1
|
Gavanji S, Bakhtari A, Abdel-Latif R, Bencurova E, Othman EM. Experimental approaches for induction of diabetes mellitus and assessment of antidiabetic activity: An in vitro and in vivo methodological review. Fundam Clin Pharmacol 2024; 38:842-861. [PMID: 38747157 DOI: 10.1111/fcp.13009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2023] [Revised: 02/26/2024] [Accepted: 04/25/2024] [Indexed: 11/21/2024]
Abstract
BACKGROUND Diabetes mellitus poses a global health challenge, driving the need for innovative therapeutic solutions. Experimental methods play a crucial role in evaluating the efficacy of potential antidiabetic drugs, both in vitro and in vivo. Yet concerns about reproducibility persist, necessitating comprehensive reviews. OBJECTIVES This review aims to outline experimental approaches for inducing diabetes and evaluating antidiabetic activity, synthesizing data from authoritative sources and academic literature. METHODS We conducted a systematic search of prominent databases, including PubMed, ScienceDirect, and Scopus, to identify relevant articles spanning from 1943 to the present. A total of 132 articles were selected for inclusion in this review, focusing on in vitro and in vivo experimental validations of antidiabetic treatments. RESULTS Our review highlights the diverse array of experimental methods employed for inducing diabetes mellitus and evaluating antidiabetic interventions. From cell culture assays to animal models, researchers have employed various techniques to study the effectiveness of novel therapeutic agents. CONCLUSION This review provides a comprehensive guide to experimental approaches for assessing antidiabetic activity. By synthesizing data from a range of sources, we offer valuable insights into the current methodologies used in diabetes research. Standardizing protocols and enhancing reproducibility are critical for advancing effective antidiabetic treatments.
Collapse
Affiliation(s)
- Shahin Gavanji
- Department of Plant Biotechnology, Medicinal Plants Research Centre, Islamic Azad University, Isfahan (Khorasgan) Branch, Isfahan, Iran
| | - Azizollah Bakhtari
- Department of Reproductive Biology, School of Advanced Medical Sciences and Technologies, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Rania Abdel-Latif
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Minia University, Minia, Egypt
| | - Elena Bencurova
- Department of Bioinformatics, Biocenter, University of Würzburg, Würzburg, Germany
| | - Eman M Othman
- Department of Bioinformatics, Biocenter, University of Würzburg, Würzburg, Germany
- Department of Biochemistry, Faculty of Pharmacy, Minia University, Minia, Egypt
| |
Collapse
|
2
|
Malik S, Waquar S, Idrees N, Malik A. Impending role of inflammatory markers and their specificity and sensitivity in breast cancer patients. Sci Rep 2024; 14:15117. [PMID: 38956273 PMCID: PMC11219843 DOI: 10.1038/s41598-024-65821-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2023] [Accepted: 06/24/2024] [Indexed: 07/04/2024] Open
Abstract
Cancer and related disorders are the most common cause of cancer-related mortality with the incidence of 1 in 9 among the pre-menopausal Pakistani females. among the most common ailments worldwide, indicating the importance of developing particular techniques that could help attenuate the effects of breast cancer and related outcomes. The primary aim of the current study was to review the role of inflammatory and stress markers in the development and progression of breast cancer. Four hundred ninety-eight (n = 498) patients with breast cancer and four hundred and ninety-eight (n = 498) age- and sex-matched controls were selected for this case‒control study. Serum samples were obtained, and the levels of stress and inflammatory markers, including Matrix metalloproteases (MMPs), Interleukins (ILs), Heat shock proteins (HSPs), Malondialdehyde (MDA), Nitric Oxide (NO), inducible Nitric Oxide Synthase (iNOS) and Tumour necrosis factor-alpha (TNF-α), were determined. Most (62%) patients had metastatic breast cancer (stage III or IV) with an adverse grade (65% with Grade III and 35% with Grade II). The present study showed that the levels of oxidants such as MDA, ILs, MMPs and HSPs were significantly greater, while the levels of antioxidants such as Superoxide Dismutase (SOD), Glutathione (GSH), Catalase (CAT), vitamin A, C and D were significantly lower in breast cancer patients than in controls, suggesting their diagnostic importance and role in the pathophysiology of breast cancer. Oxidants, including IL-1, HSP27 and MMP9, which are highly specific and sensitive, may be used to develop the pathophysiological pathways of metastatic breast cancer in these patients. These pathways include cell invasion, cell migration and epithelial-mesenchymal transition. Therefore, we concluded that an increase in growth factors, e.g., Vascular Endothelial Growth Factor (VEGF), Tumour Growth Factor-beta (TGF-β) and B-cell lymphoma (Bcl2), under the influence of these variables plays a crucial role in the metastasis of breast cancer.
Collapse
Affiliation(s)
- Samina Malik
- Department of Physiology, University College of Medicine and Dentistry (UCMD), The University of Lahore (UOL), Lahore, Pakistan
| | - Sulayman Waquar
- Institute of Molecular Biology and Biotechnology (IMBB), UOL, Lahore, Pakistan
| | - Nimra Idrees
- Institute of Molecular Biology and Biotechnology (IMBB), UOL, Lahore, Pakistan
| | - Arif Malik
- Institute of Molecular Biology and Biotechnology (IMBB), UOL, Lahore, Pakistan.
- Faculty of Health Sciences, Equator University of Science and Technology (EQUSaT), Masaka, Uganda.
| |
Collapse
|
3
|
Xu CY, Xu C, Xu YN, Du SQ, Dai ZH, Jin SQ, Zheng G, Xie CL, Fang WL. Poliumoside protects against type 2 diabetes-related osteoporosis by suppressing ferroptosis via activation of the Nrf2/GPX4 pathway. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2024; 125:155342. [PMID: 38295665 DOI: 10.1016/j.phymed.2024.155342] [Citation(s) in RCA: 15] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/30/2023] [Revised: 09/27/2023] [Accepted: 01/06/2024] [Indexed: 02/13/2024]
Abstract
BACKGROUND Type 2 diabetes is often linked with osteoporosis (T2DOP), a condition that accelerates bone degeneration and increases the risk of fractures. Unlike conventional menopausal osteoporosis, the diabetic milieu exacerbates the likelihood of fractures and osteonecrosis. In particular poliumoside (Pol), derived from Callicarpa kwangtungensis Chun, has shown promising anti-oxidant and anti-inflammatory effects. Yet, its influence on T2DOP remains to be elucidated. PURPOSE The focus of this study was to elucidate the influence of Pol in HGHF-associated ferroptosis and its implications in T2DOP. STUDY DESIGN A murine model of T2DOP was established using a minimal dosage of streptozotocin (STZ) through intraperitoneal infusion combined with a diet high in fat and sugar. Concurrently, to mimic the diabetic condition in a lab environment, bone mesenchymal stem cells (BMSCs) were maintained in a high-glucose and high-fat (HGHF) setting. METHODS The impact of Pol on BMSCs in an HGHF setting was determined using methods, such as BODIPY-C11, FerroOrange staining, mitochondrial functionality evaluations, and Western blot methodologies, coupled with immunoblotting and immunofluorescence techniques. To understand the role of Pol in a murine T2DOP model, techniques including micro-CT, hematoxylin and eosin (H&E) staining, dual-labeling with calcein-alizarin red, and immunohistochemistry were employed for detailed imaging and histological insights. RESULTS Our findings suggest that Pol acts against HGHF-induced bone degradation and ferroptosis, as evidenced by an elevation in glutathione (GSH) and a decline in malondialdehyde (MDA) levels, lipid peroxidation, and mitochondrial reactive oxygen species (ROS). Furthermore, Pol treatment led to increased bone density, enhanced GPX4 markers, and reduced ROS in the distal femur region. On investigating the underlying mechanism of action, it was observed that Pol triggers the Nrf2/GPX4 pathway, and the introduction of lentivirus-Nrf2 negates the beneficial effects of Pol in HGHF-treated BMSCs. CONCLUSION Pol is effective in treating T2DOP by activating the Nrf2/GPX4 signaling pathway to inhibit ferroptosis.
Collapse
Affiliation(s)
- Chao-Yi Xu
- Department of Obstetrics and Gynecology, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou 325000, China
| | - Chun Xu
- Department of Pathology, Cixi Maternity and Child Health Care Hospital, Cixi 315300, China
| | - Yi-Ning Xu
- Department of Orthopedic, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou 325000, China; The Second School of Medicine, Wenzhou Medical University, Wenzhou 325000, China
| | - Shi-Qi Du
- The Second School of Medicine, Wenzhou Medical University, Wenzhou 325000, China
| | - Zi-Han Dai
- The Second School of Medicine, Wenzhou Medical University, Wenzhou 325000, China
| | - Shu-Qing Jin
- The Second School of Medicine, Wenzhou Medical University, Wenzhou 325000, China
| | - Gang Zheng
- Department of Orthopedic, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou 325000, China.
| | - Cheng-Long Xie
- Department of Orthopedic, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou 325000, China.
| | - Wen-Lai Fang
- Department of Orthopedic, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou 325000, China.
| |
Collapse
|
4
|
Rubin MR, Dhaliwal R. Role of advanced glycation endproducts in bone fragility in type 1 diabetes. Bone 2024; 178:116928. [PMID: 37802378 DOI: 10.1016/j.bone.2023.116928] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/24/2023] [Revised: 09/28/2023] [Accepted: 10/03/2023] [Indexed: 10/10/2023]
Abstract
The excess fracture risk observed in adults with type 1 diabetes (T1D) is inexplicable in the presence of only modest reductions in areal bone mineral density (BMD). Accumulation of advanced glycation endproducts (AGEs) in bone has been invoked as one explanation for the increased bone fragility in diabetes. The evidence linking AGEs and fractures in individuals with T1D is sparse, although the association has been observed in individuals with type 2 diabetes. Recent data show that in T1D, AGEs as measured by skin intrinsic fluorescence, are a risk factor for lower BMD. Further research in T1D is needed to ascertain whether there is a causal relationship between fractures and AGEs. If confirmed, this would pave the way for finding interventions that can slow AGE accumulation and thus reduce fractures in T1D.
Collapse
Affiliation(s)
- Mishaela R Rubin
- Metabolic Bone Disease Unit, Vagelos College of Physicians & Surgeons, Columbia University Irving Medical Center, United States of America
| | - Ruban Dhaliwal
- Division of Endocrinology, Department of Internal Medicine, The University of Texas Southwestern Medical Center, United States of America.
| |
Collapse
|
5
|
Bhattacharya S, Nagendra L, Chandran M, Kapoor N, Patil P, Dutta D, Kalra S. Trabecular bone score in adults with type 1 diabetes: a meta-analysis. Osteoporos Int 2024; 35:105-115. [PMID: 37819402 DOI: 10.1007/s00198-023-06935-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/28/2022] [Accepted: 09/29/2023] [Indexed: 10/13/2023]
Abstract
Type 1 diabetes mellitus (T1DM) is associated with a disproportionately high fracture rate despite a minimal decrease in bone mineral density. Though trabecular bone score (TBS), an indirect measure of bone architecture, is lower in adults with T1DM, the modest difference is unlikely to account for the large excess risk and calls for further exploration. INTRODUCTION Fracture rates in type 1 diabetes mellitus (T1DM) are disproportionately high compared to the modestly low bone mineral density (BMD). Distortion of bone microarchitecture compromises bone quality in T1DM and is indirectly measured by trabecular bone score (TBS). TBS could potentially be used as a screening tool for skeletal assessment; however, there are inconsistencies in the studies evaluating TBS in T1DM. We performed this meta-analysis to address this knowledge gap. METHODS An electronic literature search was conducted using PubMed, Scopus, and Web of Science resources (all-year time span) to identify studies relating to TBS in T1DM. Cross-sectional and retrospective studies in adults with T1DM were included. TBS and BMD data were extracted for pooled analysis. Fracture risk could not be analyzed as there were insufficient studies reporting it. RESULT Data from six studies were included (T1DM: n = 378 and controls: n = 286). Pooled analysis showed a significantly lower TBS [standardized mean difference (SMD) = - 0.37, 95% CI - 0.52 to - 0.21; p < 0.00001] in T1DM compared to controls. There was no difference in the lumbar spine BMD (6 studies, SMD - 0.06, 95% CI - 0.22 to 0.09; p = 0.43) and total hip BMD (6 studies, SMD - 0.17, 95% CI - 0.35 to 0.01; p = 0.06) in the case and control groups. CONCLUSIONS Adults with T1DM have a lower TBS but similar total hip and lumbar spine BMD compared to controls. The risk attributable to the significant but limited difference in TBS falls short of explaining the large excess propensity to fragility fracture in adults with T1DM. Further studies on clarification of the mechanism and whether TBS is suited to screen for fracture risk in adults with T1DM are necessary.
Collapse
Affiliation(s)
| | - Lakshmi Nagendra
- Department of Endocrinology, JSS Medical College, JSS Academy of Higher Education and Research, Mysore, Karnataka, India.
| | - Manju Chandran
- Osteoporosis and Bone Metabolism Unit, Department of Endocrinology, Singapore General Hospital, Singapore, Singapore
- DUKE NUS Medical School, Singapore, Singapore
| | - Nitin Kapoor
- Department of Endocrinology, Diabetes, and Metabolism, Christian Medical College and Hospital, Vellore, Tamil Nadu, India
- B Non-Communicable Disease Unit, Baker Heart and Diabetes Institute, Melbourne, VIC, Australia
| | - Prakash Patil
- Central Research Laboratory, K.S Hegde Medical Academy (KSHEMA), NITTE (Deemed to Be University), Mangalore, Karnataka, India
| | - Deep Dutta
- Department of Endocrinology, Centre for Endocrinology, Arthritis, and Rheumatism (CEDAR), Superspeciality Healthcare, Dwarka, New Delhi, India
| | - Sanjay Kalra
- Department of Endocrinology, Bharti Hospital, Karnal, Haryana, India
| |
Collapse
|
6
|
Bunn RC, Adatorwovor R, Smith RR, Ray PD, Fields SE, Keeble AR, Fry CS, Uppuganti S, Nyman JS, Fowlkes JL, Kalaitzoglou E. Pharmacologic Inhibition of Myostatin With a Myostatin Antibody Improves the Skeletal Muscle and Bone Phenotype of Male Insulin-Deficient Diabetic Mice. JBMR Plus 2023; 7:e10833. [PMID: 38025035 PMCID: PMC10652179 DOI: 10.1002/jbm4.10833] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/01/2023] [Revised: 09/18/2023] [Accepted: 10/01/2023] [Indexed: 12/01/2023] Open
Abstract
Type 1 diabetes (T1D) is associated with low bone and muscle mass, increased fracture risk, and impaired skeletal muscle function. Myostatin, a myokine that is systemically elevated in humans with T1D, negatively regulates muscle mass and bone formation. We investigated whether pharmacologic myostatin inhibition in a mouse model of insulin-deficient, streptozotocin (STZ)-induced diabetes is protective for bone and skeletal muscle. DBA/2J male mice were injected with low-dose STZ (diabetic) or vehicle (non-diabetic). Subsequently, insulin or palmitate Linbits were implanted and myostatin (REGN647-MyoAb) or control (REGN1945-ConAb) antibody was administered for 8 weeks. Body composition and contractile muscle function were assessed in vivo. Systemic myostatin, P1NP, CTX-I, and glycated hemoglobin (HbA1c) were quantified, and gastrocnemii were weighed and analyzed for muscle fiber composition and gene expression of selected genes. Cortical and trabecular parameters were analyzed (micro-computed tomography evaluations of femur) and cortical bone strength was assessed (three-point bending test of femur diaphysis). In diabetic mice, the combination of insulin/MyoAb treatment resulted in significantly higher lean mass and gastrocnemius weight compared with MyoAb or insulin treatment alone. Similarly, higher raw torque was observed in skeletal muscle of insulin/MyoAb-treated diabetic mice compared with MyoAb or insulin treatment. Additionally, muscle fiber cross-sectional area (CSA) was lower with diabetes and the combination treatment with insulin/MyoAb significantly improved CSA in type II fibers. Insulin, MyoAb, or insulin/MyoAb treatment improved several parameters of trabecular architecture (eg, bone volume fraction [BV/TV], trabecular connectivity density [Conn.D]) and cortical structure (eg, cortical bone area [Ct. Ar.], minimum moment of inertia [Imin]) in diabetic mice. Lastly, cortical bone biomechanical properties (stiffness and yield force) were also improved with insulin or MyoAb treatment. In conclusion, pharmacologic myostatin inhibition is beneficial for muscle mass, muscle function, and bone properties in this mouse model of T1D and its effects are both independent and additive to the positive effects of insulin. © 2023 The Authors. JBMR Plus published by Wiley Periodicals LLC on behalf of American Society for Bone and Mineral Research.
Collapse
Affiliation(s)
- R Clay Bunn
- Department of Pediatrics and Barnstable Brown Diabetes CenterUniversity of KentuckyLexingtonKYUSA
| | - Reuben Adatorwovor
- Department of Biostatistics, College of Public HealthUniversity of KentuckyLexingtonKYUSA
| | - Rebecca R Smith
- Sanders‐Brown Center on AgingUniversity of KentuckyLexingtonKYUSA
| | - Philip D Ray
- Department of PediatricsUniversity of KentuckyLexingtonKYUSA
| | - Sarah E Fields
- College of Agriculture, Food and EnvironmentUniversity of KentuckyLexingtonKYUSA
| | | | | | - Sasidhar Uppuganti
- Department of Orthopaedic SurgeryVanderbilt University Medical CenterNashvilleTNUSA
| | - Jeffry S Nyman
- Department of Orthopaedic SurgeryVanderbilt University Medical CenterNashvilleTNUSA
- Department of Veterans AffairsTennessee Valley Healthcare SystemNashvilleTNUSA
| | - John L Fowlkes
- Department of Pediatrics and Barnstable Brown Diabetes CenterUniversity of KentuckyLexingtonKYUSA
| | - Evangelia Kalaitzoglou
- Department of Pediatrics and Barnstable Brown Diabetes CenterUniversity of KentuckyLexingtonKYUSA
| |
Collapse
|
7
|
Bolger MW, Tekkey T, Kohn DH. The Contribution of Perilacunar Composition and Mechanical Properties to Whole-Bone Mechanical Outcomes in Streptozotocin-Induced Diabetes. Calcif Tissue Int 2023; 113:229-245. [PMID: 37261462 PMCID: PMC11144452 DOI: 10.1007/s00223-023-01098-9] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/22/2023] [Accepted: 05/18/2023] [Indexed: 06/02/2023]
Abstract
Osteocytes are the most abundant cell type in bone and remodel their local perilacunar matrix in response to a variety of stimuli and diseases. How the perilacunar composition and mechanical properties are affected by type 1 diabetes (T1D), and the contribution of these local changes to the decline in whole-bone functional properties that occurs with diabetes remains unclear. 12-14 week old C57/BL6 male mice were administered a series of low-dose streptozotocin injections and sacrificed at baseline (BL), 3 (D3) and 7 weeks (D7) following confirmation of diabetes, along with age-matched controls (C3, C7). Femora were then subjected to a thorough morphological (μCT), mechanical (four-point bending, nanoindentation), and compositional (HPLC for collagen cross-links, Raman spectroscopy) analysis at the whole-bone and local (perilacunar and intracortical) levels. At the whole-bone level, D7 mice exhibited 10.7% lower ultimate load and 26.4% lower post-yield work relative to C7. These mechanical changes coincided with 52.2% higher levels of pentosidine at D7 compared to C7. At the local level, the creep distance increased, while modulus and hardness decreased in the perilacunar region relative to the intracortical for D7 mice, suggesting a spatial uncoupling in skeletal adaptation. D7 mice also exhibited increased matrix maturity in the 1660/1690 cm-1 ratio at both regions relative to C7. The perilacunar matrix maturity was predictive of post-yield work (46%), but perilacunar measures were not predictive of ultimate load, which was better explained by cortical area (26%). These results show that diabetes causes local perilacunar composition perturbations that affect whole-bone level mechanical properties, implicating osteocyte maintenance of its local matrix in the progression of diabetic skeletal fragility.
Collapse
Affiliation(s)
- Morgan W Bolger
- Department of Biomedical Engineering, College of Engineering, University of Michigan, Ann Arbor, MI, USA
| | - Tara Tekkey
- Department of Chemistry, College of Literature, Science and the Arts, University of Michigan, Ann Arbor, MI, USA
| | - David H Kohn
- Department of Biomedical Engineering, College of Engineering, University of Michigan, Ann Arbor, MI, USA.
- Department of Biologic and Materials Sciences, School of Dentistry, University of Michigan, 1011 N. University Ave., Ann Arbor, MI, 48109, USA.
| |
Collapse
|
8
|
ROSENBERG JL, WOOLLEY W, ELNUNU I, KAMML J, KAMMER DS, ACEVEDO C. Effect of non-enzymatic glycation on collagen nanoscale mechanisms in diabetic and age-related bone fragility. BIOCELL 2023; 47:1651-1659. [PMID: 37693278 PMCID: PMC10486207 DOI: 10.32604/biocell.2023.028014] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2022] [Accepted: 03/20/2023] [Indexed: 09/12/2023]
Abstract
Age and diabetes have long been known to induce an oxidative reaction between glucose and collagen, leading to the accumulation of advanced glycation end-products (AGEs) cross-links in collagenous tissues. More recently, AGEs content has been related to loss of bone quality, independent of bone mass, and increased fracture risk with aging and diabetes. Loss of bone quality is mostly attributed to changes in material properties, structural organization, or cellular remodeling. Though all these factors play a role in bone fragility disease, some common recurring patterns can be found between diabetic and age-related bone fragility. The main pattern we will discuss in this viewpoint is the increase of fibrillar collagen stiffness and loss of collagen-induced plasticity with AGE accumulation. This study focused on recent related experimental studies and discusses the correlation between fluorescent AGEs content at the molecular and fibrillar scales, collagen deformation mechanisms at the nanoscale, and resistance to bone fracture at the macroscale.
Collapse
Affiliation(s)
- James L. ROSENBERG
- Department of Mechanical Engineering, University of Utah, Salt Lake City, 84112, USA
| | - William WOOLLEY
- Department of Mechanical Engineering, University of Utah, Salt Lake City, 84112, USA
| | - Ihsan ELNUNU
- Department of Mechanical Engineering, University of Utah, Salt Lake City, 84112, USA
| | - Julia KAMML
- Institute for Building Materials, ETH Zurich, Zurich, Switzerland
| | - David S. KAMMER
- Institute for Building Materials, ETH Zurich, Zurich, Switzerland
| | - Claire ACEVEDO
- Department of Mechanical Engineering, University of Utah, Salt Lake City, 84112, USA
- Department of Biomedical Engineering, University of Utah, Salt Lake City, 84112, USA
| |
Collapse
|
9
|
Gao X, Wang S, Shen S, Wang S, Xie M, Storey KB, Yu C, Lefai E, Song W, Chang H, Yang C. Differential bone remodeling mechanism in hindlimb unloaded and hibernating Daurian ground squirrels: a comparison between artificial and natural disuse within the same species. J Comp Physiol B 2023; 193:329-350. [PMID: 36988658 DOI: 10.1007/s00360-023-01482-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2022] [Revised: 02/06/2023] [Accepted: 03/14/2023] [Indexed: 03/30/2023]
Abstract
Loss of bone mass can occur in mammals after prolonged disuse but the situation for hibernators that are in a state of torpor for many months of the year is not yet fully understood. The present study assesses the bone remodeling mechanisms present in Daurian ground squirrels (Spermophilus dauricus) during hibernation as compared with a model of hindlimb disuse. Differences in microstructure, mechanical properties, bone remodeling-related proteins (Runx2, OCN, ALP, RANKL, CTK and MMP-9) and key proteins of Wnt/β-catenin signaling pathway (GSK-3β and phospho-β-catenin) were evaluated in ground squirrels under 3 conditions: summer active (SA) vs. hibernation (HIB) vs. hindlimb unloaded (HLU). The results indicated that the body weight in HLU ground squirrels was lower than the SA group, and the middle tibia diameter in the HLU group was lower than that in SA and HIB groups. The thickness of cortical and trabecular bone in femurs from HLU ground squirrels was lower than in SA and HIB groups. Most parameters of the tibia in the HLU group were lower than those in SA and HIB groups, which indicated cortical bone loss in ground squirrels. Moreover, our data showed that the changes in microscopic parameters in the femur were more obvious than those in the tibia in HLU and HIB ground squirrels. The levels of Runx2 and ALP were lower in HLU ground squirrels than SA and HIB groups. The protein levels of OCN were unchanged in the three groups, but the protein levels of ALP were lower in the HLU group than in SA and HIB groups. RANKL, CTK and MMP-9 protein levels were significantly decreased in tibia of HLU ground squirrels as compared with SA and HIB groups. In addition, the protein expression levels of RANKL, CTK and MMP-9 showed no statistical difference between SA and HIB ground squirrels. Thus, the mechanisms involved in the balance between bone formation and resorption in hibernating and hindlimb unloading ground squirrels may be different. The present study showed that in femur, the Wnt signaling pathway was inhibited, the protein level of GSK-3β was increased, and the protein expression of phospho-β-catenin was decreased in the HIB group as compared with the SA group, which indicates that the Wnt signaling pathway has a great influence on the femur of the HIB group. In conclusion, the natural anti-osteoporosis properties of Daurian ground squirrels are seasonal. The squirrels do not experience bone loss when they are inactive for a long time during hibernation, but the mechanisms of anti-osteoporosis did not work in HLU summer active squirrels.
Collapse
Affiliation(s)
- Xuli Gao
- Key Laboratory of Resource Biology and Biotechnology in Western China, College of Life Sciences, Northwest University, Ministry of Education, 229# North Taibai Road, Xi'an, 710069, People's Republic of China
| | - Siqi Wang
- Key Laboratory of Resource Biology and Biotechnology in Western China, College of Life Sciences, Northwest University, Ministry of Education, 229# North Taibai Road, Xi'an, 710069, People's Republic of China
| | - Siqi Shen
- Key Laboratory of Resource Biology and Biotechnology in Western China, College of Life Sciences, Northwest University, Ministry of Education, 229# North Taibai Road, Xi'an, 710069, People's Republic of China
| | - Shuyao Wang
- Key Laboratory of Resource Biology and Biotechnology in Western China, College of Life Sciences, Northwest University, Ministry of Education, 229# North Taibai Road, Xi'an, 710069, People's Republic of China
| | - Manjiang Xie
- Department of Aerospace Physiology, Key Laboratory of Aerospace Medicine of Ministry of Education, Air Force Medical University, Xi'an, 710032, China
| | - Kenneth B Storey
- Department of Biology, Carleton University, Ottawa, ON, K1S 5B6, Canada
| | - Caiyong Yu
- Military Medical Innovation Center, Air Force Medical University, Xi'an, 710032, Shaanxi, China
| | - Etienne Lefai
- INRAE, Unité de Nutrition Humaine, UMR 1019, Université Clermont Auvergne, 63000, Clermont-Ferrand, France
| | - Wenqian Song
- Northwest University Hospital, Xi'an, 710069, People's Republic of China
| | - Hui Chang
- Key Laboratory of Resource Biology and Biotechnology in Western China, College of Life Sciences, Northwest University, Ministry of Education, 229# North Taibai Road, Xi'an, 710069, People's Republic of China.
| | - Changbin Yang
- Military Medical Innovation Center, Air Force Medical University, Xi'an, 710032, Shaanxi, China.
| |
Collapse
|
10
|
The impact of vitamin D(3) on bone remodeling in different types of experimental pathology. UKRAINIAN BIOCHEMICAL JOURNAL 2022. [DOI: 10.15407/ubj94.03.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022] Open
Abstract
Osteoporosis is a progressive systemic skeletal disease characterized by a decrease in bone density, impairment of its microarchitectonics, and an increased risk of fractures that occur under minimal or no mechanical stress. One of the main causes of osteoporosis is vitamin D deficiency, which leads to disruption of normal bone remodeling. The aim of our study was to analyze the features of the process of bone tissue remodeling by measuring the key biochemical markers of bone formation/resorption in primary and secondary osteoporosis, as well as to investigate the potential corrective effect of vitamin D3 supplementation. The work was conducted on rats with different osteoporosis models: alimentary, dysfunctional and secondary osteoporosis associated with diabetes mellitus. We used ELISA to measure 25(OH)D content in blood serum. Blood serum and bone tissue calcium, and alkaline phosphatase activity were determined with bioassay kits. The content of inorganic phosphate in blood serum and ash was assayed by the Dyce method. It was shown that all the studied pathological conditions were accompanied by vitamin D deficiency, which led to impaired absorption of calcium in the intestine and reabsorption of inorganic phosphates by the kidneys, reducing, as a result, their concentration in the blood serum. Hypocalcemia and hypophosphatemia contributed to the disruption of normal bone remodeling, excessive activation of alkaline phosphatase, and a decrease in the content of calcium and phosphate in bone tissue. Thus, sufficient vitamin D bioavailability was confirmed to be critical for effective bone remodeling in primary and secondary osteoporosis. Keywords: bone remodelin, osteoporosis, type 1 diabetes mellitus, vitamin D
Collapse
|
11
|
Willett TL, Voziyan P, Nyman JS. Causative or associative: A critical review of the role of advanced glycation end-products in bone fragility. Bone 2022; 163:116485. [PMID: 35798196 PMCID: PMC10062699 DOI: 10.1016/j.bone.2022.116485] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/04/2022] [Revised: 06/27/2022] [Accepted: 06/29/2022] [Indexed: 11/02/2022]
Abstract
The accumulation of advanced glycation end-products (AGEs) in the organic matrix of bone with aging and chronic disease such as diabetes is thought to increase fracture risk independently of bone mass. However, to date, there has not been a clinical trial to determine whether inhibiting the accumulation of AGEs is effective in preventing low-energy, fragility fractures. Moreover, unlike with cardiovascular or kidney disease, there are also no pre-clinical studies demonstrating that AGE inhibitors or breakers can prevent the age- or diabetes-related decrease in the ability of bone to resist fracture. In this review, we critically examine the case for a long-standing hypothesis that AGE accumulation in bone tissue degrades the toughening mechanisms by which bone resists fracture. Prior research into the role of AGEs in bone has primarily measured pentosidine, an AGE crosslink, or bulk fluorescence of hydrolysates of bone. While significant correlations exist between these measurements and mechanical properties of bone, multiple AGEs are both non-fluorescent and non-crosslinking. Since clinical studies are equivocal on whether circulating pentosidine is an indicator of elevated fracture risk, there needs to be a more complete understanding of the different types of AGEs including non-crosslinking adducts and multiple non-enzymatic crosslinks in bone extracellular matrix and their specific contributions to hindering fracture resistance (biophysical and biological). By doing so, effective strategies to target AGE accumulation in bone with minimal side effects could be investigated in pre-clinical and clinical studies that aim to prevent fragility fractures in conditions that bone mass is not the underlying culprit.
Collapse
Affiliation(s)
- Thomas L Willett
- Biomedical Engineering Program, Systems Design Engineering, University of Waterloo, Waterloo, Ontario, Canada.
| | - Paul Voziyan
- Department of Orthopaedic Surgery, Vanderbilt University Medical Center, Nashville, TN 37232, USA
| | - Jeffry S Nyman
- Department of Orthopaedic Surgery, Vanderbilt University Medical Center, Nashville, TN 37232, USA; Department of Veterans Affairs, Tennessee Valley Healthcare System, Nashville, TN 37212, USA.
| |
Collapse
|
12
|
Araújo R, Martin V, Ferreira R, Fernandes MH, Gomes PS. A new ex vivo model of the bone tissue response to the hyperglycemic environment - The embryonic chicken femur organotypic culture in high glucose conditions. Bone 2022; 158:116355. [PMID: 35151894 DOI: 10.1016/j.bone.2022.116355] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/28/2021] [Revised: 02/01/2022] [Accepted: 02/07/2022] [Indexed: 11/02/2022]
Abstract
Diabetes mellitus (DM) embrace a group of chronic metabolic conditions with a high morbidity, causing deleterious effects in different tissues and organs, including bone. Hyperglycemia seems to be one of the most contributing etiological factors of bone-related alterations, altering metabolic functionality and inducing morphological adaptations. Despite the established models for the assessment of bone functionality in hyperglycemic conditions, in vitro studies present a limited representativeness given the imperfect cell-cell and cell-matrix interactions, and restricted three-dimensional spatial arrangement; while in vivo studies raise ethical issues and offer limited mechanistic characterization, given the modulatory influence of many systemic factors and/or regulatory systems. Accordingly, the aim of this study is to establish and characterize an innovative ex vivo model of the bone tissue response to hyperglycemia, reaching hand of the organotypic culture of embryonic chicken femurs in high glucose conditions, showcasing the integrative responsiveness of the model regarding hyperglycemia-induced alterations. A thorough assessment of the cellular and tissue functionality was further conducted. Results show that, in high glucose conditions, femurs presented an increased cell proliferation and enhanced collagen production, despite the altered protein synthesis, substantiated by the increased carbonyl content. Gene expression analysis evidenced that high glucose levels induced the expression of pro-inflammatory and early osteogenic markers, further impairing the expression of late osteogenic markers. Furthermore, the tissue morphological organization and matrix mineralization were significantly altered by high glucose levels, as evidenced by histological, histochemical and microtomographic evaluations. Attained data is coherent with acknowledged hyperglycemia-induced bone tissue alterations, validating the models' effectiveness, and evidencing its integrative responsiveness regarding cell proliferation, gene and protein expression, and tissue morpho-functional organization. The assessed ex vivo model conjoins the capability to access both cellular and tissue outcomes in the absence of a systemic modulatory influence, outreaching the functionality of current experimental in vitro and in vivo models of the diabetic bone condition.
Collapse
Affiliation(s)
- Rita Araújo
- Laboratory for Bone Metabolism and Regeneration, Faculty of Dental Medicine, University of Porto, Porto, Portugal; REQUIMTE/LAQV, University of Porto, Porto, Portugal
| | - Victor Martin
- Laboratory for Bone Metabolism and Regeneration, Faculty of Dental Medicine, University of Porto, Porto, Portugal; REQUIMTE/LAQV, University of Porto, Porto, Portugal
| | - Rita Ferreira
- Department of Chemistry, University of Aveiro, Portugal; REQUIMTE/LAQV, University of Aveiro, Aveiro, Portugal
| | - Maria Helena Fernandes
- Laboratory for Bone Metabolism and Regeneration, Faculty of Dental Medicine, University of Porto, Porto, Portugal; REQUIMTE/LAQV, University of Porto, Porto, Portugal
| | - Pedro Sousa Gomes
- Laboratory for Bone Metabolism and Regeneration, Faculty of Dental Medicine, University of Porto, Porto, Portugal; REQUIMTE/LAQV, University of Porto, Porto, Portugal.
| |
Collapse
|
13
|
Gong Z, Da W, Tian Y, Zhao R, Qiu S, Wu Q, Wen K, Shen L, Zhou R, Tao L, Zhu Y. Exogenous melatonin prevents type 1 diabetes mellitus-induced bone loss, probably by inhibiting senescence. Osteoporos Int 2022; 33:453-466. [PMID: 34519833 PMCID: PMC8813725 DOI: 10.1007/s00198-021-06061-8] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/30/2020] [Accepted: 06/30/2021] [Indexed: 12/31/2022]
Abstract
UNLABELLED Exogenous melatonin inhibited the senescence of preosteoblast cells in type 1 diabetic (T1D) mice and those cultured in high glucose (HG) by multiple regulations. Exogenous melatonin had a protective effect on diabetic osteoporosis, which may depend on the inhibition of senescence. INTRODUCTION Senescence is thought to play an important role in the pathophysiological mechanisms underlying diabetic bone loss. Increasing evidence has shown that melatonin exerts anti-senescence effects. In this study, we investigated whether melatonin can inhibit senescence and prevent diabetic bone loss. METHODS C57BL/6 mice received a single intraperitoneal injection of 160 mg/kg streptozotocin, followed by the oral administration of melatonin or vehicle for 2 months. Then, tissues were harvested and subsequently examined. MC3T3-E1 cells were cultured under HG conditions for 7 days and then treated with melatonin or not for 24 h. Sirt1-specific siRNAs and MT1- or MT2-specific shRNA plasmids were transfected into MC3T3-E1 cells for mechanistic study. RESULTS The total protein extracted from mouse femurs revealed that melatonin prevented senescence in T1D mice. The micro-CT results indicated that melatonin prevented bone loss in T1D mice. Cellular experiments indicated that melatonin administration prevented HG-induced senescence, whereas knockdown of the melatonin receptors MT1 or MT2 abolished these effects. Sirt1 expression was upregulated by melatonin administration but significantly reduced after MT1 or MT2 was knocked down. Knockdown of Sirt1 blocked the anti-senescence effects of melatonin. Additionally, melatonin promoted the expression of CDK2, CDK4, and CyclinD1, while knockdown of MT1 or MT2 abolished these effects. Furthermore, melatonin increased the expression of the polycomb repressive complex (PRC), but knockdown of MT1 or MT2 abolished these effects. Furthermore, melatonin increased the protein levels of Sirt1, PRC1/2 complex-, and cell cycle-related proteins. CONCLUSION This work shows that melatonin protects against T1D-induced bone loss, probably by inhibiting senescence. Targeting senescence in the investigation of diabetic osteoporosis may lead to novel discoveries.
Collapse
Affiliation(s)
- Z Gong
- Department of Orthopedics, The First Hospital of China Medical University, Shenyang, 110001, China
| | - W Da
- Department of Orthopedics, The First Hospital of China Medical University, Shenyang, 110001, China
| | - Y Tian
- Department of Orthopedics, The First Hospital of China Medical University, Shenyang, 110001, China
| | - R Zhao
- Department of Orthopedics, The First Hospital of China Medical University, Shenyang, 110001, China
| | - S Qiu
- Department of Orthopedics, The First Hospital of China Medical University, Shenyang, 110001, China
| | - Q Wu
- Department of Orthopedics, The First Hospital of China Medical University, Shenyang, 110001, China
| | - K Wen
- Department of Orthopedics, The First Hospital of China Medical University, Shenyang, 110001, China
| | - L Shen
- Department of Orthopedics, The First Hospital of China Medical University, Shenyang, 110001, China
| | - R Zhou
- Department of Orthopedics, The First Hospital of China Medical University, Shenyang, 110001, China
| | - L Tao
- Department of Orthopedics, The First Hospital of China Medical University, Shenyang, 110001, China.
| | - Y Zhu
- Department of Orthopedics, The First Hospital of China Medical University, Shenyang, 110001, China.
| |
Collapse
|
14
|
Latimer JM, Roll KL, Daubert DM, Zhang H, Shalev T, Wolff LF, Kotsakis GA. Clinical performance of hydrophilic, titanium-zirconium dental implantsin patients with well-controlled and poorly-controlledtype 2 diabetes: One-Year results of a dual-centerprospectivecohort study. J Periodontol 2021; 93:745-757. [PMID: 34738235 DOI: 10.1002/jper.21-0015] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2021] [Revised: 10/14/2021] [Accepted: 10/18/2021] [Indexed: 11/09/2022]
Abstract
BACKGROUND This study assessed the clinical performance of hydrophilic dental implants in a patient cohort with type 2 diabetes mellitus (T2DM). METHODS Subjects with T2DM of ≥ 2-years duration were allocated to either the well-controlled (WC; HbA1c ≤ 7.0%,) or poorly-controlled (PC; 7.5 < HbA1c < 10%) groups in a dual-center, prospective cohort study. Each subject received a single, titanium-zirconium (Ti-Zr) dental implant with a chemically-modified, hydrophilic (modSLA) surface in a posterior mandibular site. Postoperatively, subjects were followed at 1, 2, 4, 8 and 12-week intervals. Post-loading, subjects were followed at 3, 6 and 12-months. Clinical and radiographic parameters of implant success, and dental patient-reported outcomes were collected. RESULTS Twenty-one dental patients (NWC = 11; NPC = 10; mean age: 66.8 ± 7.5 years) were enrolled and the 1-year implant success rate was 100%. Peri-implant bone levels were stable with 0.15 ± 0.06 mm mean marginal loss at one year without significant inter-group differences (p = 0.79). Postoperative pain was minimal at 1-week, and OHIP-5 scores decreased significantly over time as compared with preoperative levels (p < 0.001) suggesting significant improvement in patient-perceived oral health following implant therapy. CONCLUSIONS Elevated HbA1c levels> 7.5% did not compromise 1-year successrates, or oral health-related quality of lifein PC patients receiving modSLA, Ti-Zr implants. This article is protected by copyright. All rights reserved.
Collapse
Affiliation(s)
- Jessica M Latimer
- Division of Oral Medicine, Infection, and Immunity, Harvard School of Dental Medicine, Boston, MA
| | | | - Diane M Daubert
- Department of Periodontics, University of Washington School of Dentistry, Seattle, WA
| | - Hai Zhang
- Department of Restorative Dentistry, University of Washington School of Dentistry, Seattle, WA
| | - Tamir Shalev
- Department of Periodontology and Oral Implants, The Maurice and Gabriela Goldschleger School of Dental Medicine, Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
| | -
- Group Authorship; Study Collaborators are listed with their affiliations in the acknowledgements
| | - Larry F Wolff
- Division of Periodontology, University of Minnesota School of Dentistry, Minneapolis, MN
| | - Georgios A Kotsakis
- Department of Periodontics, Director, Clinical and Translational Periodontal Research Lab., UTHealth San Antonio School of Dentistry, San Antonio, TX
| |
Collapse
|
15
|
Osteoprotective Effects of ‘Anti-Diabetic’ Polyherbal Mixture in Type 1 Diabetic Rats. ACTA VET-BEOGRAD 2021. [DOI: 10.2478/acve-2021-0023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Abstract
Bone loss leading to osteopenia and osteoporosis is a frequent secondary complication of diabetes. This study aimed to evaluate the value of a traditionally used ‘anti-diabetic’ polyherbal mixture as a possible remedy for the prevention of this complication. Diabetes was induced in Wistar female rats with a single intraperitoneal injection of alloxan monohydrate. The animals with blood glucose higher than 20 mmol/L for 14 consecutive days were considered diabetic. For the next 14 days, animals were treated with two concentrations of the polyherbal mixture (10 and 20 g of dry plant material/ kg). Bone histopathology was evaluated using the H&E and Masson’s trichrome staining. Alloxan-induced diabetes triggered bone histological changes characteristic for the development of osteopenia and osteoporosis and treatment with the polyherbal decoction restored these histopathological changes of the bones to the healthy animal level. At the same time, treatment with these tested doses has shown no adverse effects. These findings suggest that this mixture might be used as a remedy for the prevention of diabetic bone loss.
Collapse
|
16
|
Undenatured Type II Collagen Relieves Bone Impairment through Improving Inflammation and Oxidative Stress in Ageing db/db Mice. Molecules 2021; 26:molecules26164942. [PMID: 34443530 PMCID: PMC8400234 DOI: 10.3390/molecules26164942] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2021] [Revised: 08/03/2021] [Accepted: 08/09/2021] [Indexed: 12/26/2022] Open
Abstract
Ageing-related bone impairment due to exposure to hyperglycemic environment is scarcely researched. The aim was to confirm the improvement effects of undenatured type II collagen (UC II) on bone impairment in ageing db/db mice, and the ageing model was established by normal feeding for 48-week-old. Then, the ageing db/db mice were randomly assigned to UC II intervention, the ageing model, and the chondroitin sulfate + glucosamine hydrochloride control groups. After 12 weeks of treatment, femoral microarchitecture and biomechanical parameters were observed, biomarkers including bone metabolism, inflammatory cytokines, and oxidative stress were measured, and the gastrocnemius function and expressions of interleukin (IL) 1β, receptor activator of nuclear factor (NF)-κB ligand (RANKL), and tartrate-resistant acid phosphatase (TRAP) were analyzed. The results showed that the mice in the UC II intervention group showed significantly superior bone and gastrocnemius properties than those in the ageing model group, including bone mineral density (287.65 ± 72.77 vs. 186.97 ± 32.2 mg/cm3), gastrocnemius index (0.46 ± 0.07 vs. 0.18 ± 0.01%), muscle fiber diameter (0.0415 ± 0.005 vs. 0.0330 ± 0.002 mm), and cross-sectional area (0.0011 ± 0.00007 vs. 0.00038 ± 0.00004 mm2). The UC II intervention elevated bone mineralization and formation and decreased bone resorption, inflammatory cytokines, and the oxidative stress. In addition, lower protein expression of IL-1β, RANKL, and TRAP in the UC II intervention group was observed. These findings suggested that UC II improved bones impaired by T2DM during ageing, and the likely mechanism was partly due to inhibition of inflammation and oxidative stress.
Collapse
|
17
|
Li Z, Liu P, Yuan Y, Liang X, Lei J, Zhu X, Zhang Z, Cai L. Loss of longitudinal superiority marks the microarchitecture deterioration of osteoporotic cancellous bones. Biomech Model Mechanobiol 2021; 20:2013-2030. [PMID: 34309757 DOI: 10.1007/s10237-021-01491-z] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2021] [Accepted: 07/05/2021] [Indexed: 12/11/2022]
Abstract
Osteoporosis (OP), a skeletal disease making bone mechanically deteriorate and easily fracture, is a global public health issue due to its high prevalence. It has been well recognized that besides bone loss, microarchitecture degradation plays a crucial role in the mechanical deterioration of OP bones, but the specific role of microarchitecture in OP has not been well clarified and quantified from mechanics perspective. Here, we successfully decoupled and identified the specific roles of microarchitecture, bone mass and tissue property in the failure properties of cancellous bones, through μCT-based digital modeling and finite element method simulations on bone samples from healthy and ovariectomy-induced osteoporotic mice. The results show that the microarchitecture of healthy bones exhibits longitudinal superiority in mechanical properties such as the effective stiffness, strength and toughness, which fits them well to bearing loads along their longitudinal direction. OP does not only reduce bone mass but also impair the microarchitecture topology. The former is mainly responsible for the mechanical degradation of bones in magnitude, wherever the latter accounts for the breakdown of their function-favorable anisotropy, the longitudinal superiority. Hence, we identified the microarchitecture-deterioration-induced directional mismatch between material and loading as a hazardous feature of OP and defined a longitudinal superiority index as measurement of the health status of bone microarchitecture. These findings provide useful insights and guidelines for OP diagnosis and treat assessment.
Collapse
Affiliation(s)
- Zhenzi Li
- Department of Mechanical Engineering, School of Civil Engineering, Wuhan University, Wuhan, 430072, People's Republic of China
| | - Pan Liu
- Department of Mechanical Engineering, School of Civil Engineering, Wuhan University, Wuhan, 430072, People's Republic of China
| | - Yanan Yuan
- Department of Mechanical Engineering, School of Civil Engineering, Wuhan University, Wuhan, 430072, People's Republic of China
| | - Xiaoxiao Liang
- Zhongnan Hospital of Wuhan University, Wuhan, 430071, People's Republic of China
| | - Jun Lei
- Zhongnan Hospital of Wuhan University, Wuhan, 430071, People's Republic of China
| | - Xiaobin Zhu
- Zhongnan Hospital of Wuhan University, Wuhan, 430071, People's Republic of China.
| | - Zuoqi Zhang
- Department of Mechanical Engineering, School of Civil Engineering, Wuhan University, Wuhan, 430072, People's Republic of China. .,Engineering Research Centre on Building Examination and Reinforcement Technology (Ministry of Education), Wuhan University, Wuhan, 430071, People's Republic of China. .,School of Mechanical and Aerospace Engineering, Nanyang Technological University, Singapore, 637551, Singapore.
| | - Lin Cai
- Zhongnan Hospital of Wuhan University, Wuhan, 430071, People's Republic of China
| |
Collapse
|
18
|
Ladeira LCM, Dos Santos EC, Santos TA, da Silva J, Lima GDDA, Machado-Neves M, da Silva RC, Freitas MB, Maldonado IRDSC. Green tea infusion prevents diabetic nephropathy aggravation in recent-onset type 1 diabetes regardless of glycemic control. JOURNAL OF ETHNOPHARMACOLOGY 2021; 274:114032. [PMID: 33737142 DOI: 10.1016/j.jep.2021.114032] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/20/2021] [Revised: 03/11/2021] [Accepted: 03/12/2021] [Indexed: 06/12/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Green tea, traditionally used as antidiabetic medicine, positively affects the diabetic nephropathy. It was assumed that these beneficial effects were due to the hypoglycemiant capacity of the tea, wich reduces the glycemic overload and, consequently, the advanced glycation end products rate and oxidative damage. However, these results are still controversial, since tea is not always able to exert a hypoglycemic action, as demonstrated by previous studies. AIM Investigate if green tea infusion can generate positive outcomes for the kidney independently of glycemic control, using a model of severe type 1 diabetes. MATERIAL AND METHODS We treated streptozotocin type 1 diabetic young rats with 100 mg/kg of green tea, daily, for 42 days, and evaluated the serum and tissue markers for stress and function. We also analyzed the ion dynamics in the organ and the morphological alterations promoted by diabetes and green tea treatment. Besides, we analyzed, by an in silico approach, the interactions of the green tea main catechins with the proteins expressed in the kidney. RESULTS Our findings reveal that the components of green tea can interact with the proteins participating in cell signaling pathways that regulate energy metabolism, including glucose and glycogen synthesis, glucose reabsorption, hypoxia management, and cell death by apoptosis. Such interaction reduces glycogen accumulation in the organ, and protects the DNA. These results also reflect in a preserved glomerulus morphology, with improvement in pathological features, and suggesting a prevention of kidney function impairment. CONCLUSION Our results show that such benefits are achieved regardless of the blood glucose status, and are not dependent on the reduction of hyperglycemia.
Collapse
Affiliation(s)
| | | | - Talita Amorim Santos
- Departamento de Biologia Geral, Universidade Federal de Viçosa, Viçosa, Minas Gerais, Brazil.
| | - Janaina da Silva
- Departamento de Biologia Geral, Universidade Federal de Viçosa, Viçosa, Minas Gerais, Brazil; Institut de Recherche en Santé, Environnement et Travail, Université de Rennes, Rennes, France.
| | | | - Mariana Machado-Neves
- Departamento de Biologia Geral, Universidade Federal de Viçosa, Viçosa, Minas Gerais, Brazil.
| | - Renê Chagas da Silva
- Departamento de Física, Universidade Federal de Viçosa, Viçosa, Minas Gerais, Brazil.
| | | | | |
Collapse
|
19
|
Hu P, McKenzie JA, Buettmann EG, Migotsky N, Gardner MJ, Silva MJ. Type 1 diabetic Akita mice have low bone mass and impaired fracture healing. Bone 2021; 147:115906. [PMID: 33662611 PMCID: PMC8546917 DOI: 10.1016/j.bone.2021.115906] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/11/2020] [Revised: 02/15/2021] [Accepted: 02/26/2021] [Indexed: 12/16/2022]
Abstract
Type 1 diabetes (T1DM) impairs bone formation and fracture healing in humans. Akita mice carry a mutation in one allele of the insulin-2 (Ins2) gene, which leads to pancreatic beta cell dysfunction and hyperglycemia by 5-6 weeks age. We hypothesized that T1DM in Akita mice is associated with decreased bone mass, weaker bones, and impaired fracture healing. Ins2 ± (Akita) and wildtype (WT) males were subjected to femur fracture at 18-weeks age and healing assessed 3-21 days post-fracture. Non-fractured left femurs were assessed for morphology (microCT) and strength (bending or torsion) at 19-21 weeks age. Fractured right femurs were assessed for callus mechanics (torsion), morphology and composition (microCT and histology) and gene expression (qPCR). Both Akita and WT mice gained weight from 3 to 18 weeks age, but Akita mice weighed less starting at 5 weeks (-5.2%, p < 0.05). At 18-20 weeks age Akita mice had reduced serum osteocalcin (-30%), cortical bone area (-16%), and thickness (-17%) compared to WT, as well as reduced cancellous BV/TV (-39%), trabecular thickness (-23%) and vBMD (-31%). Mechanical testing of non-fractured femurs showed decreased structural (stiffness, ultimate load) and material (ultimate stress) properties of Akita bones. At 14 and 21 days post fracture Akita mice had a significantly smaller callus than WT mice (~30%), with less cartilage and bone area. Assessment of torsional strength showed a weaker callus in Akita mice with lower stiffness (-42%), maximum torque (-44%) and work to fracture (-44%). In summary, cortical and cancellous bone mass were reduced in Akita mice, with lower bone mechanical properties. Fracture healing in Akita mice was impaired by T1DM, with a smaller, weaker fracture callus due to decreased cartilage and bone formation. In conclusion, the Akita mouse mimics some of the skeletal features of T1DM in humans, including osteopenia and impaired fracture healing, and may be useful to test interventions.
Collapse
Affiliation(s)
- Pei Hu
- State Key Laboratory of Oral Diseases, West China School of Stomatology, Sichuan University, Chengdu 610041, Sichuan, China; Department of Orthopaedic Surgery and Musculoskeletal Research Center, Washington University School of Medicine, Saint Louis, MO, United States
| | - Jennifer A McKenzie
- Department of Orthopaedic Surgery and Musculoskeletal Research Center, Washington University School of Medicine, Saint Louis, MO, United States
| | - Evan G Buettmann
- Department of Orthopaedic Surgery and Musculoskeletal Research Center, Washington University School of Medicine, Saint Louis, MO, United States; Department of Biomedical Engineering, Washington University, Saint Louis, MO, United States
| | - Nicole Migotsky
- Department of Orthopaedic Surgery and Musculoskeletal Research Center, Washington University School of Medicine, Saint Louis, MO, United States; Department of Biomedical Engineering, Washington University, Saint Louis, MO, United States
| | - Michael J Gardner
- Department of Orthopaedic Surgery, Stanford University School of Medicine, Stanford, CA, United States
| | - Matthew J Silva
- Department of Orthopaedic Surgery and Musculoskeletal Research Center, Washington University School of Medicine, Saint Louis, MO, United States; Department of Biomedical Engineering, Washington University, Saint Louis, MO, United States.
| |
Collapse
|
20
|
Gao X, Wang S, Zhang J, Wang S, Bai F, Liang J, Wu J, Wang H, Gao Y, Chang H. Differential bone remodeling mechanism in hindlimb unloaded rats and hibernating Daurian ground squirrels: a comparison between artificial and natural disuse. J Comp Physiol B 2021; 191:793-814. [PMID: 34002279 DOI: 10.1007/s00360-021-01375-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2020] [Revised: 04/02/2021] [Accepted: 04/20/2021] [Indexed: 11/30/2022]
Abstract
To determine that differential bone remodeling mechanism (especially Wnt signaling) in hindlimb unloaded rats and hibernating Daurian ground squirrels, the bone microstructure, mechanical properties, and expression levels of bone remodeling related proteins and key proteins of Wnt/β-catenin signaling were analyzed in this study. The thickness of cortical and trabecular bone was decreased in femur of hindlimb unloaded rats, while it was maintained in femur of hibernating ground squirrels. Interestingly, the ultimate bending energy and ultimate normalized displacement were reduced and the bending rigidity was increased in tibia of hibernating ground squirrels. Besides, the protein level of Runx2 was decreased in femur and tibia of unloaded rats, while it was maintained in tibia and even increased in femur of hibernating ground squirrels. The protein levels of RANKL and MMP-9 were increased in femur and tibia in unloaded rats, while they were maintained in both femur and tibia of hibernating ground squirrels. The protein level of GSK-3β was increased in femur and tibia of unloaded rats, while it was maintained in both femur and tibia of hibernating ground squirrels. The phospho-β-catenin expression was increased in both femur and tibia of unloaded rats, while it was only decreased in femur, but maintained in tibia of hibernating ground squirrels. In conclusion, the femur and tibia in hindlimb unloaded rats showed obvious bone loss, while they mitigated disuse-induced bone loss in hibernating ground squirrels, involving differential protein expression of key molecules in bone remodeling. In comparison with hindlimb unloaded rats, promoting osteoblast differentiation through activating canonical GSK-3β/β-catenin signaling involving Runx2 might be an adaptation to natural disuse in femur of hibernating Daurian ground squirrels. However, there was no statistical change in the protein levels of bone formation related proteins, GSK-3β and phospho-β-catenin in tibia of hibernating Daurian ground squirrels.
Collapse
Affiliation(s)
- Xuli Gao
- Shaanxi Key Laboratory for Animal Conservation, Northwest University, Xi'an, 710069, People's Republic of China.,Key Laboratory of Resource Biology and Biotechnology in Western China, College of Life Sciences, Northwest University, Ministry of Education, 229# North Taibai Road, Xi'an, 710069, People's Republic of China
| | - Siqi Wang
- Key Laboratory of Resource Biology and Biotechnology in Western China, College of Life Sciences, Northwest University, Ministry of Education, 229# North Taibai Road, Xi'an, 710069, People's Republic of China
| | - Jie Zhang
- Shaanxi Key Laboratory for Animal Conservation, Northwest University, Xi'an, 710069, People's Republic of China.,Key Laboratory of Resource Biology and Biotechnology in Western China, College of Life Sciences, Northwest University, Ministry of Education, 229# North Taibai Road, Xi'an, 710069, People's Republic of China
| | - Shuyao Wang
- Key Laboratory of Resource Biology and Biotechnology in Western China, College of Life Sciences, Northwest University, Ministry of Education, 229# North Taibai Road, Xi'an, 710069, People's Republic of China
| | - Feiyan Bai
- Key Laboratory of Resource Biology and Biotechnology in Western China, College of Life Sciences, Northwest University, Ministry of Education, 229# North Taibai Road, Xi'an, 710069, People's Republic of China
| | - Jing Liang
- Key Laboratory of Resource Biology and Biotechnology in Western China, College of Life Sciences, Northwest University, Ministry of Education, 229# North Taibai Road, Xi'an, 710069, People's Republic of China
| | - Jiawei Wu
- Key Laboratory of Resource Biology and Biotechnology in Western China, College of Life Sciences, Northwest University, Ministry of Education, 229# North Taibai Road, Xi'an, 710069, People's Republic of China
| | - Huiping Wang
- Shaanxi Key Laboratory for Animal Conservation, Northwest University, Xi'an, 710069, People's Republic of China.,Key Laboratory of Resource Biology and Biotechnology in Western China, College of Life Sciences, Northwest University, Ministry of Education, 229# North Taibai Road, Xi'an, 710069, People's Republic of China
| | - Yunfang Gao
- Shaanxi Key Laboratory for Animal Conservation, Northwest University, Xi'an, 710069, People's Republic of China. .,Key Laboratory of Resource Biology and Biotechnology in Western China, College of Life Sciences, Northwest University, Ministry of Education, 229# North Taibai Road, Xi'an, 710069, People's Republic of China.
| | - Hui Chang
- Shaanxi Key Laboratory for Animal Conservation, Northwest University, Xi'an, 710069, People's Republic of China. .,Key Laboratory of Resource Biology and Biotechnology in Western China, College of Life Sciences, Northwest University, Ministry of Education, 229# North Taibai Road, Xi'an, 710069, People's Republic of China.
| |
Collapse
|
21
|
Wang HJ, Giambini H, Chen JW, Wang QS, Hou HG, Luo SM, Chen JY, Zhuang TF, Chen YF, Wu TT, Zha ZG, Liu YJ, Zheng XF. Diabetes mellitus accelerates the progression of osteoarthritis in streptozotocin-induced diabetic mice by deteriorating bone microarchitecture, bone mineral composition, and bone strength of subchondral bone. ANNALS OF TRANSLATIONAL MEDICINE 2021; 9:768. [PMID: 34268381 PMCID: PMC8246216 DOI: 10.21037/atm-20-6797] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/10/2020] [Accepted: 02/21/2021] [Indexed: 01/11/2023]
Abstract
Background The purpose of this study was to develop an optimal diabetes-osteoarthritis (DM-OA) mouse model to validate that diabetes aggravates osteoarthritis (OA) and to evaluate the microarchitecture, chemical composition, and biomechanical properties of subchondral bone (SB) as a consequence of the DM-OA-induced damage induced. Methods Mice were randomly divided into three groups: DM-OA group, OA group, and sham group. Blood glucose levels, body weight, and food intake of all animals were recorded. Serum calcium (Ca) and osteocalcin (OCN) levels were compared in the three groups. The messenger ribonucleic acid (mRNA) and protein expression of key regulators for bone metabolism were detected. A semi-quantitative grading system [Osteoarthritis Research Society International (OARSI)] was used to evaluate cartilage and SB degeneration. Microspectroscopy, microindentations, micro-computed tomography (CT) imaging, and fracture load of compression testing were also used to evaluate trabecular SB properties. Results Glycemic monitoring and pancreas pathological results indicated stable high blood glucose and massive destruction of pancreas and islet cells in the DM-OA group. Serum levels of bone specific alkaline phosphatase (ALP-B) and tartrate-resistant acid phosphatase 5b (TRACP-5b) in the DM-group were higher than those of the other two groups while levels of serum Ca and OCN were lower. Meanwhile, the protein and mRNA expression of osteoblast-specific biomarkers [osteoprotegerin/receptor activator of nuclear factor kappa-B ligand (OPG/RANKL) ratio, collagen type I (COL-I), Runt-related transcription factor 2 (RUNX-2), OCN] were suppressed, and osteoclast-specific biomarkers [sclerostin (SOST)] was elevated in the DM-OA group. The mineral-to-collagen ratio, microindentation elastic modulus, hardness, micro-architectural parameters, bone mineral density, and fracture load of SB trabecular bone of the DM-OA group joint were lower than those of the other two groups. On the other hand, The OARSI score, trabecular spacing, and structural model index of the DM-OA group joint were higher than those of the other two groups. Conclusions The glycemic and pancreatic pathological results indicated that the DM-OA model was a simple and reliable model induced by streptozotocin (STZ) and surgery. The results revealed the mechanisms through which diabetes accelerates OA; that is, by damaging and deteriorating the functions of SB, including its microarchitecture, chemical composition, and biomechanical properties.
Collapse
Affiliation(s)
- Hua-Jun Wang
- The First Clinical College, Jinan University & Department of Orthopedic Surgery and Sports Medicine Center, The First Affiliated Hospital, Jinan University, Guangzhou, China
| | - Hugo Giambini
- Department of Biomedical Engineering, The University of Texas at San Antonio, San Antonio, TX, USA
| | - Ji-Wen Chen
- The First Clinical College, Jinan University & Department of Orthopedic Surgery and Sports Medicine Center, The First Affiliated Hospital, Jinan University, Guangzhou, China
| | - Qiu-Shi Wang
- The First Clinical College, Jinan University & Department of Orthopedic Surgery and Sports Medicine Center, The First Affiliated Hospital, Jinan University, Guangzhou, China
| | - Hui-Ge Hou
- The First Clinical College, Jinan University & Department of Orthopedic Surgery and Sports Medicine Center, The First Affiliated Hospital, Jinan University, Guangzhou, China
| | - Si-Min Luo
- The First Clinical College, Jinan University & Department of Orthopedic Surgery and Sports Medicine Center, The First Affiliated Hospital, Jinan University, Guangzhou, China
| | - Jun-Yuan Chen
- The First Clinical College, Jinan University & Department of Orthopedic Surgery and Sports Medicine Center, The First Affiliated Hospital, Jinan University, Guangzhou, China
| | - Teng-Feng Zhuang
- The First Clinical College, Jinan University & Department of Orthopedic Surgery and Sports Medicine Center, The First Affiliated Hospital, Jinan University, Guangzhou, China
| | - Yuan-Feng Chen
- The First Clinical College, Jinan University & Department of Orthopedic Surgery and Sports Medicine Center, The First Affiliated Hospital, Jinan University, Guangzhou, China
| | - Ting-Ting Wu
- The First Clinical College, Jinan University & Department of Orthopedic Surgery and Sports Medicine Center, The First Affiliated Hospital, Jinan University, Guangzhou, China
| | - Zhen-Gang Zha
- The First Clinical College, Jinan University & Department of Orthopedic Surgery and Sports Medicine Center, The First Affiliated Hospital, Jinan University, Guangzhou, China
| | - You-Jie Liu
- The First Clinical College, Jinan University & Department of Orthopedic Surgery and Sports Medicine Center, The First Affiliated Hospital, Jinan University, Guangzhou, China
| | - Xiao-Fei Zheng
- The First Clinical College, Jinan University & Department of Orthopedic Surgery and Sports Medicine Center, The First Affiliated Hospital, Jinan University, Guangzhou, China
| |
Collapse
|
22
|
Beeve AT, Shen I, Zhang X, Magee K, Yan Y, MacEwan MR, Scheller EL. Neuroskeletal Effects of Chronic Bioelectric Nerve Stimulation in Health and Diabetes. Front Neurosci 2021; 15:632768. [PMID: 33935630 PMCID: PMC8080454 DOI: 10.3389/fnins.2021.632768] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2020] [Accepted: 03/16/2021] [Indexed: 12/02/2022] Open
Abstract
Background/Aims Bioelectric nerve stimulation (eStim) is an emerging clinical paradigm that can promote nerve regeneration after trauma, including within the context of diabetes. However, its ability to prevent the onset of diabetic peripheral neuropathy (DPN) has not yet been evaluated. Beyond the nerve itself, DPN has emerged as a potential contributor to sarcopenia and bone disease; thus, we hypothesized that eStim could serve as a strategy to simultaneously promote neural and musculoskeletal health in diabetes. Methods To address this question, an eStim paradigm pre-optimized to promote nerve regeneration was applied to the sciatic nerve, which directly innervates the tibia and lower limb, for 8 weeks in control and streptozotocin-induced type 1 diabetic (T1D) rats. Metabolic, gait, nerve and bone assessments were used to evaluate the progression of diabetes and the effect of sciatic nerve eStim on neuropathy and musculoskeletal disease, while also considering the effects of cuff placement and chronic eStim in otherwise healthy animals. Results Rats with T1D exhibited increased mechanical allodynia in the hindpaw, reduced muscle mass, decreased cortical and cancellous bone volume fraction (BVF), reduced cortical bone tissue mineral density (TMD), and decreased bone marrow adiposity. Type 1 diabetes also had an independent effect on gait. Placement of the cuff electrode alone resulted in altered gait patterns and unilateral reductions in tibia length, cortical BVF, and bone marrow adiposity. Alterations in gait patterns were restored by eStim and tibial lengthening was favored unilaterally; however, eStim did not prevent T1D-induced changes in muscle, bone, marrow adiposity or mechanical sensitivity. Beyond this, chronic eStim resulted in an independent, bilateral reduction in cortical TMD. Conclusion Overall, these results provide new insight into the pathogenesis of diabetic neuroskeletal disease and its regulation by eStim. Though eStim did not prevent neural or musculoskeletal complications in T1D, our results demonstrate that clinical applications of peripheral neuromodulation ought to consider the impact of device placement and eStim on long-term skeletal health in both healthy individuals and those with metabolic disease. This includes monitoring for compounded bone loss to prevent unintended consequences including decreased bone mineral density and increased fracture risk.
Collapse
Affiliation(s)
- Alec T Beeve
- Department of Biomedical Engineering, Washington University in St. Louis, St. Louis, MO, United States.,Department of Internal Medicine, Division of Bone and Mineral Diseases, Washington University School of Medicine in St. Louis, St. Louis, MO, United States
| | - Ivana Shen
- Department of Internal Medicine, Division of Bone and Mineral Diseases, Washington University School of Medicine in St. Louis, St. Louis, MO, United States
| | - Xiao Zhang
- Department of Biomedical Engineering, Washington University in St. Louis, St. Louis, MO, United States.,Department of Internal Medicine, Division of Bone and Mineral Diseases, Washington University School of Medicine in St. Louis, St. Louis, MO, United States
| | - Kristann Magee
- Department of Internal Medicine, Division of Bone and Mineral Diseases, Washington University School of Medicine in St. Louis, St. Louis, MO, United States
| | - Ying Yan
- Department of Neurosurgery, Washington University School of Medicine in St. Louis, St. Louis, MO, United States
| | - Matthew R MacEwan
- Department of Neurosurgery, Washington University School of Medicine in St. Louis, St. Louis, MO, United States
| | - Erica L Scheller
- Department of Biomedical Engineering, Washington University in St. Louis, St. Louis, MO, United States.,Department of Internal Medicine, Division of Bone and Mineral Diseases, Washington University School of Medicine in St. Louis, St. Louis, MO, United States
| |
Collapse
|
23
|
Gomes PS, Resende M, Fernandes MH. Doxycycline restores the impaired osteogenic commitment of diabetic-derived bone marrow mesenchymal stromal cells by increasing the canonical WNT signaling. Mol Cell Endocrinol 2020; 518:110975. [PMID: 32758627 DOI: 10.1016/j.mce.2020.110975] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/16/2020] [Revised: 07/21/2020] [Accepted: 07/31/2020] [Indexed: 01/09/2023]
Abstract
Diabetes mellitus comprehends a group of chronic metabolic disorders, associated with damage and dysfunction of distinct tissues, including bone. At the cellular level, an impaired osteoblastogenesis has been reported, affecting the viability, proliferation and functionality of osteoblasts and precursor populations, hampering the bone metabolic activity, remodeling and healing. Tetracyclines embrace a group of broad-spectrum antibacterial compounds with potential anabolic effects on the bone tissue, through antibacterial-independent mechanisms. Accordingly, this study aims to address the modulatory capability and associated molecular signaling of a low dosage doxycycline - a semi-synthetic tetracycline, in the functional activity of osteoblastic progenitor cells (bone marrow-derived mesenchymal stromal cells), established from a translational diabetic experimental model. Bone marrow-derived mesenchymal stromal cells were isolated from streptozotocin-induced diabetic Wistar rat with proven osteopenia. Cultures were characterized, in the presence of doxycycline (1 μg ml-1) for proliferation, metabolic activity, apoptosis, collagen synthesis and relevant gene expression with the osteogenic and adipogenic program. The activation of the Wnt/β-catenin pathway was further detailed. Doxycycline normalized the viability, proliferation and metabolic activity of the established cultures, further decreasing cell apoptosis, to levels similar to control. The addition of this drug to the culture environment further increased the osteogenic activation, upregulating the expression of osteogenic markers and collagen synthesis, at the same time that a decreased adipogenic priming was attained. These processes were found to me mediated, at least in part, by the restoration of the signaling through the Wnt/β-catenin pathway.
Collapse
Affiliation(s)
- Pedro Sousa Gomes
- BoneLab - Laboratory for Bone Metabolism and Regeneration, Faculty of Dental Medicine, U. Porto, R. Dr. Manuel Pereira da Silva, 4200-393, Porto, Portugal; LAQV/REQUIMTE, U. Porto, Porto, 4160-007, Portugal.
| | - Marta Resende
- Faculty of Dental Medicine, U. Porto, R. Dr. Manuel Pereira da Silva, 4200-393, Porto, Portugal
| | - Maria Helena Fernandes
- BoneLab - Laboratory for Bone Metabolism and Regeneration, Faculty of Dental Medicine, U. Porto, R. Dr. Manuel Pereira da Silva, 4200-393, Porto, Portugal; LAQV/REQUIMTE, U. Porto, Porto, 4160-007, Portugal
| |
Collapse
|
24
|
Arakawa S, Suzuki R, Kurosaka D, Ikeda R, Hayashi H, Kayama T, Ohno RI, Nagai R, Marumo K, Saito M. Mass spectrometric quantitation of AGEs and enzymatic crosslinks in human cancellous bone. Sci Rep 2020; 10:18774. [PMID: 33139851 PMCID: PMC7606603 DOI: 10.1038/s41598-020-75923-8] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2020] [Accepted: 10/19/2020] [Indexed: 02/07/2023] Open
Abstract
Advanced glycation end-products (AGEs) deteriorate bone strength. Among over 40 species identified in vivo, AGEs other than pentosidine were roughly estimated as total fluorescent AGEs (tfAGEs) due to technical difficulties. Using LC-QqTOF-MS, we established a system that enabled the quantitation of five AGEs (CML, CEL, MG-H1, CMA and pentosidine) as well as two mature and three immature enzymatic crosslinks. Human bone samples were collected from 149 patients who underwent total knee arthroplasty. Their clinical parameters were collected to investigate parameters that may be predictive of AGE accumulation. All the analytes were quantitated and showed significant linearity with high sensitivity and precision. The results showed that MG-H1 was the most abundant AGE, whereas pentosidine was 1/200-1/20-fold less abundant than the other four AGEs. The AGEs were significantly and strongly correlated with pentosidine, while showing moderate correlation with tfAGEs. Interestingly, multiple linear regression analysis revealed that gender contributed most to the accumulation of all the AGEs, followed by age, tartrate-resistant acid phosphatase-5b and HbA1c. Furthermore, the AGEs were negatively correlated with immature crosslinks. Mass spectrometric quantitation of AGEs and enzymatic crosslinks is crucial to a better understanding of ageing- and disease-related deterioration of bone strength.
Collapse
Affiliation(s)
- Shoutaro Arakawa
- Department of Orthopaedic Surgery, Jikei University School of Medicine, 3-25-8, Nishi-Shinbashi, Minato-ku, Tokyo, 105-8461, Japan.
- Laboratory of Food and Regulation Biology, School of Agriculture, Tokai University, 9-1-1, Toroku, Higashi-ku, Kumamoto, 862-8652, Japan.
| | - Ryusuke Suzuki
- Department of Orthopaedic Surgery, Jikei University School of Medicine, 3-25-8, Nishi-Shinbashi, Minato-ku, Tokyo, 105-8461, Japan
- Laboratory of Food and Regulation Biology, School of Agriculture, Tokai University, 9-1-1, Toroku, Higashi-ku, Kumamoto, 862-8652, Japan
| | - Daisaburo Kurosaka
- Department of Orthopaedic Surgery, Jikei University School of Medicine, 3-25-8, Nishi-Shinbashi, Minato-ku, Tokyo, 105-8461, Japan
| | - Ryo Ikeda
- Department of Orthopaedic Surgery, Jikei University School of Medicine, 3-25-8, Nishi-Shinbashi, Minato-ku, Tokyo, 105-8461, Japan
| | - Hiroteru Hayashi
- Department of Orthopaedic Surgery, Jikei University School of Medicine, 3-25-8, Nishi-Shinbashi, Minato-ku, Tokyo, 105-8461, Japan
| | - Tomohiro Kayama
- Department of Orthopaedic Surgery, Jikei University School of Medicine, 3-25-8, Nishi-Shinbashi, Minato-ku, Tokyo, 105-8461, Japan
| | - Rei-Ichi Ohno
- Laboratory of Food and Regulation Biology, School of Agriculture, Tokai University, 9-1-1, Toroku, Higashi-ku, Kumamoto, 862-8652, Japan
| | - Ryoji Nagai
- Laboratory of Food and Regulation Biology, School of Agriculture, Tokai University, 9-1-1, Toroku, Higashi-ku, Kumamoto, 862-8652, Japan
| | - Keishi Marumo
- Department of Orthopaedic Surgery, Jikei University School of Medicine, 3-25-8, Nishi-Shinbashi, Minato-ku, Tokyo, 105-8461, Japan
| | - Mitsuru Saito
- Department of Orthopaedic Surgery, Jikei University School of Medicine, 3-25-8, Nishi-Shinbashi, Minato-ku, Tokyo, 105-8461, Japan
| |
Collapse
|
25
|
Liu Q, Yang Z, Xie C, Ling L, Hu H, Cao Y, Huang Y, Zhu Q, Hua Y. The Hyperglycemia and Hyperketonemia Impaired Bone Microstructures: A Pilot Study in Rats. Front Endocrinol (Lausanne) 2020; 11:590575. [PMID: 33193101 PMCID: PMC7642598 DOI: 10.3389/fendo.2020.590575] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/02/2020] [Accepted: 09/22/2020] [Indexed: 12/14/2022] Open
Abstract
Though diabetes mellitus (DM) is one of the known causes of osteoporosis, it is also realized that ketogenic diet (KD), an effective regimen for epilepsy, impairs bone microstructures. However, the similarities and differences of effects between these two factors are still unknown. The purpose of this study is to identify different effects between hyperglycemia and hyperketonemia, which are manifestations of DM and KD, on bone in rats. Thirty male Sprague-Dawley rats were randomly divided into three groups: the sham, DM, and KD groups. Hyperglycemia was achieved by intravenous injection of streptozotocin in DM group, while hyperketonemia was induced by application of ketogenic diet (carbohydrates-to-fat as 1:3) in KD group. The body weight, blood ketone body, and blood glucose were recorded, and the bone turnover markers, bone length, bone microstructures, bone biomechanics and histomorphology were measured after 12 weeks intervention. Compared with the control and KD groups, a significant body weight loss was found in the DM group, and the bone lengths of tibia and femur of the group were shortened. The blood glucose and blood ketone were noticeably increased in the DM and KD rats, respectively. Microstructures and properties of cancellous bone were significantly deteriorated in both the DM and KD groups compared with the sham group, as the bone volumes were decreased and the bone trabecula structures were disturbed. Meanwhile, the thickness and strength of cortical bone was reduced more in the DM group than those in the sham and KD groups. The HE staining showed that bone trabecula was significantly decreased in both the DM and KD groups, and more adipose tissue was observed in the KD rats. The activity of osteoblasts was decreased more in both the KD and DM groups than that in the sham group, while the activity of osteoclasts of the two groups was remarkably increased. The present study indicates that both hyperglycemia and hyperketonemia have adverse effects on bone. Therefore, it is worth paying more attention to the bone status of patients with hyperglycemia and hyperketonemia in clinic.
Collapse
Affiliation(s)
- Qi Liu
- Department of Orthopaedic Surgery, The Second Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Zhou Yang
- Department of Orthopaedic Surgery, Southern University of Science and Technology Hospital, Shenzhen, China
| | - Chuhai Xie
- Department of Orthopaedic Surgery, The Second Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Long Ling
- Department of Orthopaedic Surgery, The Second Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Hailan Hu
- Department of Orthopaedic Surgery, The Second Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Yanming Cao
- Department of Orthopaedic Surgery, The Second Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Yan Huang
- Department of Orthopaedic Surgery, The Second Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Qingan Zhu
- Division of Spine Surgery, Department of Orthopedics, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Yue Hua
- School of Traditional Chinese Medicine, Southern Medical University, Guangzhou, China
| |
Collapse
|
26
|
Administration of Human Non-Diabetic Mesenchymal Stromal Cells to a Murine Model of Diabetic Fracture Repair: A Pilot Study. Cells 2020; 9:cells9061394. [PMID: 32503335 PMCID: PMC7348854 DOI: 10.3390/cells9061394] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2020] [Revised: 05/27/2020] [Accepted: 05/29/2020] [Indexed: 01/05/2023] Open
Abstract
Individuals living with type 1 diabetes mellitus may experience an increased risk of long bone fracture. These fractures are often slow to heal, resulting in delayed reunion or non-union. It is reasonable to theorize that the underlying cause of these diabetes-associated osteopathies is faulty repair dynamics as a result of compromised bone marrow progenitor cell function. Here it was hypothesized that the administration of non-diabetic, human adult bone marrow-derived mesenchymal stromal cells (MSCs) would enhance diabetic fracture healing. Human MSCs were locally introduced to femur fractures in streptozotocin-induced diabetic mice, and the quality of de novo bone was assessed eight weeks later. Biodistribution analysis demonstrated that the cells remained in situ for three days following administration. Bone bridging was evident in all animals. However, a large reparative callus was retained, indicating non-union. µCT analysis elucidated comparable callus dimensions, bone mineral density, bone volume/total volume, and volume of mature bone in all groups that received cells as compared to the saline-treated controls. Four-point bending evaluation of flexural strength, flexural modulus, and total energy to re-fracture did not indicate a statistically significant change as a result of cellular administration. An ex vivo lymphocytic proliferation recall assay indicated that the xenogeneic administration of human cells did not result in an immune response by the murine recipient. Due to this dataset, the administration of non-diabetic bone marrow-derived MSCs did not support fracture healing in this pilot study.
Collapse
|
27
|
Rios-Arce ND, Dagenais A, Feenstra D, Coughlin B, Kang HJ, Mohr S, McCabe LR, Parameswaran N. Loss of interleukin-10 exacerbates early Type-1 diabetes-induced bone loss. J Cell Physiol 2020; 235:2350-2365. [PMID: 31538345 PMCID: PMC6899206 DOI: 10.1002/jcp.29141] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2019] [Accepted: 08/23/2019] [Indexed: 01/08/2023]
Abstract
Type-1 diabetes (T1D) increases systemic inflammation, bone loss, and risk for bone fractures. Levels of the anti-inflammatory cytokine interleukin-10 (IL-10) are decreased in T1D, however their role in T1D-induced osteoporosis is unknown. To address this, diabetes was induced in male IL-10 knockout (KO) and wild-type (WT) mice. Analyses of femur and vertebral trabecular bone volume fraction identified bone loss in T1D-WT mice at 4 and 12 weeks, which in T1D-IL-10-KO mice was further reduced at 4 weeks but not 12 weeks. IL-10 deficiency also increased the negative effects of T1D on cortical bone. Osteoblast marker osterix was decreased, while osteoclast markers were unchanged, suggesting that IL-10 promotes anabolic processes. MC3T3-E1 osteoblasts cultured under high glucose conditions displayed a decrease in osterix which was prevented by addition of IL-10. Taken together, our results suggest that IL-10 is important for promoting osteoblast maturation and reducing bone loss during early stages of T1D.
Collapse
Affiliation(s)
- Naiomy Deliz Rios-Arce
- Department of Physiology, Michigan State University, East Lansing, Michigan
- Comparative Medicine and Integrative Biology Program, Michigan State University, East Lansing, Michigan
| | - Andrew Dagenais
- Department of Physiology, Michigan State University, East Lansing, Michigan
| | - Derrick Feenstra
- Department of Physiology, Michigan State University, East Lansing, Michigan
| | - Brandon Coughlin
- Department of Physiology, Michigan State University, East Lansing, Michigan
| | - Ho Jun Kang
- Department of Physiology, Michigan State University, East Lansing, Michigan
| | - Susanne Mohr
- Department of Physiology, Michigan State University, East Lansing, Michigan
| | - Laura R. McCabe
- Department of Physiology, Michigan State University, East Lansing, Michigan
- Department of Radiology, Michigan State University, East Lansing, Michigan
- Biomedical Imaging Research Center, Michigan State University, East Lansing, Michigan
- These authors contributed equally to this work are co-senior and co-corresponding authors
| | - Narayanan Parameswaran
- Department of Physiology, Michigan State University, East Lansing, Michigan
- Comparative Medicine and Integrative Biology Program, Michigan State University, East Lansing, Michigan
- These authors contributed equally to this work are co-senior and co-corresponding authors
| |
Collapse
|
28
|
Hyperglycemia compromises Rat Cortical Bone by Increasing Osteocyte Lacunar Density and Decreasing Vascular Canal Volume. Commun Biol 2020; 3:20. [PMID: 31925331 PMCID: PMC6952406 DOI: 10.1038/s42003-019-0747-1] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2019] [Accepted: 12/06/2019] [Indexed: 12/13/2022] Open
Abstract
Uncontrolled diabetes is associated with increased risk of bony fractures. However, the mechanisms have yet to be understood. Using high-resolution synchrotron micro-CT, we calculated the changes in the microstructure of femoral cortices of streptozotocin-induced hyperglycemic (STZ) Wistar Albino rats and tested the mechanical properties of the mineralized matrix by nanoindentation. Total lacunar volume of femoral cortices increased in STZ group due to a 9% increase in lacunar density. However, total vascular canal volume decreased in STZ group due to a remarkable decrease in vascular canal diameter (7 ± 0.3 vs. 8.5 ± 0.4 µm). Osteocytic territorial matrix volume was less in the STZ group (14,908 ± 689 µm3) compared with healthy controls (16,367 ± 391 µm3). In conclusion, hyperglycemia increased cellularity and lacunar density, decreased osteocyte territorial matrix, and reduced vascular girth, in addition to decreasing matrix mechanical properties in the STZ group when compared with euglycemic controls. Birol Ay et al. use high-resolution synchrotron radiation micro-CT to calculate the changes in the microstructure of femoral cortices in STZ-induced hyperglycemic rats. They show that hyperglycemia increases lacunar density due to a reduction in osteocytic territorial matrix volume but decreases total vascular canal volume due to a decrease in canal diameter.
Collapse
|
29
|
Liu X, Li W, Cai J, Yan Z, Shao X, Xie K, Guo XE, Luo E, Jing D. Spatiotemporal characterization of microdamage accumulation and its targeted remodeling mechanisms in diabetic fatigued bone. FASEB J 2020; 34:2579-2594. [PMID: 31908007 DOI: 10.1096/fj.201902011rr] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2019] [Revised: 12/03/2019] [Accepted: 12/04/2019] [Indexed: 01/22/2023]
Abstract
The skeleton of type 1 diabetes mellitus (T1DM) has deteriorated mechanical integrity and increased fragility, whereas the mechanisms are not fully understood. Load-induced microdamage naturally occurs in bone matrix and can be removed by initiating endogenous targeted bone remodeling. However, the microdamage accumulation in diabetic skeleton and the corresponding bone remodeling mechanisms remain poorly understood. Herein, streptozotocin-induced T1DM rats and age-matched non-diabetic rats were subjected to daily uniaxial ulnar loading for 1, 4, 7, and 10 days, respectively. The SPECT/CT and basic fuchsin staining revealed significant higher-density spatial accumulation of linear and diffuse microdamage in diabetic ulnae than non-diabetic ulnae. Linear microcracks increased within 10-day loading in diabetic bone, whereas peaked at Day 7 in non-diabetic bone. Moreover, diabetic fatigued ulnae had more severe disruptions of osteocyte canaliculi around linear microcracks. Immunostaining results revealed that diabetes impaired targeted remodeling in fatigued bone at every key stage, including increased apoptosis of bystander osteocytes, decreased RANKL secretion, reduced osteoclast recruitment and bone resorption, and impaired osteoblast-mediated bone formation. This study characterizes microdamage accumulation and abnormal remodeling mechanisms in the diabetic skeleton, which advances our etiologic understanding of diabetic bone deterioration and increased fragility from the aspect of microdamage accumulation and bone remodeling.
Collapse
Affiliation(s)
- Xiyu Liu
- Department of Biomedical Engineering, Fourth Military Medical University, Xi'an, China
| | - Wei Li
- Department of Biomedical Engineering, Fourth Military Medical University, Xi'an, China
| | - Jing Cai
- College of Basic Medicine, Shaanxi University of Chinese Medicine, Xianyang, China
| | - Zedong Yan
- Department of Biomedical Engineering, Fourth Military Medical University, Xi'an, China
| | - Xi Shao
- Department of Biomedical Engineering, Fourth Military Medical University, Xi'an, China
| | - Kangning Xie
- Department of Biomedical Engineering, Fourth Military Medical University, Xi'an, China
| | - X Edward Guo
- Bone Bioengineering Laboratory, Department of Biomedical Engineering, Columbia University, New York, NY, USA
| | - Erping Luo
- Department of Biomedical Engineering, Fourth Military Medical University, Xi'an, China
| | - Da Jing
- Department of Biomedical Engineering, Fourth Military Medical University, Xi'an, China
| |
Collapse
|
30
|
Abstract
PURPOSE OF REVIEW Individuals with type 1 and type 2 diabetes mellitus (T1DM, T2DM) have an increased risk of bone fracture compared to non-diabetic controls that is not explained by differences in BMD, BMI, or falls. Thus, bone tissue fracture resistance may be reduced in individuals with DM. The purpose of this review is to summarize work that analyzes the effects of T1DM and T2DM on bone tissue compositional and mechanical properties. RECENT FINDINGS Studies of clinical T2DM specimens revealed increased mineralization and advanced glycation endproduct (AGE) concentrations and significant relationships between mechanical performance and composition of cancellous bone. Specifically, in femoral cancellous tissue, compressive stiffness and strength increased with mineral content; and post-yield properties decreased with AGE concentration. In addition, cortical resistance to in vivo indentation (bone material strength index) was lower in patients with T2DM vs. age-matched non-diabetic controls, and this resistance decreased with worsening glycemic control. Recent studies on patients with T1DM and history of a prior fragility fracture found greater mineral content and concentrations of AGEs in iliac trabecular bone and correspondingly stiffer, harder bone at the nanosacle. Recent observational data showed greater AGE and mineral content in surgically retrieved bone from patients with T2DM vs. non-DM controls, consistent with reduced bone remodeling. Limited data on human T1DM bone tissue also showed higher mineral and AGE content in patients with prior fragility fractures compared to non-DM and non-fracture controls.
Collapse
MESH Headings
- Animals
- Biomechanical Phenomena
- Blood Glucose/metabolism
- Bone Density
- Bone Remodeling
- Bone and Bones/diagnostic imaging
- Bone and Bones/metabolism
- Bone and Bones/physiopathology
- Cancellous Bone/diagnostic imaging
- Cancellous Bone/metabolism
- Cancellous Bone/physiopathology
- Cortical Bone/diagnostic imaging
- Cortical Bone/metabolism
- Cortical Bone/physiopathology
- Diabetes Mellitus, Experimental/metabolism
- Diabetes Mellitus, Experimental/physiopathology
- Diabetes Mellitus, Type 1/epidemiology
- Diabetes Mellitus, Type 1/metabolism
- Diabetes Mellitus, Type 1/physiopathology
- Diabetes Mellitus, Type 2/epidemiology
- Diabetes Mellitus, Type 2/metabolism
- Diabetes Mellitus, Type 2/physiopathology
- Fractures, Bone/epidemiology
- Glycation End Products, Advanced/metabolism
- Humans
Collapse
Affiliation(s)
- Sashank Lekkala
- Department of Materials Science and Engineering, Cornell University, Ithaca, NY, USA
| | - Erik A Taylor
- Sibley School of Mechanical and Aerospace Engineering, Cornell University, Ithaca, NY, USA
| | - Heather B Hunt
- Department of Materials Science and Engineering, Cornell University, Ithaca, NY, USA
| | - Eve Donnelly
- Department of Materials Science and Engineering, Cornell University, Ithaca, NY, USA.
- Research Division, Hospital for Special Surgery, New York, NY, USA.
| |
Collapse
|
31
|
Mohsin S, Kaimala S, AlTamimi EKY, Tariq S, Adeghate E. In vivo Labeling of Bone Microdamage in an Animal Model of Type 1 Diabetes Mellitus. Sci Rep 2019; 9:16994. [PMID: 31740777 PMCID: PMC6861243 DOI: 10.1038/s41598-019-53487-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2019] [Accepted: 10/21/2019] [Indexed: 01/23/2023] Open
Abstract
Type 1 diabetes mellitus (DM1) is linked to a decrease in bone strength. Bone strength entails both bone mineral density and bone quality. Limited data are available regarding diabetes-induced microdamage, which can severely influence bone quality. This study has investigated bone microdamage as a measure of bone quality in an animal model of DM1. Microdamage in the neck of the femur was labelled in vivo using multiple fluorochromes at 4, 12 and 24 weeks after the onset of DM1. Microcracks were quantified and their morphology analyzed using microscopy techniques. The mean length of microcracks at 24 weeks, and crack numerical and surface densities were significantly higher (p < 0.05) 4 weeks after the onset of DM1 when compared with control. Diffuse damage density was highest at 12 weeks after the onset of DM1. The arrangement of the collagen fibrils became progressively more irregular from 4 to 24 weeks of DM. This is the first study to analyze microdamage in vivo at different time points of DM1. DM1is associated with microcracks from the early stage, however bone microstructure shows toughening mechanisms that arrest their growth but disease progression further deteriorates bone quality resulting in longer microcracks which may increase fracture risk.
Collapse
Affiliation(s)
- Sahar Mohsin
- Department of Anatomy, College of Medicine and Health Sciences, United Arab Emirates University, Al Ain, PO Box. 17666, UAE.
| | - Suneesh Kaimala
- Department of Anatomy, College of Medicine and Health Sciences, United Arab Emirates University, Al Ain, PO Box. 17666, UAE
| | - Eman Khamis Yousef AlTamimi
- Department of Anatomy, College of Medicine and Health Sciences, United Arab Emirates University, Al Ain, PO Box. 17666, UAE
| | - Saeed Tariq
- Department of Anatomy, College of Medicine and Health Sciences, United Arab Emirates University, Al Ain, PO Box. 17666, UAE
| | - Ernest Adeghate
- Department of Anatomy, College of Medicine and Health Sciences, United Arab Emirates University, Al Ain, PO Box. 17666, UAE
| |
Collapse
|
32
|
Evaluation of the Effects of Low-Level Laser Therapy on Diabetic Bone Healing. J Craniofac Surg 2019; 30:1994-1998. [PMID: 31232987 DOI: 10.1097/scs.0000000000005654] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022] Open
Abstract
The aim of the present study was to evaluate the effects of low-level laser therapy (LLLT) and biphasic alloplastic bone graft material on diabetic bone healing. Induction of diabetes was performed in 14 male Sprague-Dawley rats by intraperitoneal injection of a 50 mg/kg dose of streptozotocin. Two bilaterally symmetrical non-critical-sized bone defects were created in the parietal bones in each rat. Right defects were filled with biphasic alloplastic bone graft. Rats were randomly divided into 2 groups, with 1 group receiving 10 sessions of LLLT (GaAlAs, 78.5 J/cm, 100mW, 0.028 cm beam). The LLLT was started immediately after surgery and once every 3 days during postoperative period. At the end of treatment period, new bone formation and osteoblast density were determined using histomorphometry. Empty (control), graft-filled, LLLT-treated and both graft-filled and LLLT-treated bone defects were compared. New bone formation was higher in the graft treatment samples compared with the control (P = 0.009) and laser samples (P = 0.029). In addition, graft-laser combination treatment samples revealed higher bone formation than control (P = 0.008) and laser (P = 0.026) samples. Osteoblast density was significantly higher in the laser treatment (P <0.001), graft treatment (P = 0.001) and graft-laser combination treatment (P <0.001) samples than control samples. In addition, significantly higher osteoblast density was observed in the graft-laser combination treatment samples compared to the graft treatment samples (P = 0.005). The LLLT was effective to stimulate osteoblastogenesis but failed to increase bone formation. Graft augmentation for treatment of bone defects seems essential for proper bone healing in diabetes, regeneration may be supported by the LLLT to enhance osteoblastogenesis.
Collapse
|
33
|
Wang JF, Lee M, Tsai T, Leiferman EM, Trask DJ, Squire MW, Li W. Bone Morphogenetic Protein-6 Attenuates Type 1 Diabetes Mellitus-Associated Bone Loss. Stem Cells Transl Med 2019; 8:522-534. [PMID: 30784225 PMCID: PMC6525561 DOI: 10.1002/sctm.18-0150] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2018] [Accepted: 01/21/2019] [Indexed: 01/03/2023] Open
Abstract
Patients with type 1 diabetes mellitus (T1DM) often suffer from osteopenia or osteoporosis. Although most agree that T1DM-induced hyperglycemia is a risk factor for progressive bone loss, the mechanisms for the link between T1DM and bone loss still remain elusive. In this study, we found that bone marrow-derived mesenchymal stem cells (BMSCs) isolated from T1DM donors were less inducible for osteogenesis than those from non-T1DM donors and further identified a mechanism involving bone morphogenetic protein-6 (BMP6) that was produced significantly less in BMSCs derived from T1DM donors than that in control cells. With addition of exogenous BMP6 in culture, osteogenesis of BMSCs from T1DM donors was restored whereas the treatment of BMP6 seemed not to affect non-T1DM control cells. We also demonstrated that bone mineral density (BMD) was reduced in streptozotocin-induced diabetic mice compared with that in control animals, and intraperitoneal injection of BMP6 mitigated bone loss and increased BMD in diabetic mice. Our results suggest that bone formation in T1DM patients is impaired by reduction of endogenous BMP6, and supplementation of BMP6 enhances osteogenesis of BMSCs to restore BMD in a mouse model of T1DM, which provides insight into the development of clinical treatments for T1DM-assocaited bone loss. Stem Cells Translational Medicine 2019;8:522-534.
Collapse
Affiliation(s)
- Jesse F. Wang
- Department of Orthopedics and RehabilitationUniversity of Wisconsin‐MadisonMadisonWisconsinUSA
- Department of Biomedical EngineeringUniversity of Wisconsin‐MadisonMadisonWisconsinUSA
| | - Ming‐Song Lee
- Department of Orthopedics and RehabilitationUniversity of Wisconsin‐MadisonMadisonWisconsinUSA
- Department of Biomedical EngineeringUniversity of Wisconsin‐MadisonMadisonWisconsinUSA
| | - Tsung‐Lin Tsai
- Department of Orthopedics and RehabilitationUniversity of Wisconsin‐MadisonMadisonWisconsinUSA
- Department of Biomedical EngineeringUniversity of Wisconsin‐MadisonMadisonWisconsinUSA
| | - Ellen M. Leiferman
- Department of Orthopedics and RehabilitationUniversity of Wisconsin‐MadisonMadisonWisconsinUSA
| | - Darrin J. Trask
- Department of Orthopedics and RehabilitationUniversity of Wisconsin‐MadisonMadisonWisconsinUSA
| | - Matthew W. Squire
- Department of Orthopedics and RehabilitationUniversity of Wisconsin‐MadisonMadisonWisconsinUSA
| | - Wan‐Ju Li
- Department of Orthopedics and RehabilitationUniversity of Wisconsin‐MadisonMadisonWisconsinUSA
- Department of Biomedical EngineeringUniversity of Wisconsin‐MadisonMadisonWisconsinUSA
| |
Collapse
|
34
|
Kalaitzoglou E, Fowlkes JL, Popescu I, Thrailkill KM. Diabetes pharmacotherapy and effects on the musculoskeletal system. Diabetes Metab Res Rev 2019; 35:e3100. [PMID: 30467957 PMCID: PMC6358500 DOI: 10.1002/dmrr.3100] [Citation(s) in RCA: 66] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/04/2018] [Revised: 11/14/2018] [Accepted: 11/19/2018] [Indexed: 12/13/2022]
Abstract
Persons with type 1 or type 2 diabetes have a significantly higher fracture risk than age-matched persons without diabetes, attributed to disease-specific deficits in the microarchitecture and material properties of bone tissue. Therefore, independent effects of diabetes drugs on skeletal integrity are vitally important. Studies of incretin-based therapies have shown divergent effects of different agents on fracture risk, including detrimental, beneficial, and neutral effects. The sulfonylurea class of drugs, owing to its hypoglycemic potential, is thought to amplify the risk of fall-related fractures, particularly in the elderly. Other agents such as the biguanides may, in fact, be osteo-anabolic. In contrast, despite similarly expected anabolic properties of insulin, data suggests that insulin pharmacotherapy itself, particularly in type 2 diabetes, may be a risk factor for fracture, negatively associated with determinants of bone quality and bone strength. Finally, sodium-dependent glucose co-transporter 2 inhibitors have been associated with an increased risk of atypical fractures in select populations, and possibly with an increase in lower extremity amputation with specific SGLT2I drugs. The role of skeletal muscle, as a potential mediator and determinant of bone quality, is also a relevant area of exploration. Currently, data regarding the impact of glucose lowering medications on diabetes-related muscle atrophy is more limited, although preclinical studies suggest that various hypoglycemic agents may have either aggravating (sulfonylureas, glinides) or repairing (thiazolidinediones, biguanides, incretins) effects on skeletal muscle atrophy, thereby influencing bone quality. Hence, the therapeutic efficacy of each hypoglycemic agent must also be evaluated in light of its impact, alone or in combination, on musculoskeletal health, when determining an individualized treatment approach. Moreover, the effect of newer medications (potentially seeking expanded clinical indication into the pediatric age range) on the growing skeleton is largely unknown. Herein, we review the available literature regarding effects of diabetes pharmacotherapy, by drug class and/or by clinical indication, on the musculoskeletal health of persons with diabetes.
Collapse
Affiliation(s)
- Evangelia Kalaitzoglou
- University of Kentucky Barnstable Brown Diabetes Center Department of Pediatrics, University of Kentucky College of Medicine, Lexington, KY, USA
| | - John L Fowlkes
- University of Kentucky Barnstable Brown Diabetes Center Department of Pediatrics, University of Kentucky College of Medicine, Lexington, KY, USA
| | - Iuliana Popescu
- University of Kentucky Barnstable Brown Diabetes Center Department of Pediatrics, University of Kentucky College of Medicine, Lexington, KY, USA
| | - Kathryn M Thrailkill
- University of Kentucky Barnstable Brown Diabetes Center Department of Pediatrics, University of Kentucky College of Medicine, Lexington, KY, USA
| |
Collapse
|
35
|
Tanaka H, Yamashita T, Yoneda M, Takagi S, Miura T. Characteristics of bone strength and metabolism in type 2 diabetic model Tsumura, Suzuki, Obese Diabetes mice. Bone Rep 2018; 9:74-83. [PMID: 30094297 PMCID: PMC6073051 DOI: 10.1016/j.bonr.2018.07.004] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/02/2017] [Revised: 07/13/2018] [Accepted: 07/19/2018] [Indexed: 12/15/2022] Open
Abstract
OBJECTIVE Type 2 diabetes mellitus (T2DM) is a metabolic disease characterized by hyperglycemia, hyperinsulinemia, and complications such as obesity and osteoporosis. The Tsumura, Suzuki, Obese Diabetes (TSOD) mouse is an animal model of spontaneous obese T2DM. However, bone metabolism in TSOD mice is yet to be investigated. The objective of the present study was to investigate the effects of T2DM on bone mass, metabolism, microstructure, and strength in TSOD mice. METHODS We determined the following parameters in TSOD mice and Tsumura, Suzuki, Non-obesity (TSNO) mice (as controls): serum glucose levels; serum insulin levels; bone mass; bone microstructure; bone metabolic markers; and bone strength. We also performed the oral glucose tolerance test and examined histological sections of the femur. We compared these data between both groups at pre-diabetic (10 weeks) and established (20 weeks) diabetic conditions. RESULTS Bone strength, such as extrinsic mechanical properties, increased with age in the TSOD mice and intrinsic material properties decreased at both 10 weeks and 20 weeks. Bone resorption marker levels in TSOD mice were significantly higher than those in the control mice at both ages, but there was no significant difference in bone formation markers between the groups. Bone mass in TSOD mice was lower than that in controls at both ages. The trabecular bone volume at the femoral greater trochanter increased with age in the TSOD mice. The femoral mid-diaphysis in TSOD mice was more slender and thicker than that in TSNO mice at both ages. CONCLUSIONS Bone mass of the femur was lower in TSOD mice than in TSNO mice because hyperinsulinemia during pre-diabetic and established diabetic conditions enhanced bone resorption due to high bone turnover. In addition, our data suggest that the bone mass of the femur was significantly reduced as a result of chronic hyperglycemia during established diabetic conditions in TSOD mice. We suggest that bone strength in the femur deteriorated due to the reduction of bone mass and because the femoral mid-diaphysis was more slender in TSOD mice.
Collapse
Key Words
- BMC, bone mineral content
- BMD, bone mineral density
- Bone mass
- Bone metabolism
- Bone microstructure
- Bone strength
- CSMI, cross-sectional moment inertia
- OCN, osteocalcin
- OGTT, oral glucose tolerance test
- PBS, phosphate-buffered saline
- T1DM, type 1 diabetes mellitus
- T2DM, type 2 diabetes mellitus
- TRAcP5b, tartrate-resistant acid phosphatase 5b
- TSNO, Tsumura, Suzuki, non-obesity
- TSOD, Tsumura, Suzuki, Obese Diabetes
- Tsumura, Suzuki, Obese Diabetes mice
- Type 2 diabetes mellitus
- micro-CT, micro-computed tomography
Collapse
Affiliation(s)
- Hiroaki Tanaka
- Graduate School of Health Science Suzuka University of Medical Science, 1001-1 Kishioka, Suzuka, Mie 510-0293, Japan
| | - Takenori Yamashita
- Department of Radiological Technology, Faculty of Health Science, Suzuka University of Medical Science, 1001-1 Kishioka, Suzuka, Mie 510-0293, Japan
| | - Misao Yoneda
- Department of Clinical Nutrition, Faculty of Health Science, Suzuka University of Medical Science, 1001-1 Kishioka, Suzuka, Mie 510-0293, Japan
| | - Satoshi Takagi
- Department of Physical Therapy, Faculty of Health and Medical Sciences, Tokoha University, 1230 Miyakoda, Kitaku, Hamamatsu, Shizuoka, 431-2102, Japan
| | - Toshihiro Miura
- Graduate School of Health Science Suzuka University of Medical Science, 1001-1 Kishioka, Suzuka, Mie 510-0293, Japan
| |
Collapse
|
36
|
Milovanovic P, Stojanovic M, Antonijevic D, Cirovic A, Radenkovic M, Djuric M. "Dangerous duo": Chronic nicotine exposure intensifies diabetes mellitus-related deterioration in bone microstructure - An experimental study in rats. Life Sci 2018; 212:102-108. [PMID: 30266406 DOI: 10.1016/j.lfs.2018.09.044] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2018] [Revised: 09/03/2018] [Accepted: 09/24/2018] [Indexed: 01/19/2023]
Abstract
AIMS Bony complications of diabetes mellitus (DM) are still insufficiently understood. Our aims were to analyze the individual and combined effects of chronic hyperglycemia and nicotine exposure on the femoral trabecular and cortical microarchitecture on a rat experimental model. MAIN METHODS The micro-computed tomography based bone microstructural evaluation was performed on male Wistar rats divided into four groups: control (n = 7), experimentally-induced DM (n = 8), chronically exposed to nicotine (n = 9) and the DM group exposed chronically to nicotine (n = 9). KEY FINDINGS Chronic hyperglycemia caused mild trabecular deterioration; yet, the combination of hyperglycemia and nicotine exposure showed more deleterious effects on the trabecular bone. Namely, the DM + nicotine group had significantly lower bone volume fraction, fewer and more rod-like shaped trabeculae, along with higher trabecular separation and lower connectivity than the control group (p < 0.05). Nicotine alone did not show any significant deterioration compared to the control group. DM and DM + nicotine groups had lower cortical porosity than control and nicotine groups (p < 0.05). Cortical thickness did not show any significant intergroup differences, whereas bone perimeter and the mean polar moment of inertia were reduced in DM + nicotine group. SIGNIFICANCE Mild effects of chronic hyperglycemia on bone structure were accentuated by the chronic nicotine exposure, although nicotine alone did not cause any significant bone changes. That suggests a synergistic effect of hyperglycemia and nicotine on bone deterioration and increased propensity to fracture. Indeed, better understanding of risk factors driving bone structural deterioration is a precondition to limit the complications associated with DM.
Collapse
Affiliation(s)
- Petar Milovanovic
- Laboratory for Anthropology and Skeletal Biology, Institute of Anatomy, Faculty of Medicine, University of Belgrade, Dr Subotica 4/2, 11000 Belgrade, Serbia
| | - Marko Stojanovic
- Department of Pharmacology, Clinical Pharmacology and Toxicology, Faculty of Medicine, University of Belgrade, Dr Subotica 1, 11000 Belgrade, Serbia
| | - Djordje Antonijevic
- Laboratory for Anthropology and Skeletal Biology, Institute of Anatomy, Faculty of Medicine, University of Belgrade, Dr Subotica 4/2, 11000 Belgrade, Serbia
| | - Aleksandar Cirovic
- Laboratory for Anthropology and Skeletal Biology, Institute of Anatomy, Faculty of Medicine, University of Belgrade, Dr Subotica 4/2, 11000 Belgrade, Serbia
| | - Miroslav Radenkovic
- Department of Pharmacology, Clinical Pharmacology and Toxicology, Faculty of Medicine, University of Belgrade, Dr Subotica 1, 11000 Belgrade, Serbia
| | - Marija Djuric
- Laboratory for Anthropology and Skeletal Biology, Institute of Anatomy, Faculty of Medicine, University of Belgrade, Dr Subotica 4/2, 11000 Belgrade, Serbia.
| |
Collapse
|
37
|
Burke M, Akens M, Kiss A, Willett T, Whyne C. Mechanical behavior of metastatic vertebrae are influenced by tissue architecture, mineral content, and organic feature alterations. J Orthop Res 2018; 36:3013-3022. [PMID: 29978906 DOI: 10.1002/jor.24105] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/07/2018] [Accepted: 07/01/2018] [Indexed: 02/04/2023]
Abstract
Diminished vertebral mechanical behavior with metastatic involvement is typically attributed to modified architecture and trabecular bone content. Previous work has identified organic and mineral phase bone quality changes in the presence of metastases, yet limited work exists on the potential influence of such tissue level modifications on vertebral mechanical characteristics. This work seeks to determine correlations between features of bone (structural and tissue level) and mechanical behavior in metastatically involved vertebral bone. It is hypothesized that tissue level properties (mineral and organic) will improve these correlations beyond architectural properties and BMD alone. Twenty-four female athymic rats were inoculated with HeLa or Ace-1 cancer cells lines producing osteolytic (N = 8) or mixed (osteolytic/osteoblastic, N = 7) metastases, respectively. Twenty-one days post-inoculation L1-L3 pathologic vertebral motion segments were excised and μCT imaged. 3D morphometric parameters and axial rigidity of the L2 vertebrae were quantified. Sequential loading and μCT imaging measured progression of failure, stiffness and peak force. Relationships between mechanical testing (whole bone and tissue-level) and tissue-level material property modifications with metastatic involvement were evaluated utilizing linear regression models. Osteolytic involvement reduced vertebral trabecular bone volume, structure, CT-derived axial rigidity, stiffness and failure force compared to healthy controls (N = 9). Mixed metastases demonstrated similar trends. Previously assessed collagen cross-linking and proline-based residues were correlated to mechanical behavior and improved the predictive ability of the regression models. Similarly, collagen organization improved predictive regression models for metastatic bone hardness. This work highlights the importance of both bone content/architecture and organic tissue-level features in characterizing metastatic vertebral mechanics. © 2018 Orthopaedic Research Society. Published by Wiley Periodicals, Inc. J Orthop Res 36:3013-3022, 2018.
Collapse
Affiliation(s)
- Mikhail Burke
- Orthopaedics Biomechanics Laboratory, Sunnybrook Research Institute, 2075 Bayview Ave., Room S620, Toronto, Ontario,. M4N 3M5.,Institute of Biomaterials and Biomedical Engineering, University of Toronto, Toronto, Ontario
| | - Margarete Akens
- Department of Surgery, University of Toronto, Toronto, Ontario.,Techna, University Health Network, Toronto, Ontario
| | - Alex Kiss
- Evaluative Clinical Sciences, Hurvitz Brain Science Program, Sunnybrook Research Institute, Toronto, Ontario
| | - Thomas Willett
- Centre for Bioengineering and Biotechnology, University of Waterloo, Waterloo, Ontario
| | - Cari Whyne
- Orthopaedics Biomechanics Laboratory, Sunnybrook Research Institute, 2075 Bayview Ave., Room S620, Toronto, Ontario,. M4N 3M5.,Institute of Biomaterials and Biomedical Engineering, University of Toronto, Toronto, Ontario.,Department of Surgery, University of Toronto, Toronto, Ontario
| |
Collapse
|
38
|
Aeimlapa R, Charoenphandhu N, Suntornsaratoon P, Wongdee K, Tiyasatkulkovit W, Kengkoom K, Krishnamra N. Insulin does not rescue cortical and trabecular bone loss in type 2 diabetic Goto-Kakizaki rats. J Physiol Sci 2018; 68:531-540. [PMID: 28689272 PMCID: PMC10717542 DOI: 10.1007/s12576-017-0558-4] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2017] [Accepted: 06/28/2017] [Indexed: 02/07/2023]
Abstract
In type 2 diabetes mellitus (T2DM), the decreased bone strength is often associated with hyperglycemia and bone cell insulin resistance. Since T2DM is increasingly reported in young adults, it is not known whether the effect of T2DM on bone would be different in young adolescents and aging adults. Here, we found shorter femoral and tibial lengths in 7-month, but not 13-month, Goto-Kakizaki (GK) T2DM rats as compared to wild-type rats. Bone µCT analysis showed long-lasting impairment of both cortical and trabecular bones in GK rats. Although insulin treatment effectively improved hyperglycemia, it was not able to rescue trabecular BMD and cortical thickness in young adult GK rats. In conclusion, insulin treatment and alleviation of hyperglycemia did not increase BMD of osteopenic GK rats. It is likely that early prevention of insulin resistance should prevail over treatment of full-blown T2DM-related osteopathy.
Collapse
Affiliation(s)
- Ratchaneevan Aeimlapa
- Department of Physiology, Faculty of Science, Mahidol University, Rama VI Road, Bangkok, 10400, Thailand
- Center of Calcium and Bone Research (COCAB), Faculty of Science, Mahidol University, Bangkok, Thailand
| | - Narattaphol Charoenphandhu
- Department of Physiology, Faculty of Science, Mahidol University, Rama VI Road, Bangkok, 10400, Thailand.
- Center of Calcium and Bone Research (COCAB), Faculty of Science, Mahidol University, Bangkok, Thailand.
- Institute of Molecular Biosciences, Mahidol University, Nakhon Pathom, Thailand.
| | - Panan Suntornsaratoon
- Department of Physiology, Faculty of Science, Mahidol University, Rama VI Road, Bangkok, 10400, Thailand
- Center of Calcium and Bone Research (COCAB), Faculty of Science, Mahidol University, Bangkok, Thailand
| | - Kannikar Wongdee
- Center of Calcium and Bone Research (COCAB), Faculty of Science, Mahidol University, Bangkok, Thailand
- Office of Academic Management, Faculty of Allied Health Sciences, Burapha University, Chonburi, Thailand
| | - Wacharaporn Tiyasatkulkovit
- Center of Calcium and Bone Research (COCAB), Faculty of Science, Mahidol University, Bangkok, Thailand
- Department of Biology, Faculty of Science, Chulalongkorn University, Bangkok, Thailand
| | - Kanchana Kengkoom
- National Laboratory Animal Center, Mahidol University, Nakhon Pathom, Thailand
| | - Nateetip Krishnamra
- Department of Physiology, Faculty of Science, Mahidol University, Rama VI Road, Bangkok, 10400, Thailand
- Center of Calcium and Bone Research (COCAB), Faculty of Science, Mahidol University, Bangkok, Thailand
| |
Collapse
|
39
|
da Silva LA, Weber VMR, Wouk J, Malfatti CRM, Osiecki R. Caffeine improves exercise recuperation by cardiovascular and biochemical response in diabetic rats. SPORT SCIENCES FOR HEALTH 2018. [DOI: 10.1007/s11332-018-0445-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
40
|
Acevedo C, Sylvia M, Schaible E, Graham JL, Stanhope KL, Metz LN, Gludovatz B, Schwartz AV, Ritchie RO, Alliston TN, Havel PJ, Fields AJ. Contributions of Material Properties and Structure to Increased Bone Fragility for a Given Bone Mass in the UCD-T2DM Rat Model of Type 2 Diabetes. J Bone Miner Res 2018; 33:1066-1075. [PMID: 29342321 PMCID: PMC6011658 DOI: 10.1002/jbmr.3393] [Citation(s) in RCA: 59] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/23/2017] [Revised: 12/30/2017] [Accepted: 01/10/2018] [Indexed: 12/18/2022]
Abstract
Adults with type 2 diabetes (T2D) have a higher fracture risk for a given bone quantity, but the mechanisms remain unclear. Using a rat model of polygenic obese T2D, we demonstrate that diabetes significantly reduces whole-bone strength for a given bone mass (μCT-derived BMC), and we quantify the roles of T2D-induced deficits in material properties versus bone structure; ie, geometry and microarchitecture. Lumbar vertebrae and ulnae were harvested from 6-month-old lean Sprague-Dawley rats, obese Sprague-Dawley rats, and diabetic obese UCD-T2DM rats (diabetic for 69 ± 7 days; blood glucose >200 mg/dL). Both obese rats and those with diabetes had reduced whole-bone strength for a given BMC. In obese rats, this was attributable to structural deficits, whereas in UCD-T2DM rats, this was attributable to structural deficits and to deficits in tissue material properties. For the vertebra, deficits in bone structure included thinner and more rod-like trabeculae; for the ulnae, these deficits included inefficient distribution of bone mass to resist bending. Deficits in ulnar material properties in UCD-T2DM rats were associated with increased non-enzymatic crosslinking and impaired collagen fibril deformation. Specifically, small-angle X-ray scattering revealed that diabetes reduced collagen fibril ultimate strain by 40%, and those changes coincided with significant reductions in the elastic, yield, and ultimate tensile properties of the bone tissue. Importantly, the biomechanical effects of these material property deficits were substantial. Prescribing diabetes-specific tissue yield strains in high-resolution finite element models reduced whole-bone strength by a similar amount (and in some cases a 3.4-fold greater amount) as the structural deficits. These findings provide insight into factors that increase bone fragility for a given bone mass in T2D; not only does diabetes associate with less biomechanically efficient bone structure, but diabetes also reduces tissue ductility by limiting collagen fibril deformation, and in doing so, reduces the maximum load capacity of the bone. © 2018 American Society for Bone and Mineral Research.
Collapse
Affiliation(s)
- Claire Acevedo
- Department of Orthopaedic Surgery, University of California, San Francisco, CA, USA.,Materials Science Division, Lawrence Berkeley National Laboratory, Berkeley, CA, USA.,Department of Mechanical Engineering, University of Utah, Salt Lake City, UT, USA
| | - Meghan Sylvia
- Department of Orthopaedic Surgery, University of California, San Francisco, CA, USA
| | - Eric Schaible
- Experimental Systems Group, Advanced Light Source, Berkeley, CA, USA
| | - James L Graham
- Department of Molecular Biosciences, University of California, Davis, Davis, CA, USA.,Department of Nutrition, University of California, Davis, Davis, CA, USA
| | - Kimber L Stanhope
- Department of Molecular Biosciences, University of California, Davis, Davis, CA, USA.,Department of Nutrition, University of California, Davis, Davis, CA, USA
| | - Lionel N Metz
- Department of Orthopaedic Surgery, University of California, San Francisco, CA, USA
| | - Bernd Gludovatz
- School of Mechanical and Manufacturing Engineering, UNSW Sydney, NSW, Australia
| | - Ann V Schwartz
- Department of Epidemiology and Biostatistics, University of California, San Francisco, San Francisco, CA, USA
| | - Robert O Ritchie
- Materials Science Division, Lawrence Berkeley National Laboratory, Berkeley, CA, USA.,Department of Materials Science and Engineering, University of California, Berkeley, Berkeley, CA, USA
| | - Tamara N Alliston
- Department of Orthopaedic Surgery, University of California, San Francisco, CA, USA
| | - Peter J Havel
- Department of Molecular Biosciences, University of California, Davis, Davis, CA, USA.,Department of Nutrition, University of California, Davis, Davis, CA, USA
| | - Aaron J Fields
- Department of Orthopaedic Surgery, University of California, San Francisco, CA, USA
| |
Collapse
|
41
|
Bagi CM, Edwards K, Berryman E. Metabolic Syndrome and Bone: Pharmacologically Induced Diabetes has Deleterious Effect on Bone in Growing Obese Rats. Calcif Tissue Int 2018; 102:683-694. [PMID: 29196931 PMCID: PMC5956015 DOI: 10.1007/s00223-017-0367-z] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/12/2017] [Accepted: 11/14/2017] [Indexed: 12/12/2022]
Abstract
Metabolic syndrome and osteoporosis share similar risk factors. Also, patients with diabetes have a higher risk of osteoporosis and fracture. Liver manifestations, such as non-alcoholic steatohepatitis (NASH), of metabolic syndrome are further aggravated in diabetics and often lead to liver failure. Our objective was to create a rat model of human metabolic syndrome and determine the long-term impact of early-onset T1D on bone structure and strength in obese growing rats. Male rats were given either standard chow and RO water (Controls) or a high-fat, high-cholesterol diet and sugar water containing 55% fructose and 45% glucose (HFD). A third group of rats received the HFD diet and a single dose of streptozotocin to induce type 1 diabetes (HFD/Sz). Body weight and glucose tolerance tests were conducted several times during the course of the study. Serum chemistry, liver enzymes, and biomarkers of bone metabolism were evaluated at 10 and 28 weeks. Shear wave elastography and histology were used to assess liver fibrosis. Cancellous bone structure and cortical bone geometry were evaluated by mCT and strength by the 3-point bending method. Body mass and fat accumulation was significantly higher in HFD and HFD/Sz rats compared to Controls. Rats in both the HFD and HFD/Sz groups developed NASH, although the change was more severe in diabetic rats. Although both groups of obese rats had larger bones, their cancellous structure and cortical thickness were reduced, resulting in diminished strength that was further aggravated by diabetes. The HFD and HFD/Sz rats recapitulate MeSy in humans with liver pathology consistent with NASH. Our data provide strong indication that obesity accompanied by type 1 diabetes significantly aggravates comorbidities of MeSy, including the development of osteopenia and weaker bones. The juvenile rat skeleton seems to be more vulnerable to damage imposed by obesity and diabetes and may offer a model to inform the underlying pathology associated with the unusually high fracture rates in obese adults with diabetes.
Collapse
Affiliation(s)
- Cedo M Bagi
- Pfizer WRD, Comparative Medicine, Global Science and Technology, 100 Eastern Point Road, Groton, CT, 06340, USA.
- Pfizer R&D, Global Science and Technology, 100 Eastern Point Road, Groton, CT, 06340, USA.
| | - Kristin Edwards
- Pfizer WRD, Comparative Medicine, Global Science and Technology, 100 Eastern Point Road, Groton, CT, 06340, USA
| | - Edwin Berryman
- Pfizer WRD, Comparative Medicine, Global Science and Technology, 100 Eastern Point Road, Groton, CT, 06340, USA
| |
Collapse
|
42
|
Thong EP, Catford S, Fletcher J, Wong P, Fuller PJ, Teede H, Milat F. Recurrent vertebral fractures in a young adult: a closer look at bone health in type 1 diabetes mellitus. Endocrinol Diabetes Metab Case Rep 2018; 2018:EDM180010. [PMID: 29770222 PMCID: PMC5948196 DOI: 10.1530/edm-18-0010] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2018] [Accepted: 04/19/2018] [Indexed: 01/18/2023] Open
Abstract
The association between type 1 diabetes mellitus (T1DM) and bone health has garnered interest over the years. Fracture risk is known to be increased in individuals with T1DM, although bone health assessment is not often performed in the clinical setting. We describe the case of a 21-year-old male with longstanding T1DM with multilevel vertebral fractures on imaging, after presenting with acute back pain without apparent trauma. Dual-energy X-ray absorptiometry (DXA) revealed significantly reduced bone mineral density at the lumbar spine and femoral neck. Extensive investigations for other secondary or genetic causes of osteoporosis were unremarkable, apart from moderate vitamin D deficiency. High-resolution peripheral quantitative computed tomography and bone biospy revealed significant alterations of trabecular bone microarchitecture. It later transpired that the patient had sustained vertebral fractures secondary to unrecognised nocturnal hypoglycaemic seizures. Intravenous zoledronic acid was administered for secondary fracture prevention. Despite anti-resorptive therapy, the patient sustained a new vertebral fracture after experiencing another hypoglycaemic seizure in his sleep. Bone health in T1DM is complex and not well understood. There are significant challenges in the assessment and management of osteoporosis in T1DM, particularly in young adults, where fracture prediction tools have not been validated. Clinicians should be aware of hypoglycaemia as a significant risk factor for fracture in patients with T1DM. Learning points Type 1 diabetes mellitus (T1DM) is a secondary cause of osteoporosis, characterised by reduced bone mass and disturbed bone microarchitecture.Hypoglycaemic seizures generate sufficient compression forces along the thoracic column and can cause fractures in individuals with compromised bone quality.Unrecognised hypoglycaemic seizures should be considered in patients with T1DM presenting with fractures without a history of trauma.Patients with T1DM have increased fracture risk and risk factors should be addressed. Evaluation of bone microarchitecture may provide further insights into mechanisms of fracture in T1DM.Further research is needed to guide the optimal screening and management of bone health in patients with T1DM.
Collapse
Affiliation(s)
- Eleanor P Thong
- Department of Endocrinology, Monash Health, Clayton, Australia.,Monash Centre for Health Research and Implementation, Clayton, Australia
| | - Sarah Catford
- Department of Endocrinology, Monash Health, Clayton, Australia.,Hudson Institute of Medical Research, Clayton, Australia
| | - Julie Fletcher
- Department of Anatomical Pathology, Concord Repatriation General Hospital, Concord, Australia
| | - Phillip Wong
- Department of Endocrinology, Monash Health, Clayton, Australia.,Hudson Institute of Medical Research, Clayton, Australia
| | - Peter J Fuller
- Department of Endocrinology, Monash Health, Clayton, Australia.,Hudson Institute of Medical Research, Clayton, Australia
| | - Helena Teede
- Department of Endocrinology, Monash Health, Clayton, Australia.,Monash Centre for Health Research and Implementation, Clayton, Australia
| | - Frances Milat
- Department of Endocrinology, Monash Health, Clayton, Australia.,Hudson Institute of Medical Research, Clayton, Australia
| |
Collapse
|
43
|
Labudzynskyi DO, Palladin Institute of Biochemistry, National Academy of Sciences of Ukraine, Kyiv, Shymanskyi ІО, Lisakovska OO, Veliky ММ, Palladin Institute of Biochemistry, National Academy of Sciences of Ukraine, Kyiv;, Palladin Institute of Biochemistry, National Academy of Sciences of Ukraine, Kyiv;, Palladin Institute of Biochemistry, National Academy of Sciences of Ukraine, Kyiv;. Osteoprotective effects of vitamin D(3) in diabetic mice is VDR-mediated and regulated via RANKL/RANK/OPG axis. UKRAINIAN BIOCHEMICAL JOURNAL 2018. [DOI: 10.15407/ubj90.02.056] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
|
44
|
Hu Z, Ma C, Rong X, Zou S, Liu X. Immunomodulatory ECM-like Microspheres for Accelerated Bone Regeneration in Diabetes Mellitus. ACS APPLIED MATERIALS & INTERFACES 2018; 10:2377-2390. [PMID: 29280610 PMCID: PMC6437671 DOI: 10.1021/acsami.7b18458] [Citation(s) in RCA: 128] [Impact Index Per Article: 18.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/07/2023]
Abstract
Bone repair and regeneration process is markedly impaired in diabetes mellitus (DM) that affects hundreds of millions of people worldwide. As a chronic inflammatory disease, DM creates a proinflammatory microenvironment in defective sites. Most of the studies on DM-associated bone regeneration, however, neglect the importance of immunomodulation under the DM condition and adopt the same approaches to normal bone healing, leading to limited bone healing. In this study, we developed a unique bioinspired injectable microsphere as an osteoimmunomodulatory biomaterial that modulates macrophages to create a prohealing microenvironment under the DM condition. The microsphere was self-assembled with heparin-modified gelatin nanofibers, and interleukin 4 (IL4) was incorporated into the nanofibrous heparin-modified gelatin microsphere (NHG-MS). IL4 has binding domains with heparin, and the binding of IL4 to heparin stabilizes this cytokine, protects it from denaturation and degradation, and subsequently prolongs its sustained release to modulate macrophage polarization. The IL4-loaded NHG-MS switched the proinflammatory M1 macrophage into a prohealing M2 phenotype, recovered the M2/M1 ratio to a normal level, efficiently resolved the inflammation, and ultimately enhanced osteoblastic differentiation and bone regeneration. The development of osteoimmunomodulatory biomaterials that harness the power of macrophages for immunomodulation, therefore, is a novel and promising strategy to enhance bone regeneration under DM condition.
Collapse
Affiliation(s)
- Zhiai Hu
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Disease, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, China
- Department of Biomedical Sciences, Texas A&M University College of Dentistry, Dallas, Texas 75246, United States
| | - Chi Ma
- Department of Biomedical Sciences, Texas A&M University College of Dentistry, Dallas, Texas 75246, United States
| | - Xin Rong
- Department of Orthopedics, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Shujuan Zou
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Disease, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, China
- Corresponding Authors (S.Z.)., (X.L.)
| | - Xiaohua Liu
- Department of Biomedical Sciences, Texas A&M University College of Dentistry, Dallas, Texas 75246, United States
- Corresponding Authors (S.Z.)., (X.L.)
| |
Collapse
|
45
|
Fatigue as the missing link between bone fragility and fracture. Nat Biomed Eng 2018; 2:62-71. [DOI: 10.1038/s41551-017-0183-9] [Citation(s) in RCA: 37] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2017] [Accepted: 12/07/2017] [Indexed: 02/07/2023]
|
46
|
Tamaki J, Kouda K, Fujita Y, Iki M, Yura A, Miura M, Sato Y, Okamoto N, Kurumatani N. Ratio of Endogenous Secretory Receptor for Advanced Glycation End Products to Pentosidine Predicts Fractures in Men. J Clin Endocrinol Metab 2018; 103:85-94. [PMID: 29040721 DOI: 10.1210/jc.2017-00929] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/19/2017] [Accepted: 10/04/2017] [Indexed: 12/31/2022]
Abstract
CONTEXT Although the endogenous secretory receptor for advanced glycation end products (esRAGE) has been associated with reduced activity of pentosidine (PEN), the association between PEN, esRAGE, and fracture is poorly understood. OBJECTIVES To evaluate the ability of serum PEN and esRAGE levels to predict fragility fractures. METHODS A cohort of 1285 Japanese men aged ≥65 years old participated in a 2007 to 2008 Fujiwara-kyo Osteoporosis Risk in Men study baseline survey, as part of the Fujiwara-kyo prospective cohort study. Those participants provided information regarding any fractures they experienced during 5 years. The baseline bone mineral density (BMD) was measured. Hazard ratios (HRs) per one standard deviation increase of log-transformed serum levels of PEN, esRAGE, and esRAGE-to-PEN ratio were estimated at baseline. RESULTS Twenty-five participating men suffered incident clinical fragility fractures. The crude HRs (95% confidence interval) for PEN, esRAGE, and esRAGE-to-PEN ratio were 1.56 (1.05 to 2.31), 0.79 (0.54 to 1.15), and 0.65 (0.44 to 0.95), respectively. HRs for PEN adjusted for age, esRAGE, and T score of BMD at femoral neck (FN) and lumbar spine (LS) were 1.48 (1.00 to 2.18) and 1.51 (1.03 to 2.21), respectively. The marginal significance adjusted for BMD at FN and the statistical significance adjusted for BMD at LS were attenuated after additional adjustment for glycated hemoglobin A1c level (P = 0.111 and 0.072, respectively). The HRs for esRAGE-to-PEN ratio adjusted for age, glycated hemoglobin A1c, and T-score of BMD at FN and LS were 0.67 (0.45 to 0.98) and 0.64 (0.43 to 0.95). CONCLUSIONS Higher esRAGE-to-PEN ratios were associated with decreased risk of fragility fractures independent of BMD among elderly Japanese men.
Collapse
Affiliation(s)
- Junko Tamaki
- Department of Hygiene and Public Health, Osaka Medical College, Osaka, Japan
| | - Katsuyasu Kouda
- Department of Public Health, Kindai University Faculty of Medicine, Osaka, Japan
| | - Yuki Fujita
- Department of Public Health, Kindai University Faculty of Medicine, Osaka, Japan
| | - Masayuki Iki
- Department of Public Health, Kindai University Faculty of Medicine, Osaka, Japan
| | - Akiko Yura
- Department of Public Health, Kindai University Faculty of Medicine, Osaka, Japan
| | - Masakazu Miura
- Faculty of Pharmaceutical Sciences, Hokuriku University, Ishikawa, Japan
| | - Yuho Sato
- Department of Human Life, Jin-ai University, Fukui, Japan
| | - Nozomi Okamoto
- School Psychology, Developmental Science and Health Education, Hyogo University of Teacher Education, Hyogo, Japan
| | | |
Collapse
|
47
|
Jing D, Yan Z, Cai J, Tong S, Li X, Guo Z, Luo E. Low-1 level mechanical vibration improves bone microstructure, tissue mechanical properties and porous titanium implant osseointegration by promoting anabolic response in type 1 diabetic rabbits. Bone 2018; 106:11-21. [PMID: 28982588 DOI: 10.1016/j.bone.2017.10.001] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/21/2017] [Revised: 09/14/2017] [Accepted: 10/01/2017] [Indexed: 12/31/2022]
Abstract
Type 1 diabetes mellitus (T1DM) is associated with reduced bone mass, increased fracture risk, and impaired bone defect regeneration potential. These skeletal complications are becoming important clinical challenges due to the rapidly increasing T1DM population, which necessitates developing effective treatment for T1DM-associated osteopenia/osteoporosis and bone trauma. This study aims to investigate the effects of whole-body vibration (WBV), an easy and non-invasive biophysical method, on bone microstructure, tissue-level mechanical properties and porous titanium (pTi) osseointegration in alloxan-diabetic rabbits. Six non-diabetic and twelve alloxan-treated diabetic rabbits were equally assigned to the Control, DM, and DM with WBV stimulation (WBV) groups. A cylindrical drill-hole defect was established on the left femoral lateral condyle of all rabbits and filled with a novel non-toxic Ti2448 pTi. Rabbits in the WBV group were exposed to 1h/day WBV (0.3g, 30Hz) for 8weeks. After sacrifice, the left femoral condyles were harvested for histological, histomorphometric and nanoindentation analyses. The femoral sample with 2-cm height above the defect was used for qRT-PCR analysis. The right distal femora were scanned with μCT. We found that all alloxan-treated rabbits exhibited hyperglycemia throughout the experimental period. WBV inhibited the deterioration of cancellous and cortical bone architecture and tissue-level mechanical properties via μCT, histological and nanoindentation examinations. T1DM-induced reduction of bone formation was inhibited by WBV, as evidenced by elevated serum OCN and increased mineral apposition rate (MAR), whereas no alteration was observed in bone resorption marker TRACP5b. WBV also stimulated more adequate ingrowths of mineralized bone tissue into pTi pore spaces, and improved peri-implant bone tissue-level mechanical properties and MAR in T1DM bone defects. WBV mitigated the reductions in femoral BMP2, OCN, Wnt3a, Lrp6, and β-catenin and inhibited Sost mRNA expression but did not alter RANKL or RANK gene expression in T1DM rabbits. Our findings demonstrated that WBV improved bone architecture, tissue-level mechanical properties, and pTi osseointegration by promoting canonical Wnt signaling-mediated skeletal anabolic response. This study not only advances our understanding of T1DM skeletal sensitivity in response to external mechanical cues but also offers new treatment alternatives for T1DM-associated osteopenia/osteoporosis and osseous defects in an economic and highly efficient manner.
Collapse
Affiliation(s)
- Da Jing
- Department of Biomedical Engineering, Fourth Military Medical University, Xi'an, China; Department of Orthopedics, Xijing Hospital, Fourth Military Medical University, Xi'an, China.
| | - Zedong Yan
- Department of Biomedical Engineering, Fourth Military Medical University, Xi'an, China
| | - Jing Cai
- College of Basic Medicine, Shaanxi University of Chinese Medicine, Xianyang, China
| | - Shichao Tong
- Department of Biomedical Engineering, Fourth Military Medical University, Xi'an, China
| | - Xiaokang Li
- Department of Orthopedics, Xijing Hospital, Fourth Military Medical University, Xi'an, China
| | - Zheng Guo
- Department of Orthopedics, Xijing Hospital, Fourth Military Medical University, Xi'an, China
| | - Erping Luo
- Department of Biomedical Engineering, Fourth Military Medical University, Xi'an, China.
| |
Collapse
|
48
|
Nyman JS, Kalaitzoglou E, Clay Bunn R, Uppuganti S, Thrailkill KM, Fowlkes JL. Preserving and restoring bone with continuous insulin infusion therapy in a mouse model of type 1 diabetes. Bone Rep 2017; 7:1-8. [PMID: 28736738 PMCID: PMC5508511 DOI: 10.1016/j.bonr.2017.07.001] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/07/2017] [Revised: 05/12/2017] [Accepted: 07/04/2017] [Indexed: 01/31/2023] Open
Abstract
Those with type 1 diabetes (T1D) are more likely to suffer a fracture than age- and sex-matched individuals without diabetes, despite daily insulin therapy. In rodent studies examining the effect of bone- or glucose-targeting therapies on preventing the T1D-related decrease in bone strength, insulin co-therapy is often not included, despite the known importance of insulin signaling to bone mass accrual. Therefore, working toward a relevant pre-clinical model of diabetic bone disease, we assessed the effect of continuous subcutaneous insulin infusion (CSII) therapy at escalating doses on preserving bone and the effect of delayed CSII on rescuing the T1D-related bone deterioration in an established murine model of T1D. Osmotic minipumps were implanted in male DBA/2 J mice 2 weeks (prevention study) and 6 weeks (rescue study) after the first injection of streptozotocin (STZ) to deliver insulin at 0, 0.0625, 0.125, or 0.25 IU/day (prevention study; n = 4-5 per dose) and 0 or 0.25 IU/day (rescue study; n = 10 per group). CSII lasted 4 weeks in both studies, which also included age-matched, non-diabetic DBA/2 J mice (n = 8-12 per study). As the insulin dose increased, blood glucose decreased, body weight increased, a serum maker of bone resorption decreased, and a serum marker of bone formation increased such that each end-point characteristic was linearly correlated with dose. There were insulin dose-dependent relationships (femur diaphysis) with cross-sectional area of cortical bone and cortical thickness (micro-computed tomography) as well as structural strength (peak force endured by the mid-shaft during three-point bending). Likewise, trabecular bone volume fraction (BV/TV), thickness, and number (distal femur metaphysis) increased as the insulin dose increased. Delayed CSII improved glycated hemoglobin (HbA1c), but blood glucose levels remained relatively high (well above non-diabetic levels). Interestingly, it returned the resorption and formation markers to similar levels as those seen in non-T1D control mice. This apparent return after 4 weeks of CSII translated to a partial rescue of the structural strength of the femur mid-shaft. Delayed CSII also increased Tb.Th to levels seen in non-T1D controls but did not fully restore BV/TV. The use of exogenous insulin should be considered in pre-clinical studies investigating the effect of T1D on bone as insulin therapy maintains bone structure without necessarily lowering glucose below diabetic levels.
Collapse
Affiliation(s)
- Jeffry S. Nyman
- Department of Orthopaedic Surgery and Rehabilitation, Vanderbilt University Medical Center, Nashville, TN 37232, United States
- Department of Biomedical Engineering, Vanderbilt University, Nashville, TN 37232, United States
- Center for Bone Biology, Vanderbilt University Medical Center, Nashville, TN 37232, United States
- Department of Veterans Affairs, Tennessee Valley Healthcare System, Nashville, TN 37212, United States
| | - Evangelia Kalaitzoglou
- University of Kentucky, Barnstable Brown Diabetes Center, Lexington, KY 40536, United States
- Department of Pediatrics, University of Kentucky College of Medicine, Lexington, KY 40536, United States
| | - R. Clay Bunn
- University of Kentucky, Barnstable Brown Diabetes Center, Lexington, KY 40536, United States
- Department of Pediatrics, University of Kentucky College of Medicine, Lexington, KY 40536, United States
| | - Sasidhar Uppuganti
- Department of Orthopaedic Surgery and Rehabilitation, Vanderbilt University Medical Center, Nashville, TN 37232, United States
- Center for Bone Biology, Vanderbilt University Medical Center, Nashville, TN 37232, United States
| | - Kathryn M. Thrailkill
- University of Kentucky, Barnstable Brown Diabetes Center, Lexington, KY 40536, United States
- Department of Pediatrics, University of Kentucky College of Medicine, Lexington, KY 40536, United States
| | - John L. Fowlkes
- University of Kentucky, Barnstable Brown Diabetes Center, Lexington, KY 40536, United States
- Department of Pediatrics, University of Kentucky College of Medicine, Lexington, KY 40536, United States
| |
Collapse
|
49
|
Folwarczna J, Janas A, Cegieła U, Pytlik M, Śliwiński L, Matejczyk M, Nowacka A, Rudy K, Krivošíková Z, Štefíková K, Gajdoš M. Caffeine at a Moderate Dose Did Not Affect the Skeletal System of Rats with Streptozotocin-Induced Diabetes. Nutrients 2017; 9:E1196. [PMID: 29084147 PMCID: PMC5707668 DOI: 10.3390/nu9111196] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2017] [Revised: 10/24/2017] [Accepted: 10/25/2017] [Indexed: 12/11/2022] Open
Abstract
Diabetes may lead to the development of osteoporosis. Coffee drinking, apart from its health benefits, is taken into consideration as an osteoporosis risk factor. Data from human and animal studies on coffee and caffeine bone effects are inconsistent. The aim of the study was to investigate effects of caffeine at a moderate dose on the skeletal system of rats in two models of experimental diabetes induced by streptozotocin. Effects of caffeine administered orally (20 mg/kg aily for four weeks) were investigated in three-month-old female Wistar rats, which, two weeks before the start of caffeine administration, received streptozotocin (60 mg/kg, intraperitoneally) alone or streptozotocin after nicotinamide (230 mg/kg, intraperitoneally). Bone turnover markers, mass, mineral density, histomorphometric parameters, and mechanical properties were examined. Streptozotocin induced diabetes, with profound changes in the skeletal system due to increased bone resorption and decreased bone formation. Although streptozotocin administered after nicotinamide induced slight increases in glucose levels at the beginning of the experiment only, slight, but significant unfavorable changes in the skeletal system were demonstrated. Administration of caffeine did not affect the investigated skeletal parameters of rats with streptozotocin-induced disorders. In conclusion, caffeine at a moderate dose did not exert a damaging effect on the skeletal system of diabetic rats.
Collapse
Affiliation(s)
- Joanna Folwarczna
- Department of Pharmacology, School of Pharmacy with the Division of Laboratory Medicine in Sosnowiec, Medical University of Silesia, 40-055 Katowice, Poland.
| | - Aleksandra Janas
- Department of Pharmacology, School of Pharmacy with the Division of Laboratory Medicine in Sosnowiec, Medical University of Silesia, 40-055 Katowice, Poland.
| | - Urszula Cegieła
- Department of Pharmacology, School of Pharmacy with the Division of Laboratory Medicine in Sosnowiec, Medical University of Silesia, 40-055 Katowice, Poland.
| | - Maria Pytlik
- Department of Pharmacology, School of Pharmacy with the Division of Laboratory Medicine in Sosnowiec, Medical University of Silesia, 40-055 Katowice, Poland.
| | - Leszek Śliwiński
- Department of Pharmacology, School of Pharmacy with the Division of Laboratory Medicine in Sosnowiec, Medical University of Silesia, 40-055 Katowice, Poland.
| | - Magdalena Matejczyk
- Department of Pharmacology, School of Pharmacy with the Division of Laboratory Medicine in Sosnowiec, Medical University of Silesia, 40-055 Katowice, Poland.
| | - Anna Nowacka
- Department of Pharmacology, School of Pharmacy with the Division of Laboratory Medicine in Sosnowiec, Medical University of Silesia, 40-055 Katowice, Poland.
| | - Karolina Rudy
- Department of Pharmacology, School of Pharmacy with the Division of Laboratory Medicine in Sosnowiec, Medical University of Silesia, 40-055 Katowice, Poland.
| | - Zora Krivošíková
- Department of Clinical and Experimental Pharmacotherapy, Medical Faculty, Slovak Medical University, 833 03 Bratislava, Slovakia.
| | - Kornélia Štefíková
- Department of Clinical and Experimental Pharmacotherapy, Medical Faculty, Slovak Medical University, 833 03 Bratislava, Slovakia.
| | - Martin Gajdoš
- Department of Clinical and Experimental Pharmacotherapy, Medical Faculty, Slovak Medical University, 833 03 Bratislava, Slovakia.
| |
Collapse
|
50
|
Takeda S, Saito M, Sakai S, Yogo K, Marumo K, Endo K. Eldecalcitol, an Active Vitamin D 3 Derivative, Prevents Trabecular Bone Loss and Bone Fragility in Type I Diabetic Model Rats. Calcif Tissue Int 2017; 101. [PMID: 28624935 PMCID: PMC5587631 DOI: 10.1007/s00223-017-0298-8] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
Diabetes mellitus is known to adversely affect the bones and be associated with increased fracture risk. We examined whether eldecalcitol (ELD), an active vitamin D3 derivative, could inhibit the diabetic bone loss in streptozotocin-induced type I diabetic rats. ELD (10, 20, or 40 ng/kg), alfacalcidol (ALF; 25, 50, or 100 ng/kg), or vehicle was administered 5 times per week for 12 weeks from 1 week after diabetes induction. Normal control rats received the vehicle. Bone turnover markers, bone mineral density (BMD), and biomechanical strength of the lumbar spine and femur were measured, and bone histomorphometry was performed. Content of advanced glycation end products (AGEs) in the femoral shaft was also determined. In diabetic rats, serum osteocalcin (OC) concentration was lower and urinary excretion of deoxypyridinoline (DPD) tended to be higher than in normal rats. Areal BMD and maximum load of the lumbar vertebrae and femoral shaft were lower in diabetic rats than in normal rats. All doses of ELD and the highest dose of ALF reduced urinary DPD excretion, but had no effect on serum OC. The 20 and 40 ng/kg doses of ELD prevented decreases in BMD and the highest dose of ELD prevented the reduction in maximum load of the lumbar vertebrae, while ALF did not change these parameters. ELD and ALF did not affect areal BMD or biomechanical strength of the femoral shaft. In diabetic rats, bone volume and trabecular thickness in the trabecular bone of the lumbar vertebrae decreased and trabecular separation increased compared to normal rats. ELD and ALF prevented diabetes-induced deterioration of trabecular microstructure. AGE content in the femoral cortical bone increased in the diabetic rats, and ELD and ALF did not change AGE content compared to the diabetic rats. These results indicated that ELD suppressed bone resorption and prevented trabecular bone loss and deterioration of trabecular microstructure, resulting in prevention of reduction in biomechanical strength in type I diabetic rats.
Collapse
Affiliation(s)
- Satoshi Takeda
- Product Research Department, Fuji Gotemba Research Laboratories, Chugai Pharmaceutical Co., Ltd, 1-135 Komakado, Gotemba, Shizuoka, 412-8513, Japan
| | - Mitsuru Saito
- Department of Orthopedic Surgery, Jikei University School of Medicine, 3-25-8 Nishishinbashi, Minato-ku, Tokyo, 105-8461, Japan
| | - Sadaoki Sakai
- Product Research Department, Fuji Gotemba Research Laboratories, Chugai Pharmaceutical Co., Ltd, 1-135 Komakado, Gotemba, Shizuoka, 412-8513, Japan
| | - Kenji Yogo
- Product Research Department, Fuji Gotemba Research Laboratories, Chugai Pharmaceutical Co., Ltd, 1-135 Komakado, Gotemba, Shizuoka, 412-8513, Japan
| | - Keishi Marumo
- Department of Orthopedic Surgery, Jikei University School of Medicine, 3-25-8 Nishishinbashi, Minato-ku, Tokyo, 105-8461, Japan
| | - Koichi Endo
- Medical Science Department, Chugai Pharmaceutical Co., Ltd, 2-1-1 Nihombashi Muromachi, Chuo-ku, Tokyo, 103-8324, Japan.
| |
Collapse
|