1
|
Kulkarni C, Kumar S, Khatoon S, Sadhukhan S, Washimkar KR, Kumar A, Sharma S, Rajput S, Porwal K, Mugale MN, Rath SK, Godbole MM, Sanyal S, Kumar N, Mithal A, Chattopadhyay N. Isovitexin, a natural adiponectin agonist, prevents glucocorticoid-induced osteosarcopenia. Endocrine 2025:10.1007/s12020-025-04251-6. [PMID: 40369296 DOI: 10.1007/s12020-025-04251-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/07/2025] [Accepted: 04/24/2025] [Indexed: 05/16/2025]
Abstract
PURPOSE Isovitexin is an agonist of adiponectin receptors (AdipoRs). Adiponectin has been shown to have beneficial effects on bone and muscle function, in addition to its positive impact on metabolic health. However, the preclinical and clinical application of adiponectin faces scalability challenges, prompting the investigation of isovitexin in a methylprednisolone (MP)-induced osteoporosis model. METHODS A rat model of MP-induced osteoporosis was developed to evaluate isovitexin's effects on bone health, including bone mass & microarchitecture (MicroCT), turnover markers (P1NP and CTX-1), strength (three-point bending, and nanoindentation), and quality (FTIR). We also investigated the muscle protective effects of isovitexin by measuring key muscle catabolic (atrogenes) proteins. RESULTS Isovitexin effectively prevented MP-induced osteopenia in critical weight-bearing, fracture-prone sites, such as the proximal femur and lumbar vertebrae. Bone turnover markers revealed its osteogenic and anti-resorptive properties, crucial for countering glucocorticoid-induced bone loss. Isovitexin treatment preserved the mineral and material composition of bone, indicating that it helps maintain the tissue integrity and mechanical strength. Hitherto observed effects of isovitexin likely resulted in the preservation of bone quality, demonstrated by preserving mechanical behavior and bone strength, which are essential for preventing fractures. MP treatment led to muscle atrophy, evidenced by reduced gastrocnemius diameter and cross-sectional area. Isovitexin countered these effects and inhibited atrogenes (atrogin-1 and MuRF-1) induction. CONCLUSION Isovitexin not only mitigates osteopenia but also maintains overall bone quality and composition, exhibiting dual osteogenic and anti-resorptive effects. Its capacity to reduce muscle atrophy underscores its potential as a comprehensive treatment for glucocorticoid-induced osteoporosis and sarcopenia.
Collapse
Affiliation(s)
- Chirag Kulkarni
- Division of Endocrinology and Centre for Research in Anabolic Skeletal Targets in Health and Illness (ASTHI), Council of Scientific & Industrial Research-Central Drug Research Institute (CSIR-CDRI), Lucknow, India
- Food and Micronutrient Analysis Laboratory, KLE Academy of Higher Education and Research, Belagavi, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, India
| | - Saroj Kumar
- Department of Mechanical Engineering, Indian Institute of Technology Ropar, Rupnagar, Punjab, India
| | - Shamima Khatoon
- Division of Biochemistry and Structural Biology, CSIR-Central Drug Research Institute (CSIR-CDRI), Lucknow, India
| | - Sreyanko Sadhukhan
- Division of Endocrinology and Centre for Research in Anabolic Skeletal Targets in Health and Illness (ASTHI), Council of Scientific & Industrial Research-Central Drug Research Institute (CSIR-CDRI), Lucknow, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, India
| | - Kaveri R Washimkar
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, India
- Division of Toxicology and Experimental Medicine, CSIR-Central Drug Research Institute (CSIR-CDRI), Lucknow, India
| | - Akhilesh Kumar
- Division of Toxicology and Experimental Medicine, CSIR-Central Drug Research Institute (CSIR-CDRI), Lucknow, India
| | - Shivani Sharma
- Division of Endocrinology and Centre for Research in Anabolic Skeletal Targets in Health and Illness (ASTHI), Council of Scientific & Industrial Research-Central Drug Research Institute (CSIR-CDRI), Lucknow, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, India
| | - Swati Rajput
- Division of Endocrinology and Centre for Research in Anabolic Skeletal Targets in Health and Illness (ASTHI), Council of Scientific & Industrial Research-Central Drug Research Institute (CSIR-CDRI), Lucknow, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, India
| | - Konica Porwal
- Division of Endocrinology and Centre for Research in Anabolic Skeletal Targets in Health and Illness (ASTHI), Council of Scientific & Industrial Research-Central Drug Research Institute (CSIR-CDRI), Lucknow, India
| | - Madhav Nilakanth Mugale
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, India
- Division of Toxicology and Experimental Medicine, CSIR-Central Drug Research Institute (CSIR-CDRI), Lucknow, India
| | - Srikanta Kumar Rath
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, India
- Division of Toxicology and Experimental Medicine, CSIR-Central Drug Research Institute (CSIR-CDRI), Lucknow, India
| | - Madan Madhav Godbole
- Food and Micronutrient Analysis Laboratory, KLE Academy of Higher Education and Research, Belagavi, India
| | - Sabyasachi Sanyal
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, India
- Division of Biochemistry and Structural Biology, CSIR-Central Drug Research Institute (CSIR-CDRI), Lucknow, India
| | - Navin Kumar
- Department of Mechanical Engineering, Indian Institute of Technology Ropar, Rupnagar, Punjab, India
| | - Ambrish Mithal
- Institute of Endocrinology and Diabetes, Max Healthcare, New Delhi, India.
| | - Naibedya Chattopadhyay
- Division of Endocrinology and Centre for Research in Anabolic Skeletal Targets in Health and Illness (ASTHI), Council of Scientific & Industrial Research-Central Drug Research Institute (CSIR-CDRI), Lucknow, India.
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, India.
| |
Collapse
|
2
|
Dou H, Sun W, Chen S, Chen K. Predicting bone aging using spatially offset Raman spectroscopy: a longitudinal analysis on mice. Anal Bioanal Chem 2025; 417:2311-2320. [PMID: 40050511 DOI: 10.1007/s00216-025-05819-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2024] [Revised: 02/25/2025] [Accepted: 02/26/2025] [Indexed: 04/15/2025]
Abstract
Osteoporosis, a global health concern, poses an increasing challenge due to the aging population. While dual-energy X-ray absorptiometry (DXA) scans measuring bone mineral density (BMD) remain the clinical standard for osteoporosis diagnosis, this method's inability to detect changes in bone chemical composition limits its effectiveness in early diagnosis. This study applies Raman spectroscopy on examining bone aging in Senescence Accelerated Mouse Prone 6 (SAMP6) mice compared to their senescence-resistant controls (SAMR1) over an age period from 6 to 10 months. We performed Raman spectroscopic analysis on mouse tibiae both transcutaneously and on exposed bone. Leave-one-out cross-validation combined with partial least squares regression (LOOCV-PLSR) was applied to analyze Raman spectra to predict age, BMD, and maximum torque (MT) as determined by biomechanical testing. Our results revealed significant correlations between Raman spectroscopic predictions and reference values, particularly for age determination. To our knowledge, this study represents the first demonstration of transcutaneous Raman spectroscopy for accurate bone aging prediction, showing a strong correlation with established reference measurements.
Collapse
Affiliation(s)
- Hongmei Dou
- College of Medicine and Biological Information Engineering, Northeastern University, Shenyang, 110169, China
- Foshan Graduate School of Innovation, Northeastern University, Foshan, 528311, China
| | - Wendong Sun
- College of Medicine and Biological Information Engineering, Northeastern University, Shenyang, 110169, China
- Foshan Graduate School of Innovation, Northeastern University, Foshan, 528311, China
| | - Shuo Chen
- College of Medicine and Biological Information Engineering, Northeastern University, Shenyang, 110169, China
- Key Laboratory of Intelligent Computing in Medical Image, Ministry of Education, Northeastern University, Shenyang, 110169, China
| | - Keren Chen
- College of Medicine and Biological Information Engineering, Northeastern University, Shenyang, 110169, China.
- Foshan Graduate School of Innovation, Northeastern University, Foshan, 528311, China.
| |
Collapse
|
3
|
Frère A, Löffelmann T, Veselka B, Stamataki E, Sengeløv A, James HF, de Mulder G, Claes B, de Backer F, Snoeck C. Reconstructing Life Histories: New Insights Into Cremation Practices, Mobility, and Food Consumption Patterns Through Isotope and Infrared Analyses of Petrous Parts and Teeth. AMERICAN JOURNAL OF BIOLOGICAL ANTHROPOLOGY 2025; 187:e70058. [PMID: 40292840 DOI: 10.1002/ajpa.70058] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/09/2024] [Revised: 01/25/2025] [Accepted: 04/02/2025] [Indexed: 04/30/2025]
Abstract
OBJECTIVES Several archaeological cremation sites in Belgium have been investigated through a multidisciplinary approach. The sampling process predominantly focused on calcined ribs, diaphyses, and crania. However, previous studies rarely included teeth or the inner cortex (IC) of the otic capsule of the petrous part, both of which can provide information regarding residence and mobility during infancy and childhood. Moreover, the potential of these elements to contribute to understanding cremation practices has been largely unexplored. Therefore, this study examines the value of sampling these early-forming skeletal tissues for the study of mobility, food consumption patterns, and cremation practices. MATERIALS AND METHODS Two Late Bronze Age-Early Iron Age cremation sites in Belgium, Herstal (132 skeletal elements) and Court-Saint-Étienne (39 skeletal elements), were selected for this purpose. Mobility was examined via strontium isotope analysis, and cremation practices through stable carbon and oxygen isotope analysis and Fourier Transform Infrared spectroscopy in Attenuated Total Reflectance mode (FTIR-ATR). RESULTS Our findings underscore the importance of sampling different skeletal elements to reconstruct life histories and interpret cremation practices. Differences between the strontium isotope ratios of infancy/childhood (IC and teeth) and those of continuously remodeling skeletal tissues (cranium, diaphysis, rib) revealed changes in food consumption, relocations throughout life, and multiple individuals within a single grave. Including petrous parts and teeth significantly affected statistical comparisons of infrared and carbon-oxygen isotope data across skeletal elements and cremation sites. DISCUSSION This study highlights the value of integrating petrous parts and teeth to better understand cremation practices, mobility, and food consumption patterns, while also stressing the importance of caution when comparing sites with different sampling approaches.
Collapse
Affiliation(s)
- Anneminne Frère
- Archaeology, Environmental Changes, and Geo-Chemistry, Vrije Universiteit Brussel, Brussels, Belgium
- Brussels Research Centre for Innovation in Learning and Diversity, Vrije Universiteit Brussel, Brussels, Belgium
| | - Tessi Löffelmann
- Archaeology, Environmental Changes, and Geo-Chemistry, Vrije Universiteit Brussel, Brussels, Belgium
| | - Barbara Veselka
- Archaeology, Environmental Changes, and Geo-Chemistry, Vrije Universiteit Brussel, Brussels, Belgium
| | - Elisavet Stamataki
- Archaeology, Environmental Changes, and Geo-Chemistry, Vrije Universiteit Brussel, Brussels, Belgium
| | - Amanda Sengeløv
- Department of Biology of Organisms and Ecology, Research Unit: Anthropology and Human Genetics, Université Libre de Bruxelles, Brussels, Belgium
- Department of Archaeology, Ghent University, Ghent, Belgium
| | - Hannah F James
- Archaeology, Environmental Changes, and Geo-Chemistry, Vrije Universiteit Brussel, Brussels, Belgium
| | - Guy de Mulder
- Department of Archaeology, Ghent University, Ghent, Belgium
| | - Britt Claes
- Royal Museums of Art and History, Brussels, Belgium
| | - Free de Backer
- Brussels Research Centre for Innovation in Learning and Diversity, Vrije Universiteit Brussel, Brussels, Belgium
| | - Christophe Snoeck
- Archaeology, Environmental Changes, and Geo-Chemistry, Vrije Universiteit Brussel, Brussels, Belgium
| |
Collapse
|
4
|
Paschalis EP, Mabilleau G. Fourier Transform Infrared Imaging of Bone. Methods Mol Biol 2025; 2885:671-681. [PMID: 40448784 DOI: 10.1007/978-1-0716-4306-8_32] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/02/2025]
Abstract
Fourier transform infrared imaging (FTIRI) is a technique that can be used to analyze the material properties of bone using tissue sections. In this chapter, I describe the basic principles of FTIR and the methods for capturing and analyzing FTIR images in bone sections.
Collapse
Affiliation(s)
| | - Guillaume Mabilleau
- University of Angers, Inserm UMR-S 1229 "Regenerative Medicine and Skeleton" & Angers University Hospital, Bone Pathology Unit, Angers, France
| |
Collapse
|
5
|
Micheletti C, Shah FA. Bone hierarchical organization through the lens of materials science: Present opportunities and future challenges. Bone Rep 2024; 22:101783. [PMID: 39100913 PMCID: PMC11295937 DOI: 10.1016/j.bonr.2024.101783] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/31/2023] [Revised: 06/20/2024] [Accepted: 06/22/2024] [Indexed: 08/06/2024] Open
Abstract
Multiscale characterization is essential to better understand the hierarchical architecture of bone and an array of analytical methods contributes to exploring the various structural and compositional aspects. Incorporating X-ray tomography, X-ray scattering, vibrational spectroscopy, and atom probe tomography alongside electron microscopy provides a comprehensive approach, offering insights into the diverse levels of organization within bone. X-ray scattering techniques reveal information about collagen-mineral spatial relationships, while X-ray tomography captures 3D structural details, especially at the microscale. Electron microscopy, such as scanning and transmission electron microscopy, extends resolution to the nanoscale, showcasing intricate features such as collagen fibril organization. Additionally, atom probe tomography achieves sub-nanoscale resolution and high chemical sensitivity, enabling detailed examination of bone composition. Despite various technical challenges, a correlative approach allows for a comprehensive understanding of bone material properties. Real-time investigations through in situ and in operando approaches shed light on the dynamic processes in bone. Recently developed techniques such as liquid, in situ transmission electron microscopy provide insights into calcium phosphate formation and collagen mineralization. Mechanical models developed in the effort to link structure, composition, and function currently remain oversimplified but can be improved. In conclusion, correlative analytical platforms provide a holistic perspective of bone extracellular matrix and are essential for unraveling the intricate interplay between structure and composition within bone.
Collapse
Affiliation(s)
- Chiara Micheletti
- Department of Biomaterials, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Furqan A. Shah
- Department of Biomaterials, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| |
Collapse
|
6
|
Paschalis EP, Gamsjaeger S, Graeff-Armas LA, Bare SP, Recker RR, Akhter MP. Enzymatic and Non-enzymatic Collagen Cross-Links and Fracture Occurrence in Type 1 Diabetes Patients. Calcif Tissue Int 2024; 115:328-333. [PMID: 38871838 DOI: 10.1007/s00223-024-01243-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/20/2023] [Accepted: 05/31/2024] [Indexed: 06/15/2024]
Abstract
Increased fracture risk in type 1 diabetes (T1D) patients is not fully captured by bone mineral density (BMD) by DXA. Advanced glycation end-products (AGEs) have been implicated in the increased fracture risk in T1D, yet recent publications question this. To test the hypothesis that enzymatic collagen cross-links rather than AGEs correlate with fracture incidence in T1D, we analyzed iliac crest biopsies from sex-matched, fracturing T1D patients (N = 5; T1DFx), 6 non-fracturing T1D patients (T1DNoFx), and 6 healthy subjects, by Raman microspectroscopy as a function of tissue age (based on double fluorescent labels), in intracortical and trabecular bone, to determine pyridinoline (Pyd), ε-N-Carboxymethyl-L-lysine, and pentosidine (PEN)). There were no differences in the clinical characteristics between the T1DFx and T1DNoFx groups. At trabecular forming surfaces, T1DFx patients had higher PEN and Pyd content compared to T1DNoFx ones. Previous studies have shown that elevated PEN does not necessarily correlate with fracture incidence in postmenopausal, long-term T1D patients. On the other hand, the elevated Pyd content in the T1DFx patients would be consistent with published studies showing a significant correlation between elevated trivalent enzymatic collagen cross-links and fracture occurrence independent of BMD. Collagen fibers with high Pyd content are more brittle. Thus, a plausible suggestion is that it is the enzymatic collagen cross-links that either by themselves or in combination with the adverse effects of increased AGE accumulation that result in fragility fracture in T1D.
Collapse
Affiliation(s)
| | | | | | - Sue P Bare
- Osteoporosis Research Center, Creighton University, Omaha, NE, USA
| | - Robert R Recker
- Osteoporosis Research Center, Creighton University, Omaha, NE, USA
| | | |
Collapse
|
7
|
Sharma S, Shankar V, Rajender S, Mithal A, Rao SD, Chattopadhyay N. Impact of anti-fracture medications on bone material and strength properties: a systematic review and meta-analysis. Front Endocrinol (Lausanne) 2024; 15:1426490. [PMID: 39257899 PMCID: PMC11384599 DOI: 10.3389/fendo.2024.1426490] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/01/2024] [Accepted: 07/31/2024] [Indexed: 09/12/2024] Open
Abstract
Background and aims Reduced bone mineral density (BMD) and microarchitectural deterioration contribute to increased fracture risk. Although the effects of anti-fracture medications (AFMs) on BMD are well-documented, their impact on bone material properties (BMPs) remains poorly characterized. Accordingly, we conducted a systematic review and meta-analysis to evaluate the effects of AFMs on BMPs. Based on data availability, we further categorized AFMs into anti-resorptives, bisphosphonates alone, and strontium ranelate subgroups to perform additional analyses of BMPs in osteoporotic patients. Methods We did a comprehensive search of three databases, namely, PubMed, Web of Science, and Google Scholar, using various permutation combinations, and used Comprehensive Meta-Analysis software to analyze the extracted data. Results The 15 eligible studies (randomized and non-randomized) compared the following: (1) 301 AFM-treated patients with 225 on placebo; (2) 191 patients treated with anti-resorptives with 131 on placebo; (3) 86 bisphosphonate-treated patients with 66 on placebo; and (4) 84 strontium ranelate-treated patients with 70 on placebo. Pooled analysis showed that AFMs significantly decreased cortical bone crystallinity [standardized difference in means (SDM) -1.394] and collagen maturity [SDM -0.855], and collagen maturity in cancellous bone [SDM -0.631]. Additionally, anti-resorptives (bisphosphonates and denosumab) significantly increased crystallinity [SDM 0.387], mineral-matrix ratio [SDM 0.771], microhardness [SDM 0.858], and contact hardness [SDM 0.952] of cortical bone. Anti-resorptives increased mineral-matrix ratio [SDM 0.543] and microhardness [SDM 0.864] and decreased collagen maturity [SDM -0.539] in cancellous bone. Restricted analysis of only bisphosphonate-treated studies showed a significant decrease in collagen maturity [SDM -0.650] in cancellous bone and an increase in true hardness [SDM 1.277] in cortical bone. In strontium ranelate-treated patients, there was no difference in BMPs compared to placebo. Conclusion Collectively, our study suggests that AFMs improve bone quality, which explains their anti-fracture ability that is not fully accounted for by increased BMD in osteoporosis patients.
Collapse
Affiliation(s)
- Shivani Sharma
- Division of Endocrinology and Centre for Research in ASTHI, CSIR-Central Drug Research Institute, Council of Scientific and Industrial Research, Lucknow, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, India
| | - Vijay Shankar
- Division of Endocrinology and Centre for Research in ASTHI, CSIR-Central Drug Research Institute, Council of Scientific and Industrial Research, Lucknow, India
| | - Singh Rajender
- Division of Endocrinology and Centre for Research in ASTHI, CSIR-Central Drug Research Institute, Council of Scientific and Industrial Research, Lucknow, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, India
| | - Ambrish Mithal
- Institute of Endocrinology and Diabetes, Max Healthcare, New Delhi, India
| | - Sudhaker D. Rao
- Division of Endocrinology Diabetes and Bone & Mineral Disorders, and Bone and Mineral Research Laboratory, Henry Ford Health/Michigan State University College of Human Medicine, Detroit, MI, United States
| | - Naibedya Chattopadhyay
- Division of Endocrinology and Centre for Research in ASTHI, CSIR-Central Drug Research Institute, Council of Scientific and Industrial Research, Lucknow, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, India
| |
Collapse
|
8
|
Wang J, Liu Z, Ren J, Zhang M, Guan Z, Zhao X, Gao C, Zhang G. A preliminary study characterizing temporal changes in soil bacterial communities after dismembered bones were buried. Electrophoresis 2024; 45:1370-1378. [PMID: 38332582 DOI: 10.1002/elps.202300274] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2023] [Accepted: 01/28/2024] [Indexed: 02/10/2024]
Abstract
Determining the burial time of skeletal remains is one of the most important issues of forensic medicine. We speculated that the microbiome of gravesoil may be a promising method to infer burial time by virtue of time-dependent. As we know, forensic scientists have established various models to predict the postmortem interval of a decedent based on the changes in body and soil microbiome communities. However, limited data are available on the burial time prediction for bones, especially dismembered bones. In this exploratory study, we initially conducted 16S rRNA amplicon high-throughput sequencing on the burial soil of 10 porcine femurs within a 120-day period and analyzed the changes in soil microbial communities. Compared with the control soil, a higher Shannon index in the microbial diversity of burial soil containing bones was observed. Correlation analysis identified 61 time-related bacterial families and the best subset selection method obtained best subset, containing Thermomonosporaceae, Clostridiaceae, 0319-A21, and Oxalobacteraceae, which were used to construct a simplified multiple linear regression model with a mean absolute error (MAE) of 56.69 accumulated degree day (ADD). An additional random forest model was established based on indicators for the minimum cross-validation error of Thermomonosporaceae, Clostridiaceae, 0319-A21, Oxalobacteraceae, and Syntrophobacteraceae, with an MAE of 55.65 ADD. The produced empirical data in this pilot study provided the evidence of feasibility that the microbial successional changes of burial soil will predict the burial time of dismembered bones and may also expand the current knowledge of the effects of bone burial on soil bacterial communities.
Collapse
Affiliation(s)
- Jiaqi Wang
- School of Forensic Medicine, Shanxi Medical University, Jinzhong, Shanxi, P. R. China
| | - Zidong Liu
- School of Forensic Medicine, Shanxi Medical University, Jinzhong, Shanxi, P. R. China
| | - Jianbo Ren
- School of Forensic Medicine, Shanxi Medical University, Jinzhong, Shanxi, P. R. China
| | - Mingming Zhang
- School of Forensic Medicine, Shanxi Medical University, Jinzhong, Shanxi, P. R. China
| | - Zimeng Guan
- Department of Biotechnology, Biomedical Sciences College, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan, Shandong, P. R. China
| | - Xingchun Zhao
- Institute of Forensic Science, Ministry of Public Security, Beijing, P. R. China
| | - Cairong Gao
- School of Forensic Medicine, Shanxi Medical University, Jinzhong, Shanxi, P. R. China
| | - Gengqian Zhang
- School of Forensic Medicine, Shanxi Medical University, Jinzhong, Shanxi, P. R. China
| |
Collapse
|
9
|
Koh NYY, Miszkiewicz JJ, Fac ML, Wee NKY, Sims NA. Preclinical Rodent Models for Human Bone Disease, Including a Focus on Cortical Bone. Endocr Rev 2024; 45:493-520. [PMID: 38315213 PMCID: PMC11244217 DOI: 10.1210/endrev/bnae004] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/15/2023] [Revised: 11/22/2023] [Accepted: 02/02/2024] [Indexed: 02/07/2024]
Abstract
Preclinical models (typically ovariectomized rats and genetically altered mice) have underpinned much of what we know about skeletal biology. They have been pivotal for developing therapies for osteoporosis and monogenic skeletal conditions, including osteogenesis imperfecta, achondroplasia, hypophosphatasia, and craniodysplasias. Further therapeutic advances, particularly to improve cortical strength, require improved understanding and more rigorous use and reporting. We describe here how trabecular and cortical bone structure develop, are maintained, and degenerate with aging in mice, rats, and humans, and how cortical bone structure is changed in some preclinical models of endocrine conditions (eg, postmenopausal osteoporosis, chronic kidney disease, hyperparathyroidism, diabetes). We provide examples of preclinical models used to identify and test current therapies for osteoporosis, and discuss common concerns raised when comparing rodent preclinical models to the human skeleton. We focus especially on cortical bone, because it differs between small and larger mammals in its organizational structure. We discuss mechanisms common to mouse and human controlling cortical bone strength and structure, including recent examples revealing genetic contributors to cortical porosity and osteocyte network configurations during growth, maturity, and aging. We conclude with guidelines for clear reporting on mouse models with a goal for better consistency in the use and interpretation of these models.
Collapse
Affiliation(s)
- Natalie Y Y Koh
- Bone Cell Biology & Disease Unit, St. Vincent's Institute of Medical Research, Fitzroy, VIC 3065, Australia
- Department of Medicine at St. Vincent's Hospital, The University of Melbourne, Fitzroy, VIC 3065, Australia
| | - Justyna J Miszkiewicz
- School of Social Science, The University of Queensland, Brisbane, QLD 4072, Australia
- Vertebrate Evolution Development and Ecology, Naturalis Biodiversity Center, 2333 CR Leiden, The Netherlands
| | - Mary Louise Fac
- Bone Cell Biology & Disease Unit, St. Vincent's Institute of Medical Research, Fitzroy, VIC 3065, Australia
- Department of Medicine at St. Vincent's Hospital, The University of Melbourne, Fitzroy, VIC 3065, Australia
| | - Natalie K Y Wee
- Bone Cell Biology & Disease Unit, St. Vincent's Institute of Medical Research, Fitzroy, VIC 3065, Australia
- Department of Medicine at St. Vincent's Hospital, The University of Melbourne, Fitzroy, VIC 3065, Australia
| | - Natalie A Sims
- Bone Cell Biology & Disease Unit, St. Vincent's Institute of Medical Research, Fitzroy, VIC 3065, Australia
- Department of Medicine at St. Vincent's Hospital, The University of Melbourne, Fitzroy, VIC 3065, Australia
| |
Collapse
|
10
|
Shin M, Kim DK, Jain M, Martens PJ, Turner RT, Iwaniec UT, Kruzic JJ, Gludovatz B. Impact of heavy alcohol consumption on cortical bone mechanical properties in male rhesus macaques. Bone 2024; 181:117041. [PMID: 38325648 DOI: 10.1016/j.bone.2024.117041] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/01/2023] [Revised: 01/31/2024] [Accepted: 02/02/2024] [Indexed: 02/09/2024]
Abstract
Chronic heavy alcohol consumption may influence the skeleton by suppressing intracortical bone remodeling which may impact the quality of bone and its mechanical properties. However, this aspect has not been thoroughly assessed in either humans or animal models whose cortical bone microstructure resembles the microstructure of human cortical bone. The current study is the first to investigate the effects of chronic heavy alcohol consumption on various mechanical properties of bone in a non-human primate model with intracortical remodeling. Male rhesus macaques (5.3 years old at the initiation of treatment) were induced to drink alcohol and then given the choice to voluntarily self-administer water or ethanol (4 % w/v) for approximately 14 months, followed by three abstinence phases (lasting 34, 41, and 39-46 days) with approximately 3 months of ethanol access in between. During the initial 14 months of open-access, monkeys in the alcohol group consumed an average of 2.9 ± 0.8 g/kg/d ethanol (mean ± SD) resulting in a blood ethanol concentration of 89 ± 47 mg/dl in longitudinal samples taken at 7 h after the daily sessions began. To understand the impact of alcohol consumption on material properties, various mechanical tests were conducted on the distal tibia diaphysis of 2-5 monkeys per test group, including dynamic mechanical analysis (DMA) testing, nano-indentation, microhardness testing, compression testing, and fracture resistance curve (R-curve) testing. Additionally, compositional analyses were performed using Fourier-transform infrared (FTIR) spectroscopy. Significant differences in microhardness, compressive stress-strain response, and composition were not observed with alcohol consumption, and only minor differences were detected in hardness and elastic modulus of the matrix and osteons from nanoindentation. Furthermore, the R-curves of both groups overlapped, with similar crack initiation toughness, despite a significant decrease in crack growth toughness (p = 0.032) with alcohol consumption. However, storage modulus (p = 0.029) and loss factor (p = 0.015) from DMA testing were significantly increased in the alcohol group compared to the control group, while loss modulus remained unchanged. These results indicate that heavy alcohol consumption may have only a minor influence on the material properties and the composition of cortical bone in young adult male rhesus macaques.
Collapse
Affiliation(s)
- Mihee Shin
- School of Mechanical and Manufacturing Engineering, University of New South Wales (UNSW Sydney), Sydney, NSW 2052, Australia
| | - Do Kyung Kim
- School of Mechanical and Manufacturing Engineering, University of New South Wales (UNSW Sydney), Sydney, NSW 2052, Australia; Department of Material Science and Engineering, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 305-701, Republic of Korea
| | - Manish Jain
- Center for Integrated Nanotechnologies, Sandia National Laboratories, Albuquerque, NM 87123, USA
| | - Penny J Martens
- Graduate School of Biomedical Engineering, University of New South Wales (UNSW Sydney), Sydney, NSW 2052, Australia
| | - Russell T Turner
- Skeletal Biology Laboratory, School of Biological and Population Health Sciences, Oregon State University, Corvallis, 97331 Oregon, United States; Center for Healthy Aging Research, Oregon State University, Corvallis, 97331 Oregon, United States
| | - Urszula T Iwaniec
- Skeletal Biology Laboratory, School of Biological and Population Health Sciences, Oregon State University, Corvallis, 97331 Oregon, United States; Center for Healthy Aging Research, Oregon State University, Corvallis, 97331 Oregon, United States
| | - Jamie J Kruzic
- School of Mechanical and Manufacturing Engineering, University of New South Wales (UNSW Sydney), Sydney, NSW 2052, Australia
| | - Bernd Gludovatz
- School of Mechanical and Manufacturing Engineering, University of New South Wales (UNSW Sydney), Sydney, NSW 2052, Australia.
| |
Collapse
|
11
|
Schmidt VM, Zelger P, Wöss C, Fodor M, Hautz T, Schneeberger S, Huck CW, Arora R, Brunner A, Zelger B, Schirmer M, Pallua JD. Handheld hyperspectral imaging as a tool for the post-mortem interval estimation of human skeletal remains. Heliyon 2024; 10:e25844. [PMID: 38375262 PMCID: PMC10875450 DOI: 10.1016/j.heliyon.2024.e25844] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2023] [Revised: 01/30/2024] [Accepted: 02/02/2024] [Indexed: 02/21/2024] Open
Abstract
In forensic medicine, estimating human skeletal remains' post-mortem interval (PMI) can be challenging. Following death, bones undergo a series of chemical and physical transformations due to their interactions with the surrounding environment. Post-mortem changes have been assessed using various methods, but estimating the PMI of skeletal remains could still be improved. We propose a new methodology with handheld hyperspectral imaging (HSI) system based on the first results from 104 human skeletal remains with PMIs ranging between 1 day and 2000 years. To differentiate between forensic and archaeological bone material, the Convolutional Neural Network analyzed 65.000 distinct diagnostic spectra: the classification accuracy was 0.58, 0.62, 0.73, 0.81, and 0.98 for PMIs of 0 week-2 weeks, 2 weeks-6 months, 6 months-1 year, 1 year-10 years, and >100 years, respectively. In conclusion, HSI can be used in forensic medicine to distinguish bone materials >100 years old from those <10 years old with an accuracy of 98%. The model has adequate predictive performance, and handheld HSI could serve as a novel approach to objectively and accurately determine the PMI of human skeletal remains.
Collapse
Affiliation(s)
- Verena-Maria Schmidt
- Institute of Forensic Medicine, Medical University of Innsbruck, Muellerstraße 44, 6020 Innsbruck, Austria
| | - Philipp Zelger
- University Clinic for Hearing, Voice and Speech Disorders, Medical University of Innsbruck, Anichstrasse 35, 6020 Innsbruck, Austria
| | - Claudia Wöss
- Institute of Forensic Medicine, Medical University of Innsbruck, Muellerstraße 44, 6020 Innsbruck, Austria
| | - Margot Fodor
- OrganLifeTM, Department of Visceral, Transplant and Thoracic Surgery, Medical University of Innsbruck, Innsbruck, Austria
| | - Theresa Hautz
- OrganLifeTM, Department of Visceral, Transplant and Thoracic Surgery, Medical University of Innsbruck, Innsbruck, Austria
| | - Stefan Schneeberger
- OrganLifeTM, Department of Visceral, Transplant and Thoracic Surgery, Medical University of Innsbruck, Innsbruck, Austria
| | - Christian Wolfgang Huck
- Institute of Analytical Chemistry and Radiochemistry, University of Innsbruck, 6020 Innsbruck, Austria
| | - Rohit Arora
- Department of Orthopaedics and Traumatology, Medical University of Innsbruck, Anichstraße 35, 6020 Innsbruck, Austria
| | - Andrea Brunner
- Institute of Pathology, Neuropathology, and Molecular Pathology, Medical University of Innsbruck, Muellerstrasse 44, 6020 Innsbruck, Austria
| | - Bettina Zelger
- Institute of Pathology, Neuropathology, and Molecular Pathology, Medical University of Innsbruck, Muellerstrasse 44, 6020 Innsbruck, Austria
| | - Michael Schirmer
- Department of Internal Medicine, Clinic II, Medical University of Innsbruck, Anichstrasse 35, 6020 Innsbruck, Austria
| | - Johannes Dominikus Pallua
- Department of Orthopaedics and Traumatology, Medical University of Innsbruck, Anichstraße 35, 6020 Innsbruck, Austria
| |
Collapse
|
12
|
Shin M, Pelletier MH, Lovric V, Walsh WR, Martens PJ, Kruzic JJ, Gludovatz B. Effect of gamma irradiation and supercritical carbon dioxide sterilization with Novakill™ or ethanol on the fracture toughness of cortical bone. J Biomed Mater Res B Appl Biomater 2024; 112:e35356. [PMID: 38247241 DOI: 10.1002/jbm.b.35356] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2023] [Revised: 09/15/2023] [Accepted: 11/11/2023] [Indexed: 01/23/2024]
Abstract
Sterilization of structural bone allografts is a critical process prior to their clinical use in large cortical bone defects. Gamma irradiation protocols are known to affect tissue integrity in a dose dependent manner. Alternative sterilization treatments, such as supercritical carbon dioxide (SCCO2 ), are gaining popularity due to advantages such as minimal exposure to denaturants, the lack of toxic residues, superior tissue penetration, and minor impacts on mechanical properties including strength and stiffness. The impact of SCCO2 on the fracture toughness of bone tissue, however, remains unknown. Here, we evaluate crack initiation and growth toughness after 2, 6, and 24 h SCCO2 -treatment using Novakill™ and ethanol as additives on ~11 samples per group obtained from a pair of femur diaphyses of a canine. All mechanical testing was performed at ambient air after 24 h soaking in Hanks' balanced salt solution (HBSS). Results show no statistically significant difference in the failure characteristics of the Novakill™-treated groups whereas crack growth toughness after 6 and 24 h of treatment with ethanol significantly increases by 37% (p = .010) and 34% (p = .038), respectively, compared to an untreated control group. In contrast, standard 25 kGy gamma irradiation causes significantly reduced crack growth resistance by 40% (p = .007) compared to untreated bone. FTIR vibrational spectroscopy, conducted after testing, reveals a consistent trend of statistically significant differences (p < .001) with fracture toughness. These trends align with variations in the ratios of enzymatic mature to immature crosslinks in the collagen structure, suggesting a potential association with fracture toughness. Additional Raman spectroscopy after testing shows a similar trend with statistically significant differences (p < .005), which further supports that collagen structural changes occur in the SCF-treated groups with ethanol after 6 and 24 h. Our work reveals the benefits of SCCO2 sterilization compared to gamma irradiation.
Collapse
Affiliation(s)
- Mihee Shin
- School of Mechanical and Manufacturing Engineering, University of New South Wales (UNSW Sydney), Sydney, New South Wales, Australia
| | - Matthew H Pelletier
- Surgical and Orthopedic Research Laboratories, Prince of Wales Clinical School, University of New South Wales (UNSW Sydney), Sydney, New South Wales, Australia
| | - Vedran Lovric
- Surgical and Orthopedic Research Laboratories, Prince of Wales Clinical School, University of New South Wales (UNSW Sydney), Sydney, New South Wales, Australia
| | - William R Walsh
- Surgical and Orthopedic Research Laboratories, Prince of Wales Clinical School, University of New South Wales (UNSW Sydney), Sydney, New South Wales, Australia
| | - Penny J Martens
- Graduate School of Biomedical Engineering, University of New South Wales (UNSW Sydney), Sydney, New South Wales, Australia
| | - Jamie J Kruzic
- School of Mechanical and Manufacturing Engineering, University of New South Wales (UNSW Sydney), Sydney, New South Wales, Australia
| | - Bernd Gludovatz
- School of Mechanical and Manufacturing Engineering, University of New South Wales (UNSW Sydney), Sydney, New South Wales, Australia
| |
Collapse
|
13
|
Kochetkova T, Hanke MS, Indermaur M, Groetsch A, Remund S, Neuenschwander B, Michler J, Siebenrock KA, Zysset P, Schwiedrzik J. Composition and micromechanical properties of the femoral neck compact bone in relation to patient age, sex and hip fracture occurrence. Bone 2023; 177:116920. [PMID: 37769956 DOI: 10.1016/j.bone.2023.116920] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/04/2023] [Revised: 09/22/2023] [Accepted: 09/25/2023] [Indexed: 10/03/2023]
Abstract
Current clinical methods of bone health assessment depend to a great extent on bone mineral density (BMD) measurements. However, these methods only act as a proxy for bone strength and are often only carried out after the fracture occurs. Besides BMD, composition and tissue-level mechanical properties are expected to affect the whole bone's strength and toughness. While the elastic properties of the bone extracellular matrix (ECM) have been extensively investigated over the past two decades, there is still limited knowledge of the yield properties and their relationship to composition and architecture. In the present study, morphological, compositional and micropillar compression bone data was collected from patients who underwent hip arthroplasty. Femoral neck samples from 42 patients were collected together with anonymous clinical information about age, sex and primary diagnosis (coxarthrosis or hip fracture). The femoral neck cortex from the inferomedial region was analyzed in a site-matched manner using a combination of micromechanical testing (nanoindentation, micropillar compression) together with micro-CT and quantitative polarized Raman spectroscopy for both morphological and compositional characterization. Mechanical properties, as well as the sample-level mineral density, were constant over age. Only compositional properties demonstrate weak dependence on patient age: decreasing mineral to matrix ratio (p = 0.02, R2 = 0.13, 2.6 % per decade) and increasing amide I sub-peak ratio I∼1660/I∼1683 (p = 0.04, R2 = 0.11, 1.5 % per decade). The patient's sex and diagnosis did not seem to influence investigated bone properties. A clear zonal dependence between interstitial and osteonal cortical zones was observed for compositional and elastic bone properties (p < 0.0001). Site-matched microscale analysis confirmed that all investigated mechanical properties except yield strain demonstrate a positive correlation with the mineral fraction of bone. The output database is the first to integrate the experimentally assessed microscale yield properties, local tissue composition and morphology with the available patient clinical information. The final dataset was used for bone fracture risk prediction in-silico through the principal component analysis and the Naïve Bayes classification algorithm. The analysis showed that the mineral to matrix ratio, indentation hardness and micropillar yield stress are the most relevant parameters for bone fracture risk prediction at 70 % model accuracy (0.71 AUC). Due to the low number of samples, further studies to build a universal fracture prediction algorithm are anticipated with the higher number of patients (N > 200). The proposed classification algorithm together with the output dataset of bone tissue properties can be used for the future comparison of existing methods to evaluate bone quality as well as to form a better understanding of the mechanisms through which bone tissue is affected by aging or disease.
Collapse
Affiliation(s)
- Tatiana Kochetkova
- Empa, Swiss Federal Laboratories for Materials Science and Technology, Thun, Switzerland.
| | - Markus S Hanke
- Department of Orthopedic Surgery, Inselspital, University of Bern, Switzerland
| | - Michael Indermaur
- ARTORG Center for Biomedical Engineering Research, University of Bern, Switzerland
| | - Alexander Groetsch
- Empa, Swiss Federal Laboratories for Materials Science and Technology, Thun, Switzerland
| | - Stefan Remund
- Institute for Applied Laser, Photonics and Surface Technologies (ALPS), Bern University of Applied Sciences, Burgdorf, Switzerland
| | - Beat Neuenschwander
- Institute for Applied Laser, Photonics and Surface Technologies (ALPS), Bern University of Applied Sciences, Burgdorf, Switzerland
| | - Johann Michler
- Empa, Swiss Federal Laboratories for Materials Science and Technology, Thun, Switzerland
| | - Klaus A Siebenrock
- Department of Orthopedic Surgery, Inselspital, University of Bern, Switzerland
| | - Philippe Zysset
- ARTORG Center for Biomedical Engineering Research, University of Bern, Switzerland
| | - Jakob Schwiedrzik
- Empa, Swiss Federal Laboratories for Materials Science and Technology, Thun, Switzerland.
| |
Collapse
|
14
|
Reiner E, Weston F, Pleshko N, Querido W. Application of Optical Photothermal Infrared (O-PTIR) Spectroscopy for Assessment of Bone Composition at the Submicron Scale. APPLIED SPECTROSCOPY 2023; 77:1311-1324. [PMID: 37774686 DOI: 10.1177/00037028231201427] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/01/2023]
Abstract
The molecular basis of bone structure and strength is mineralized collagen fibrils at the submicron scale (∼500 nm). Recent advances in optical photothermal infrared (O-PTIR) spectroscopy allow the investigation of bone composition with unprecedented submicron spatial resolution, which may provide new insights into factors contributing to underlying bone function. Here, we investigated (i) whether O-PTIR-derived spectral parameters correlated to standard attenuated total reflection (ATR) Fourier transform infrared spectroscopy spectral data and (ii) whether O-PTIR-derived spectral parameters, including heterogeneity of tissue, contribute to the prediction of proximal femoral bone stiffness. Analysis of serially demineralized bone powders showed a significant correlation (r = 0.96) between mineral content quantified using ATR and O-PTIR spectroscopy, indicating the validity of this technique in assessing bone mineralization. Using femoral neck sections, the principal component analysis showed that differences between O-PTIR and ATR spectra were primarily attributable to the phosphate ion (PO4) absorbance band, which was typically shifter toward higher wavenumbers in O-PTIR spectra. Additionally, significant correlations were found between hydrogen phosphate (HPO4) content (r = 0.75) and carbonate (CO3) content (r = 0.66) quantified using ATR and O-PTIR spectroscopy, strengthening the validity of this method to assess bone mineral composition. O-PTIR imaging of individual trabeculae at 500 nm pixel resolution illustrated differences in submicron composition in the femoral neck from bones with different stiffness. O-PTIR analysis showed a significant negative correlation (r = -0.71) between bone stiffness and mineral maturity, reflective of newly formed bone being an important contributor to bone function. Finally, partial least squares regression analysis showed that combining multiple O-PTIR parameters (HPO4 content and heterogeneity, collagen integrity, and CO3 content) could significantly predict proximal femoral stiffness (R2 = 0.74, error = 9.7%) more accurately than using ATR parameters. Additionally, we describe new findings in the effects of bone tissue orientation in the O-PTIR spectra. Overall, this study highlights a new application of O-PTIR spectroscopy that may provide new insights into molecular-level factors underlying bone mechanical competence.
Collapse
Affiliation(s)
- Emily Reiner
- Department of Bioengineering, Temple University, Philadelphia, PA, USA
| | - Frank Weston
- Photothermal Spectroscopy Corporation, Santa Barbara, CA, USA
| | - Nancy Pleshko
- Department of Bioengineering, Temple University, Philadelphia, PA, USA
| | - William Querido
- Department of Bioengineering, Temple University, Philadelphia, PA, USA
| |
Collapse
|
15
|
Qian W, Gamsjaeger S, Paschalis EP, Graeff-Armas LA, Bare SP, Turner JA, Lappe JM, Recker RR, Akhter MP. Bone intrinsic material and compositional properties in postmenopausal women diagnosed with long-term Type-1 diabetes. Bone 2023; 174:116832. [PMID: 37385427 PMCID: PMC11302406 DOI: 10.1016/j.bone.2023.116832] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/12/2023] [Revised: 06/12/2023] [Accepted: 06/21/2023] [Indexed: 07/01/2023]
Abstract
The incidence of diabetes mellitus and the associated complications are growing worldwide, affecting the patients' quality of life and exerting a considerable burden on health systems. Yet, the increase in fracture risk in type 1 diabetes (T1D) patients is not fully captured by bone mineral density (BMD), leading to the hypothesis that alterations in bone quality are responsible for the increased risk. Material/compositional properties are important aspects of bone quality, yet information on human bone material/compositional properties in T1D is rather sparse. The purpose of the present study is to measure both the intrinsic material behaviour by nanoindentation, and material compositional properties by Raman spectroscopy as a function of tissue age and microanatomical location (cement lines) in bone tissue from iliac crest biopsies from postmenopausal women diagnosed with long-term T1D (N = 8), and appropriate sex-, age-, BMD- and clinically-matched controls (postmenopausal women; N = 5). The results suggest elevation of advanced glycation endproducts (AGE) content in the T1D and show significant differences in mineral maturity / crystallinity (MMC) and glycosaminoglycan (GAG) content between the T1D and control groups. Furthermore, both hardness and modulus by nanoindentation are greater in T1D. These data suggest a significant deterioration of material strength properties (toughness) and compositional properties in T1D compared with controls.
Collapse
Affiliation(s)
- Wen Qian
- University of Nebraska, Lincoln, NE, USA
| | | | | | | | - Sue P Bare
- Osteoporosis Research Center, Creighton University, Omaha, NE, USA
| | | | - Joan M Lappe
- Osteoporosis Research Center, Creighton University, Omaha, NE, USA
| | - Robert R Recker
- Osteoporosis Research Center, Creighton University, Omaha, NE, USA
| | | |
Collapse
|
16
|
Mieczkowska A, Mabilleau G. Validation of Fourier Transform Infrared Microspectroscopy for the Evaluation of Enzymatic Cross-Linking of Bone Collagen. Calcif Tissue Int 2023; 113:344-353. [PMID: 37278762 DOI: 10.1007/s00223-023-01105-z] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/02/2023] [Accepted: 05/26/2023] [Indexed: 06/07/2023]
Abstract
Enzymatic cross-linking of the bone collagen is important to resist to crack growth and to increased flexural strength. In the present study, we proposed a new method for assessment of enzymatic cross-link based on Fourier transform infrared (FTIR) microspectroscopy that takes into account secondary structure of type I collagen. Briefly, femurs were collected from sham or ovariectomized mice and subjected either to high-performance liquid chromatography-mass spectrometry or embedded in polymethylmethacrylate, cut and analyzed by FTIR microspectroscopy. FTIR acquisition was recorded before and after ultraviolet (UV) exposure or acid treatment. In addition, femurs from a second animal study were used to compare gene expression of Plod2 and Lox enzymes and enzymatic cross-links determined by FTIR microspectroscopy. We evidenced here that intensities and areas of subbands located at ~1660, ~1680, and ~1690 cm-1 were positively and significantly associated with the concentration of pyridinoline (PYD), deoxypyridinoline, or immature dihydroxylysinonorleucine/hydroxylysinonorleucine cross-links. Seventy-two hours exposure to UV light significantly reduced by ~86% and ~89% the intensity and area of the ~1660 cm-1 subband. Similarly, 24 h of acid treatment significantly reduced by 78% and 76% the intensity and area of the ~1690 cm-1 subband. Plod2 and Lox expression were also positively associated to the signal of the ~1660 and ~1690 cm-1 subbands. In conclusion, our study provided a new method for decomposing the amide I envelope of bone section that positively correlates with PYD and immature collagen cross-links. This method allows for investigation of tissue distribution of enzymatic cross-links in bone section.
Collapse
Affiliation(s)
- Aleksandra Mieczkowska
- Univ Angers, Nantes Université, ONIRIS, Inserm, UMR 1229, RMeS, REGOS, SFR ICAT, Université d'Angers, 49000, Angers, France
| | - Guillaume Mabilleau
- Univ Angers, Nantes Université, ONIRIS, Inserm, UMR 1229, RMeS, REGOS, SFR ICAT, Université d'Angers, 49000, Angers, France.
- CHU Angers, Departement de Pathologie Cellulaire et Tissulaire, UF de Pathologie osseuse, 49933, Angers, France.
| |
Collapse
|
17
|
Demirtas A, Taylor EA, Gludovatz B, Ritchie RO, Donnelly E, Ural A. An integrated experimental-computational framework to assess the influence of microstructure and material properties on fracture toughness in clinical specimens of human femoral cortical bone. J Mech Behav Biomed Mater 2023; 145:106034. [PMID: 37494816 DOI: 10.1016/j.jmbbm.2023.106034] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2022] [Revised: 06/08/2023] [Accepted: 07/16/2023] [Indexed: 07/28/2023]
Abstract
Microstructural and compositional changes that occur due to aging, pathological conditions, or pharmacological treatments alter cortical bone fracture resistance. However, the relative importance of these changes to the fracture resistance of cortical bone has not been quantified in detail. In this technical note, we developed an integrated experimental-computational framework utilizing human femoral cortical bone biopsies to advance the understanding of how fracture resistance of cortical bone is modulated due to modifications in its microstructure and material properties. Four human biopsy samples from individuals with varying fragility fracture history and osteoporosis treatment status were converted to finite element models incorporating specimen-specific material properties and were analyzed using fracture mechanics-based modeling. The results showed that cement line density and osteonal volume had a significant effect on crack volume. The removal of cement lines substantially increased the crack volume in the osteons and interstitial bone, representing straight crack growth, compared to models with cement lines due to the lack of crack deflection in the models without cement lines. Crack volume in the osteons and interstitial bone increased when mean elastic modulus and ultimate strength increased and mean fracture toughness decreased. Crack volume in the osteons and interstitial bone was reduced when material property heterogeneity was incorporated in the models. Although both the microstructure and the heterogeneity of the material properties of the cortical bone independently increased the fracture toughness, the relative contribution of the microstructure was more significant. The integrated experimental-computational framework developed here can identify the most critical microscale features of cortical bone modulated by pathological processes or pharmacological treatments that drive changes in fracture resistance and improve our understanding of the relative influence of microstructure and material properties on fracture resistance of cortical bone.
Collapse
Affiliation(s)
- Ahmet Demirtas
- Department of Mechanical Engineering, Villanova University, Villanova, PA, USA
| | - Erik A Taylor
- Sibley School of Mechanical and Aerospace Engineering, Cornell University, Ithaca, NY, USA
| | - Bernd Gludovatz
- School of Mechanical and Manufacturing Engineering, University of New South Wales (UNSW Sydney), Sydney, NSW, 2052, Australia
| | - Robert O Ritchie
- Department of Materials Science and Engineering, University of California, Berkeley, CA, 94720, USA
| | - Eve Donnelly
- Department of Materials Science and Engineering, Cornell University, Ithaca, NY, USA; Musculoskeletal Integrity Program, Weill Cornell Medicine, Research Institute, Hospital for Special Surgery, New York City, NY, USA
| | - Ani Ural
- Department of Mechanical Engineering, Villanova University, Villanova, PA, USA.
| |
Collapse
|
18
|
Sallam M, Wilson PW, Andersson B, Schmutz M, Benavides C, Dominguez-Gasca N, Sanchez-Rodriguez E, Rodriguez-Navarro AB, Dunn IC, De Koning DJ, Johnsson M. Genetic markers associated with bone composition in Rhode Island Red laying hens. Genet Sel Evol 2023; 55:44. [PMID: 37386416 DOI: 10.1186/s12711-023-00818-x] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2022] [Accepted: 06/20/2023] [Indexed: 07/01/2023] Open
Abstract
BACKGROUND Bone damage has welfare and economic impacts on modern commercial poultry and is known as one of the major challenges in the poultry industry. Bone damage is particularly common in laying hens and is probably due to the physiological link between bone and the egg laying process. Previous studies identified and validated quantitative trait loci (QTL) for bone strength in White Leghorn laying hens based on several measurements, including bone composition measurements on the cortex and medulla of the tibia bone. In a previous pedigree-based analysis, bone composition measurements showed heritabilities ranging from 0.18 to 0.41 and moderate to strong genetic correlations with tibia strength and density. Bone composition was measured using infrared spectroscopy and thermogravimetry. The aim of this study was to combine these bone composition measurements with genotyping data via a genome-wide association study (GWAS) to investigate genetic markers that contribute to genetic variance in bone composition in Rhode Island Red laying hens. In addition, we investigated the genetic correlations between bone composition and bone strength. RESULTS We found novel genetic markers that are significantly associated with cortical lipid, cortical mineral scattering, medullary organic matter, and medullary mineralization. Composition of the bone organic matter showed more significant associations than bone mineral composition. We also found interesting overlaps between the GWAS results for tibia composition traits, particularly for cortical lipid and tibia strength. Bone composition measurements by infrared spectroscopy showed more significant associations than thermogravimetry measurements. Based on the results of infrared spectroscopy, cortical lipid showed the highest genetic correlations with tibia density, which was negative (- 0.20 ± 0.04), followed by cortical CO3/PO4 (0.18 ± 0.04). Based on the results of thermogravimetry, medullary organic matter% and mineral% showed the highest genetic correlations with tibia density (- 0.25 ± 0.04 and 0.25 ± 0.04, respectively). CONCLUSIONS This study detected novel genetic associations for bone composition traits, particularly those involving organic matter, that could be used as a basis for further molecular genetic investigations. Tibia cortical lipids displayed the strongest genetic associations of all the composition measurements, including a significantly high genetic correlation with tibia density and strength. Our results also highlighted that cortical lipid may be a key measurement for further avian bone studies.
Collapse
Affiliation(s)
- Moh Sallam
- Swedish University of Agricultural Sciences, 75651, Uppsala, Sweden.
| | - Peter W Wilson
- Roslin Institute, University of Edinburgh, Edinburgh, EH25 9RG, Scotland, UK
| | | | | | - Cristina Benavides
- Departamento de Mineralogia y Petrologia, Universidad de Granada, 18002, Granada, Spain
| | | | | | | | - Ian C Dunn
- Roslin Institute, University of Edinburgh, Edinburgh, EH25 9RG, Scotland, UK
| | | | - Martin Johnsson
- Swedish University of Agricultural Sciences, 75651, Uppsala, Sweden
| |
Collapse
|
19
|
Haffer H, Chiapparelli E, Muellner M, Moser M, Dodo Y, Reisener MJ, Adl Amini D, Salzmann SN, Zhu J, Han YX, Donnelly E, Shue J, Sama AA, Cammisa FP, Girardi FP, Hughes AP. Bone collagen quality in lumbar fusion patients: the association between volumetric bone mineral density and advanced glycation endproducts. EUROPEAN SPINE JOURNAL : OFFICIAL PUBLICATION OF THE EUROPEAN SPINE SOCIETY, THE EUROPEAN SPINAL DEFORMITY SOCIETY, AND THE EUROPEAN SECTION OF THE CERVICAL SPINE RESEARCH SOCIETY 2023; 32:1678-1687. [PMID: 36922425 PMCID: PMC10623215 DOI: 10.1007/s00586-023-07589-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/06/2022] [Accepted: 02/06/2023] [Indexed: 03/18/2023]
Abstract
PURPOSE The sole determination of volumetric bone mineral density (vBMD) is insufficient to evaluate overall bone integrity. The accumulation of advanced glycation endproducts (AGEs) stiffens and embrittles collagen fibers. Despite the important role of AGEs in bone aging, the relationship between AGEs and vBMD is poorly understood. We hypothesized that an accumulation of AGEs, a marker of impaired bone quality, is related to decreased vBMD. METHODS Prospectively collected data of 127 patients undergoing lumbar fusion were analyzed. Quantitative computed tomography (QCT) measurements were performed at the lumbar spine. Intraoperative bone biopsies were obtained and analyzed with confocal fluorescence microscopy for fluorescent AGEs, both trabecular and cortical. Spearman's correlation coefficients were calculated to examine relationships between vBMD and fAGEs, stratified by sex. Multivariable linear regression analysis with adjustments for age, sex, body mass index (BMI), race, diabetes mellitus and HbA1c was used to investigate associations between vBMD and fAGEs. RESULTS One-hundred and twenty-seven patients (51.2% female, 61.2 years, BMI of 28.7 kg/m2) with 107 bone biopsies were included in the final analysis, excluding patients on anti-osteoporotic drug therapy. In the univariate analysis, cortical fAGEs increased with decreasing vBMD at (r = -0.301; p = 0.030), but only in men. In the multivariable analysis, trabecular fAGEs increased with decreasing vBMD after adjusting for age, sex, BMI, race, diabetes mellitus and HbA1c (β = 0.99;95%CI=(0.994,1.000); p = 0.04). CONCLUSION QCT-derived vBMD measurements were found to be inversely associated with trabecular fAGEs. Our results enhance the understanding of bone integrity by suggesting that spine surgery patients with decreased bone quantity may also have poorer bone quality.
Collapse
Affiliation(s)
- Henryk Haffer
- Department of Orthopaedic Surgery, Hospital for Special Surgery, Weill Cornell Medicine, New York City, NY, USA
- Center for Musculoskeletal Surgery, Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
| | - Erika Chiapparelli
- Department of Orthopaedic Surgery, Hospital for Special Surgery, Weill Cornell Medicine, New York City, NY, USA
| | - Maximilian Muellner
- Department of Orthopaedic Surgery, Hospital for Special Surgery, Weill Cornell Medicine, New York City, NY, USA
- Center for Musculoskeletal Surgery, Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
| | - Manuel Moser
- Department of Orthopaedic Surgery, Hospital for Special Surgery, Weill Cornell Medicine, New York City, NY, USA
- Department of Spine Surgery, Lucerne Cantonal Hospital, Lucerne, Switzerland
| | - Yusuke Dodo
- Department of Orthopaedic Surgery, Hospital for Special Surgery, Weill Cornell Medicine, New York City, NY, USA
| | - Marie-Jacqueline Reisener
- Department of Orthopaedic Surgery, Hospital for Special Surgery, Weill Cornell Medicine, New York City, NY, USA
- Center for Musculoskeletal Surgery, Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
| | - Dominik Adl Amini
- Department of Orthopaedic Surgery, Hospital for Special Surgery, Weill Cornell Medicine, New York City, NY, USA
- Center for Musculoskeletal Surgery, Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
| | - Stephan N Salzmann
- Department of Orthopaedic Surgery, Hospital for Special Surgery, Weill Cornell Medicine, New York City, NY, USA
- Department of Orthopedics and Trauma Surgery, Medical University of Vienna, Vienna, Austria
| | - Jiaqi Zhu
- Department of Epidemiology and Biostatistics, Hospital for Special Surgery, Weill Cornell Medicine, New York City, NY, USA
| | - Yi Xin Han
- Department of Materials Science and Engineering, Cornell University, Ithaca, NY, USA
| | - Eve Donnelly
- Department of Materials Science and Engineering, Cornell University, Ithaca, NY, USA
- Musculoskeletal Integrity Program, Research Institute, Hospital for Special Surgery, Weill Cornell Medicine, New York City, NY, USA
| | - Jennifer Shue
- Department of Orthopaedic Surgery, Hospital for Special Surgery, Weill Cornell Medicine, New York City, NY, USA
| | - Andrew A Sama
- Department of Orthopaedic Surgery, Hospital for Special Surgery, Weill Cornell Medicine, New York City, NY, USA
| | - Frank P Cammisa
- Department of Orthopaedic Surgery, Hospital for Special Surgery, Weill Cornell Medicine, New York City, NY, USA
| | - Federico P Girardi
- Department of Orthopaedic Surgery, Hospital for Special Surgery, Weill Cornell Medicine, New York City, NY, USA
| | - Alexander P Hughes
- Department of Orthopaedic Surgery, Hospital for Special Surgery, Weill Cornell Medicine, New York City, NY, USA.
| |
Collapse
|
20
|
Heilbronner AK, Dash A, Straight BE, Snyder LJ, Ganesan S, Adu KB, Jae A, Clare S, Billings E, Kim HJ, Cunningham M, Lebl DR, Donnelly E, Stein EM. Peripheral cortical bone density predicts vertebral bone mineral properties in spine fusion surgery patients. Bone 2023; 169:116678. [PMID: 36646265 PMCID: PMC10081687 DOI: 10.1016/j.bone.2023.116678] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/11/2022] [Revised: 12/22/2022] [Accepted: 01/10/2023] [Indexed: 01/15/2023]
Abstract
Spine fusion surgery is one of the most common orthopedic procedures, with over 400,000 performed annually to correct deformities and pain. However, complications occur in approximately one third of cases. While many of these complications may be related to poor bone quality, it is difficult to detect bone abnormalities prior to surgery. Areal BMD (aBMD) assessed by DXA may be artifactually high in patients with spine pathology, leading to missed diagnosis of deficits. In this study, we related preoperative imaging characteristics of both central and peripheral sites to direct measurements of bone quality in vertebral biopsies. We hypothesized that pre-operative imaging outcomes would relate to vertebral bone mineralization and collagen properties. Pre-operative assessments included DXA measurements of aBMD of the spine, hip, and forearm, central quantitative computed tomography (QCT) of volumetric BMD (vBMD) at the lumbar spine, and high resolution peripheral quantitative computed tomography (HRpQCT; Xtreme CT2) measurements of vBMD and microarchitecture at the distal radius and tibia. Bone samples were collected intraoperatively from the lumbar vertebrae and analyzed using Fourier-transform Infrared (FTIR) spectroscopy. Bone samples were obtained from 23 postmenopausal women (mean age 67 ± 7 years, BMI 28 ± 8 kg/m2). We found that patients with more mature bone by FTIR, measured as lower acid phosphate content and carbonate to phosphate ratio, and greater collagen maturity and mineral maturity/crystallinity (MMC), had greater cortical vBMD at the tibia and greater aBMD at the lumbar spine and one-third radius. Our data suggests that bone quality at peripheral sites may predict bone quality at the spine. As bone quality at the spine is challenging to assess prior to surgery, there is a great need for additional screening tools. Pre-operative peripheral bone imaging may provide important insight into vertebral bone quality and may foster identification of patients with bone quality deficits.
Collapse
Affiliation(s)
- Alison K Heilbronner
- Division of Endocrinology, Metabolic Bone Disease Service, Hospital for Special Surgery, New York, NY, United States of America
| | - Alexander Dash
- Division of Endocrinology, Metabolic Bone Disease Service, Hospital for Special Surgery, New York, NY, United States of America
| | - Beth E Straight
- Department of Materials Science and Engineering, Cornell University, Ithaca, NY, United States of America
| | - Leah J Snyder
- Department of Materials Science and Engineering, Cornell University, Ithaca, NY, United States of America
| | - Sandhya Ganesan
- Department of Materials Science and Engineering, Cornell University, Ithaca, NY, United States of America
| | - Kobby B Adu
- Department of Materials Science and Engineering, Cornell University, Ithaca, NY, United States of America
| | - Andy Jae
- Department of Materials Science and Engineering, Cornell University, Ithaca, NY, United States of America
| | - Shannon Clare
- Division of Endocrinology, Metabolic Bone Disease Service, Hospital for Special Surgery, New York, NY, United States of America
| | - Emma Billings
- Division of Endocrinology, Metabolic Bone Disease Service, Hospital for Special Surgery, New York, NY, United States of America
| | - Han Jo Kim
- Spine Service, Hospital for Special Surgery, New York, NY, United States of America
| | - Matthew Cunningham
- Spine Service, Hospital for Special Surgery, New York, NY, United States of America
| | - Darren R Lebl
- Spine Service, Hospital for Special Surgery, New York, NY, United States of America
| | - Eve Donnelly
- Department of Materials Science and Engineering, Cornell University, Ithaca, NY, United States of America; Research Institute, Hospital for Special Surgery, New York, NY, United States of America
| | - Emily M Stein
- Division of Endocrinology, Metabolic Bone Disease Service, Hospital for Special Surgery, New York, NY, United States of America.
| |
Collapse
|
21
|
Yildirim G, Budell W, Berezovska O, Yagerman S, Maliath S, Mastrokostas P, Tommasini S, Dowd T. Lead induced differences in bone properties in osteocalcin +/+ and −/− female mice. Bone Rep 2023; 18:101672. [PMID: 37064000 PMCID: PMC10090701 DOI: 10.1016/j.bonr.2023.101672] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/15/2022] [Revised: 02/25/2023] [Accepted: 03/15/2023] [Indexed: 03/19/2023] Open
Abstract
Lead (Pb) toxicity is a major health problem and bone is the major reservoir. Lead is detrimental to bone, affects bone remodeling and is associated with elderly fractures. Osteocalcin (OC) affects bone remodeling, improves fracture resistance and decreases with age and in some diseases. The effect of lead in osteocalcin depleted bone is unknown and of interest. We compared bone mineral properties of control and Pb exposed (from 2 to 6 months) femora from female adult C57BL6 OC+/+ and OC-/- mice using Fourier Transform Infrared Imaging (FTIRI), Micro-computed tomography (uCT), bone biomechanical measurements and serum turnover markers (P1NP, CTX). Lead significantly increased turnover in OC+/+ and in OC-/- bones producing increased total volume, area and marrow area/total area with decreased BV/TV compared to controls. The increased turnover decreased mineral/matrix vs. Oc+/+ and increased mineral/matrix and crystallinity vs. OC-/-. PbOC-/- had increased bone formation, cross-sectional area (Imin) and decreased collagen maturity compared OC-/- and PbOC+/+. Imbalanced turnover in PbOC-/- confirmed the role of osteocalcin as a coupler of formation and resorption. Bone strength and stiffness were reduced in OC-/- and PbOC-/- due to reduced material properties vs. OC+/+ and PbOC+/+ respectively. The PbOC-/- bones had increased area to compensate for weaker material properties but were not proportionally stronger for increased size. However, at low lead levels osteocalcin plays the major role in bone strength suggesting increased fracture risk in low Pb2+ exposed elderly could be due to reduced osteocalcin as well. Years of low lead exposure or higher blood lead levels may have an additional effect on bone strength.
Collapse
Affiliation(s)
- G. Yildirim
- Department of Chemistry, Brooklyn College of the City University of New York, Brooklyn, NY, USA
| | - W.C. Budell
- Department of Chemistry, Brooklyn College of the City University of New York, Brooklyn, NY, USA
| | - O. Berezovska
- Department of Chemistry, Brooklyn College of the City University of New York, Brooklyn, NY, USA
| | - S. Yagerman
- Sibley School of Mechanical and Aerospace Engineering, Cornell University, Ithaca, NY, USA
| | - S.S. Maliath
- Department of Chemistry, Brooklyn College of the City University of New York, Brooklyn, NY, USA
| | - P. Mastrokostas
- Department of Chemistry, Brooklyn College of the City University of New York, Brooklyn, NY, USA
| | - S. Tommasini
- Department of Orthopaedics and Rehabilitation, Yale University School of Medicine, New Haven, CT, USA
| | - T.L. Dowd
- Department of Chemistry, Brooklyn College of the City University of New York, Brooklyn, NY, USA
- Ph.D. Program in Chemistry, The Graduate Center of the City University of New York, New York, NY 10016, USA
- Ph.D. Program in Biochemistry, The Graduate Center of the City University of New York, New York, NY 10016, USA
- Corresponding author at: Department of Chemistry, Rm. 359 NE, Brooklyn College of the City University of New York, 2900 Bedford Ave., Brooklyn, NY 11210, USA.
| |
Collapse
|
22
|
Xia N, Cai Y, Kan Q, Xiao J, Cui L, Zhou J, Xu W, Liu D. The role of microscopic properties on cortical bone strength of femoral neck. BMC Musculoskelet Disord 2023; 24:133. [PMID: 36803341 PMCID: PMC9940427 DOI: 10.1186/s12891-023-06248-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/24/2022] [Accepted: 02/17/2023] [Indexed: 02/22/2023] Open
Abstract
BACKGROUND Femoral neck fractures are serious consequence of osteoporosis (OP), numbers of people are working on the micro-mechanisms of femoral neck fractures. This study aims to investigate the role and weight of microscopic properties on femoral neck maximum load (Lmax), funding the indicator which effects Lmax most. METHODS A total of 115 patients were recruited from January 2018 to December 2020. Femoral neck samples were collected during the total hip replacement surgery. Femoral neck Lmax, micro-structure, micro-mechanical properties, micro-chemical composition were all measured and analyzed. Multiple linear regression analyses were performed to identify significant factors that affected the femoral neck Lmax. RESULTS The Lmax, cortical bone mineral density (cBMD), cortical bone thickness (Ct. Th), elastic modulus, hardness and collagen cross-linking ratio were all significantly decreased, whereas other parameters were significantly increased during the progression of OP (P < 0.05). In micro-mechanical properties, elastic modulus has the strongest correlation with Lmax (P < 0.05). The cBMD has the strongest association with Lmax in micro-structure (P < 0.05). In micro-chemical composition, crystal size has the strongest correlation with Lmax (P < 0.05). Multiple linear regression analysis showed that elastic modulus was most strongly related to Lmax (β = 0.920, P = 0.000). CONCLUSIONS Compared with other parameters, elastic modulus has the greatest influence on Lmax. Evaluation of microscopic parameters on femoral neck cortical bone can clarify the effects of microscopic properties on Lmax, providing a theoretical basis for the femoral neck OP and fragility fractures.
Collapse
Affiliation(s)
- Ning Xia
- Department of Orthopedics, The General Hospital of Western Theater Command, Chengdu, 610083 China
| | - Yun Cai
- grid.443397.e0000 0004 0368 7493Department of Critical Care Medicine, The Second Affiliated Hospital of Hainan Medical University, Haikou, 570311 China
| | - Qianhua Kan
- grid.263901.f0000 0004 1791 7667School of Mechanics and Aerospace Engineering, Southwest Jiaotong University, Chengdu, 611756 China
| | - Jian Xiao
- Department of Endocrinology, The General Hospital of Western Theater Command, Chengdu, 610083 China
| | - Lin Cui
- Department of Orthopedics, The General Hospital of Western Theater Command, Chengdu, 610083 China
| | - Jiangjun Zhou
- Department of Orthopedic, The 908Th Hospital of Joint Logistic Support Force of PLA, Nanchang, 330001 China
| | - Wei Xu
- Trauma Center, The General Hospital of Western Theater Command, Chengdu, 610083, China.
| | - Da Liu
- Department of Orthopedics, The General Hospital of Western Theater Command, Chengdu, 610083, China.
| |
Collapse
|
23
|
Haffer H, Chiapparelli E, Moser M, Muellner M, Dodo Y, Adl Amini D, Zhu J, Miller TT, Han YX, Donnelly E, Shue J, Sama AA, Cammisa FP, Girardi FP, Hughes AP. Dermal ultrasound measurements for bone quality assessment : An investigation of advanced glycation endproducts derived from confocal fluorescence microscopy. J Orthop Res 2023; 41:345-354. [PMID: 35470915 PMCID: PMC9596615 DOI: 10.1002/jor.25350] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/22/2022] [Revised: 04/18/2022] [Accepted: 04/20/2022] [Indexed: 02/04/2023]
Abstract
Bone quality is increasingly being recognized in the assessment of fracture risk. Nonenzymatic collagen cross-linking with the accumulation of advanced glycation end products stiffens and embrittles collagen fibers thus increasing bone fragility. Echogenicity is an ultrasound (US) parameter that provides information regarding the skin collagen structure. We hypothesized that both skin and bone collagen degrade in parallel fashion. Prospectively collected data of 110 patients undergoing posterior lumbar fusion was analyzed. Preoperative skin US measurements were performed in the lumbar region to assess dermal thickness and echogenicity. Intraoperative bone biopsies from the posterior superior iliac spine were obtained and analyzed with confocal fluorescence microscopy for fluorescent advanced glycation endproducts (fAGEs). Pearson's correlation was calculated to examine relationships between (1) US and fAGEs, and (2) age and fAGEs stratified by sex. Multivariable linear regression analysis with adjustments for age, sex, body mass index (BMI), diabetes mellitus, and hemoglobin A1c (HbA1c) was used to investigate associations between US and fAGEs. One hundred and ten patients (51.9% female, 61.6 years, BMI 29.8 kg/m2 ) were included in the analysis. In the univariate analysis cortical and trabecular fAGEs decreased with age, but only in women (cortical: r = -0.32, p = 0.031; trabecular: r = -0.32; p = 0.031). After adjusting for age, sex, BMI, diabetes mellitus, and HbA1c, lower dermal (β = 1.01; p = 0.012) and subcutaneous (β = 1.01; p = 0.021) echogenicity increased with increasing cortical fAGEs and lower dermal echogenicity increased with increasing trabecular fAGEs (β = 1.01; p = 0.021). This is the first study demonstrating significant associations between skin US measurements and in vivo bone quality parameters in lumbar fusion patients. As a noninvasive assessment tool, skin US measurements might be incorporated into future practice to investigate bone quality in spine surgery patients.
Collapse
Affiliation(s)
- Henryk Haffer
- Department of Orthopaedic Surgery, Hospital for Special Surgery, Weill Cornell Medicine, New York City, NY, USA
- Center for Musculoskeletal Surgery, Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, Berlin, Germany
| | - Erika Chiapparelli
- Department of Orthopaedic Surgery, Hospital for Special Surgery, Weill Cornell Medicine, New York City, NY, USA
| | - Manuel Moser
- Department of Orthopaedic Surgery, Hospital for Special Surgery, Weill Cornell Medicine, New York City, NY, USA
- Department of Spine Surgery, Lucerne Cantonal Hospital, Lucerne, Switzerland
| | - Maximilian Muellner
- Department of Orthopaedic Surgery, Hospital for Special Surgery, Weill Cornell Medicine, New York City, NY, USA
- Center for Musculoskeletal Surgery, Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, Berlin, Germany
| | - Yusuke Dodo
- Department of Orthopaedic Surgery, Hospital for Special Surgery, Weill Cornell Medicine, New York City, NY, USA
| | - Dominik Adl Amini
- Department of Orthopaedic Surgery, Hospital for Special Surgery, Weill Cornell Medicine, New York City, NY, USA
- Center for Musculoskeletal Surgery, Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, Berlin, Germany
| | - Jiaqi Zhu
- Department of Orthopaedic Surgery, Hospital for Special Surgery, Weill Cornell Medicine, New York City, NY, USA
| | - Theodore T. Miller
- Department of Radiology and Imaging, Hospital for Special Surgery, Weill Cornell Medicine, New York City, NY, USA
| | - Yi Xin Han
- Department of Materials Science and Engineering, Cornell University, Ithaca, NY, USA
| | - Eve Donnelly
- Department of Materials Science and Engineering, Cornell University, Ithaca, NY, USA
- Musculoskeletal Integrity Program, Research Institute, Hospital for Special Surgery, New York City, NY, USA
| | - Jennifer Shue
- Department of Orthopaedic Surgery, Hospital for Special Surgery, Weill Cornell Medicine, New York City, NY, USA
| | - Andrew A. Sama
- Department of Orthopaedic Surgery, Hospital for Special Surgery, Weill Cornell Medicine, New York City, NY, USA
| | - Frank P. Cammisa
- Department of Orthopaedic Surgery, Hospital for Special Surgery, Weill Cornell Medicine, New York City, NY, USA
| | - Federico P. Girardi
- Department of Orthopaedic Surgery, Hospital for Special Surgery, Weill Cornell Medicine, New York City, NY, USA
| | - Alexander P. Hughes
- Department of Orthopaedic Surgery, Hospital for Special Surgery, Weill Cornell Medicine, New York City, NY, USA
| |
Collapse
|
24
|
Entz L, Falgayrac G, Chauveau C, Pasquier G, Lucas S. The extracellular matrix of human bone marrow adipocytes and glucose concentration differentially alter mineralization quality without impairing osteoblastogenesis. Bone Rep 2022; 17:101622. [PMID: 36187598 PMCID: PMC9519944 DOI: 10.1016/j.bonr.2022.101622] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/25/2022] [Revised: 09/09/2022] [Accepted: 09/19/2022] [Indexed: 11/18/2022] Open
Abstract
Bone marrow adipocytes (BMAds) accrue in various states of osteoporosis and interfere with bone remodeling through the secretion of various factors. However, involvement of the extracellular matrix (ECM) produced by BMAds in the impairment of bone marrow mesenchymal stromal cell (BM-MSC) osteoblastogenesis has received little attention. In type 2 diabetes (T2D), skeletal fragility is associated with several changes in bone quality that are incompletely understood, and BMAd quantity increases in relationship to poor glycemic control. Considering their altered phenotype in this pathophysiological context, we aimed to determine the contribution of the ECM of mature BMAds to osteoblastogenesis and mineralization quality in the context of chronic hyperglycemia. Human BM-MSCs were differentiated for 21 days in adipogenic medium containing either a normoglycemic (LG, 5.5 mM) or a high glucose concentration (HG, 25 mM). The ECM laid down by BMAds were devitalized through cell removal to examine their impact on the proliferation and differentiation of BM-MSCs toward osteoblastogenesis in LG and HG conditions. Compared to control plates, both adipocyte ECMs promoted cell adhesion and proliferation. As shown by the unmodified RUNX2 and osteocalcin mRNA levels, BM-MSC commitment in osteoblastogenesis was hampered by neither the hyperglycemic condition nor the adipocyte matrices. However, adipocyte ECMs or HG condition altered the mineralization phase with perturbed expression levels of type 1 collagen, MGP and osteopontin. Despite higher ALP activity, mineralization levels per cell were decreased for osteoblasts grown on adipocyte ECMs compared to controls. Raman spectrometry revealed that culturing on adipocyte matrices specifically prevents type-B carbonate substitution and favors collagen crosslinking, in contrast to exposure to HG concentration alone. Moreover, the mineral to organic ratio was disrupted according to the presence of adipocyte ECM and the glucose concentration used for adipocyte or osteoblast culture. HG concentration and adipocyte ECM lead to different defects in mineralization quality, recapitulating contradictory changes reported in T2D osteoporosis. Our study shows that ECMs from BMAds do not impair osteoblastogenesis but alter both the quantity and quality of mineralization partly in a glucose concentration-dependent manner. This finding sheds light on the involvement of BMAds, which should be considered in the compromised bone quality of T2D and osteoporosis patients more generally. Glucose level alters the Extracellular Matrix composition of Bone Marrow adipocytes. Osteoblastogenesis on adipocyte ECMs is unaltered but produced less mineral amount. The quality of the mineral is altered differently by adipocyte ECMs or glucose levels. The presence of BM adipocytes should be valued in damaged osteoporosis bone quality.
Collapse
Key Words
- AGEs, Advanced glycation end-products
- BM-MSC, Bone marrow mesenchymal stromal cell
- BMAd, Bone marrow adipocyte
- ECM, Extracellular matrix
- ECMBMAd HG, Extracellular matrix obtained from BMAds cultured in HG concentration
- ECMBMAd LG, Extracellular matrix obtained from BMAds cultured in LG concentration
- ECMBMAd, Extracellular matrix obtained from BMAds
- Extracellular matrix
- GAG, glycosaminoglycan
- HA, hydroxyapatite
- HG, High glucose
- Hyperglycemia
- LG, Low glucose
- LGM, Low glucose and mannitol
- Marrow adipocytes
- Osteoblast
- Osteoporosis
- Skeletal mesenchymal stromal cells
- T2D, Type 2 diabetes
Collapse
|
25
|
Romanowicz GE, Terhune AH, Bielajew BJ, Sexton B, Lynch M, Mandair GS, McNerny EM, Kohn DH. Collagen cross-link profiles and mineral are different between the mandible and femur with site specific response to perturbed collagen. Bone Rep 2022; 17:101629. [PMID: 36325166 PMCID: PMC9618783 DOI: 10.1016/j.bonr.2022.101629] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/12/2022] [Revised: 10/15/2022] [Accepted: 10/18/2022] [Indexed: 11/06/2022] Open
Abstract
Compromises to collagen and mineral lead to a decrease in whole bone quantity and quality in a variety of systemic diseases, yet, clinically, disease manifestations differ between craniofacial and long bones. Collagen alterations can occur through post-translational modification via lysyl oxidase (LOX), which catalyzes enzymatic collagen cross-link formation, as well as through non-enzymatic advanced glycation end products (AGEs) such as pentosidine and carboxymethyl-lysine (CML). Characterization of the cross-links and AGEs, and comparison of the mineral and collagen modifications in craniofacial and long bones represent a critical gap in knowledge. However, alterations to either the mineral or collagen in bone may contribute to disease progression and, subsequently, the anatomical site dependence of a variety of diseases. Therefore, we hypothesized that collagen cross-links and AGEs differ between craniofacial and long bones and that altered collagen cross-linking reduces mineral quality in an anatomic location dependent. To study the effects of cross-link inhibition on mineralization between anatomical sites, beta-aminoproprionitrile (BAPN) was administered to rapidly growing, 5-8 week-old male mice. BAPN is a dose-dependent inhibitor of LOX that pharmacologically alters enzymatic cross-link formation. Long bones (femora) and craniofacial bones (mandibles) were compared for mineral quantity and quality, collagen cross-link and AGE profiles, and tissue level mechanics, as well as the response to altered cross-links via BAPN. A highly sensitive liquid chromatography/mass spectrometry (LC-MS) method was developed which allowed for quantification of site-dependent accumulation of the advanced glycation end-product, carboxymethyl-lysine (CML). CML was ∼8.3× higher in the mandible than the femur. The mandible had significantly higher collagen maturation, mineral crystallinity, and Young's modulus, but lower carbonation, than the femur. BAPN also had anatomic specific effects, leading to significant decreases in mature cross-links in the mandible, and an increase in mineral carbonation in the femur. This differential response of both the mineral and collagen composition to BAPN between the mandible and femur highlights the need to further understand how inherent compositional differences in collagen and mineral contribute to anatomic-site specific manifestations of disease in both craniofacial and long bones.
Collapse
Key Words
- AGE, advanced glycation end product
- Advanced glycation end products
- BAPN, beta-aminoproprionitrile
- Biomechanical properties
- Bone quality
- CML, carboxymethyl-lysine
- Collagen cross-link
- DHLNL, dihydroxylysinonorleucine
- DPD, lysylpyridinoline
- Femur
- HLKNL, hydroxylysinoketonorleucine
- HLNL, hydroxylysinonorleucine
- HPLC-FLD, high-performance liquid chromatography with fluorescence detection
- LC-MS, liquid chromatography/mass spectrometry
- LH, lysyl hydroxylase
- LKNL, lysinoketonorleucine
- LOX, lysyl oxidase
- Mandible
- Mineralization
- PEN, pentosidine
- PMMA, poly-methyl-methacrylate
- PYD, hydroxylysylpyridinoline
- Pyr, pyrroles
Collapse
Affiliation(s)
- Genevieve E. Romanowicz
- Department of Biologic and Materials Sciences, School of Dentistry, University of Michigan, MI, USA
| | - Aidan H. Terhune
- Department of Mechanical Engineering, College of Engineering, University of Michigan, MI, USA
| | - Benjamin J. Bielajew
- Department of Biomedical Engineering, College of Engineering, University of Michigan, MI, USA
| | - Benjamin Sexton
- Department of Biologic and Materials Sciences, School of Dentistry, University of Michigan, MI, USA
| | - Michelle Lynch
- Department of Biologic and Materials Sciences, School of Dentistry, University of Michigan, MI, USA
| | - Gurjit S. Mandair
- Department of Biologic and Materials Sciences, School of Dentistry, University of Michigan, MI, USA
| | - Erin M.B. McNerny
- Department of Biomedical Engineering, College of Engineering, University of Michigan, MI, USA
| | - David H. Kohn
- Department of Biologic and Materials Sciences, School of Dentistry, University of Michigan, MI, USA
- Department of Biomedical Engineering, College of Engineering, University of Michigan, MI, USA
| |
Collapse
|
26
|
Paschalis EP, Gamsjaeger S, Klaushofer K, Shane E, Cohen A, Stepan J, Pavo I, Eriksen EF, Taylor KA, Dempster DW. Treatment of postmenopausal osteoporosis patients with teriparatide for 24 months reverts forming bone quality indices to premenopausal healthy control values. Bone 2022; 162:116478. [PMID: 35779845 DOI: 10.1016/j.bone.2022.116478] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/11/2022] [Revised: 06/24/2022] [Accepted: 06/27/2022] [Indexed: 11/25/2022]
Abstract
Postmenopausal osteoporosis (PMOP) therapies are frequently evaluated by bone mineral density (BMD) gains against patients receiving placebo (calcium and vitamin D supplementation, a mild bone turnover-suppressing intervention), which is not equivalent to either healthy or treatment-naive PMOP. The aim of the present observational study was to assess the effects of TPTD treatment in PMOP (20 μg, once daily) at 6 (TPTD 6m; n = 28, age 65 ± 7.3 years), and 24 (TPTD 24m; n = 32, age 67.4 ± 6.15 years) months on bone quality indices at actively forming trabecular surfaces (with fluorescent double labels). Data from the TPTD-treated PMOP patients were compared with those in healthy adult premenopausal women (HC; n = 62, age 40.5 ± 10.6 years), and PMOP receiving placebo (PMOP-PLC; n = 94, age 70.6 ± 4.5 years). Iliac crest biopsies were analyzed by Raman microspectroscopy at three distinct tissue ages: mid-distance between the second label and the bone surface, mid-distance between the two labels, and 1 μm behind the first label. Mineral to matrix ratio (MM), mineral maturity/crystallinity (MMC), tissue water (TW), glycosaminoglycan (GAGs), and pyridinoline (Pyd) content were determined. Outcomes were compared by ANCOVA with subject age and tissue age as covariates, and health status as a fixed factor, followed by Sidak's post-hoc testing (significance assigned to p < 0.05). Both TPTD groups increased MM compared to PMOP-PLC. While TPTD 6m had values similar to HC, TPTD 24m had higher values compared to either HC or TPTD 6m. Both TPTD groups had lower MMC values compared to PMOP-PLC and similar to HC. TPTD 6m patients had higher TW content compared to HC, while TPTD 24m had values similar to HC and lower than either PMOP-PLC or TPTD 6m. Both TPTD groups had lower GAG content compared to HC group, while TPTD 6m had higher values compared to PMOP-PLC. Finally, TPTD 6m patients had higher Pyd content compared to HC and lower compared to PMOP-PLC, while TPTD 24m had lower values compared to PMOP-PLC and TPTD 6m, and similar to HC group. The results of the present study indicate that effects of TPTD on forming trabecular bone quality indices depend on treatment duration. At the recommended length of 24 m, TPTD restores bone mineral and organic matrix quality indices (MMC, TW, Pyd content) to premenopausal healthy (HC) levels.
Collapse
Affiliation(s)
- Eleftherios P Paschalis
- Ludwig Boltzmann Institute of Osteology at the Hanusch Hospital of OEGK and AUVA Trauma Centre Meidling, 1st Medical Department, Hanusch Hospital, Vienna, Austria.
| | - Sonja Gamsjaeger
- Ludwig Boltzmann Institute of Osteology at the Hanusch Hospital of OEGK and AUVA Trauma Centre Meidling, 1st Medical Department, Hanusch Hospital, Vienna, Austria
| | - Klaus Klaushofer
- Ludwig Boltzmann Institute of Osteology at the Hanusch Hospital of OEGK and AUVA Trauma Centre Meidling, 1st Medical Department, Hanusch Hospital, Vienna, Austria
| | - Elizabeth Shane
- Division of Endocrinology, Department of Medicine, Columbia University Irving Medical Center, New York, NY, USA
| | - Adi Cohen
- Early Onset Osteoporosis Center, Metabolic Bone Diseases Program, Division of Endocrinology, Department of Medicine, Columbia University, College of Physicians & Surgeons, New York, NY, USA
| | - Jan Stepan
- Institute of Rheumatology, Faculty of Medicine 1, Charles University, Prague, Czech Republic
| | - Imre Pavo
- Eli Lilly and Company USA, LLC, Indianapolis, IN, USA
| | - Erik F Eriksen
- Department of Endocrinology, Pilestredet Park Specialist Center, Oslo, Norway; The Faculty of Dentistry, University of Oslo, Oslo, Norway
| | | | - David W Dempster
- Regional Bone Center, Helen Hayes Hospital, New York State Department of Health, West Haverstraw, NY, USA; Department of Pathology and Cell Biology, College of Physicians and Surgeons of Columbia University, New York, NY, USA
| |
Collapse
|
27
|
Buettmann EG, Goldscheitter GM, Hoppock GA, Friedman MA, Suva LJ, Donahue HJ. Similarities Between Disuse and Age-Induced Bone Loss. J Bone Miner Res 2022; 37:1417-1434. [PMID: 35773785 PMCID: PMC9378610 DOI: 10.1002/jbmr.4643] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/22/2021] [Revised: 06/17/2022] [Accepted: 06/24/2022] [Indexed: 11/07/2022]
Abstract
Disuse and aging are known risk factors associated with low bone mass and quality deterioration, resulting in increased fracture risk. Indeed, current and emerging evidence implicate a large number of shared skeletal manifestations between disuse and aging scenarios. This review provides a detailed overview of current preclinical models of musculoskeletal disuse and the clinical scenarios they seek to recapitulate. We also explore and summarize the major similarities between bone loss after extreme disuse and advanced aging at multiple length scales, including at the organ/tissue, cellular, and molecular level. Specifically, shared structural and material alterations of bone loss are presented between disuse and aging, including preferential loss of bone at cancellous sites, cortical thinning, and loss of bone strength due to enhanced fragility. At the cellular level bone loss is accompanied, during disuse and aging, by increased bone resorption, decreased formation, and enhanced adipogenesis due to altered gap junction intercellular communication, WNT/β-catenin and RANKL/OPG signaling. Major differences between extreme short-term disuse and aging are discussed, including anatomical specificity, differences in bone turnover rates, periosteal modeling, and the influence of subject sex and genetic variability. The examination also identifies potential shared mechanisms underlying bone loss in aging and disuse that warrant further study such as collagen cross-linking, advanced glycation end products/receptor for advanced glycation end products (AGE-RAGE) signaling, reactive oxygen species (ROS) and nuclear factor κB (NF-κB) signaling, cellular senescence, and altered lacunar-canalicular connectivity (mechanosensation). Understanding the shared structural alterations, changes in bone cell function, and molecular mechanisms common to both extreme disuse and aging are paramount to discovering therapies to combat both age-related and disuse-induced osteoporosis. © 2022 American Society for Bone and Mineral Research (ASBMR).
Collapse
Affiliation(s)
- Evan G Buettmann
- Department of Biomedical Engineering, Virginia Commonwealth University, Richmond, VA, USA
| | - Galen M Goldscheitter
- Department of Biomedical Engineering, Virginia Commonwealth University, Richmond, VA, USA
| | - Gabriel A Hoppock
- Department of Biomedical Engineering, Virginia Commonwealth University, Richmond, VA, USA
| | - Michael A Friedman
- Department of Biomedical Engineering, Virginia Commonwealth University, Richmond, VA, USA
| | - Larry J Suva
- Department of Veterinary Physiology and Pharmacology, College of Veterinary Medicine and Biomedical Sciences, Texas A&M University, College Station, TX, USA
| | - Henry J Donahue
- Department of Biomedical Engineering, Virginia Commonwealth University, Richmond, VA, USA
| |
Collapse
|
28
|
Schmidt VM, Zelger P, Woess C, Pallua AK, Arora R, Degenhart G, Brunner A, Zelger B, Schirmer M, Rabl W, Pallua JD. Application of Micro-Computed Tomography for the Estimation of the Post-Mortem Interval of Human Skeletal Remains. BIOLOGY 2022; 11:biology11081105. [PMID: 35892961 PMCID: PMC9331256 DOI: 10.3390/biology11081105] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/29/2022] [Revised: 07/22/2022] [Accepted: 07/22/2022] [Indexed: 12/02/2022]
Abstract
It is challenging to estimate the post-mortem interval (PMI) of skeletal remains within a forensic context. As a result of their interactions with the environment, bones undergo several chemical and physical changes after death. So far, multiple methods have been used to follow up on post-mortem changes. There is, however, no definitive way to estimate the PMI of skeletal remains. This research aimed to propose a methodology capable of estimating the PMI using micro-computed tomography measurements of 104 human skeletal remains with PMIs between one day and 2000 years. The present study indicates that micro-computed tomography could be considered an objective and precise method of PMI evaluation in forensic medicine. The measured parameters show a significant difference regarding the PMI for Cort Porosity p < 0.001, BV/TV p > 0.001, Mean1 p > 0.001 and Mean2 p > 0.005. Using a machine learning approach, the neural network showed an accuracy of 99% for distinguishing between samples with a PMI of less than 100 years and archaeological samples.
Collapse
Affiliation(s)
- Verena-Maria Schmidt
- Institute of Legal Medicine, Medical University of Innsbruck, Muellerstraße 44, 6020 Innsbruck, Austria; (V.-M.S.); (C.W.); (W.R.)
| | - Philipp Zelger
- University Clinic for Hearing, Voice and Speech Disorders, Medical University of Innsbruck, Anichstrasse 35, 6020 Innsbruck, Austria;
| | - Claudia Woess
- Institute of Legal Medicine, Medical University of Innsbruck, Muellerstraße 44, 6020 Innsbruck, Austria; (V.-M.S.); (C.W.); (W.R.)
| | - Anton K. Pallua
- Former Institute for Computed Tomography-Neuro CT, Medical University of Innsbruck, Anichstraße 35, 6020 Innsbruck, Austria;
| | - Rohit Arora
- University Hospital for Orthopaedics and Traumatology, Medical University of Innsbruck, Anichstraße 35, 6020 Innsbruck, Austria;
| | - Gerald Degenhart
- Department of Radiology, Medical University of Innsbruck, Anichstraße 35, 6020 Innsbruck, Austria;
| | - Andrea Brunner
- Institute of Pathology, Neuropathology, Molecular Pathology, Medical University of Innsbruck, Muellerstrasse 44, 6020 Innsbruck, Austria; (A.B.); (B.Z.)
| | - Bettina Zelger
- Institute of Pathology, Neuropathology, Molecular Pathology, Medical University of Innsbruck, Muellerstrasse 44, 6020 Innsbruck, Austria; (A.B.); (B.Z.)
| | - Michael Schirmer
- Department of Internal Medicine, Clinic II, Medical University of Innsbruck, Anichstrasse 35, 6020 Innsbruck, Austria;
| | - Walter Rabl
- Institute of Legal Medicine, Medical University of Innsbruck, Muellerstraße 44, 6020 Innsbruck, Austria; (V.-M.S.); (C.W.); (W.R.)
| | - Johannes D. Pallua
- University Hospital for Orthopaedics and Traumatology, Medical University of Innsbruck, Anichstraße 35, 6020 Innsbruck, Austria;
- Correspondence:
| |
Collapse
|
29
|
Post-Mortem Interval of Human Skeletal Remains Estimated with Handheld NIR Spectrometry. BIOLOGY 2022; 11:biology11071020. [PMID: 36101401 PMCID: PMC9312135 DOI: 10.3390/biology11071020] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/06/2022] [Revised: 06/30/2022] [Accepted: 07/04/2022] [Indexed: 11/17/2022]
Abstract
Estimating the post-mortem interval (PMI) of human skeletal remains is a critical issue of forensic analysis, with important limitations such as sample preparation and practicability. In this work, NIR spectroscopy (NIRONE® Sensor X; Spectral Engines, 61449, Germany) was applied to estimate the PMI of 104 human bone samples between 1 day and 2000 years. Reflectance data were repeatedly collected from eight independent spectrometers between 1950 and 1550 nm with a spectral resolution of 14 nm and a step size of 2 nm, each from the external and internal bone. An Artificial Neural Network was used to analyze the 66,560 distinct diagnostic spectra, and clearly distinguished between forensic and archaeological bone material: the classification accuracies for PMIs of 0−2 weeks, 2 weeks−6 months, 6 months−1 year, 1 year−10 years, and >100 years were 0.90, 0.94, 0.94, 0.93, and 1.00, respectively. PMI of archaeological bones could be determined with an accuracy of 100%, demonstrating the adequate predictive performance of the model. Applying a handheld NIR spectrometer to estimate the PMI of human skeletal remains is rapid and extends the repertoire of forensic analyses as a distinct, novel approach.
Collapse
|
30
|
El-Husseini A, Abdalbary M, Lima F, Issa M, Ahmed MT, Winkler M, Srour H, Davenport D, Wang G, Faugere MC, Malluche HH. Low Turnover Renal Osteodystrophy With Abnormal Bone Quality and Vascular Calcification in Patients With Mild-to-Moderate CKD. Kidney Int Rep 2022; 7:1016-1026. [PMID: 35570986 PMCID: PMC9091581 DOI: 10.1016/j.ekir.2022.02.022] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2022] [Revised: 02/15/2022] [Accepted: 02/21/2022] [Indexed: 02/06/2023] Open
Abstract
Introduction Limited information is available on renal osteodystrophy (ROD) and vascular calcification (VC) during early chronic kidney disease (CKD). This study was designed to evaluate ROD and VC in 32 patients with CKD stages II to IV. Methods Patients underwent dual-energy X-ray absorptiometry (DXA) for assessment of bone mineral density (BMD) and trabecular bone score (TBS), thoracic computed tomography for VC scoring using the Agatston method, and anterior iliac crest bone biopsy for mineralized bone histology, histomorphometry, and Fourier transform infrared spectroscopy (FTIR). Classical and novel bone markers were determined in the blood. Results Mean estimated glomerular filtration rate (eGFR) was 44 ± 16 ml/min per 1.73 m2. Of the patients, 84% had low bone turnover. In Whites, eGFR correlated negatively with the turnover parameter activation frequency (Ac.f) (r -0.48, P = 0.019) and with parameters of bone formation. Most patients had VC (>80%) which correlated positively with levels of phosphorus, c-terminal fibroblast growth factor-23, and activin. Aortic calcifications (ACs) correlated negatively with bone formation rate (BFR) and Ac.f (rho -0.62, -0.61, P < 0.001). TBS correlated negatively with coronary calcification (rho -0.42, P = 0.019) and AC (rho -0.57, P = 0.001). These relationships remained after adjustment of age. The mineral-to-matrix ratio, an FTIR metric reflecting bone quality, was negatively related to Ac.f and positively related to AC. Conclusion Low bone turnover and VC are predominant in early stages of CKD. This is the first study demonstrating mineral abnormalities indicating reduced bone quality in these stages of CKD.
Collapse
Affiliation(s)
- Amr El-Husseini
- Division of Nephrology, Bone and Mineral Metabolism, University of Kentucky, Lexington, Kentucky, USA
| | - Mohamed Abdalbary
- Division of Nephrology, Bone and Mineral Metabolism, University of Kentucky, Lexington, Kentucky, USA
| | - Florence Lima
- Division of Nephrology, Bone and Mineral Metabolism, University of Kentucky, Lexington, Kentucky, USA
| | - Mohamed Issa
- Department of Radiology, University of Kentucky, Lexington, Kentucky, USA
| | | | - Michael Winkler
- Department of Radiology, University of Kentucky, Lexington, Kentucky, USA
| | - Habib Srour
- Department of Anesthesia, University of Kentucky, Lexington, Kentucky, USA
| | - Daniel Davenport
- Division of Healthcare Outcomes & Optimal Patient Services, University of Kentucky, Lexington, Kentucky, USA
| | - Guodong Wang
- Division of Nephrology, Bone and Mineral Metabolism, University of Kentucky, Lexington, Kentucky, USA
| | - Marie-Claude Faugere
- Division of Nephrology, Bone and Mineral Metabolism, University of Kentucky, Lexington, Kentucky, USA
| | - Hartmut H. Malluche
- Division of Nephrology, Bone and Mineral Metabolism, University of Kentucky, Lexington, Kentucky, USA
| |
Collapse
|
31
|
Paschalis EP, Gamsjaeger S, Burr DB. Bone quality in an ovariectomized monkey animal model treated with two doses of teriparatide for either 18 months, or 12 months followed by withdrawal for 6 months. Bone 2022; 158:116366. [PMID: 35167989 DOI: 10.1016/j.bone.2022.116366] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/14/2021] [Revised: 01/27/2022] [Accepted: 02/08/2022] [Indexed: 11/28/2022]
Abstract
Previous studies of ovariectomized (OVX) monkeys, treated with recombinant human parathyroid hormone (PTH) (1-34) at 1 or 5 μg/kg/day for 18 months or for 12 months followed by 6 months withdrawal from treatment, displayed significant changes in geometry, histomorphometry, and bone quality, but without strict tissue age criteria, of the midshaft humerus. Since bone quality significantly depends on tissue age among other factors, the aim of the present study was to establish the bone-turnover independent effects of two doses of PTH, as well as the effects of treatment withdrawal on bone quality by measuring bone material composition at precisely known tissue ages ranging from osteoid, to mineralized tissue older than 373 days. Raman microspectroscopic analysis of bone tissue from the mid-shaft humerus of OVX monkeys demonstrated that the clinically relevant dose of PTH administered for 18 months reverses the effects of ovariectomy on bone quality when compared against SHAM. Both doses investigated in this study restore the mineralization regulation mechanisms to SHAM levels. The study also showed that the beneficial effects induced by 12 months of clinically relevant PTH therapy were sustained after six months of therapy withdrawal.
Collapse
Affiliation(s)
- E P Paschalis
- Ludwig Boltzmann Institute for Osteology, at the Hanusch Hospital of OEGK and AUVA Trauma Centre Meidling, 1st Medical Department, Hanusch Hospital, Vienna, Austria.
| | - S Gamsjaeger
- Ludwig Boltzmann Institute for Osteology, at the Hanusch Hospital of OEGK and AUVA Trauma Centre Meidling, 1st Medical Department, Hanusch Hospital, Vienna, Austria
| | - D B Burr
- Department of Anatomy and Cell Biology, Indiana University School of Medicine, Indianapolis, IN 46202, USA; Department of Biomedical Engineering, Indiana University-Purdue University, Indianapolis (IUPUI), Indianapolis, IN 46202, USA
| |
Collapse
|
32
|
Anderson KD, Ko FC, Fullam S, Virdi AS, Wimmer MA, Sumner D, Ross RD. The relative contribution of bone microarchitecture and matrix composition to implant fixation strength in rats. J Orthop Res 2022; 40:862-870. [PMID: 34061392 PMCID: PMC8633073 DOI: 10.1002/jor.25107] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/24/2020] [Revised: 04/21/2021] [Accepted: 05/25/2021] [Indexed: 02/04/2023]
Abstract
Bone microarchitectural parameters significantly contribute to implant fixation strength but the role of bone matrix composition is not well understood. To determine the relative contribution of microarchitecture and bone matrix composition to implant fixation strength, we placed titanium implants in 12-week-old intact Sprague-Dawley rats, ovariectomized-Sprague-Dawley rats, and Zucker diabetic fatty rats. We assessed bone microarchitecture by microcomputed tomography, bone matrix composition by Raman spectroscopy, and implant fixation strength at 2, 6, and 10 weeks postimplantation. A stepwise linear regression model accounted for 83.3% of the variance in implant fixation strength with osteointegration volume/total volume (50.4%), peri-implant trabecular bone volume fraction (14.2%), cortical thickness (9.3%), peri-implant trabecular crystallinity (6.7%), and cortical area (2.8%) as the independent variables. Group comparisons indicated that osseointegration volume/total volume was significantly reduced in the ovariectomy group at Week 2 (~28%) and Week 10 (~21%) as well as in the diabetic group at Week 10 (~34%) as compared with the age matched Sprague-Dawley group. The crystallinity of the trabecular bone was significantly elevated in the ovariectomy group at Week 2 (~4%) but decreased in the diabetic group at Week 10 (~3%) with respect to the Sprague-Dawley group. Our study is the first to show that bone microarchitecture explains most of the variance in implant fixation strength, but that matrix composition is also a contributing factor. Therefore, treatment strategies aimed at improving bone-implant contact and peri-implant bone volume without compromising matrix quality should be prioritized.
Collapse
Affiliation(s)
- Kyle D. Anderson
- Department of Cell & Molecular Medicine, Rush University Medical Center, Chicago, IL
| | - Frank C. Ko
- Department of Cell & Molecular Medicine, Rush University Medical Center, Chicago, IL,Department of Orthopedic Surgery, Rush University Medical Center, Chicago, IL
| | - Spencer Fullam
- Department of Orthopedic Surgery, Rush University Medical Center, Chicago, IL
| | - Amarjit S. Virdi
- Department of Cell & Molecular Medicine, Rush University Medical Center, Chicago, IL,Department of Orthopedic Surgery, Rush University Medical Center, Chicago, IL
| | - Markus A. Wimmer
- Department of Cell & Molecular Medicine, Rush University Medical Center, Chicago, IL,Department of Orthopedic Surgery, Rush University Medical Center, Chicago, IL
| | - D.R. Sumner
- Department of Cell & Molecular Medicine, Rush University Medical Center, Chicago, IL,Department of Orthopedic Surgery, Rush University Medical Center, Chicago, IL
| | - Ryan D. Ross
- Department of Cell & Molecular Medicine, Rush University Medical Center, Chicago, IL,Department of Orthopedic Surgery, Rush University Medical Center, Chicago, IL
| |
Collapse
|
33
|
Tong X, Turunen MJ, Burton IS, Kröger H. Generalized Uncoupled Bone Remodeling Associated With Delayed Healing of Fatigue Fractures. JBMR Plus 2022; 6:e10598. [PMID: 35309868 PMCID: PMC8914151 DOI: 10.1002/jbm4.10598] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/28/2021] [Revised: 12/15/2021] [Accepted: 12/27/2021] [Indexed: 11/09/2022] Open
Abstract
Fatigue fractures in bones are common injuries with load‐bearing activities, during which the remodeling aimed at removing microdamage has been suggested to play a role in increasing related fracture risk. Much attention has been given to the uncoupling between osteoclastic bone resorption and osteoblastic osteogenesis in fatigue fracture cases; however, the underlying pathophysiologic mechanisms of impaired fracture healing are yet unknown. Here we report multiple fatigue fractures in a physically active woman receiving contraceptive pills for years. Her fracture healing was remarkably slow, although she has been otherwise healthy. The patient underwent bone biopsy of the iliac crest that showed remarkable peritrabecular fibrosis with increased osteoclastic bone resorption combined with relatively low bone formation. Analysis of bone biochemical composition revealed a more complex picture: First, notable declines in bone mineral content–based parameters indicating abnormal mineralization were evident in both cancellous and cortical bone. Second, there was elevation in mineral crystal size, perfection, and collagen maturity in her bone tissues from different anatomical sites. To our knowledge, this is the first report showing generalized uncoupling in bone remodeling, increased peritrabecular fibrosis, and bone compositional changes associated with delayed healing of fatigue fractures. These results may explain delayed healing of fatigue and stress fractures. © 2021 The Authors. JBMR Plus published by Wiley Periodicals LLC on behalf of American Society for Bone and Mineral Research.
Collapse
Affiliation(s)
- Xiaoyu Tong
- Kuopio Musculoskeletal Research Unit (KMRU), Clinical Research Centre, Institute of Clinical Medicine, University of Eastern Finland Kuopio Finland
| | - Mikael J Turunen
- Department of Applied Physics University of Eastern Finland Kuopio Finland
| | - Inari S Burton
- Kuopio Musculoskeletal Research Unit (KMRU), Clinical Research Centre, Institute of Clinical Medicine, University of Eastern Finland Kuopio Finland
| | - Heikki Kröger
- Kuopio Musculoskeletal Research Unit (KMRU), Clinical Research Centre, Institute of Clinical Medicine, University of Eastern Finland Kuopio Finland
- Department of Orthopaedics, Traumatology, and Hand Surgery Kuopio University Hospital Kuopio Finland
| |
Collapse
|
34
|
Abstract
Raman spectroscopy (RS) is used to analyze the physiochemical properties of bone because it is non-destructive and requires minimal sample preparation. With over two decades of research involving measurements of mineral-to-matrix ratio, type-B carbonate substitution, crystallinity, and other compositional characteristics of the bone matrix by RS, there are multiple methods to acquire Raman signals from bone, to process those signals, and to determine peak ratios including sub-peak ratios as well as the full-width at half maximum of the most prominent Raman peak, which is nu1 phosphate (ν1PO4). Selecting which methods to use is not always clear. Herein, we describe the components of RS instruments and how they influence the quality of Raman spectra acquired from bone because signal-to-noise of the acquisition and the accompanying background fluorescence dictate the pre-processing of the Raman spectra. We also describe common methods and challenges in preparing acquired spectra for the determination of matrix properties of bone. This article also serves to provide guidance for the analysis of bone by RS with examples of how methods for pre-processing the Raman signals and for determining properties of bone composition affect RS sensitivity to potential differences between experimental groups. Attention is also given to deconvolution methods that are used to ascertain sub-peak ratios of the amide I band as a way to assess characteristics of collagen type I. We provide suggestions and recommendations on the application of RS to bone with the goal of improving reproducibility across studies and solidify RS as a valuable technique in the field of bone research.
Collapse
Affiliation(s)
- Mustafa Unal
- Department of Mechanical Engineering, Karamanoglu Mehmetbey University, Karaman, 70200, Turkey.
- Department of Bioengineering, Karamanoglu Mehmetbey University, Karaman, Turkey 70200
- Department of Biophysics, Faculty of Medicine, Karamanoglu Mehmetbey University, Karaman, Turkey 70200
| | - Rafay Ahmed
- Department of Orthopaedic Surgery, Vanderbilt University Medical Center, Nashville, TN 37232, USA.
| | - Anita Mahadevan-Jansen
- Department of Biomedical Engineering, Vanderbilt University, Nashville, TN 37235, USA
- Vanderbilt Biophotonics Center, Vanderbilt University, Nashville, TN 37235, USA
- Department of Neurological Surgery, Vanderbilt University Medical Center, Nashville, TN 37232, USA
- Department of Otolaryngology, Vanderbilt University Medical Center, Nashville, TN 37232, USA
- Department of Surgery, Vanderbilt University Medical Center, Nashville, TN 37232, USA
| | - Jeffry S Nyman
- Department of Orthopaedic Surgery, Vanderbilt University Medical Center, Nashville, TN 37232, USA.
- Department of Biomedical Engineering, Vanderbilt University, Nashville, TN 37235, USA
- Center for Bone Biology, Vanderbilt University Medical Center, Nashville, TN 37232, USA
- Department of Veterans Affairs, Tennessee Valley Healthcare System, Nashville, TN 37212, USA
| |
Collapse
|
35
|
Nakai K, Yamamoto K, Kishida T, Kotani SI, Sato Y, Horiguchi S, Yamanobe H, Adachi T, Boschetto F, Marin E, Zhu W, Akiyoshi K, Yamamoto T, Kanamura N, Pezzotti G, Mazda O. Osteogenic Response to Polysaccharide Nanogel Sheets of Human Fibroblasts After Conversion Into Functional Osteoblasts by Direct Phenotypic Cell Reprogramming. Front Bioeng Biotechnol 2021; 9:713932. [PMID: 34540813 PMCID: PMC8446423 DOI: 10.3389/fbioe.2021.713932] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2021] [Accepted: 07/20/2021] [Indexed: 12/24/2022] Open
Abstract
Human dermal fibroblasts (HDFs) were converted into osteoblasts using a ALK inhibitor II (inhibitor of transforming growth factor-β signal) on freeze-dried nanogel-cross-linked porous (FD-NanoClip) polysaccharide sheets or fibers. Then, the ability of these directly converted osteoblasts (dOBs) to produce calcified substrates and the expression of osteoblast genes were analyzed in comparison with osteoblasts converted by exactly the same procedure but seeded onto a conventional atelocollagen scaffold. dOBs exposed to FD-NanoClip in both sheet and fiber morphologies produced a significantly higher concentration of calcium deposits as compared to a control cell sample (i.e., unconverted fibroblasts), while there was no statistically significant difference in calcification level between dOBs exposed to atelocollagen sheets and the control group. The observed differences in osteogenic behaviors were interpreted according to Raman spectroscopic analyses comparing different polysaccharide scaffolds and Fourier transform infrared spectroscopy analyses of dOB cultures. This study substantiates a possible new path to repair large bone defects through a simplified transplantation procedure using FD-NanoClip sheets with better osteogenic outputs as compared to the existing atelocollagen scaffolding material.
Collapse
Affiliation(s)
- Kei Nakai
- Department of Immunology, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, Kyoto, Japan.,Department of Dental Medicine, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, Kyoto, Japan
| | - Kenta Yamamoto
- Department of Immunology, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, Kyoto, Japan.,Department of Dental Medicine, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, Kyoto, Japan
| | - Tsunao Kishida
- Department of Immunology, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, Kyoto, Japan
| | - Shin-Ichiro Kotani
- Department of Immunology, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, Kyoto, Japan
| | - Yoshiki Sato
- Department of Immunology, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, Kyoto, Japan.,Department of Dental Medicine, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, Kyoto, Japan
| | - Satoshi Horiguchi
- Department of Immunology, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, Kyoto, Japan.,Department of Dental Medicine, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, Kyoto, Japan
| | - Hironaka Yamanobe
- Department of Immunology, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, Kyoto, Japan.,Department of Dental Medicine, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, Kyoto, Japan
| | - Tetsuya Adachi
- Department of Immunology, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, Kyoto, Japan.,Department of Dental Medicine, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, Kyoto, Japan
| | - Francesco Boschetto
- Department of Immunology, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, Kyoto, Japan.,Department of Dental Medicine, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, Kyoto, Japan.,Ceramic Physics Laboratory, Kyoto Institute of Technology, Kyoto, Japan
| | - Elia Marin
- Department of Dental Medicine, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, Kyoto, Japan.,Ceramic Physics Laboratory, Kyoto Institute of Technology, Kyoto, Japan
| | - Wenliang Zhu
- Ceramic Physics Laboratory, Kyoto Institute of Technology, Kyoto, Japan
| | - Kazunari Akiyoshi
- Department of Polymer Chemistry, Graduate School of Engineering, Kyoto University, Kyoto, Japan
| | - Toshiro Yamamoto
- Department of Dental Medicine, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, Kyoto, Japan
| | - Narisato Kanamura
- Department of Dental Medicine, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, Kyoto, Japan
| | - Giuseppe Pezzotti
- Department of Immunology, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, Kyoto, Japan.,Department of Dental Medicine, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, Kyoto, Japan.,Ceramic Physics Laboratory, Kyoto Institute of Technology, Kyoto, Japan
| | - Osam Mazda
- Department of Immunology, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, Kyoto, Japan
| |
Collapse
|
36
|
Taylor EA, Mileti CJ, Ganesan S, Kim JH, Donnelly E. Measures of Bone Mineral Carbonate Content and Mineral Maturity/Crystallinity for FT-IR and Raman Spectroscopic Imaging Differentially Relate to Physical-Chemical Properties of Carbonate-Substituted Hydroxyapatite. Calcif Tissue Int 2021; 109:77-91. [PMID: 33710382 DOI: 10.1007/s00223-021-00825-4] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/02/2020] [Accepted: 02/12/2021] [Indexed: 12/31/2022]
Abstract
Bone mineral carbonate content assessed by vibrational spectroscopy relates to fracture incidence, and mineral maturity/ crystallinity (MMC) relates to tissue age. As FT-IR and Raman spectroscopy become more widely used to characterize the chemical composition of bone in pre-clinical and translational studies, their bone mineral outcomes require improved validation to inform interpretation of spectroscopic data. In this study, our objectives were (1) to relate Raman and FT-IR carbonate:phosphate ratios calculated through direct integration of peaks to gold-standard analytical measures of carbonate content and underlying subband ratios; (2) to relate Raman and FT-IR MMC measures to gold-standard analytical measures of crystal size in chemical standards and native bone powders. Raman and FT-IR direct integration carbonate:phosphate ratios increased with carbonate content (Raman: p < 0.01, R2 = 0.87; FT-IR: p < 0.01, R2 = 0.96) and Raman was more sensitive to carbonate content than the FT-IR (Raman slope + 95% vs FT-IR slope, p < 0.01). MMC increased with crystal size for both Raman and FT-IR (Raman: p < 0.01, R2 = 0.76; FT-IR p < 0.01, R2 = 0.73) and FT-IR was more sensitive to crystal size than Raman (c-axis length: slope FT-IR MMC + 111% vs Raman MMC, p < 0.01). Additionally, FT-IR but not Raman spectroscopy detected differences in the relationship between MMC and crystal size of carbonated hydroxyapatite (CHA) vs poorly crystalline hydroxyapatites (HA) (slope CHA + 87% vs HA, p < 0.01). Combined, these results contribute to the ability of future studies to elucidate the relationships between carbonate content and fracture and provide insight to the strengths and limitations of FT-IR and Raman spectroscopy of native bone mineral.
Collapse
Affiliation(s)
- Erik A Taylor
- Sibley School of Mechanical and Aerospace Engineering, Cornell University, Ithaca, NY, 14853, USA
| | - Cassidy J Mileti
- Nancy E. and Peter C. Meinig School of Biomedical Engineering, Cornell University, Ithaca, NY, 14853, USA
| | - Sandhya Ganesan
- Department of Materials Science Engineering, Cornell University, 227 Bard Hall, Ithaca, NY, 14853, USA
| | - Joo Ho Kim
- Department of Materials Science Engineering, Cornell University, 227 Bard Hall, Ithaca, NY, 14853, USA
| | - Eve Donnelly
- Department of Materials Science Engineering, Cornell University, 227 Bard Hall, Ithaca, NY, 14853, USA.
- Research Division, Hospital for Special Surgery, New York, NY, 10021, USA.
| |
Collapse
|
37
|
McPhee S, Groetsch A, Shephard JD, Wolfram U. Heat impact during laser ablation extraction of mineralised tissue micropillars. Sci Rep 2021; 11:11007. [PMID: 34040009 PMCID: PMC8155055 DOI: 10.1038/s41598-021-89181-9] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2021] [Accepted: 04/21/2021] [Indexed: 02/04/2023] Open
Abstract
The underlying constraint of ultrashort pulsed laser ablation in both the clinical and micromachining setting is the uncertainty regarding the impact on the composition of material surrounding the ablated region. A heat model representing the laser-tissue interaction was implemented into a finite element suite to assess the cumulative temperature response of bone during ultrashort pulsed laser ablation. As an example, we focus on the extraction of mineralised collagen fibre micropillars. Laser induced heating can cause denaturation of the collagen, resulting in ultrastructural loss which could affect mechanical testing results. Laser parameters were taken from a used micropillar extraction protocol. The laser scanning pattern consisted of 4085 pulses, with a final radial pass being 22 [Formula: see text] away from the micropillar. The micropillar temperature was elevated to 70.58 [Formula: see text], remaining 79.42 [Formula: see text] lower than that of which we interpret as an onset for denaturation. We verified the results by means of Raman microscopy and Energy Dispersive X-ray Microanalysis and found the laser-material interaction had no effect on the collagen molecules or mineral nanocrystals that constitute the micropillars. We, thus, show that ultrashort pulsed laser ablation is a safe and viable tool to fabricate bone specimens for mechanical testing at the micro- and nanoscale and we provide a computational model to efficiently assess this.
Collapse
Affiliation(s)
- Samuel McPhee
- Institute of Mechanical, Process and Energy Engineering, School of Engineering and Physical Sciences, Heriot-Watt University, Edinburgh, UK
| | - Alexander Groetsch
- Institute of Mechanical, Process and Energy Engineering, School of Engineering and Physical Sciences, Heriot-Watt University, Edinburgh, UK
- Swiss Federal Laboratories for Materials Science and Technology, Laboratory for Mechanics of Materials and Nanostructures, Thun, Switzerland
| | - Jonathan D Shephard
- Institute of Photonics and Quantum Sciences, School of Engineering and Physical Sciences, Heriot-Watt University, Edinburgh, UK
| | - Uwe Wolfram
- Institute of Mechanical, Process and Energy Engineering, School of Engineering and Physical Sciences, Heriot-Watt University, Edinburgh, UK.
| |
Collapse
|
38
|
Recombinant IGF-1 Induces Sex-Specific Changes in Bone Composition and Remodeling in Adult Mice with Pappa2 Deficiency. Int J Mol Sci 2021; 22:ijms22084048. [PMID: 33919940 PMCID: PMC8070906 DOI: 10.3390/ijms22084048] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2021] [Revised: 04/04/2021] [Accepted: 04/11/2021] [Indexed: 12/11/2022] Open
Abstract
Deficiency of pregnancy-associated plasma protein-A2 (PAPP-A2), an IGF-1 availability regulator, causes postnatal growth failure and dysregulation of bone size and density. The present study aimed to determine the effects of recombinant murine IGF-1 (rmIGF-1) on bone composition and remodeling in constitutive Pappa2 knock-out (ko/ko) mice. To address this challenge, X-ray diffraction (XRD), attenuated total reflection-fourier transform infra-red (ATR-FTIR) spectroscopy and gene expression analysis of members of the IGF-1 system and bone resorption/formation were performed. Pappa2ko/ko mice (both sexes) had reduced body and bone length. Male Pappa2ko/ko mice had specific alterations in bone composition (mineral-to-matrix ratio, carbonate substitution and mineral crystallinity), but not in bone remodeling. In contrast, decreases in collagen maturity and increases in Igfbp3, osteopontin (resorption) and osteocalcin (formation) characterized the bone of Pappa2ko/ko females. A single rmIGF-1 administration (0.3 mg/kg) induced short-term changes in bone composition in Pappa2ko/ko mice (both sexes). rmIGF-1 treatment in Pappa2ko/ko females also increased collagen maturity, and Igfbp3, Igfbp5, Col1a1 and osteopontin expression. In summary, acute IGF-1 treatment modifies bone composition and local IGF-1 response to bone remodeling in mice with Pappa2 deficiency. These effects depend on sex and provide important insights into potential IGF-1 therapy for growth failure and bone loss and repair.
Collapse
|
39
|
Paschalis EP, Dempster DW, Gamsjaeger S, Rokidi S, Hassler N, Brozek W, Chan-Diehl FW, Klaushofer K, Taylor KA. Mineral and organic matrix composition at bone forming surfaces in postmenopausal women with osteoporosis treated with either teriparatide or zoledronic acid. Bone 2021; 145:115848. [PMID: 33453443 DOI: 10.1016/j.bone.2021.115848] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/07/2020] [Revised: 01/11/2021] [Accepted: 01/12/2021] [Indexed: 01/05/2023]
Abstract
The ability of bone to resist fracture is dependent on the composite nature of its mineral and organic matrix content. Teriparatide (TPTD) and zoledronic acid (ZOL) are approved anabolic and antiresorptive therapies, respectively, to reduce fracture risk in women with postmenopausal osteoporosis. In the SHOTZ study, postmenopausal women with osteoporosis were treated with TPTD (20 μg daily, subcutaneous) or ZOL (5 mg/year, intravenous infusion) for 24 months. Iliac crest biopsies were obtained at 6 months and again at 24 months from approximately one third of the original study cohort. To investigate the early effects of these two drugs on the quality of newly formed bone, we used vibrational spectroscopic techniques to analyze tetracycline-labelled transiliac biopsies obtained from participants at the 6-month time point. Raman spectra were acquired at forming trabecular and intra-cortical surfaces (identified by fluorescent double labels), to determine mineral, organic matrix, glycosaminoglycan, and tissue water content, as well as mineral maturity/crystallinity at three specific tissue ages (1-5, 15, and ≥25 days). Fourier transformed infrared microspectroscopy was used to determine pyridinoline/divalent collagen cross-link ratios. At 6 months, treatment with TPTD versus ZOL resulted in lower mineral and higher organic matrix content, increased tissue water content, and lower mineral/matrix, mineral maturity/crystallinity, glycosaminoglycan content, and pyridinoline/divalent enzymatic collagen cross-link ratio. Our results suggest that TPTD and ZOL have differential effects on material properties of newly formed bone at individual remodeling sites, highlighting their different mechanisms of action.
Collapse
Affiliation(s)
- Eleftherios P Paschalis
- Ludwig Boltzmann Institute of Osteology at the Hanusch Hospital of OEGK and AUVA Trauma Centre Meidling, 1st Medical Department, Hanusch Hospital, Vienna, Austria
| | - David W Dempster
- Regional Bone Center, Helen Hayes Hospital, New York State Department of Health, West Haverstraw, NY, USA; Department of Pathology and Cell Biology, College of Physicians and Surgeons of Columbia University, New York, NY, USA
| | - Sonja Gamsjaeger
- Ludwig Boltzmann Institute of Osteology at the Hanusch Hospital of OEGK and AUVA Trauma Centre Meidling, 1st Medical Department, Hanusch Hospital, Vienna, Austria
| | - Stamatia Rokidi
- Ludwig Boltzmann Institute of Osteology at the Hanusch Hospital of OEGK and AUVA Trauma Centre Meidling, 1st Medical Department, Hanusch Hospital, Vienna, Austria
| | - Norbert Hassler
- Ludwig Boltzmann Institute of Osteology at the Hanusch Hospital of OEGK and AUVA Trauma Centre Meidling, 1st Medical Department, Hanusch Hospital, Vienna, Austria
| | - Wolfgang Brozek
- Ludwig Boltzmann Institute of Osteology at the Hanusch Hospital of OEGK and AUVA Trauma Centre Meidling, 1st Medical Department, Hanusch Hospital, Vienna, Austria
| | | | - Klaus Klaushofer
- Ludwig Boltzmann Institute of Osteology at the Hanusch Hospital of OEGK and AUVA Trauma Centre Meidling, 1st Medical Department, Hanusch Hospital, Vienna, Austria
| | | |
Collapse
|
40
|
Querido W, Kandel S, Pleshko N. Applications of Vibrational Spectroscopy for Analysis of Connective Tissues. Molecules 2021; 26:922. [PMID: 33572384 PMCID: PMC7916244 DOI: 10.3390/molecules26040922] [Citation(s) in RCA: 42] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2020] [Revised: 01/30/2021] [Accepted: 02/04/2021] [Indexed: 02/07/2023] Open
Abstract
Advances in vibrational spectroscopy have propelled new insights into the molecular composition and structure of biological tissues. In this review, we discuss common modalities and techniques of vibrational spectroscopy, and present key examples to illustrate how they have been applied to enrich the assessment of connective tissues. In particular, we focus on applications of Fourier transform infrared (FTIR), near infrared (NIR) and Raman spectroscopy to assess cartilage and bone properties. We present strengths and limitations of each approach and discuss how the combination of spectrometers with microscopes (hyperspectral imaging) and fiber optic probes have greatly advanced their biomedical applications. We show how these modalities may be used to evaluate virtually any type of sample (ex vivo, in situ or in vivo) and how "spectral fingerprints" can be interpreted to quantify outcomes related to tissue composition and quality. We highlight the unparalleled advantage of vibrational spectroscopy as a label-free and often nondestructive approach to assess properties of the extracellular matrix (ECM) associated with normal, developing, aging, pathological and treated tissues. We believe this review will assist readers not only in better understanding applications of FTIR, NIR and Raman spectroscopy, but also in implementing these approaches for their own research projects.
Collapse
Affiliation(s)
| | | | - Nancy Pleshko
- Department of Bioengineering, Temple University, Philadelphia, PA 19122, USA; (W.Q.); (S.K.)
| |
Collapse
|
41
|
Arnold EL, Keeble DS, Greenwood C, Rogers KD. New insights into the application of pair distribution function studies to biogenic and synthetic hydroxyapatites. Sci Rep 2020; 10:19597. [PMID: 33177578 PMCID: PMC7659341 DOI: 10.1038/s41598-020-73200-2] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2020] [Accepted: 09/14/2020] [Indexed: 12/03/2022] Open
Abstract
Biogenic and synthetic hydroxyapatites are confounding materials whose properties remain uncertain, even after years of study. Pair distribution function (PDF) analysis was applied to hydroxyapatites in the 1970's and 1980's, but this area of research has not taken full advantage of the relatively recent advances in synchrotron facilities. Here, synchrotron X-ray PDF analysis is compared to techniques commonly used to characterise hydroxyapatite (such as wide angle X-ray scattering, Fourier-transform infrared spectroscopy and thermogravimetric analysis) for a range of biogenic and synthetic hydroxyapatites with a wide range of carbonate substitution. Contributions to the pair distribution function from collagen, carbonate and finite crystallite size were examined through principal component analysis and comparison of PDFs. Noticeable contributions from collagen were observed in biogenic PDFs when compared to synthetic PDFs (namely r < 15 Å), consistent with simulated PDFs of collagen structures. Additionally, changes in local structure were observed for PDFs of synthetic hydroxyapatites with differing carbonate content, notably in features near 4 Å, 8 Å and 19 Å. Regression models were generated to predict carbonate substitution from peak position within the PDFs.
Collapse
Affiliation(s)
- Emily L Arnold
- Cranfield Forensic Institute, Cranfield University, Shrivenham, SN6 8LA, UK.
| | | | - Charlene Greenwood
- School of Chemical and Physical Sciences, Keele University, Keele, ST5 5BJ, UK
| | - Keith D Rogers
- Cranfield Forensic Institute, Cranfield University, Shrivenham, SN6 8LA, UK
| |
Collapse
|
42
|
Taylor EA, Donnelly E. Raman and Fourier transform infrared imaging for characterization of bone material properties. Bone 2020; 139:115490. [PMID: 32569874 DOI: 10.1016/j.bone.2020.115490] [Citation(s) in RCA: 60] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/24/2020] [Revised: 06/08/2020] [Accepted: 06/11/2020] [Indexed: 12/12/2022]
Abstract
As the application of Raman spectroscopy to study bone has grown over the past decade, making it a peer technology to FTIR spectroscopy, it has become critical to understand their complimentary roles. Recent technological advancements have allowed these techniques to collect grids of spectra in a spatially resolved fashion to generate compositional images. The advantage of imaging with these techniques is that it allows the heterogenous bone tissue composition to be resolved and quantified. In this review we compare, for non-experts in the field of vibrational spectroscopy, the instrumentation and underlying physical principles of FTIR imaging (FTIRI) and Raman imaging. Additionally, we discuss the strengths and limitations of FTIR and Raman spectroscopy, address sample preparation, and discuss outcomes to provide researchers insight into which techniques are best suited for a given research question. We then briefly discuss previous applications of FTIRI and Raman imaging to characterize bone tissue composition and relationships of compositional outcomes with mechanical performance. Finally, we discuss emerging technical developments in FTIRI and Raman imaging which provide new opportunities to identify changes in bone tissue composition with disease, age, and drug treatment.
Collapse
Affiliation(s)
- Erik A Taylor
- Sibley School of Mechanical and Aerospace Engineering, Cornell University, Ithaca, NY, United States of America
| | - Eve Donnelly
- Department of Materials Science and Engineering, Cornell University, Ithaca, NY, United States of America; Research division, Hospital for Special Surgery, New York, NY, United States of America.
| |
Collapse
|
43
|
Eusemann BK, Patt A, Schrader L, Weigend S, Thöne-Reineke C, Petow S. The Role of Egg Production in the Etiology of Keel Bone Damage in Laying Hens. Front Vet Sci 2020; 7:81. [PMID: 32154276 PMCID: PMC7047165 DOI: 10.3389/fvets.2020.00081] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2019] [Accepted: 01/31/2020] [Indexed: 01/28/2023] Open
Abstract
Keel bone fractures and deviations belong to the most severe animal welfare problems in laying hens and are influenced by several factors such as husbandry system and genetic background. It is likely that egg production also influences keel bone health due to the high demand of calcium for the eggshell, which is, in part, taken from the skeleton. The high estrogen plasma concentration, which is linked to the high laying performance, may also affect the keel bone as sexual steroids have been shown to influence bone health. The aim of this study was to investigate the relationship between egg production, genetically determined high laying performance, estradiol-17ß concentration, and keel bone characteristics. Two hundred hens of two layer lines differing in laying performance (WLA: high performing; G11: low performing) were divided into four treatment groups: Group S received an implant containing a GnRH agonist that suppressed egg production, group E received an implant containing the sexual steroid estradiol-17ß, group SE received both implants, and group C were kept as control hens. Between the 12th and the 62nd weeks of age, the keel bone of all hens was radiographed and estradiol-17ß plasma concentration was assessed at regular intervals. Non-egg laying hens showed a lower risk of keel bone fracture and a higher radiographic density compared to egg laying hens. Exogenous estradiol-17ß was associated with a moderately higher risk of fracture within egg laying but with a lower risk of fracture and a higher radiographic density within non-egg laying hens. The high performing layer line WLA showed a significantly higher fracture risk but also a higher radiographic density compared to the low performing layer line G11. In contrast, neither the risk nor the severity of deviations were unambiguously influenced by egg production or layer line. We assume that within a layer line, there is a strong association between egg production and keel bone fractures, and, possibly, bone mineral density, but not between egg production and deviations. Moreover, our results confirm that genetic background influences fracture prevalence and indicate that the selection for high laying performance may negatively influence keel bone health.
Collapse
Affiliation(s)
| | - Antonia Patt
- Institute of Animal Welfare and Animal Husbandry, Friedrich-Loeffler-Institut, Celle, Germany
| | - Lars Schrader
- Institute of Animal Welfare and Animal Husbandry, Friedrich-Loeffler-Institut, Celle, Germany
| | - Steffen Weigend
- Institute of Farm Animal Genetics, Friedrich-Loeffler-Institut, Mariensee, Germany
| | - Christa Thöne-Reineke
- Institute of Animal Welfare, Animal Behavior and Laboratory Animal Science, Freie Universität Berlin, Berlin, Germany
| | - Stefanie Petow
- Institute of Animal Welfare and Animal Husbandry, Friedrich-Loeffler-Institut, Celle, Germany
| |
Collapse
|
44
|
Correlation between Urine N-Terminal Telopeptide and Fourier Transform Infrared Spectroscopy Parameters: A Preliminary Study. J Osteoporos 2020; 2020:5725086. [PMID: 32095227 PMCID: PMC7036120 DOI: 10.1155/2020/5725086] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/04/2019] [Accepted: 01/21/2020] [Indexed: 11/17/2022] Open
Abstract
N-terminal telopeptide (NTX) is a bone resorption marker that is commonly referenced in clinical practice. Bone remodeling is also associated with changes in mineral components. Fourier transform infrared spectroscopy (FTIR) is utilized in the assessment of bone material properties and some parameters are reported to have associations with bone remodeling. The aim of this cross-sectional study is to investigate the relationship between uNTX levels and FTIR parameters, utilizing prospectively collected study data for patients who underwent lumbar fusion surgery. Bone specimens were taken from iliac crest (IC) and vertebrae (V). Cortical (C) and trabecular (T) bones were separately analyzed. 22 patients (mean age 60.0 years (35.9-73.3), male : female 9 : 13) were included in the final analysis. Women showed significantly higher uNTX levels (male : female, median [range] 21.0 [11.0-39.0] : 36.0 [15.0-74.0] nM·BCE/mM, p=0.033). Among women, a significant positive correlation was observed between uNTX and mineral-to-matrix ratio in IC-C. Among men, uNTX demonstrated significant negative correlation with collagen crosslinks (XLR: ratio of mature to immature collagen crosslinks) in IC-C, V-T, and V-C. In addition, uNTX was positively correlated with acid phosphate substitution (HPO4, a parameter of new bone formation) in IC-C, IC-T, and V-C. After age adjustment, HPO4 in IC-T and V-C among men showed significant positive associations with uNTX (IC-T: p=0.018, R 2 = 0.544; V-C: p=0.007, R 2 = 0.672). We found associations between FTIR parameters and uNTX in men, but not in women. The correlations between uNTX and FTIR parameters in men might suggest a better balance of bone breakdown (uNTX) and new bone formation (FTIR parameters: XLR, HPO4) than in women.
Collapse
|
45
|
Coulombe JC, Senwar B, Ferguson VL. Spaceflight-Induced Bone Tissue Changes that Affect Bone Quality and Increase Fracture Risk. Curr Osteoporos Rep 2020; 18:1-12. [PMID: 31897866 DOI: 10.1007/s11914-019-00540-y] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
PURPOSE OF REVIEW Bone mineral density and systemic factors are used to assess skeletal health in astronauts. Yet, even in a general population, these measures fail to accurately predict when any individual will fracture. This review considers how long-duration human spaceflight requires evaluation of additional bone structural and material quality measures that contribute to microgravity-induced skeletal fragility. RECENT FINDINGS In both humans and small animal models following spaceflight, bone mass is compromised via reduced bone formation and elevated resorption levels. Concurrently, bone structural quality (e.g., trabecular microarchitecture) is diminished and the quality of bone material is reduced via impaired tissue mineralization, maturation, and maintenance (e.g., mediated by osteocytes). Bone structural and material quality are both affected by microgravity and may, together, jeopardize astronaut operational readiness and lead to increased fracture risk upon return to gravitational loading. Future studies need to directly evaluate how bone quality combines with diminished bone mass to influence bone strength and toughness (e.g., resistance to fracture). Bone quality assessment promises to identify novel biomarkers and therapeutic targets.
Collapse
Affiliation(s)
- Jennifer C Coulombe
- Department of Mechanical Engineering, University of Colorado, UCB 427, Boulder, CO, 80309, USA
- BioFrontiers Institute, University of Colorado, UCB 596, Boulder, CO, 80309, USA
- BioServe Space Technologies, University of Colorado, UCB 429, Boulder, CO, 80309, USA
| | - Bhavya Senwar
- Department of Mechanical Engineering, University of Colorado, UCB 427, Boulder, CO, 80309, USA
- BioFrontiers Institute, University of Colorado, UCB 596, Boulder, CO, 80309, USA
- BioServe Space Technologies, University of Colorado, UCB 429, Boulder, CO, 80309, USA
| | - Virginia L Ferguson
- Department of Mechanical Engineering, University of Colorado, UCB 427, Boulder, CO, 80309, USA.
- BioFrontiers Institute, University of Colorado, UCB 596, Boulder, CO, 80309, USA.
- BioServe Space Technologies, University of Colorado, UCB 429, Boulder, CO, 80309, USA.
| |
Collapse
|
46
|
Assessment of Renal Osteodystrophy via Computational Analysis of Label-free Raman Detection of Multiple Biomarkers. Diagnostics (Basel) 2020; 10:diagnostics10020079. [PMID: 32023980 PMCID: PMC7168928 DOI: 10.3390/diagnostics10020079] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2020] [Revised: 01/27/2020] [Accepted: 01/29/2020] [Indexed: 01/19/2023] Open
Abstract
Accurate clinical evaluation of renal osteodystrophy (ROD) is currently accomplished using invasive in vivo transiliac bone biopsy, followed by in vitro histomorphometry. In this study, we demonstrate that an alternative method for ROD assessment is through a fast, label-free Raman recording of multiple biomarkers combined with computational analysis for predicting the minimally required number of spectra for sample classification at defined accuracies. Four clinically relevant biomarkers: the mineral-to-matrix ratio, the carbonate-to-matrix ratio, phenylalanine, and calcium contents were experimentally determined and simultaneously considered as input to a linear discriminant analysis (LDA). Additionally, sample evaluation was performed with a linear support vector machine (LSVM) algorithm, with a 300 variable input. The computed probabilities based on a single spectrum were only marginally different (~80% from LDA and ~87% from LSVM), both providing an unacceptable classification power for a correct sample assignment. However, the Type I and Type II assignment errors confirm that a relatively small number of independent spectra (7 spectra for Type I and 5 spectra for Type II) is necessary for a p < 0.05 error probability. This low number of spectra supports the practicality of future in vivo Raman translation for a fast and accurate ROD detection in clinical settings.
Collapse
|
47
|
Sanchez-Rodriguez E, Benavides-Reyes C, Torres C, Dominguez-Gasca N, Garcia-Ruiz AI, Gonzalez-Lopez S, Rodriguez-Navarro AB. Changes with age (from 0 to 37 D) in tibiae bone mineralization, chemical composition and structural organization in broiler chickens. Poult Sci 2020; 98:5215-5225. [PMID: 31265108 PMCID: PMC6771771 DOI: 10.3382/ps/pez363] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2019] [Accepted: 06/07/2019] [Indexed: 11/20/2022] Open
Abstract
Broiler chickens have an extreme physiology (rapid growth rates) that challenges the correct bone mineralization, being an interesting animal model for studying the development of bone pathologies. This work studies in detail how the mineralization, chemistry, and structural organization of tibiae bone in broiler chickens change with age during the first 5 wk (37 D) from hatching until acquiring the final weight for slaughter. During the early growth phase (first 2 wk), the rapid addition of bone tissue does not allow for bone organic matrix to fully mineralize and mature, and seems to be a critical period for bone development at which bone mineralization cannot keep pace with the rapid growth of bones. The low degree of bone mineralization and large porosity of cortical bone at this period might be responsible of leg deformation and/or other skeletal abnormalities commonly observed in these birds. Later, cortical bone porosity gradually decreases and the cortical bone became fully mineralized (65%) at 37 D of age. At the same time, bone mineral acquires the composition of mature bone tissue (decreased amount of carbonate, higher crystallinity, Ca/P = 1.68). However, the mineral part was still poorly organized even at 37 D. The oriented fraction was about 0.45 which means that more than half of apatite crystals within the mineral are randomly oriented. Mineral organization (crystal orientation) had an important contribution to bone-breaking strength. Nevertheless, locally determined (at tibia mid-shaft) bone properties (i.e., cortical thickness, crystal orientation) has only a moderate correlation (R2 = 0.33) with bone breaking strength probably due to large and highly heterogeneous porosity of bone that acts as structural defects. On the other hand, the total amount of mineral (a global property) measured by total ash content was the best predictor for breaking strength (R2 = 0.49). Knowledge acquired in this study could help in designing strategies to improve bone quality and reduce the incidence of skeletal problems in broiler chickens that have important welfare and economic implications.
Collapse
Affiliation(s)
- Estefania Sanchez-Rodriguez
- Departamento de Mineralogía y Petrología, Universidad de Granada, Avenida de Fuentenueva s/n, Granada 18002, Spain
| | - Cristina Benavides-Reyes
- Departamento de Mineralogía y Petrología, Universidad de Granada, Avenida de Fuentenueva s/n, Granada 18002, Spain.,Departamento de Estomatología, Universidad de Granada, Campus Universitario de Cartuja, Colegio Máximo s/n, Granada 18071, Spain
| | - Cibele Torres
- Trouw Nutrition R&D, Ctra. CM 4004, km 10.5, Casarrubios del Monte, Toledo 45950, Spain
| | - Nazaret Dominguez-Gasca
- Departamento de Mineralogía y Petrología, Universidad de Granada, Avenida de Fuentenueva s/n, Granada 18002, Spain
| | - Ana I Garcia-Ruiz
- Trouw Nutrition R&D, Ctra. CM 4004, km 10.5, Casarrubios del Monte, Toledo 45950, Spain
| | - Santiago Gonzalez-Lopez
- Departamento de Estomatología, Universidad de Granada, Campus Universitario de Cartuja, Colegio Máximo s/n, Granada 18071, Spain
| | | |
Collapse
|
48
|
Salzmann SN, Okano I, Rentenberger C, Winter F, Miller CO, Schadler P, Sax OC, Miller TT, Shue J, Boskey AL, Sama AA, Cammisa FP, Girardi FP, Hughes AP. Skin Ultrasound Measurement as a Potential Marker of Bone Quality: A Prospective Pilot Study of Patients undergoing Lumbar Spinal Fusion. J Orthop Res 2019; 37:2508-2515. [PMID: 31403220 DOI: 10.1002/jor.24438] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/03/2019] [Accepted: 08/02/2019] [Indexed: 02/04/2023]
Abstract
Bone mineral density (BMD) is not the sole predictor of fracture development. Qualitative markers including bone collagen maturity contribute to bone fragility. Bone and related type I collagen containing connective tissues degenerate in parallel fashion. With aging, changes in skin collagen content and quality have been observed that can be detected on ultrasound (US) as a decrease in dermal thickness and an increase in reticular layer echogenicity. We hypothesized that US dermal thickness and echogenicity correlate with bone collagen maturity. Data of 43 prospectively enrolled patients (mean age 61 years, 24 females), who underwent instrumented, posterior lumbar fusion was analyzed. Besides preoperative quantitative computed tomography (QCT) and skin US measurements, intraoperative bone biopsies were obtained and analyzed with Fourier-transform infrared spectroscopy. Among men, there was no correlation between US measurements and collagen maturity. Among women, dermal layer thickness correlated negatively with collagen maturity in trabecular bone of the iliac crest (r = -0.51, p = 0.01) and vertebra (r = -0.59, p = 0.01) as well as in cortical bone of the iliac crest (r = -0.50, p = 0.02) and vertebra (r = -0.50, p = 0.04). In addition, echogenicity correlated positively with collagen maturity in trabecular vertebral bone (r = 0.59, p = 0.01). In both genders, US measurements showed no correlation with QCT BMD. In summary, ultrasound skin parameters are associated with bone quality factors such as collagen maturity, rather than bone quantity (BMD). Ultrasound of the skin may thereby be an easy and accessible take off point for diagnosis of bone collagen maturity and connective tissue degeneration in the future. © 2019 Orthopaedic Research Society. Published by Wiley Periodicals, Inc. J Orthop Res 37:2508-2515, 2019.
Collapse
Affiliation(s)
| | - Ichiro Okano
- Hospital for Special Surgery, New York, New York
| | | | | | | | | | - Oliver C Sax
- Hospital for Special Surgery, New York, New York
| | | | | | | | | | | | | | | |
Collapse
|
49
|
Molino G, Dalpozzi A, Ciapetti G, Lorusso M, Novara C, Cavallo M, Baldini N, Giorgis F, Fiorilli S, Vitale-Brovarone C. Osteoporosis-related variations of trabecular bone properties of proximal human humeral heads at different scale lengths. J Mech Behav Biomed Mater 2019; 100:103373. [DOI: 10.1016/j.jmbbm.2019.103373] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2019] [Revised: 04/01/2019] [Accepted: 07/25/2019] [Indexed: 11/30/2022]
|
50
|
Kohno K, Yamada W, Ishitsuka A, Sekine M, Virgona N, Ota M, Yano T. Tocotrienol-rich fraction from annatto ameliorates expression of lysyl oxidase in human osteoblastic MG-63 cells. Biosci Biotechnol Biochem 2019; 84:526-535. [PMID: 31743080 DOI: 10.1080/09168451.2019.1693252] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
Abstract
Lysyl oxidase (LOX) is required for the formation of bone collagen cross-links. Inactivation of the LOX gene in osteoblasts by DNA methylation and JAK signaling has been reported to cause loss of cross-links and an increased risk of fractures. Tocotrienols (T3s) have proven benefits on bone strength, but their potential effects on LOX remain largely unknown. Thus, the present study investigates the in vitro effects of T3s on LOX expression in human osteoblastic MG-63 cells. Results indicated that Tocotrienol-Rich Fraction (TRF), the δ-T3 rich oil extracted from Annatto was the most effective and significantly increased LOX expression. TRF treatment decreased de-novo methyltransferases (DNMTs), DNMT3A and DNMT3B levels. In addition, TRF significantly inhibited JAK2 activation and decreased expression of Fli1, a transcription factor of DNMTs. We conclude that TRF induced an increase in LOX expression via inhibition of de-novo methylation and reduction of Fli1 expression by the inactivation of JAK2.Abbreviations: CpG: cytosine-guanine dinucleotide; DNMT: DNA methyltransferase; Fli1: friend leukemia virus integration 1; JAK: janus kinase; LOX: lysyl oxidase; PCR: polymerase chain reaction; STAT: signal transducers and activators of transcription; T3s: tocotrienols; TPs: tocopherols; TRF: Tocotrienol-Rich Fraction.
Collapse
Affiliation(s)
- Kakeru Kohno
- Graduate School of Food and Nutritional Sciences, Toyo University, Itakura, Gunma, Japan
| | - Wakana Yamada
- Research Institute for Life Innovation, Toyo University, Itakura, Gunma, Japan
| | - Aya Ishitsuka
- Research Institute for Life Innovation, Toyo University, Itakura, Gunma, Japan
| | - Miki Sekine
- Research Institute for Life Innovation, Toyo University, Itakura, Gunma, Japan
| | - Nantiga Virgona
- Research Institute for Life Innovation, Toyo University, Itakura, Gunma, Japan
| | - Masako Ota
- Graduate School of Food and Nutritional Sciences, Toyo University, Itakura, Gunma, Japan.,Research Institute for Life Innovation, Toyo University, Itakura, Gunma, Japan
| | - Tomohiro Yano
- Graduate School of Food and Nutritional Sciences, Toyo University, Itakura, Gunma, Japan.,Research Institute for Life Innovation, Toyo University, Itakura, Gunma, Japan
| |
Collapse
|