations were observed across menarche in girls.
Collapse
Affiliation(s)
- Lan Cheng
- Leibniz Institute for Prevention Research and Epidemiology - BIPS, Bremen, Germany; Faculty of Mathematics and Computer Science, University of Bremen, Bremen, Germany
| | - Hermann Pohlabeln
- Leibniz Institute for Prevention Research and Epidemiology - BIPS, Bremen, Germany
| | - Wolfgang Ahrens
- Leibniz Institute for Prevention Research and Epidemiology - BIPS, Bremen, Germany; Faculty of Mathematics and Computer Science, University of Bremen, Bremen, Germany
| | - Paola Russo
- Institute of Food Sciences, National Research Council, Avellino, Italy
| | - Toomas Veidebaum
- Department of Chronic Diseases, National Institute for Health Development, Tallinn, Estonia
| | | | - Dénes Molnár
- Department of Pediatrics, Medical School, University of Pécs, Pécs, Hungary
| | - Gabriele Eiben
- Department of Biomedicine and Public Health, School of Health and Education, University of Skövde, Skövde, Sweden
| | | | - Luis Moreno
- GENUD (Growth, Exercise, Nutrition and Development) Research Group, Instituto Agroalimentario de Aragón (IA2), Instituto de Investigación Sanitaria Aragón (IIS Aragón), Centro de Investigación Biomédica en Red Fisiopatología de la Obesidad y Nutrición (CIBERObn), University of Zaragoza, 50009 Zaragoza, Spain
| | - Angie Page
- Centre for Exercise, Nutrition & Health Sciences, University of Bristol, Bristol, UK
| | - Antje Hebestreit
- Leibniz Institute for Prevention Research and Epidemiology - BIPS, Bremen, Germany.
| |
Collapse
|
15
|
Reply to Letter to the Editor: Regarding “The Role of Obesity in Pediatric Orthopedics”. J Am Acad Orthop Surg Glob Res Rev 2020; 4:JAAOSGlobal-D-20-00012. [PMID: 32440621 PMCID: PMC7209805 DOI: 10.5435/jaaosglobal-d-20-00012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2020] [Accepted: 01/22/2020] [Indexed: 11/18/2022]
|
16
|
Donati F, Costici PF, De Salvatore S, Burrofato A, Micciulli E, Maiese A, Santoro P, La Russa R. A Perspective on Management of Limb Fractures in Obese Children: Is It Time for Dedicated Guidelines? Front Pediatr 2020; 8:207. [PMID: 32457859 PMCID: PMC7225297 DOI: 10.3389/fped.2020.00207] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/15/2019] [Accepted: 04/07/2020] [Indexed: 02/05/2023] Open
Abstract
Limb fractures are the most common injuries in pediatric orthopedics. Early and late complications are often not preventable, even when providing the best treatment; furthermore, these injuries are largely implicated in medico-legal claims. The development of evidence-based guidelines is one of the main goals of medical research. Approved guidelines for diagnosis, treatment, and follow up are fundamental to obtain the best results in medical practice. Guidelines in pediatric traumatology have been developed, even though specific conditions, like obesity, could influence their drafting. The cast and fixation systems usually applied in pediatric fractures provide a growth plate sparing, a satisfying reduction, and good stress resistance, mostly because of a lower bodyweight compared to adults. Several studies suggest that obesity influences the bone quality, the management, and the outcomes in cases of fracture. High body weight increases the risk of trauma, modifies fracture characteristics, and increases the risk of incomplete reduction. Fractures in obese children have a higher rate of complications, regardless of conservative or surgical treatment. In obese children, surgical treatment is often used more frequently than with non-obese children. Such considerations are valid both for lower and upper limb fractures. The aim of this paper is to discuss recent scientific literature and provide a perspective on the benefits of a dedicated approach in the management of obese children. Guideline updates could improve healthcare quality in a pediatric setting, and also reduce medico-legal implications.
Collapse
Affiliation(s)
- Fabrizio Donati
- Department of General Surgery, Orthopedic Institute, Bambino Gesù Children Hospital, Rome, Italy
| | - Pier Francesco Costici
- Department of General Surgery, Orthopedic Institute, Bambino Gesù Children Hospital, Rome, Italy
| | - Sergio De Salvatore
- Department of Orthopaedic and Trauma Surgery, Campus Bio-Medico University of Rome, Rome, Italy
| | - Aaron Burrofato
- Department of General Surgery, Orthopedic Institute, Bambino Gesù Children Hospital, Rome, Italy
| | - Enrico Micciulli
- Department of General Surgery, Orthopedic Institute, Bambino Gesù Children Hospital, Rome, Italy
| | - Aniello Maiese
- Department of Anatomical, Histological, Forensic and Orthopaedic Sciences, Sapienza University of Rome, Rome, Italy
| | - Paola Santoro
- Department of Anatomical, Histological, Forensic and Orthopaedic Sciences, Sapienza University of Rome, Rome, Italy
| | - Raffaele La Russa
- Department of Anatomical, Histological, Forensic and Orthopaedic Sciences, Sapienza University of Rome, Rome, Italy
| |
Collapse
|
17
|
Pillatt AP, Berlezi EM, Jesus LBD, Schneider RH, Franz LBB. Influência da obesidade nos critérios de classificação de sarcopenia em idosos. REVISTA BRASILEIRA DE GERIATRIA E GERONTOLOGIA 2020. [DOI: 10.1590/1981-22562020023.200083] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Resumo Objetivo identificar a prevalência de obesidade sarcopênica em idosos residentes na comunidade e analisar a relação da obesidade com os critérios de classificação da sarcopenia. Método Trata-se de um corte transversal analítico vinculado ao projeto “Atenção Integral à Saúde do Idoso”. A avaliação da sarcopenia foi realizada a partir dos critérios do Consenso Europeu de Sarcopenia. Para classificação dos idosos como obesos sarcopênicos considerou-se aqueles que se apresentaram como provável sarcopênico, sarcopênico ou sarcopênico severo associado ao percentual de gordura >27% para homens e >38% para mulheres. Os dados foram analisados utilizando estatística bivariada e um modelo de regressão linear. Resultados Dos 209 idosos residentes na comunidade foi verificado uma prevalência de 23,9% de sarcopenia, 28,2% de obesidade e 4,3% de obesidade sarcopênica. Ainda, pode-se observar que os homens apresentaram maior prevalência de sarcopenia (p=0,006) e de obesidade (p=0,005) que as mulheres; os obesos tiveram menor prevalência de perda de massa muscular que os idosos não obesos (p<0,001); e os obesos apresentaram incremento na força (p=0,003) e na massa muscular (p<0,001) em relação aos não obesos, mesmo quando ajustado para sexo, faixa etária, multicomorbidades e incapacidade funcional. Conclusão levando em consideração a prevalência de obesidade sarcopênica na população estudada e a influência positiva da obesidade na predição de força e massa muscular, destaca-se a importância da avaliação multidimensional do idoso, a fim de averiguar a real necessidade de intervenções para perda de peso corporal, com intuito de prevenção de perda de força e massa muscular.
Collapse
Affiliation(s)
- Ana Paula Pillatt
- Pontifícia Universidade Católica do Rio Grande do Sul (PUC-RS), Brasil
| | | | | | | | | |
Collapse
|
18
|
Fintini D, Cianfarani S, Cofini M, Andreoletti A, Ubertini GM, Cappa M, Manco M. The Bones of Children With Obesity. Front Endocrinol (Lausanne) 2020; 11:200. [PMID: 32390939 PMCID: PMC7193990 DOI: 10.3389/fendo.2020.00200] [Citation(s) in RCA: 71] [Impact Index Per Article: 14.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/06/2019] [Accepted: 03/20/2020] [Indexed: 12/11/2022] Open
Abstract
Excess adiposity in childhood may affect bone development, ultimately leading to bone frailty. Previous reports showing an increased rate of extremity fractures in children with obesity support this fear. On the other hand, there is also evidence suggesting that bone mineral content is higher in obese children than in normal weight peers. Both adipocytes and osteoblasts derive from multipotent mesenchymal stem cells (MSCs) and obesity drives the differentiation of MSCs toward adipocytes at the expense of osteoblast differentiation. Furthermore, adipocytes in bone marrow microenvironment release a number of pro-inflammatory and immunomodulatory molecules that up-regulate formation and activation of osteoclasts, thus favoring bone frailty. On the other hand, body adiposity represents a mechanical load, which is beneficial for bone accrual. In this frame, bone quality, and structure result from the balance of inflammatory and mechanical stimuli. Diet, physical activity and the hormonal milieu at puberty play a pivotal role on this balance. In this review, we will address the question whether the bone of obese children and adolescents is unhealthy in comparison with normal-weight peers and discuss mechanisms underlying the differences in bone quality and structure. We anticipate that many biases and confounders affect the clinical studies conducted so far and preclude us from achieving robust conclusions. Sample-size, lack of adequate controls, heterogeneity of study designs are the major drawbacks of the existing reports. Due to the increased body size of children with obesity, dual energy absorptiometry might overestimate bone mineral density in these individuals. Magnetic resonance imaging, peripheral quantitative CT (pQCT) scanning and high-resolution pQCT are promising techniques for the accurate estimate of bone mineral content in obese children. Moreover, no longitudinal study on the risk of incident osteoporosis in early adulthood of children and adolescents with obesity is available. Finally, we will address emerging dietary issues (i.e., the likely benefits for the bone health of polyunsaturated fatty acids and polyphenols) since an healthy diet (i.e., the Mediterranean diet) with balanced intake of certain nutrients associated with physical activity remain the cornerstones for achieving an adequate bone accrual in young individuals regardless of their adiposity degree.
Collapse
Affiliation(s)
- Danilo Fintini
- Endocrinology Unit, Pediatric University Department, Bambino Gesù Children's Hospital, Rome, Italy
- *Correspondence: Danilo Fintini
| | - Stefano Cianfarani
- Diabetes and Growth Disorders Unit, Dipartimento Pediatrico Universitario Ospedaliero Bambino Gesù Children's Hospital, Tor Vergata University, Rome, Italy
- Department of Women's and Children's Health, Karolinska Institute and University Hospital, Stockholm, Sweden
| | - Marta Cofini
- Pediatric Clinic, Department of Surgical and Biomedical Sciences, University of Perugia, Perugia, Italy
| | - Angela Andreoletti
- Pediatric Resident, Pediatric Clinic, University of Brescia, Brescia, Italy
| | - Grazia Maria Ubertini
- Endocrinology Unit, Pediatric University Department, Bambino Gesù Children's Hospital, Rome, Italy
| | - Marco Cappa
- Endocrinology Unit, Pediatric University Department, Bambino Gesù Children's Hospital, Rome, Italy
| | - Melania Manco
- Research Area for Multifactorial Diseases, Bambino Gesù Children's Hospital, Rome, Italy
- Melania Manco
| |
Collapse
|
19
|
Yasa Y, Buyuk SK, Genc E. Comparison of mandibular cortical bone among obese, overweight, and normal weight adolescents using panoramic mandibular index and mental index. Clin Oral Investig 2019; 24:2919-2924. [PMID: 31802243 DOI: 10.1007/s00784-019-03158-7] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2019] [Accepted: 11/13/2019] [Indexed: 11/25/2022]
Abstract
OBJECTIVE The objective of this study is to evaluate the mental index (MI) and panoramic mandibular index (PMI) of a group of adolescent patients in different body mass index (BMI) percentile. MATERIAL AND METHODS Subjects were divided into three different groups in accordance to their BMI percentile status: normal weight (35 subjects; mean age, 14.81 ± 2.12 years), overweight (32 subjects; mean age, 14.77 ± 2.56 years), and obese (33 subjects; mean age, 14.06 ± 2.59 years) groups. Mental index (MI) and panoramic mandibular index (PMI) were assessed on panoramic radiographs. RESULTS There were statistically significant differences in PMI and MI that were observed among groups (p < 0.0001 and p < 0.001, respectivel). MI and PMI are higher in overweight and obese individuals than in normal-weight. CONCLUSIONS Mandibular cortex was found thicker in patients who are obese and overweight compared to normal weight patients. We can suggest that young obese individuals' bone structure can be take in consideration in orthodontic or dental surgical treatment planning. CLINICAL RELEVANCE Dense cortical bone may cause some difficulties in orthodontic and surgical treatment. Clinicians should understand obesity and overweight-related jaw bone changes and consider these factors to treat their patients.
Collapse
Affiliation(s)
- Yasin Yasa
- Department of Oral and Maxillofacial Radiology, Faculty of Dentistry, Ordu University, Ordu, Turkey.
| | | | - Esra Genc
- Department of Orthodontics, Faculty of Dentistry, Ordu University, Ordu, Turkey
| |
Collapse
|
20
|
McCann MR, Ratneswaran A. The role of PPARγ in childhood obesity-induced fractures. GENES AND NUTRITION 2019; 14:31. [PMID: 31798753 PMCID: PMC6880598 DOI: 10.1186/s12263-019-0653-7] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/20/2019] [Accepted: 10/01/2019] [Indexed: 02/08/2023]
Abstract
Globally, obesity is on the rise with ~ 30% of the world’s population now obese, and childhood obesity is following similar trends. Childhood obesity has been associated with numerous chronic conditions, including musculoskeletal disorders. This review highlights the effects of childhood adiposity on bone density by way of analyzing clinical studies and further describing two severe skeletal conditions, slipped capital femoral epiphysis and Blount’s disease. The latter half of this review discusses bone remodeling and cell types that mediate bone growth and strength, including key growth factors and transcription factors that help orchestrate this complex pathology. In particular, the transcriptional factor peroxisome proliferator-activated receptor gamma (PPARγ) is examined as it is a master regulator of adipocyte differentiation in mesenchymal stem cells (MSCs) that can also influence osteoblast populations. Obese individuals are known to have higher levels of PPARγ expression which contributes to their increased adipocyte numbers and decreased bone density. Modulating PPAR*gamma* signaling can have significant effects on adipogenesis, thereby directing MSCs down the osteoblastogenesis pathway and in turn increasing bone mineral density. Lastly, we explore the potential of PPARγ as a druggable target to decrease adiposity, increase bone density, and be a treatment for children with obesity-induced bone fractures.
Collapse
Affiliation(s)
- Matthew R McCann
- 1Sydney Medical School, University of Sydney, Sydney, NSW 2006 Australia.,2Western Bone & Joint Institute, University of Western Ontario, London, ON N6A 2J9 Canada
| | - Anusha Ratneswaran
- 2Western Bone & Joint Institute, University of Western Ontario, London, ON N6A 2J9 Canada.,3Department of Physiology and Pharmacology, University of Western Ontario, London, ON N6A 2J9 Canada.,4Department of Genetics and Development, Krembil Research Institute, University Health Network, Toronto, ON M5T 0S8 Canada
| |
Collapse
|
21
|
Abstract
Introduction Introduction: overweight and obesity reach a high prevalence since childhood in Spain. Objective: to describe the effect of overweight and obesity, in schoolchildren of eleven years of age, in tests that assess the strength of both the lower and upper extremities, as well as speed. Method: four hundred and twenty-three schoolchildren of eleven years of age participated in the study. Basic anthropometric characteristics were obtained and several tests of the EUROFIT battery were developed. Results: normal-weight boys and girls had better scores in physical condition tests in general. Therefore, the vertical and horizontal jumps, bar suspension and abdominals were higher in the participants with normal-weight (p < 0.05). In addition, they performed in less time a speed circuit in both sexes (p < 0.001); however, in relation to the manual isometric strength, in the group of girls those who are overweight or obese have better results (p < 0.01). Conclusions: overweight and obese children of eleven year-olds showed a lower muscular performance, except in the case of manual isometric strength. Several equations haven been also determined for predicting the results of physical tests carried out such as jumps, dynamometry and speed, through sex and body mass index (BMI).
Collapse
|
22
|
Ren Y, Xi X, Hu D, Shang W, Peng S, Fan L, Tu S, Zhang H, Shen M, Du Y. Determinants for low bone mineral density in pre-school children: a matched case-control study in Wuhan, China. J Pediatr Endocrinol Metab 2019; 32:739-748. [PMID: 31150360 DOI: 10.1515/jpem-2018-0554] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/13/2018] [Accepted: 03/24/2019] [Indexed: 01/31/2023]
Abstract
Introduction Reduced bone mass will increase bone fragility and risk of fractures. Thus, it is better to note its determinants as early as possible. Objective This study aimed to find and determine the determinants for low bone mineral density (BMD) in pre-school children. Methods Between November 2014 and April 2015, a matched case-control study was performed to detect information on growth and development condition and consumption frequency of products of cases with low BMD and controls with normal BMD. Anthropometric data measurement and blood tests were conducted. Besides, the questionnaires concerning the mentioned information were completed to get relevant determinants. A paired t-test, the McNemar test and univariate and multiple conditional logistic regression models were used to explore the association between these factors and low BMD. Results In total, 88 (28 boys, 60 girls) incident cases (4.15 ± 0.78 years) of low BMD and 88 sex- and age-matched (±2 months) controls (4.16 ± 0.80 years) of normal BMD were enrolled. The results of multiple conditional logistic regression analysis indicated that if children had larger chest circumference (odds ratio [OR] = 0.763), longer duration of breastfeeding (OR = 0.899) and lower frequency of eating snacks (OR = 0.439), the risk of low BMD would decrease. Conclusions Our findings suggest that pre-school children with an association of larger chest circumference, longer duration of breastfeeding and lower frequency of eating snacks could have lower risk for low BMD. Intended measures to strengthen those protective factors could be effective in reducing the cases of low BMD.
Collapse
Affiliation(s)
- Yali Ren
- Department of Medical Affairs, Liyuan Hospital of Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei Province, P.R. China
| | - Xiaoyan Xi
- Department of Maternal and Child Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei Province, P.R. China
| | - Dan Hu
- Department of Child Medical and Health Care Center, Dalian Maternal and Child Health Care Hospital, Dalian, Liaoning Province, P.R. China
| | - Weifeng Shang
- Department of Nephrology, Wuhan Puai Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei Province, P.R. China
| | - Songxu Peng
- Department of Maternal and Child Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei Province, P.R. China
| | - Linlin Fan
- Shanghai Pudong New Area People's Hospital, Shanghai, P.R. China
| | - Si Tu
- Department of Woman and Child Health Care, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou, Guangdong Province, P.R. China
| | - Hongping Zhang
- College of Health Science & Nursing, Wuhan Polytechnic University, Dongxihu District, Wuhan, Hubei Province, P.R. China
| | - Min Shen
- Department of Maternal and Child Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei Province, P.R. China
| | - Yukai Du
- Department of Maternal and Child Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei Province, P.R. China
| |
Collapse
|
23
|
White Z, White S, Dalvie T, Kruger MC, Van Zyl A, Becker P. Bone Health, Body Composition, and Vitamin D Status of Black Preadolescent Children in South Africa. Nutrients 2019; 11:nu11061243. [PMID: 31159206 PMCID: PMC6627122 DOI: 10.3390/nu11061243] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2019] [Revised: 05/23/2019] [Accepted: 05/29/2019] [Indexed: 12/14/2022] Open
Abstract
Optimal bone health is important in children to reduce the risk of osteoporosis later in life. Both body composition and vitamin D play an important role in bone health. This study aimed to describe bone health, body composition, and vitamin D status, and the relationship between these among a group of conveniently sampled black preadolescent South African children (n = 84) using a cross-sectional study. Body composition, bone mineral density (BMD), and bone mineral content (BMC) were assessed using dual x-ray absorptiometry. Levels of 25-hydroxyvitamin D (25(OH)D) (n = 59) were assessed using dried blood spots. A quarter (25%) of children presented with low bone mass density for their chronological age (BMD Z-score < -2) and 7% with low BMC-for-age (BMC Z-score < -2), while only 34% of the children had sufficient vitamin D status (25(OH)D ≥ 30 ng/mL). Lean mass was the greatest body compositional determinant for variances observed in bone health measures. Body composition and bone health parameters were not significantly different across vitamin D status groups (p > 0.05), except for lumbar spine bone mineral apparent density (LS-BMAD) (p < 0.01). No association was found between bone parameters at all sites and levels of 25(OH)D (p > 0.05). Further research, using larger representative samples of South African children including all race groups is needed before any conclusions and subsequent recommendation among this population group can be made.
Collapse
Affiliation(s)
- Zelda White
- Department Human Nutrition, Faculty of Health Sciences, University of Pretoria, Private Bag X20, Hatfield 0028, South Africa.
| | - Samantha White
- Department Human Nutrition, Faculty of Health Sciences, University of Pretoria, Private Bag X20, Hatfield 0028, South Africa.
| | - Tasneem Dalvie
- Department Human Nutrition, Faculty of Health Sciences, University of Pretoria, Private Bag X20, Hatfield 0028, South Africa.
| | - Marlena C Kruger
- School of Health Sciences, Massey University, Private Bag 11029, Palmerston North 4442, New Zealand.
| | - Amanda Van Zyl
- Department Human Nutrition, Faculty of Health Sciences, University of Pretoria, Private Bag X20, Hatfield 0028, South Africa.
| | - Piet Becker
- Faculty of Health Sciences, University of Pretoria, Private Bag X20, Hatfield 0028, South Africa.
| |
Collapse
|
24
|
Dimitri P. The Impact of Childhood Obesity on Skeletal Health and Development. J Obes Metab Syndr 2019; 28:4-17. [PMID: 31089575 PMCID: PMC6484936 DOI: 10.7570/jomes.2019.28.1.4] [Citation(s) in RCA: 36] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/14/2019] [Revised: 01/24/2019] [Accepted: 02/18/2019] [Indexed: 12/26/2022] Open
Abstract
Increased risk of fracture identified in obese children has led to a focus on the relationship between fat, bone, and the impact of obesity during skeletal development. Early studies have suggested that despite increased fracture risk, obese children have a higher bone mass. However, body size corrections applied to account for wide variations in size between children led to the finding that obese children have a lower total body and regional bone mass relative to their body size. Advances in skeletal imaging have shifted the focus from quantity of bone in obese children to evaluating the changes in bone microarchitecture that result in a change in bone quality and strength. The findings suggest that bone strength in the appendicular skeleton does not appropriately adapt to an increase in body size which results in a mismatch between bone strength and force from falls. Recent evidence points to differing influences of fat compartments on skeletal development-visceral fat may have a negative impact on bone which may be related to the associated adverse metabolic environment, while marrow adipose tissue may have an independent effect on trabecular bone development in obese children. The role of brown fat has received recent attention, demonstrating differences in the influence on bone mass between white and brown adipose tissues. Obesity results in a shift in growth and pubertal hormones as well as influences bone development through the altered release of adipokines. The change in the hormonal milieu provides an important insight into the skeletal changes observed in childhood obesity.
Collapse
Affiliation(s)
- Paul Dimitri
- Academic Unit of Child Health, The University of Sheffield, Sheffield, UK
| |
Collapse
|
25
|
Anthropometric variations in different BMI and adiposity levels among children, adolescents and young adults in Kolkata, India. J Biosoc Sci 2018; 51:603-618. [PMID: 30511611 DOI: 10.1017/s0021932018000354] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Abstract
The objective of the study was to analyse selected anthropometric features of children, adolescents and young adults from middle-class families in Kolkata, India, by BMI and adiposity categories. Standardized anthropometric measurements of 4194 individuals (1999 male and 2195 female) aged 7-21 were carried out between the years 2005 and 2011. The results were compared by BMI and adiposity categories. Statistical significance was assessed using two-way-ANOVA and linear regression analysis was performed. The study population could be differentiated in terms of BMI and adiposity categories for all examined anthropometric characteristics (p ≤ 0.001). After taking age into consideration, differences were observed for males in the case of body height and humerus breadth in BMI and adiposity categories, and for femur breadth in the case of adiposity categories. For females, differences were noted in body height measurements in BMI and adiposity categories, a sum of skinfold thicknesses in BMI categories, and upper-arm and calf circumferences in adiposity categories. The patterns of differences in the BMI categories were found to be similar to those in adiposity categories. The linear regression analysis results showed that there was a significant relationship between BMI and body fat ratio in the examined population. Underweight individuals, and those with low adiposity, were characterized by lower extremity circumferences and skeletal breadths. These features reached highest values in overweight/obese persons, characterized by high body fat. However, the differences observed between each BMI and adiposity category, in most cases, were only present in early childhood.
Collapse
|
26
|
Li J, Ding W, Cao J, Sun L, Liu S, Zhang J, Zhao H. Serum 25-hydroxyvitamin D and bone mineral density among children and adolescents in a Northwest Chinese city. Bone 2018; 116:28-34. [PMID: 30006192 DOI: 10.1016/j.bone.2018.07.006] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/02/2018] [Revised: 07/02/2018] [Accepted: 07/08/2018] [Indexed: 12/24/2022]
Abstract
Although vitamin D is essential for bone health, little is known about prevalence of vitamin D deficiency and low bone mineral density (BMD) among children, especially those in developing countries. It also remains unclear whether serum 25-hydroxyvitamin D [25(OH)D] is associated with BMD among children. We investigated these questions among children and adolescents in Yinchuan (latitude: 38° N), Ningxia, an economically underdeveloped province in Northwest China. A total of 1582 children (756 boys and 826 girls), aged 6-18 years, were recruited from schools using the stratified random sampling method in fall 2015. Serum 25(OH)D concentrations were measured by enzyme-linked immunosorbent assay, and BMD was quantified by dual-energy X-ray absorptiometry. Vitamin D deficiency (defined as serum 25(OH)D ≤ 37.5 nmol/L) was present in 35.5% of study subjects. There were no clear patterns of differences in serum 25(OH)D concentrations across the four age groups compared (6-9 years, 10-13 years, 14-16 years, and 17-18 years). The prevalence of low total body less head (TBLH) BMD (defined as a Z-score of ≤ -2.0 standard deviations away from the mean BMD values of the Chinese pediatric reference population) among children examined was 1.8% and was not significantly different among the four age groups considered. Linear regression analysis revealed that age, weight, and height were significantly and positively associated with TBLH BMD and that the strongest determinant of TBLH BMD was age in boys and weight in girls. There were no significant correlations between serum 25(OH)D concentrations and BMD obtained for total body and at various skeletal sites (r ranged from -0.005 to 0.014) regardless of whether children evaluated were sufficient, insufficient, or deficient in vitamin D. In conclusion, more than one-third of children and adolescents in a Northwest Chinese city were deficient in vitamin D but only <2% of them developed low BMD.
Collapse
Affiliation(s)
- Jing Li
- Department of Child and Adolescent Health, School of Public Health and Management, Ningxia Medical University, Yinchuan, Ningxia Hui Autonomous Region, China
| | - Wenqing Ding
- Department of Child and Adolescent Health, School of Public Health and Management, Ningxia Medical University, Yinchuan, Ningxia Hui Autonomous Region, China
| | - Juan Cao
- Department of Child and Adolescent Health, School of Public Health and Management, Ningxia Medical University, Yinchuan, Ningxia Hui Autonomous Region, China
| | - Lijiao Sun
- Department of Child and Adolescent Health, School of Public Health and Management, Ningxia Medical University, Yinchuan, Ningxia Hui Autonomous Region, China
| | - Shanghong Liu
- Department of Child and Adolescent Health, School of Public Health and Management, Ningxia Medical University, Yinchuan, Ningxia Hui Autonomous Region, China
| | - Jianjun Zhang
- Department of Epidemiology, Indiana University Richard M. Fairbanks School of Public Health, Indianapolis, IN, USA.
| | - Haiping Zhao
- Department of Child and Adolescent Health, School of Public Health and Management, Ningxia Medical University, Yinchuan, Ningxia Hui Autonomous Region, China.
| |
Collapse
|
27
|
Correa-Rodríguez M, Schmidt-Rio Valle J, de la Fuente-Vílchez ÁM, Rueda-Medina B. Analysis of lifestyle and bone mineralization in a population of Spanish young adults. Colomb Med (Cali) 2018; 49:213-218. [PMID: 30410195 PMCID: PMC6220484 DOI: 10.25100/cm.v49i2.2056] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2015] [Revised: 09/07/2018] [Accepted: 09/18/2018] [Indexed: 11/25/2022] Open
Abstract
OBJECTIVE To analyze the environmental factors (nutritional status, levels of physical activity and nutritional habits) and their possible association with bone mass in a population of young adults. METHODS The study population consisted of 200 subjects (117 women and 83 men) aged between 18 and 25 years (mean age 20.4 years ±2.2 years). Body composition parameters were measured by an electronic balance (TANITA BC-418MA), nutritional habits were estimated by 72-h dietary recall, level of physical activity was assessed by the International Physical Activity Questionnaire (IPAQ) and bone mass was measured by ultrasonography at the calcaneus. RESULTS There were significant differences in bone mass values according to gender (p= 0.013). Despite the fact that 70% of the subjects had a body mass index (BMI) within the normal range, 20% had overweight or obesity. 49% of the individuals had a moderate level of physical activity, although women had lower levels of physical activity than men (17.9% vs 8.4%). Most diets among young adults were hyperprotic, hyperlipidic and low-carbohydrates, with low-calcium and fiber intakes and high-phosphorus. Analysis of bone mass according to BMI showed higher values as the weight category rises, with significant differences in women. Higher values of bone mass were shown as the level of physical activity was higher, showing significant differences in males. CONCLUSION Our results show that BMI and level of physical activity are significantly associated with bone health in a population of young adults, suggesting the relevance of promoting healthy lifestyles as a strategy for the early prevention of osteoporosis.
Collapse
Affiliation(s)
- María Correa-Rodríguez
- Departamento de Enfermería. Facultad de Ciencias de la Salud. Universidad de Granada, Granada, España
| | | | | | - Blanca Rueda-Medina
- Departamento de Enfermería. Facultad de Ciencias de la Salud. Universidad de Granada, Granada, España
| |
Collapse
|
28
|
Hetherington-Rauth M, Bea JW, Blew RM, Funk JL, Hingle MD, Lee VR, Roe DJ, Wheeler MD, Lohman TG, Going SB. Relative contributions of lean and fat mass to bone strength in young Hispanic and non-Hispanic girls. Bone 2018; 113:144-150. [PMID: 29800691 PMCID: PMC6008243 DOI: 10.1016/j.bone.2018.05.023] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/17/2018] [Revised: 04/16/2018] [Accepted: 05/20/2018] [Indexed: 12/28/2022]
Abstract
BACKGROUND With the high prevalence of childhood obesity, especially among Hispanic children, understanding how body weight and its components of lean and fat mass affect bone development is important, given that the amount of bone mineral accrued during childhood can determine osteoporosis risk later in life. The aim of this study was to assess the independent contributions of lean and fat mass on volumetric bone mineral density (vBMD), geometry, and strength in both weight-bearing and non-weight-bearing bones of Hispanic and non-Hispanic girls. METHODS Bone vBMD, geometry, and strength were assessed at the 20% distal femur, the 4% and 66% distal tibia, and the 66% distal radius of the non-dominant limb of 326, 9- to 12-year-old girls using peripheral quantitative computed tomography (pQCT). Total body lean and fat mass were measured by dual-energy x-ray absorptiometry (DXA). Multiple linear regression was used to assess the independent relationships of fat and lean mass with pQCT bone measures while adjusting for relevant confounders. Potential interactions between ethnicity and both fat and lean mass were also tested. RESULTS Lean mass was a significant positive contributor to all bone outcomes (p < 0.05) with the exception of vBMD at diaphyseal sites. Fat mass was a significant contributor to bone strength at weight bearing sites, but did not significantly contribute to bone strength at the non-weight bearing radius and was negatively associated with radius cortical content and thickness. Bone measures did not significantly differ between Hispanic and non-Hispanic girls, although there was a significant interaction between ethnicity and fat mass with total bone area at the femur (p = 0.02) and 66% tibia (p = 0.005) as well as bone strength at the femur (p = 0.03). CONCLUSION Lean mass is the main determinant of bone strength for appendicular skeletal sites. Fat mass contributes to bone strength in the weight-bearing skeleton but does not add to bone strength in non-weight-bearing locations and may potentially be detrimental. Bone vBMD, geometry, and strength did not differ between Hispanic and non-Hispanic girls; fat mass may be a stronger contributor to bone strength in weight-bearing bones of Hispanic girls compared to non-Hispanic.
Collapse
Affiliation(s)
| | - Jennifer W Bea
- Department of Nutritional Sciences, University of Arizona, Tucson, AZ 85721, USA; Department of Medicine, University of Arizona, Tucson, AZ 85721, USA; Arizona Cancer Center, Tucson, AZ 85724, USA.
| | - Robert M Blew
- Department of Nutritional Sciences, University of Arizona, Tucson, AZ 85721, USA.
| | - Janet L Funk
- Department of Nutritional Sciences, University of Arizona, Tucson, AZ 85721, USA; Department of Medicine, University of Arizona, Tucson, AZ 85721, USA.
| | - Melanie D Hingle
- Department of Nutritional Sciences, University of Arizona, Tucson, AZ 85721, USA.
| | - Vinson R Lee
- Department of Nutritional Sciences, University of Arizona, Tucson, AZ 85721, USA.
| | - Denise J Roe
- Arizona Cancer Center, Tucson, AZ 85724, USA; Department of Epidemiology and Biostatistics, University of Arizona, Tucson, AZ 85721, USA.
| | - Mark D Wheeler
- Department of Pediatric Endocrinology, University of Arizona, Tucson, AZ 85724, USA.
| | - Timothy G Lohman
- Department of Physiology, University of Arizona, Tucson, AZ 85721, USA
| | - Scott B Going
- Department of Nutritional Sciences, University of Arizona, Tucson, AZ 85721, USA.
| |
Collapse
|
29
|
Gait Pattern, Impact to the Skeleton and Postural Balance in Overweight and Obese Children: A Review. Sports (Basel) 2018; 6:sports6030075. [PMID: 30065150 PMCID: PMC6162717 DOI: 10.3390/sports6030075] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2018] [Revised: 07/18/2018] [Accepted: 07/26/2018] [Indexed: 12/13/2022] Open
Abstract
The article reviews the biomechanical factors that may cause overweight/obese children to reduce their level of physical activity, while increasing their risk of overuse injuries and exercise-related pain. Recommendations would be to screen those children for any gait or postural impairments before they join any exercise program, and to provide them with specific gait treatments and/or physical exercise programs, in order to decrease their risk for future musculoskeletal injuries and pain.
Collapse
|
30
|
Baker JF, Long J, Mostoufi-Moab S, Denburg M, Jorgenson E, Sharma P, Zemel BS, Taratuta E, Ibrahim S, Leonard MB. Muscle Deficits in Rheumatoid Arthritis Contribute to Inferior Cortical Bone Structure and Trabecular Bone Mineral Density. J Rheumatol 2017; 44:1777-1785. [PMID: 28916544 DOI: 10.3899/jrheum.170513] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/23/2017] [Indexed: 12/22/2022]
Abstract
OBJECTIVE Rheumatoid arthritis (RA) is associated with muscle loss, osteoporosis, and fracture. We examined associations between skeletal muscle mass, strength, and quality and trabecular and cortical bone deficits in patients with RA and healthy controls. METHODS Participants, ages 18-75 years, completed whole-body dual-energy x-ray absorptiometry and peripheral quantitative computed tomography (pQCT) of the tibia to quantify appendicular lean mass and fat mass indices (ALMI, FMI), muscle density at the lower leg, trabecular bone density, and cortical bone thickness. Age-, sex-, and race-specific Z scores were calculated based on distributions in controls. Associations between body composition and pQCT bone outcomes were assessed in patients with RA and controls. Linear regression analyses assessed differences in bone outcomes after considering differences in body mass index (BMI) and body composition. RESULTS The sample consisted of 112 patients with RA (55 men) and 412 controls (194 men). Compared to controls, patients with RA had greater BMI Z score (p < 0.001), lower ALMI Z score after adjustment for FMI (p = 0.02), lower muscle strength Z score (p = 0.01), and lower muscle density Z score (p < 0.001). Among RA, ALMI Z scores were positively associated with trabecular density [β: 0.29 (0.062-0.52); p = 0.01] and cortical thickness [β: 0.33 (0.13-0.53; p = 0.002]. Associations were similar in controls. Bone outcomes were inferior in patients with RA after adjusting for BMI, but similar to controls when adjusting for body composition. Radiographic damage and higher adiponectin levels were independently associated with inferior bone outcomes. CONCLUSION Patients with RA exhibit deficits in cortical bone structure and trabecular density at the tibia and a preserved functional muscle-bone unit. A loss of mechanical loading may contribute to bone deficits.
Collapse
Affiliation(s)
- Joshua F Baker
- From the Division of Rheumatology, and Center for Health Equity Research and Promotion, Corporal Michael J. Crescenz VA Medical Center; Department of Epidemiology, Biostatistics, and Informatics, and the Department of Radiology, University of Pennsylvania; Department of Pediatrics, and Center for Pediatric Clinical Effectiveness, Children's Hospital of Philadelphia, Philadelphia, Pennsylvania; Department of Pediatrics, Stanford University, Palo Alto, California, USA. .,J.F. Baker, MD, MSCE, Division of Rheumatology, Corporal Michael J. Crescenz VA Medical Center, Division of Rheumatology, and the Department of Epidemiology, Biostatistics, and Informatics, University of Pennsylvania; J. Long, PhD, Department of Pediatrics, Stanford University; S. Mostoufi-Moab, MD, MSCE, Department of Pediatrics, Children's Hospital of Philadelphia; M. Denburg, MD, MSCE, Department of Epidemiology, Biostatistics, and Informatics, University of Pennsylvania, Department of Pediatrics, and the Center for Pediatric Clinical Effectiveness, Children's Hospital of Philadelphia; E. Jorgenson, MPH, Department of Epidemiology, Biostatistics, and Informatics, University of Pennsylvania; P. Sharma, BA, Division of Rheumatology, Corporal Michael J. Crescenz VA Medical Center; B.S. Zemel, PhD, Department of Pediatrics, Children's Hospital of Philadelphia; E. Taratuta, MD, Department of Radiology, University of Pennsylvania; S. Ibrahim, MD, MPH, MBA, Center for Health Equity Research and Promotion, Philadelphia VA Medical Center; M.B. Leonard, MD, MSCE, Department of Pediatrics, Stanford University.
| | - Jin Long
- From the Division of Rheumatology, and Center for Health Equity Research and Promotion, Corporal Michael J. Crescenz VA Medical Center; Department of Epidemiology, Biostatistics, and Informatics, and the Department of Radiology, University of Pennsylvania; Department of Pediatrics, and Center for Pediatric Clinical Effectiveness, Children's Hospital of Philadelphia, Philadelphia, Pennsylvania; Department of Pediatrics, Stanford University, Palo Alto, California, USA.,J.F. Baker, MD, MSCE, Division of Rheumatology, Corporal Michael J. Crescenz VA Medical Center, Division of Rheumatology, and the Department of Epidemiology, Biostatistics, and Informatics, University of Pennsylvania; J. Long, PhD, Department of Pediatrics, Stanford University; S. Mostoufi-Moab, MD, MSCE, Department of Pediatrics, Children's Hospital of Philadelphia; M. Denburg, MD, MSCE, Department of Epidemiology, Biostatistics, and Informatics, University of Pennsylvania, Department of Pediatrics, and the Center for Pediatric Clinical Effectiveness, Children's Hospital of Philadelphia; E. Jorgenson, MPH, Department of Epidemiology, Biostatistics, and Informatics, University of Pennsylvania; P. Sharma, BA, Division of Rheumatology, Corporal Michael J. Crescenz VA Medical Center; B.S. Zemel, PhD, Department of Pediatrics, Children's Hospital of Philadelphia; E. Taratuta, MD, Department of Radiology, University of Pennsylvania; S. Ibrahim, MD, MPH, MBA, Center for Health Equity Research and Promotion, Philadelphia VA Medical Center; M.B. Leonard, MD, MSCE, Department of Pediatrics, Stanford University
| | - Sogol Mostoufi-Moab
- From the Division of Rheumatology, and Center for Health Equity Research and Promotion, Corporal Michael J. Crescenz VA Medical Center; Department of Epidemiology, Biostatistics, and Informatics, and the Department of Radiology, University of Pennsylvania; Department of Pediatrics, and Center for Pediatric Clinical Effectiveness, Children's Hospital of Philadelphia, Philadelphia, Pennsylvania; Department of Pediatrics, Stanford University, Palo Alto, California, USA.,J.F. Baker, MD, MSCE, Division of Rheumatology, Corporal Michael J. Crescenz VA Medical Center, Division of Rheumatology, and the Department of Epidemiology, Biostatistics, and Informatics, University of Pennsylvania; J. Long, PhD, Department of Pediatrics, Stanford University; S. Mostoufi-Moab, MD, MSCE, Department of Pediatrics, Children's Hospital of Philadelphia; M. Denburg, MD, MSCE, Department of Epidemiology, Biostatistics, and Informatics, University of Pennsylvania, Department of Pediatrics, and the Center for Pediatric Clinical Effectiveness, Children's Hospital of Philadelphia; E. Jorgenson, MPH, Department of Epidemiology, Biostatistics, and Informatics, University of Pennsylvania; P. Sharma, BA, Division of Rheumatology, Corporal Michael J. Crescenz VA Medical Center; B.S. Zemel, PhD, Department of Pediatrics, Children's Hospital of Philadelphia; E. Taratuta, MD, Department of Radiology, University of Pennsylvania; S. Ibrahim, MD, MPH, MBA, Center for Health Equity Research and Promotion, Philadelphia VA Medical Center; M.B. Leonard, MD, MSCE, Department of Pediatrics, Stanford University
| | - Michele Denburg
- From the Division of Rheumatology, and Center for Health Equity Research and Promotion, Corporal Michael J. Crescenz VA Medical Center; Department of Epidemiology, Biostatistics, and Informatics, and the Department of Radiology, University of Pennsylvania; Department of Pediatrics, and Center for Pediatric Clinical Effectiveness, Children's Hospital of Philadelphia, Philadelphia, Pennsylvania; Department of Pediatrics, Stanford University, Palo Alto, California, USA.,J.F. Baker, MD, MSCE, Division of Rheumatology, Corporal Michael J. Crescenz VA Medical Center, Division of Rheumatology, and the Department of Epidemiology, Biostatistics, and Informatics, University of Pennsylvania; J. Long, PhD, Department of Pediatrics, Stanford University; S. Mostoufi-Moab, MD, MSCE, Department of Pediatrics, Children's Hospital of Philadelphia; M. Denburg, MD, MSCE, Department of Epidemiology, Biostatistics, and Informatics, University of Pennsylvania, Department of Pediatrics, and the Center for Pediatric Clinical Effectiveness, Children's Hospital of Philadelphia; E. Jorgenson, MPH, Department of Epidemiology, Biostatistics, and Informatics, University of Pennsylvania; P. Sharma, BA, Division of Rheumatology, Corporal Michael J. Crescenz VA Medical Center; B.S. Zemel, PhD, Department of Pediatrics, Children's Hospital of Philadelphia; E. Taratuta, MD, Department of Radiology, University of Pennsylvania; S. Ibrahim, MD, MPH, MBA, Center for Health Equity Research and Promotion, Philadelphia VA Medical Center; M.B. Leonard, MD, MSCE, Department of Pediatrics, Stanford University
| | - Erik Jorgenson
- From the Division of Rheumatology, and Center for Health Equity Research and Promotion, Corporal Michael J. Crescenz VA Medical Center; Department of Epidemiology, Biostatistics, and Informatics, and the Department of Radiology, University of Pennsylvania; Department of Pediatrics, and Center for Pediatric Clinical Effectiveness, Children's Hospital of Philadelphia, Philadelphia, Pennsylvania; Department of Pediatrics, Stanford University, Palo Alto, California, USA.,J.F. Baker, MD, MSCE, Division of Rheumatology, Corporal Michael J. Crescenz VA Medical Center, Division of Rheumatology, and the Department of Epidemiology, Biostatistics, and Informatics, University of Pennsylvania; J. Long, PhD, Department of Pediatrics, Stanford University; S. Mostoufi-Moab, MD, MSCE, Department of Pediatrics, Children's Hospital of Philadelphia; M. Denburg, MD, MSCE, Department of Epidemiology, Biostatistics, and Informatics, University of Pennsylvania, Department of Pediatrics, and the Center for Pediatric Clinical Effectiveness, Children's Hospital of Philadelphia; E. Jorgenson, MPH, Department of Epidemiology, Biostatistics, and Informatics, University of Pennsylvania; P. Sharma, BA, Division of Rheumatology, Corporal Michael J. Crescenz VA Medical Center; B.S. Zemel, PhD, Department of Pediatrics, Children's Hospital of Philadelphia; E. Taratuta, MD, Department of Radiology, University of Pennsylvania; S. Ibrahim, MD, MPH, MBA, Center for Health Equity Research and Promotion, Philadelphia VA Medical Center; M.B. Leonard, MD, MSCE, Department of Pediatrics, Stanford University
| | - Prerna Sharma
- From the Division of Rheumatology, and Center for Health Equity Research and Promotion, Corporal Michael J. Crescenz VA Medical Center; Department of Epidemiology, Biostatistics, and Informatics, and the Department of Radiology, University of Pennsylvania; Department of Pediatrics, and Center for Pediatric Clinical Effectiveness, Children's Hospital of Philadelphia, Philadelphia, Pennsylvania; Department of Pediatrics, Stanford University, Palo Alto, California, USA.,J.F. Baker, MD, MSCE, Division of Rheumatology, Corporal Michael J. Crescenz VA Medical Center, Division of Rheumatology, and the Department of Epidemiology, Biostatistics, and Informatics, University of Pennsylvania; J. Long, PhD, Department of Pediatrics, Stanford University; S. Mostoufi-Moab, MD, MSCE, Department of Pediatrics, Children's Hospital of Philadelphia; M. Denburg, MD, MSCE, Department of Epidemiology, Biostatistics, and Informatics, University of Pennsylvania, Department of Pediatrics, and the Center for Pediatric Clinical Effectiveness, Children's Hospital of Philadelphia; E. Jorgenson, MPH, Department of Epidemiology, Biostatistics, and Informatics, University of Pennsylvania; P. Sharma, BA, Division of Rheumatology, Corporal Michael J. Crescenz VA Medical Center; B.S. Zemel, PhD, Department of Pediatrics, Children's Hospital of Philadelphia; E. Taratuta, MD, Department of Radiology, University of Pennsylvania; S. Ibrahim, MD, MPH, MBA, Center for Health Equity Research and Promotion, Philadelphia VA Medical Center; M.B. Leonard, MD, MSCE, Department of Pediatrics, Stanford University
| | - Babette S Zemel
- From the Division of Rheumatology, and Center for Health Equity Research and Promotion, Corporal Michael J. Crescenz VA Medical Center; Department of Epidemiology, Biostatistics, and Informatics, and the Department of Radiology, University of Pennsylvania; Department of Pediatrics, and Center for Pediatric Clinical Effectiveness, Children's Hospital of Philadelphia, Philadelphia, Pennsylvania; Department of Pediatrics, Stanford University, Palo Alto, California, USA.,J.F. Baker, MD, MSCE, Division of Rheumatology, Corporal Michael J. Crescenz VA Medical Center, Division of Rheumatology, and the Department of Epidemiology, Biostatistics, and Informatics, University of Pennsylvania; J. Long, PhD, Department of Pediatrics, Stanford University; S. Mostoufi-Moab, MD, MSCE, Department of Pediatrics, Children's Hospital of Philadelphia; M. Denburg, MD, MSCE, Department of Epidemiology, Biostatistics, and Informatics, University of Pennsylvania, Department of Pediatrics, and the Center for Pediatric Clinical Effectiveness, Children's Hospital of Philadelphia; E. Jorgenson, MPH, Department of Epidemiology, Biostatistics, and Informatics, University of Pennsylvania; P. Sharma, BA, Division of Rheumatology, Corporal Michael J. Crescenz VA Medical Center; B.S. Zemel, PhD, Department of Pediatrics, Children's Hospital of Philadelphia; E. Taratuta, MD, Department of Radiology, University of Pennsylvania; S. Ibrahim, MD, MPH, MBA, Center for Health Equity Research and Promotion, Philadelphia VA Medical Center; M.B. Leonard, MD, MSCE, Department of Pediatrics, Stanford University
| | - Elena Taratuta
- From the Division of Rheumatology, and Center for Health Equity Research and Promotion, Corporal Michael J. Crescenz VA Medical Center; Department of Epidemiology, Biostatistics, and Informatics, and the Department of Radiology, University of Pennsylvania; Department of Pediatrics, and Center for Pediatric Clinical Effectiveness, Children's Hospital of Philadelphia, Philadelphia, Pennsylvania; Department of Pediatrics, Stanford University, Palo Alto, California, USA.,J.F. Baker, MD, MSCE, Division of Rheumatology, Corporal Michael J. Crescenz VA Medical Center, Division of Rheumatology, and the Department of Epidemiology, Biostatistics, and Informatics, University of Pennsylvania; J. Long, PhD, Department of Pediatrics, Stanford University; S. Mostoufi-Moab, MD, MSCE, Department of Pediatrics, Children's Hospital of Philadelphia; M. Denburg, MD, MSCE, Department of Epidemiology, Biostatistics, and Informatics, University of Pennsylvania, Department of Pediatrics, and the Center for Pediatric Clinical Effectiveness, Children's Hospital of Philadelphia; E. Jorgenson, MPH, Department of Epidemiology, Biostatistics, and Informatics, University of Pennsylvania; P. Sharma, BA, Division of Rheumatology, Corporal Michael J. Crescenz VA Medical Center; B.S. Zemel, PhD, Department of Pediatrics, Children's Hospital of Philadelphia; E. Taratuta, MD, Department of Radiology, University of Pennsylvania; S. Ibrahim, MD, MPH, MBA, Center for Health Equity Research and Promotion, Philadelphia VA Medical Center; M.B. Leonard, MD, MSCE, Department of Pediatrics, Stanford University
| | - Said Ibrahim
- From the Division of Rheumatology, and Center for Health Equity Research and Promotion, Corporal Michael J. Crescenz VA Medical Center; Department of Epidemiology, Biostatistics, and Informatics, and the Department of Radiology, University of Pennsylvania; Department of Pediatrics, and Center for Pediatric Clinical Effectiveness, Children's Hospital of Philadelphia, Philadelphia, Pennsylvania; Department of Pediatrics, Stanford University, Palo Alto, California, USA.,J.F. Baker, MD, MSCE, Division of Rheumatology, Corporal Michael J. Crescenz VA Medical Center, Division of Rheumatology, and the Department of Epidemiology, Biostatistics, and Informatics, University of Pennsylvania; J. Long, PhD, Department of Pediatrics, Stanford University; S. Mostoufi-Moab, MD, MSCE, Department of Pediatrics, Children's Hospital of Philadelphia; M. Denburg, MD, MSCE, Department of Epidemiology, Biostatistics, and Informatics, University of Pennsylvania, Department of Pediatrics, and the Center for Pediatric Clinical Effectiveness, Children's Hospital of Philadelphia; E. Jorgenson, MPH, Department of Epidemiology, Biostatistics, and Informatics, University of Pennsylvania; P. Sharma, BA, Division of Rheumatology, Corporal Michael J. Crescenz VA Medical Center; B.S. Zemel, PhD, Department of Pediatrics, Children's Hospital of Philadelphia; E. Taratuta, MD, Department of Radiology, University of Pennsylvania; S. Ibrahim, MD, MPH, MBA, Center for Health Equity Research and Promotion, Philadelphia VA Medical Center; M.B. Leonard, MD, MSCE, Department of Pediatrics, Stanford University
| | - Mary B Leonard
- From the Division of Rheumatology, and Center for Health Equity Research and Promotion, Corporal Michael J. Crescenz VA Medical Center; Department of Epidemiology, Biostatistics, and Informatics, and the Department of Radiology, University of Pennsylvania; Department of Pediatrics, and Center for Pediatric Clinical Effectiveness, Children's Hospital of Philadelphia, Philadelphia, Pennsylvania; Department of Pediatrics, Stanford University, Palo Alto, California, USA.,J.F. Baker, MD, MSCE, Division of Rheumatology, Corporal Michael J. Crescenz VA Medical Center, Division of Rheumatology, and the Department of Epidemiology, Biostatistics, and Informatics, University of Pennsylvania; J. Long, PhD, Department of Pediatrics, Stanford University; S. Mostoufi-Moab, MD, MSCE, Department of Pediatrics, Children's Hospital of Philadelphia; M. Denburg, MD, MSCE, Department of Epidemiology, Biostatistics, and Informatics, University of Pennsylvania, Department of Pediatrics, and the Center for Pediatric Clinical Effectiveness, Children's Hospital of Philadelphia; E. Jorgenson, MPH, Department of Epidemiology, Biostatistics, and Informatics, University of Pennsylvania; P. Sharma, BA, Division of Rheumatology, Corporal Michael J. Crescenz VA Medical Center; B.S. Zemel, PhD, Department of Pediatrics, Children's Hospital of Philadelphia; E. Taratuta, MD, Department of Radiology, University of Pennsylvania; S. Ibrahim, MD, MPH, MBA, Center for Health Equity Research and Promotion, Philadelphia VA Medical Center; M.B. Leonard, MD, MSCE, Department of Pediatrics, Stanford University
| |
Collapse
|
31
|
Farr JN, Dimitri P. The Impact of Fat and Obesity on Bone Microarchitecture and Strength in Children. Calcif Tissue Int 2017; 100:500-513. [PMID: 28013362 PMCID: PMC5395331 DOI: 10.1007/s00223-016-0218-3] [Citation(s) in RCA: 60] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/31/2016] [Accepted: 12/10/2016] [Indexed: 12/15/2022]
Abstract
A complex interplay of genetic, environmental, hormonal, and behavioral factors affect skeletal development, several of which are associated with childhood fractures. Given the rise in obesity worldwide, it is of particular concern that excess fat accumulation during childhood appears to be a risk factor for fractures. Plausible explanations for this higher fracture risk include a greater propensity for falls, greater force generation upon fall impact, unhealthy lifestyle habits, and excessive adipose tissue that may have direct or indirect detrimental effects on skeletal development. To date, there remains little resolution or agreement about the impact of obesity and adiposity on skeletal development as well as the mechanisms underpinning these changes. Limitations of imaging modalities, short duration of follow-up in longitudinal studies, and differences among cohorts examined may all contribute to conflicting results. Nonetheless, a linear relationship between increasing adiposity and skeletal development seems unlikely. Fat mass may confer advantages to the developing cortical and trabecular bone compartments, provided that gains in fat mass are not excessive. However, when fat mass accumulation reaches excessive levels, unfavorable metabolic changes may impede skeletal development. Mechanisms underpinning these changes may relate to changes in the hormonal milieu, with adipokines potentially playing a central role, but again findings have been confounding. Changes in the relationship between fat and bone also appear to be age and sex dependent. Clearly, more work is needed to better understand the controversial impact of fat and obesity on skeletal development and fracture risk during childhood.
Collapse
Affiliation(s)
- Joshua N Farr
- Robert and Arlene Kogod Center on Aging and Endocrine Research Unit, Mayo Clinic College of Medicine, 200 First Street SW, Rochester, MN, 55905, USA.
| | - Paul Dimitri
- The Academic Unit of Child Health, Department of Paediatric Endocrinology, Sheffield Children's NHS Foundation Trust, University of Sheffield, Western Bank, Sheffield, S10 2TH, UK.
| |
Collapse
|
32
|
van Leeuwen J, Koes BW, Paulis WD, van Middelkoop M. Differences in bone mineral density between normal-weight children and children with overweight and obesity: a systematic review and meta-analysis. Obes Rev 2017; 18:526-546. [PMID: 28273691 DOI: 10.1111/obr.12515] [Citation(s) in RCA: 73] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/26/2016] [Revised: 11/24/2016] [Accepted: 12/13/2016] [Indexed: 01/09/2023]
Abstract
OBJECTIVE This study examines the differences in bone mineral density between normal-weight children and children with overweight or obesity. METHODS A systematic review and meta-analysis of observational studies (published up to 22 June 2016) on the differences in bone mineral density between normal-weight children and overweight and obese children was performed. Results were pooled when possible and mean differences (MDs) were calculated between normal-weight and overweight and normal-weight and obese children for bone content and density measures at different body sites. RESULTS Twenty-seven studies, with a total of 5,958 children, were included. There was moderate and high quality of evidence that overweight (MD 213 g; 95% confidence interval [CI] 166, 261) and obese children (MD 329 g; 95%CI [229, 430]) have a significantly higher whole body bone mineral content than normal-weight children. Similar results were found for whole body bone mineral density. Sensitivity analysis showed that the association was stronger in girls. CONCLUSIONS Overweight and obese children have a significantly higher bone mineral density compared with normal-weight children. Because there was only one study included with a longitudinal design, the long-term impact of childhood overweight and obesity on bone health at adulthood is not clear.
Collapse
Affiliation(s)
- J van Leeuwen
- Department of General Practice, Erasmus MC, University Medical Center, Rotterdam, The Netherlands
| | - B W Koes
- Department of General Practice, Erasmus MC, University Medical Center, Rotterdam, The Netherlands
| | - W D Paulis
- Department of General Practice, Erasmus MC, University Medical Center, Rotterdam, The Netherlands
| | - M van Middelkoop
- Department of General Practice, Erasmus MC, University Medical Center, Rotterdam, The Netherlands
| |
Collapse
|
33
|
Kelley JC, Crabtree N, Zemel BS. Bone Density in the Obese Child: Clinical Considerations and Diagnostic Challenges. Calcif Tissue Int 2017; 100:514-527. [PMID: 28105511 PMCID: PMC5395312 DOI: 10.1007/s00223-016-0233-4] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/10/2016] [Accepted: 12/29/2016] [Indexed: 12/29/2022]
Abstract
The prevalence of obesity in children has reached epidemic proportions. Concern about bone health in obese children, in part, derives from the potentially increased fracture risk associated with obesity. Additional risk factors that affect bone mineral accretion, may also contribute to obesity, such as low physical activity and nutritional factors. Consequences of obesity, such as inflammation, insulin resistance, and non-alcoholic fatty liver disease, may also affect bone mineral acquisition, especially during the adolescent years when rapid increases in bone contribute to attaining peak bone mass. Further, numerous pediatric health conditions are associated with excess adiposity, altered body composition, or endocrine disturbances that can affect bone accretion. Thus, there is a multitude of reasons for considering clinical assessment of bone health in an obese child. Multiple diagnostic challenges affect the measurement of bone density and its interpretation. These include greater precision error, difficulty in positioning, and the effects of increased lean and fat tissue on bone health outcomes. Future research is required to address these issues to improve bone health assessment in obese children.
Collapse
Affiliation(s)
- Jennifer C Kelley
- Division of Endocrinology and Diabetes, Monroe Carell, Jr Children's Hospital at Vanderbilt, Vanderbilt University School of Medicine, Nashville, TN, 37232, USA
| | - Nicola Crabtree
- Department of Endocrinology and Diabetes, Birmingham Children's Hospital, Birmingham, UK
| | - Babette S Zemel
- Division of Gastroenterology, Hepatology and Nutrition, The Children's Hospital of Philadelphia, University of Pennsylvania Perelman School of Medicine, 3535 Market Street, Room 1560, Philadelphia, PA, 19104, USA.
| |
Collapse
|
34
|
Wong AL, Meals CG, Ruff CB. Computed tomographic analysis of the internal structure of the metacarpals and its implications for hand use, pathology, and surgical intervention. Anat Sci Int 2017; 93:231-237. [PMID: 28341969 DOI: 10.1007/s12565-017-0400-3] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2016] [Accepted: 03/15/2017] [Indexed: 10/19/2022]
Abstract
The variation of bone structure and biomechanics between the metacarpals is not well characterized. It was hypothesized that their structure would reflect their common patterns of use (i.e., patterns of hand grip), specifically that trabecular bone density would be greater on the volar aspect of all metacarpal bases, that this would be most pronounced in the thumb, and that the thumb diaphysis would have the greatest bending strength. Cross-sections at basal and mid-diaphyseal locations of 50 metacarpals from 10 human hands were obtained by peripheral quantitative computed tomography. The volar and dorsal trabecular densities of each base were measured and characterized using the volar/dorsal density ratio. The polar stress-strain index (SSIp), a surrogate measure of torsional/bending strength, was measured for each diaphysis and standardized for bone length and mass. Comparisons were made using mixed-model analyses of variance (ANOVAs) and post hoc tests. Volar/dorsal trabecular density ratios showed even distribution in all metacarpal bases except for the thumb, which showed greater values on the volar aspect. The thumb, second, and third metacarpals all had high bending strength (SSIp), but the thumb's SSIp relative to its length and trabecular mass was much higher than those of the other metacarpals. Trabecular density of the metacarpal bases was evenly distributed except in the thumb, which also showed higher bending strength relative to its length and mass. Understanding of how these indicators of strength differ across metacarpals may improve both fracture diagnosis and treatment and lays the groundwork for investigating changes with age, hand dominance, and occupation.
Collapse
Affiliation(s)
- Alison L Wong
- Center for Bioengineering Innovation and Design, Johns Hopkins University, 3400 N. Charles Street, Clark Hall, Suite 200, Baltimore, MD, 21218, USA. .,Division of Plastic and Reconstructive Surgery, Dalhousie University, Room 4714 Halifax Infirmary Site, 1796 Summer Street, Halifax, NS, B3H 3A7, Canada.
| | - Clifton G Meals
- The Curtis National Hand Center, MedStar Union Memorial Hospital, 3333 North Calvert Street, Baltimore, MD, 21218, USA
| | - Christopher B Ruff
- Center for Functional Anatomy and Evolution, Johns Hopkins University School of Medicine, 1830 E. Monument Street, Room 302, Baltimore, MD, 21205, USA
| |
Collapse
|
35
|
Sioen I, Lust E, De Henauw S, Moreno LA, Jiménez-Pavón D. Associations Between Body Composition and Bone Health in Children and Adolescents: A Systematic Review. Calcif Tissue Int 2016; 99:557-577. [PMID: 27484027 DOI: 10.1007/s00223-016-0183-x] [Citation(s) in RCA: 68] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/11/2016] [Accepted: 07/22/2016] [Indexed: 12/18/2022]
Abstract
More clarification on the associations between children's and adolescents' lean and fat mass (LM and FM) on the one hand and their bone health on the other hand is needed, given the rising prevalence of overweight and obesity in this population. This systematic literature review aimed to describe the current evidence on these associations. Data sources were Medline/PubMed, EMBASE, CINAHL and The Cochrane Library (up to November 2014). Search items included LM, FM, children and adolescents (0-18 years), bone health measured with dual-energy X-ray absorptiometry and peripheral quantitative computed tomography (pQCT) and search items concerning study design: observational and longitudinal studies. The study populations were healthy children and adolescents including obese children. Children with other diseases and clinical series of study subjects were excluded. Based on the studies included in this review (n = 19), there is a consensus that the contribution of LM to the variance of the different bone parameters is larger than the contribution of FM and that an increase in LM is associated with an increase in bone parameters. Most of the studies indicated that the increase in bone parameters seen in overweight and obese children and adolescents is due to an increase in LM and not to greater FM. The results on the association between body fat and bone parameters were contradictory and depended on children's age and sex. Still more data from studies with a longitudinal study design using (high resolution) pQCT and a representative sample are needed to get further insight in the associations between body fat and bone parameters in children, specifically concerning differences in sex, skeletal site and fat depots.
Collapse
Affiliation(s)
- I Sioen
- Department of Public Health, Ghent University, UZ 4K3, De Pintelaan 185, 9000, Ghent, Belgium.
- Research Foundation Flanders, Brussels, Belgium.
| | - E Lust
- Department of Public Health, Ghent University, UZ 4K3, De Pintelaan 185, 9000, Ghent, Belgium
| | - S De Henauw
- Department of Public Health, Ghent University, UZ 4K3, De Pintelaan 185, 9000, Ghent, Belgium
| | - L A Moreno
- GENUD (Growth, Exercise, Nutrition and Development) Research Group, Facultad de Ciencias de la Salud, Instituto Agroalimentario de Aragón (IA2), Instituto de Investigación Sanitaria Aragón (IIS Aragón), Centro de Investigación Biomédica en Red de Fisiopatología de la Obesidad y Nutrición (CIBERObn), Universidad de Zaragoza, Saragossa, Spain
| | - D Jiménez-Pavón
- GALENO Research Group, Department of Physical Education, University of Cádiz, Puerto Real, Cádiz, Spain
| |
Collapse
|
36
|
Skiba G, Sobol M, Raj S. Bone mineralization, geometry and strength in pigs growing from 56 to 115 day of life as affected by body fatness. JOURNAL OF ANIMAL AND FEED SCIENCES 2016. [DOI: 10.22358/jafs/67367/2016] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
37
|
Stagi S, Cavalli L, Cavalli T, de Martino M, Brandi ML. Peripheral quantitative computed tomography (pQCT) for the assessment of bone strength in most of bone affecting conditions in developmental age: a review. Ital J Pediatr 2016; 42:88. [PMID: 27670687 PMCID: PMC5037897 DOI: 10.1186/s13052-016-0297-9] [Citation(s) in RCA: 62] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/21/2016] [Accepted: 09/15/2016] [Indexed: 12/13/2022] Open
Abstract
Peripheral quantitative computed tomography provides an automatical scan analysis of trabecular and cortical bone compartments, calculating not only their bone mineral density (BMD), but also bone geometrical parameters, such as marrow and cortical Cross-Sectional Area (CSA), Cortical Thickness (CoTh), both periosteal and endosteal circumference, as well as biomechanical parameters like Cross-Sectional Moment of Inertia (CSMI), a measure of bending, polar moment of inertia, indicating bone strength in torsion, and Strength Strain Index (SSI). Also CSA of muscle and fat can be extracted. Muscles, which are thought to stimulate bones to adapt their geometry and mineral content, are determinant to preserve or increase bone strength; thus, pQCT provides an evaluation of the functional 'muscle-bone unit', defined as BMC/muscle CSA ratio. This functional approach to bone densitometry can establish if bone strength is normally adapted to the muscle force, and if muscle force is adequate for body size, providing more detailed insights to targeted strategies for the prevention and treatment of bone fragility. The present paper offers an extensive review of technical features of pQCT and its possible clinical application in the diagnostic of bone status as well as in the monitoring of the skeleton's health follow-up.
Collapse
Affiliation(s)
- Stefano Stagi
- Health Sciences Department, University of Florence, Anna Meyer Children’s University Hospital, viale Pieraccini 24, 50139 Florence, Italy
| | - Loredana Cavalli
- Department of Surgery and Translational Medicine, Endocrinology Unit, University of Florence, Florence, Italy
| | - Tiziana Cavalli
- Department of Surgery and Translational Medicine, Emergency and Digestive Surgery with Oncological and Functional Address Unit, University of Florence, Florence, Italy
| | - Maurizio de Martino
- Health Sciences Department, University of Florence, Anna Meyer Children’s University Hospital, viale Pieraccini 24, 50139 Florence, Italy
| | - Maria Luisa Brandi
- Department of Surgery and Translational Medicine, Endocrinology Unit, University of Florence, Florence, Italy
| |
Collapse
|
38
|
Glass NA, Torner JC, Letuchy EM, Burns TL, Janz KF, Eichenberger Gilmore JM, Schlechte JA, Levy SM. The Relationship Between Greater Prepubertal Adiposity, Subsequent Age of Maturation, and Bone Strength During Adolescence. J Bone Miner Res 2016; 31:1455-65. [PMID: 26861036 PMCID: PMC4960659 DOI: 10.1002/jbmr.2809] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/07/2015] [Revised: 01/28/2016] [Accepted: 02/06/2016] [Indexed: 11/07/2022]
Abstract
This longitudinal study investigated whether greater prepubertal adiposity was associated with subsequent timing of maturation and bone strength during adolescence in 135 girls and 123 boys participating in the Iowa Bone Development Study. Greater adiposity was defined using body mass index (BMI) data at age 8 years to classify participants as overweight (OW, ≥85th percentile for age and sex) or healthy weight (HW). Maturation was defined as the estimated age of peak height velocity (PHV) based on a series of cross-sectional estimates. Measurements were taken at ages 11, 13, 15, and 17 years for estimates of body composition by dual-energy X-ray absorptiometry (DXA), bone compression (bone strength index), and torsion strength (polar strength-strain index) at the radius and tibia by pQCT, and femoral neck bending strength (section modulus) by hip structural analysis. Bone strength in OW versus HW were evaluated by fitting sex-specific linear mixed models that included centered age (visit age - grand mean age of cohort) as the time variable and adjusted for change in fat mass, and limb length in model 1. Analyses were repeated using biological age (visit age - age PHV) as the time variable for model 1 with additional adjustment for lean mass in model 2. BMI was negatively associated with age of maturation (p < 0.05). OW versus HW girls had significantly greater bone strength (p < 0.001) in model 1, whereas OW versus HW boys had significantly greater bone strength (p < 0.001) at the tibia and femoral neck but not radius (p > 0.05). Analyses were repeated using biological age, which yielded reduced parameter estimates for girls but similar results for boys (model 1.) Differences were no longer present after adjustment for lean mass (model 2) in girls (p > 0.05) whereas differences at the tibia were sustained in boys (p < 0.05). These findings demonstrate sex- and site-specific differences in the associations between adiposity, maturation, and bone strength. © 2016 American Society for Bone and Mineral Research.
Collapse
Affiliation(s)
- Natalie A Glass
- Department of Orthopedics & Rehabilitation, The University of Iowa Hospitals & Clinics, Iowa City, IA, USA
| | - James C Torner
- Department of Epidemiology, College of Public Health, The University of Iowa, Iowa City, IA, USA
| | - Elena M Letuchy
- Department of Epidemiology, College of Public Health, The University of Iowa, Iowa City, IA, USA
| | - Trudy L Burns
- Department of Epidemiology, College of Public Health, The University of Iowa, Iowa City, IA, USA
| | - Kathleen F Janz
- Department of Epidemiology, College of Public Health, The University of Iowa, Iowa City, IA, USA.,Department of Health and Human Physiology, College of Liberal Arts and Sciences, The University of Iowa, Iowa City, IA, USA
| | - Julie M Eichenberger Gilmore
- Department of Epidemiology, College of Public Health, The University of Iowa, Iowa City, IA, USA.,Department of Preventive & Community Dentistry, The University of Iowa College of Dentistry & Dental Clinics, Iowa City, IA, USA
| | - Janet A Schlechte
- Department of Internal Medicine, The University of Iowa Hospitals & Clinics; Iowa City, IA, USA
| | - Steven M Levy
- Department of Epidemiology, College of Public Health, The University of Iowa, Iowa City, IA, USA.,Department of Preventive & Community Dentistry, The University of Iowa College of Dentistry & Dental Clinics, Iowa City, IA, USA
| |
Collapse
|
39
|
BMI and BMD: The Potential Interplay between Obesity and Bone Fragility. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2016; 13:ijerph13060544. [PMID: 27240395 PMCID: PMC4924001 DOI: 10.3390/ijerph13060544] [Citation(s) in RCA: 122] [Impact Index Per Article: 13.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/27/2016] [Revised: 05/12/2016] [Accepted: 05/19/2016] [Indexed: 01/05/2023]
Abstract
Recent evidence demonstrating an increased fracture risk among obese individuals suggests that adipose tissue may negatively impact bone health, challenging the traditional paradigm of fat mass playing a protective role towards bone health. White adipose tissue, far from being a mere energy depot, is a dynamic tissue actively implicated in metabolic reactions, and in fact secretes several hormones called adipokines and inflammatory factors that may in turn promote bone resorption. More specifically, Visceral Adipose Tissue (VAT) may potentially prove detrimental. It is widely acknowledged that obesity is positively associated to many chronic disorders such as metabolic syndrome, dyslipidemia and type 2 diabetes, conditions that could themselves affect bone health. Although aging is largely known to decrease bone strength, little is yet known on the mechanisms via which obesity and its comorbidities may contribute to such damage. Given the exponentially growing obesity rate in recent years and the increased life expectancy of western countries it appears of utmost importance to timely focus on this topic.
Collapse
|
40
|
Avila ML, Pullenayegum E, Williams S, Shammas A, Stimec J, Sochett E, Marr K, Brandão LR. Timing of low bone mineral density and predictors of bone mineral density trajectory in children on long-term warfarin: a longitudinal study. Osteoporos Int 2016; 27:1547-1557. [PMID: 26572757 DOI: 10.1007/s00198-015-3411-8] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/14/2015] [Accepted: 11/05/2015] [Indexed: 01/06/2023]
Abstract
UNLABELLED We studied bone mineral density (BMD) of children exposed to long-term warfarin. BMD Z-scores ≤ -2.0 were estimated to occur in less than one fifth of the patients after 10 years of warfarin exposure, and BMI and growth hormone deficiency predicted BMD changes over time. These predictors can help identify high-risk patients. INTRODUCTION Children with chronic diseases are at increased risk of developing thrombosis, which may require long-term warfarin therapy. Warfarin could further jeopardize the bone health of a population already at risk for bone fragility. Our objective was to investigate the occurrence and timing of low bone mineral density (BMD) and the predictors that influence BMD trajectory in children receiving warfarin for >1 year. METHODS We analyzed the results of an institutional protocol that includes dual-energy X-ray absorptiometry, with or without spinal X-rays and laboratory biomarkers, as required. RESULTS Low BMD (age, sex, race, and height-for-age-Z-score adjusted BMD Z-score ≤ -2.0) was detected in 13 % (9/70) of the patients at some point during their follow-up; these patients were more likely to have complex underlying medical conditions and low body mass index (BMI) percentile. BMD Z-scores remained within normal range in 87 % of children. Survival analysis showed that the estimated 10-year abnormal BMD-free rate for the entire group was 81 % (95 % confidence interval [CI] 69 to 93 %). Trajectory analysis revealed that BMI percentiles at baseline and growth hormone deficiency (GHD) were associated with lower BMD Z-scores at the first assessment, whereas baseline BMI percentile was the only predictor of BMD Z-score over time. CONCLUSIONS Our findings identified BMI and GHD as risk factors influencing BMD in children exposed to long-term warfarin, creating an opportunity for early detection and intervention in these patients.
Collapse
Affiliation(s)
- M L Avila
- Division of Hematology/Oncology, Department of Pediatrics, The Hospital for Sick Children, University of Toronto, Toronto, M5G-1X8, ON, Canada
| | - E Pullenayegum
- Child Health Evaluative Sciences, The Hospital for Sick Children, University of Toronto, Toronto, M5G-1X8, ON, Canada
| | - S Williams
- Division of Hematology/Oncology, Department of Pediatrics, The Hospital for Sick Children, University of Toronto, Toronto, M5G-1X8, ON, Canada
| | - A Shammas
- Department of Diagnostic Imaging, The Hospital for Sick Children, University of Toronto, Toronto, M5G-1X8, ON, Canada
| | - J Stimec
- Department of Diagnostic Imaging, The Hospital for Sick Children, University of Toronto, Toronto, M5G-1X8, ON, Canada
| | - E Sochett
- Division of Endocrinology, Department of Pediatrics, The Hospital for Sick Children, University of Toronto, Toronto, M5G-1X8, ON, Canada
| | - K Marr
- Division of Hematology/Oncology, Department of Pediatrics, The Hospital for Sick Children, University of Toronto, Toronto, M5G-1X8, ON, Canada
| | - L R Brandão
- Division of Hematology/Oncology, Department of Pediatrics, The Hospital for Sick Children, University of Toronto, Toronto, M5G-1X8, ON, Canada.
| |
Collapse
|
41
|
Correa-Rodríguez M, Rio-Valle JS, González-Jiménez E, Rueda-Medina B. The Effects of Body Composition, Dietary Intake, and Physical Activity on Calcaneus Quantitative Ultrasound in Spanish Young Adults. Biol Res Nurs 2016; 18:439-44. [PMID: 26933147 DOI: 10.1177/1099800416634884] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Identifying modifiable factors that influence bone gain during early adulthood in order to maximize peak bone mass (PBM) is a potential primary strategy in the prevention of osteoporosis in later life. The present study examined the relationships between body composition, dietary intake and physical activity (PA), and bone health measured by quantitative ultrasound (QUS) at the right calcaneus. The study population consisted of 781 Spanish men and women (age 19.1 ± 3.6). Body composition, dietary intake, PA, and bone strength were assessed. Calcaneus QUS was significantly correlated with age, height, weight, body mass index, lean mass, fat mass, protein intake, and moderate and high PA. No significant correlation between calcium intake and broadband ultrasound attenuation (BUA, dB/MHz) was detected. Linear regression analyses revealed that independent variables accounted for 18.8% of the total variance of calcaneus BUA (p = .000). Lean mass and high PA were significant predictors of BUA variance in young adults (p = .000 and p = .045, respectively). Results indicate that lifestyle choices and their consequences during early adulthood could influence bone mass, particularly PA and lean mass. Furthermore, this study provides novel data about bone mass as indicated by the QUS measurements at the time of PBM acquisition.
Collapse
|
42
|
Moon RJ, Lim A, Farmer M, Segaran A, Clarke NMP, Dennison EM, Harvey NC, Cooper C, Davies JH. Differences in childhood adiposity influence upper limb fracture site. Bone 2015; 79:88-93. [PMID: 26027507 PMCID: PMC4521307 DOI: 10.1016/j.bone.2015.05.031] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/20/2015] [Revised: 05/08/2015] [Accepted: 05/21/2015] [Indexed: 12/30/2022]
Abstract
INTRODUCTION Although it has been suggested that overweight and obese children have an increased risk of fracture, recent studies in post-menopausal women have shown that the relationship between obesity and fracture risk varies by fracture site. We therefore assessed whether adiposity and overweight/obesity prevalence differed by upper limb fracture site in children. METHODS Height, weight, BMI, triceps and subscapular skinfold thickness (SFT) were measured in children aged 3-18 years with an acute upper limb fracture. Data was compared across three fracture sites (hand, forearm and upper arm/shoulder [UA]), and to published reference data. RESULTS 401 children (67.1% male, median age 11.71 years, range 3.54-17.27 years) participated. 34.2%, 50.6% and 15.2% had fractures of the hand, forearm and UA, respectively. Children with forearm fractures had higher weight, BMI, subscapular SFT and fat percentage z-scores than those with UA fractures (p<0.05 for all). SFT and fat percentage z-scores were also higher in children with forearm fractures compared to hand fractures, but children with hand and UA fractures did not differ. Overweight and obesity prevalence was higher in children with forearm fractures (37.6%) than those with UA fractures (19.0%, p=0.009). This prevalence was also higher than the published United Kingdom population prevalence (27.9%, p=0.003), whereas that of children with either UA (p=0.13) or hand fractures (29.1%, p=0.76) did not differ. These differences in anthropometry and overweight/obesity prevalence by fracture site were evident in boys, but not present in girls. CONCLUSION Measurements of adiposity and the prevalence of overweight/obesity differ by fracture site in children, and in particular boys, with upper limb fractures.
Collapse
Affiliation(s)
- Rebecca J Moon
- Paediatric Endocrinology, University Hospital Southampton NHS Foundation Trust, Tremona Road, Southampton SO16 6YD, UK; MRC Lifecourse Epidemiology Unit, University of Southampton, Southampton General Hospital, Tremona Road, Southampton SO16 6YD, UK.
| | - Adelynn Lim
- Paediatric Endocrinology, University Hospital Southampton NHS Foundation Trust, Tremona Road, Southampton SO16 6YD, UK
| | - Megan Farmer
- Paediatric Endocrinology, University Hospital Southampton NHS Foundation Trust, Tremona Road, Southampton SO16 6YD, UK
| | - Avinash Segaran
- Paediatric Endocrinology, University Hospital Southampton NHS Foundation Trust, Tremona Road, Southampton SO16 6YD, UK
| | - Nicholas M P Clarke
- Paediatric Orthopaedics, University Hospital Southampton NHS Foundation Trust, Tremona Road, Southampton SO16 6YD, UK
| | - Elaine M Dennison
- MRC Lifecourse Epidemiology Unit, University of Southampton, Southampton General Hospital, Tremona Road, Southampton SO16 6YD, UK
| | - Nicholas C Harvey
- MRC Lifecourse Epidemiology Unit, University of Southampton, Southampton General Hospital, Tremona Road, Southampton SO16 6YD, UK; NIHR Southampton Biomedical Research Centre, University of Southampton and University Hospital Southampton NHS Foundation Trust, Tremona Road, Southampton SO16 6YD, UK
| | - Cyrus Cooper
- MRC Lifecourse Epidemiology Unit, University of Southampton, Southampton General Hospital, Tremona Road, Southampton SO16 6YD, UK; NIHR Southampton Biomedical Research Centre, University of Southampton and University Hospital Southampton NHS Foundation Trust, Tremona Road, Southampton SO16 6YD, UK; NIHR Musculoskeletal Research Unit, University of Oxford, Nuffield Orthopaedic Centre, Windmill Road, Oxford OX3 7HE, UK
| | - Justin H Davies
- Paediatric Endocrinology, University Hospital Southampton NHS Foundation Trust, Tremona Road, Southampton SO16 6YD, UK
| |
Collapse
|
43
|
Moon RJ, Cole ZA, Crozier SR, Curtis EM, Davies JH, Gregson CL, Robinson SM, Dennison EM, Godfrey KM, Inskip HM, Cooper C, Harvey NC. Longitudinal changes in lean mass predict pQCT measures of tibial geometry and mineralisation at 6-7 years. Bone 2015; 75:105-10. [PMID: 25703480 PMCID: PMC4556067 DOI: 10.1016/j.bone.2015.02.015] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/20/2014] [Revised: 12/19/2014] [Accepted: 02/12/2015] [Indexed: 11/27/2022]
Abstract
BACKGROUND Studies in childhood suggest that both body composition and early postnatal growth are associated with bone mineral density (BMD). However, little is known of the relationships between longitudinal changes in fat (FM) and lean mass (LM) and bone development in pre-pubertal children. We therefore investigated these associations in a population-based mother-offspring cohort, the Southampton Women's Survey. METHODS Total FM and LM were assessed at birth and 6-7 years of age by dual-energy x-ray absorptiometry (DXA). At 6-7 years, total cross-sectional area (CSA) and trabecular volumetric BMD (vBMD) at the 4% site (metaphysis) of the tibia was assessed using peripheral quantitative computed tomography [pQCT (Stratec XCT-2000)]. Total CSA, cortical CSA, cortical vBMD and strength-strain index (SSI) were measured at the 38% site (diaphysis). FM, LM and bone parameters were adjusted for age and sex and standardised to create within-cohort z-scores. Change in LM (ΔLM) or FM (ΔFM) was represented by change in z-score from birth to 7 years old and conditioned on the birth measurement. Linear regression was used to explore the associations between ΔLM or ΔFM and standardised pQCT outcomes, before and after mutual adjustment and for linear growth. The β-coefficient represents SD change in outcome per unit SD change in predictor. RESULTS DXA at birth, in addition to both DXA and pQCT scans at 6-7 years, were available for 200 children (48.5% male). ΔLM adjusted for ΔFM was positively associated with tibial total CSA at both the 4% (β=0.57SD/SD, p<0.001) and 38% sites (β=0.53SD/SD, p<0.001), cortical CSA (β=0.48SD/SD, p<0.001) and trabecular vBMD (β=0.30SD/SD, p<0.001), but not with cortical vBMD. These relationships persisted after adjustment for linear growth. In contrast, ΔFM adjusted for ΔLM was only associated with 38% total and cortical CSA, which became non-significant after adjustment for linear growth. CONCLUSION In this study, gain in childhood LM was positively associated with bone size and trabecular vBMD at 6-7 years of age. In contrast, no relationships between change in FM and bone were observed, suggesting that muscle growth, rather than accrual of fat mass, may be a more important determinant of childhood bone development.
Collapse
Affiliation(s)
- Rebecca J Moon
- MRC Lifecourse Epidemiology Unit, University of Southampton, Southampton General Hospital, Southampton SO16 6YD, UK; Paediatric Endocrinology, University Hospital Southampton NHS Foundation Trust, Southampton SO16 6YD, UK
| | - Zoe A Cole
- MRC Lifecourse Epidemiology Unit, University of Southampton, Southampton General Hospital, Southampton SO16 6YD, UK; Rheumatology, Salisbury Hospital NHS Foundation Trust, Salisbury, UK
| | - Sarah R Crozier
- MRC Lifecourse Epidemiology Unit, University of Southampton, Southampton General Hospital, Southampton SO16 6YD, UK
| | - Elizabeth M Curtis
- MRC Lifecourse Epidemiology Unit, University of Southampton, Southampton General Hospital, Southampton SO16 6YD, UK
| | - Justin H Davies
- Paediatric Endocrinology, University Hospital Southampton NHS Foundation Trust, Southampton SO16 6YD, UK
| | - Celia L Gregson
- Musculoskeletal Research Unit, School of Clinical Sciences, University of Bristol, Learning & Research Building, Southmead Hospital, Bristol BS10 5NB, UK
| | - Sian M Robinson
- MRC Lifecourse Epidemiology Unit, University of Southampton, Southampton General Hospital, Southampton SO16 6YD, UK
| | - Elaine M Dennison
- MRC Lifecourse Epidemiology Unit, University of Southampton, Southampton General Hospital, Southampton SO16 6YD, UK
| | - Keith M Godfrey
- MRC Lifecourse Epidemiology Unit, University of Southampton, Southampton General Hospital, Southampton SO16 6YD, UK; NIHR Southampton Biomedical Research Centre, University of Southampton and University Hospital Southampton NHS Foundation Trust, Tremona Road, Southampton SO16 6YD, UK
| | - Hazel M Inskip
- MRC Lifecourse Epidemiology Unit, University of Southampton, Southampton General Hospital, Southampton SO16 6YD, UK
| | - Cyrus Cooper
- MRC Lifecourse Epidemiology Unit, University of Southampton, Southampton General Hospital, Southampton SO16 6YD, UK; NIHR Southampton Biomedical Research Centre, University of Southampton and University Hospital Southampton NHS Foundation Trust, Tremona Road, Southampton SO16 6YD, UK; NIHR Musculoskeletal Biomedical Research Unit, University of Oxford, Nuffield Orthopedic Centre, Headington, Oxford OX3 7HE, UK
| | - Nicholas C Harvey
- MRC Lifecourse Epidemiology Unit, University of Southampton, Southampton General Hospital, Southampton SO16 6YD, UK; NIHR Southampton Biomedical Research Centre, University of Southampton and University Hospital Southampton NHS Foundation Trust, Tremona Road, Southampton SO16 6YD, UK.
| |
Collapse
|
44
|
Dimitri P, Jacques RM, Paggiosi M, King D, Walsh J, Taylor ZA, Frangi AF, Bishop N, Eastell R. Leptin may play a role in bone microstructural alterations in obese children. J Clin Endocrinol Metab 2015; 100:594-602. [PMID: 25412414 PMCID: PMC4318898 DOI: 10.1210/jc.2014-3199] [Citation(s) in RCA: 54] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
CONTEXT Bone mass is low and fracture risk is higher in obese children. Hormonal changes in relation to skeletal microstructure and biomechanics have not been studied in obese children. OBJECTIVE The objective of the study was to ascertain the relationships of obesity-related changes in hormones with skeletal microstructure and biomechanics. DESIGN High resolution peripheral quantitative computed tomography (HR-pQCT) was used to compare three-dimensional cortical and trabecular microstructure and biomechanics at load-bearing and nonload bearing sites in obese and lean children. The relationship between leptin, adiponectin, testosterone, estrogen, osteocalcin and sclerostin and skeletal microstructure was also determined. SETTING The study was conducted at a tertiary pediatric endocrine unit in the United Kingdom. PARTICIPANTS Obese and lean children were matched by gender and pubertal stage. RESULTS Radial cortical porosity (mean difference -0.01 [95% CI: -0.02, -0.004], P = .003) and cortical pore diameter (mean difference -0.005 mm [95% CI: -0.009, -0.001], P = .011) were lower in obese children. Tibial trabecular thickness was lower (mean difference -0.009 mm [95% CI: -0.014, -0.004], P = .003), and trabecular number was higher (mean difference 0.23 mm(-1) [95% CI: 0.08, 0.38], P = .004) in obese children. At the radius, fat mass percentage negatively correlated with cortical porosity (r = -0.57, P < .001) and pore diameter (r = -0.38, P = .02) and negatively correlated with trabecular thickness (r = -0.62, P < .001) and trabecular von Mises stress (r = -0.39, P = .019) at the tibia. No difference was observed in the other biomechanical parameters of the radius and tibia. Leptin was higher in obese children (805.3 ± 440.6 pg/ml vs 98.1 ± 75.4 pg/ml, P < .001) and was inversely related to radial cortical porosity (r = 0.60, 95% CI: [-0.80, -0.30], P < .001), radial cortical pore diameter (r = 0.51, 95% CI [-0.75, -0.16], P = .002), tibial trabecular thickness (r = 0.55, 95% CI: [-0.78, -0.21], P = .001) and tibial trabecular von Mises stress (r = -0.39, 95% CI: -0.65, 0.04, P = .02). CONCLUSION Childhood obesity alters radial and tibial microstructure. Leptin may direct these changes. Despite this, the biomechanical properties of the radius and tibia do not adapt sufficiently in obese children to withstand the increased loading potential from a fall. This may explain the higher incidence of fracture in obese children.
Collapse
Affiliation(s)
- P Dimitri
- Department of Paediatric Endocrinology (P.D., D.K.), Sheffield Children's NHS Foundation Trust, Sheffield, S10 2TH, United Kingdom; School of Health and Related Research (R.M.J.), The Mellanby Centre for Bone Research (M.P., J.W., N.B., R.E.), Academic Unit of Bone Metabolism, and Centre for Computational Imaging and Simulation Technologies in Biomedicine, Department of Mechanical Engineering (Z.A.T., A.F.F.), University of Sheffield, Sheffield, S10 2TN, United Kingdom
| | | | | | | | | | | | | | | | | |
Collapse
|
45
|
Farr JN, Amin S, LeBrasseur NK, Atkinson EJ, Achenbach SJ, McCready LK, Joseph Melton L, Khosla S. Body composition during childhood and adolescence: relations to bone strength and microstructure. J Clin Endocrinol Metab 2014; 99:4641-8. [PMID: 25243571 PMCID: PMC4255129 DOI: 10.1210/jc.2014-1113] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
CONTEXT Numerous studies have examined the association of body composition with bone development in children and adolescents, but none have used micro-finite element (μFE) analysis of high-resolution peripheral quantitative computed tomography images to assess bone strength. OBJECTIVE This study sought to examine the relations of appendicular lean mass (ALM) and total body fat mass (TBFM) to bone strength (failure load) at the distal radius and tibia. DESIGN, PARTICIPANTS, AND SETTING This was a cross-sectional study of 198 healthy 8- to <15-year-old boys (n = 109) and girls (n = 89) performed in a Clinical Research Unit. RESULTS After adjusting for bone age, height, fracture history, ALM, and TBFM, multiple linear regression analyses in boys and girls, separately, showed robust positive associations between ALM and failure loads at both the distal radius (boys: β = 0.92, P < .001; girls: β = 0.66, P = .001) and tibia (boys: β = 0.96, P < .001; girls: β = 0.66, P < .001). By contrast, in both boys and girls the relationship between TBFM and failure load at the distal radius was virtually nonexistent (boys: β = -0.07; P = .284; girls: β = -0.03; P = .729). At the distal tibia, positive, albeit weak, associations were observed between TBFM and failure load in both boys (β = 0.09, P = .075) and girls (β = 0.17, P = .033). CONCLUSIONS Our data highlight the importance of lean mass for optimizing bone strength during growth, and suggest that fat mass may have differential relations to bone strength at weight-bearing vs non-weight-bearing sites in children and adolescents. These observations suggest that the strength of the distal radius does not commensurately increase with excess gains in adiposity during growth, which may result in a mismatch between bone strength and the load experienced by the distal forearm during a fall. These findings may explain, in part, why obese children are over-represented among distal forearm fracture cases.
Collapse
Affiliation(s)
- Joshua N Farr
- Division of Endocrinology, Department of Medicine (J.N.F., L.K.M., S.K.); Division of Epidemiology, Department of Health Sciences Research (S.A., L.J.M.); Division of Rheumatology, Department of Medicine (S.A.); Department of Physical Medicine and Rehabilitation (N.K.L); and Division of Biomedical Statistics and Informatics, Department of Health Sciences Research (E.J.A., S.J.A.); Mayo Clinic College of Medicine, Rochester, Minnesota, 55905
| | | | | | | | | | | | | | | |
Collapse
|
46
|
Scibora LM. Skeletal effects of bariatric surgery: examining bone loss, potential mechanisms and clinical relevance. Diabetes Obes Metab 2014; 16:1204-13. [PMID: 25132010 DOI: 10.1111/dom.12363] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/28/2014] [Revised: 07/27/2014] [Accepted: 07/29/2014] [Indexed: 02/06/2023]
Abstract
Bariatric surgery is the most effective therapeutic approach to morbid obesity, resulting in substantial weight loss and improved cardiometabolic profiles; however, a growing body of evidence suggests that bariatric procedures increase both skeletal fragility and the risk of related future fracture secondary to excessive bone loss. Prospective evidence shows that areal bone mineral density (BMD) assessed by dual energy X-ray absorptiometry (DXA) declines by as much as 14% in the proximal femoral regions, including the femoral neck and total hip, 12 months postoperatively. Lumbar spine areal BMD outcomes show greater 12-month postoperative variability across surgical procedures (-8 to +6%) and contrast with no change in volumetric BMD outcomes measured by quantitative computed tomography. Diminished mechanical loading, micronutrient deficiency and malabsorption, along with neurohormonal alterations, offer plausible underlying mechanisms to explain these observed post-bariatric bone changes, but most remain largely unsubstantiated in this population. Importantly, DXA-based skeletal imaging may have limited utility in accurately detecting bone change in people undergoing bariatric surgery; partly because excessive tissue overlying bone increases the variability of areal BMD outcomes. Moreover, a paucity of fracture and osteoporosis incidence data raises questions about whether marked post-bariatric surgery bone loss is clinically relevant or a functional adaptation to skeletal unloading. Future studies that use technology which is able to accurately capture the site-specific volumetric BMD and bone architectural changes that underpin bone strength in people undergoing bariatric surgery, that consider mechanical load, and that better quantify long-term fracture and osteoporosis incidence are necessary to understand the actual skeletal effects of bariatric surgery.
Collapse
Affiliation(s)
- L M Scibora
- Health and Human Performance Department, University of St. Thomas, St. Paul, MN, USA
| |
Collapse
|
47
|
Abstract
Skeletal health is modulated by a variety of factors, including genetic makeup, hormonal axes, and environment. Across all ages, extremes of body weight may exert a deleterious effect on bone accretion and increase fracture risk. The incidence of both anorexia nervosa and obesity, each involving extreme alterations in body composition, is rising among youth, and secondary osteoporosis is increasingly being diagnosed among affected children and adolescents. Compared with the elderly, the definition of osteoporosis that stems from any underlying condition differs for the pediatric population and special precautions are required with regard to treatment of young patients. Early recognition and management of both underweight and overweight youth and the accompanying consequences on bone and mineral metabolism are essential for preservation of skeletal health, although prevention of bone loss and optimization of bone mineral accrual remain the most important protective measures.
Collapse
Affiliation(s)
- Shara R Bialo
- Division of Pediatric Endocrinology, Hasbro Children's Hospital/Alpert Medical School of Brown University, 593 Eddy Street, MPSII, Providence, RI, 02903, USA,
| | | |
Collapse
|
48
|
Farr JN, Laddu DR, Blew RM, Lee VR, Going SB. Effects of physical activity and muscle quality on bone development in girls. Med Sci Sports Exerc 2014; 45:2332-40. [PMID: 23698240 DOI: 10.1249/mss.0b013e31829c32fe] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
INTRODUCTION Poor muscle quality and sedentary behavior are risk factors for metabolic dysfunction in children and adolescents. However, because longitudinal data are scarce, relatively little is known about how changes in muscle quality and physical activity influence bone development. PURPOSE In a 2-yr longitudinal study, we examined the effects of physical activity and changes in muscle quality on bone parameters in young girls. METHODS The sample included 248 healthy girls age 9-12 yr at baseline. Peripheral quantitative computed tomography was used to measure calf and thigh muscle density, an indicator of skeletal muscle fat content or muscle quality, as well as bone parameters at diaphyseal and metaphyseal sites of the femur and tibia. Physical activity was assessed using a validated questionnaire specific for youth. RESULTS After controlling for covariates in multiple regression models, increased calf muscle density was independently associated with greater gains in cortical (β = 0.13, P < 0.01) and trabecular (β = 0.25, P < 0.001) volumetric bone mineral density and the bone strength index (β = 0.25, P < 0.001) of the tibia. Importantly, these relationships were generalized, as similar changes were present at the femur. Associations between physical activity and changes in bone parameters were weaker than those observed for muscle density. Nevertheless, physical activity was significantly (all P < 0.05) associated with greater gains in trabecular volumetric bone mineral density and the bone strength index of the distal femur. CONCLUSIONS These findings suggest that poor muscle quality may put girls at risk for suboptimal bone development. Physical activity is associated with more optimal gains in weight-bearing bone density and strength in girls, but to a lesser extent than changes in muscle quality.
Collapse
Affiliation(s)
- Joshua N Farr
- 1College of Medicine, Mayo Clinic, Rochester, MN; 2Department of Nutritional Sciences, University of Arizona, Tucson, AZ; and 3Department of Physiological Sciences, University of Arizona, Tucson, AZ
| | | | | | | | | |
Collapse
|
49
|
Tsampalieros A, Berkenstock MK, Zemel BS, Griffin L, Shults J, Burnham JM, Baldassano RN, Leonard MB. Changes in trabecular bone density in incident pediatric Crohn's disease: a comparison of imaging methods. Osteoporos Int 2014; 25:1875-83. [PMID: 24760243 PMCID: PMC4532327 DOI: 10.1007/s00198-014-2701-x] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/31/2013] [Accepted: 03/21/2014] [Indexed: 12/30/2022]
Abstract
UNLABELLED This study of changes in dual energy x-ray absorptiometry (DXA) spine BMD following diagnosis and treatment for childhood Crohn's disease demonstrated that changes in conventional posteroanterior BMD results were confounded by impaired growth, and suggested that lateral spine measurements and strategies to estimate volumetric BMD were more sensitive to disease and treatment effects. INTRODUCTION We previously reported significant increases in peripheral quantitative CT (pQCT) measures of trabecular volumetric bone mineral density (vBMD) following diagnosis and treatment of pediatric Crohn's disease (CD). The objective of this study was to compare pQCT trabecular vBMD and three DXA measures of spine BMD in this cohort: (1) conventional posteroanterior BMD (PA-BMD), (2) PA-BMD adjusted for height Z (PA-BMDHtZ), and (3) width-adjusted volumetric BMD (WA-BMD) estimated from PA and lateral scans. METHODS Spine DXA [lumbar (L1-4) for posteroanterior and L3 for lateral] and tibia pQCT scans were obtained in 65 CD subjects (ages 7-18 years) at diagnosis and 12 months later. BMD results were converted to sex, race, and age-specific Z-scores based on reference data in >650 children (ages 5-21 years). Multivariable linear regression models identified factors associated with BMD Z-scores. RESULTS At CD diagnosis, all BMD Z-scores were lower compared with the reference children (all p values <0.01). The pQCT vBMD Z-scores (-1.46 ± 1.30) were lower compared with DXA PA-BMD (-0.75 ± 0.98), PA-BMDHtZ (-0.53 ± 0.87), and WA-BMD (-0.61 ± 1.10) among CD participants. Only PA-BMD Z-scores were correlated with height Z-scores at baseline (R = 0.47, p < 0.0001). pQCT and WA-BMD Z-scores increased significantly over 12 months to -1.04 ± 1.26 and -0.20 ± 1.14, respectively. Changes in all four BMD Z-scores were positively associated with changes in height Z-scores (p < 0.05). Glucocorticoid doses were inversely associated with changes in WA-BMD (p < 0.01) only. CONCLUSIONS Conventional and height Z-score-adjusted PA DXA methods did not demonstrate the significant increases in trabecular vBMD noted on pQCT and WA-BMD scans. WA-BMD captured glucocorticoid effects, potentially due to isolation of the vertebral body on the lateral projection. Future studies are needed to identify the BMD measure that provides greatest fracture discrimination in CD.
Collapse
Affiliation(s)
- A. Tsampalieros
- Department of Pediatrics, The Children’s Hospital of Eastern Ontario, Faculty of Medicine, University of Ottawa, 401 Smyth Road, Ottawa, ON K1H 8 L1, Canada. Department of Pediatrics, The Children’s Hospital of Philadelphia, Perelman School of Medicine, University of Pennsylvania, 3535 Market Street, Philadelphia, PA 19104, USA
| | - M. K. Berkenstock
- Department of Ophthalmology, Drexel University College of Medicine, 219 N. Broad St. 3rd Floor, Philadelphia, PA 19107, USA
| | - B. S. Zemel
- Department of Pediatrics, The Children’s Hospital of Philadelphia, Perelman School of Medicine, University of Pennsylvania, 3535 Market Street, Philadelphia, PA 19104, USA
| | - L. Griffin
- Department of Radiology, NYU School of Medicine, 550 First Ave, New York, NY 10016, USA
| | - J. Shults
- Department of Biostatistics and Epidemiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - J. M. Burnham
- Department of Pediatrics, The Children’s Hospital of Philadelphia, Perelman School of Medicine, University of Pennsylvania, 3535 Market Street, Philadelphia, PA 19104, USA
| | - R. N. Baldassano
- Department of Pediatrics, The Children’s Hospital of Philadelphia, Perelman School of Medicine, University of Pennsylvania, 3535 Market Street, Philadelphia, PA 19104, USA
| | - M. B. Leonard
- Department of Pediatrics, The Children’s Hospital of Philadelphia, Perelman School of Medicine, University of Pennsylvania, 3535 Market Street, Philadelphia, PA 19104, USA. Department of Biostatistics and Epidemiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| |
Collapse
|
50
|
|