1
|
Bernero M, Zauchner D, Müller R, Qin XH. Interpenetrating network hydrogels for studying the role of matrix viscoelasticity in 3D osteocyte morphogenesis. Biomater Sci 2024; 12:919-932. [PMID: 38231154 PMCID: PMC10863643 DOI: 10.1039/d3bm01781h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Accepted: 01/08/2024] [Indexed: 01/18/2024]
Abstract
During bone formation, osteoblasts are embedded in a collagen-rich osteoid tissue and differentiate into an extensive 3D osteocyte network throughout the mineralizing matrix. However, how these cells dynamically remodel the matrix and undergo 3D morphogenesis remains poorly understood. Although previous reports investigated the impact of matrix stiffness in osteocyte morphogenesis, the role of matrix viscoelasticity is often overlooked. Here, we report a viscoelastic alginate-collagen interpenetrating network (IPN) hydrogel for 3D culture of murine osteocyte-like IDG-SW3 cells. The IPN hydrogels consist of an ionically crosslinked alginate network to tune stress relaxation as well as a permissive collagen network to promote cell adhesion and matrix remodeling. Two IPN hydrogels were developed with comparable stiffnesses (4.4-4.7 kPa) but varying stress relaxation times (t1/2, 1.5 s and 14.4 s). IDG-SW3 cells were pre-differentiated in 2D under osteogenic conditions for 14 days to drive osteoblast-to-osteocyte transition. Cellular mechanosensitivity to fluid shear stress (2 Pa) was confirmed by live-cell calcium imaging. After embedding in the IPN hydrogels, cells remained highly viable following 7 days of 3D culture. After 24 h, osteocytes in the fast-relaxing hydrogels showed the largest cell area and long dendritic processes. However, a significantly larger increase of some osteogenic markers (ALP, Dmp1, hydroxyapatite) as well as intercellular connections via gap junctions were observed in slow-relaxing hydrogels on day 14. Our results imply that fast-relaxing IPN hydrogels promote early cell spreading, whereas slow relaxation favors osteogenic differentiation. These findings may advance the development of 3D in vivo-like osteocyte models to better understand bone mechanobiology.
Collapse
Affiliation(s)
| | | | - Ralph Müller
- Institute for Biomechanics, ETH Zürich, Switzerland.
| | - Xiao-Hua Qin
- Institute for Biomechanics, ETH Zürich, Switzerland.
| |
Collapse
|
2
|
Lipreri MV, Di Pompo G, Boanini E, Graziani G, Sassoni E, Baldini N, Avnet S. Bone on-a-chip: a 3D dendritic network in a screening platform for osteocyte-targeted drugs. Biofabrication 2023; 15:045019. [PMID: 37552982 DOI: 10.1088/1758-5090/acee23] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2023] [Accepted: 08/08/2023] [Indexed: 08/10/2023]
Abstract
Age-related musculoskeletal disorders, including osteoporosis, are frequent and associated with long lasting morbidity, in turn significantly impacting on healthcare system sustainability. There is therefore a compelling need to develop reliable preclinical models of disease and drug screening to validate novel drugs possibly on a personalized basis, without the need ofin vivoassay. In the context of bone tissue, although the osteocyte (Oc) network is a well-recognized therapeutic target, currentin vitropreclinical models are unable to mimic its physiologically relevant and highly complex structure. To this purpose, several features are needed, including an osteomimetic extracellular matrix, dynamic perfusion, and mechanical cues (e.g. shear stress) combined with a three-dimensional (3D) culture of Oc. Here we describe, for the first time, a high throughput microfluidic platform based on 96-miniaturized chips for large-scale preclinical evaluation to predict drug efficacy. We bioengineered a commercial microfluidic device that allows real-time visualization and equipped with multi-chips by the development and injection of a highly stiff bone-like 3D matrix, made of a blend of collagen-enriched natural hydrogels loaded with hydroxyapatite nanocrystals. The microchannel, filled with the ostemimetic matrix and Oc, is subjected to passive perfusion and shear stress. We used scanning electron microscopy for preliminary material characterization. Confocal microscopy and fluorescent microbeads were used after material injection into the microchannels to detect volume changes and the distribution of cell-sized objects within the hydrogel. The formation of a 3D dendritic network of Oc was monitored by measuring cell viability, evaluating phenotyping markers (connexin43, integrin alpha V/CD51, sclerostin), quantification of dendrites, and responsiveness to an anabolic drug. The platform is expected to accelerate the development of new drug aimed at modulating the survival and function of osteocytes.
Collapse
Affiliation(s)
| | - Gemma Di Pompo
- Biomedical Science, Technologies, and Nanobiotecnologiy Lab, IRCCS Istituto Ortopedico Rizzoli, Bologna, Italy
| | - Elisa Boanini
- Department of Chemistry 'Giacomo Ciamician', University of Bologna, Bologna, Italy
| | - Gabriela Graziani
- Biomedical Science, Technologies, and Nanobiotecnologiy Lab, IRCCS Istituto Ortopedico Rizzoli, Bologna, Italy
| | - Enrico Sassoni
- Department of Civil, Chemical, Environmental and Materials Engineering, University of Bologna, Bologna, Italy
| | - Nicola Baldini
- Department of Biomedical and Neuromotor Sciences, University of Bologna, Bologna, Italy
- Biomedical Science, Technologies, and Nanobiotecnologiy Lab, IRCCS Istituto Ortopedico Rizzoli, Bologna, Italy
| | - Sofia Avnet
- Department of Biomedical and Neuromotor Sciences, University of Bologna, Bologna, Italy
| |
Collapse
|
3
|
Wang S, Xiao L, Prasadam I, Crawford R, Zhou Y, Xiao Y. Inflammatory macrophages interrupt osteocyte maturation and mineralization via regulating the Notch signaling pathway. Mol Med 2022; 28:102. [PMID: 36058911 PMCID: PMC9441044 DOI: 10.1186/s10020-022-00530-4] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2022] [Accepted: 08/10/2022] [Indexed: 11/12/2022] Open
Abstract
Background It is well-known that both macrophages and osteocytes are critical regulators of osteogenesis and osteoclastogenesis, yet there is limited understanding of the macrophage-osteocyte interaction, and how their crosstalk could affect bone homeostasis and mineralization. This research therefore aims to investigate the effects of macrophage polarization on osteocyte maturation and mineralization process. Methods A macrophage-derived conditioned medium based osteocyte culture was set up to investigate the impact of macrophages on osteocyte maturation and terminal mineralization. Surgically induced osteoarthritis (OA) rat model was used to further investigate the macrophage-osteocyte interaction in inflammatory bone remodeling, as well as the involvement of the Notch signaling pathway in the mineralization process. Results Our results identified that osteocytes were confined in an immature stage after the M1 macrophage stimulation, showing a more rounded morphology, higher expression of early osteocyte marker E11, and significantly lower expression of mature osteocyte marker DMP1. Immature osteocytes were also found in inflammatory bone remodeling areas, showing altered morphology and mineralized structures similar to those observed under the stimulation of M1 macrophages in vitro, suggesting that M1 macrophages negatively affect osteocyte maturation, leading to abnormal mineralization. The Notch signaling pathway was found to be down regulated in M1 macrophage-stimulated osteocytes as well as osteocytes in inflammatory bone. Overexpression of the Notch signaling pathway in osteocytes showed a significant circumvention on the negative effects from M1 macrophage. Conclusion Taken together, our findings provide valuable insights into the mechanisms involved in abnormal bone mineralization under inflammatory conditions. Supplementary Information The online version contains supplementary material available at 10.1186/s10020-022-00530-4.
Collapse
Affiliation(s)
- Shengfang Wang
- School of Mechanical, Medical and Process Engineering, Faculty of Engineering, Queensland University of Technology, Brisbane, QLD, 4000, Australia.,Centre for Biomedical Technologies, Queensland University of Technology, Brisbane, QLD, 4000, Australia.,Australia-China Centre for Tissue Engineering and Regenerative Medicine, Brisbane, QLD, 4000, Australia
| | - Lan Xiao
- School of Mechanical, Medical and Process Engineering, Faculty of Engineering, Queensland University of Technology, Brisbane, QLD, 4000, Australia.,Centre for Biomedical Technologies, Queensland University of Technology, Brisbane, QLD, 4000, Australia.,Australia-China Centre for Tissue Engineering and Regenerative Medicine, Brisbane, QLD, 4000, Australia
| | - Indira Prasadam
- School of Mechanical, Medical and Process Engineering, Faculty of Engineering, Queensland University of Technology, Brisbane, QLD, 4000, Australia.,Centre for Biomedical Technologies, Queensland University of Technology, Brisbane, QLD, 4000, Australia.,Australia-China Centre for Tissue Engineering and Regenerative Medicine, Brisbane, QLD, 4000, Australia
| | - Ross Crawford
- School of Mechanical, Medical and Process Engineering, Faculty of Engineering, Queensland University of Technology, Brisbane, QLD, 4000, Australia.,Centre for Biomedical Technologies, Queensland University of Technology, Brisbane, QLD, 4000, Australia.,Australia-China Centre for Tissue Engineering and Regenerative Medicine, Brisbane, QLD, 4000, Australia
| | - Yinghong Zhou
- School of Mechanical, Medical and Process Engineering, Faculty of Engineering, Queensland University of Technology, Brisbane, QLD, 4000, Australia. .,Centre for Biomedical Technologies, Queensland University of Technology, Brisbane, QLD, 4000, Australia. .,Australia-China Centre for Tissue Engineering and Regenerative Medicine, Brisbane, QLD, 4000, Australia. .,School of Dentistry, Faculty of Health and Behavioural Sciences, The University of Queensland, Brisbane, QLD, 4006, Australia.
| | - Yin Xiao
- School of Mechanical, Medical and Process Engineering, Faculty of Engineering, Queensland University of Technology, Brisbane, QLD, 4000, Australia. .,Centre for Biomedical Technologies, Queensland University of Technology, Brisbane, QLD, 4000, Australia. .,Australia-China Centre for Tissue Engineering and Regenerative Medicine, Brisbane, QLD, 4000, Australia.
| |
Collapse
|
4
|
Berent ZT, Jain I, Underhill GH, Wagoner Johnson AJ. Simulated confluence on micropatterned substrates correlates responses regulating cellular differentiation. Biotechnol Bioeng 2022; 119:1641-1659. [PMID: 35192191 DOI: 10.1002/bit.28069] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2021] [Revised: 01/20/2022] [Accepted: 01/31/2022] [Indexed: 11/12/2022]
Abstract
While cells are known to behave differently based on the size of micropatterned islands, and this behavior is thought to be related to cell size and cell-cell contacts, the exact threshold for this difference between small and large islands is unknown. Furthermore, while cell size and cell-cell contacts can be easily manipulated on small islands, they are harder to measure and continually monitor on larger islands. To investigate this size threshold, and to explore cell size, cell-cell contacts, and differentiation, we use a previously established simulation to plan experiments and explain results that we could not explain from experiments alone. We use five seeding densities covering three orders of magnitude over 25-500 µm diameter islands to examine markers of proliferation and differentiation in bone marrow-derived mesenchymal cells (cell line). We show that osteogenic markers are most accurately described as a function of confluence for larger islands, but a function of time for smaller islands. We further show, using results of the simulation, that cell size and cell-cell contacts are also related to confluence on larger islands, but only cell-cell contacts are related to confluence on small islands. This study uses simulations to explain experimental results that could not be explained from experiments alone. Together, the simulations and experiments in this study show different differentiation patterns on large and small islands, and this simulation may be useful in planning future studies related to this study.
Collapse
Affiliation(s)
- Zachary T Berent
- Department of Mechanical Science and Engineering, University of Illinois at Urbana-Champaign, Urbana, Illinois, USA
- Carl R. Woese Institute for Genomic Biology, University of Illinois at Urbana-Champaign, Urbana, Illinois, USA
| | - Ishita Jain
- Department of Bioengineering, University of Illinois at Urbana-Champaign, Urbana, Illinois, USA
| | - Gregory H Underhill
- Carl R. Woese Institute for Genomic Biology, University of Illinois at Urbana-Champaign, Urbana, Illinois, USA
- Department of Bioengineering, University of Illinois at Urbana-Champaign, Urbana, Illinois, USA
| | - Amy J Wagoner Johnson
- Department of Mechanical Science and Engineering, University of Illinois at Urbana-Champaign, Urbana, Illinois, USA
- Carl R. Woese Institute for Genomic Biology, University of Illinois at Urbana-Champaign, Urbana, Illinois, USA
- Carle Illinois College of Medicine, University of Illinois at Urbana-Champaign, Champaign, Illinois, USA
| |
Collapse
|
5
|
Chelating Polymers for Targeted Decontamination of Actinides: Application of PEI-MP to Hydroxyapatite-Th(IV). Int J Mol Sci 2022; 23:ijms23094732. [PMID: 35563121 PMCID: PMC9100511 DOI: 10.3390/ijms23094732] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2022] [Revised: 04/19/2022] [Accepted: 04/22/2022] [Indexed: 11/16/2022] Open
Abstract
In case of an incident in the nuclear industry or an act of war or terrorism, the dissemination of plutonium could contaminate the environment and, hence, humans. Human contamination mainly occurs via inhalation and/or wounding (and, less likely, ingestion). In such cases, plutonium, if soluble, reaches circulation, whereas the poorly soluble fraction (such as small colloids) is trapped in alveolar macrophages or remains at the site of wounding. Once in the blood, the plutonium is delivered to the liver and/or to the bone, particularly into its mineral part, mostly composed of hydroxyapatite. Countermeasures against plutonium exist and consist of intravenous injections or inhalation of diethylenetetraminepentaacetate salts. Their effectiveness is, however, mainly confined to the circulating soluble forms of plutonium. Furthermore, the short bioavailability of diethylenetetraminepentaacetate results in its rapid elimination. To overcome these limitations and to provide a complementary approach to this common therapy, we developed polymeric analogs to indirectly target the problematic retention sites. We present herein a first study regarding the decontamination abilities of polyethyleneimine methylcarboxylate (structural diethylenetetraminepentaacetate polymer analog) and polyethyleneimine methylphosphonate (phosphonate polymeric analog) directed against Th(IV), used here as a Pu(IV) surrogate, which was incorporated into hydroxyapatite used as a bone model. Our results suggest that polyethylenimine methylphosphonate could be a good candidate for powerful bone decontamination action.
Collapse
|
6
|
The Osteogenesis Imperfecta Type V Mutant BRIL/IFITM5 Promotes Transcriptional Activation of MEF2, NFATc, and NR4A in Osteoblasts. Int J Mol Sci 2022; 23:ijms23042148. [PMID: 35216266 PMCID: PMC8875491 DOI: 10.3390/ijms23042148] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2022] [Revised: 02/11/2022] [Accepted: 02/12/2022] [Indexed: 11/18/2022] Open
Abstract
BRIL (bone restricted ifitm-like; also known as IFITM5) is a transmembrane protein expressed in osteoblasts. Although its role in skeletal development and homeostasis is unknown, mutations in BRIL result in rare dominant forms of osteogenesis imperfecta. The pathogenic mechanism has been proposed to be a gain-of or neomorphic function. To understand the function of BRIL and its OI type V mutant (MALEP BRIL) and whether they could activate signaling pathways in osteoblasts, we performed a luciferase reporter assay screen based on the activity of 26 transcription factors. When overexpressed in MC3T3-E1 and MLO-A5 cells, the MALEP BRIL activated the reporters dependent on MEF2, NFATc, and NR4A significantly more. Additional co-transfection experiments with MEF2C and NFATc1 and a number of their modulators (HDAC4, calcineurin, RCAN, FK506) confirmed the additive or synergistic activation of the pathways by MALEP, and suggested a coordinated regulation involving calcineurin. Endogenous levels of Nr4a members, as well as Ptgs2, were upregulated by MALEP BRIL. Y2H and co-immunoprecipitation indicated that BRIL interacted with CAML, but its contribution as the most upstream stimulator of the Ca2+-calcineurin-MEF2/NFATc cascade was not confirmed convincingly. Altogether the data presented provide the first ever readout to monitor for BRIL activity and suggest a potential gain-of-function causative effect for MALEP BRIL in OI type V, leading to perturbed signaling events and gene expression.
Collapse
|
7
|
Abstract
Osteocytes, former osteoblasts encapsulated by mineralized bone matrix, are far from being passive and metabolically inactive bone cells. Instead, osteocytes are multifunctional and dynamic cells capable of integrating hormonal and mechanical signals and transmitting them to effector cells in bone and in distant tissues. Osteocytes are a major source of molecules that regulate bone homeostasis by integrating both mechanical cues and hormonal signals that coordinate the differentiation and function of osteoclasts and osteoblasts. Osteocyte function is altered in both rare and common bone diseases, suggesting that osteocyte dysfunction is directly involved in the pathophysiology of several disorders affecting the skeleton. Advances in osteocyte biology initiated the development of novel therapeutics interfering with osteocyte-secreted molecules. Moreover, osteocytes are targets and key distributors of biological signals mediating the beneficial effects of several bone therapeutics used in the clinic. Here we review the most recent discoveries in osteocyte biology demonstrating that osteocytes regulate bone homeostasis and bone marrow fat via paracrine signaling, influence body composition and energy metabolism via endocrine signaling, and contribute to the damaging effects of diabetes mellitus and hematologic and metastatic cancers in the skeleton.
Collapse
Affiliation(s)
- Jesus Delgado-Calle
- 1Department of Physiology and Cell Biology, University of Arkansas for Medical Sciences, Little Rock, Arkansas,2Winthrop P. Rockefeller Cancer Institute, University of Arkansas for Medical Sciences, Little Rock, Arkansas
| | - Teresita Bellido
- 1Department of Physiology and Cell Biology, University of Arkansas for Medical Sciences, Little Rock, Arkansas,2Winthrop P. Rockefeller Cancer Institute, University of Arkansas for Medical Sciences, Little Rock, Arkansas,3Central Arkansas Veterans Healthcare System, Little Rock, Arkansas
| |
Collapse
|
8
|
Generation of two multipotent mesenchymal progenitor cell lines capable of osteogenic, mature osteocyte, adipogenic, and chondrogenic differentiation. Sci Rep 2021; 11:22593. [PMID: 34799645 PMCID: PMC8605002 DOI: 10.1038/s41598-021-02060-1] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2021] [Accepted: 11/09/2021] [Indexed: 01/04/2023] Open
Abstract
Mesenchymal progenitors differentiate into several tissues including bone, cartilage, and adipose. Targeting these cells in vivo is challenging, making mesenchymal progenitor cell lines valuable tools to study tissue development. Mesenchymal stem cells (MSCs) can be isolated from humans and animals; however, obtaining homogenous, responsive cells in a reproducible fashion is challenging. As such, we developed two mesenchymal progenitor cell (MPC) lines, MPC1 and MPC2, generated from bone marrow of male C57BL/6 mice. These cells were immortalized using the temperature sensitive large T-antigen, allowing for thermal control of proliferation and differentiation. Both MPC1 and MPC2 cells are capable of osteogenic, adipogenic, and chondrogenic differentiation. Under osteogenic conditions, both lines formed mineralized nodules, and stained for alizarin red and alkaline phosphatase, while expressing osteogenic genes including Sost, Fgf23, and Dmp1. Sost and Dmp1 mRNA levels were drastically reduced with addition of parathyroid hormone, thus recapitulating in vivo responses. MPC cells secreted intact (iFGF23) and C-terminal (cFGF23) forms of the endocrine hormone FGF23, which was upregulated by 1,25 dihydroxy vitamin D (1,25D). Both lines also rapidly entered the adipogenic lineage, expressing adipose markers after 4 days in adipogenic media. MPC cells were also capable of chondrogenic differentiation, displaying increased expression of cartilaginous genes including aggrecan, Sox9, and Comp. With the ability to differentiate into multiple mesenchymal lineages and mimic in vivo responses of key regulatory genes/proteins, MPC cells are a valuable model to study factors that regulate mesenchymal lineage allocation as well as the mechanisms that dictate transcription, protein modification, and secretion of these factors.
Collapse
|
9
|
Delaine-Smith RM, Hann AJ, Green NH, Reilly GC. Electrospun Fiber Alignment Guides Osteogenesis and Matrix Organization Differentially in Two Different Osteogenic Cell Types. Front Bioeng Biotechnol 2021; 9:672959. [PMID: 34760876 PMCID: PMC8573409 DOI: 10.3389/fbioe.2021.672959] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2021] [Accepted: 06/08/2021] [Indexed: 11/18/2022] Open
Abstract
Biomimetic replication of the structural anisotropy of musculoskeletal tissues is important to restore proper tissue mechanics and function. Physical cues from the local micro-environment, such as matrix fiber orientation, may influence the differentiation and extracellular matrix (ECM) organization of osteogenic progenitor cells. This study investigates how scaffold fiber orientation affects the behavior of mature and progenitor osteogenic cells, the influence on secreted mineralized-collagenous matrix organization, and the resulting construct mechanical properties. Gelatin-coated electrospun poly(caprolactone) fibrous scaffolds were fabricated with either a low or a high degree of anisotropy and cultured with mature osteoblasts (MLO-A5s) or osteogenic mesenchymal progenitor cells (hES-MPs). For MLO-A5 cells, alkaline phosphatase (ALP) activity was highest, and more calcium-containing matrix was deposited onto aligned scaffolds. In contrast, hES-MPs, osteogenic mesenchymal progenitor cells, exhibited higher ALP activity, collagen, and calcium deposition on randomly orientated fibers compared with aligned counterparts. Deposited matrix was isotropic on random fibrous scaffolds, whereas a greater degree of anisotropy was observed in aligned fibrous constructs, as confirmed by second harmonic generation (SHG) and scanning electron microscope (SEM) imaging. This resulted in anisotropic mechanical properties on aligned constructs. This study indicates that mineralized-matrix deposition by osteoblasts can be controlled by scaffold alignment but that the early stages of osteogenesis may not benefit from culture on orientated scaffolds.
Collapse
Affiliation(s)
- Robin M. Delaine-Smith
- Department of Materials Science and Engineering, Kroto Research Institute, University of Sheffield, Sheffield, United Kingdom
| | - Alice Jane Hann
- Department of Materials Science and Engineering, Kroto Research Institute, University of Sheffield, Sheffield, United Kingdom
- Department of Materials Science and Engineering, INSIGNEO Institute for in silico Medicine, University of Sheffield, Sheffield, United Kingdom
| | - Nicola H. Green
- Department of Materials Science and Engineering, Kroto Research Institute, University of Sheffield, Sheffield, United Kingdom
- Department of Materials Science and Engineering, INSIGNEO Institute for in silico Medicine, University of Sheffield, Sheffield, United Kingdom
| | - Gwendolen Clair Reilly
- Department of Materials Science and Engineering, Kroto Research Institute, University of Sheffield, Sheffield, United Kingdom
- Department of Materials Science and Engineering, INSIGNEO Institute for in silico Medicine, University of Sheffield, Sheffield, United Kingdom
| |
Collapse
|
10
|
Chang B, Liu X. Osteon: Structure, Turnover, and Regeneration. TISSUE ENGINEERING PART B-REVIEWS 2021; 28:261-278. [PMID: 33487116 DOI: 10.1089/ten.teb.2020.0322] [Citation(s) in RCA: 39] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Bone is composed of dense and solid cortical bone and honeycomb-like trabecular bone. Although cortical bone provides the majority of mechanical strength for a bone, there are few studies focusing on cortical bone repair or regeneration. Osteons (the Haversian system) form structural and functional units of cortical bone. In recent years, emerging evidences have shown that the osteon structure (including osteocytes, lamellae, lacunocanalicular network, and Haversian canals) plays critical roles in bone mechanics and turnover. Therefore, reconstruction of the osteon structure is crucial for cortical bone regeneration. This article provides a systematic summary of recent advances in osteons, including the structure, function, turnover, and regenerative strategies. First, the hierarchical structure of osteons is illustrated and the critical functions of osteons in bone dynamics are introduced. Next, the modeling and remodeling processes of osteons at a cellular level and the turnover of osteons in response to mechanical loading and aging are emphasized. Furthermore, several bioengineering approaches that were recently developed to recapitulate the osteon structure are highlighted. Impact statement This review provides a comprehensive summary of recent advances in osteons, especially the roles in bone formation, remodeling, and regeneration. Besides introducing the hierarchical structure and critical functions of osteons, we elucidate the modeling and remodeling of osteons at a cellular level. Specifically, we highlight the bioengineering approaches that were recently developed to mimic the hierarchical structure of osteons. We expect that this review will provide informative insights and attract increasing attentions in orthopedic community, shedding light on cortical bone regeneration in the future.
Collapse
Affiliation(s)
- Bei Chang
- Department of Biomedical Sciences, Texas A&M University College of Dentistry, Dallas, Texas, USA
| | - Xiaohua Liu
- Department of Biomedical Sciences, Texas A&M University College of Dentistry, Dallas, Texas, USA
| |
Collapse
|
11
|
Parashar A, Gourgas O, Lau K, Li J, Muiznieks L, Sharpe S, Davis E, Cerruti M, Murshed M. Elastin calcification in in vitro models and its prevention by MGP's N-terminal peptide. J Struct Biol 2021; 213:107637. [PMID: 33059036 DOI: 10.1016/j.jsb.2020.107637] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2020] [Revised: 10/01/2020] [Accepted: 10/03/2020] [Indexed: 01/17/2023]
Abstract
Medial calcification has been associated with diabetes, chronic kidney disease, and genetic disorders like pseudoxanthoma elasticum. Recently, we showed that genetic reduction of arterial elastin content reduces the severity of medial calcification in matrix Gla protein (MGP)-deficient and Eln haploinsufficient Mgp-/-;Eln+/- mice. This study suggests that there might be a direct effect of elastin amount on medial calcification. We studied this using novel in vitro systems, which are based on elastin or elastin-like polypeptides. We first examined the mineral deposition properties of a transfected pigmented epithelial cell line that expresses elastin and other elastic lamina proteins. When grown in inorganic phosphate-supplemented medium, these cells deposited calcium phosphate minerals, which could be prevented by an N'-terminal peptide of MGP (m3pS) carrying phosphorylated serine residues. We next confirmed these findings using a cell-free elastin-like polypeptide (ELP3) scaffold, where the peptide prevented mineral maturation. Overall, this work describes a novel cell culture model for elastocalcinosis and examines the inhibition of mineral deposition by the m3pS peptide in this and a cell-free elastin-based scaffold. Our study provides strong evidence suggesting the critical functional roles of MGP's phosphorylated serine residues in the prevention of elastin calcification and proposes a possible mechanism of their action.
Collapse
Affiliation(s)
- Abhinav Parashar
- Faculty of Dentistry, McGill University, Montreal, Québec, Canada
| | - Ophélie Gourgas
- Department of Medicine, McGill University, Montreal, Québec, Canada
| | - Kirk Lau
- Materials Engineering, McGill University, Montreal, Québec, Canada
| | - Jingjing Li
- Department of Medicine, McGill University, Montreal, Québec, Canada
| | - Lisa Muiznieks
- Molecular Medicine, Hospital for Sick Children, Toronto, Ontario, Canada
| | - Simon Sharpe
- Molecular Medicine, Hospital for Sick Children, Toronto, Ontario, Canada; Department of Biochemistry, University of Toronto, Toronto, Ontario, Canada
| | - Elaine Davis
- Department of Anatomy and Cell Biology, McGill University, Montreal, Québec, Canada
| | - Marta Cerruti
- Materials Engineering, McGill University, Montreal, Québec, Canada
| | - Monzur Murshed
- Faculty of Dentistry, McGill University, Montreal, Québec, Canada; Department of Medicine, McGill University, Montreal, Québec, Canada; Shriners Hospital for Children, Montreal, Quebec, Canada.
| |
Collapse
|
12
|
Ratsma DMA, Zillikens MC, van der Eerden BCJ. Upstream Regulators of Fibroblast Growth Factor 23. Front Endocrinol (Lausanne) 2021; 12:588096. [PMID: 33716961 PMCID: PMC7952762 DOI: 10.3389/fendo.2021.588096] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/28/2020] [Accepted: 01/11/2021] [Indexed: 12/11/2022] Open
Abstract
Fibroblast growth factor 23 (FGF23) has been described as an important regulator of mineral homeostasis, but has lately also been linked to iron deficiency, inflammation, and erythropoiesis. FGF23 is essential for the maintenance of phosphate homeostasis in the body and activating mutations in the gene itself or inactivating mutations in its upstream regulators can result in severe chronic hypophosphatemia, where an unbalanced mineral homeostasis often leads to rickets in children and osteomalacia in adults. FGF23 can be regulated by changes in transcriptional activity or by changes at the post-translational level. The balance between O-glycosylation and phosphorylation is an important determinant of how much active intact or inactive cleaved FGF23 will be released in the circulation. In the past years, it has become evident that iron deficiency and inflammation regulate FGF23 in a way that is not associated with its classical role in mineral metabolism. These conditions will not only result in an upregulation of FGF23 transcription, but also in increased cleavage, leaving the levels of active intact FGF23 unchanged. The exact mechanisms behind and function of this process are still unclear. However, a deeper understanding of FGF23 regulation in both the classical and non-classical way is important to develop better treatment options for diseases associated with disturbed FGF23 biology. In this review, we describe how the currently known upstream regulators of FGF23 change FGF23 transcription and affect its post-translational modifications at the molecular level.
Collapse
|
13
|
Omagari D, Hayatsu M, Yamamoto K, Kobayashi M, Tsukano N, Nameta M, Mikami Y. Gap junction with MLO-A5 osteoblast-like cell line induces ALP and BSP transcription of 3T3-L1 pre-adipocyte like cell line via Hspb1 while retaining adipogenic differentiation ability. Bone 2020; 141:115596. [PMID: 32814124 DOI: 10.1016/j.bone.2020.115596] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/18/2020] [Revised: 08/09/2020] [Accepted: 08/10/2020] [Indexed: 12/09/2022]
Abstract
In bone tissues, gap junctions form direct links between the cytoplasm of an osteocyte and another adjacent osteocyte or osteoblast, which underlie both bone formation and bone resorption. We have previously demonstrated that alkaline phosphatase (ALP) and bone sialoprotein (BSP), which are osteoblast markers, were induced in mesenchymal stem cells (MSCs) co-cultured with osteoblast-like cell line. However, the molecular mechanism of this process has not been fully addressed. Furthermore, few advances have been made toward elucidating the communication networks that link the status of committed cells such as (pre-) adipocytes that differentiated from MSCs as well as osteoblasts. Therefore, the objective of the present study was to investigate the mechanism underlying the communication network between pre-adipocytes and osteoblasts. We evaluated the effect of co-culture with osteoblast on the cell status of pre-adipocytes using murine osteoblast-like cell line, MLO-A5, and pre-adipocyte-like cell line, 3T3-L1, respectively. The results presented here demonstrated that osteoblasts and pre-adipocytes communicate via gap junctions, and the ensuing drastic increase in ALP and BSP transcription in co-cultured pre-adipocytes was induced, at least partly, via heat shock protein family B member 1 (Hspb1). In addition, terminal differentiation into adipocytes was suppressed in pre-adipocytes during co-culture with osteoblast without loss of adipogenic differentiation ability. Interestingly, after co-culture with osteoblasts, isolated co-cultured pre-adipocytes were able to differentiate to adipocytes as well as original pre-adipocytes. These results suggest that gap junctional communication with osteoblasts suppressed adipogenic differentiation of pre-adipocytes without loss of adipogenic differentiation ability.
Collapse
Affiliation(s)
- Daisuke Omagari
- Department of Pathology, Nihon University School of Dentistry, 1-8-13 Kanda-Surugadai, Chiyoda-ku, Tokyo 101-8310, Japan
| | - Manabu Hayatsu
- Division of Microscopic Anatomy, Niigata University Graduate School of Medical and Dental Sciences, 1-757 Asahimachi-dori, Chuo-ku, Niigata-shi, Niigata 951-8122, Japan
| | - Kiyofumi Yamamoto
- Department of Pharmacology, Nihon University School of Dentistry, 1-8-13 Kanda-Surugadai, Chiyoda-ku, Tokyo 101-8310, Japan
| | - Masayuki Kobayashi
- Department of Pharmacology, Nihon University School of Dentistry, 1-8-13 Kanda-Surugadai, Chiyoda-ku, Tokyo 101-8310, Japan
| | - Naruchika Tsukano
- Division of Microscopic Anatomy, Niigata University Graduate School of Medical and Dental Sciences, 1-757 Asahimachi-dori, Chuo-ku, Niigata-shi, Niigata 951-8122, Japan
| | - Masaaki Nameta
- Electron Microscope Core Facility, Niigata University, 1-757 Asahimachi-dori, Chuo-ku, Niigata-shi, Niigata 951-8122, Japan
| | - Yoshikazu Mikami
- Division of Microscopic Anatomy, Niigata University Graduate School of Medical and Dental Sciences, 1-757 Asahimachi-dori, Chuo-ku, Niigata-shi, Niigata 951-8122, Japan.
| |
Collapse
|
14
|
Socorro M, Shinde A, Yamazaki H, Khalid S, Monier D, Beniash E, Napierala D. Trps1 transcription factor represses phosphate-induced expression of SerpinB2 in osteogenic cells. Bone 2020; 141:115673. [PMID: 33022456 PMCID: PMC7680451 DOI: 10.1016/j.bone.2020.115673] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/24/2020] [Revised: 09/24/2020] [Accepted: 09/29/2020] [Indexed: 12/13/2022]
Abstract
Serine protease inhibitor SerpinB2 is one of the most upregulated proteins following cellular stress. This multifunctional serpin has been attributed a number of pleiotropic activities, including roles in cell survival, proliferation, differentiation, immunity and extracellular matrix (ECM) remodeling. Studies of cancer cells demonstrated that expression of SerpinB2 is directly repressed by the Trps1 transcription factor, which is a regulator of skeletal and dental tissues mineralization. In our previous studies, we identified SerpinB2 as one of the novel genes highly upregulated by phosphate (Pi) at the initiation of the mineralization process, however SerpinB2 has never been implicated in formation nor homeostasis of mineralized tissues. The aim of this study was to establish, if SerpinB2 is involved in function of cells producing mineralized ECM and to determine the interplay between Pi signaling and Trps1 in the regulation of SerpinB2 expression specifically in cells producing mineralized ECM. Analyses of the SerpinB2 expression pattern in mouse skeletal and dental tissues detected high SerpinB2 protein levels specifically in cells producing mineralized ECM. qRT-PCR and Western blot analyses demonstrated that SerpinB2 expression is activated by elevated Pi specifically in osteogenic cells. However, the Pi-induced SerpinB2 expression was diminished by overexpression of Trps1. Decreased SerpinB2 levels were also detected in osteoblasts and odontoblasts of 2.3Col1a1-Trps1 transgenic mice. Chromatin immunoprecipitation assay (ChIP) revealed that the occupancy of Trps1 on regulatory elements in the SerpinB2 gene changes in response to Pi. In vitro functional assessment of the consequences of SerpinB2 deficiency in cells producing mineralized ECM detected impaired mineralization in SerpinB2-deficient cells in comparison with controls. In conclusion, high and specific expression of SerpinB2 in cells producing mineralized ECM, the impaired mineralization of SerpinB2-deficient cells and regulation of SerpinB2 expression by two molecules regulating formation of mineralized tissues suggest involvement of SerpinB2 in physiological mineralization.
Collapse
Affiliation(s)
- Mairobys Socorro
- Center for Craniofacial Regeneration, Department of Oral Biology, University of Pittsburgh School of Dental Medicine, Pittsburgh, PA, USA
| | - Apurva Shinde
- Center for Craniofacial Regeneration, Department of Oral Biology, University of Pittsburgh School of Dental Medicine, Pittsburgh, PA, USA
| | - Hajime Yamazaki
- Center for Craniofacial Regeneration, Department of Oral Biology, University of Pittsburgh School of Dental Medicine, Pittsburgh, PA, USA
| | - Sana Khalid
- Center for Craniofacial Regeneration, Department of Oral Biology, University of Pittsburgh School of Dental Medicine, Pittsburgh, PA, USA
| | - Daisy Monier
- Center for Craniofacial Regeneration, Department of Oral Biology, University of Pittsburgh School of Dental Medicine, Pittsburgh, PA, USA
| | - Elia Beniash
- Center for Craniofacial Regeneration, Department of Oral Biology, University of Pittsburgh School of Dental Medicine, Pittsburgh, PA, USA; McGowan Institute for Regenerative Medicine, University of Pittsburgh, Pittsburgh, PA, USA
| | - Dobrawa Napierala
- Center for Craniofacial Regeneration, Department of Oral Biology, University of Pittsburgh School of Dental Medicine, Pittsburgh, PA, USA; McGowan Institute for Regenerative Medicine, University of Pittsburgh, Pittsburgh, PA, USA.
| |
Collapse
|
15
|
Abstract
Osteocytes are an ancient cell, appearing in fossilized skeletal remains of early fish and dinosaurs. Despite its relative high abundance, even in the context of nonskeletal cells, the osteocyte is perhaps among the least studied cells in all of vertebrate biology. Osteocytes are cells embedded in bone, able to modify their surrounding extracellular matrix via specialized molecular remodeling mechanisms that are independent of the bone forming osteoblasts and bone-resorbing osteoclasts. Osteocytes communicate with osteoclasts and osteoblasts via distinct signaling molecules that include the RankL/OPG axis and the Sost/Dkk1/Wnt axis, among others. Osteocytes also extend their influence beyond the local bone environment by functioning as an endocrine cell that controls phosphate reabsorption in the kidney, insulin secretion in the pancreas, and skeletal muscle function. These cells are also finely tuned sensors of mechanical stimulation to coordinate with effector cells to adjust bone mass, size, and shape to conform to mechanical demands.
Collapse
Affiliation(s)
- Alexander G Robling
- Indiana Center for Musculoskeletal Health, Indiana University School of Medicine, Indianapolis, Indiana 46202, USA;
| | - Lynda F Bonewald
- Indiana Center for Musculoskeletal Health, Indiana University School of Medicine, Indianapolis, Indiana 46202, USA;
| |
Collapse
|
16
|
Ruiz-Gaspà S, Guañabens N, Jurado S, Combalia A, Peris P, Monegal A, Parés A. Bilirubin and bile acids in osteocytes and bone tissue. Potential role in the cholestatic-induced osteoporosis. Liver Int 2020; 40:2767-2775. [PMID: 32749754 DOI: 10.1111/liv.14630] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/23/2020] [Revised: 07/27/2020] [Accepted: 07/28/2020] [Indexed: 12/23/2022]
Abstract
BACKGROUND AND AIMS Osteoporosis is a common complication in patients with primary biliary cholangitis. Both bilirubin and lithocholic acid (LCA) result in detrimental effects on osteoblastic cells, and ursodeoxycholic acid (UDCA) counteracts these outcomes. However, there is no information on the consequences of these retained substances of cholestasis and sera from cholestatic patients in osteocytes. METHODS The impact of bilirubin, LCA, UDCA and serum from jaundiced patients on viability, differentiation, mineralization and apoptosis has been assessed in MLO-Y4 and MLO-A5 osteocyte cell lines. Effects on gene expression were assessed in these cells and in human bone fragments. RESULTS Lithocholic acid 10 μmol/L and bilirubin 50 μmol/L decreased viability in MLO-Y4 and MLO-A5 cells (11% and 53% respectively; P ≤ .01). UDCA alone or combined with LCA or bilirubin increased cell viability. Jaundiced sera decreased cell viability (56%), an effect which was reverted by UDCA. Bilirubin decreased differentiation by 47% in MLO-Y4 (P ≤ .01) and mineralization (87%) after 21 days in MLO-A5 (P ≤ .03). Both bilirubin and LCA increased apoptosis in MLO-Y4, and UDCA diminished the apoptotic effect. Moreover, bilirubin down-regulated RUNX2 and up-regulated RANKL gene expression in bone tissue, MLO-Y4 and MLO-A5 cells, and LCA up-regulated RANKL expression in bone tissue. UDCA 100 μmol/L increased the gene expression of all these genes in bone tissue and MLO-Y4 cells and neutralized the decreased RUNX2 expression induced by bilirubin. CONCLUSION Bilirubin and LCA have damaging consequences in osteocytes by decreasing viability, differentiation and mineralization, increasing apoptosis and modifying gene expression, effects that are neutralized by UDCA.
Collapse
Affiliation(s)
- Silvia Ruiz-Gaspà
- Centro de Investigación Biomédica en Red en Enfermedades Hepáticas y Digestivas (CIBERehd), Barcelona, Spain.,Metabolic Bone Diseases Unit, Department of Rheumatology, Hospital Clínic, University of Barcelona, Barcelona, Spain
| | - Núria Guañabens
- Centro de Investigación Biomédica en Red en Enfermedades Hepáticas y Digestivas (CIBERehd), Barcelona, Spain.,Metabolic Bone Diseases Unit, Department of Rheumatology, Hospital Clínic, University of Barcelona, Barcelona, Spain
| | - Susana Jurado
- Centro de Investigación Biomédica en Red en Enfermedades Hepáticas y Digestivas (CIBERehd), Barcelona, Spain.,Metabolic Bone Diseases Unit, Department of Rheumatology, Hospital Clínic, University of Barcelona, Barcelona, Spain
| | - Andreu Combalia
- Metabolic Bone Diseases Unit, Department of Rheumatology, Hospital Clínic, University of Barcelona, Barcelona, Spain
| | - Pilar Peris
- Centro de Investigación Biomédica en Red en Enfermedades Hepáticas y Digestivas (CIBERehd), Barcelona, Spain.,Metabolic Bone Diseases Unit, Department of Rheumatology, Hospital Clínic, University of Barcelona, Barcelona, Spain
| | - Ana Monegal
- Metabolic Bone Diseases Unit, Department of Rheumatology, Hospital Clínic, University of Barcelona, Barcelona, Spain
| | - Albert Parés
- Centro de Investigación Biomédica en Red en Enfermedades Hepáticas y Digestivas (CIBERehd), Barcelona, Spain.,Liver Unit, Hospital Clínic, IDIBAPS, University of Barcelona, Barcelona, Spain
| |
Collapse
|
17
|
Abstract
The aim of this review was to compile a list of tools currently available to study bone cells and in particular osteocytes. As the interest (and importance) in osteocyte biology has greatly expanded over the past decade, new tools and techniques have become available to study these elusive cells, RECENT FINDINGS: Osteocytes are the main orchestrators of bone remodeling. They control both osteoblasts and osteoclast activities via cell-to cell communication or through secreted factors. Osteocytes are also the mechanosensors of the bone and they orchestrate skeletal adaptation to loads. Recent discoveries have greatly expanded our knowledge and understanding of these cells and new models are now available to further uncover the functions of osteocytes. Novel osteocytic cell lines, primary cultures, and 3D scaffolds are now available to investigators to further unravel the functions and roles of these cells.
Collapse
Affiliation(s)
- Paola Divieti Pajevic
- Translational Dental Medicine, Boston University Henry M. Goldman School of Dental Medicine, 700 Albany Street, W201E, Boston, MA, 02118, USA.
| |
Collapse
|
18
|
Isolation of Murine and Human Osteocytes. Methods Mol Biol 2020. [PMID: 32979194 DOI: 10.1007/978-1-0716-0989-7_1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/01/2023]
Abstract
Osteocytes are thought to be the mechanosensors of bone by sensing mechanical loads imposed upon the bone and transmitting these signals to the other bone cells to initiate bone modeling and remodeling. The location of osteocytes deep within bone is ideal for their function. However, this location makes the study of osteocytes in vivo technically difficult. There are several methods for obtaining and culturing primary osteocytes for in vitro experiments and ex vivo observation. In this chapter, several proven methods are discussed including the isolation of avian osteocytes from chicks and osteocytes from calvaria and long bones of young mice. A detailed protocol for the isolation of osteocytes from hypermineralized bone of mature and aged animals is provided. In addition, a modified version of this protocol that can be used to isolate osteocytes from human trabecular bone is described.
Collapse
|
19
|
Akhter MN, Hara ES, Kadoya K, Okada M, Matsumoto T. Cellular Fragments as Biomaterial for Rapid In Vitro Bone-Like Tissue Synthesis. Int J Mol Sci 2020; 21:E5327. [PMID: 32727114 PMCID: PMC7432235 DOI: 10.3390/ijms21155327] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2020] [Accepted: 07/24/2020] [Indexed: 02/06/2023] Open
Abstract
Current stem cell-based techniques for bone-like tissue synthesis require at least two to three weeks. Therefore, novel techniques to promote rapid 3D bone-like tissue synthesis in vitro are still required. In this study, we explored the concept of using cell nanofragments as a substrate material to promote rapid bone formation in vitro. The methods for cell nanofragment fabrication were ultrasonication (30 s and 3 min), non-ionic detergent (triton 0.1% and 1%), or freeze-dried powder. The results showed that ultrasonication for 3 min allowed the fabrication of homogeneous nanofragments of less than 150 nm in length, which mineralized surprisingly in just one day, faster than the fragments obtained from all other methods. Further optimization of culture conditions indicated that a concentration of 10 mM or 100 mM of β-glycerophosphate enhanced, whereas fetal bovine serum (FBS) inhibited in a concentration-dependent manner, the mineralization of the cell nanofragments. Finally, a 3D collagen-cell nanofragment-mineral complex mimicking a bone-like structure was generated in just two days by combining the cell nanofragments in collagen gel. In conclusion, sonication for three min could be applied as a novel method to fabricate cell nanofragments of less than 150 nm in length, which can be used as a material for in vitro bone tissue engineering.
Collapse
Affiliation(s)
- Mst Nahid Akhter
- Department of Biomaterials, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, 2-5-1 Shikata-cho, Kita-Ku, Okayama-shi, Okayama-ken 700-8558, Japan
| | - Emilio Satoshi Hara
- Department of Biomaterials, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, 2-5-1 Shikata-cho, Kita-Ku, Okayama-shi, Okayama-ken 700-8558, Japan
| | - Koichi Kadoya
- Department of Biomaterials, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, 2-5-1 Shikata-cho, Kita-Ku, Okayama-shi, Okayama-ken 700-8558, Japan
| | - Masahiro Okada
- Department of Biomaterials, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, 2-5-1 Shikata-cho, Kita-Ku, Okayama-shi, Okayama-ken 700-8558, Japan
| | - Takuya Matsumoto
- Department of Biomaterials, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, 2-5-1 Shikata-cho, Kita-Ku, Okayama-shi, Okayama-ken 700-8558, Japan
| |
Collapse
|
20
|
Hurault L, Creff G, Hagège A, Santucci-Darmanin S, Pagnotta S, Farlay D, Den Auwer C, Pierrefite-Carle V, Carle GF. Uranium Effect on Osteocytic Cells In Vitro. Toxicol Sci 2020; 170:199-209. [PMID: 31120128 DOI: 10.1093/toxsci/kfz087] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
Once absorbed in the body, natural uranium [U(VI)], a radionucleotide naturally present in the environment, is targeted to the skeleton which is the long-term storage organ. We and others have reported the U(VI) negative effects on osteoblasts (OB) and osteoclasts (OC), the main two cell types involved in bone remodeling. In the present work, we addressed the U(VI) effect on osteocytes (OST), the longest living bone cell type and the more numerous (> 90%). These cells, which are embedded in bone matrix and thus are the more prone to U(VI) long-term exposure, are now considered as the chief orchestrators of the bone remodeling process. Our results show that the cytotoxicity index of OST is close to 730 µM, which is about twice the one reported for OB and OC. However, despite this resistance potential, we observed that chronic U(VI) exposure as low as 5 µM led to a drastic decrease of the OST mineralization function. Gene expression analysis showed that this impairment could potentially be linked to an altered differentiation process of these cells. We also observed that U(VI) was able to trigger autophagy, a highly conserved survival mechanism. Extended X-ray absorption fine structure analysis at the U LIII edge of OST cells exposed to U(VI) unambiguously shows the formation of an uranyl phosphate phase in which the uranyl local structure is similar to the one present in Autunite. Thus, our results demonstrate for the first time that OST mineralization function can be affected by U(VI) exposure as low as 5 µM, suggesting that prolonged exposure could alter the central role of these cells in the bone environment.
Collapse
Affiliation(s)
- Lucile Hurault
- UMR E-4320 TIRO-MATOs CEA/DRF/BIAM, Université Nice Sophia Antipolis, Université Côte d'Azur 06107 Nice
| | - Gaelle Creff
- UMR7272 Institut de Chimie de Nice, Université Côte d'Azur, CNRS, Nice
| | - Agnès Hagège
- Institut des Sciences Analytiques, UMR 5280, Université de Lyon, CNRS, Université Claude Bernard Lyon 1, Lyon
| | - Sabine Santucci-Darmanin
- UMR E-4320 TIRO-MATOs CEA/DRF/BIAM, Université Nice Sophia Antipolis, Université Côte d'Azur 06107 Nice
| | - Sophie Pagnotta
- Centre Commun de Microscopie Appliquée, Université Nice Sophia Antipolis, Nice
| | | | | | - Valérie Pierrefite-Carle
- UMR E-4320 TIRO-MATOs CEA/DRF/BIAM, Université Nice Sophia Antipolis, Université Côte d'Azur 06107 Nice
| | - Georges F Carle
- UMR E-4320 TIRO-MATOs CEA/DRF/BIAM, Université Nice Sophia Antipolis, Université Côte d'Azur 06107 Nice
| |
Collapse
|
21
|
Khalid S, Yamazaki H, Socorro M, Monier D, Beniash E, Napierala D. Reactive oxygen species (ROS) generation as an underlying mechanism of inorganic phosphate (P i)-induced mineralization of osteogenic cells. Free Radic Biol Med 2020; 153:103-111. [PMID: 32330587 PMCID: PMC7262875 DOI: 10.1016/j.freeradbiomed.2020.04.008] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/08/2020] [Revised: 03/17/2020] [Accepted: 04/09/2020] [Indexed: 02/07/2023]
Abstract
Reactive Oxygen Species (ROS) are a natural byproduct of oxygen metabolism. At physiological levels, ROS regulate multiple cellular processes like proliferation, migration, and differentiation. Increased levels of ROS are associated with pathological conditions, such as inflammation and vascular calcification, where they elicit cytotoxic effects. These contrasting outcomes of ROS have also been reported in osteogenic precursor cells. However, the role of ROS in committed osteogenic cells has not been investigated. Cytotoxic and physiologic effects have also been demonstrated for extracellular phosphate (Pi). Specifically, in committed osteogenic cells Pi stimulates their major function (mineralization), however in osteogenic precursors and endothelial cells Pi cytotoxicity has been reported. Interestingly, Pi cytotoxic effects have been associated with ROS production in the pathological vascular mineralization. In this study, we investigated a molecular mechanistic link between elevated Pi and ROS production in the context of the mineralization function of committed osteogenic cells. Using committed osteogenic cells, 17IIA11 odontoblast-like cell and MLO-A5 osteoblast cell lines, we have unveil that Pi enhances intracellular ROS production. Furthermore, using a combination of mineralization assays and gene expression analyses, we determined that Pi-induced intracellular ROS supports the physiological mineralization process. In contrast, the exogenous ROS, provided in a form of H2O2, was detrimental for osteogenic cells. By comparing molecular signaling cascades induced by extracellular ROS and Pi, we identified differences in signaling routes that determine physiologic versus toxic effect of ROS on osteogenic cells. Specifically, while both extracellular and Pi-induced intracellular ROS utilize Erk1/2 signaling mediator, only extracellular ROS induces stress-activated mitogen-activated protein kinases P38 and JNK that are associated with cell death. In summary, our results uncovered a physiological role of ROS in the Pi-induced mineralization through the molecular pathway that is distinct from ROS-induced cytotoxic effects.
Collapse
Affiliation(s)
- Sana Khalid
- Center for Craniofacial Regeneration, Dept. of Oral Biology, University of Pittsburgh School of Dental Medicine, Pittsburgh, PA, USA
| | - Hajime Yamazaki
- Center for Craniofacial Regeneration, Dept. of Oral Biology, University of Pittsburgh School of Dental Medicine, Pittsburgh, PA, USA
| | - Mairobys Socorro
- Center for Craniofacial Regeneration, Dept. of Oral Biology, University of Pittsburgh School of Dental Medicine, Pittsburgh, PA, USA
| | - Daisy Monier
- Center for Craniofacial Regeneration, Dept. of Oral Biology, University of Pittsburgh School of Dental Medicine, Pittsburgh, PA, USA
| | - Elia Beniash
- Center for Craniofacial Regeneration, Dept. of Oral Biology, University of Pittsburgh School of Dental Medicine, Pittsburgh, PA, USA; McGowan Institute for Regenerative Medicine, University of Pittsburgh, Pittsburgh, PA, USA
| | - Dobrawa Napierala
- Center for Craniofacial Regeneration, Dept. of Oral Biology, University of Pittsburgh School of Dental Medicine, Pittsburgh, PA, USA; McGowan Institute for Regenerative Medicine, University of Pittsburgh, Pittsburgh, PA, USA.
| |
Collapse
|
22
|
Saunders RK, Infanti J, Ali H, Shuey T, Potteiger C, McNeilly S, Adams CS. Gram-Negative Bacteria Are Internalized Into Osteocyte-Like Cells. J Orthop Res 2020; 38:861-870. [PMID: 31692074 DOI: 10.1002/jor.24510] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/02/2019] [Accepted: 10/14/2019] [Indexed: 02/04/2023]
Abstract
While Gram-positive organisms are the most common causative agent of initial bone infections, the percentage of Gram-negative species increases in reoccurring bone infections. As bacterial internalization has been suggested as one cause of reoccurring bone infection, we tested the hypothesis that Gram-negative species of bacteria can be internalized into bone cells. Using the MLO-A5 and the MLO-Y4 cell lines as our cell models, we demonstrated that the Gram-negative species, Proteus mirabilis and Serratia marcescens, can be internalized in these cells using an internalization assay. This rate at which these two species were internalized was both time- and initial concentration-dependent. Confocal analysis demonstrated the presence of internalized bacteria within both cell types. Inhibition of the cellular uptake with methyl-β-cyclodextrin and chloroquine both reduced internalized bacteria, indicating that this process is, at least in part, cell mediated. Finally, we demonstrated that the presence of internalized P. mirabilis did not impact cell viability, measured either by lactate dehydrogenase (LDH) release or 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) activity, while the presence of S. marcescens, on the other hand, both increased LDH release and reduced MTT activity, indicating a loss of cell viability in response to the organism. These results indicated that both species of Gram-negative bacteria can be internalized by bone cells and that these internalized bacteria could potentially result in reoccurring bone infections. © 2019 Orthopaedic Research Society. Published by Wiley Periodicals, Inc. J Orthop Res 38:861-870, 2020.
Collapse
Affiliation(s)
- Ray K Saunders
- Department of Pathobiology, School of Veterinary Medicine, University of Pennsylvania, Philadelphia, Pennsylvania
| | - Joseph Infanti
- Graduate School of Biological Sciences, Rowan University, Stratford, New Jersey
| | - Hibah Ali
- Touro College of Osteopathic Medicine, New York, New York
| | - Timothy Shuey
- Department of Bio-Medical Sciences, Philadelphia College of Osteopathic Medicine, Philadelphia, Pennsylvania
| | - Courtney Potteiger
- Department of Bio-Medical Sciences, Philadelphia College of Osteopathic Medicine, Philadelphia, Pennsylvania
| | - Shelby McNeilly
- Department of Bio-Medical Sciences, Philadelphia College of Osteopathic Medicine, Philadelphia, Pennsylvania
| | - Christopher S Adams
- Department of Bio-Medical Sciences, Philadelphia College of Osteopathic Medicine, Philadelphia, Pennsylvania
| |
Collapse
|
23
|
Aldemir Dikici B, Reilly GC, Claeyssens F. Boosting the Osteogenic and Angiogenic Performance of Multiscale Porous Polycaprolactone Scaffolds by In Vitro Generated Extracellular Matrix Decoration. ACS APPLIED MATERIALS & INTERFACES 2020; 12:12510-12524. [PMID: 32100541 PMCID: PMC7146758 DOI: 10.1021/acsami.9b23100] [Citation(s) in RCA: 50] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/21/2019] [Accepted: 02/26/2020] [Indexed: 05/05/2023]
Abstract
Tissue engineering (TE)-based bone grafts are favorable alternatives to autografts and allografts. Both biochemical properties and the architectural features of TE scaffolds are crucial in their design process. Synthetic polymers are attractive biomaterials to be used in the manufacturing of TE scaffolds, due to various advantages, such as being relatively inexpensive, enabling precise reproducibility, possessing tunable mechanical/chemical properties, and ease of processing. However, such scaffolds need modifications to improve their limited interaction with biological tissues. Structurally, multiscale porosity is advantageous over single-scale porosity; therefore, in this study, we have considered two key points in the design of a bone repair material; (i) manufacture of multiscale porous scaffolds made of photocurable polycaprolactone (PCL) by a combination of emulsion templating and three-dimensional (3D) printing and (ii) decoration of these scaffolds with the in vitro generated bone-like extracellular matrix (ECM) to create biohybrid scaffolds that have improved biological performance compared to PCL-only scaffolds. Multiscale porous scaffolds were fabricated, bone cells were cultured on them, and then they were decellularized. The biological performance of these constructs was tested in vitro and in vivo. Mesenchymal progenitors were seeded on PCL-only and biohybrid scaffolds. Cells not only showed improved attachment on biohybrid scaffolds but also exhibited a significantly higher rate of cell growth and osteogenic activity. The chick chorioallantoic membrane (CAM) assay was used to explore the angiogenic potential of the biohybrid scaffolds. The CAM assay indicated that the presence of the in vitro generated ECM on polymeric scaffolds resulted in higher angiogenic potential and a high degree of tissue infiltration. This study demonstrated that multiscale porous biohybrid scaffolds present a promising approach to improve bioactivity, encourage precursors to differentiate into mature bones, and to induce angiogenesis.
Collapse
Affiliation(s)
- Betül Aldemir Dikici
- Department
of Materials Science and Engineering, Kroto Research Institute, University of Sheffield, Sheffield S3 7HQ, United Kingdom
- Department
of Materials Science and Engineering, INSIGNEO Institute for In Silico
Medicine, University of Sheffield, The Pam Liversidge Building, Sheffield S1 3JD, United Kingdom
| | - Gwendolen C. Reilly
- Department
of Materials Science and Engineering, INSIGNEO Institute for In Silico
Medicine, University of Sheffield, The Pam Liversidge Building, Sheffield S1 3JD, United Kingdom
| | - Frederik Claeyssens
- Department
of Materials Science and Engineering, Kroto Research Institute, University of Sheffield, Sheffield S3 7HQ, United Kingdom
- Department
of Materials Science and Engineering, INSIGNEO Institute for In Silico
Medicine, University of Sheffield, The Pam Liversidge Building, Sheffield S1 3JD, United Kingdom
| |
Collapse
|
24
|
Fan Y, Jalali A, Chen A, Zhao X, Liu S, Teli M, Guo Y, Li F, Li J, Siegel A, Yang L, Liu J, Na S, Agarwal M, Robling AG, Nakshatri H, Li BY, Yokota H. Skeletal loading regulates breast cancer-associated osteolysis in a loading intensity-dependent fashion. Bone Res 2020; 8:9. [PMID: 32128277 PMCID: PMC7021802 DOI: 10.1038/s41413-020-0083-6] [Citation(s) in RCA: 41] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2019] [Revised: 10/21/2019] [Accepted: 11/18/2019] [Indexed: 01/29/2023] Open
Abstract
Osteocytes are mechanosensitive bone cells, but little is known about their effects on tumor cells in response to mechanical stimulation. We treated breast cancer cells with osteocyte-derived conditioned medium (CM) and fluid flow-treated conditioned medium (FFCM) with 0.25 Pa and 1 Pa shear stress. Notably, CM and FFCM at 0.25 Pa induced the mesenchymal-to-epithelial transition (MET), but FFCM at 1 Pa induced the epithelial-to-mesenchymal transition (EMT). This suggested that the effects of fluid flow on conditioned media depend on flow intensity. Fluorescence resonance energy transfer (FRET)-based evaluation of Src activity and vinculin molecular force showed that osteopontin was involved in EMT and MET switching. A mouse model of tumor-induced osteolysis was tested using dynamic tibia loadings of 1, 2, and 5 N. The low 1 N loading suppressed tumor-induced osteolysis, but this beneficial effect was lost and reversed with loads at 2 and 5 N, respectively. Changing the loading intensities in vivo also led to changes in serum TGFβ levels and the composition of tumor-associated volatile organic compounds in the urine. Collectively, this study demonstrated the critical role of intensity-dependent mechanotransduction and osteopontin in tumor-osteocyte communication, indicating that a biophysical factor can tangibly alter the behaviors of tumor cells in the bone microenvironment.
Collapse
Affiliation(s)
- Yao Fan
- 1Department of Pharmacology, School of Pharmacy, Harbin Medical University, Harbin, 150081 China.,2Department of Biomedical Engineering, Indiana University Purdue University Indianapolis, Indianapolis, IN 46202 USA
| | - Aydin Jalali
- 2Department of Biomedical Engineering, Indiana University Purdue University Indianapolis, Indianapolis, IN 46202 USA
| | - Andy Chen
- 2Department of Biomedical Engineering, Indiana University Purdue University Indianapolis, Indianapolis, IN 46202 USA
| | - Xinyu Zhao
- 2Department of Biomedical Engineering, Indiana University Purdue University Indianapolis, Indianapolis, IN 46202 USA.,Peking Union Medical College Hospital, Chinese Academy of Medical Sciences, Beijing, 100730 China
| | - Shengzhi Liu
- 2Department of Biomedical Engineering, Indiana University Purdue University Indianapolis, Indianapolis, IN 46202 USA
| | - Meghana Teli
- 2Department of Biomedical Engineering, Indiana University Purdue University Indianapolis, Indianapolis, IN 46202 USA
| | - Yunxia Guo
- 1Department of Pharmacology, School of Pharmacy, Harbin Medical University, Harbin, 150081 China.,2Department of Biomedical Engineering, Indiana University Purdue University Indianapolis, Indianapolis, IN 46202 USA
| | - Fangjia Li
- 4Department of Physics, Indiana University Purdue University Indianapolis, Indianapolis, IN 46202 USA
| | - Junrui Li
- 5Department of Mechanical Engineering, Oakland University, Rochester, MI 48309 USA
| | - Amanda Siegel
- 6Integrative Nanosystems Development Institute, Indiana University Purdue University Indianapolis, Indianapolis, IN 46202 USA
| | - Lianxiang Yang
- 5Department of Mechanical Engineering, Oakland University, Rochester, MI 48309 USA
| | - Jing Liu
- 4Department of Physics, Indiana University Purdue University Indianapolis, Indianapolis, IN 46202 USA
| | - Sungsoo Na
- 2Department of Biomedical Engineering, Indiana University Purdue University Indianapolis, Indianapolis, IN 46202 USA
| | - Mangilal Agarwal
- 6Integrative Nanosystems Development Institute, Indiana University Purdue University Indianapolis, Indianapolis, IN 46202 USA
| | - Alexander G Robling
- 7Department of Anatomy and Cell Biology, Indiana University School of Medicine, Indianapolis, IN 46202 USA.,8Indiana Center for Musculoskeletal Health, Indiana University School of Medicine, Indianapolis, IN 46202 USA
| | - Harikrishna Nakshatri
- 9Department of Surgery, Simon Cancer Research Center, Indiana University School of Medicine, Indianapolis, IN 46202 USA
| | - Bai-Yan Li
- 1Department of Pharmacology, School of Pharmacy, Harbin Medical University, Harbin, 150081 China
| | - Hiroki Yokota
- 1Department of Pharmacology, School of Pharmacy, Harbin Medical University, Harbin, 150081 China.,2Department of Biomedical Engineering, Indiana University Purdue University Indianapolis, Indianapolis, IN 46202 USA.,5Department of Mechanical Engineering, Oakland University, Rochester, MI 48309 USA.,6Integrative Nanosystems Development Institute, Indiana University Purdue University Indianapolis, Indianapolis, IN 46202 USA.,7Department of Anatomy and Cell Biology, Indiana University School of Medicine, Indianapolis, IN 46202 USA.,8Indiana Center for Musculoskeletal Health, Indiana University School of Medicine, Indianapolis, IN 46202 USA
| |
Collapse
|
25
|
Bellido T, Delgado-Calle J. Ex Vivo Organ Cultures as Models to Study Bone Biology. JBMR Plus 2020; 4:JBM410345. [PMID: 32161838 PMCID: PMC7059827 DOI: 10.1002/jbm4.10345] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/16/2019] [Revised: 01/16/2020] [Accepted: 01/27/2020] [Indexed: 12/12/2022] Open
Abstract
The integrity of the skeleton is maintained by the coordinated and balanced activities of the bone cells. Osteoclasts resorb bone, osteoblasts form bone, and osteocytes orchestrate the activities of osteoclasts and osteoblasts. A variety of in vitro approaches has been used in an attempt to reproduce the complex in vivo interactions among bone cells under physiological as well as pathological conditions and to test new therapies. Most cell culture systems lack the proper extracellular matrix, cellular diversity, and native spatial distribution of the components of the bone microenvironment. In contrast, ex vivo cultures of fragments of intact bone preserve key cell-cell and cell-matrix interactions and allow the study of bone cells in their natural 3D environment. Further, bone organ cultures predict the in vivo responses to genetic and pharmacologic interventions saving precious time and resources. Moreover, organ cultures using human bone reproduce human conditions and are a useful tool to test patient responses to therapeutic agents. Thus, these ex vivo approaches provide a platform to perform research in bone physiology and pathophysiology. In this review, we describe protocols optimized in our laboratories to establish ex vivo bone organ cultures and provide technical hints and suggestions. In addition, we present examples on how this technical approach can be employed to study osteocyte biology, drug responses in bone, cancer-induced bone disease, and cross-talk between bone and other organs © 2020 The Authors. JBMR Plus published by Wiley Periodicals, Inc. on behalf of American Society for Bone and Mineral Research.
Collapse
Affiliation(s)
- Teresita Bellido
- Department of Anatomy, Cell Biology & Physiology Indiana University School of Medicine Indianapolis IN USA.,Division of Endocrinology, Department of Medicine Indiana University School of Medicine Indianapolis IN USA.,Indiana Center for Musculoskeletal Health Indiana University School of Medicine Indianapolis IN USA.,Richard L. Roudebush Veterans Affairs Medical Center Indianapolis IN USA
| | - Jesus Delgado-Calle
- Department of Anatomy, Cell Biology & Physiology Indiana University School of Medicine Indianapolis IN USA.,Indiana Center for Musculoskeletal Health Indiana University School of Medicine Indianapolis IN USA.,Richard L. Roudebush Veterans Affairs Medical Center Indianapolis IN USA.,Division of Hematology/Oncology, Department of Medicine Indiana University School of Medicine Indianapolis IN USA
| |
Collapse
|
26
|
Sego TJ, Prideaux M, Sterner J, McCarthy BP, Li P, Bonewald LF, Ekser B, Tovar A, Jeshua Smith L. Computational fluid dynamic analysis of bioprinted self-supporting perfused tissue models. Biotechnol Bioeng 2019; 117:798-815. [PMID: 31788785 PMCID: PMC7015804 DOI: 10.1002/bit.27238] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2019] [Revised: 11/12/2019] [Accepted: 11/22/2019] [Indexed: 01/11/2023]
Abstract
Natural tissues are incorporated with vasculature, which is further integrated with a cardiovascular system responsible for driving perfusion of nutrient‐rich oxygenated blood through the vasculature to support cell metabolism within most cell‐dense tissues. Since scaffold‐free biofabricated tissues being developed into clinical implants, research models, and pharmaceutical testing platforms should similarly exhibit perfused tissue‐like structures, we generated a generalizable biofabrication method resulting in self‐supporting perfused (SSuPer) tissue constructs incorporated with perfusible microchannels and integrated with the modular FABRICA perfusion bioreactor. As proof of concept, we perfused an MLO‐A5 osteoblast‐based SSuPer tissue in the FABRICA. Although our resulting SSuPer tissue replicated vascularization and perfusion observed in situ, supported its own weight, and stained positively for mineral using Von Kossa staining, our in vitro results indicated that computational fluid dynamics (CFD) should be used to drive future construct design and flow application before further tissue biofabrication and perfusion. We built a CFD model of the SSuPer tissue integrated in the FABRICA and analyzed flow characteristics (net force, pressure distribution, shear stress, and oxygen distribution) through five SSuPer tissue microchannel patterns in two flow directions and at increasing flow rates. Important flow parameters include flow direction, fully developed flow, and tissue microchannel diameters matched and aligned with bioreactor flow channels. We observed that the SSuPer tissue platform is capable of providing direct perfusion to tissue constructs and proper culture conditions (oxygenation, with controllable shear and flow rates), indicating that our approach can be used to biofabricate tissue representing primary tissues and that we can model the system in silico.
Collapse
Affiliation(s)
- T J Sego
- Department of Intelligent Systems Engineering, Indiana University, Bloomington, Indiana
| | - Matthew Prideaux
- Indiana Center for Musculoskeletal Health, Indiana University, Indianapolis, Indiana.,Department of Anatomy and Cell Biology, Indiana University School of Medicine, Indianapolis, Indiana
| | - Jane Sterner
- Radiology and Imaging Sciences, Indiana University School of Medicine, Indianapolis, Indiana.,3D Bioprinting Core, Indiana University School of Medicine, Indianapolis, Indiana
| | - Brian Paul McCarthy
- Radiology and Imaging Sciences, Indiana University School of Medicine, Indianapolis, Indiana
| | - Ping Li
- Division of Transplant Surgery, Department of Surgery, Indiana University School of Medicine, Indianapolis, Indiana
| | - Lynda F Bonewald
- Indiana Center for Musculoskeletal Health, Indiana University, Indianapolis, Indiana.,Department of Anatomy and Cell Biology, Indiana University School of Medicine, Indianapolis, Indiana.,Department of Orthopaedic Surgery, Indiana University School of Medicine, Indianapolis, Indiana
| | - Burcin Ekser
- Division of Transplant Surgery, Department of Surgery, Indiana University School of Medicine, Indianapolis, Indiana
| | - Andres Tovar
- Department of Mechanical and Energy Engineering, Indiana University-Purdue University Indianapolis, Indianapolis, Indiana
| | - Lester Jeshua Smith
- Radiology and Imaging Sciences, Indiana University School of Medicine, Indianapolis, Indiana.,3D Bioprinting Core, Indiana University School of Medicine, Indianapolis, Indiana
| |
Collapse
|
27
|
Wang S, Li S, Hu M, Huo B. Calcium response in bone cells at different osteogenic stages under unidirectional or oscillatory flow. BIOMICROFLUIDICS 2019; 13:064117. [PMID: 31768203 PMCID: PMC6872469 DOI: 10.1063/1.5128696] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/21/2019] [Accepted: 11/05/2019] [Indexed: 05/08/2023]
Abstract
It was found that preosteoblast MC3T3-E1 cells were less responsive in calcium signaling than mature osteocyte MLO-Y4 cells when a steady fluid flow was exerted on a micropatterned cell network. However, the effect of fluid flow on the calcium response in preosteocyte MLO-A5 was seldom investigated. In the present study, MLO-A5 as well as MC3T3-E1 and MLO-Y4 cells were cultured on a regular substrate with high or low density under unidirectional or oscillatory fluid flow. The results showed that calcium oscillation in the cells during late osteogenesis was significantly stronger than during early osteogenesis regardless of the fluid flow type or the presence of a physical cell-cell connection. Calcium oscillation produced by the oscillatory flow in the three types of cells was stronger than that produced by the unidirectional flow, but MC3T3-E1 and MLO-A5 cells exhibited limited potential for calcium oscillation compared with MLO-Y4 cells. After suramin was used to block the binding of extracellular adenosine triphosphate (ATP) to the membrane P2 receptor, the calcium oscillation in the three types of bone cells with or without physical connections was significantly suppressed as a single responsive peak under unidirectional flow. For the ATP-blocking group of low-density cells under oscillatory flow, the number of oscillation peaks in three types of cells was still more than two. It indicates that besides the ATP pathway, other mechanosensitive calcium pathways may exist under oscillatory flow. The present study provided further evidence for the osteogenic stage-dependent calcium response of bone cells under unidirectional or oscillatory fluid flow.
Collapse
Affiliation(s)
- Shurong Wang
- Biomechanics Lab, Department of Mechanics, School of Aerospace Engineering, Beijing Institute of Technology, Beijing 100081, People’s Republic of China
| | - Shuna Li
- Biomechanics Lab, Department of Mechanics, School of Aerospace Engineering, Beijing Institute of Technology, Beijing 100081, People’s Republic of China
| | - Man Hu
- Institute of Mechanics, Chinese Academy of Sciences, Beijing 100080, People’s Republic of China
| | - Bo Huo
- Biomechanics Lab, Department of Mechanics, School of Aerospace Engineering, Beijing Institute of Technology, Beijing 100081, People’s Republic of China
- Author to whom correspondence should be addressed:. Tel.: 8610-68915760
| |
Collapse
|
28
|
Abstract
PURPOSE OF REVIEW Osteocytes are the main mechanosensitive cells in bone. Integrin-based adhesions have been shown to facilitate mechanotransduction, and therefore play an important role in load-induced bone formation. This review outlines the role of integrins in osteocyte function (cell adhesion, signalling, and mechanotransduction) and possible role in disease. RECENT FINDINGS Both β1 and β3 integrins subunits have been shown to be required for osteocyte mechanotransduction. Antagonism of these integrin subunits in osteocytes resulted in impaired responses to fluid shear stress. Various disease states (osteoporosis, osteoarthritis, bone metastases) have been shown to result in altered integrin expression and function. Osteocyte integrins are required for normal cell function, with dysregulation of integrins seen in disease. Understanding the mechanism of faulty integrins in disease may aid in the creation of novel therapeutic approaches.
Collapse
Affiliation(s)
- Ivor P Geoghegan
- Department of Mechanical and Biomedical Engineering, Mechanobiology and Medical Device Research Group (MMDRG), Biomedical Engineering, National University of Ireland, Galway, Ireland
- Centre for Research in Medical Devices (CÚRAM), National University of Ireland, Galway, Ireland
| | - David A Hoey
- Centre for Research in Medical Devices (CÚRAM), National University of Ireland, Galway, Ireland
- Trinity Centre for Bioengineering, Trinity Biomedical Sciences Institute, Trinity College Dublin, Dublin 2, Ireland
- Department of Mechanical and Manufacturing Engineering, School of Engineering, Trinity College Dublin, Dublin 2, Ireland
- Advanced Materials and Bioengineering Research Centre, Trinity College Dublin & RCSI, Dublin 2, Ireland
| | - Laoise M McNamara
- Department of Mechanical and Biomedical Engineering, Mechanobiology and Medical Device Research Group (MMDRG), Biomedical Engineering, National University of Ireland, Galway, Ireland.
- Centre for Research in Medical Devices (CÚRAM), National University of Ireland, Galway, Ireland.
| |
Collapse
|
29
|
Abstract
PURPOSE OF REVIEW Osteocytes are responsible for mechanosensing and mechanotransduction in bone and play a crucial role in bone homeostasis. They are embedded in a calcified collagenous matrix and connected with each other through the lacuno-canalicular network. Due to this specific native environment, it is a challenge to isolate primary osteocytes without losing their specific characteristics in vitro. This review summarizes the commonly used and recently established models to study the function of osteocytes in vitro. RECENT FINDINGS Osteocytes are mostly studied in monolayer culture, but recently, 3D models of osteocyte-like cells and primary osteocytes in vitro have been established as well. These models mimic the native environment of osteocytes and show superior osteocyte morphology and behavior, enabling the development of human disease models. Osteocyte-like cell lines as well as primary osteocytes isolated from bone are widely used to study the role of osteocytes in bone homeostasis. Both cells lines and primary cells are cultured in 2D-monolayer and 3D-models. The use of these models and their advantages and shortcomings are discussed in this review.
Collapse
Affiliation(s)
- Chen Zhang
- Department of Oral Cell Biology, Amsterdam Movement Sciences, Academic Centre for Dentistry Amsterdam (ACTA), University of Amsterdam and Vrije Universiteit Amsterdam, Amsterdam, The Netherlands
- Department of Clinical Chemistry, Amsterdam Movement Sciences, Amsterdam UMC, Vrije Universiteit Amsterdam, Amsterdam, The Netherlands
| | - Astrid D Bakker
- Department of Oral Cell Biology, Amsterdam Movement Sciences, Academic Centre for Dentistry Amsterdam (ACTA), University of Amsterdam and Vrije Universiteit Amsterdam, Amsterdam, The Netherlands
| | - Jenneke Klein-Nulend
- Department of Oral Cell Biology, Amsterdam Movement Sciences, Academic Centre for Dentistry Amsterdam (ACTA), University of Amsterdam and Vrije Universiteit Amsterdam, Amsterdam, The Netherlands
| | - Nathalie Bravenboer
- Department of Clinical Chemistry, Amsterdam Movement Sciences, Amsterdam UMC, Vrije Universiteit Amsterdam, Amsterdam, The Netherlands.
- Department of Internal Medicine, Division of Endocrinology and Center for Bone Quality, Leiden University Medical Center, Leiden, The Netherlands.
| |
Collapse
|
30
|
Abstract
PURPOSE OF REVIEW In perilacunar/canalicular remodeling (PLR), osteocytes dynamically resorb, and then replace, the organic and mineral components of the pericellular extracellular matrix. Given the enormous surface area of the osteocyte lacuna-canalicular network (LCN), PLR is important for maintaining homeostasis of the skeleton. The goal of this review is to examine the motivations and critical considerations for the analysis of PLR, in both in vitro and in vivo systems. RECENT FINDINGS Morphological approaches alone are insufficient to elucidate the complex mechanisms regulating PLR in the healthy skeleton and in disease. Understanding the role and regulation of PLR will require the incorporation of standardized PLR outcomes as a routine part of skeletal phenotyping, as well as the development of improved molecular and cellular outcomes. Current PLR outcomes assess PLR enzyme expression, the LCN, and bone matrix composition and organization, among others. Here, we discuss current PLR outcomes and how they have been applied to study PLR induction and suppression in vitro and in vivo. Given the role of PLR in skeletal health and disease, integrated analysis of PLR has potential to elucidate new mechanisms by which osteocytes participate in skeletal health and disease.
Collapse
Affiliation(s)
- Cristal S Yee
- Department of Orthopaedic Surgery, University of California, 513 Parnassus Avenue, San Francisco, CA, 94143, USA
| | - Charles A Schurman
- Department of Orthopaedic Surgery, University of California, 513 Parnassus Avenue, San Francisco, CA, 94143, USA
- UC Berkeley/UCSF Graduate Program in Bioengineering, San Francisco, CA, 94143, USA
| | - Carter R White
- Department of Orthopaedic Surgery, University of California, 513 Parnassus Avenue, San Francisco, CA, 94143, USA
| | - Tamara Alliston
- Department of Orthopaedic Surgery, University of California, 513 Parnassus Avenue, San Francisco, CA, 94143, USA.
- UC Berkeley/UCSF Graduate Program in Bioengineering, San Francisco, CA, 94143, USA.
| |
Collapse
|
31
|
Kalajzic I. A New Osteocytic Cell Line, Raising New Questions and Opportunities. J Bone Miner Res 2019; 34:977-978. [PMID: 31173397 PMCID: PMC6860015 DOI: 10.1002/jbmr.3736] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/18/2019] [Revised: 03/26/2019] [Accepted: 03/29/2019] [Indexed: 11/10/2022]
Affiliation(s)
- Ivo Kalajzic
- Reconstructive Sciences, School of Dental Medicine, UConn Health, Farmington, CT, USA
| |
Collapse
|
32
|
Liu H, Yang M, Wu G, Yang L, Cao Y, Liu C, Tan Z, Jin Y, Guo J, Zhu L. Effects of different oxygen concentrations on the proliferation, survival, migration, and osteogenic differentiation of MC3T3-E1 cells. Connect Tissue Res 2019; 60:240-253. [PMID: 29916278 DOI: 10.1080/03008207.2018.1487413] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
In physiological and pathological environments, the concentration of oxygen around osteoblasts varies widely. No studies have systematically evaluated the effects of different oxygen concentrations on the proliferation, survival, migration, and osteogenic differentiation of osteoblasts. In this study, we cultured the osteoblast precursor cell line MC3T3-E1 in small individual chambers with oxygen concentrations of 1%, 3%, 6%, 9%, and 21%. Cell proliferation was evaluated by the proliferation index test and EdU staining. To test cell survival, a live/dead assay was performed. A tablet scratch assay was performed to detect the migratory ability of the cells. Bone nodule formation experiments and immunofluorescence and Western blotting analyses of osteogenic-related proteins were performed to assess the osteogenic differentiation of the cells. We found that the proliferation and osteogenic differentiation ability of MC3T3-E1 cells in different oxygen concentrations were both approximately bell-shaped curves and that the optimal oxygen concentrations were approximately 6% and 9%, respectively. The live/dead assay showed that the survival of MC3T3-E1 cells in different oxygen concentrations was affected by the amount of serum. The tablet scratch experiment showed that there was greater cell migration with oxygen concentrations of 1%, 3%, and 21% than with oxygen concentrations of 6% and 9%. Our results have significant reference value for the intervention of the pathological processes involving osteoblasts, such as fracture, osteoporosis, and some vascular diseases. These results also have an important guiding role for the new scientific idea that osteoblasts can function as treatment cells to repair bone defects.
Collapse
Affiliation(s)
- Haixin Liu
- a Department of Spine Orthopedics , Zhujiang Hospital, Southern Medical University , Guangzhou , China
| | - Minsheng Yang
- a Department of Spine Orthopedics , Zhujiang Hospital, Southern Medical University , Guangzhou , China
| | - Guofeng Wu
- b Department of Orthopedics , Jingzhou First People's Hospital, The First Affiliated Hospital of Yangtze University , Jingzhou , China
| | - Lianjun Yang
- c Department of Spine Orthopedics , The Third Affiliated Hospital, Southern Medical University , Guangzhou , China
| | - Yanlin Cao
- a Department of Spine Orthopedics , Zhujiang Hospital, Southern Medical University , Guangzhou , China
| | - Chun Liu
- a Department of Spine Orthopedics , Zhujiang Hospital, Southern Medical University , Guangzhou , China
| | - Zhiwen Tan
- a Department of Spine Orthopedics , Zhujiang Hospital, Southern Medical University , Guangzhou , China
| | - Yanglei Jin
- a Department of Spine Orthopedics , Zhujiang Hospital, Southern Medical University , Guangzhou , China
| | - Jiasong Guo
- d Department of Histology and Embryology , Southern Medical University , Guangzhou , China.,e Key Laboratory of Tissue Construction and Detection of Guangdong Province , Guangzhou , China.,f Institute of Bone Biology, Academy of Orthopaedics, Guangdong Province , Guangzhou , China
| | - Lixin Zhu
- a Department of Spine Orthopedics , Zhujiang Hospital, Southern Medical University , Guangzhou , China
| |
Collapse
|
33
|
Delgado-Calle J, Kurihara N, Atkinson EG, Nelson J, Miyagawa K, Galmarini CM, Roodman GD, Bellido T. Aplidin (plitidepsin) is a novel anti-myeloma agent with potent anti-resorptive activity mediated by direct effects on osteoclasts. Oncotarget 2019; 10:2709-2721. [PMID: 31105871 PMCID: PMC6505631 DOI: 10.18632/oncotarget.26831] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2018] [Accepted: 03/23/2019] [Indexed: 12/26/2022] Open
Abstract
Despite recent progress in its treatment, Multiple Myeloma (MM) remains incurable and its associated bone disease persists even after complete remission. Thus, identification of new therapeutic agents that simultaneously suppress MM growth and protect bone is an unmet need. Herein, we examined the effects of Aplidin, a novel anti-cancer marine-derived compound, on MM and bone cells. In vitro, Aplidin potently inhibited MM cell growth and induced apoptosis, effects that were enhanced by dexamethasone (Dex) and bortezomib (Btz). Aplidin modestly reduced osteocyte/osteoblast viability and decreased osteoblast mineralization, effects that were enhanced by Dex and partially prevented by Btz. Further, Aplidin markedly decreased osteoclast precursor numbers and differentiation, and reduced mature osteoclast number and resorption activity. Moreover, Aplidin reduced Dex-induced osteoclast differentiation and further decreased osteoclast number when combined with Btz. Lastly, Aplidin alone, or suboptimal doses of Aplidin combined with Dex or Btz, decreased tumor growth and bone resorption in ex vivo bone organ cultures that reproduce the 3D-organization and the cellular diversity of the MM/bone marrow niche. These results demonstrate that Aplidin has potent anti-myeloma and anti-resorptive properties, and enhances proteasome inhibitors blockade of MM growth and bone destruction.
Collapse
Affiliation(s)
- Jesus Delgado-Calle
- Department of Medicine, Division of Hematology/Oncology, Indiana University School of Medicine, Indianapolis, IN, USA
- Department of Anatomy and Cell Biology, Indiana University Sc hool of Medicine, Indianapolis, IN, USA
- Indiana Center for Musculoskeletal Health, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Noriyoshi Kurihara
- Department of Medicine, Division of Hematology/Oncology, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Emily G. Atkinson
- Department of Anatomy and Cell Biology, Indiana University Sc hool of Medicine, Indianapolis, IN, USA
| | - Jessica Nelson
- Department of Medicine, Division of Hematology/Oncology, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Kazuaki Miyagawa
- Department of Medicine, Division of Hematology/Oncology, Indiana University School of Medicine, Indianapolis, IN, USA
| | | | - G. David Roodman
- Department of Medicine, Division of Hematology/Oncology, Indiana University School of Medicine, Indianapolis, IN, USA
- Indiana Center for Musculoskeletal Health, Indiana University School of Medicine, Indianapolis, IN, USA
- Roudebush VA Medical Center, Indianapolis, IN, USA
| | - Teresita Bellido
- Department of Anatomy and Cell Biology, Indiana University Sc hool of Medicine, Indianapolis, IN, USA
- Department of Medicine, Division of Endocrinology, Indiana University School of Medicine, Indianapolis, IN, USA
- Indiana Center for Musculoskeletal Health, Indiana University School of Medicine, Indianapolis, IN, USA
- Roudebush VA Medical Center, Indianapolis, IN, USA
| |
Collapse
|
34
|
Abstract
This study utilized a Förster resonance energy transfer (FRET)-based molecular tension sensor and live cell imaging to evaluate the effect of osteocytes, a mechanosensitive bone cell, on the migratory behavior of tumor cells. Two cell lines derived from MDA-MB-231 breast cancer cells were transfected with the vinculin tension sensor to quantitatively evaluate the force in focal adhesions of the tumor cell. Tumor cells treated with MLO-A5 osteocyte-conditioned media (CM) decreased the tensile forces in their focal adhesions and decreased their migratory potential. Tumor cells treated with media derived from MLO-A5 cells exposed to fluid flow-driven shear stress (FFCM) increased the tensile forces and increased migratory potential. Focal adhesion tension in tumor cells was also affected by distance from MLO-A5 cells when the two cells were co-cultured, where tumor cells close to MLO-A5 cells exhibited lower tension and decreased cell motility. Overall, this study demonstrates that focal adhesion tension is involved in altered migratory potential of tumor cells, and tumor-osteocyte interactions decrease the tension and motility of tumor cells.
Collapse
|
35
|
Marcotti S, Reilly GC, Lacroix D. Effect of cell sample size in atomic force microscopy nanoindentation. J Mech Behav Biomed Mater 2019; 94:259-266. [PMID: 30928670 DOI: 10.1016/j.jmbbm.2019.03.018] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2018] [Revised: 12/21/2018] [Accepted: 03/17/2019] [Indexed: 11/25/2022]
Abstract
Single-cell technologies are powerful tools to evaluate cell characteristics. In particular, Atomic Force Microscopy (AFM) nanoindentation experiments have been widely used to study single cell mechanical properties. One important aspect related to single cell techniques is the need for sufficient statistical power to obtain reliable results. This aspect is often overlooked in AFM experiments were sample sizes are arbitrarily set. The aim of the present work was to propose a tool for sample size estimation in the context of AFM nanoindentation experiments of single cell. To this aim, a retrospective approach was used by acquiring a large dataset of experimental measurements on four bone cell types and by building saturation curves for increasing sample sizes with a bootstrap resampling method. It was observed that the coefficient of variation (CV%) decayed with a function of the form y = axb with similar parameters for all samples tested and that sample sizes of 21 and 83 cells were needed for the specific cells and protocol employed if setting a maximum threshold on CV% of 10% or 5%, respectively. The developed tool is made available as an open-source repository and guidelines are provided for its use for AFM nanoindentation experimental design.
Collapse
Affiliation(s)
- Stefania Marcotti
- Insigneo Institute for in silico Medicine, University of Sheffield, Mappin Street, Sheffield S1 3JD, UK; Department of Mechanical Engineering, University of Sheffield, Western Bank, Sheffield S10 2TN, UK; Randall Centre for Cell and Molecular Biophysics, King's College London, Guy's Campus, London SE1 1UL, UK.
| | - Gwendolen C Reilly
- Insigneo Institute for in silico Medicine, University of Sheffield, Mappin Street, Sheffield S1 3JD, UK; Department of Materials Science and Engineering, University of Sheffield, Western Bank, Sheffield S10 2TN, UK.
| | - Damien Lacroix
- Insigneo Institute for in silico Medicine, University of Sheffield, Mappin Street, Sheffield S1 3JD, UK; Department of Mechanical Engineering, University of Sheffield, Western Bank, Sheffield S10 2TN, UK.
| |
Collapse
|
36
|
Square prism micropillars on poly(methyl methacrylate) surfaces modulate the morphology and differentiation of human dental pulp mesenchymal stem cells. Colloids Surf B Biointerfaces 2019; 178:44-55. [PMID: 30826553 DOI: 10.1016/j.colsurfb.2019.02.037] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2018] [Revised: 02/18/2019] [Accepted: 02/19/2019] [Indexed: 12/16/2022]
Abstract
Use of soluble factors is the most common strategy to induce osteogenic differentiation of mesenchymal stem cells (MSCs) in vitro, but it may raise potential side effects in vivo. The topographies of the substrate surfaces affect cell behavior, and this could be a promising approach to guide stem cell differentiation. Micropillars have been reported to modulate cellular and subcellular shape, and it is particularly interesting to investigate whether these changes in cell morphology can modulate gene expression and lineage commitment without chemical induction. In this study, poly(methyl methacrylate) (PMMA) films were decorated with square prism micropillars with different lateral dimensions (4, 8 and 16 μm), and the surface wettability of the substrates was altered by oxygen plasma treatment. Both, pattern dimensions and hydrophilicity, were found to affect the attachment, proliferation, and most importantly, gene expression of human dental pulp mesenchymal stem cells (DPSCs). Decreasing the pillar width and interpillar spacing of the square prism pillars enhanced cell attachment, cell elongation, and deformation of nuclei, but reduced early proliferation rate. Surfaces with 4 or 8 μm wide pillars/gaps upregulated the expression of early bone-marker genes and mineralization over 28 days of culture. Exposure to oxygen plasma increased wettability and promoted cell attachment and proliferation but delayed osteogenesis. Our findings showed that surface topography and chemistry are very useful tools in controlling cell behavior on substrates and they can also help create better implants. The most important finding is that hydrophobic micropillars on polymeric substrate surfaces can be exploited in inducing osteogenic differentiation of MSCs without any differentiation supplements.
Collapse
|
37
|
Holdsworth G, Roberts SJ, Ke HZ. Novel actions of sclerostin on bone. J Mol Endocrinol 2019; 62:R167-R185. [PMID: 30532996 DOI: 10.1530/jme-18-0176] [Citation(s) in RCA: 64] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/25/2018] [Accepted: 10/17/2018] [Indexed: 12/11/2022]
Abstract
The discovery that two rare autosomal recessive high bone mass conditions were caused by the loss of sclerostin expression prompted studies into its role in bone homeostasis. In this article, we aim to bring together the wealth of information relating to sclerostin in bone though discussion of rare human disorders in which sclerostin is reduced or absent, sclerostin manipulation via genetic approaches and treatment with antibodies that neutralise sclerostin in animal models and in human. Together, these findings demonstrate the importance of sclerostin as a regulator of bone homeostasis and provide valuable insights into its biological mechanism of action. We summarise the current state of knowledge in the field, including the current understanding of the direct effects of sclerostin on the canonical WNT signalling pathway and the actions of sclerostin as an inhibitor of bone formation. We review the effects of sclerostin, and its inhibition, on bone at the cellular and tissue level and discuss new findings that suggest that sclerostin may also regulate adipose tissue. Finally, we highlight areas in which future research is expected to yield additional insights into the biology of sclerostin.
Collapse
Affiliation(s)
| | | | - Hua Zhu Ke
- Bone Therapeutic Area, UCB Pharma, Slough, United Kingdom
| |
Collapse
|
38
|
The Late Osteoblast/Preosteocyte Cell Line MLO-A5 Displays Mesenchymal Lineage Plasticity In Vitro and In Vivo. Stem Cells Int 2019; 2019:9838167. [PMID: 30800165 PMCID: PMC6360058 DOI: 10.1155/2019/9838167] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2018] [Revised: 10/28/2018] [Accepted: 11/11/2018] [Indexed: 01/19/2023] Open
Abstract
The process of osteoblast switching to alternative mesenchymal phenotypes is incompletely understood. In this study, we tested the ability of the osteoblast/preosteocyte osteogenic cell line, MLO-A5, to also differentiate into either adipocytes or chondrocytes. MLO-A5 cells expressed a subset of skeletal stem cell markers, including Sca-1, CD44, CD73, CD146, and CD166. Confluent cultures of cells underwent differentiation within 3 days upon the addition of osteogenic medium. The same cultures were capable of undergoing adipogenic and chondrogenic differentiation under lineage-appropriate culture conditions, evidenced by lineage-specific gene expression analysis by real-time reverse-transcription-PCR, and by Oil Red O and alcian blue (pH 2.5) staining, respectively. Subcutaneous implantation of MLO-A5 cells in a gel foam into NOD SCID mice resulted in a woven bone-like structure containing embedded osteocytes and regions of cartilage-like tissue, which stained positive with both alcian blue (pH 2.5) and safranin O. Together, our findings show that MLO-A5 cells, despite being a strongly osteogenic cell line, exhibit characteristics of skeletal stem cells and display mesenchymal lineage plasticity in vitro and in vivo. These unique characteristics suggest that this cell line is a useful model with which to study aging and disease-related changes to the mesenchymal lineage composition of bone.
Collapse
|
39
|
Functions of Periostin in Dental Tissues and Its Role in Periodontal Tissue Regeneration. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2019; 1132:63-72. [PMID: 31037625 DOI: 10.1007/978-981-13-6657-4_7] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
The goal of periodontal regeneration therapy is to reliably restore teeth's supporting periodontal tissue, while aiding the formation of new connective tissue attached to the periodontal ligament (PDL) fibers and new alveolar bone. Periostin is a matricellular protein, primarily expressed in the periosteum and PDL of adult mice. Its biological functions have been extensively studied in the fields of cardiovascular physiology and oncology. Despite being initially identified in bone and dental tissue, the function of Periostin in PDL and the pathophysiology associated with alveolar bone are scarcely studied. Recently, several studies have suggested that Periostin may be an important regulator of periodontal tissue formation. By promoting collagen fibrillogenesis and the migration of fibroblasts and osteoblasts, Periostin might play a key role in the regeneration of PDL and alveolar bone after periodontal surgery. In this chapter, the implications of Periostin in periodontal tissue biology and its potential use in periodontal tissue regeneration are reviewed.
Collapse
|
40
|
Matsumoto A, Matsui I, Mori T, Sakaguchi Y, Mizui M, Ueda Y, Takahashi A, Doi Y, Shimada K, Yamaguchi S, Kubota K, Hashimoto N, Oka T, Takabatake Y, Sohara E, Hamano T, Uchida S, Isaka Y. Severe Osteomalacia with Dent Disease Caused by a Novel Intronic Mutation of the CLCN5 gene. Intern Med 2018; 57:3603-3610. [PMID: 30101934 PMCID: PMC6355425 DOI: 10.2169/internalmedicine.1272-18] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
We present a case of Dent disease caused by a novel intronic mutation, 1348-1G>A, of the chloride voltage-gated channel 5 (CLCN5) gene. Cultured proximal tubule cells obtained from the patient showed impaired acidification of the endosome and/or lysosome, indicating that the 1348-1G>A mutation was indeed the cause of Dent disease. Although the prevalence of osteomalacia in Dent disease is low in Japan, several factors-including poor medication adherence-caused severe osteomalacia in the current case. Oral supplementation with calcium and native/active vitamin D therapy, with careful attention to medication adherence, led to the improvement of the patient's bone status.
Collapse
Affiliation(s)
- Ayumi Matsumoto
- Department of Nephrology, Osaka University Graduate School of Medicine, Japan
| | - Isao Matsui
- Department of Nephrology, Osaka University Graduate School of Medicine, Japan
| | - Takayasu Mori
- Department of Nephrology, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, Japan
| | - Yusuke Sakaguchi
- Department of Comprehensive Kidney Disease Research, Osaka University Graduate School of Medicine, Japan
| | - Masayuki Mizui
- Department of Nephrology, Osaka University Graduate School of Medicine, Japan
| | - Yoshiyasu Ueda
- Department of Nephrology, Osaka University Graduate School of Medicine, Japan
| | - Atsushi Takahashi
- Department of Nephrology, Osaka University Graduate School of Medicine, Japan
| | - Yohei Doi
- Department of Nephrology, Osaka University Graduate School of Medicine, Japan
| | - Karin Shimada
- Department of Nephrology, Osaka University Graduate School of Medicine, Japan
| | - Satoshi Yamaguchi
- Department of Nephrology, Osaka University Graduate School of Medicine, Japan
| | - Keiichi Kubota
- Department of Nephrology, Osaka University Graduate School of Medicine, Japan
| | - Nobuhiro Hashimoto
- Department of Nephrology, Osaka University Graduate School of Medicine, Japan
| | - Tatsufumi Oka
- Department of Nephrology, Osaka University Graduate School of Medicine, Japan
| | | | - Eisei Sohara
- Department of Nephrology, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, Japan
| | - Takayuki Hamano
- Department of Comprehensive Kidney Disease Research, Osaka University Graduate School of Medicine, Japan
| | - Shinichi Uchida
- Department of Nephrology, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, Japan
| | - Yoshitaka Isaka
- Department of Nephrology, Osaka University Graduate School of Medicine, Japan
| |
Collapse
|
41
|
Wang L, Wang Y, Chen A, Jalali A, Liu S, Guo Y, Na S, Nakshatri H, Li BY, Yokota H. Effects of a checkpoint kinase inhibitor, AZD7762, on tumor suppression and bone remodeling. Int J Oncol 2018; 53:1001-1012. [PMID: 30015873 PMCID: PMC6065446 DOI: 10.3892/ijo.2018.4481] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2018] [Accepted: 06/14/2018] [Indexed: 11/06/2022] Open
Abstract
Chemotherapy for suppressing tumor growth and metastasis tends to induce various effects on other organs. Using AZD7762, an inhibitor of checkpoint kinase (Chk) 1 and 2, the present study examined its effect on mammary tumor cells in addition to bone cells (osteoclasts, osteoblasts and osteocytes), using monolayer cell cultures and three-dimensional (3D) cell spheroids. The results revealed that AZD7762 blocked the proliferation of 4T1.2 mammary tumor cells and suppressed the development of RAW264.7 pre-osteoclast cells by downregulating nuclear factor of activated T cells cytoplasmic 1. AZD7762 also promoted the mineralization of MC3T3 osteoblast-like cells and 3D bio-printed bone constructs of MLO-A5 osteocyte spheroids. While a Chk1 inhibitor, PD407824, suppressed the proliferation of tumor cells and the differentiation of pre-osteoclasts, its effect on gene expression in osteoblasts was markedly different compared with AZD7762. Western blotting indicated that the stimulating effect of AZD7762 on osteoblast development was associated with the inhibition of Chk2 and the downregulation of cellular tumor antigen p53. The results of the present study indicated that in addition to acting as a tumor suppressor, AZD7762 may prevent bone loss by inhibiting osteoclastogenesis and stimulating osteoblast mineralization.
Collapse
Affiliation(s)
- Luqi Wang
- Department of Pharmacology, School of Pharmacy, Harbin Medical University, Harbin, Heilongjiang 150081, P.R. China
| | - Yue Wang
- Department of Pharmacology, School of Pharmacy, Harbin Medical University, Harbin, Heilongjiang 150081, P.R. China
| | - Andy Chen
- Department of Biomedical Engineering, Indiana University-Purdue University Indianapolis, Indianapolis, IN 46202, USA
| | - Aydin Jalali
- Department of Biomedical Engineering, Indiana University-Purdue University Indianapolis, Indianapolis, IN 46202, USA
| | - Shengzhi Liu
- Department of Pharmacology, School of Pharmacy, Harbin Medical University, Harbin, Heilongjiang 150081, P.R. China
| | - Yunxia Guo
- Department of Pharmacology, School of Pharmacy, Harbin Medical University, Harbin, Heilongjiang 150081, P.R. China
| | - Sungsoo Na
- Department of Biomedical Engineering, Indiana University-Purdue University Indianapolis, Indianapolis, IN 46202, USA
| | - Harikrishna Nakshatri
- Department of Surgery, Simon Cancer Research Center, Indiana University School of Medicine, Indianapolis, IN 46202, USA
| | - Bai-Yan Li
- Department of Pharmacology, School of Pharmacy, Harbin Medical University, Harbin, Heilongjiang 150081, P.R. China
| | - Hiroki Yokota
- Department of Pharmacology, School of Pharmacy, Harbin Medical University, Harbin, Heilongjiang 150081, P.R. China
| |
Collapse
|
42
|
Lu Y, Kamel-El Sayed SA, Wang K, Tiede-Lewis LM, Grillo MA, Veno PA, Dusevich V, Phillips CL, Bonewald LF, Dallas SL. Live Imaging of Type I Collagen Assembly Dynamics in Osteoblasts Stably Expressing GFP and mCherry-Tagged Collagen Constructs. J Bone Miner Res 2018; 33:1166-1182. [PMID: 29461659 PMCID: PMC6425932 DOI: 10.1002/jbmr.3409] [Citation(s) in RCA: 37] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/20/2017] [Revised: 01/22/2018] [Accepted: 02/02/2018] [Indexed: 11/12/2022]
Abstract
Type I collagen is the most abundant extracellular matrix protein in bone and other connective tissues and plays key roles in normal and pathological bone formation as well as in connective tissue disorders and fibrosis. Although much is known about the collagen biosynthetic pathway and its regulatory steps, the mechanisms by which it is assembled extracellularly are less clear. We have generated GFPtpz and mCherry-tagged collagen fusion constructs for live imaging of type I collagen assembly by replacing the α2(I)-procollagen N-terminal propeptide with GFPtpz or mCherry. These novel imaging probes were stably transfected into MLO-A5 osteoblast-like cells and fibronectin-null mouse embryonic fibroblasts (FN-null-MEFs) and used for imaging type I collagen assembly dynamics and its dependence on fibronectin. Both fusion proteins co-precipitated with α1(I)-collagen and remained intracellular without ascorbate but were assembled into α1(I) collagen-containing extracellular fibrils in the presence of ascorbate. Immunogold-EM confirmed their ultrastuctural localization in banded collagen fibrils. Live cell imaging in stably transfected MLO-A5 cells revealed the highly dynamic nature of collagen assembly and showed that during assembly the fibril networks are continually stretched and contracted due to the underlying cell motion. We also observed that cell-generated forces can physically reshape the collagen fibrils. Using co-cultures of mCherry- and GFPtpz-collagen expressing cells, we show that multiple cells contribute collagen to form collagen fiber bundles. Immuno-EM further showed that individual collagen fibrils can receive contributions of collagen from more than one cell. Live cell imaging in FN-null-MEFs expressing GFPtpz-collagen showed that collagen assembly was both dependent upon and dynamically integrated with fibronectin assembly. These GFP-collagen fusion constructs provide a powerful tool for imaging collagen in living cells and have revealed novel and fundamental insights into the dynamic mechanisms for the extracellular assembly of collagen. © 2018 American Society for Bone and Mineral Research.
Collapse
Affiliation(s)
- Yongbo Lu
- Department of Oral and Craniofacial Sciences, School of Dentistry, University of Missouri, Kansas City, 650 E. 25 Street, Kansas City, MO 64108
- Department of Biomedical Sciences, Texas A&M University College of Dentistry, 3302 Gaston Ave., Dallas, TX 75246
| | - Suzan A. Kamel-El Sayed
- Department of Oral and Craniofacial Sciences, School of Dentistry, University of Missouri, Kansas City, 650 E. 25 Street, Kansas City, MO 64108
- Biomedical Sciences Department, Oakland University William Beaumont School of Medicine, 414 O’Dowd Hall, Rochester MI, 48309
- Medical Physiology Department, Assiut University School of Medicine 71516, Asyut, Egypt
| | - Kun Wang
- Department of Oral and Craniofacial Sciences, School of Dentistry, University of Missouri, Kansas City, 650 E. 25 Street, Kansas City, MO 64108
| | - LeAnn M. Tiede-Lewis
- Department of Oral and Craniofacial Sciences, School of Dentistry, University of Missouri, Kansas City, 650 E. 25 Street, Kansas City, MO 64108
| | - Michael A. Grillo
- Department of Oral and Craniofacial Sciences, School of Dentistry, University of Missouri, Kansas City, 650 E. 25 Street, Kansas City, MO 64108
| | - Patricia A. Veno
- Department of Oral and Craniofacial Sciences, School of Dentistry, University of Missouri, Kansas City, 650 E. 25 Street, Kansas City, MO 64108
| | - Vladimir Dusevich
- Department of Oral and Craniofacial Sciences, School of Dentistry, University of Missouri, Kansas City, 650 E. 25 Street, Kansas City, MO 64108
| | - Charlotte L. Phillips
- Departments of Biochemistry and Child Health, University of Missouri Columbia, 117 Schweitzer Hall, Columbia, MO 65211
| | - Lynda F. Bonewald
- Department of Oral and Craniofacial Sciences, School of Dentistry, University of Missouri, Kansas City, 650 E. 25 Street, Kansas City, MO 64108
- Departments of Anatomy and Cell Biology and Orthopaedic Surgery, Indiana University, Indianapolis, IN 46202
| | - Sarah L. Dallas
- Department of Oral and Craniofacial Sciences, School of Dentistry, University of Missouri, Kansas City, 650 E. 25 Street, Kansas City, MO 64108
| |
Collapse
|
43
|
Liu S, Fan Y, Chen A, Jalali A, Minami K, Ogawa K, Nakshatri H, Li BY, Yokota H. Osteocyte-Driven Downregulation of Snail Restrains Effects of Drd2 Inhibitors on Mammary Tumor Cells. Cancer Res 2018; 78:3865-3876. [PMID: 29769195 DOI: 10.1158/0008-5472.can-18-0056] [Citation(s) in RCA: 44] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2018] [Revised: 03/26/2018] [Accepted: 05/10/2018] [Indexed: 12/30/2022]
Abstract
While bone is a frequent target of breast cancer-associated metastasis, little is known about the effects of tumor-bone interactions on the efficacy of tumor-suppressing agents. Here we examined the effect of two FDA-approved dopamine modulators, fluphenazine and trifluoperazine, on mammary tumor cells, osteoclasts, osteoblasts, and osteocytes. These agents suppressed proliferation and migration of mammary tumor cells chiefly by antagonizing dopamine receptor D2 and reduced bone resorption by downregulating nuclear factor of activated T cells, cytoplasmic 1 (Nfatc1). Three-dimensional spheroid formation assays revealed that tumor cells have high affinity to osteocytes and type I collagen, and interactions with osteocytes as well as administration of fluphenazine and trifluoperazine downregulated Snail and suppressed migratory behaviors. Unlike the inhibitory action of fluphenazine and trifluoperazine on tumor growth, tumor-osteocyte interactions stimulated tumor proliferation by upregulating NFκB and Akt. In the bone microenvironment, osteocytes downregulated Snail and acted as an attractant as well as a stimulant to mammary tumor cells. These results demonstrate that tumor-osteocyte interactions strengthen dopamine receptor-mediated suppression of tumor migration but weaken its inhibition of tumor proliferation in the osteocyte-rich bone microenvironment.Significance: These findings provide novel insight into the cellular cross-talk in the bone microevironment and the effects of dopamine modulators on mammary tumor cells and osteocytes. Cancer Res; 78(14); 3865-76. ©2018 AACR.
Collapse
Affiliation(s)
- Shengzhi Liu
- Department of Pharmacology, School of Pharmacy, Harbin Medical University, Harbin, China.,Department of Biomedical Engineering, Indiana University Purdue University Indianapolis, Indianapolis, Indiana
| | - Yao Fan
- Department of Pharmacology, School of Pharmacy, Harbin Medical University, Harbin, China.,Department of Biomedical Engineering, Indiana University Purdue University Indianapolis, Indianapolis, Indiana
| | - Andy Chen
- Department of Biomedical Engineering, Indiana University Purdue University Indianapolis, Indianapolis, Indiana
| | - Aydin Jalali
- Department of Biomedical Engineering, Indiana University Purdue University Indianapolis, Indianapolis, Indiana
| | - Kazumasa Minami
- Department of Radiation Oncology, Osaka University Graduate School of Medicine Suita, Osaka, Japan
| | - Kazuhiko Ogawa
- Department of Radiation Oncology, Osaka University Graduate School of Medicine Suita, Osaka, Japan
| | - Harikrishna Nakshatri
- Department of Surgery, Simon Cancer Research Center, Indiana University School of Medicine, Indianapolis, Indiana
| | - Bai-Yan Li
- Department of Pharmacology, School of Pharmacy, Harbin Medical University, Harbin, China.
| | - Hiroki Yokota
- Department of Pharmacology, School of Pharmacy, Harbin Medical University, Harbin, China. .,Department of Biomedical Engineering, Indiana University Purdue University Indianapolis, Indianapolis, Indiana
| |
Collapse
|
44
|
Scheinpflug J, Pfeiffenberger M, Damerau A, Schwarz F, Textor M, Lang A, Schulze F. Journey into Bone Models: A Review. Genes (Basel) 2018; 9:E247. [PMID: 29748516 PMCID: PMC5977187 DOI: 10.3390/genes9050247] [Citation(s) in RCA: 61] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2018] [Revised: 04/24/2018] [Accepted: 05/03/2018] [Indexed: 12/16/2022] Open
Abstract
Bone is a complex tissue with a variety of functions, such as providing mechanical stability for locomotion, protection of the inner organs, mineral homeostasis and haematopoiesis. To fulfil these diverse roles in the human body, bone consists of a multitude of different cells and an extracellular matrix that is mechanically stable, yet flexible at the same time. Unlike most tissues, bone is under constant renewal facilitated by a coordinated interaction of bone-forming and bone-resorbing cells. It is thus challenging to recreate bone in its complexity in vitro and most current models rather focus on certain aspects of bone biology that are of relevance for the research question addressed. In addition, animal models are still regarded as the gold-standard in the context of bone biology and pathology, especially for the development of novel treatment strategies. However, species-specific differences impede the translation of findings from animal models to humans. The current review summarizes and discusses the latest developments in bone tissue engineering and organoid culture including suitable cell sources, extracellular matrices and microfluidic bioreactor systems. With available technology in mind, a best possible bone model will be hypothesized. Furthermore, the future need and application of such a complex model will be discussed.
Collapse
Affiliation(s)
- Julia Scheinpflug
- German Federal Institute for Risk Assessment (BfR), German Centre for the Protection of Laboratory Animals (Bf3R),10589 Berlin, Germany.
| | - Moritz Pfeiffenberger
- Charité-Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin and Berlin Institute of Health, Department of Rheumatology and Clinical Immunology, 10117 Berlin, Germany.
- German Rheumatism Research Centre (DRFZ) Berlin, a Leibniz Institute, 10117 Berlin, Germany.
| | - Alexandra Damerau
- Charité-Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin and Berlin Institute of Health, Department of Rheumatology and Clinical Immunology, 10117 Berlin, Germany.
- German Rheumatism Research Centre (DRFZ) Berlin, a Leibniz Institute, 10117 Berlin, Germany.
| | - Franziska Schwarz
- German Federal Institute for Risk Assessment (BfR), German Centre for the Protection of Laboratory Animals (Bf3R),10589 Berlin, Germany.
| | - Martin Textor
- German Federal Institute for Risk Assessment (BfR), German Centre for the Protection of Laboratory Animals (Bf3R),10589 Berlin, Germany.
| | - Annemarie Lang
- Charité-Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin and Berlin Institute of Health, Department of Rheumatology and Clinical Immunology, 10117 Berlin, Germany.
- German Rheumatism Research Centre (DRFZ) Berlin, a Leibniz Institute, 10117 Berlin, Germany.
| | - Frank Schulze
- German Federal Institute for Risk Assessment (BfR), German Centre for the Protection of Laboratory Animals (Bf3R),10589 Berlin, Germany.
| |
Collapse
|
45
|
Attraction and Compaction of Migratory Breast Cancer Cells by Bone Matrix Proteins through Tumor-Osteocyte Interactions. Sci Rep 2018; 8:5420. [PMID: 29615735 PMCID: PMC5882940 DOI: 10.1038/s41598-018-23833-1] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2018] [Accepted: 03/21/2018] [Indexed: 01/03/2023] Open
Abstract
Bone is a frequent site of metastasis from breast cancer. To understand the potential role of osteocytes in bone metastasis, we investigated tumor-osteocyte interactions using two cell lines derived from the MDA-MB-231 breast cancer cells, primary breast cancer cells, and MLO-A5/MLO-Y4 osteocyte cells. When three-dimensional (3D) tumor spheroids were grown with osteocyte spheroids, tumor spheroids fused with osteocyte spheroids and shrank. This size reduction was also observed when tumor spheroids were exposed to conditioned medium isolated from osteocyte cells. Mass spectrometry-based analysis predicted that several bone matrix proteins (e.g., collagen, biglycan) in conditioned medium could be responsible for tumor shrinkage. The osteocyte-driven shrinkage was mimicked by type I collagen, the most abundant organic component in bone, but not by hydroxyapatite, a major inorganic component in bone. RNA and protein expression analysis revealed that tumor-osteocyte interactions downregulated Snail, a transcription factor involved in epithelial-to-mesenchymal transition (EMT). An agarose bead assay showed that bone matrix proteins act as a tumor attractant. Collectively, the study herein demonstrates that osteocytes attract and compact migratory breast cancer cells through bone matrix proteins, suppress tumor migration, by Snail downregulation, and promote subsequent metastatic colonization.
Collapse
|
46
|
Capacity of octacalcium phosphate to promote osteoblastic differentiation toward osteocytes in vitro. Acta Biomater 2018; 69:362-371. [PMID: 29378325 DOI: 10.1016/j.actbio.2018.01.026] [Citation(s) in RCA: 50] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2017] [Revised: 01/05/2018] [Accepted: 01/18/2018] [Indexed: 11/21/2022]
Abstract
Octacalcium phosphate (OCP) has been shown to act as a nucleus for initial bone deposition and enhancing the early stages of osteoblastic differentiation. However, the effect on differentiation at the late stage into osteocytes has not been elucidated. The present study was designed to investigate whether OCP can promote the differentiation lineage from osteoblasts to late osteocytes using a clonal cell line IDG-SW3 compared to commercially available sintered β-tricalcium phosphate (β-TCP) and hydroxyapatite (HA) in a transwell cell culture. Special attention was paid to detect the progress of OCP hydrolysis associated with ionic dissolution products from this material. OCP induced the appearance of an alkaline phosphatase (ALP) peak in the IDG-SW3 cells compared to β-TCP and HA and increased SOST/sclerostin and FGF23 gene expression after 35 days of incubation. Analyses by X-ray diffraction, curve fitting of Fourier transform infrared spectra, and acid phosphate inclusion of the materials showed that OCP tended to hydrolyze to an apatitic structure during the incubation. Since the hydrolysis enhanced inorganic phosphate ion (Pi) release from OCP in the media, IDG-SW3 cells were further incubated in the conditioned media with an increased concentration of Pi in the presence or absence of phosphonoformic acid (PFA), which is an inhibitor of Pi transport within the cells. An increase in Pi concentration up to 1.5 mM raised ALP activity, while its positive effect was eliminated in the presence of 0.1 to 0.5 mM PFA. Calcium ions did not show such an effect. These results indicate the stimulatory capacity of OCP on osteoblastic differentiation toward osteocytes. STATEMENT OF SIGNIFICANCE Octacalcium phosphate (OCP) has been shown to have a superior osteoconductivity due to its capacity to enhance initial stage of osteoblast differentiation. However, the effect of OCP on the late osteoblastic differentiation into osteocyte is unknown. This study showed the capacity associated with the structural change of OCP. The data show that OCP released inorganic phosphate (Pi) ions while the hydrolysis advanced if soaked in the media, determined by chemical and physical analyses, and enhanced osteocytes differentiation of IDG-SW3 cells more than hydroxyapatite (HA) and β-tricalcium phosphate (β-TCP). Conditioned elevated Pi-containing media in the absence of OCP enhanced the osteocyte differentiation in the range of the concentration induced by OCP, the effect of which was cancelled by the inhibitor of Pi-transporters.
Collapse
|
47
|
Tang Y, Zhang L, Tu T, Li Y, Murray D, Tu Q, Chen JJ. MicroRNA-99a is a novel regulator of KDM6B-mediated osteogenic differentiation of BMSCs. J Cell Mol Med 2018; 22:2162-2176. [PMID: 29377540 PMCID: PMC5867145 DOI: 10.1111/jcmm.13490] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2017] [Accepted: 11/12/2017] [Indexed: 12/19/2022] Open
Abstract
Skeletal tissue originates from mesenchymal stem cells (MSCs) with differentiation potential into the osteoblast lineage regulated by essential transcriptional and post‐transcriptional mechanisms. Recently, miRNAs and histone modifications have been identified as novel key regulators of osteogenic differentiation of MSCs. Here, we identified miR‐99a and its target lysine (K)‐specific demethylase 6B (KDM6B) gene as novel modulators of osteogenic differentiation of bone mesenchymal stem cells (BMSCs). Microarray profiling and further validation by quantitative real‐time RT‐PCR revealed that miR‐99a was up‐regulated during osteoblastic differentiation of BMSCs, and decreased in differentiated osteoblasts. Transfection of miR‐99a mimics inhibited osteoblastic commitment and differentiation of BMSCs, whereas inhibition of miR‐99a by inhibitors enhances these processes. KDM6B was determined as one of important targets of miR‐99a, which was further confirmed by luciferase assay of 3′‐UTR of KDM6B. Moreover, HOX gene level decreased after transfection of miR‐99a mimics in BMSCs, which indicated that KDM6B is a bona fide target of miR‐99a. Furthermore, in a model of in vivo bone regeneration, osteoblast‐specific gain‐ and loss‐of‐function experiments performed using cranial bone defects revealed that miR‐99a mimics‐transfected BMSCs reduced bone formation, and conversely, miR‐99a inhibitors‐transfected BMSCs increased in vivo bone formation. Tissue‐specific inhibition of miR‐99a may be a potential novel therapeutic approach for enhancing BMSCs‐based bone formation and regeneration.
Collapse
Affiliation(s)
- Yin Tang
- Division of Oral Biology, Tufts University School of Dental Medicine, Boston, MA, USA.,State Key Laboratory of Oral Disease, West China School & Hospital of Stomatology, Sichuan University, Chengdu, Sichuan, China
| | - Lan Zhang
- Division of Oral Biology, Tufts University School of Dental Medicine, Boston, MA, USA.,State Key Laboratory of Oral Disease, West China School & Hospital of Stomatology, Sichuan University, Chengdu, Sichuan, China
| | - Tianchi Tu
- Division of Oral Biology, Tufts University School of Dental Medicine, Boston, MA, USA
| | - Yijia Li
- Division of Oral Biology, Tufts University School of Dental Medicine, Boston, MA, USA
| | - Dana Murray
- Division of Oral Biology, Tufts University School of Dental Medicine, Boston, MA, USA
| | - Qisheng Tu
- Division of Oral Biology, Tufts University School of Dental Medicine, Boston, MA, USA
| | - Jake Jinkun Chen
- Division of Oral Biology, Tufts University School of Dental Medicine, Boston, MA, USA.,Department of Anatomy and Cell Biology, Sackler School of Graduate Biomedical Sciences, Tufts University School of Medicine, Boston, MA, USA
| |
Collapse
|
48
|
Bhaskar B, Owen R, Bahmaee H, Wally Z, Sreenivasa Rao P, Reilly GC. Composite porous scaffold of PEG/PLA support improved bone matrix deposition in vitro
compared to PLA-only scaffolds. J Biomed Mater Res A 2018; 106:1334-1340. [DOI: 10.1002/jbm.a.36336] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2017] [Revised: 12/12/2017] [Accepted: 01/05/2018] [Indexed: 11/07/2022]
Affiliation(s)
- Birru Bhaskar
- Department of Biotechnology; National Institute of Technology Warangal; Telangana 506004 India
- Department of Materials Science and Engineering; University of Sheffield, INSIGNEO Institute for in silico medicine, The Pam Liversidge Building, Sir Frederick Mappin Building, Mappin Street; Sheffield S1 3JD United Kingdom
| | - Robert Owen
- Department of Materials Science and Engineering; University of Sheffield, INSIGNEO Institute for in silico medicine, The Pam Liversidge Building, Sir Frederick Mappin Building, Mappin Street; Sheffield S1 3JD United Kingdom
| | - Hossein Bahmaee
- Department of Materials Science and Engineering; University of Sheffield, INSIGNEO Institute for in silico medicine, The Pam Liversidge Building, Sir Frederick Mappin Building, Mappin Street; Sheffield S1 3JD United Kingdom
- Department of Materials Science and Engineering; University of Sheffield, The Kroto Research Institute, North Campus, Broad Lane; Sheffield S3 7HQ United Kingdom
| | - Zena Wally
- Department of Materials Science and Engineering; University of Sheffield, INSIGNEO Institute for in silico medicine, The Pam Liversidge Building, Sir Frederick Mappin Building, Mappin Street; Sheffield S1 3JD United Kingdom
| | - Parcha Sreenivasa Rao
- Department of Biotechnology; National Institute of Technology Warangal; Telangana 506004 India
| | - Gwendolen C. Reilly
- Department of Materials Science and Engineering; University of Sheffield, INSIGNEO Institute for in silico medicine, The Pam Liversidge Building, Sir Frederick Mappin Building, Mappin Street; Sheffield S1 3JD United Kingdom
| |
Collapse
|
49
|
Sun Q, Choudhary S, Mannion C, Kissin Y, Zilberberg J, Lee WY. Ex vivo replication of phenotypic functions of osteocytes through biomimetic 3D bone tissue construction. Bone 2018; 106:148-155. [PMID: 29066313 PMCID: PMC5694355 DOI: 10.1016/j.bone.2017.10.019] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/28/2017] [Revised: 10/16/2017] [Accepted: 10/20/2017] [Indexed: 12/11/2022]
Abstract
Osteocytes, residing as 3-dimensionally (3D) networked cells in bone, are well known to regulate bone and mineral homeostasis and have been recently implicated to interact with cancer cells to influence the progression of bone metastases. In this study, a bone tissue consisting of 3D-networked primary human osteocytes and MLO-A5 cells was constructed using: (1) the biomimetic close-packed assembly of 20-25μm microbeads with primary cells isolated from human bone samples and MLO-A5 cells and (2) subsequent perfusion culture in a microfluidic device. With this 3D tissue construction approach, we replicated ex vivo, for the first time, the mechanotransduction function of human primary osteocytes and MLO-A5 cells by correlating the effects of cyclic compression on down-regulated SOST and DKK1 expressions. Also, as an example of using our ex vivo model to evaluate therapeutic agents, we confirmed previously reported findings that parathyroid hormone (PTH) decreases SOST and increases the ratio of RANKL and OPG. In comparison to other in vitro models, our ex vivo model: (1) replicates the cell density, phenotype, and functions of primary human osteocytes and MLO-A5 cells and (2) thus provides a clinically relevant means of studying bone diseases and metastases.
Collapse
Affiliation(s)
- Qiaoling Sun
- Department of Materials Science and Chemical Engineering, Stevens Institute of Technology, Hoboken, NJ, USA
| | - Saba Choudhary
- Department of Biomedical Engineering, Chemistry and Biological Sciences, Stevens Institute of Technology, Hoboken, NJ, USA
| | - Ciaran Mannion
- Department of Pathology, Hackensack University Medical Center, Hackensack, NJ, USA
| | - Yair Kissin
- Department of Orthopeidc Surgery, Hackensack University Medical Center, Hackensack, NJ, USA
| | - Jenny Zilberberg
- Department of Biomedical Research, Hackensack University Medical Center, Hackensack, NJ, USA
| | - Woo Y Lee
- Department of Materials Science and Chemical Engineering, Stevens Institute of Technology, Hoboken, NJ, USA.
| |
Collapse
|
50
|
Wang W, Sarazin BA, Kornilowicz G, Lynch ME. Mechanically-Loaded Breast Cancer Cells Modify Osteocyte Mechanosensitivity by Secreting Factors That Increase Osteocyte Dendrite Formation and Downstream Resorption. Front Endocrinol (Lausanne) 2018; 9:352. [PMID: 30034365 PMCID: PMC6043807 DOI: 10.3389/fendo.2018.00352] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/10/2018] [Accepted: 06/11/2018] [Indexed: 01/10/2023] Open
Abstract
Advanced breast cancer predominantly metastasizes to the skeleton, at which point patient prognosis significantly declines concomitant with bone loss, pain, and heightened fracture risk. Given the skeleton's sensitivity to mechanical signals, increased mechanical loading is well-documented to increase bone mass, and it also inhibited bone metastatic tumor formation and progression in vivo, though the underlying mechanisms remain under investigation. Here, we focus on the role of the osteocyte because it is the primary skeletal mechanosensor and in turn directs the remodeling balance between formation and resoprtion. In particular, osteocytic dendrites are important for mechanosensing, but how this function is altered during bone metastatic breast cancer is unknown. To examine how breast cancer cells modulate dendrite formation and function, we exposed osteocytes (MLO-Y4) to medium conditioned by breast cancer cells (MDA-MB231) and to applied fluid flow (2 h per day for 3 days, shear stress 1.1 Pa). When loading was applied to MLOs, dendrite formation increased despite the presence of tumor-derived factors while overall MLO cell number was reduced. We then exposed MLOs to fluid flow as well as media conditioned by MDAs that had been similarly loaded. When nonloaded MLOs were treated with conditioned media from loaded MDAs, their dendrite formation increased in a manner similar to that observed due to loading alone. When MLOs simultaneously underwent loading and treatment with loaded conditioned media, dendrite formation was greatest. To understand potential molecular mechanisms, we then investigated expression of genes related to osteocyte maturation and dendrite formation (E11) and remodeling (RANKL, OPG) as well as osteocyte apoptosis. E11 expression increased with loading, consistent with increased dendrite formation. Though loaded conditioned media decreased MLO cell number, apoptosis was not detected via TUNEL staining, suggesting an inhibition of growth instead. OPG expression was inhibited while RANKL expression was unaffected, leading to an overall increase in the RANKL/OPG ratio with conditioned media from loaded breast cancer cells. Taken together, our results suggest that skeletal mechanical loading stimulates breast cancer cells to alter osteocyte mechanosensing by increasing dendrite formation and downstream resorption.
Collapse
Affiliation(s)
- Wenbo Wang
- Department of Mechanical and Industrial Engineering, University of Massachusetts, Amherst, MA, United States
| | - Blayne A. Sarazin
- Department of Mechanical and Industrial Engineering, University of Massachusetts, Amherst, MA, United States
- Department of Mechanical Engineering, University of Colorado, Boulder, CO, United States
| | - Gabriel Kornilowicz
- Department of Mechanical and Industrial Engineering, University of Massachusetts, Amherst, MA, United States
| | - Maureen E. Lynch
- Department of Mechanical and Industrial Engineering, University of Massachusetts, Amherst, MA, United States
- Department of Mechanical Engineering, University of Colorado, Boulder, CO, United States
- *Correspondence: Maureen E. Lynch
| |
Collapse
|