1
|
Alghadir AH, Gabr SA, Iqbal A. Concurrent effects of high-intensity interval training and vitamin D supplementation on bone metabolism among women diagnosed with osteoporosis: a randomized controlled trial. BMC Musculoskelet Disord 2025; 26:381. [PMID: 40259289 PMCID: PMC12010601 DOI: 10.1186/s12891-025-08275-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/24/2023] [Accepted: 01/02/2025] [Indexed: 04/23/2025] Open
Abstract
BACKGROUND Osteoporosis is often responsible for bone fragility and increased fracture risk due to the micro-architectural deterioration of bone tissue. In addition to nutritional supplements, exercise is considered an adjunct factor in safeguarding bone health. This study aimed to investigate the effects of 16-week high-intensity interval training (HIIT) and vitamin D supplementation on bone mineral density (BMD) in women with osteoporosis. TRIAL DESIGN This study used a four-arm pretest-posttest experimental randomized controlled design. METHODS One hundred twenty sedentary women aged (30-50 years), diagnosed with osteoporosis were recruited in this study. Patients were randomly classified into four groups with 30 patients in each group: control group (normal daily activities), exercise group (HIIT-exercise for 16 weeks), Vitamin D group (vitamin D 800IU/ day for 16 weeks), and concurrent group (HIIT exercise plus vitamin D for 16 weeks). Anthropometric measurements, BMD, and serum levels of vitamin 25-(OH) D, Osteocalcin, s-BAP, and calcium were estimated in all participants before and after exercise training. RESULTS Serum samples revealed that bone resorption markers, osteocalcin, total calcium, s-BAP, and vitamin 25(OH) D significantly improved in all groups; there was greater improvement in the HIIT training-vitamin D group than in the HIIT training, vitamin D, and control groups. Furthermore, the HIIT training-vitamin D group showed improvements in hip (right and left) and lumbar spine BMD than the HIIT training, Vitamin D, and Control groups. BMD improvements correlated positively with serum osteocalcin levels and total calcium and negatively with BMI and s-BAP. CONCLUSIONS Sixteen weeks of HIIT and vitamin D consumption showed greater benefits for BMD levels in women with osteoporosis than either vitamin D consumption or HIIT training alone. Therefore, HIIT plus vitamin D consumption may be a strategic option to prevent BMD reduction with aging or to slow demineralization. TRIAL REGISTRATION The study protocol was retrospectively registered at 'ClinicalTrials.gov PRS' under the trial identifier NCT06624657, dated 1/10/2024.
Collapse
Affiliation(s)
- Ahmad H Alghadir
- Rehabilitation Research Chair, Department of Rehabilitation Sciences, College of Applied Medical Sciences, King Saud University, P.O. Box 10219, Riyadh, 11433, Saudi Arabia
| | - Sami A Gabr
- Rehabilitation Research Chair, Department of Rehabilitation Sciences, College of Applied Medical Sciences, King Saud University, P.O. Box 10219, Riyadh, 11433, Saudi Arabia
| | - Amir Iqbal
- Rehabilitation Research Chair, Department of Rehabilitation Sciences, College of Applied Medical Sciences, King Saud University, P.O. Box 10219, Riyadh, 11433, Saudi Arabia.
| |
Collapse
|
2
|
Pivonka P, Calvo-Gallego JL, Schmidt S, Martínez-Reina J. Advances in mechanobiological pharmacokinetic-pharmacodynamic models of osteoporosis treatment - Pathways to optimise and exploit existing therapies. Bone 2024; 186:117140. [PMID: 38838799 DOI: 10.1016/j.bone.2024.117140] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/20/2024] [Revised: 05/17/2024] [Accepted: 05/29/2024] [Indexed: 06/07/2024]
Abstract
Osteoporosis (OP) is a chronic progressive bone disease which is characterised by reduction of bone matrix volume and changes in the bone matrix properties which can ultimately lead to bone fracture. The two major forms of OP are related to aging and/or menopause. With the worldwide increase of the elderly population, particularly age-related OP poses a serious health issue which puts large pressure on health care systems. A major challenge for development of new drug treatments for OP and comparison of drug efficacy with existing treatments is due to current regulatory requirements which demand testing of drugs based on bone mineral density (BMD) in phase 2 trials and fracture risk in phase 3 trials. This requires large clinical trials to be conducted and to be run for long time periods, which is very costly. This, together with the fact that there are already many drugs available for treatment of OP, makes the development of new drugs inhibitive. Furthermore, an increased trend of the use of different sequential drug therapies has been observed in OP management, such as sequential anabolic-anticatabolic drug treatment or switching from one anticatabolic drug to another. Running clinical trials for concurrent and sequential therapies is neither feasible nor practical due to large number of combinatorial possibilities. In silico mechanobiological pharmacokinetic-pharmacodynamic (PK-PD) models of OP treatments allow predictions beyond BMD, i.e. bone microdamage and degree of mineralisation can also be monitored. This will help to inform clinical drug usage and development by identifying the most promising scenarios to be tested clinically (confirmatory trials rather than exploratory only trials), optimise trial design and identify subgroups of the population that show benefit-risk profiles (both good and bad) that are different from the average patient. In this review, we provide examples of the predictive capabilities of mechanobiological PK-PD models. These include simulation results of PMO treatment with denosumab, implications of denosumab drug holidays and coupling of bone remodelling models with calcium and phosphate systems models that allows to investigate the effects of co-morbidities such as hyperparathyroidism and chronic kidney disease together with calcium and vitamin D status on drug efficacy.
Collapse
Affiliation(s)
- Peter Pivonka
- School of Mechanical, Medical and Process Engineering, Queensland University of Technology, QLD 4000, Australia.
| | - José Luis Calvo-Gallego
- Departmento de Ingeniería Mecánica y Fabricación, Universidad de Sevilla, Seville 41092, Spain
| | - Stephan Schmidt
- Center for Pharmacometrics and Systems Pharmacology, Department of Pharmaceutics, College of Pharmacy, University of Florida, Orlando, FL 32827, USA
| | - Javier Martínez-Reina
- Departmento de Ingeniería Mecánica y Fabricación, Universidad de Sevilla, Seville 41092, Spain
| |
Collapse
|
3
|
Muniyasamy R, Manjubala I. Insights into the Mechanism of Osteoporosis and the Available Treatment Options. Curr Pharm Biotechnol 2024; 25:1538-1551. [PMID: 37936474 DOI: 10.2174/0113892010273783231027073117] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2023] [Revised: 10/03/2023] [Accepted: 10/05/2023] [Indexed: 11/09/2023]
Abstract
Osteoporosis, one of the most prevalent bone illnesses, majorly affects postmenopausal women and men over 50 years of age. Osteoporosis is associated with an increased susceptibility to fragility fractures and can result in persistent pain and significant impairment in affected individuals. The primary method for diagnosing osteoporosis involves the assessment of bone mineral density (BMD) through the utilisation of dual energy x-ray absorptiometry (DEXA). The integration of a fracture risk assessment algorithm with bone mineral density (BMD) has led to significant progress in the diagnosis of osteoporosis. Given that osteoporosis is a chronic condition and multiple factors play an important role in maintaining bone mass, comprehending its underlying mechanism is crucial for developing more effective pharmaceutical interventions for the disease. The effective management of osteoporosis involves the utilisation of appropriate pharmacological agents in conjunction with suitable dietary interventions and lifestyle modifications. This review provides a comprehensive understanding of the types of osteoporosis and elucidates the currently available pharmacological treatment options and their related mechanism of action and usage.
Collapse
Affiliation(s)
- Rajeshwari Muniyasamy
- School of Bio Sciences and Technology, Vellore Institute of Technology, Vellore, Tamil Nadu, India
| | - Inderchand Manjubala
- School of Bio Sciences and Technology, Vellore Institute of Technology, Vellore, Tamil Nadu, India
| |
Collapse
|
4
|
Hughes JM, Guerriere KI, Popp KL, Castellani CM, Pasiakos SM. Exercise for optimizing bone health after hormone-induced increases in bone stiffness. Front Endocrinol (Lausanne) 2023; 14:1219454. [PMID: 37790607 PMCID: PMC10544579 DOI: 10.3389/fendo.2023.1219454] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/09/2023] [Accepted: 08/17/2023] [Indexed: 10/05/2023] Open
Abstract
Hormones and mechanical loading co-regulate bone throughout the lifespan. In this review, we posit that times of increased hormonal influence on bone provide opportunities for exercise to optimize bone strength and prevent fragility. Examples include endogenous secretion of growth hormones and sex steroids that modulate adolescent growth and exogenous administration of osteoanabolic drugs like teriparatide, which increase bone stiffness, or its resistance to external forces. We review evidence that after bone stiffness is increased due to hormonal stimuli, mechanoadaptive processes follow. Specifically, exercise provides the mechanical stimulus necessary to offset adaptive bone resorption or promote adaptive bone formation. The collective effects of both decreased bone resorption and increased bone formation optimize bone strength during youth and preserve it later in life. These theoretical constructs provide physiologic foundations for promoting exercise throughout life.
Collapse
Affiliation(s)
- Julie M. Hughes
- Military Performance Division, United States Army Research Institute of Environmental Medicine, Natick, MA, United States
| | - Katelyn I. Guerriere
- Military Performance Division, United States Army Research Institute of Environmental Medicine, Natick, MA, United States
| | - Kristin L. Popp
- Military Performance Division, United States Army Research Institute of Environmental Medicine, Natick, MA, United States
- Oak Ridge Institute for Science and Education (ORISE), Oak Ridge, TN, United States
| | - Colleen M. Castellani
- Military Performance Division, United States Army Research Institute of Environmental Medicine, Natick, MA, United States
- Oak Ridge Institute for Science and Education (ORISE), Oak Ridge, TN, United States
| | - Stefan M. Pasiakos
- Military Performance Division, United States Army Research Institute of Environmental Medicine, Natick, MA, United States
| |
Collapse
|
5
|
Abstract
Changes in bone architecture and metabolism with aging increase the likelihood of osteoporosis and fracture. Age-onset osteoporosis is multifactorial, with contributory extrinsic and intrinsic factors including certain medical problems, specific prescription drugs, estrogen loss, secondary hyperparathyroidism, microenvironmental and cellular alterations in bone tissue, and mechanical unloading or immobilization. At the histological level, there are changes in trabecular and cortical bone as well as marrow cellularity, lineage switching of mesenchymal stem cells to an adipogenic fate, inadequate transduction of signals during skeletal loading, and predisposition toward senescent cell accumulation with production of a senescence-associated secretory phenotype. Cumulatively, these changes result in bone remodeling abnormalities that over time cause net bone loss typically seen in older adults. Age-related osteoporosis is a geriatric syndrome due to the multiple etiologies that converge upon the skeleton to produce the ultimate phenotypic changes that manifest as bone fragility. Bone tissue is dynamic but with tendencies toward poor osteoblastic bone formation and relative osteoclastic bone resorption with aging. Interactions with other aging physiologic systems, such as muscle, may also confer detrimental effects on the aging skeleton. Conversely, individuals who maintain their BMD experience a lower risk of fractures, disability, and mortality, suggesting that this phenotype may be a marker of successful aging. © 2023 American Physiological Society. Compr Physiol 13:4355-4386, 2023.
Collapse
Affiliation(s)
- Robert J Pignolo
- Department of Medicine, Divisions of Geriatric Medicine and Gerontology, Endocrinology, and Hospital Internal Medicine, Mayo Clinic, Rochester, Minnesota, USA.,The Department of Physiology and Biomedical Engineering, and the Robert and Arlene Kogod Center on Aging, Mayo Clinic, Rochester, Minnesota, USA
| |
Collapse
|
6
|
Murray AA, Erlandson MC. Tibial cortical and trabecular variables together can pinpoint the timing of impact loading relative to menarche in premenopausal females. Am J Hum Biol 2021; 34:e23711. [PMID: 34878660 DOI: 10.1002/ajhb.23711] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2021] [Revised: 10/29/2021] [Accepted: 11/26/2021] [Indexed: 11/06/2022] Open
Abstract
OBJECTIVES Though relationships between limb bone structure and mechanical loading have provided fantastic opportunities for understanding the lives of prehistoric adults, the lives of children remain poorly understood. Our aim was to determine whether or not adult tibial skeletal variables retain information about childhood/adolescent loading, through assessing relationships between cortical and trabecular bone variables and the timing of impact loading relative to menarche in premenopausal adult females. METHODS Peripheral quantitative computed tomography was used to quantify geometric and densitometric variables from the proximal tibial diaphysis (66% location) and distal epiphysis (4% location) among 81 nulliparous young adult female controls and athletes aged 19-33 years grouped according to intensity of impact loading both pre- and post-menarche: (1) Low:Low (Controls); (2) High:Low; (3) High:High; (4) Moderate:Moderate; (5) Low:Moderate. ANCOVA was used to compare properties among the groups adjusted for age, stature, and body mass. RESULTS Significant increases in diaphyseal total cross-sectional area and strength-strain index were documented among groups with any pre-menarcheal impact loading relative to groups with none, regardless of post-menarcheal loading history (p < .01). In contrast, significantly elevated distal trabecular volumetric bone mineral density was only documented among groups with recent post-menarcheal loading relative to groups with none, regardless of pre-menarcheal impact loading history (p < .01). CONCLUSIONS The consideration of diaphyseal cortical bone geometric and epiphyseal trabecular bone densitometric variables together within the tibia can identify variation in pre-menarcheal and post-menarcheal impact loading histories among premenopausal adult females.
Collapse
Affiliation(s)
- Alison A Murray
- Department of Anthropology, University of Victoria, Victoria, Canada
| | - Marta C Erlandson
- College of Kinesiology, University of Saskatchewan, Saskatoon, Canada
| |
Collapse
|
7
|
Zheng Q, Kernozek T, Daoud-Gray A, Borer KT. Anabolic Bone Stimulus Requires a Pre-Exercise Meal and 45-Minute Walking Impulse of Suprathreshold Speed-Enhanced Momentum to Prevent or Mitigate Postmenopausal Osteoporosis within Circadian Constraints. Nutrients 2021; 13:nu13113727. [PMID: 34835982 PMCID: PMC8620686 DOI: 10.3390/nu13113727] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2021] [Revised: 10/05/2021] [Accepted: 10/18/2021] [Indexed: 01/22/2023] Open
Abstract
Osteoporosis currently afflicts 8 million postmenopausal women in the US, increasing the risk of bone fractures and morbidity, and reducing overall quality of life. We sought to define moderate exercise protocols that can prevent postmenopausal osteoporosis. Our previous findings singled out higher walking speed and pre-exercise meals as necessary for suppression of bone resorption and increasing of markers of bone formation. Since both studies were amenable to alternate biomechanical, nutritional, and circadian interpretations, we sought to determine the relative importance of higher speed, momentum, speed-enhanced load, duration of impulse, and meal timing on osteogenic response. We hypothesized that: (1) 20 min of exercise one hour after eating is sufficient to suppress bone resorption as much as a 40-min impulse and that two 20 min exercise bouts separated by 7 h would double the anabolic effect; (2) early morning exercise performed after eating will be as effective as mid-day exercise for anabolic outcome; and (3) the 08:00 h 40-min. exercise uphill would be as osteogenic as the 40-min exercise downhill. Healthy postmenopausal women, 8 each, were assigned to a no-exercise condition (SED) or to 40- or 20-min exercise bouts, spaced 7 h apart, for walking uphill (40 Up and 20 Up) or downhill (40 Down and 20 Down) to produce differences in biomechanical variables. Exercise was initiated at 08:00 h one hour after eating in 40-min groups, and also 7 h later, two hours after the midday meal, in 20-min groups. Measurements were made of CICP (c-terminal peptide of type I collagen), osteocalcin (OC), and bone-specific alkaline phosphatase (BALP), markers of bone formation, and of the bone resorptive marker CTX (c-terminal telopeptide of type 1 collagen). The osteogenic ratios CICP/CTX, OC/CTX, and BALP/CTX were calculated. Only the 40-min downhill exercise of suprathreshold speed-enhanced momentum, increased the three osteogenic ratios, demonstrating the necessity of a 40-min, and inadequacy of a 20-min, exercise impulse. The failure of anabolic outcome in 40-min uphill exercise was attributed to a sustained elevation of PTH concentration, as its high morning elevation enhances the CTX circadian rhythm. We conclude that postmenopausal osteoporosis can be prevented or mitigated in sedentary women by 45 min of morning exercise of suprathreshold speed-enhanced increased momentum performed shortly after a meal while walking on level ground, or by 40-min downhill, but not 40-min uphill, exercise to avoid circadian PTH oversecretion. The principal stimulus for the anabolic effect is exercise, but the prerequisite for a pre-exercise meal demonstrates the requirement for nutrient facilitation.
Collapse
Affiliation(s)
- Qingyun Zheng
- School of Kinesiology, The University of Michigan, Ann Arbor, MI 48109, USA; (A.D.-G.); (K.T.B.)
- School of Physical Education, Henan University, Kaifeng 475004, China
- Correspondence: ; Tel.: +86-138-4915-1204
| | - Thomas Kernozek
- Physical Therapy Program, Department of Health Professions, University of Wisconsin-La Crosse, La Crosse, WI 54601, USA;
| | - Adam Daoud-Gray
- School of Kinesiology, The University of Michigan, Ann Arbor, MI 48109, USA; (A.D.-G.); (K.T.B.)
| | - Katarina T. Borer
- School of Kinesiology, The University of Michigan, Ann Arbor, MI 48109, USA; (A.D.-G.); (K.T.B.)
| |
Collapse
|
8
|
Martin TJ, Sims NA, Seeman E. Physiological and Pharmacological Roles of PTH and PTHrP in Bone Using Their Shared Receptor, PTH1R. Endocr Rev 2021; 42:383-406. [PMID: 33564837 DOI: 10.1210/endrev/bnab005] [Citation(s) in RCA: 50] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/24/2020] [Indexed: 12/13/2022]
Abstract
Parathyroid hormone (PTH) and the paracrine factor, PTH-related protein (PTHrP), have preserved in evolution sufficient identities in their amino-terminal domains to share equivalent actions upon a common G protein-coupled receptor, PTH1R, that predominantly uses the cyclic adenosine monophosphate-protein kinase A signaling pathway. Such a relationship between a hormone and local factor poses questions about how their common receptor mediates pharmacological and physiological actions of the two. Mouse genetic studies show that PTHrP is essential for endochondral bone lengthening in the fetus and is essential for bone remodeling. In contrast, the main postnatal function of PTH is hormonal control of calcium homeostasis, with no evidence that PTHrP contributes. Pharmacologically, amino-terminal PTH and PTHrP peptides (teriparatide and abaloparatide) promote bone formation when administered by intermittent (daily) injection. This anabolic effect is remodeling-based with a lesser contribution from modeling. The apparent lesser potency of PTHrP than PTH peptides as skeletal anabolic agents could be explained by lesser bioavailability to PTH1R. By contrast, prolongation of PTH1R stimulation by excessive dosing or infusion, converts the response to a predominantly resorptive one by stimulating osteoclast formation. Physiologically, locally generated PTHrP is better equipped than the circulating hormone to regulate bone remodeling, which occurs asynchronously at widely distributed sites throughout the skeleton where it is needed to replace old or damaged bone. While it remains possible that PTH, circulating within a narrow concentration range, could contribute in some way to remodeling and modeling, its main physiological role is in regulating calcium homeostasis.
Collapse
Affiliation(s)
- T John Martin
- St. Vincent's Institute of Medical Research, Fitzroy, Victoria, Australia.,The University of Melbourne, Department of Medicine at St. Vincent's Hospital, Fitzroy, Victoria, Australia
| | - Natalie A Sims
- St. Vincent's Institute of Medical Research, Fitzroy, Victoria, Australia.,The University of Melbourne, Department of Medicine at St. Vincent's Hospital, Fitzroy, Victoria, Australia
| | - Ego Seeman
- The University of Melbourne, Department of Medicine at Austin Health, Heidelberg, Victoria, Australia
| |
Collapse
|
9
|
Chen J, Lazarenko OP, Carvalho E, Blackburn ML, Shankar K, Wankhade UD, Børsheim E. Short-Term Increased Physical Activity During Early Life Affects High-Fat Diet-Induced Bone Loss in Young Adult Mice. JBMR Plus 2021; 5:e10508. [PMID: 34258504 PMCID: PMC8260814 DOI: 10.1002/jbm4.10508] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/08/2020] [Revised: 03/22/2021] [Accepted: 04/21/2021] [Indexed: 01/01/2023] Open
Abstract
Mechanical stresses associated with physical activity (PA) have beneficial effects on increasing BMD and improving bone quality. However, a high-fat diet (HFD) and obesity tend to have negative effects on bone, by increasing bone marrow adiposity leading to increased excretion of proinflammatory cytokines, which activate RANKL-induced bone resorption. In the current study, whether short-term increased PA via access to voluntary wheel running during early life has persistent and protective effects on HFD-induced bone resorption was investigated. Sixty 4-week-old male C57BL6/J mice were divided into two groups postweaning: without or with PA (access to voluntary running wheel 7-8 km/day) for 4 weeks. After 4 weeks with or without PA, mice were further subdivided into control diet or HFD groups for 8 weeks, and then all animals were switched back to control diet for an additional 4 weeks. Mice from the HFD groups were significantly heavier and obese; however, after 4 weeks of additional control diet their body weights returned to levels of mice on continuous control diet. Using μ-CT and confirmed by pQCT of tibias and spines ex vivo, it was determined that bone volume and trabecular BMD were significantly increased with PA in control diet animals compared with sedentary animals without access to wheels, and such anabolic effects of PA on bone were sustained after ceasing PA in adult mice. Eight weeks of a HFD deteriorated bone development in mice. Unexpectedly, early-life PA did not prevent persistent effects of HFD on deteriorating bone quality; in fact, it exacerbated a HFD-induced inflammation, osteoclastogenesis, and trabecular bone loss in adult mice. In accordance with these data, signal transduction studies revealed that a HFD-induced Ezh2, DNA methyltransferase 3a, and nuclear factor of activated T-cells 1 expression were amplified in nonadherent hematopoietic cells. In conclusion, short-term increased PA in early life is capable of increasing bone mass; however, it alters the HFD-induced bone marrow hematopoietic cell-differentiation program to exacerbate increased bone resorption if PA is halted. © 2021 Arkansas Children's Nutrition Center. JBMR Plus published by Wiley Periodicals LLC on behalf of American Society for Bone and Mineral Research.
Collapse
Affiliation(s)
- Jin‐Ran Chen
- Arkansas Children's Nutrition CenterLittle RockARUSA
- Department of PediatricsUniversity of Arkansas for Medical SciencesLittle RockARUSA
| | - Oxana P Lazarenko
- Arkansas Children's Nutrition CenterLittle RockARUSA
- Department of PediatricsUniversity of Arkansas for Medical SciencesLittle RockARUSA
| | - Eugenia Carvalho
- Arkansas Children's Research InstituteLittle RockARUSA
- Department of GeriatricsUniversity of Arkansas for Medical SciencesLittle RockARUSA
| | - Michael L Blackburn
- Arkansas Children's Nutrition CenterLittle RockARUSA
- Department of PediatricsUniversity of Arkansas for Medical SciencesLittle RockARUSA
| | - Kartik Shankar
- Arkansas Children's Nutrition CenterLittle RockARUSA
- Department of PediatricsUniversity of Arkansas for Medical SciencesLittle RockARUSA
- Present address:
Department of Pediatrics, Section of NutritionUniversity of Colorado School of MedicineAuroraCOUSA
| | - Umesh D Wankhade
- Arkansas Children's Nutrition CenterLittle RockARUSA
- Department of PediatricsUniversity of Arkansas for Medical SciencesLittle RockARUSA
| | - Elisabet Børsheim
- Arkansas Children's Nutrition CenterLittle RockARUSA
- Department of PediatricsUniversity of Arkansas for Medical SciencesLittle RockARUSA
- Arkansas Children's Research InstituteLittle RockARUSA
- Department of GeriatricsUniversity of Arkansas for Medical SciencesLittle RockARUSA
| |
Collapse
|
10
|
McLean RR, Samelson EJ, Lorbergs AL, Broe KE, Hannan MT, Boyd SK, Bouxsein ML, Kiel DP. Higher Hand Grip Strength Is Associated With Greater Radius Bone Size and Strength in Older Men and Women: The Framingham Osteoporosis Study. JBMR Plus 2021; 5:e10485. [PMID: 33977203 PMCID: PMC8101610 DOI: 10.1002/jbm4.10485] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/30/2020] [Revised: 02/21/2021] [Accepted: 03/02/2021] [Indexed: 12/30/2022] Open
Abstract
Mechanical loading by muscles elicits anabolic responses from bone, thus age‐related declines in muscle strength may contribute to bone fragility in older adults. We used high‐resolution peripheral quantitative computed tomography (HR‐pQCT) to determine the association between grip strength and distal radius bone density, size, morphology, and microarchitecture, as well as bone strength estimated by micro–finite element analysis (μFEA), among older men and women. Participants included 508 men and 651 women participating in the Framingham Offspring Study with grip strength measured in 2011–2014 and HR‐pQCT scanning in 2012–2015. Separately for men and women, analysis of covariance was used to compare HR‐pQCT measures among grip strength quartiles and to test for linear trends, adjusting for age, height, weight, smoking, and physical activity. Mean age was 70 years (range, 50–95 years), and men had higher mean grip strength than the women (37 kg vs. 21 kg). Bone strength estimated by μFEA‐calculated failure load was higher with greater grip strength in both men (p < 0.01) and women (p = 0.04). Higher grip strength was associated with larger cross‐sectional area in both men and women (p < 0.01), with differences in area of 6% and 11% between the lowest to highest grip strength quartiles in men and women, respectively. Cortical thickness was positively associated with grip strength among men only (p = 0.03). Grip strength was not associated with volumetric BMD (vBMD) in men. Conversely, there was a trend for lower total vBMD with higher grip strength among women (p = 0.02), though pairwise comparisons did not reveal any statistically significant differences in total vBMD among grip strength quartiles. Bone microarchitecture (cortical porosity, trabecular thickness, trabecular number) was not associated with grip strength in either men or women. Our findings suggest that the positive association between hand grip strength and distal radius bone strength may be driven primarily by bone size. © 2021 The Authors. JBMR Plus published by Wiley Periodicals LLC on behalf of American Society for Bone and Mineral Research.
Collapse
Affiliation(s)
- Robert R McLean
- Hinda and Arthur Marcus Institute for Aging Research, Hebrew SeniorLife Boston Massachusetts USA.,CorEvitas, LLC Waltham Massachusetts USA
| | - Elizabeth J Samelson
- Hinda and Arthur Marcus Institute for Aging Research, Hebrew SeniorLife Boston Massachusetts USA.,Department of Medicine Beth Israel Deaconess Medical Center and Harvard Medical School Boston Massachusetts USA
| | | | | | - Marian T Hannan
- Hinda and Arthur Marcus Institute for Aging Research, Hebrew SeniorLife Boston Massachusetts USA.,Department of Medicine Beth Israel Deaconess Medical Center and Harvard Medical School Boston Massachusetts USA
| | - Steven K Boyd
- McCaig Institute for Bone and Joint Health, Cumming School of Medicine, University of Calgary Calgary Alberta Canada
| | - Mary L Bouxsein
- Center for Advanced Orthopaedic Studies, Beth Israel Deaconess Medical Center Boston Massachusetts USA.,Department of Orthopedic Surgery Harvard Medical School Boston Massachusetts USA
| | - Douglas P Kiel
- Hinda and Arthur Marcus Institute for Aging Research, Hebrew SeniorLife Boston Massachusetts USA.,Department of Medicine Beth Israel Deaconess Medical Center and Harvard Medical School Boston Massachusetts USA
| |
Collapse
|
11
|
Li H, Xiao Z, Quarles LD, Li W. Osteoporosis: Mechanism, Molecular Target and Current Status on Drug Development. Curr Med Chem 2021; 28:1489-1507. [PMID: 32223730 PMCID: PMC7665836 DOI: 10.2174/0929867327666200330142432] [Citation(s) in RCA: 141] [Impact Index Per Article: 35.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2019] [Revised: 02/25/2020] [Accepted: 02/26/2020] [Indexed: 11/22/2022]
Abstract
CDATA[Osteoporosis is a pathological loss of bone mass due to an imbalance in bone remodeling where osteoclast-mediated bone resorption exceeds osteoblast-mediated bone formation resulting in skeletal fragility and fractures. Anti-resorptive agents, such as bisphosphonates and SERMs, and anabolic drugs that stimulate bone formation, including PTH analogues and sclerostin inhibitors, are current treatments for osteoporosis. Despite their efficacy, severe side effects and loss of potency may limit the long term usage of a single drug. Sequential and combinational use of current drugs, such as switching from an anabolic to an anti-resorptive agent, may provide an alternative approach. Moreover, there are novel drugs being developed against emerging new targets such as Cathepsin K and 17β-HSD2 that may have less side effects. This review will summarize the molecular mechanisms of osteoporosis, current drugs for osteoporosis treatment, and new drug development strategies.
Collapse
Affiliation(s)
- Hanxuan Li
- Department of Pharmaceutical Sciences, University of Tennessee Health Science Center, Memphis, TN, 38163, USA
| | - Zhousheng Xiao
- Department of Medicine, University of Tennessee Health Science Center, Memphis, TN, 38165, USA
| | - L. Darryl Quarles
- Department of Medicine, University of Tennessee Health Science Center, Memphis, TN, 38165, USA
| | - Wei Li
- Department of Pharmaceutical Sciences, University of Tennessee Health Science Center, Memphis, TN, 38163, USA
| |
Collapse
|
12
|
Hill EC, Pearson OM, Durband AC, Walshe K, Carlson KJ, Grine FE. An examination of the cross-sectional geometrical properties of the long bone diaphyses of Holocene foragers from Roonka, South Australia. AMERICAN JOURNAL OF PHYSICAL ANTHROPOLOGY 2020; 172:682-697. [PMID: 32057097 DOI: 10.1002/ajpa.24021] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/06/2019] [Revised: 12/28/2019] [Accepted: 01/27/2020] [Indexed: 11/09/2022]
Abstract
OBJECTIVES This study examines long bone diaphyseal rigidity and shape of hunter-gatherers at Roonka to make inferences about subsistence strategies and mobility of inhabitants of semi-arid southeastern Australia. Roonka is a cemetery site adjacent to the Lower Murray River, which contains over 200 individuals buried throughout the Holocene. Archaeological evidence indicates that populations living near this river corridor employed mobile, risk averse foraging strategies. METHODS This prediction of lifestyle was tested by comparing the cross-sectional geometric properties of the humerus, radius, ulna, femur, tibia, and fibula of individuals from Roonka to samples of varying subsistence strategies. Bilateral asymmetry of the upper limb bones was also examined. RESULTS Roonka males and females have moderately high lower limb diaphyseal rigidity and shape. In the upper limb, females have low rigidity and bilateral asymmetry while males have moderately high rigidity and bilateral asymmetry. This pattern is similar to other foraging groups from Australia and southern Africa that have behaviorally adapted to arid and semi-arid environments. DISCUSSION Lower limb results suggest that populations in the Lower Murray River Valley had relatively elevated foraging mobility. Upper limb rigidity and bilateral asymmetry indicate a sexual division of labor at Roonka. Females resemble other samples that had mixed subsistence strategies that involved hunting, gathering, and processing tasks. Males display a pattern similar to groups that preferentially hunted large game, but that supplemented this source with smaller game and riverine resources.
Collapse
Affiliation(s)
- Ethan C Hill
- Department of Anthropology, University of New Mexico, Albuquerque, New Mexico
| | - Osbjorn M Pearson
- Department of Anthropology, University of New Mexico, Albuquerque, New Mexico
| | - Arthur C Durband
- Department of Sociology, Anthropology, and Social Work, Texas Tech University, Lubbock, Texas
| | - Keryn Walshe
- College of Humanities, Flinders University, Bedford Park, Australia
| | - Kristian J Carlson
- Department of Integrative Anatomical Sciences, Keck School of Medicine, University of Southern California, Los Angeles, California
- Evolutionary Studies Institute, University of the Witwatersrand, Johannesburg, South Africa
| | - Frederick E Grine
- Departmentof Anthropology, Stony Brook University, Stony Brook, New York
- Departmentof Anatomical Sciences, Stony Brook University, Stony Brook, New York
| |
Collapse
|
13
|
Popp KL, Turkington V, Hughes JM, Xu C, Unnikrishnan G, Reifman J, Bouxsein ML. Skeletal loading score is associated with bone microarchitecture in young adults. Bone 2019; 127:360-366. [PMID: 31265923 DOI: 10.1016/j.bone.2019.06.001] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/19/2019] [Revised: 05/31/2019] [Accepted: 06/01/2019] [Indexed: 10/26/2022]
Abstract
UNLABELLED Physical activity that involves high strain magnitudes and high rates of loading is reported to be most effective in eliciting an osteogenic bone response. Whether a history of participation in osteogenic activities during youth, as well as current participation in osteogenic activities, contributes to young adult bone microarchitecture and strength is unknown. PURPOSE We determined the association between a new skeletal loading (SkL) score reflecting physical activity from age 11 to adulthood, the bone specific physical activity questionnaire (BPAQ) and bone microarchitecture in young Black and White men and women. METHODS We conducted a cross-sectional study of young ([mean ± SD] 23.7 ± 3.3 years) Black (n = 51 women, n = 31 men) and White (n = 50 women, n = 49 men) adults. Microarchitecture and estimated bone strength (by micro-finite element analysis) were assessed at the ultradistal tibia using high-resolution peripheral quantitative computed tomography (HR-pQCT). Physical activity questionnaires were administered and a SkL score was derived based on ground reaction force, rate of loading, frequency, duration, and life period of participation per activity from age 11 onwards. BPAQ score was also calculated. We used multiple linear regression to determine associations between both SkL score and BPAQ score and bone outcomes, adjusting for age, height, weight, sex, and race. RESULTS We found that SkL score, which accounts for current and historical physical activity, was significantly associated with most cortical bone parameters at the tibia including area, area fraction, porosity, thickness, and tissue mineral density (R2 = 0.27-0.55, all p < 0.01). Further, trabecular thickness, separation, number, and bone mineral density (R2 = 0.22-0.32, all p < 0.01), as well as stiffness and failure load (R2 = 0.63-0.65, all p < 0.01), were associated with the SkL score. The BPAQ was also significantly associated with most bone parameters, but to a lesser degree than SkL score. CONCLUSION These findings suggest that among young adults, greater amounts of osteogenic physical activity, as assessed by the SkL score and BPAQ are associated with improved bone microarchitecture and strength. With the potential to predict bone parameters in young adults, these scores may ultimately serve to identify those most vulnerable to fracture.
Collapse
Affiliation(s)
- Kristin L Popp
- Military Performance Division, United States Army Research Institute of Environmental Medicine, 10 General Greene Ave, Natick, MA 01760, USA; Endocrine Unit, Massachusetts General Hospital, 50 Blossom Street, THR-1051, Boston, MA 02114, USA; Department of Medicine, Harvard Medical School, 25 Shattuck St, Boston, MA 02155, USA.
| | - Victoria Turkington
- Endocrine Unit, Massachusetts General Hospital, 50 Blossom Street, THR-1051, Boston, MA 02114, USA
| | - Julie M Hughes
- Military Performance Division, United States Army Research Institute of Environmental Medicine, 10 General Greene Ave, Natick, MA 01760, USA
| | - Chun Xu
- Department of Defense, Biotechnology High Performance Computing Software Applications Institute, Telemedicine and Advance Technology Research Center, United States Army Medical Research and Materiel Command, Fort Detrick, MD 21702, USA
| | - Ginu Unnikrishnan
- Department of Defense, Biotechnology High Performance Computing Software Applications Institute, Telemedicine and Advance Technology Research Center, United States Army Medical Research and Materiel Command, Fort Detrick, MD 21702, USA
| | - Jaques Reifman
- Department of Defense, Biotechnology High Performance Computing Software Applications Institute, Telemedicine and Advance Technology Research Center, United States Army Medical Research and Materiel Command, Fort Detrick, MD 21702, USA
| | - Mary L Bouxsein
- Endocrine Unit, Massachusetts General Hospital, 50 Blossom Street, THR-1051, Boston, MA 02114, USA; Department of Medicine, Harvard Medical School, 25 Shattuck St, Boston, MA 02155, USA; Center for Advanced Orthopedic Studies, Beth Israel Deaconess Medical Center, and Department of Orthopedic Surgery, Harvard Medical School, One Overland Street, Boston, MA 02215, USA
| |
Collapse
|
14
|
Evaluation of Bilateral Asymmetry in the Humerus of Human Skeletal Specimen. BIOMED RESEARCH INTERNATIONAL 2019; 2019:3194912. [PMID: 31380417 PMCID: PMC6662459 DOI: 10.1155/2019/3194912] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/28/2019] [Accepted: 07/02/2019] [Indexed: 11/17/2022]
Abstract
Several studies have established a relationship between morphological and behavioral asymmetry making investigations of bilateral bone asymmetry an attractive and important research area. The purpose of this study was to investigate bilateral asymmetry patterns of skeletal specimen from five geographical locations (Rwanda, Burundi, Congo, Kenya, and Uganda) at Galloway Osteological Collection, Department of Anatomy, School of Biomedical Sciences, Makerere University College of Health Sciences. The angle of torsion and retroversion, mid-shaft circumference, length, and weight of 232 pairs of humeri were determined. A Torsiometer was used to measure the angle of torsion in degrees according to Krahl and Evans 1945, a tape was used to measure the mid-shaft circumference at the level of the apex of the deltoid V, and the length in cm was determined. An osteometric board was used to measure the length of the humerus in centimeters. A weighing balance was used to measure the weight of the humerus in grams. The analysis of humeral asymmetry with respect to parameters of the human skeletal specimen at the Galloway Osteological Collection Mulago revealed bilateral asymmetrical status observed in the angle of torsion, length, weight, and mid-shaft circumference. Our result mostly showed lateralization to the right in all the parameters investigated except the torsion angle which is to the left. Our investigation revealed that humeral torsion is inversely proportional to weight, length, and mid-shaft circumference of the humerus. This study established the existence of bilateral asymmetries in the humeri of all the geographical regions investigated with more asymmetry observed in the male compared with the female.
Collapse
|
15
|
Macintosh AA, Stock JT. Intensive terrestrial or marine locomotor strategies are associated with inter- and intra-limb bone functional adaptation in living female athletes. AMERICAN JOURNAL OF PHYSICAL ANTHROPOLOGY 2019; 168:566-581. [PMID: 30613942 PMCID: PMC6519197 DOI: 10.1002/ajpa.23773] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/04/2018] [Revised: 12/11/2018] [Accepted: 12/13/2018] [Indexed: 12/26/2022]
Abstract
OBJECTIVES To systematically characterize intra-limb patterns of skeletal plasticity to loading among living women, in order to better understand regional complexity in structural adaptation within the lower limb and more accurately infer behavior in the past. MATERIALS AND METHODS We used peripheral quantitative computed tomography imaging of the femur, tibia, first and second metatarsals to quantify bone morphology among female controls and athletes representative of either terrestrial or marine mobility, grouped by loading category (odd-impact, repetitive low-impact, and high-magnitude). Parameters included midshaft bone density, areas, rigidity, and shape, epiphyseal bone densities and areas. We assessed between-group differences and the influence of training history on significant variation among the loading groups. RESULTS Terrestrial mobility strategies were best distinguished by significant midshaft periosteal hypertrophy across the lower limb/foot relative to controls, and by particularly high midshaft femoral and tibial cortical bone areas relative to rowers. Enhanced midshaft bone area was typically paired with decreased bone density among athlete groups. Sport-specific variation in training duration/timing was significantly correlated with multiple midshaft parameters. DISCUSSION Results demonstrate characteristic patterns of intra-limb adaptation to terrestrial and marine mobility strategies among active women relative to controls, and highlight components of these patterns that may be shaped in part by differences in loading duration/timing. Additionally, our findings support constraints on skeletal variation in the distal tibia and foot relative to more proximal locations about the knee among living women. For example, metatarsal variation was constrained, but where present reflected sport-specific variation in force distribution in the foot.
Collapse
Affiliation(s)
- Alison A Macintosh
- Department of Anthropology, University of Victoria, Victoria, British Columbia, Canada.,Department of Archaeology, University of Cambridge, Cambridge, United Kingdom
| | - Jay T Stock
- Department of Archaeology, University of Cambridge, Cambridge, United Kingdom.,Department of Anthropology, Western University, London, Ontario, Canada.,Department of Archaeology, Max Planck Institute for the Science of Human History, Jena, Germany
| |
Collapse
|
16
|
Aguado-Henche S, Morante-Martínez P, Cristóbal-Aguado S, Clemente de Arriba C. Study of human radius construction systematics: evaluation by DXA in dry bone. EUROPEAN JOURNAL OF ORTHOPAEDIC SURGERY AND TRAUMATOLOGY 2018; 29:389-396. [PMID: 30219995 DOI: 10.1007/s00590-018-2311-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/14/2018] [Accepted: 09/10/2018] [Indexed: 10/28/2022]
Abstract
This study has been undertaken in order to describe the bone mass distribution of the dry human radius via dual x-ray absorptiometry (DXA) with a Norland XR-800 densitometer machine. A sample of 39 dry radius bones was used. Two projections were made: antero-posterior and lateral, and five regions of interest were selected. The bone densities and the bone mineral contents of the various regions of the radius in the two projections were compared using Student's t tests for paired samples, with statistically significant differences being found in all of the values, except in the proximal extremity (P Ext). The area of greatest bone mineral content (BMC) was the medial diaphysis (M Diaph), followed by the distal extremity (D Ext), with the lowest value being found in the proximal extremity (P Ext). As for bone mineral density (BMD), a great symmetry is observed if we take the mean point of the longitudinal axis as a reference, with it being distributed from highest to lowest from the central part to the extremities. A correlation study of the BMD and BMC values between the segments themselves and with the total, in both positions, provides us with a high correlation (p ≤ 0.01), with the highest correlation value being found for the proximal diaphysis (P Diaph) region, indicating the heterogeneous nature of the distribution of the radius bone mass. Bone densitometry via DXA is useful in order to establish an overview of the structural construction of the human radius.
Collapse
Affiliation(s)
- Soledad Aguado-Henche
- Teaching Unit of Human Anatomy and Embryology, Department of Surgery, Medical and Social Sciences, Faculty of Medicine and Health Sciences, University of Alcalá, Ctra. Madrid-Barcelona - Km 33600, 28805, Alcalá de Henares, Madrid, Spain.
| | - Pascual Morante-Martínez
- Teaching Unit of Human Anatomy and Embryology, Department of Surgery, Medical and Social Sciences, Faculty of Medicine and Health Sciences, University of Alcalá, Ctra. Madrid-Barcelona - Km 33600, 28805, Alcalá de Henares, Madrid, Spain
| | | | - Celia Clemente de Arriba
- Teaching Unit of Human Anatomy and Embryology, Department of Surgery, Medical and Social Sciences, Faculty of Medicine and Health Sciences, University of Alcalá, Ctra. Madrid-Barcelona - Km 33600, 28805, Alcalá de Henares, Madrid, Spain
| |
Collapse
|
17
|
Agostini G, Holt BM, Relethford JH. Bone functional adaptation does not erase neutral evolutionary information. AMERICAN JOURNAL OF PHYSICAL ANTHROPOLOGY 2018; 166:708-729. [DOI: 10.1002/ajpa.23460] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/18/2017] [Revised: 02/26/2018] [Accepted: 03/01/2018] [Indexed: 12/15/2022]
Affiliation(s)
- Gina Agostini
- Mayo Clinic/ASU Obesity Solutions, School of Human Evolution and Social ChangeArizona State UniversityTempe Arizona
| | - Brigitte M. Holt
- Department of AnthropologyUniversity of Massachusetts AmherstAmherst Massachusetts
| | - John H. Relethford
- Department of AnthropologyState University of New York at OneontaOneonta New York
| |
Collapse
|
18
|
Christoffersen T, Emaus N, Dennison E, Furberg AS, Gracia-Marco L, Grimnes G, Nilsen OA, Vlachopoulos D, Winther A, Ahmed LA. The association between childhood fractures and adolescence bone outcomes: a population-based study, the Tromsø Study, Fit Futures. Osteoporos Int 2018; 29:441-450. [PMID: 29147750 PMCID: PMC6124640 DOI: 10.1007/s00198-017-4300-0] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/05/2017] [Accepted: 11/02/2017] [Indexed: 10/18/2022]
Abstract
UNLABELLED Childhood fracture may predict persistent skeletal fragility, but it may also reflect high physical activity which is beneficial to bone development. We observe a difference in the relationship between previous fracture and bone outcome across physical activity level and sex. Further elaboration on this variation is needed. PURPOSE Childhood fracture may be an early marker of skeletal fragility, or increased levels of physical activity (PA), which are beneficial for bone mineral accrual. This study investigated the association between a previous history of childhood fracture and adolescent bone mineral outcomes by various PA levels. METHODS We recruited 469 girls and 492 boys aged 15-18 years to this study. We assessed PA levels by questionnaire and measured areal bone mineral density (aBMD) and bone mineral content (BMC) using dual-energy X-ray absorptiometry (DXA) at arm, femoral neck (FN), total hip (TH), and total body (TB) and calculated bone mineral apparent density (BMAD, g/cm3). Fractures from birth to time of DXA measurements were retrospectively recorded. We analyzed differences among participants with and without fractures using independent sample t test. Multiple linear regression was used to examine the association between fractures and aBMD and BMC measurements according to adolescent PA. RESULTS Girls with and without a previous history of fracture had similar BMC, aBMD, and BMAD at all sites. In multiple regression analyses stratified by physical activity intensity (PAi), there was a significant negative association between fracture and aBMD-TH and BMC-FN yet only in girls reporting low PAi. There was a significant negative association between forearm fractures, BMAD-FN, and BMAD-arm among vigorously active boys. CONCLUSION Our findings indicate a negative association between childhood fractures and aBMD/BMC in adolescent girls reporting low PAi. In boys, such an association appears only in vigorously active participants with a history of forearm fractures.
Collapse
Affiliation(s)
- T Christoffersen
- Department of Health and Care Sciences, UiT The Arctic University of Norway, Forskningsparken, Sykehusveien 21, 9037, Tromsø, Norway.
- Finnmark Hospital Trust, Alta, Norway.
| | - N Emaus
- Department of Health and Care Sciences, UiT The Arctic University of Norway, Forskningsparken, Sykehusveien 21, 9037, Tromsø, Norway
| | - E Dennison
- MRC Lifecourse Epidemiology Unit, Southampton, UK
- Victoria University, Wellington, New Zealand
| | - A-S Furberg
- Department of Community Medicine, UiT The Arctic University of Norway, Tromsø, Norway
- Department of Microbiology and Infection Control, University Hospital of North Norway, Tromsø, Norway
| | - L Gracia-Marco
- PROFITH "PROmoting FITness and Health through physical activity" Research Group, Department of Physical Education and Sports, Faculty of Sport Sciences, University of Granada, Granada, Spain
- Growth, Exercise, Nutrition and Development Research Group, University of Zaragoza, Zaragoza, Spain
| | - G Grimnes
- Division of Internal Medicine, University Hospital of North Norway, Tromsø, Norway
- Tromsø Endocrine Research Group, Department of Clinical Medicine, UiT The Arctic University of Norway, Tromsø, Norway
| | - O A Nilsen
- Department of Health and Care Sciences, UiT The Arctic University of Norway, Forskningsparken, Sykehusveien 21, 9037, Tromsø, Norway
| | - D Vlachopoulos
- Children's Health and Exercise Research Centre, Sport and Health Sciences, University of Exeter, Exeter, UK
| | - A Winther
- Division of Neurosciences, Orthopedics and Rehabilitation Services, University Hospital of North Norway, Tromsø, Norway
| | - L A Ahmed
- Department of Health and Care Sciences, UiT The Arctic University of Norway, Forskningsparken, Sykehusveien 21, 9037, Tromsø, Norway
- Institute of Public Health, College of Medicine and Health Sciences, United Arab Emirates University, Al Ain, UAE
| |
Collapse
|
19
|
Burt LA, Schipilow JD, Boyd SK. Competitive trampolining influences trabecular bone structure, bone size, and bone strength. JOURNAL OF SPORT AND HEALTH SCIENCE 2016; 5:469-475. [PMID: 30356528 PMCID: PMC6188882 DOI: 10.1016/j.jshs.2015.01.007] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 08/08/2014] [Revised: 11/18/2014] [Accepted: 01/12/2015] [Indexed: 06/08/2023]
Abstract
BACKGROUND Trampolining is a form of gymnastics that has increased in popularity over the last decade and due to its concurrence with the formative years of bone development, it may have an important impact on bone health. However, bone density, microarchitecture, and bone strength of competitive trampolinists have not been explored. Therefore, the purpose of this cross-sectional study was to investigate the relationship between trampolining participation and (1) bone density, area, and microarchitecture; and (2) estimated bone strength and the role of muscle and impact loading in young female adults. METHODS We recruited 29 female participants aged 16-29 years for this study (n = 14 trampolinists; n = 15 controls). Skeletal parameters were assessed using dual X-ray absorptiometry, high-resolution peripheral quantitative computed tomography (HR-pQCT), and finite element analysis (FEA). Muscle strength was measured using dynamometers. RESULTS Trampolinists had higher bone density at the hip and spine, greater trabecular density and thicker trabeculae at the tibia, as well as larger bones at both the tibia and radius than controls (p < 0.05). Trampolinists also had higher muscle strength than controls at the lower body with no difference between groups in the upper body. Estimates of bone strength using FEA were greater for trampolinists than controls at both the radius and tibia. CONCLUSION This is the first study to investigate bone density, area, and microarchitecture in female trampolinists using HR-pQCT. Trampolinists had greater bone density, area, microarchitecture, and estimated bone strength than controls.
Collapse
|
20
|
Langdahl B, Ferrari S, Dempster DW. Bone modeling and remodeling: potential as therapeutic targets for the treatment of osteoporosis. Ther Adv Musculoskelet Dis 2016; 8:225-235. [PMID: 28255336 PMCID: PMC5322859 DOI: 10.1177/1759720x16670154] [Citation(s) in RCA: 273] [Impact Index Per Article: 30.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023] Open
Abstract
The adult skeleton is renewed by remodeling throughout life. Bone remodeling is a process where osteoclasts and osteoblasts work sequentially in the same bone remodeling unit. After the attainment of peak bone mass, bone remodeling is balanced and bone mass is stable for one or two decades until age-related bone loss begins. Age-related bone loss is caused by increases in resorptive activity and reduced bone formation. The relative importance of cortical remodeling increases with age as cancellous bone is lost and remodeling activity in both compartments increases. Bone modeling describes the process whereby bones are shaped or reshaped by the independent action of osteoblast and osteoclasts. The activities of osteoblasts and osteoclasts are not necessarily coupled anatomically or temporally. Bone modeling defines skeletal development and growth but continues throughout life. Modeling-based bone formation contributes to the periosteal expansion, just as remodeling-based resorption is responsible for the medullary expansion seen at the long bones with aging. Existing and upcoming treatments affect remodeling as well as modeling. Teriparatide stimulates bone formation, 70% of which is remodeling based and 20-30% is modeling based. The vast majority of modeling represents overflow from remodeling units rather than de novo modeling. Denosumab inhibits bone remodeling but is permissive for modeling at cortex. Odanacatib inhibits bone resorption by inhibiting cathepsin K activity, whereas modeling-based bone formation is stimulated at periosteal surfaces. Inhibition of sclerostin stimulates bone formation and histomorphometric analysis demonstrated that bone formation is predominantly modeling based. The bone-mass response to some osteoporosis treatments in humans certainly suggests that nonremodeling mechanisms contribute to this response and bone modeling may be such a mechanism. To date, this has only been demonstrated for teriparatide, however, it is clear that rediscovering a phenomenon that was first observed more half a century ago will have an important impact on our understanding of how new antifracture treatments work.
Collapse
Affiliation(s)
- Bente Langdahl
- Medical Department of Endocrinology, Aarhus University Hospital, Tage-Hansensgade 2, Aarhus, DK-8000, Denmark
| | - Serge Ferrari
- Department of Geriatric Medicine, Geneva University Hospital, Geneva, Switzerland
| | - David W. Dempster
- Department of Clinical Pathology and Cell Biology, College of Physicians and Surgeons of Columbia University, and Regional Bone Center, Helen Hayes Hospital, New York State Department of Health, West Haverstraw, NY, USA
| |
Collapse
|
21
|
Stagi S, Cavalli L, Cavalli T, de Martino M, Brandi ML. Peripheral quantitative computed tomography (pQCT) for the assessment of bone strength in most of bone affecting conditions in developmental age: a review. Ital J Pediatr 2016; 42:88. [PMID: 27670687 PMCID: PMC5037897 DOI: 10.1186/s13052-016-0297-9] [Citation(s) in RCA: 62] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/21/2016] [Accepted: 09/15/2016] [Indexed: 12/13/2022] Open
Abstract
Peripheral quantitative computed tomography provides an automatical scan analysis of trabecular and cortical bone compartments, calculating not only their bone mineral density (BMD), but also bone geometrical parameters, such as marrow and cortical Cross-Sectional Area (CSA), Cortical Thickness (CoTh), both periosteal and endosteal circumference, as well as biomechanical parameters like Cross-Sectional Moment of Inertia (CSMI), a measure of bending, polar moment of inertia, indicating bone strength in torsion, and Strength Strain Index (SSI). Also CSA of muscle and fat can be extracted. Muscles, which are thought to stimulate bones to adapt their geometry and mineral content, are determinant to preserve or increase bone strength; thus, pQCT provides an evaluation of the functional 'muscle-bone unit', defined as BMC/muscle CSA ratio. This functional approach to bone densitometry can establish if bone strength is normally adapted to the muscle force, and if muscle force is adequate for body size, providing more detailed insights to targeted strategies for the prevention and treatment of bone fragility. The present paper offers an extensive review of technical features of pQCT and its possible clinical application in the diagnostic of bone status as well as in the monitoring of the skeleton's health follow-up.
Collapse
Affiliation(s)
- Stefano Stagi
- Health Sciences Department, University of Florence, Anna Meyer Children’s University Hospital, viale Pieraccini 24, 50139 Florence, Italy
| | - Loredana Cavalli
- Department of Surgery and Translational Medicine, Endocrinology Unit, University of Florence, Florence, Italy
| | - Tiziana Cavalli
- Department of Surgery and Translational Medicine, Emergency and Digestive Surgery with Oncological and Functional Address Unit, University of Florence, Florence, Italy
| | - Maurizio de Martino
- Health Sciences Department, University of Florence, Anna Meyer Children’s University Hospital, viale Pieraccini 24, 50139 Florence, Italy
| | - Maria Luisa Brandi
- Department of Surgery and Translational Medicine, Endocrinology Unit, University of Florence, Florence, Italy
| |
Collapse
|
22
|
Izard RM, Fraser WD, Negus C, Sale C, Greeves JP. Increased density and periosteal expansion of the tibia in young adult men following short-term arduous training. Bone 2016; 88:13-19. [PMID: 27046087 DOI: 10.1016/j.bone.2016.03.015] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/22/2015] [Revised: 03/23/2016] [Accepted: 03/28/2016] [Indexed: 12/16/2022]
Abstract
PURPOSE Few human studies have reported early structural adaptations of bone to weight-bearing exercise, which provide a greater contribution to improved bone strength than increased density. This prospective study examined site- and regional-specific adaptations of the tibia during arduous training in a cohort of male military (infantry) recruits to better understand how bone responds in vivo to mechanical loading. METHODS Tibial bone density and geometry were measured in 90 British Army male recruits (ages 21±3years, height: 1.78±0.06m, body mass: 73.9±9.8kg) in weeks 1 (Baseline) and 10 of initial military training. Scans were performed at the 4%, 14%, 38% and 66% sites, measured from the distal end plate, using pQCT (XCT2000L, Stratec Pforzheim, Germany). Customised software (BAMPack, L-3 ATI) was used to examine whole bone cross-section and regional sectors. T-tests determined significant differences between time points (P<0.05). RESULTS Bone density of trabecular and cortical compartments increased significantly at all measured sites. Bone geometry (cortical area and thickness) and bone strength (i, MMi and BSI) at the diaphyseal sites (38 and 66%) were also significantly higher in week 10. Regional changes in density and geometry were largely observed in the anterior, medial-anterior and anterior-posterior sectors. Calf muscle density and area (66% site) increased significantly at week 10 (P<0.01). CONCLUSIONS In vivo mechanical loading improves bone strength of the human tibia by increased density and periosteal expansion, which varies by site and region of the bone. These changes may occur in response to the nature and distribution of forces originating from bending, torsional and shear stresses of military training. These improvements are observed early in training when the osteogenic stimulus is sufficient, which may be close to the fracture threshold in some individuals.
Collapse
Affiliation(s)
| | | | - Charles Negus
- L-3 ATI, Simulation, Engineering, and Testing, San Diego, CA, USA
| | - Craig Sale
- Sport, Health and Performance Enhancement Research Centre, Nottingham Trent University, UK
| | | |
Collapse
|
23
|
Leonard MB, Shults J, Long J, Baldassano RN, Brown JK, Hommel K, Zemel BS, Mahboubi S, Whitehead KH, Herskovitz R, Lee D, Rausch J, Rubin CT. Effect of Low-Magnitude Mechanical Stimuli on Bone Density and Structure in Pediatric Crohn's Disease: A Randomized Placebo-Controlled Trial. J Bone Miner Res 2016; 31:1177-88. [PMID: 26821779 PMCID: PMC4891301 DOI: 10.1002/jbmr.2799] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/21/2015] [Revised: 01/20/2016] [Accepted: 01/27/2016] [Indexed: 01/29/2023]
Abstract
Pediatric Crohn's Disease (CD) is associated with low trabecular bone mineral density (BMD), cortical area, and muscle mass. Low-magnitude mechanical stimulation (LMMS) may be anabolic. We conducted a 12-month randomized double-blind placebo-controlled trial of 10 minutes daily exposure to LMMS (30 Hz frequency, 0.3 g peak-to-peak acceleration). The primary outcomes were tibia trabecular BMD and cortical area by peripheral quantitative CT (pQCT) and vertebral trabecular BMD by QCT; additional outcomes included dual-energy X-ray absorptiometry (DXA) whole body, hip and spine BMD, and leg lean mass. Results were expressed as sex-specific Z-scores relative to age. CD participants, ages 8 to 21 years with tibia trabecular BMD <25th percentile for age, were eligible and received daily cholecalciferol (800 IU) and calcium (1000 mg). In total, 138 enrolled (48% male), and 121 (61 active, 60 placebo) completed the 12-month trial. Median adherence measured with an electronic monitor was 79% and did not differ between arms. By intention-to-treat analysis, LMMS had no significant effect on pQCT or DXA outcomes. The mean change in spine QCT trabecular BMD Z-score was +0.22 in the active arm and -0.02 in the placebo arm (difference in change 0.24 [95% CI 0.04, 0.44]; p = 0.02). Among those with >50% adherence, the effect was 0.38 (95% CI 0.17, 0.58, p < 0.0005). Within the active arm, each 10% greater adherence was associated with a 0.06 (95% CI 0.01, 1.17, p = 0.03) greater increase in spine QCT BMD Z-score. Treatment response did not vary according to baseline body mass index (BMI) Z-score, pubertal status, CD severity, or concurrent glucocorticoid or biologic medications. In all participants combined, height, pQCT trabecular BMD, and cortical area and DXA outcomes improved significantly. In conclusion, LMMS was associated with increases in vertebral trabecular BMD by QCT; however, no effects were observed at DXA or pQCT sites. © 2016 American Society for Bone and Mineral Research.
Collapse
Affiliation(s)
- Mary B. Leonard
- Departments of Pediatrics and Medicine, Stanford University, Stanford, CA
| | - Justine Shults
- Department of Biostatistics and Epidemiology, University of Pennsylvania, Philadelphia, PA
| | - Jin Long
- Departments of Pediatrics and Medicine, Stanford University, Stanford, CA
| | - Robert N. Baldassano
- Department of Pediatrics, The Children's Hospital of Philadelphia, University of Pennsylvania
| | | | - Kevin Hommel
- Department of Pediatrics, Seattle Children's Hospital, University of Washington, Seattle, WA
| | - Babette S. Zemel
- Department of Pediatrics, The Children's Hospital of Philadelphia, University of Pennsylvania
| | - Soroosh Mahboubi
- Department of Pediatrics, The Children's Hospital of Philadelphia, University of Pennsylvania
| | - Krista Howard Whitehead
- Department of Pediatrics, The Children's Hospital of Philadelphia, University of Pennsylvania
| | - Rita Herskovitz
- Department of Pediatrics, The Children's Hospital of Philadelphia, University of Pennsylvania
| | - Dale Lee
- Department of Pediatrics, Seattle Children's Hospital, University of Washington, Seattle, WA
| | - Joseph Rausch
- Department of Pediatrics, Cincinnati Children's Hospital and Medical Center, University of Cincinnati, Cincinnati, OH
| | - Clinton T. Rubin
- Department of Biomedical Engineering, Stony Brook University, Stony Brook, NY
| |
Collapse
|
24
|
Lam FMH, Bui M, Yang FZH, Pang MYC. Chronic effects of stroke on hip bone density and tibial morphology: a longitudinal study. Osteoporos Int 2016; 27:591-603. [PMID: 26329101 DOI: 10.1007/s00198-015-3307-7] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/31/2015] [Accepted: 08/25/2015] [Indexed: 10/23/2022]
Abstract
UNLABELLED The study aimed to quantify the long-term effects of stroke on tibial bone morphology and hip bone density. Only the trabecular bone mineral density and bone strength index in the hemiparetic tibial distal epiphysis showed a significant decline among individuals who had sustained a stroke 12-24 months ago. INTRODUCTION This study aims to determine the changes in bone density and morphology in lower limb long bones during a 1-year follow-up period and their relationship to muscle function in chronic stroke patients. METHODS Twenty-eight chronic stroke patients (12-166 months after the acute stroke event at initial assessment) and 27 controls underwent bilateral scanning of the hip and tibia using dual-energy X-ray absorptiometry and peripheral quantitative computed tomography, respectively. Each subject was re-assessed 1 year after the initial assessment. RESULTS Twenty stroke cases and 23 controls completed all assessments. At the end of the follow-up, the paretic tibial distal epiphysis suffered significant decline in trabecular bone density (-1.8 ± 0.6 %, p = 0.006) and bone strength index (-2.7 ± 0.6 %, p < 0.001). More severe decline in the former was associated with poorer leg muscle strength (ρ = 0.447, p = 0.048) and motor recovery (ρ = 0.489, p = 0.029) measured at initial assessment. The loss in trabecular bone density remained significant among those whose stroke onset was 12-24 months ago (p < 0.001), but not among those whose stroke onset was beyond 24 months ago (p > 0.05) at the time of initial assessment. The changes of outcomes in the tibial diaphysis, except for cortical bone mineral content on the non-paretic side (-1.3 ± 0.3 %, p = 0.003), and hip bone density were well within the margin of error for precision. CONCLUSIONS There is evidence of continuous trabecular bone loss in the paretic tibial distal epiphysis among chronic stroke patients, but it tends to plateau after 2 years of stroke onset. The steady state may have been reached earlier in the hip and tibial diaphysis.
Collapse
Affiliation(s)
- F M H Lam
- Department of Rehabilitation Sciences, The Hong Kong Polytechnic University, Hung Hom, Hong Kong.
| | - M Bui
- Centre for Epidemiology and Biostatistics, School of Population and Global Health, University of Melbourne, Melbourne, Australia
| | - F Z H Yang
- Department of Physiotherapy, Guangdong Provincial Work Injury Rehabilitation Hospital, Guangzhou, China
| | - M Y C Pang
- Department of Rehabilitation Sciences, The Hong Kong Polytechnic University, Hung Hom, Hong Kong
| |
Collapse
|
25
|
Sládek V, Ruff CB, Berner M, Holt B, Niskanen M, Schuplerová E, Hora M. The impact of subsistence changes on humeral bilateral asymmetry in Terminal Pleistocene and Holocene Europe. J Hum Evol 2016; 92:37-49. [PMID: 26989015 DOI: 10.1016/j.jhevol.2015.12.001] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2015] [Revised: 11/06/2015] [Accepted: 12/02/2015] [Indexed: 11/27/2022]
Abstract
Analyses of upper limb bone bilateral asymmetry can shed light on manipulative behavior, sexual division of labor, and the effects of economic transitions on skeletal morphology. We compared the maximum (absolute) and directional asymmetry in humeral length, articular breadth, and cross-sectional diaphyseal geometry (CSG) in a large (n > 1200) European sample distributed among 11 archaeological periods from the Early Upper Paleolithic through the 20(th) century. Asymmetry in length and articular breadth is right-biased, but relatively small and fairly constant between temporal periods. Females show more asymmetry in length than males. This suggests a low impact of behavioral changes on asymmetry in length and breadth, but strong genetic control with probable sex linkage of asymmetry in length. Asymmetry in CSG properties is much more marked than in length and articular breadth, with sex-specific variation. In males, a major decline in asymmetry occurs between the Upper Paleolithic and Mesolithic. There is no further decline in asymmetry between the Mesolithic and Neolithic in males and only limited variation during the Holocene. In females, a major decline occurs between the Mesolithic and Neolithic, with resulting average directional asymmetry close to zero. Asymmetry among females continues to be very low in the subsequent Copper and Bronze Ages, but increases again in the Iron Age. Changes in female asymmetry result in an increase of sexual dimorphism during the early agricultural periods, followed by a decrease in the Iron Age. Sexual dimorphism again slightly declines after the Late Medieval. Our results indicate that changes in manipulative behavior were sex-specific with a probable higher impact of changes in hunting behavior on male asymmetry (e.g., shift from unimanual throwing to use of the bow-and-arrow) and food grain processing in females, specifically, use of two-handed saddle querns in the early agricultural periods and one-handed rotary querns in later agricultural periods.
Collapse
Affiliation(s)
- Vladimír Sládek
- Department of Anthropology and Human Genetics, Faculty of Science, Charles University, Prague, Czech Republic.
| | - Christopher B Ruff
- The Center for Functional Anatomy and Evolution, Johns Hopkins University, Baltimore, USA
| | - Margit Berner
- Department of Anthropology, Natural History Museum, Vienna, Austria
| | - Brigitte Holt
- Department of Anthropology, University of Massachusetts, Amherst, USA
| | - Markku Niskanen
- Department of Archaeology, University of Oulu, Oulu, Finland
| | - Eliška Schuplerová
- Department of Anthropology and Human Genetics, Faculty of Science, Charles University, Prague, Czech Republic
| | - Martin Hora
- Department of Anthropology and Human Genetics, Faculty of Science, Charles University, Prague, Czech Republic
| |
Collapse
|
26
|
Zagatto AM, Milioni F, Freitas IF, Arcangelo SA, Padulo J. Body composition of table tennis players: comparison between performance level and gender. SPORT SCIENCES FOR HEALTH 2015. [DOI: 10.1007/s11332-015-0252-y] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
27
|
Lam FMH, Pang MYC. Correlation between tibial measurements using peripheral quantitative computed tomography and hip areal bone density measurements in ambulatory chronic stroke patients. Brain Inj 2015; 30:199-207. [DOI: 10.3109/02699052.2015.1090625] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
|
28
|
Papapoulos S, Lippuner K, Roux C, Lin CJF, Kendler DL, Lewiecki EM, Brandi ML, Czerwiński E, Franek E, Lakatos P, Mautalen C, Minisola S, Reginster JY, Jensen S, Daizadeh NS, Wang A, Gavin M, Libanati C, Wagman RB, Bone HG. The effect of 8 or 5 years of denosumab treatment in postmenopausal women with osteoporosis: results from the FREEDOM Extension study. Osteoporos Int 2015; 26. [PMID: 26202488 PMCID: PMC4656716 DOI: 10.1007/s00198-015-3234-7] [Citation(s) in RCA: 192] [Impact Index Per Article: 19.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
UNLABELLED The FREEDOM study and its Extension provide long-term information about the effects of denosumab for the treatment of postmenopausal osteoporosis. Treatment for up to 8 years was associated with persistent reduction of bone turnover, continued increases in bone mineral density, low fracture incidence, and a favorable benefit/risk profile. INTRODUCTION This study aims to report the results through year 5 of the FREEDOM Extension study, representing up to 8 years of continued denosumab treatment in postmenopausal women with osteoporosis. METHODS Women who completed the 3-year FREEDOM study were eligible to enter the 7-year open-label FREEDOM Extension in which all participants are scheduled to receive denosumab, since placebo assignment was discontinued for ethical reasons. A total of 4550 women enrolled in the Extension (2343 long-term; 2207 cross-over). In this analysis, women in the long-term and cross-over groups received denosumab for up to 8 and 5 years, respectively. RESULTS Throughout the Extension, sustained reduction of bone turnover markers (BTMs) was observed in both groups. In the long-term group, mean bone mineral density (BMD) continued to increase significantly at each time point measured, for cumulative 8-year gains of 18.4 and 8.3 % at the lumbar spine and total hip, respectively. In the cross-over group, mean BMD increased significantly from the Extension baseline for 5-year cumulative gains of 13.1 and 6.2 % at the lumbar spine and total hip, respectively. The yearly incidence of new vertebral and nonvertebral fractures remained low in both groups. The incidence of adverse and serious adverse events did not increase over time. Through Extension year 5, eight events of osteonecrosis of the jaw and two events of atypical femoral fracture were confirmed. CONCLUSIONS Denosumab treatment for up to 8 years was associated with persistent reductions of BTMs, continued BMD gains, low fracture incidence, and a consistent safety profile.
Collapse
Affiliation(s)
- S Papapoulos
- Center for Bone Quality, Leiden University Medical Center, Albinusdreef 2, 2333 ZA, Leiden, The Netherlands.
| | - K Lippuner
- Berne University Hospital and University, Berne, Switzerland
| | - C Roux
- Paris Descartes University, Paris, France
| | | | - D L Kendler
- University of British Columbia, Vancouver, BC, Canada
| | - E M Lewiecki
- New Mexico Clinical Research & Osteoporosis Center, Albuquerque, NM, USA
| | | | | | - E Franek
- Mossakowski Medical Research Centre, Polish Academy of Sciences, Warsaw, Poland
| | - P Lakatos
- Semmelweis University, Budapest, Hungary
| | - C Mautalen
- Centro de Osteopatias Medicas, Buenos Aires, Argentina
| | | | | | - S Jensen
- Center for Clinical and Basic Research, Ballerup, Denmark
| | | | - A Wang
- Amgen Inc, Thousand Oaks, CA, USA
| | - M Gavin
- Amgen Inc, Thousand Oaks, CA, USA
| | | | | | - H G Bone
- Michigan Bone & Mineral Clinic, Detroit, MI, USA
| |
Collapse
|
29
|
Crockett K, Arnold CM, Farthing JP, Chilibeck PD, Johnston JD, Bath B, Baxter-Jones ADG, Kontulainen SA. Bone strength and muscle properties in postmenopausal women with and without a recent distal radius fracture. Osteoporos Int 2015; 26:2461-9. [PMID: 26001559 DOI: 10.1007/s00198-015-3160-8] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/22/2015] [Accepted: 04/29/2015] [Indexed: 01/15/2023]
Abstract
UNLABELLED Distal radius (wrist) fracture (DRF) in women over age 50 years is an early sign of bone fragility. Women with a recent DRF compared to women without DRF demonstrated lower bone strength, muscle density, and strength, but no difference in dual-energy x-ray absorptiometry (DXA) measures, suggesting DXA alone may not be a sufficient predictor for DRF risk. INTRODUCTION The objective of this study was to investigate differences in bone and muscle properties between women with and without a recent DRF. METHODS One hundred sixty-six postmenopausal women (50-78 years) were recruited. Participants were excluded if they had taken bone-altering medications in the past 6 months or had medical conditions that severely affected daily living or the upper extremity. Seventy-seven age-matched women with a fracture in the past 6-24 months (Fx, n = 32) and without fracture (NFx, n = 45) were measured for bone and muscle properties using the nondominant (NFx) or non-fractured limb (Fx). Peripheral quantitative computed tomography (pQCT) was used to estimate bone strength in compression (BSIc) at the distal radius and tibia, bone strength in torsion (SSIp) at the shaft sites, muscle density, and area at the forearm and lower leg. Areal bone mineral density at the ultradistal forearm, spine, and femoral neck was measured by DXA. Grip strength and the 30-s chair stand test were used as estimates of upper and lower extremity muscle strength. Limb-specific between-group differences were compared using multivariate analysis of variance (MANOVA). RESULTS There was a significant group difference (p < 0.05) for the forearm and lower leg, with the Fx group demonstrating 16 and 19% lower BSIc, 3 and 6% lower muscle density, and 20 and 21% lower muscle strength at the upper and lower extremities, respectively. There were no differences between groups for DXA measures. CONCLUSIONS Women with recent DRF had lower pQCT-derived estimated bone strength at the distal radius and tibia and lower muscle density and strength at both extremities.
Collapse
Affiliation(s)
- K Crockett
- School of Physical Therapy, College of Medicine, University of Saskatchewan, Saskatoon, SK, Canada.
| | - C M Arnold
- School of Physical Therapy, College of Medicine, University of Saskatchewan, Saskatoon, SK, Canada
| | - J P Farthing
- College of Kinesiology, University of Saskatchewan, Saskatoon, SK, Canada
| | - P D Chilibeck
- College of Kinesiology, University of Saskatchewan, Saskatoon, SK, Canada
| | - J D Johnston
- Department of Mechanical Engineering, College of Engineering, University of Saskatchewan, Saskatoon, SK, Canada
| | - B Bath
- School of Physical Therapy, College of Medicine, University of Saskatchewan, Saskatoon, SK, Canada
| | - A D G Baxter-Jones
- College of Kinesiology, University of Saskatchewan, Saskatoon, SK, Canada
| | - S A Kontulainen
- College of Kinesiology, University of Saskatchewan, Saskatoon, SK, Canada.
| |
Collapse
|
30
|
Kato T, Niwa M, Yamashita T, Matumoto M, Umemura Y. Past sporting activity during growth induces greater bone mineral content and enhances bone geometry in young men and women. J Bone Miner Metab 2015; 33:569-76. [PMID: 25224129 DOI: 10.1007/s00774-014-0620-8] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/04/2014] [Accepted: 07/08/2014] [Indexed: 11/30/2022]
Abstract
We aimed to determine the effect of past sporting activity on bone mineral content (BMC), areal bone mineral density (aBMD) in the lumbar spine and proximal femur, and bone geometry of the mid femur in young men and women. We assessed 142 subjects, comprising 79 young men (21.2 ± 0.8 years) and 63 premenopausal young women (21.4 ± 0.6 years). The subjects were classified into three groups, two on the basis of the age of starting to participate in sport [elementary school starters (6-12 years), junior high school to university starters (13-22 years)], and the third group had no participation in sport. We measured BMC and aBMD by dual-energy X-ray absorptiometry (DXA) in the lumbar spine and proximal femur, and bone geometric characteristics of the mid femur by magnetic resonance imaging (MRI), and calculated the osteogenic index (OI) of previous sporting activity. The OI correlated significantly with many MRI-determined measures of bone geometry; DXA-measured BMC and aBMD were effective indicators of previous sporting activity in both sexes. The female elementary school starters had significantly greater femoral mid-diaphyseal perimeters (vs the no-sport group), bone cross-sectional area (vs the 13-22-year-old starters and the no-sport group), and maximum and minimum second moment of area at the mid-diaphysis point of the femur (vs the no-sport group). The OI is a proven practicable and useful index. DXA- and MRI-determined geometric characteristics showed that high-impact, weight-bearing exercise before and in early puberty induces greater total proximal femur BMC and enhances femoral mid-diaphyseal size and shape, and that these benefits persisted in young adult women.
Collapse
Affiliation(s)
- Takeru Kato
- Department of Clinical Nutrition, Faculty of Health Science, Suzuka University of Medical Science, Kishioka, 1001-1, Suzuka, 510-0293, Japan,
| | | | | | | | | |
Collapse
|
31
|
Ominsky MS, Libanati C, Niu QT, Boyce RW, Kostenuik PJ, Wagman RB, Baron R, Dempster DW. Sustained Modeling-Based Bone Formation During Adulthood in Cynomolgus Monkeys May Contribute to Continuous BMD Gains With Denosumab. J Bone Miner Res 2015; 30:1280-9. [PMID: 25684625 DOI: 10.1002/jbmr.2480] [Citation(s) in RCA: 77] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/10/2014] [Revised: 02/09/2015] [Accepted: 02/10/2015] [Indexed: 12/16/2022]
Abstract
Denosumab (DMAb) administration to postmenopausal women with osteoporosis is associated with continued bone mineral density (BMD) increases and low fracture incidence through 8 years, despite persistently reduced bone turnover markers and limited fluorochrome labeling in iliac crest bone biopsies. BMD increases were hypothesized to result from additional accrual of bone matrix via modeling-based bone formation-a hypothesis that was tested by examining fluorochrome labeling patterns in sections from ovariectomized (OVX) cynomolgus monkeys (cynos) treated with DMAb for 16 months. Mature OVX or Sham cynos were treated monthly with vehicle for 16 months, whereas other OVX cynos received monthly 25 or 50 mg/kg DMAb. DMAb groups exhibited very low serum bone resorption and formation biomarkers and near-absent fluorochrome labeling in proximal femur cancellous bone. Despite these reductions, femoral neck dual-energy X-ray absorptiometry (DXA) BMD continued to rise in DMAb-treated cynos, from a 4.6% increase at month 6 to 9.8% above baseline at month 16. Further examination of cortical bone in the proximal femur demonstrated consistent and prominent labeling on the superior endocortex and the inferior periosteal surface, typically containing multiple superimposed labels from month 6 to 16 over smooth cement lines, consistent with continuous modeling-based bone formation. These findings were evident in all groups. Quantitative analysis at another modeling site, the ninth rib, demonstrated that DMAb did not alter the surface extent of modeling-based labels, or the cortical area bound by them, relative to OVX controls, while significantly reducing remodeling-based bone formation and eroded surface. This conservation of modeling-based formation occurred concomitantly with increased femoral neck strength and, when coupled with a reduction in remodeling-based bone loss, is likely to contribute to increases in bone mass with DMAb treatment. Thus, this study provides preclinical evidence for a potential mechanism that could contribute to the clinical observations of continued BMD increases and low fracture rates with long-term DMAb administration.
Collapse
Affiliation(s)
| | - Cesar Libanati
- Clinical Development, Amgen Inc., Thousand Oaks, CA, USA
| | - Qing-Tian Niu
- Metabolic Disorders, Amgen Inc., Thousand Oaks, CA, USA
| | - Rogely W Boyce
- Comparative Biology & Safety Sciences, Amgen Inc., Thousand Oaks, CA, USA
| | | | | | - Roland Baron
- Harvard Medical School, Endocrine Unit, Massachusetts General Hospital, Boston, MA, USA.,Department of Oral Medicine, Infection and Immunity, Harvard School of Dental Medicine, Boston, MA, USA
| | - David W Dempster
- Clinical Pathology and Cell Biology, College of Physicians and Surgeons of Columbia University, New York, NY, USA.,Regional Bone Center, Helen Hayes Hospital, New York State Department of Health, West Haverstraw, NY, USA
| |
Collapse
|
32
|
Tolonen S, Sievänen H, Mikkilä V, Telama R, Oikonen M, Laaksonen M, Viikari J, Kähönen M, Raitakari OT. Adolescence physical activity is associated with higher tibial pQCT bone values in adulthood after 28-years of follow-up--the Cardiovascular Risk in Young Finns Study. Bone 2015; 75:77-83. [PMID: 25697084 DOI: 10.1016/j.bone.2015.02.012] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/10/2014] [Revised: 01/30/2015] [Accepted: 02/09/2015] [Indexed: 11/16/2022]
Abstract
High peak bone mass and strong bone phenotype are known to be partly explained by physical activity during growth but there are few prospective studies on this topic. In this 28-year follow-up of Cardiovascular Risk in Young Finns Study cohort, we assessed whether habitual childhood and adolescence physical activity or inactivity at the age of 3-18 years were associated with adult phenotype of weight-bearing tibia and the risk of low-energy fractures. Baseline physical activity and data on clinical, nutritional and lifestyle factors were assessed separately for females and males aged 3-6-years (N=395-421) and 9-18-years (N=923-965). At the age of 31-46-years, the prevalence of low-energy fractures was assessed with a questionnaire and several tibial traits were measured with pQCT (bone mineral content (BMC; mg), total and cortical cross-sectional areas (mm(2)), trabecular (for the distal site only) and cortical (for the shaft only) bone densities (mg/cm(3)), stress-strain index (SSI; mm(3), for the shaft only), bone strength index (BSI; mg(2)/cm(4), for the distal site only) and the cortical strength index (CSI, for the shaft only)). For the statistical analysis, each bone trait was categorized as below the cohort median or the median and above and the adjusted odds ratios (OR) were determined. In females, frequent physical activity at the age of 9-18-years was associated with higher adulthood values of BSI, total and cortical areas, BMC, CSI and SSI at the tibia independently of many health and lifestyle factors (ORs 0.33-0.53, P≤0.05; P-values for trend 0.002-0.05). Cortical density at the tibial shaft showed the opposite trend (P-value for trend 0.03). Similarly in males, frequent physical activity was associated with higher values of adult total and cortical areas and CSI at the tibia (ORs 0.48-0.53, P≤0.05; P-values for trend 0.01-0.02). However, there was no evidence that childhood or adolescence physical activity was associated with lower risk of low energy fractures during the follow-up. In conclusion, frequent habitual physical activity in adolescence seems to confer benefits on tibial bone size and geometry in adulthood.
Collapse
Affiliation(s)
- S Tolonen
- Division of Nutrition, Department of Applied Chemistry and Microbiology, University of Helsinki, Helsinki, Finland; Vaasa Central Hospital, Vaasa, Finland.
| | - H Sievänen
- The UKK-institute for Health Promotion Research, Tampere, Finland
| | - V Mikkilä
- Division of Nutrition, Department of Applied Chemistry and Microbiology, University of Helsinki, Helsinki, Finland; Research Centre of Applied and Preventive Cardiovascular Medicine, University of Turku, Turku, Finland
| | - R Telama
- LIKES Research Center for Sport and Health Sciences, Jyväskylä, Finland
| | - M Oikonen
- Research Centre of Applied and Preventive Cardiovascular Medicine, University of Turku, Turku, Finland
| | - M Laaksonen
- Division of Nutrition, Department of Applied Chemistry and Microbiology, University of Helsinki, Helsinki, Finland
| | - J Viikari
- Department of Medicine, University of Turku and Division of Medicine, Turku University Hospital, Finland
| | - M Kähönen
- Department of Clinical Physiology, Tampere University Hospital and University of Tampere, Tampere, Finland
| | - O T Raitakari
- Research Centre of Applied and Preventive Cardiovascular Medicine, University of Turku, Turku, Finland; Department of Clinical Physiology and Nuclear Medicine, Turku University Hospital, Turku, Finland
| |
Collapse
|
33
|
Brookes DSK, Briody JN, Munns CF, Davies PSW, Hill RJ. Cystic fibrosis-related bone disease in children: Examination of peripheral quantitative computed tomography (pQCT) data. J Cyst Fibros 2015; 14:668-77. [PMID: 25957706 DOI: 10.1016/j.jcf.2015.04.005] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2014] [Revised: 04/02/2015] [Accepted: 04/20/2015] [Indexed: 11/16/2022]
Abstract
BACKGROUND The investigation of skeletal health data beyond dual X-ray absorptiometry (DXA) is limited in young individuals with CF. We assessed volumetric bone mineral densities (BMD), and bone and muscle parameters using peripheral quantitative computed tomography (pQCT) in individuals with CF and controls, 7.00-17.99 years. METHODS Peripheral QCT (XCT 3000, Stratec) measurements were made in 53 individuals with CF and 53 controls. Bone mineral content (BMC), total volumetric BMD (vBMD) and cross sectional area (CSA) of the bone were measured at the 4% and 66% sites of the non-dominant tibia and radius. Additionally, trabecular vBMD and bone strength index (BSIc) were measured at the 4% sites, and cortical vBMD, muscle CSA (mCSA) and strength strain index (SSI) were measured at the 66% sites. RESULTS Pre-pubertal males with CF had greater trabecular vBMD (p=0.01) and total vBMD (p=0.00) at 4% tibia, and greater total vBMD (p=0.02) at 4% radius. Pre-pubertal females with CF had greater total vBMD at 66% tibia (p=0.02) and radius (p=0.04), and cortical vBMD (p=0.04) at the radius. At puberty, the CF cohort had less BMC at 4% tibia (males, p=0.02; females, p=0.01), and smaller mCSA at 66% tibia (males, p=0.02; females, p=0.01). Pubertal CF females had a smaller bone CSA (p=0.01) at 4% tibia, and lower bone strength (SSI) at the tibia (p=0.00) and radius (p=0.05) sites. CONCLUSIONS Bone strength parameters were not compromised prior to puberty in this CF cohort. At puberty, the bone phenotype changed for this CF cohort, showing several deficits compared to the controls. However, bone strength was adapting to the mechanical demands of the muscle. Altered bone parameters and their implications for lowered bone strength with increased age may be greatly influenced by: the CF cohort remaining smaller for age and/or a reduced bone strain, secondary to reduced muscle force.
Collapse
Affiliation(s)
- Denise S K Brookes
- The University of Queensland, Queensland Children's Medical Research Institute, Children's Nutrition Research Centre, Brisbane, Australia; The University of Queensland, School of Medicine, Brisbane, Australia.
| | | | - Craig F Munns
- The Children's Hospital at Westmead, Sydney, Australia; University of Sydney, School of Medicine, Sydney, Australia
| | - Peter S W Davies
- The University of Queensland, Queensland Children's Medical Research Institute, Children's Nutrition Research Centre, Brisbane, Australia; The University of Queensland, School of Medicine, Brisbane, Australia
| | - Rebecca J Hill
- The University of Queensland, Queensland Children's Medical Research Institute, Children's Nutrition Research Centre, Brisbane, Australia; The University of Queensland, School of Medicine, Brisbane, Australia
| |
Collapse
|
34
|
Leonard MB, Zemel BS, Wrotniak BH, Klieger SB, Shults J, Stallings VA, Stettler N. Tibia and radius bone geometry and volumetric density in obese compared to non-obese adolescents. Bone 2015; 73:69-76. [PMID: 25497572 PMCID: PMC4540475 DOI: 10.1016/j.bone.2014.12.002] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/02/2014] [Revised: 10/27/2014] [Accepted: 12/03/2014] [Indexed: 11/23/2022]
Abstract
Childhood obesity is associated with biologic and behavioral characteristics that may impact bone mineral density (BMD) and structure. The objective was to determine the association between obesity and bone outcomes, independent of sexual and skeletal maturity, muscle area and strength, physical activity, calcium intake, biomarkers of inflammation, and vitamin D status. Tibia and radius peripheral quantitative CT scans were obtained in 91 obese (BMI>97th percentile) and 51 non-obese adolescents (BMI>5th and <85th percentiles). Results were converted to sex- and race-specific Z-scores relative to age. Cortical structure, muscle area and muscle strength (by dynamometry) Z-scores were further adjusted for bone length. Obese participants had greater height Z-scores (p<0.001), and advanced skeletal maturity (p<0.0001), compared with non-obese participants. Tibia cortical section modulus and calf muscle area Z-scores were greater in obese participants (1.07 and 1.63, respectively, both p<0.0001). Tibia and radius trabecular and cortical volumetric BMD did not differ significantly between groups. Calf muscle area and strength Z-scores, advanced skeletal maturity, and physical activity (by accelerometry) were positively associated with tibia cortical section modulus Z-scores (all p<0.01). Adjustment for muscle area Z-score attenuated differences in tibia section modulus Z-scores between obese and non-obese participants from 1.07 to 0.28. After multivariate adjustment for greater calf muscle area and strength Z-scores, advanced maturity, and less moderate to vigorous physical activity, tibia section modulus Z-scores were 0.32 (95% CI -0.18, 0.43, p=0.06) greater in obese, vs. non-obese participants. Radius cortical section modulus Z-scores were 0.45 greater (p=0.08) in obese vs. non-obese participants; this difference was attenuated to 0.14 with adjustment for advanced maturity. These findings suggest that greater tibia cortical section modulus in obese adolescents is attributable to advanced skeletal maturation and greater muscle area and strength, while less moderate to vigorous physical activities offset the positive effects of these covariates. The impact of obesity on cortical structure was greater at weight bearing sites.
Collapse
Affiliation(s)
- Mary B Leonard
- Department of Pediatrics, The Children's Hospital of Philadelphia, Philadelphia, PA, USA; Department of Biostatistics and Epidemiology, Perelman School of Medicine at the University of Pennsylvania, USA.
| | - Babette S Zemel
- Department of Pediatrics, The Children's Hospital of Philadelphia, Philadelphia, PA, USA
| | - Brian H Wrotniak
- Department of Pediatrics, The Children's Hospital of Philadelphia, Philadelphia, PA, USA; Department of Physical Therapy, D'Youville College, Buffalo, NY, USA
| | - Sarah B Klieger
- Department of Pediatrics, The Children's Hospital of Philadelphia, Philadelphia, PA, USA
| | - Justine Shults
- Department of Physical Therapy, D'Youville College, Buffalo, NY, USA
| | - Virginia A Stallings
- Department of Pediatrics, The Children's Hospital of Philadelphia, Philadelphia, PA, USA
| | | |
Collapse
|
35
|
Macintosh AA, Davies TG, Pinhasi R, Stock JT. Declining tibial curvature parallels ∼6150 years of decreasing mobility in central european agriculturalists. AMERICAN JOURNAL OF PHYSICAL ANTHROPOLOGY 2015; 157:260-75. [DOI: 10.1002/ajpa.22710] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/02/2014] [Accepted: 01/22/2015] [Indexed: 11/08/2022]
Affiliation(s)
- Alison A. Macintosh
- PAVE Research Group; Department of Archaeology & Anthropology; University of Cambridge; Cambridge CB2 3DZ UK
| | - Thomas G. Davies
- PAVE Research Group; Department of Archaeology & Anthropology; University of Cambridge; Cambridge CB2 3DZ UK
- Churchill College; Storey's Way Cambridge CB3 0DS UK
| | - Ron Pinhasi
- Earth Institute and School of Archaeology, Newman Building, University College Dublin; Belfield Dublin 4 Ireland
| | - Jay T. Stock
- PAVE Research Group; Department of Archaeology & Anthropology; University of Cambridge; Cambridge CB2 3DZ UK
| |
Collapse
|
36
|
Ebeling PR, Daly RM, Kerr DA, Kimlin MG. Building healthy bones throughout life: an evidence-informed strategy to prevent osteoporosis in Australia. Med J Aust 2015; 199:S1-S46. [PMID: 25370432 DOI: 10.5694/j.1326-5377.2013.tb04225.x] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2012] [Accepted: 12/02/2012] [Indexed: 12/14/2022]
Abstract
Osteoporosis imposes a tremendous burden on Australia: 1.2 million Australians have osteoporosis and 6.3 million have osteopenia. In the 2007–08 financial year, 82 000 Australians suffered fragility fractures, of which > 17 000 were hip fractures. In the 2000–01 financial year, direct costs were estimated at $1.9 billion per year and an additional $5.6 billion on indirect costs. Osteoporosis was designated a National Health Priority Area in 2002; however, implementation of national plans has not yet matched the rhetoric in terms of urgency. Building healthy bones throughout life, the Osteoporosis Australia strategy to prevent osteoporosis throughout the life cycle, presents an evidence-informed set of recommendations for consumers, health care professionals and policymakers. The strategy was adopted by consensus at the Osteoporosis Australia Summit in Sydney, 20 October 2011. Primary objectives throughout the life cycle are: to maximise peak bone mass during childhood and adolescence to prevent premature bone loss and improve or maintain muscle mass, strength and functional capacity in healthy adults to prevent and treat osteoporosis in order to minimise the risk of suffering fragility fractures, and reduce falls risk, in older people. The recommendations focus on three affordable and important interventions — to ensure people have adequate calcium intake, vitamin D levels and appropriate physical activity throughout their lives. Recommendations relevant to all stages of life include: daily dietary calcium intakes should be consistent with Australian and New Zealand guidelines serum levels of vitamin D in the general population should be above 50nmol/L in winter or early spring for optimal bone health regular weight-bearing physical activity, muscle strengthening exercises and challenging balance/mobility activities should be conducted in a safe environment.
Collapse
Affiliation(s)
- Peter R Ebeling
- NorthWest Academic Centre, University of Melbourne, and Western Health, Melbourne, VIC, Australia.
| | - Robin M Daly
- Centre for Physical Activity and Nutrition Research, Deakin University, Melbourne, VIC, Australia
| | - Deborah A Kerr
- Curtin Health Innovation Research Institute and School of Public Health, Curtin University, Perth, WA, Australia
| | - Michael G Kimlin
- Faculty of Health, Queensland University of Technology, Brisbane, QLD, Australia
| |
Collapse
|
37
|
Macintosh AA, Pinhasi R, Stock JT. Divergence in male and female manipulative behaviors with the intensification of metallurgy in Central Europe. PLoS One 2014; 9:e112116. [PMID: 25389972 PMCID: PMC4229139 DOI: 10.1371/journal.pone.0112116] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2014] [Accepted: 10/12/2014] [Indexed: 11/18/2022] Open
Abstract
Humeral morphology has been shown to reflect, in part, habitual manipulative behaviors in humans. Among Central European agricultural populations, long-term social change, increasing task specialization, and technological innovation all had the potential to impact patterns of habitual activity and upper limb asymmetry. However, systematic temporal change in the skeletal morphology of agricultural populations in this region has not been well-characterized. This study investigates diachronic patterns in humeral biomechanical properties and lengths among 174 adult Central European agriculturalists through the first ∼ 5400 years of farming in the region. Greater asymmetry in biomechanical properties was expected to accompany the introduction of metallurgy, particularly in males, while upper limb loading patterns were expected to be more similar between the Bronze and Iron Ages. Results revealed a divergence in the lateralization of upper limb biomechanical properties by sex between the Early/Middle Neolithic and Early/Middle Bronze Age. Neolithic females had significantly more variable properties than males in both humeri, while Bronze Age female properties became homogeneous and very symmetrical relative to the right-biased lateralization of contemporaneous males. The Bronze Age to Iron Age transition was associated with morphological change among females, with a significant increase in right-biased asymmetry and a concomitant reduction in sexual dimorphism. Relative to biomechanical properties, humeral length variation and asymmetry were low though some significant sexual dimorphism and temporal change was found. It was among females that the lateralization of humeral biomechanical properties, and variation within them, changed most profoundly through time. This suggests that the introduction of the ard and plow, metallurgical innovation, task specialization, and socioeconomic change through ∼ 5400 years of agriculture impacted upper limb loading in Central European women to a greater extent than men.
Collapse
Affiliation(s)
- Alison A. Macintosh
- PAVE Research Group, Department of Archaeology and Anthropology, University of Cambridge, Cambridge, United Kingdom
- * E-mail:
| | - Ron Pinhasi
- Earth Institute and School of Archaeology, Newman Building, University College Dublin, Dublin, Ireland
| | - Jay T. Stock
- PAVE Research Group, Department of Archaeology and Anthropology, University of Cambridge, Cambridge, United Kingdom
| |
Collapse
|
38
|
Tan VPS, Macdonald HM, Kim S, Nettlefold L, Gabel L, Ashe MC, McKay HA. Influence of physical activity on bone strength in children and adolescents: a systematic review and narrative synthesis. J Bone Miner Res 2014; 29:2161-81. [PMID: 24737388 DOI: 10.1002/jbmr.2254] [Citation(s) in RCA: 153] [Impact Index Per Article: 13.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/03/2013] [Revised: 04/04/2014] [Accepted: 04/09/2014] [Indexed: 11/08/2022]
Abstract
A preponderance of evidence from systematic reviews supports the effectiveness of weight-bearing exercises on bone mass accrual, especially during the growing years. However, only one systematic review (limited to randomized controlled trials) examined the role of physical activity (PA) on bone strength. Thus, our systematic review extended the scope of the previous review by including all PA intervention and observational studies, including organized sports participation studies, with child or adolescent bone strength as the main outcome. We also sought to discern the skeletal elements (eg, mass, structure, density) that accompanied significant bone strength changes. Our electronic-database, forward, and reference searches yielded 14 intervention and 23 observational studies that met our inclusion criteria. We used the Effective Public Health Practice Project (EPHPP) tool to assess the quality of studies. Due to heterogeneity across studies, we adopted a narrative synthesis for our analysis and found that bone strength adaptations to PA were related to maturity level, sex, and study quality. Three (of five) weight-bearing PA intervention studies with a strong rating reported significantly greater gains in bone strength for the intervention group (3% to 4%) compared with only three significant (of nine) moderate intervention studies. Changes in bone structure (eg, bone cross-sectional area, cortical thickness, alone or in combination) rather than bone mass most often accompanied significant bone strength outcomes. Prepuberty and peripuberty may be the most opportune time for boys and girls to enhance bone strength through PA, although this finding is tempered by the few available studies in more mature groups. Despite the central role that muscle plays in bones' response to loading, few studies discerned the specific contribution of muscle function (or surrogates) to bone strength. Although not the focus of the current review, this seems an important consideration for future studies.
Collapse
Affiliation(s)
- Vina P S Tan
- Department of Orthopaedics, University of British Columbia, Vancouver, BC, Canada; Centre for Hip Health and Mobility, Vancouver Coastal Health Research Institute, Vancouver, BC, Canada; School of Health Sciences, Health Campus, Universiti Sains Malaysia, Kelantan, Malaysia
| | | | | | | | | | | | | |
Collapse
|
39
|
Ireland A, Maden-Wilkinson T, Ganse B, Degens H, Rittweger J. Effects of age and starting age upon side asymmetry in the arms of veteran tennis players: a cross-sectional study. Osteoporos Int 2014; 25:1389-400. [PMID: 24531424 DOI: 10.1007/s00198-014-2617-5] [Citation(s) in RCA: 45] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/18/2013] [Accepted: 01/07/2014] [Indexed: 11/29/2022]
Abstract
UNLABELLED While tennis playing results in large bone strength benefits in the racquet arm of young players, the effects of tennis playing in old players have not been investigated. Large side asymmetries in bone strength were found in veteran players, which were more pronounced in men, younger players and childhood starters. INTRODUCTION Regular tennis results in large racquet arm bone and muscle strength advantages; however, these effects have not been studied in old players. The non-racquet arm can act as an internal control for the exercising racquet arm without confounding factors, e.g. genotype. Therefore, veteran tennis player side asymmetries were examined to investigate age, sex and starting age effects on bone exercise benefits. METHODS Peripheral quantitative computed tomography (pQCT) scans were taken at the radius, ulna and humerus mid-shaft and distal radius in both arms of 88 tennis players (51 males, 37 females; mean age 63.8 ± 11.8 years). Thirty-two players began playing in adulthood, thereby termed 'old starters'; players were otherwise termed 'young starters'. RESULTS Muscle size and bone strength were greater in the racquet arm; notably, distal radius bone mineral content (BMC) was 13 ± 10% higher and humeral bone area 23 ± 12% larger (both P < 0.001). Epiphyseal BMC asymmetry was not affected by age (P = 0.863) or sex (P = 0.954), but diaphyseal asymmetries were less pronounced in older players and women, particularly in the humerus where BMC, area and moment of resistance asymmetries were 28-34 % less in women (P < 0.01). Bone area and periosteal circumference asymmetries were smaller in old starters (all P < 0.01); most notably, no distal radius asymmetry was found in this group (0.4 ± 3.4%). CONCLUSIONS Tennis participation is associated with large side asymmetries in muscle and bone strength in old age. Larger relative side asymmetries in men, younger players and young starters suggest a greater potential for exercise benefits to bone in these groups.
Collapse
Affiliation(s)
- A Ireland
- Institute for Biomedical Research into Human Movement and Health, Manchester Metropolitan University, John Dalton Building, Chester Street, Manchester, M1 5GD, UK,
| | | | | | | | | |
Collapse
|
40
|
Ireland A, Rittweger J, Degens H. The Influence of Muscular Action on Bone Strength Via Exercise. Clin Rev Bone Miner Metab 2013. [DOI: 10.1007/s12018-013-9151-4] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
|
41
|
DiVasta AD, Gordon CM. Exercise and bone: where do we stand? Metabolism 2013; 62:1714-7. [PMID: 24140089 DOI: 10.1016/j.metabol.2013.09.016] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/16/2013] [Revised: 09/17/2013] [Accepted: 09/17/2013] [Indexed: 10/26/2022]
Affiliation(s)
- Amy D DiVasta
- Division of Adolescent and Young Adult Medicine, Boston Children's Hospital, 333 Longwood Avenue, Boston, MA 02115, USA; Division of Pediatric and Adolescent Gynecology, Boston Children's Hospital, Boston, MA 02115, USA.
| | | |
Collapse
|
42
|
IRELAND ALEX, MADEN-WILKINSON THOMAS, MCPHEE JAMIE, COOKE KARL, NARICI MARCO, DEGENS HANS, RITTWEGER JÖRN. Upper Limb Muscle–Bone Asymmetries and Bone Adaptation in Elite Youth Tennis Players. Med Sci Sports Exerc 2013; 45:1749-58. [DOI: 10.1249/mss.0b013e31828f882f] [Citation(s) in RCA: 65] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
43
|
Tsampalieros A, Lam CKL, Spencer JC, Thayu M, Shults J, Zemel BS, Herskovitz RM, Baldassano RN, Leonard MB. Long-term inflammation and glucocorticoid therapy impair skeletal modeling during growth in childhood Crohn disease. J Clin Endocrinol Metab 2013; 98:3438-45. [PMID: 23690309 PMCID: PMC3733850 DOI: 10.1210/jc.2013-1631] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
CONTEXT Glucocorticoids and inflammation inhibit bone formation; however, the impact on skeletal modeling is unknown. OBJECTIVES The objectives of the study were to examine changes in bone mineral density (BMD) and cortical structure after Crohn disease (CD) diagnosis and identify associations with growth, glucocorticoids, and disease activity. DESIGN/PARTICIPANTS This was a prospective cohort study among 76 CD participants, aged 5-21 years. Tibia quantitative computed tomography trabecular BMD and cortical dimensions were obtained at diagnosis and 6 and 12 and a median of 42 months later; 51 completed the final visit. OUTCOMES Sex, race, and age-specific Z-scores were generated for outcomes based on more than 650 reference participants, and cortical dimension Z-scores were further adjusted for tibia length. Generalized estimating equations were used to model changes in Z-scores. RESULTS Disease activity improved over the study interval (P < .001). Trabecular BMD Z-scores improved over the first 6 months; increases were associated with improved disease activity (P < .001), younger age (P = .005), and increases in vitamin D levels (P = .02). Greater increases in tibia length were associated with greater increases in cortical area Z-scores (P < .001). Greater glucocorticoid doses and disease activity were significantly associated with failure to accrue cortical area and were more pronounced with greater linear growth (interaction P < .05). Mean (±SD) trabecular BMD (-1.0 ± 1.21) and cortical area (-0.57 ± 1.10) Z-scores at the final visit were significantly reduced. CONCLUSIONS CD was associated with persistent deficits in trabecular BMD, although younger participants demonstrated a greater potential for recovery. In addition, greater linear growth was associated with a greater recovery of cortical dimensions, especially among participants with less glucocorticoid exposure and inflammation. These data suggest that younger age and concurrent growth provide a window of opportunity for skeletal recovery.
Collapse
Affiliation(s)
- Anne Tsampalieros
- Department of Pediatrics, Children's Hospital of Eastern Ontario, Ontario, Canada K1H 8L6
| | | | | | | | | | | | | | | | | |
Collapse
|
44
|
Frank AW, Labas MC, Johnston JD, Kontulainen SA. Site-specific variance in radius and tibia bone strength as determined by muscle size and body mass. Physiother Can 2013; 64:292-301. [PMID: 23729966 DOI: 10.3138/ptc.2010-40bh] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
PURPOSE To investigate the predictive ability of muscle cross-sectional area (MCSA) and body mass on bone mineral content, compressive bone strength index (BSIc), and the polar stress-strain index (SSIp) of the forearms and lower legs of middle-aged adults. METHODS A total of 53 healthy adults (37 male, 16 female; mean age 50.4; SD 2.1 y) were scanned with peripheral quantitative computed tomography (pQCT) to measure radius and tibia total and cortical bone mineral content, BSIc, SSIp, and forearm and lower-leg MCSA (BSIc: 4% distal; SSIp and MCSA at 65% and 66% radius and tibia shaft sites, respectively). Multiple regression models adjusted for sex and height were used to assess the relative variance in radius or tibia bone outcomes predicted by body mass and/or forearm or lower-leg MCSA. RESULTS Forearm MCSA independently predicted total bone-mineral content, BSIc, and SSIp in radius (r partial=0.59, 0.56, 0.42). Body mass was a negative predictor of radius BSIc (r partial=-0.32) and did not predict other radius outcomes when both body mass and MCSA were forced in the models. In the lower leg shaft, MCSA, and body mass predicted bone content and strength similarly when independently added to the models with sex and height. CONCLUSIONS Forearm MCSA was a dominant predictor of radius bone content and estimated strength. In the tibia, both body mass and lower-leg MCSA contributed to predicting bone content and estimated strength.
Collapse
|
45
|
Nilsson M, Ohlsson C, Mellström D, Lorentzon M. Sport-specific association between exercise loading and the density, geometry, and microstructure of weight-bearing bone in young adult men. Osteoporos Int 2013; 24:1613-22. [PMID: 23011682 PMCID: PMC3627855 DOI: 10.1007/s00198-012-2142-3] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/17/2012] [Accepted: 09/05/2012] [Indexed: 12/28/2022]
Abstract
UNLABELLED In this population-based study of 24-year-old men, we have investigated the association between sport-specific exercise loading and different bone parameters. We reveal that the association between exercise loading and bone parameters is sport-specific, indicating that nonspecific resistance exercise does not impact bone density, geometry, or microstructure in young men. INTRODUCTION In this cross-sectional study, the association between nonspecific resistive exercise and areal and volumetric bone density, bone geometry, or bone microstructure was investigated in young adult men. METHODS A total of 184 male athletes, 24.0 ± 0.6 years of age (mean ± SD), representing nonspecific resistive exercise and soccer (proportion of recreational athletes, 93.4 and 7.7 %, respectively), and 177 nonathletic age-matched controls were measured with dual-energy X-ray absorptiometry. Radius and tibia were measured by peripheral quantitative computed tomography (pQCT) at the diaphysis and by three-dimensional pQCT at the metaphysis. RESULTS Men in the nonspecific resistive exercise group had higher grip strength(9.1 % or 0.4 SD) and higher lean mass(5.6 % or 0.5 SD) than those in the nonathletic group(p < 0.01 and p < 0.001, respectively). However, men who participated in nonspecific resistive exercise did not have higher bone density or a more favorable bone microstructure or geometry than their nonathletic referents. In contrast, men playing soccer had higher areal bone mineral density (aBMD) at the femoral neck (19.5 % or 1.2 SD) and lumbar spine (12.6 % or 1.0 SD), as well as larger cortical cross-sectional area (16.4 % or 1.1 SD) and higher trabecular bone volume fraction (14.5 % or 0.9 SD), as a result of increased trabecular number (8.7 % or 0.6 SD) and thickness (5.7 % or 0.4 SD) at the tibia than men in the nonathletic group(p < 0.001). CONCLUSIONS Weight-bearing exercise with impacts from varying directions (playing soccer) is associated with aBMD and volumetric BMD, cortical bone geometry, as well as trabecular microstructure of weight-bearing bone. Nonspecific recreational resistance exercise does not appear to be a strong determinant of bone density, geometry, or microstructure in young adult men.
Collapse
Affiliation(s)
- M. Nilsson
- Centre for Bone and Arthritis Research at the Sahlgrenska Academy, Department of Internal Medicine, University of Gothenburg, Gothenburg, Sweden
- Centre for Bone and Arthritis Research, Institute of Medicine, Sahlgrenska Academy, Sahlgrenska University Hospital, Vita Stråket 11, 413 45 Gothenburg, Sweden
| | - C. Ohlsson
- Centre for Bone and Arthritis Research at the Sahlgrenska Academy, Department of Internal Medicine, University of Gothenburg, Gothenburg, Sweden
| | - D. Mellström
- Centre for Bone and Arthritis Research at the Sahlgrenska Academy, Department of Internal Medicine, University of Gothenburg, Gothenburg, Sweden
| | - M. Lorentzon
- Centre for Bone and Arthritis Research at the Sahlgrenska Academy, Department of Internal Medicine, University of Gothenburg, Gothenburg, Sweden
| |
Collapse
|
46
|
Siminoski K, Lee KC, Abish S, Alos N, Bell L, Blydt-Hansen T, Couch R, Cummings EA, Ellsworth J, Feber J, Fernandez CV, Halton J, Huber AM, Israels S, Jurencak R, Lang B, Laverdière C, LeBlanc C, Lewis V, Midgley J, Miettunen PM, Oen K, Phan V, Pinsk M, Rauch F, Rodd C, Roth J, Saint-Cyr C, Scuccimarri R, Stephure D, Taback S, Wilson B, Ward LM. The development of bone mineral lateralization in the arms. Osteoporos Int 2013; 24:999-1006. [PMID: 22744715 PMCID: PMC4105250 DOI: 10.1007/s00198-012-2054-2] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/20/2012] [Accepted: 05/08/2012] [Indexed: 01/04/2023]
Abstract
UNLABELLED Bone mineral content (BMC) is known to be greater in the dominant arm after the age of 8 years. We studied a group of children and found that BMC sidedness gradually increased up to the age of 6 years and then remained stable into late adolescence. INTRODUCTION Bone mineral content (BMC) exhibits sidedness in the arms after the age of 8 years, but it is not known whether BMC is greater in the dominant arm from birth or whether lateralization develops in early childhood. To address this, we examined bone mineral status in relation to handedness and age. METHODS Subjects (N = 158) were children recently initiating glucocorticoids for underlying disease (leukemia 43 %, rheumatic conditions 39 %, nephrotic syndrome 18 %). Handedness was determined by questionnaire and BMC by dual-energy X-ray absorptiometry. RESULTS Median age was 7.2 years (range, 1.5 to 17.0 years), 49 % was male, and the spine BMD Z-score was -0.9 (SD, 1.3). By linear regression, BMC sidedness in the arms was significantly related to age (r = 0.294, p = 0.0005). Breakpoint analysis revealed two lines with a knot at 6.0 years (95 % CI, 4.5-7.5 years). The formula for the first line was: dominant:nondominant arm BMC ratio = 0.029 × age [in years] + 0.850 (r = 0.323, p = 0.017). The slope of the second line was not different from 0 (p = 0.332), while the slopes for the two lines were significantly different (p = 0.027). CONCLUSIONS These results show that arm BMC sidedness in this patient group develops up to age 6 years and then remains stable into late adolescence. This temporal profile is consistent with mechanical stimulation of the skeleton in response to asymmetrical muscle use as handedness becomes manifest.
Collapse
Affiliation(s)
- K Siminoski
- University of Alberta, 6628-123 Street, Edmonton, Alberta, Canada T6H 3T6.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
47
|
Influence of physical activity on vertebral strength during late adolescence. Spine J 2013; 13:184-9. [PMID: 23332389 DOI: 10.1016/j.spinee.2012.11.049] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/01/2011] [Revised: 03/13/2012] [Accepted: 11/27/2012] [Indexed: 02/03/2023]
Abstract
BACKGROUND CONTEXT Reduced vertebral strength is a clear risk factor for vertebral fractures. Men and women with vertebral fractures often have reduced vertebral size and bone mineral density (BMD). Vertebral strength is controlled by both genetic and developmental factors. Malnutrition and low levels of physical activity are commonly considered to result in reduced bone size during growth. Several studies have also demonstrated the general relationship between BMD and physical activity in the appendicular skeleton. PURPOSE In this study, we wanted to clarify the role of physical activity on vertebral bodies. Vertebral dimensions appear to generally be less pliant than long bones when lifetime changes occur. We wanted to explore the association between physical activity during late adolescence and vertebral strength parameters such as cross-sectional size and BMD. STUDY DESIGN The association between physical activity and vertebral strength was explored by measuring vertebral strength parameters and defining the level of physical activity during adolescence. PATIENT SAMPLE The study population consisted of 6,928 males and females who, at 15 to 16 and 19 years of age, responded to a mailed questionnaire inquiring about their physical activity. A total of 558 individuals at the mean age of 21 years underwent magnetic resonance imaging (MRI) scans. METHODS We measured the dimensions of the fourth lumbar vertebra from the MRI scans of the Northern Finland Birth Cohort 1986 and performed T2* relaxation time mapping, reflective of BMD. Vertebral strength was based on these two parameters. We analyzed the association of physical activity on vertebral strength using the analysis of variance. RESULTS AND CONCLUSIONS We observed no association between the level of physical activity during late adolescence and vertebral strength at 21 years.
Collapse
|
48
|
Pang MYC, Yang FZH, Lau RWK, Cheng AQ, Li LSW, Zhang M. Changes in bone density and geometry of the upper extremities after stroke: a case report. Physiother Can 2013; 64:88-97. [PMID: 23277690 DOI: 10.3138/ptc.2010-34] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
PURPOSE The purpose of this study was to examine changes in bone density and geometry of the forearm region and motor function of the paretic upper extremity in a person with subacute stroke. Client Description: The participant was a 48-year-old man with right hemiparesis. INTERVENTION Not applicable. Measures and Outcomes: The assessment of upper-extremity (UE) function and bone imaging took place at 3 months and 12 months after stroke. The participant had moderate motor impairment and severe disuse of the paretic UE 3 months after stroke. During the follow-up period, no substantial change in paretic UE function was observed. At the 12 month follow-up, the areal bone mineral density (aBMD) of the ultradistal and mid-regions of the paretic forearm, as measured by dual-energy X-ray absorptiometry, sustained a significant reduction of 7.9% and 5.9%, respectively. The non-paretic side, in contrast, had a significant 4.0% increase in aBMD of the mid-forearm and a 2.8% increase in aBMD of the total forearm. Significant findings from peripheral quantitative computed tomography were a reduction in total volumetric bone mineral density (-12.1%) and bone strength index (-20.6%) in the radius distal epiphysis on the paretic side and an increase in cortical bone mineral content (2.0%) and bone strength index (7.6%) in the radius diaphysis on the non-paretic side. IMPLICATIONS After a stroke that resulted in moderate to severe UE impairment, a significant decline in bone mineral density was identified in various skeletal sites in the forearm region as the participant entered the subacute and chronic stages of recovery. The results point to the potential importance of early rehabilitative intervention in preventing unfavourable bone changes in the paretic upper limb among individuals with stroke.
Collapse
Affiliation(s)
- Marco Y C Pang
- Department of Rehabilitation Sciences, The Hong Kong Polytechnic University, Hong Kong
| | | | | | | | | | | |
Collapse
|
49
|
Barros A, Soligo C. Bilateral Asymmetry of Humeral Torsion and Length in African Apes and Humans. Folia Primatol (Basel) 2013; 84:220-38. [DOI: 10.1159/000353177] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2012] [Accepted: 05/21/2013] [Indexed: 11/19/2022]
|
50
|
Mantila Roosa SM, Hurd AL, Xu H, Fuchs RK, Warden SJ. Age-related changes in proximal humerus bone health in healthy, white males. Osteoporos Int 2012; 23:2775-83. [PMID: 22258805 PMCID: PMC3624900 DOI: 10.1007/s00198-012-1893-1] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/14/2011] [Accepted: 01/02/2012] [Indexed: 10/14/2022]
Abstract
UNLABELLED The proximal humerus is a common site for osteoporotic fracture. The current study demonstrates the rate of age-related decline in proximal humerus bone health. The data suggest aging is associated with considerable loss of bone mass, structural deterioration and reduced bone strength at the proximal humerus. INTRODUCTION The proximal humerus is relatively under investigated despite being the fourth most common site for osteoporotic fracture. METHODS A cross-sectional study was performed to assess age-related changes in dual-energy X-ray absorptiometry (DXA) and peripheral quantitative computed tomography (pQCT) properties of the proximal humerus in a cohort of 170 healthy, white males. RESULTS Regression models estimated considerable age-related loss of DXA measured bone quantity at the proximal humerus, with areal bone mineral density modeled to decline by 29% (95% confidence interval [CI], 17.5-35.0%) in the 50 years between ages 30 and 80 years (p < 0.001). pQCT measures indicated aging was associated with progressive periosteal and endosteal expansion, with the later occurring more rapidly as indicated by age-related declines in cortical bone mass, area and thickness (all p < 0.01). The net result of the density, mass and structural changes was a 26% (95% CI, 13.5-38.0%) decline in pQCT estimated proximal humerus bone strength in the 50 years between ages 30 and 80 years (p < 0.001). CONCLUSION Aging is associated with considerable declines in proximal humeral bone health which, when coupled with a traumatic event such as a fall, may contribute to osteoporotic fracture at this site.
Collapse
Affiliation(s)
- Sara M. Mantila Roosa
- Center for Translational Musculoskeletal Research, School of Health and Rehabilitation Sciences, Indiana University, Indianapolis, IN
| | - Andrea L. Hurd
- Center for Translational Musculoskeletal Research, School of Health and Rehabilitation Sciences, Indiana University, Indianapolis, IN
| | - Huiping Xu
- Department of Biostatistics, Indiana University School of Medicine, Indianapolis, IN
| | - Robyn K. Fuchs
- Center for Translational Musculoskeletal Research, School of Health and Rehabilitation Sciences, Indiana University, Indianapolis, IN
- Department of Physical Therapy, School of Health and Rehabilitation Sciences, Indiana University, Indianapolis, IN
| | - Stuart J. Warden
- Center for Translational Musculoskeletal Research, School of Health and Rehabilitation Sciences, Indiana University, Indianapolis, IN
- Department of Physical Therapy, School of Health and Rehabilitation Sciences, Indiana University, Indianapolis, IN
| |
Collapse
|