1
|
Fan X, Li B, Chai S, Zhang R, Cai C, Ge R. Hypoxia Promotes Osteoclast Differentiation by Weakening USP18-Mediated Suppression on the NF-κB Signaling Pathway. Int J Mol Sci 2024; 26:10. [PMID: 39795869 PMCID: PMC11719700 DOI: 10.3390/ijms26010010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2024] [Revised: 12/17/2024] [Accepted: 12/19/2024] [Indexed: 01/13/2025] Open
Abstract
Osteoporosis, a prevalent metabolic bone disorder, is characterized by reduced bone density and increased fracture risk. The pathogenesis of osteoporosis is closely associated with an imbalance in bone remodeling, in which the resorption function of osteoclasts exceeds the formation function of osteoblasts. Hypoxia has been implicated in the promotion of osteoclast differentiation and the subsequent development of osteoporosis. The ubiquitin-proteasome system (UPS) and its regulatory enzymes, deubiquitinating enzymes (DUBs), play a significant role in bone homeostasis. In this study, we investigated the contribution and mechanism of Ubiquitin-specific protease 18 (USP18), a DUB, in osteoclast differentiation under hypoxic conditions. BMDMs and RAW264.7 cells were treated with RANKL to induce osteoclastogenesis and were subjected to overexpression or knockdown of USP18 under normoxic or hypoxia conditions. Osteoclast formation was assessed using TRAP staining, and the expression of osteoclast marker genes was determined using qRT-PCR. The activation of the NF-κB signaling pathway was evaluated using immunoblotting. We found that hypoxia significantly enhanced the differentiation of BMDMs and RAW264.7 cells into osteoclasts, accompanied by a notable downregulation of USP18 expression. The overexpression of USP18 inhibited RANKL-induced osteoclast differentiation, while the knockdown of USP18 promoted that process, unveiling the inhibitory effect of USP18 in osteoclastogenesis. Furthermore, the overexpression of USP18 rescued the hypoxia-induced increase in osteoclast differentiation. Mechanistic insights revealed that USP18 inhibits osteoclastogenesis by suppressing the NF-κB signaling pathway, with a potential target on TAK1 or its upstream molecules. This study indicates that hypoxia promotes osteoclast differentiation through the downregulation of USP18, which, in turn, relieves the suppression of the activation of the NF-κB signaling pathway. The USP18 emerges as a potential therapeutic target for osteoporosis treatment, highlighting the importance of the hypoxia-DUB axis in the pathogenesis of the disease.
Collapse
Affiliation(s)
- Xiaoxia Fan
- Research Center for High Altitude Medicine, Qinghai University, Xining 810001, China; (X.F.); (B.L.); (S.C.); (R.Z.)
- Key Laboratory of the Ministry of High Altitude Medicine, Qinghai University, Xining 810001, China
- Key Laboratory of Applied Fundamentals of High Altitude Medicine, Qinghai-Utah Joint Key Laboratory of Plateau Medicine, Qinghai University, Xining 810001, China
- Laboratory for High Altitude Medicine of Qinghai Province, Qinghai University, Xining 810001, China
| | - Botong Li
- Research Center for High Altitude Medicine, Qinghai University, Xining 810001, China; (X.F.); (B.L.); (S.C.); (R.Z.)
- Key Laboratory of the Ministry of High Altitude Medicine, Qinghai University, Xining 810001, China
- Key Laboratory of Applied Fundamentals of High Altitude Medicine, Qinghai-Utah Joint Key Laboratory of Plateau Medicine, Qinghai University, Xining 810001, China
- Laboratory for High Altitude Medicine of Qinghai Province, Qinghai University, Xining 810001, China
| | - Shengjun Chai
- Research Center for High Altitude Medicine, Qinghai University, Xining 810001, China; (X.F.); (B.L.); (S.C.); (R.Z.)
- Key Laboratory of the Ministry of High Altitude Medicine, Qinghai University, Xining 810001, China
- Key Laboratory of Applied Fundamentals of High Altitude Medicine, Qinghai-Utah Joint Key Laboratory of Plateau Medicine, Qinghai University, Xining 810001, China
- Laboratory for High Altitude Medicine of Qinghai Province, Qinghai University, Xining 810001, China
| | - Rong Zhang
- Research Center for High Altitude Medicine, Qinghai University, Xining 810001, China; (X.F.); (B.L.); (S.C.); (R.Z.)
- Key Laboratory of the Ministry of High Altitude Medicine, Qinghai University, Xining 810001, China
- Key Laboratory of Applied Fundamentals of High Altitude Medicine, Qinghai-Utah Joint Key Laboratory of Plateau Medicine, Qinghai University, Xining 810001, China
- Laboratory for High Altitude Medicine of Qinghai Province, Qinghai University, Xining 810001, China
| | - Chunmei Cai
- Research Center for High Altitude Medicine, Qinghai University, Xining 810001, China; (X.F.); (B.L.); (S.C.); (R.Z.)
- Key Laboratory of the Ministry of High Altitude Medicine, Qinghai University, Xining 810001, China
- Key Laboratory of Applied Fundamentals of High Altitude Medicine, Qinghai-Utah Joint Key Laboratory of Plateau Medicine, Qinghai University, Xining 810001, China
- Laboratory for High Altitude Medicine of Qinghai Province, Qinghai University, Xining 810001, China
| | - Rili Ge
- Research Center for High Altitude Medicine, Qinghai University, Xining 810001, China; (X.F.); (B.L.); (S.C.); (R.Z.)
- Key Laboratory of the Ministry of High Altitude Medicine, Qinghai University, Xining 810001, China
- Key Laboratory of Applied Fundamentals of High Altitude Medicine, Qinghai-Utah Joint Key Laboratory of Plateau Medicine, Qinghai University, Xining 810001, China
- Laboratory for High Altitude Medicine of Qinghai Province, Qinghai University, Xining 810001, China
| |
Collapse
|
2
|
Yang W, Wang Y, Mo K, Chen W, Xie X. Single-cell RNA sequencing reveals multiple immune cell subpopulations promote the formation of abnormal bone microenvironment in osteoporosis. Sci Rep 2024; 14:29493. [PMID: 39604551 PMCID: PMC11603148 DOI: 10.1038/s41598-024-80993-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2024] [Accepted: 11/22/2024] [Indexed: 11/29/2024] Open
Abstract
With the aging of the population, the incidence of osteoporosis (OP) is on the rise, but the ecology of immune cell subpopulations in OP is poorly understood. Therefore, identifying cell subpopulations involved in promoting the development of OP may facilitate the development of new treatments. Based on bioinformatics analysis, we constructed a single-cell landscape of the OP microenvironment and identified immune cell subpopulations in OP to further explore the role of different subpopulations in the abnormal bone microenvironment. Among macrophages (Mac), the Mac_OLR1 subpopulation has an M1-like phenotype and significantly activates cytokine and osteoclast differentiation pathways, interacting with osteoclasts via the HBEGF-CD9 axis. In neutrophils (Neut), the Neut_RSAD2 subpopulation significantly activated cytokine and osteoclast differentiation pathways and had a high neutrophil extracellular trap (NET) score, and H1FX was identified as its potential regulator. In effector memory T (Tem) cells, the Tem_CCL4 subpopulation significantly activated osteoclast differentiation and immune inflammation-related pathways and highly expressed proinflammatory molecules such as CCL4, CCL4L2, CCL5 and IFNG. In B cells, the abundance of the B_ACSM3 subpopulation was significantly increased in the OP group and the osteoclast differentiation pathway was significantly activated, and MYB was identified as its potential regulator. In summary, we identified several immune cell subpopulations that may be involved in promoting the formation of OP, further identified the transcription factors that regulate these subpopulations, and speculated that the development of OP may be accompanied by immune inflammatory responses mediated by these subpopulations. These findings provide candidate molecules and cells for future OP research and may help facilitate the development of new therapies.
Collapse
Affiliation(s)
- Weiwei Yang
- Department of Gynecology, The Fourth Affiliated Hospital of Guangxi Medical University, Liuzhou, 545005, Guangxi, People's Republic of China
| | - Yulin Wang
- Department of Orthopedics, The Fourth Affiliated Hospital of Guangxi Medical University, Liuzhou, 545005, Guangxi, People's Republic of China
| | - Ke Mo
- Clinical Research Center, The Second Affiliated Hospital of Guangxi Medical University, Nanning, 530007, People's Republic of China
| | - Wenyang Chen
- Department of Orthopedics, Liuzhou People's Hospital, Liuzhou, 545006, Guangxi, People's Republic of China.
| | - Xiangtao Xie
- Department of Orthopedics, The Fourth Affiliated Hospital of Guangxi Medical University, Liuzhou, 545005, Guangxi, People's Republic of China.
- Department of Orthopedics, Liuzhou Worker's Hospital, Liuzhou, 545005, Guangxi, People's Republic of China.
| |
Collapse
|
3
|
Takami K, Okamoto K, Etani Y, Hirao M, Miyama A, Okamura G, Goshima A, Miura T, Kurihara T, Fukuda Y, Kanamoto T, Nakata K, Okada S, Ebina K. Anti-NF-κB peptide derived from nuclear acidic protein attenuates ovariectomy-induced osteoporosis in mice. JCI Insight 2023; 8:e171962. [PMID: 37991021 PMCID: PMC10721323 DOI: 10.1172/jci.insight.171962] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2023] [Accepted: 10/10/2023] [Indexed: 11/23/2023] Open
Abstract
NF-κB is a transcription factor that is activated with aging. It plays a key role in the development of osteoporosis by promoting osteoclast differentiation and inhibiting osteoblast differentiation. In this study, we developed a small anti-NF-κB peptide called 6A-8R from a nuclear acidic protein (also known as macromolecular translocation inhibitor II, Zn2+-binding protein, or parathymosin) that inhibits transcriptional activity of NF-κB without altering its nuclear translocation and binding to DNA. Intraperitoneal injection of 6A-8R attenuated ovariectomy-induced osteoporosis in mice by inhibiting osteoclast differentiation, promoting osteoblast differentiation, and inhibiting sclerostin production by osteocytes in vivo with no apparent side effects. Conversely, in vitro, 6A-8R inhibited osteoclast differentiation by inhibiting NF-κB transcriptional activity, promoted osteoblast differentiation by promoting Smad1 phosphorylation, and inhibited sclerostin expression in osteocytes by inhibiting myocyte enhancer factors 2C and 2D. These findings suggest that 6A-8R has the potential to be an antiosteoporotic therapeutic agent with uncoupling properties.
Collapse
Affiliation(s)
- Kenji Takami
- Department of Orthopaedic Surgery, Osaka University Graduate School of Medicine, Suita, Osaka, Japan
- Department of Orthopaedic Surgery, Nippon Life Hospital, Nishi-ku, Osaka, Japan
| | - Kazuki Okamoto
- Department of Obstetrics and Gynecology, Osaka University Graduate School of Medicine, Suita, Osaka, Japan
| | - Yuki Etani
- Department of Orthopaedic Surgery, Osaka University Graduate School of Medicine, Suita, Osaka, Japan
| | - Makoto Hirao
- Department of Orthopaedic Surgery, National Hospital Organization Osaka Minami Medical Center, Kawachinagano, Osaka, Japan
| | - Akira Miyama
- Department of Orthopaedic Surgery, National Hospital Organization Osaka Toneyama Medical Center, Toyonaka, Osaka, Japan
| | - Gensuke Okamura
- Department of Orthopaedic Surgery, Osaka Rosai Hospital, Kita-ku, Sakai, Japan
| | - Atsushi Goshima
- Department of Orthopaedic Surgery, Osaka University Graduate School of Medicine, Suita, Osaka, Japan
| | - Taihei Miura
- Department of Orthopaedic Surgery, Osaka University Graduate School of Medicine, Suita, Osaka, Japan
| | - Takuya Kurihara
- Department of Orthopaedic Surgery, Osaka University Graduate School of Medicine, Suita, Osaka, Japan
| | - Yuji Fukuda
- Department of Orthopaedic Surgery, Osaka University Graduate School of Medicine, Suita, Osaka, Japan
| | | | - Ken Nakata
- Department of Health and Sport Sciences, and
| | - Seiji Okada
- Department of Orthopaedic Surgery, Osaka University Graduate School of Medicine, Suita, Osaka, Japan
| | - Kosuke Ebina
- Department of Orthopaedic Surgery, Osaka University Graduate School of Medicine, Suita, Osaka, Japan
- Department of Musculoskeletal Regenerative Medicine, Osaka University Graduate School of Medicine, Suita, Osaka, Japan
| |
Collapse
|
4
|
Tompkins YH, Choi J, Teng PY, Yamada M, Sugiyama T, Kim WK. Reduced bone formation and increased bone resorption drive bone loss in Eimeria infected broilers. Sci Rep 2023; 13:616. [PMID: 36635321 PMCID: PMC9837181 DOI: 10.1038/s41598-023-27585-5] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2022] [Accepted: 01/04/2023] [Indexed: 01/13/2023] Open
Abstract
Coccidiosis is an economically significant disease in the global poultry industry, but little is known about the mechanisms of bone defects caused by coccidiosis; thus, the study focused on effects of coccidiosis on the bone homeostasis of young broiler chickens. A total of 480 male Cobb500 broilers were randomly allocated into four treatment groups, including an uninfected control consuming diet ad libitum, two infected groups were orally gavaged with two different concentrations of sporulated Eimeria oocysts, and an uninfected pair-fed group fed the same amount of feed as the high Eimeria-infected group consumed. Growth performance and feed intake were recorded, and samples were collected on 6 days post infection. Results indicated that coccidiosis increased systemic oxidative status and elevated immune response in bone marrow, suppressing bone growth rate (P < 0.05) and increasing bone resorption (P < 0.05) which led to lower bone mineral density (P < 0.05) and mineral content (P < 0.05) under Eimeria infection. With the same amount of feed intake, the uninfected pair-fed group showed a distinguished bone formation rate and bone resorption level compared with the Eimeria infected groups. In conclusion, inflammatory immune response and oxidative stress in broilers after Eimeria infection were closely associated with altered bone homeostasis, highlighting the role of inflammation and oxidative stress in broiler bone homeostasis during coccidiosis.
Collapse
Affiliation(s)
- Yuguo Hou Tompkins
- grid.213876.90000 0004 1936 738XDepartment of Poultry Science, University of Georgia, Athens, GA 30602 USA
| | - Janghan Choi
- grid.213876.90000 0004 1936 738XDepartment of Poultry Science, University of Georgia, Athens, GA 30602 USA
| | - Po-Yun Teng
- grid.213876.90000 0004 1936 738XDepartment of Poultry Science, University of Georgia, Athens, GA 30602 USA
| | - Masayoshi Yamada
- grid.260975.f0000 0001 0671 5144Graduate School of Science and Technology, Niigata University, 2-8050 Ikarashi, Nishi-ku, Niigata, 950-2181 Japan
| | - Toshie Sugiyama
- grid.260975.f0000 0001 0671 5144Graduate School of Science and Technology, Niigata University, 2-8050 Ikarashi, Nishi-ku, Niigata, 950-2181 Japan
| | - Woo Kyun Kim
- Department of Poultry Science, University of Georgia, Athens, GA, 30602, USA.
| |
Collapse
|
5
|
Wu Y, Yang Y, Wang L, Chen Y, Han X, Sun L, Chen H, Chen Q. Effect of Bifidobacterium on osteoclasts: TNF-α/NF-κB inflammatory signal pathway-mediated mechanism. Front Endocrinol (Lausanne) 2023; 14:1109296. [PMID: 36967748 PMCID: PMC10034056 DOI: 10.3389/fendo.2023.1109296] [Citation(s) in RCA: 26] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/27/2022] [Accepted: 02/14/2023] [Indexed: 03/11/2023] Open
Abstract
Osteoporosis is a systemic multifactorial bone disease characterized by low bone quality and density and bone microstructure damage, increasing bone fragility and fracture vulnerability. Increased osteoclast differentiation and activity are important factors contributing to bone loss, which is a common pathological manifestation of bone diseases such as osteoporosis. TNF-a/NF-κB is an inflammatory signaling pathway with a key regulatory role in regulating osteoclast formation, and the classical pathway RANKL/RANK/OPG assists osteoclast formation. Activation of this inflammatory pathway promotes the formation of osteoclasts and accelerates the process of osteoporosis. Recent studies and emerging evidence have consistently demonstrated the potential of probiotics to modulate bone health. Secretions of Bifidobacterium, a genus of probiotic bacteria in the phylum Actinobacteria, such as short-chain fatty acids, equol, and exopolysaccharides, have indicated beneficial effects on bone health. This review discusses the molecular mechanisms of the TNF-a/NF-κB inflammatory pathway in regulating osteoclast formation and describes the secretions produced by Bifidobacterium and their potential effects on bone health through this pathway, opening up new directions for future research.
Collapse
Affiliation(s)
- Yue Wu
- School of Clinical Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Yunjiao Yang
- Department of Endocrinology, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Lan Wang
- Department of Endocrinology, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Yiding Chen
- Department of Endocrinology, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Xuke Han
- College of Acupuncture & Tuina, Shaanxi University of Chinese Medicine, Xianyang, China
| | - Lisha Sun
- Department of Endocrinology, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Huizhen Chen
- Department of Endocrinology, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Qiu Chen
- Department of Endocrinology, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, China
- *Correspondence: Qiu Chen,
| |
Collapse
|
6
|
Omi M, Mishina Y. Roles of osteoclasts in alveolar bone remodeling. Genesis 2022; 60:e23490. [PMID: 35757898 PMCID: PMC9786271 DOI: 10.1002/dvg.23490] [Citation(s) in RCA: 52] [Impact Index Per Article: 17.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2022] [Revised: 05/25/2022] [Accepted: 06/09/2022] [Indexed: 12/30/2022]
Abstract
Osteoclasts are large multinucleated cells from hematopoietic origin and are responsible for bone resorption. A balance between osteoclastic bone resorption and osteoblastic bone formation is critical to maintain bone homeostasis. The alveolar bone, also called the alveolar process, is the part of the jawbone that holds the teeth and supports oral functions. It differs from other skeletal bones in several aspects: its embryonic cellular origin, the form of ossification, and the presence of teeth and periodontal tissues; hence, understanding the unique characteristic of the alveolar bone remodeling is important to maintain oral homeostasis. Excessive osteoclastic bone resorption is one of the prominent features of bone diseases in the jaw such as periodontitis. Therefore, inhibiting osteoclast formation and bone resorptive process has been the target of therapeutic intervention. Understanding the mechanisms of osteoclastic bone resorption is critical for the effective treatment of bone diseases in the jaw. In this review, we discuss basic principles of alveolar bone remodeling with a specific focus on the osteoclastic bone resorptive process and its unique functions in the alveolar bone. Lastly, we provide perspectives on osteoclast-targeted therapies and regenerative approaches associated with bone diseases in the jaw.
Collapse
Affiliation(s)
- Maiko Omi
- Department of Biologic and Materials Sciences & ProsthodonticsUniversity of Michigan School of DentistryAnn ArborMichiganUSA
| | - Yuji Mishina
- Department of Biologic and Materials Sciences & ProsthodonticsUniversity of Michigan School of DentistryAnn ArborMichiganUSA
| |
Collapse
|
7
|
Bolamperti S, Villa I, Rubinacci A. Bone remodeling: an operational process ensuring survival and bone mechanical competence. Bone Res 2022; 10:48. [PMID: 35851054 PMCID: PMC9293977 DOI: 10.1038/s41413-022-00219-8] [Citation(s) in RCA: 162] [Impact Index Per Article: 54.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2021] [Revised: 05/02/2022] [Accepted: 05/15/2022] [Indexed: 12/12/2022] Open
Abstract
Bone remodeling replaces old and damaged bone with new bone through a sequence of cellular events occurring on the same surface without any change in bone shape. It was initially thought that the basic multicellular unit (BMU) responsible for bone remodeling consists of osteoclasts and osteoblasts functioning through a hierarchical sequence of events organized into distinct stages. However, recent discoveries have indicated that all bone cells participate in BMU formation by interacting both simultaneously and at different differentiation stages with their progenitors, other cells, and bone matrix constituents. Therefore, bone remodeling is currently considered a physiological outcome of continuous cellular operational processes optimized to confer a survival advantage. Bone remodeling defines the primary activities that BMUs need to perform to renew successfully bone structural units. Hence, this review summarizes the current understanding of bone remodeling and future research directions with the aim of providing a clinically relevant biological background with which to identify targets for therapeutic strategies in osteoporosis.
Collapse
Affiliation(s)
- Simona Bolamperti
- Osteoporosis and Bone and Mineral Metabolism Unit, IRCCS San Raffaele Hospital, Via Olgettina 60, 20132, Milano, Italy
| | - Isabella Villa
- Osteoporosis and Bone and Mineral Metabolism Unit, IRCCS San Raffaele Hospital, Via Olgettina 60, 20132, Milano, Italy
| | - Alessandro Rubinacci
- Osteoporosis and Bone and Mineral Metabolism Unit, IRCCS San Raffaele Hospital, Via Olgettina 60, 20132, Milano, Italy.
| |
Collapse
|
8
|
Srivastava RK, Sapra L. The Rising Era of “Immunoporosis”: Role of Immune System in the Pathophysiology of Osteoporosis. J Inflamm Res 2022; 15:1667-1698. [PMID: 35282271 PMCID: PMC8906861 DOI: 10.2147/jir.s351918] [Citation(s) in RCA: 47] [Impact Index Per Article: 15.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2021] [Accepted: 02/10/2022] [Indexed: 12/21/2022] Open
Abstract
Discoveries in the last few years have emphasized the existence of an enormous breadth of communication between bone and the immune system in maintaining skeletal homeostasis. Originally, the discovery of various factors was assigned to the immune system viz. interleukin (IL)-6, IL-10, IL-17, tumor necrosis factor (TNF)-α, receptor activator of nuclear factor kappa B ligand (RANKL), nuclear factor of activated T cells (NFATc1), etc., but now these factors have also been shown to have a significant impact on osteoblasts (OBs) and osteoclasts (OCs) biology. These discoveries led to an alteration in the approach for the treatment of several bone pathologies including osteoporosis. Osteoporosis is an inflammatory bone anomaly affecting more than 500 million people globally. In 2018, to highlight the importance of the immune system in the pathophysiology of osteoporosis, our group coined the term “immunoporosis”. In the present review, we exhaustively revisit the characteristics, mechanism of action, and function of both innate and adaptive immune cells with the goal of understanding the potential of immune cells in osteoporosis. We also highlight the Immunoporotic role of gut microbiota (GM) for the treatment and management of osteoporosis. Importantly, we further discuss whether an immune cell-based strategy to treat and manage osteoporosis is feasible and relevant in clinical settings.
Collapse
Affiliation(s)
- Rupesh K Srivastava
- Immunoporosis Lab, Department of Biotechnology, All India Institute of Medical Sciences (AIIMS), New Delhi, 110029, India
- Correspondence: Rupesh K Srivastava, Tel +91 11-26593548, Email ;
| | - Leena Sapra
- Immunoporosis Lab, Department of Biotechnology, All India Institute of Medical Sciences (AIIMS), New Delhi, 110029, India
| |
Collapse
|
9
|
Jeon H, Yu J, Hwang JM, Park HW, Yu J, Lee ZW, Kim T, Rho J. 1,3-Dibenzyl-5-Fluorouracil Prevents Ovariectomy-Induced Bone Loss by Suppressing Osteoclast Differentiation. Immune Netw 2022; 22:e43. [DOI: 10.4110/in.2022.22.e43] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2022] [Revised: 07/11/2022] [Accepted: 07/27/2022] [Indexed: 11/06/2022] Open
Affiliation(s)
- Hyoeun Jeon
- Department of Microbiology and Molecular Biology, Chungnam National University, Daejeon 34134, Korea
| | - Jungeun Yu
- Department of Microbiology and Molecular Biology, Chungnam National University, Daejeon 34134, Korea
| | - Jung Me Hwang
- Center for Genomic Integrity, Institute for Basic Science, Ulsan 44919, Korea
| | - Hye-Won Park
- Department of Microbiology and Molecular Biology, Chungnam National University, Daejeon 34134, Korea
| | - Jiyeon Yu
- Department of Microbiology and Molecular Biology, Chungnam National University, Daejeon 34134, Korea
| | | | - Taesoo Kim
- Herbal Medicine Research Division, Korea Institute of Oriental Medicine, Daejeon 34054, Korea
| | - Jaerang Rho
- Department of Microbiology and Molecular Biology, Chungnam National University, Daejeon 34134, Korea
| |
Collapse
|
10
|
Harikrishnan R, Devi G, Van Doan H, Balasundaram C, Thamizharasan S, Hoseinifar SH, Abdel-Tawwab M. Effect of diet enriched with Agaricus bisporus polysaccharides (ABPs) on antioxidant property, innate-adaptive immune response and pro-anti inflammatory genes expression in Ctenopharyngodon idella against Aeromonas hydrophila. FISH & SHELLFISH IMMUNOLOGY 2021; 114:238-252. [PMID: 33989765 DOI: 10.1016/j.fsi.2021.04.025] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/08/2021] [Revised: 04/26/2021] [Accepted: 04/27/2021] [Indexed: 06/12/2023]
Abstract
The effect of Agaricus bisporus polysaccharides (ABPs) supplemented diet on growth rate, antioxidant capacity, innate-adaptive immune response, proinflammatory and antiinflammatory genes expression in Ctenopharyngodon idella against Aeromonas hydrophila is reported. In both normal and challenged groups fed with 1.0 and 1.5 mg kg-1 ABPs diets resulted in a significant weight gain and feed intake. The survival was 100% in normal fish fed without or with any ABPs diet; the challenged fish fed with 1.0 mg kg-1 ABPs diet had 98.6% survival. The RBC and WBC counts, Hb, and Hct levels were significant in both normal and challenged groups fed with 1.0 and 1.5 mg kg-1 ABPs diets. A significant increase in total protein and albumin level was observed in both groups fed with 1.0 and 1.5 mg kg-1 ABPs diets. Significant increase in GPx, ROS, GR, GSH, PC, and MnSOD activity was observed in HK of both groups fed with 1.0 and 1.5 mg kg-1 ABPs diets; similarly both groups when fed with the same ABPs diets showed significant Lz, C3, and C4 activity. However, both groups fed with 1.0 mg kg-1 ABPs diet showed significant β-defensin, LEAP-2A, IL-6, and NF-κB P65 mRNA expression. Similarly, IFN-γ2, IL-10, and TNFα mRNA expressions were significant in both groups fed with 1.0 mg kg-1 ABPs diet. The results indicate that both normal and challenged C. idella fed with a 1.0 mg kg-1 ABPs diet had better growth, antioxidant status, immune response, and pro-anti-inflammatory gene modulation against A. hydrophila.
Collapse
Affiliation(s)
- Ramasamy Harikrishnan
- Department of Zoology, Pachaiyappa's College for Men, Kanchipuram 631 501, Tamil Nadu, India
| | - Gunapathy Devi
- Department of Zoology, Nehru Memorial College, Puthanampatti 621 007, Tamil Nadu, India
| | - Hien Van Doan
- Department of Animal and Aquatic Sciences, Faculty of Agriculture, Chiang Mai University, Chiang Mai 50200, Thailand; Science and Technology Research Institute, Chiang Mai University, 239 Huay Keaw Rd., Suthep, Muang, Chiang Mai 50200, Thailand.
| | - Chellam Balasundaram
- Department of Herbal and Environmental Science, Tamil University, Thanjavur, 613 005, Tamil Nadu, India
| | - Subramanian Thamizharasan
- Department of Biotechnology, Bharath College of Science and Management, Thanjavur, 613-005, Tamil Nadu, India
| | - Seyed Hossein Hoseinifar
- Department of Fisheries, Faculty of Fisheries and Environmental Sciences, Gorgan University of Agricultural Sciences and Natural Resources, Gorgan, Iran
| | - Mohsen Abdel-Tawwab
- Department of Fish Biology and Ecology, Central Laboratory for Aquaculture Research, Abbassa, Abo-Hammad, Sharqia, Egypt
| |
Collapse
|
11
|
The effect of the WKYMVm peptide on promoting mBMSC secretion of exosomes to induce M2 macrophage polarization through the FPR2 pathway. J Orthop Surg Res 2021; 16:171. [PMID: 33658070 PMCID: PMC7927268 DOI: 10.1186/s13018-021-02321-9] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/07/2021] [Accepted: 02/22/2021] [Indexed: 11/13/2022] Open
Abstract
Background When multicystic vesicles (precursors of exosomes) are formed in cells, there are two results. One is decomposition by lysosomes, and the other is the generation of exosomes that are transported out through the transmembrane. On the other hand, M2 macrophages promote the formation of local vascularization and provide necessary support for the repair of bone defects. To provide a new idea for the treatment of bone defects, the purpose of our study was to investigate the effect of WKYMVm (Trp-Lys-Tyr-Met-Val-D-Met-NH2) peptide on the secretion of exosomes from murine bone marrow-derived MSCs (mBMSCs) and the effect of exosomes on the polarization of M2 macrophages. Methods The WKYMVm peptide was used to activate the formyl peptide receptor 2 (FPR2) pathway in mBMSCs. First, we used Cell Counting Kit-8 (CCK-8) to detect the cytotoxic effect of WKYMVm peptide on mBMSCs. Second, we used western blotting (WB) and quantitative real-time polymerase chain reaction (qRT-PCR) to detect the expression of interferon stimulated gene 15 (ISG15) and transcription factor EB (TFEB) in mBMSCs. Then, we detected lysosomal activity using a lysozyme activity assay kit. Third, we used an exosome extraction kit and western blotting to detect the content of exosomes secreted by mBMSCs. Fourth, we used immunofluorescence and western blotting to count the number of polarized M2 macrophages. Finally, we used an inhibitor to block miRNA-146 in exosomes secreted by mBMSCs and counted the number of polarized M2 macrophages. Results We first found that the WKYMVm peptide had no toxic effect on mBMSCs at a concentration of 1 μmol/L. Second, we found that when the FPR2 pathway was activated by the WKYMVm peptide in mBMSCs, ISG15 and TFEB expression was decreased, leading to increased secretion of exosomes. We also found that lysosomal activity was decreased when the FPR2 pathway was activated by the WKYMVm peptide in mBMSCs. Third, we demonstrated that exosomes secreted by mBMSCs promote the polarization of M2 macrophages. Moreover, all these effects can be blocked by the WRWWWW (WRW4, H-Trp-Arg-Trp-Trp-Trp-Trp-OH) peptide, an inhibitor of the FPR2 pathway. Finally, we confirmed the effect of miRNA-146 in exosomes secreted by mBMSCs on promoting the polarization of M2 macrophages. Conclusion Our findings demonstrated the potential value of the WKYMVm peptide in promoting the secretion of exosomes by mBMSCs and eventually leading to M2 macrophage polarization. We believe that our study could provide a research basis for the clinical treatment of bone defects.
Collapse
|
12
|
Preparation and Evaluation of IL-1ra-Loaded Dextran/PLGA Microspheres for Inhibiting Periodontal Inflammation In Vitro. Inflammation 2020; 43:168-178. [PMID: 31664694 DOI: 10.1007/s10753-019-01107-w] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
Abstract
Periodontitis is a chronic infectious disease, the course and progression of which are determined by the interaction between microorganisms and the host. Interleukin 1β plays an important role in the destruction of periodontal tissues. Interleukin 1 receptor antagonist (IL-1ra) can inhibit the biological activity of IL-1β without triggering any intracellular signaling. This study aimed to prepare IL-1ra-loaded dextran/PLGA microspheres and evaluate the physical and chemical characteristics and anti-inflammatory properties. Results suggested that the microspheres can be easily prepared into a drug carrier with good biocompatibility and can effectively inhibit the gene expression of pro-inflammatory factors induced by IL-1β in human gingival fibroblasts. Hence, the microspheres are excellent candidate for periodontitis treatment.
Collapse
|
13
|
Li EQ, Zhang JL. Therapeutic effects of triptolide from Tripterygium wilfordii Hook. f. on interleukin-1-beta-induced osteoarthritis in rats. Eur J Pharmacol 2020; 883:173341. [PMID: 32634440 DOI: 10.1016/j.ejphar.2020.173341] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2020] [Revised: 06/28/2020] [Accepted: 06/29/2020] [Indexed: 01/25/2023]
Abstract
Osteoarthritis (OA) is a common yet destructive disease affecting the articular cartilage, and is a major cause of immense suffering and disability for millions of people. Previous studies have shown that triptolide (TPL), an active compound derived from Tripterygium wilfordii, has potent immunosuppressive and anti-inflammatory activities useful for treating chronic diseases. However, whether TPL has immunosuppressive activity against OA is not known. In this study, we assessed the therapeutic effects of TPL on interleukin-1-beta (IL-1β)-induced OA in rats. Histological and protein analyses revealed that TPL not only could inhibit interleukin-6 (IL-6) and cyclooxygenase-2 (COX2) protein expression in cells and disrupt inflammation, but it also reduced the expression of matrix metalloproteinase (MMP)-3 and 13. Our results also supported the ability of TPL to suppress the osteoprotegerin/receptor activator of nuclear factor kappa-beta (NF-κB)/receptor activator of NF-κB ligand (OPG/RANK/RANKL) and NF-κB signaling pathways induced by IL-1β. Together these data suggest that TPL may be a potentially valuable treatment for OA, regulating associated inflammation and pain.
Collapse
Affiliation(s)
- En-Qi Li
- Department of Orthopedics, Tianjin Hospital, Tianjin, 300211, China
| | - Jin-Li Zhang
- Department of Orthopedics, Tianjin Hospital, Tianjin, 300211, China.
| |
Collapse
|
14
|
Yu S, Li P, Li B, Miao D, Deng Q. RelA promotes proliferation but inhibits osteogenic and chondrogenic differentiation of mesenchymal stem cells. FEBS Lett 2020; 594:1368-1378. [PMID: 31981416 DOI: 10.1002/1873-3468.13739] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2019] [Revised: 12/25/2019] [Accepted: 01/14/2020] [Indexed: 12/25/2022]
Abstract
NF-κB is known to be implicated in skeletal development and related diseases. Previous studies have shown that RelA, a key subunit of NF-κB, is involved in osteoblast and chondrocyte survival and differentiation. Yet, the physiological roles of RelA in mesenchymal stem cells (MSCs), which give rise to both chondrocytes and osteoblasts, are still poorly understood. Here, we generated Prrx1-Cre;RelAf/f mice to delete RelA in Prrx1+ bone marrow MSCs and found that RelA deletion led to decreased MSC proliferation and altered differentiation, with increased osteogenic and chondrogenic differentiation but decreased adipogenic differentiation. Bone size and mass were not significantly changed in the mutant mice, although they developed moderate osteoarthritis-like phenotypes. Thus, our studies reveal important but discordant functions of RelA in MSC proliferation and differentiation, and provide an explanation why MSC-specific RelA knockout mice only develop minor skeletal phenotypes.
Collapse
Affiliation(s)
- Shuxiang Yu
- The Research Center for Bone and Stem Cells, Department of Anatomy, Histology and Embryology, Nanjing Medical University, China
| | - Ping Li
- Bio-X Institutes, Key Laboratory for the Genetics of Developmental and Neuropsychiatric Disorders, Ministry of Education, Shanghai Jiao Tong University, China
| | - Baojie Li
- Bio-X Institutes, Key Laboratory for the Genetics of Developmental and Neuropsychiatric Disorders, Ministry of Education, Shanghai Jiao Tong University, China
| | - Dengshun Miao
- The Research Center for Bone and Stem Cells, Department of Anatomy, Histology and Embryology, Nanjing Medical University, China
| | - Qi Deng
- Bio-X Institutes, Key Laboratory for the Genetics of Developmental and Neuropsychiatric Disorders, Ministry of Education, Shanghai Jiao Tong University, China
| |
Collapse
|
15
|
Omi M, Mishina Y. Role of osteoclasts in oral homeostasis and jawbone diseases. ACTA ACUST UNITED AC 2020; 18:14-27. [PMID: 34220275 DOI: 10.1002/osi2.1078] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
The jawbone is a unique structure as it serves multiple functions in mastication. Given the fact that the jawbone is remodeled faster than other skeletal bones, bone cells in the jawbone may respond differently to local and systemic cues to regulate bone remodeling and adaptation. Osteoclasts are bone cells responsible for removing old bone, playing an essential role in bone remodeling. Although bone resorption by osteoclasts is required for dental tissue development, homeostasis and repair, excessive osteoclast activity is associated with oral skeletal diseases such as periodontitis. In addition, antiresorptive medications used to prevent bone homeostasis of tumors can cause osteonecrosis of the jaws that is a major concern to the dentist. Therefore, understanding of the role of osteoclasts in oral homeostasis under physiological and pathological conditions leads to better targeted therapeutic options for skeletal diseases to maintain patients' oral health. Here, we highlight the unique features of the jawbone compared to the long bone and the involvement of osteoclasts in the jawbone-specific diseases.
Collapse
Affiliation(s)
- Maiko Omi
- Department of Biologic and Materials Sciences & Prosthodontics, University of Michigan School of Dentistry, Ann Arbor, MI, USA
| | - Yuji Mishina
- Department of Biologic and Materials Sciences & Prosthodontics, University of Michigan School of Dentistry, Ann Arbor, MI, USA
| |
Collapse
|
16
|
Hu J, Li X, Chen Y, Han X, Li L, Yang Z, Duan L, Lu H, He Q. The protective effect of WKYMVm peptide on inflammatory osteolysis through regulating NF-κB and CD9/gp130/STAT3 signalling pathway. J Cell Mol Med 2019; 24:1893-1905. [PMID: 31837208 PMCID: PMC6991638 DOI: 10.1111/jcmm.14885] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2019] [Revised: 11/11/2019] [Accepted: 11/22/2019] [Indexed: 12/14/2022] Open
Abstract
The balance between bone formation and bone resorption is closely related to bone homeostasis. Osteoclasts, originating from the monocyte/macrophage lineage, are the only cell type possessing bone resorption ability. Osteoclast overactivity is thought to be the major reason underlying osteoclast‐related osteolytic problems, such as Paget's disease, aseptic loosening of prostheses and inflammatory osteolysis; therefore, disruption of osteoclastogenesis is considered a crucial treatment option for these issues. WKYMVm, a synthetic peptide, which is a potent FPR2 agonist, exerts an immunoregulatory effect. This peptide inhibits the production of inflammatory cytokines, such as (IL)‐1β and TNF‐α, thus regulating inflammation. However, there are only few reports on the role of WKYMVm and FPR2 in osteoclast cytology. In the current study, we found that WKYMVm negatively regulates RANKL‐ and lipopolysaccharide (LPS)‐induced osteoclast differentiation and maturation in vitro and alleviates LPS‐induced osteolysis in animal models. WKYMVm down‐regulated the expression of osteoclast marker genes and resorption activity. Furthermore, WKYMVm inhibited osteoclastogenesis directly through reducing the phosphorylation of STAT3 and NF‐kB and indirectly through the CD9/gp130/STAT3 pathway. In conclusion, our findings demonstrated the potential medicinal value of WKYMVm for the treatment of inflammatory osteolysis.
Collapse
Affiliation(s)
- Junxian Hu
- Department of Orthopedics, Southwest Hospital, Army Medical University (Third Military Medical University), Chongqing, China
| | - Xianghe Li
- Guizhou Medical University, Guiyang, China
| | - Yueqi Chen
- Department of Orthopedics, Southwest Hospital, Army Medical University (Third Military Medical University), Chongqing, China
| | - Xinyun Han
- Department of Orthopedics, Southwest Hospital, Army Medical University (Third Military Medical University), Chongqing, China
| | - Li Li
- Department of Orthopedics, Southwest Hospital, Army Medical University (Third Military Medical University), Chongqing, China
| | - Zhengwei Yang
- Department of Orthopedics, Southwest Hospital, Army Medical University (Third Military Medical University), Chongqing, China
| | - Lianli Duan
- Department of Orthopedics, Southwest Hospital, Army Medical University (Third Military Medical University), Chongqing, China
| | - Hongwei Lu
- Department of Orthopedics, Southwest Hospital, Army Medical University (Third Military Medical University), Chongqing, China
| | - Qingyi He
- Department of Orthopedics, Southwest Hospital, Army Medical University (Third Military Medical University), Chongqing, China.,Institute for Clean Energy & Advanced Materials, Faculty of Materials and Energy, Southwest University, Chongqing, China.,Department of Orthopedics, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| |
Collapse
|
17
|
Feng W, Guo J, Li M. RANKL-independent modulation of osteoclastogenesis. J Oral Biosci 2019; 61:16-21. [DOI: 10.1016/j.job.2019.01.001] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2018] [Accepted: 01/10/2019] [Indexed: 12/12/2022]
|
18
|
Wu Q, Li J, Song P, Chen J, Xu Y, Qi S, Ma J, Pan Q. Knockdown of NRAGE induces odontogenic differentiation by activating NF-κB signaling in mouse odontoblast-like cells. Connect Tissue Res 2019; 60:71-84. [PMID: 29448842 DOI: 10.1080/03008207.2018.1439484] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
PURPOSE Neurotrophin receptor-interacting MAGE homologue (Nrage) plays an important role in bone development and the metabolism of normal skeletal structures. Our previous study showed that Nrage inhibited the odontogenic differentiation of mouse dental pulp cells. However, the potential roles and mechanism of Nrage in regulating odontogenic differentiation are unknown. The aim of this study was to investigate the molecular mechanism of Nrage in odontogenic differentiation of mouse odontoblast-like cells. MATERIALS AND METHODS Endogenous expression of Nrage was stably downregulated by lentivirus-mediated shRNA. Mineralized nodules formation was detected by alizarin red S staining. Dmp-1, Dspp, and ALP mRNA and protein levels were detected by qRT-PCR and western blotting, respectively. In addition, ALPase activity was detected. Confocal microscopy and co-immunoprecipitation (co-IP) were used to analyze the interactions between NRAGE and NF-κB signaling molecules. An IKK inhibitor was also used in the study. RESULTS NRAGE expression in odontoblasts was downregulated during mouse first maxillary molar development. Moreover, NRAGE expression was downregulated during odontogenic differentiation of odontoblast-like cells. NRAGE knockdown significantly upregulated DMP1 and DSP expression, increased ALPase activity, and promoted mineralized nodule formation. In addition, NRAGE knockdown increased the translocation of NF-κB1 to the nucleus and phosphorylation levels of p65. Co-IP results showed that NRAGE bound to IKKβ. Most importantly, the promoting effect of Nrage knockdown on odontoblastic differentiation was reduced after treatment with an IKK inhibitor. CONCLUSIONS Our data confirmed that NRAGE is an important regulator of odontogenic differentiation of odontoblasts by inhibiting the NF-κB signaling pathway through binding to IKKβ. ABBREVIATIONS Nrage: neurotrophin receptor-interacting MAGE homologue; DSP: dentin sialophospho protein; DMP-1: dentin matrix protein-1; BMP: bone morphogenetic protein; Wnt: wingless; NF-κB: nuclear factor of activated B cells; DAPI: 4',6-diamidino-2-phenylindole; KO: knockout; DPCs: dental pulp cells; AA: ascorbic acid; β-Gly: β-glycerophosphate; Dex: dexamethasone; co-IP: co-immunoprecipitation; IκB: inhibitor of NF-κB; IKK: IκB kinase.
Collapse
Affiliation(s)
- Qi Wu
- a Department of Clinical Laboratory , Shanghai 10th People's Hospital of Tongji University , Shanghai , P. R. China.,b Department of Laboratory Medicine, Shanghai Children's Medical Center , Shanghai Jiaotong University School of Medicine , Shanghai , China
| | - Jing Li
- c Department of Clinical Laboratory , Maternal and Child Health Care of Zaozhuang , Shandong , P. R. China
| | - Pingping Song
- d Department of Clinical Laboratory , Liaocheng People's Hospital , Liaocheng , China
| | - Jing Chen
- e Department of Clinical Laboratory , Luoyang Orthopedic Hospital , Luoyang , Henan , P. R. China
| | - Yuanzhi Xu
- f Department of Stomatology , Shanghai 10th People's Hospital of Tongji University , Shanghai , P. R. China
| | - Shengcai Qi
- f Department of Stomatology , Shanghai 10th People's Hospital of Tongji University , Shanghai , P. R. China
| | - Ji Ma
- b Department of Laboratory Medicine, Shanghai Children's Medical Center , Shanghai Jiaotong University School of Medicine , Shanghai , China.,g Central Laboratory , Shanghai 10th People's Hospital of Tongji University , Shanghai , P. R. China
| | - Qiuhui Pan
- b Department of Laboratory Medicine, Shanghai Children's Medical Center , Shanghai Jiaotong University School of Medicine , Shanghai , China
| |
Collapse
|
19
|
Sun S, Wu Y, Yu H, Su Y, Ren M, Zhu J, Ge X. Serum biochemistry, liver histology and transcriptome profiling of bighead carp Aristichthys nobilis following different dietary protein levels. FISH & SHELLFISH IMMUNOLOGY 2019; 86:832-839. [PMID: 30572126 DOI: 10.1016/j.fsi.2018.12.028] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/04/2018] [Revised: 12/10/2018] [Accepted: 12/15/2018] [Indexed: 06/09/2023]
Abstract
Dietary protein plays a major role in determining the rate of fish growth and overall health. Given that the liver is an important organ for metabolism and detoxification, we hypothesized that optimal dietary protein levels may benefit liver function. Herein, we investigated the effects of dietary protein level on serum biochemistry, liver histology and transcriptome profiling of juvenile bighead carp Aristichthys nobilis fed for 8 weeks on a diet supplemented with high protein (HP, 40%), low protein (LP, 24%) or optimal protein (OP, 32%; controls). The results revealed a significant change in liver morphology in LP and HP groups compared with the OP group, coupled with increased serum aspartate aminotransferase (AST) and alanine aminotransferase (ALT) activity. RNA sequencing (RNA-Seq) analysis of the liver transcriptome yielded 47 million high-quality reads using an Illumina platform, which were de novo assembled into 80,777 unique transcript fragments (unigenes) with an average length of 1021 bp. Subsequent bioinformatics analysis identified 878 and 733 differentially expressed unigenes (DEGs) in liver in response to LP and HP diets, respectively. KEGG enrichment analysis of DEGs identified immune and metabolism-related pathways, including Toll-like receptor signaling, PI3K-Akt signaling, NF-κB signaling, complement and coagulation, peroxisome, nitrogen metabolism, PPAR signaling, and glycolysis and gluconeogenesis pathways. Transcriptome profiling results were validated by quantitative real-time PCR for 16 selected DEGs. The findings expand our understanding of the molecular mechanisms underlying the effects of dietary protein level on liver function in bighead carp.
Collapse
Affiliation(s)
- Shengming Sun
- Wuxi Fishery College, Nanjing Agricultural University, Wuxi, 214081, PR China
| | - Ying Wu
- Wuxi Fishery College, Nanjing Agricultural University, Wuxi, 214081, PR China
| | - Han Yu
- Wuxi Fishery College, Nanjing Agricultural University, Wuxi, 214081, PR China
| | - Yanli Su
- Wuxi Fishery College, Nanjing Agricultural University, Wuxi, 214081, PR China
| | - Mingchun Ren
- Key Laboratory of Genetic Breeding and Aquaculture Biology of Freshwater Fishes, Ministry of Agriculture, Freshwater Fisheries Research Center, Chinese Academy of Fishery Sciences, Wuxi, 214081, PR China
| | - Jian Zhu
- Key Laboratory of Genetic Breeding and Aquaculture Biology of Freshwater Fishes, Ministry of Agriculture, Freshwater Fisheries Research Center, Chinese Academy of Fishery Sciences, Wuxi, 214081, PR China
| | - Xianping Ge
- Wuxi Fishery College, Nanjing Agricultural University, Wuxi, 214081, PR China.
| |
Collapse
|
20
|
Wang Y, Chen X, Chen X, Zhou Z, Xu W, Xu F, Zhang S. AZD8835 inhibits osteoclastogenesis and periodontitis‐induced alveolar bone loss in rats. J Cell Physiol 2019; 234:10432-10444. [PMID: 30652303 DOI: 10.1002/jcp.27711] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2018] [Accepted: 10/15/2018] [Indexed: 12/26/2022]
Affiliation(s)
- Yexin Wang
- Shanghai Key Laboratory of Stomatology, Department of Oral Surgery Ninth People's Hospital, College of Stomatology, Shanghai Jiao Tong University School of Medicine Shanghai China
| | - Xuzhuo Chen
- Shanghai Key Laboratory of Stomatology, Department of Oral Surgery Ninth People's Hospital, College of Stomatology, Shanghai Jiao Tong University School of Medicine Shanghai China
| | - Xinwei Chen
- Shanghai Key Laboratory of Stomatology, Department of Oral Surgery Ninth People's Hospital, College of Stomatology, Shanghai Jiao Tong University School of Medicine Shanghai China
| | - Zhihang Zhou
- Shanghai Key Laboratory of Stomatology, Department of Oral Surgery Ninth People's Hospital, College of Stomatology, Shanghai Jiao Tong University School of Medicine Shanghai China
| | - Weifeng Xu
- Shanghai Key Laboratory of Stomatology, Department of Oral Surgery Ninth People's Hospital, College of Stomatology, Shanghai Jiao Tong University School of Medicine Shanghai China
| | - Feng Xu
- Shanghai Key Laboratory of Stomatology, Department of Oral Surgery Ninth People's Hospital, College of Stomatology, Shanghai Jiao Tong University School of Medicine Shanghai China
| | - Shanyong Zhang
- Shanghai Key Laboratory of Stomatology, Department of Oral Surgery Ninth People's Hospital, College of Stomatology, Shanghai Jiao Tong University School of Medicine Shanghai China
| |
Collapse
|
21
|
Kim EJ, Kim HJ, Baik SW, Kim KH, Ryu SJ, Kim CH, Shin SW. Propofol promotes osteoclastic bone resorption by increasing DC-STAMP expression. J Dent Anesth Pain Med 2019; 18:349-359. [PMID: 30637345 PMCID: PMC6323039 DOI: 10.17245/jdapm.2018.18.6.349] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2018] [Revised: 12/05/2018] [Accepted: 12/06/2018] [Indexed: 11/15/2022] Open
Abstract
Background Propofol is an intravenous anesthetic which has antioxidant effects due to its similarity in molecular structure to α-tocopherol. It has been reported that α-tocopherol increases osteoclast fusion and bone resorption. Here, we investigated the effects of propofol on signaling pathways of osteoclastogenic gene expression, as well as osteoclastogenesis and bone resorption using bone marrow-derived macrophages (BMMs). Methods BMMs were cultured with macrophage colony-stimulating factor (M-CSF) alone or M-CSF plus receptor activator of nuclear factor kappa B ligand (RANKL) in the presence of propofol (0-50 µM) for 4 days. Mature osteoclasts were stained for tartrate-resistant acid phosphatase (TRAP) and the numbers of TRAP-positive multinucleated osteoclasts were counted. To examine the resorption activities of osteoclasts, a bone resorption assay was performed. To identify the mechanism of action of propofol on the formation of multinucleated osteoclasts, we focused on dendritic cell-specific transmembrane protein (DC-STAMP), a protein essential for pre-osteoclastic cell fusion. Results Propofol increased the formation of TRAP-positive multinucleated osteoclasts. In addition, the bone resorption assay revealed that propofol increased the bone resorption area on dentin discs. The mRNA expression of DC-STAMP was upregulated most strongly in the presence of both RANKL and propofol. However, SB203580, a p38 inhibitor, significantly suppressed the propofol/RANKL-induced increase in mRNA expression of DC-STAMP. Conclusion We have demonstrated that propofol enhances osteoclast differentiation and maturation, and subsequently increases bone resorption. Additionally, we identified the regulatory pathway underlying osteoclast cell-cell fusion, which was enhanced by propofol through p38-mediated DC-STAMP expression.
Collapse
Affiliation(s)
- Eun-Jung Kim
- Department of Dental Anesthesia and Pain Medicine, School of Dentistry, Pusan National University, Dental Research Institute, Yangsan, Republic of Korea
| | - Hyung Joon Kim
- Department of Oral Physiology, School of Dentistry, Pusan National University, Yangsan, Republic of Korea
| | - Seong Wan Baik
- Department of Anesthesia and Pain Medicine, School of Medicine, Pusan National University, Yangsan, Republic of Korea
| | - Kyung-Hoon Kim
- Department of Anesthesia and Pain Medicine, School of Medicine, Pusan National University, Yangsan, Republic of Korea
| | - Sie Jeong Ryu
- Department of Anesthesia and Pain Medicine, College of Medicine, Kosin University, Busan, Korea
| | - Cheul-Hong Kim
- Department of Dental Anesthesia and Pain Medicine, School of Dentistry, Pusan National University, Dental Research Institute, Yangsan, Republic of Korea
| | - Sang-Wook Shin
- Department of Anesthesia and Pain Medicine, School of Medicine, Pusan National University, Yangsan, Republic of Korea
| |
Collapse
|
22
|
Harmer D, Falank C, Reagan MR. Interleukin-6 Interweaves the Bone Marrow Microenvironment, Bone Loss, and Multiple Myeloma. Front Endocrinol (Lausanne) 2019; 9:788. [PMID: 30671025 PMCID: PMC6333051 DOI: 10.3389/fendo.2018.00788] [Citation(s) in RCA: 200] [Impact Index Per Article: 33.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/30/2018] [Accepted: 12/14/2018] [Indexed: 12/14/2022] Open
Abstract
The immune system is strongly linked to the maintenance of healthy bone. Inflammatory cytokines, specifically, are crucial to skeletal homeostasis and any dysregulation can result in detrimental health complications. Interleukins, such as interleukin 6 (IL-6), act as osteoclast differentiation modulators and as such, must be carefully monitored and regulated. IL-6 encourages osteoclastogenesis when bound to progenitors and can cause excessive osteoclastic activity and osteolysis when overly abundant. Numerous bone diseases are tied to IL-6 overexpression, including rheumatoid arthritis, osteoporosis, and bone-metastatic cancers. In the latter, IL-6 can be released with growth factors into the bone marrow microenvironment (BMM) during osteolysis from bone matrix or from cancer cells and osteoblasts in an inflammatory response to cancer cells. Thus, IL-6 helps create an ideal microenvironment for oncogenesis and metastasis. Multiple myeloma (MM) is a blood cancer that homes to the BMM and is strongly tied to overexpression of IL-6 and bone loss. The roles of IL-6 in the progression of MM are discussed in this review, including roles in bone homing, cancer-associated bone loss, disease progression and drug resistance. MM disease progression often includes the development of drug-resistant clones, and patients commonly struggle with reoccurrence. As such, therapeutics that specifically target the microenvironment, rather than the cancer itself, are ideal and IL-6, and its myriad of downstream signaling partners, are model targets. Lastly, current and potential therapeutic interventions involving IL-6 and connected signaling molecules are discussed in this review.
Collapse
Affiliation(s)
- Danielle Harmer
- Reagan Laboratory, Maine Medical Center Research Institute, Scarborough, ME, United States
- Graduate School of Biomedical Sciences and Engineering, University of Maine, Orono, ME, United States
| | - Carolyne Falank
- Reagan Laboratory, Maine Medical Center Research Institute, Scarborough, ME, United States
| | - Michaela R. Reagan
- Reagan Laboratory, Maine Medical Center Research Institute, Scarborough, ME, United States
- Graduate School of Biomedical Sciences and Engineering, University of Maine, Orono, ME, United States
- School of Medicine, Tufts University, Boston, MA, United States
| |
Collapse
|
23
|
Matsui S, Zhou L, Nakayama Y, Mezawa M, Kato A, Suzuki N, Tanabe N, Nakayama T, Suzuki Y, Kamio N, Takai H, Ogata Y. MiR-200b attenuates IL-6 production through IKKβ and ZEB1 in human gingival fibroblasts. Inflamm Res 2018; 67:965-973. [PMID: 30306207 PMCID: PMC6223877 DOI: 10.1007/s00011-018-1192-1] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2018] [Revised: 09/28/2018] [Accepted: 10/03/2018] [Indexed: 12/18/2022] Open
Abstract
OBJECTIVE MicroRNAs (miRNAs) play important roles in biological processes such as cell differentiation, development, infection, immune response, inflammation and tumorigenesis. We previously reported that the expression of miR-200b was significantly increased in inflamed gingiva compared with non-inflamed gingiva. To elucidate the roles of miR-200b in the inflamed gingiva, we have analyzed the effects of miR-200b on the expression of IL-6 in human gingival fibroblasts (HGF). MATERIALS AND METHODS Total RNA and protein were extracted from HGF after stimulation by interleukin-1β (IL-1β; 1 ng/ml) or tumor necrosis factor-α (TNF-α; 10 ng/ml) and transfected with miR-200b expression plasmid or miR-200b inhibitor. IL-6, IL-1β, inhibitor of nuclear factor kappa-B kinaseβ (IKKβ), Zinc-finger E-box-binding homeobox 1 (ZEB1) and E-cadherin mRNA and protein levels were analyzed by real-time PCR and Western blot. RESULTS IL-1β and TNF-α increased IL-6 mRNA and protein levels, and they were significantly suppressed by miR-200b overexpression, whereas they were further increased by miR-200b inhibitor in HGF. IKKβ and ZEB1 which are target genes of miR-200b negatively regulate E-cadherin. MiR-200b suppressed the expression of IKKβ and ZEB1 and increased E-cadherin mRNA and protein levels in HGF. CONCLUSIONS These results suggest that miR-200b attenuates inflammatory response via IKKβ and ZEB1 in periodontal tissue.
Collapse
Affiliation(s)
- Sari Matsui
- Department of Periodontology, Nihon University School of Dentistry at Matsudo, Matsudo, Chiba, 271-8587, Japan
| | - Liming Zhou
- Department of Periodontology, Nihon University School of Dentistry at Matsudo, Matsudo, Chiba, 271-8587, Japan
- Stomatological Hospital of Anhui Medical University, Hefei, Anhui, China
| | - Yohei Nakayama
- Department of Periodontology, Nihon University School of Dentistry at Matsudo, Matsudo, Chiba, 271-8587, Japan
- Research Institute of Oral Science, Nihon University School of Dentistry at Matsudo, Matsudo, Chiba, 271-8587, Japan
| | - Masaru Mezawa
- Department of Periodontology, Nihon University School of Dentistry at Matsudo, Matsudo, Chiba, 271-8587, Japan
- Research Institute of Oral Science, Nihon University School of Dentistry at Matsudo, Matsudo, Chiba, 271-8587, Japan
| | - Ayako Kato
- Department of Periodontology, Nihon University School of Dentistry at Matsudo, Matsudo, Chiba, 271-8587, Japan
- Research Institute of Oral Science, Nihon University School of Dentistry at Matsudo, Matsudo, Chiba, 271-8587, Japan
| | - Naoto Suzuki
- Department of Biochemistry, Nihon University School of Dentistry, Chiyoda-ku, Tokyo, 101-8310, Japan
| | - Natsuko Tanabe
- Department of Biochemistry, Nihon University School of Dentistry, Chiyoda-ku, Tokyo, 101-8310, Japan
| | - Tomohiro Nakayama
- Laboratory of Veterinary Radiology, Nihon University College of Bioresource Sciences, Fujisawa, Kanagawa, 252-0880, Japan
| | - Yuki Suzuki
- Department of Preventive Veterinary Medicine and Animal Health, Nihon University College of Bioresource Sciences, Fujisawa, Kanagawa, 252-0880, Japan
| | - Noriaki Kamio
- Department of Microbiology, Nihon University School of Dentistry, Chiyoda-ku, Tokyo, 101-8310, Japan
| | - Hideki Takai
- Department of Periodontology, Nihon University School of Dentistry at Matsudo, Matsudo, Chiba, 271-8587, Japan
- Research Institute of Oral Science, Nihon University School of Dentistry at Matsudo, Matsudo, Chiba, 271-8587, Japan
| | - Yorimasa Ogata
- Department of Periodontology, Nihon University School of Dentistry at Matsudo, Matsudo, Chiba, 271-8587, Japan.
- Research Institute of Oral Science, Nihon University School of Dentistry at Matsudo, Matsudo, Chiba, 271-8587, Japan.
| |
Collapse
|
24
|
T'Jonck W, Guilliams M, Bonnardel J. Niche signals and transcription factors involved in tissue-resident macrophage development. Cell Immunol 2018; 330:43-53. [PMID: 29463401 PMCID: PMC6108424 DOI: 10.1016/j.cellimm.2018.02.005] [Citation(s) in RCA: 112] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2017] [Revised: 02/07/2018] [Accepted: 02/10/2018] [Indexed: 12/25/2022]
Abstract
Tissue-resident macrophages form an essential part of the first line of defense in all tissues of the body. Next to their immunological role, they play an important role in maintaining tissue homeostasis. Recently, it was shown that they are primarily of embryonic origin. During embryogenesis, precursors originating in the yolk sac and fetal liver colonize the embryonal tissues where they develop into mature tissue-resident macrophages. Their development is governed by two distinct sets of transcription factors. First, in the pre-macrophage stage, a core macrophage program is established by lineage-determining transcription factors. Under the influence of tissue-specific signals, this core program is refined by signal-dependent transcription factors. This nurturing by the niche allows the macrophages to perform tissue-specific functions. In the last 15 years, some of these niche signals and transcription factors have been identified. However, detailed insight in the exact mechanism of development is still lacking.
Collapse
Affiliation(s)
- Wouter T'Jonck
- Laboratory of Myeloid Cell Ontogeny and Functional Specialization, VIB-UGent Center for Inflammation Research, Technologiepark 927, 9052 Gent, Belgium; Department of Biomedical Molecular Biology, Ghent University, Technologiepark 927, 9052 Gent, Belgium.
| | - Martin Guilliams
- Laboratory of Myeloid Cell Ontogeny and Functional Specialization, VIB-UGent Center for Inflammation Research, Technologiepark 927, 9052 Gent, Belgium; Department of Biomedical Molecular Biology, Ghent University, Technologiepark 927, 9052 Gent, Belgium
| | - Johnny Bonnardel
- Laboratory of Myeloid Cell Ontogeny and Functional Specialization, VIB-UGent Center for Inflammation Research, Technologiepark 927, 9052 Gent, Belgium; Department of Biomedical Molecular Biology, Ghent University, Technologiepark 927, 9052 Gent, Belgium.
| |
Collapse
|
25
|
Wang Y, Zhang C, Xu W, Wang B, Lan Y, Yu M, Wang P, Xie Z. The effect of surface immobilized NBD peptide on osteoclastogenesis of rough titanium plates in vitro and osseointegration of rough titanium implants in ovariectomized rats in vivo. RSC Adv 2018; 8:22853-22865. [PMID: 35539717 PMCID: PMC9081414 DOI: 10.1039/c8ra03116a] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2018] [Accepted: 06/14/2018] [Indexed: 01/08/2023] Open
Abstract
Successful osseointegration in dental implants depends on balanced activation of osteoclasts and osteoblasts. Osteoporosis up-regulates osteoclast activity, so it is desirable to find effective interventions to inhibit osteoclastogenesis and enhance the osseointegration of implants under these conditions. It has been reported that the NF-κB essential modulator (NEMO)-binding domain (NBD) peptide can prevent osteoclast formation and bone resorption. In this study, we conjugated NBD peptide onto the surface of rough pure titanium (Ti) using the layer by layer technique. We analyzed the surface characteristics and determined the successful NBD integration by the presence of trivial granular structures, increased S elements and hydrophilia. Importantly, we first reported that Ti surface-conjugated NBD peptide retained its inhibitory effects on osteoclastogenesis by reducing osteoclast sealing zone formation and function. These effects were mediated by a reduction in NFATc1 expression, which in turn regulated integrin ανβ3 and MMP9 by targeting the P65 signaling pathway. In vivo TRAP staining suggested NBD-coating decreased osteoclast formation with less pseudopodia. Micro-CT and histomorphometric analysis demonstrated that NBD-coating enhanced pronounced osseointegration in vivo in ovariectomized rats. This study holds great promise for in vivo use of immobilized NBD peptide and offers an effective therapeutic approach to select more suitable Ti-implant surface modifications for improving implant osseointegration in osteoporotic patients. Successful osseointegration in dental implants depends on balanced activation of osteoclasts and osteoblasts.![]()
Collapse
Affiliation(s)
- Yu Wang
- Department of Implantology, Affiliated Hospital of Stomatology, Medical College, Zhejiang University Hangzhou P. R. China
| | - Chen Zhang
- Department of Oral Medicine, Affiliated Hospital of Stomatology, Medical College, Zhejiang University Hangzhou P. R. China
| | - Weijian Xu
- Department of Oral Medicine, Affiliated Hospital of Stomatology, Medical College, Zhejiang University Hangzhou P. R. China
| | - Baixiang Wang
- Department of Implantology, Affiliated Hospital of Stomatology, Medical College, Zhejiang University Hangzhou P. R. China
| | - Yanhua Lan
- Department of Oral Medicine, Affiliated Hospital of Stomatology, Medical College, Zhejiang University Hangzhou P. R. China
| | - Mengfei Yu
- Department of Implantology, Affiliated Hospital of Stomatology, Medical College, Zhejiang University Hangzhou P. R. China
| | - Pinger Wang
- Zhejiang Chinese Medical University Hangzhou P. R. China
| | - Zhijian Xie
- Department of Oral and Maxillofacial Surgery, Affiliated Hospital of Stomatology, Medical College, Zhejiang University Hangzhou P. R. China
| |
Collapse
|
26
|
Chawalitpong S, Chokchaisiri R, Suksamrarn A, Katayama S, Mitani T, Nakamura S, Athamneh AA, Ritprajak P, Leelahavanichkul A, Aeimlapa R, Charoenphandhu N, Palaga T. Cyperenoic acid suppresses osteoclast differentiation and delays bone loss in a senile osteoporosis mouse model by inhibiting non-canonical NF-κB pathway. Sci Rep 2018; 8:5625. [PMID: 29618833 PMCID: PMC5884777 DOI: 10.1038/s41598-018-23912-3] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2017] [Accepted: 03/21/2018] [Indexed: 12/15/2022] Open
Abstract
Cyperenoic acid is a terpenoid isolated from the root of a medicinal plant Croton crassifolius with a wide range of biological activities. In this study, the effects of cyperenoic acid on osteoclast differentiation were investigated both in vitro and in vivo using receptor activator of nuclear factor-κB ligand (RANKL)-induced bone marrow-derived osteoclasts and senescence-accelerated mouse prone 6 (SAMP6). Cyperenoic acid significantly suppressed RANKL-induced osteoclast differentiation at the concentrations with no apparent cytotoxicity. The half maximum inhibitory concentration (IC50) for osteoclast differentiation was 36.69 μM ± 1.02. Cyperenoic acid treatment evidently reduced the expression of two key transcription factors in osteoclast differentiation, NFATc1 and c-Fos. Detailed signaling analysis revealed that cyperenoic acid did not affect MAPK pathways and canonical NF-κB pathway but impaired activation of p100/p52 in the non-canonical NF-κB pathway upon RANKL stimulation. Moreover, the expression of osteoclast-related genes, nfatc1, ctsk, irf8, acp5 and cfos were disrupted by cyperenoic acid treatment. The bone resorption activity by cyperenoic acid-treated osteoclasts were impaired. In a senile osteoporosis mouse model SAMP6, mice fed on diet supplemented with cyperenoic acid showed delay in bone loss, compared to the control. Taken together, plant-derived cyperenoic acid shows great potential as therapeutic agent for osteoporosis.
Collapse
Affiliation(s)
- Supatta Chawalitpong
- Graduate Program in Biotechnology, Faculty of Science, Chulalongkorn University, Phayathai Road, Pathumwan, Bangkok, 10330, Thailand
| | | | - Apichart Suksamrarn
- Department of Chemistry and Center of Excellence for Innovation in Chemistry, Faculty of Science, Ramkhamhaeng University, Ramkhamhaeng Road, BangKapi, Bangkok, 10240, Thailand
| | - Shigeru Katayama
- Department of Bioscience and Biotechnology, Shinshu University, 8304 Minamiminowa, Kamiina, Nagano, Japan
| | - Takakazu Mitani
- Institute for Biomedical Sciences, Interdisciplinary Cluster for Cutting Edge Research, Shinshu University, 8304 Minamiminowa, Kamiina, Nagano, Japan
| | - Soichiro Nakamura
- Department of Bioscience and Biotechnology, Shinshu University, 8304 Minamiminowa, Kamiina, Nagano, Japan
| | - Ahmad Ai Athamneh
- Department of Bioscience and Biotechnology, Shinshu University, 8304 Minamiminowa, Kamiina, Nagano, Japan
| | - Patcharee Ritprajak
- Department of Microbiology and Immunology and Research Unit of Oral Microbiology, Faculty of Dentistry, Chulalongkorn University, Bangkok, 10330, Thailand
| | - Asada Leelahavanichkul
- Department of Microbiology, Faculty of Medicine, Chulalongkorn University, Phayathai Road, Pathumwan, Bangkok, 10330, Thailand
| | - Ratchaneevan Aeimlapa
- Department of Physiology, Faculty of Science, Mahidol University, Rama 6 Road, Bangkok, 10400, Thailand.,Center of Calcium and Bone Research (COCAB), Faculty of Science, Mahidol University, Bangkok, 10400, Thailand
| | - Narattaphol Charoenphandhu
- Department of Physiology, Faculty of Science, Mahidol University, Rama 6 Road, Bangkok, 10400, Thailand.,Center of Calcium and Bone Research (COCAB), Faculty of Science, Mahidol University, Bangkok, 10400, Thailand.,Institute of Molecular Biosciences, Mahidol University, Nakhon Pathom, Thailand
| | - Tanapat Palaga
- Department of Microbiology, Faculty of Science, Chulalongkorn University, Bangkok, Thailand. .,Center of Excellence in Immunology and Immune-mediated Diseases, Chulalongkorn University, Phayathai Road, Pathumwan, Bangkok, 10330, Thailand.
| |
Collapse
|
27
|
Lee NK. RANK Signaling Pathways and Key Molecules Inducing Osteoclast Differentiation. ACTA ACUST UNITED AC 2017. [DOI: 10.15616/bsl.2017.23.4.295] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
- Na Kyung Lee
- Department of Biomedical Laboratory Science, College of Medical Sciences, Soonchunhyang University, Chungnam 31538, Korea
| |
Collapse
|
28
|
Pang T, Gong M, Han J, Liu D. Relationship between osteoporosis and expression of Bcl-2 and CXCL12. Exp Ther Med 2017; 15:1293-1297. [PMID: 29434715 PMCID: PMC5774382 DOI: 10.3892/etm.2017.5513] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2017] [Accepted: 11/02/2017] [Indexed: 01/23/2023] Open
Abstract
The changes of expression of anti-apoptotic factor B-cell lymphoma 2 (Bcl-2) and chemokine C-X-C motif ligand 12 (CXCL12) in the pathological process of osteoporosis (OP) were investigated, to provide new ideas for the diagnosis and treatment of OP. A total of 60 postmenopausal women who needed to undergo hip replacement surgery were enrolled and divided into osteoporosis group (OP, n=32) and control group (CK, n=28) according to the results of dual-energy X-ray bone density measure; after operation, cancellousbone from the femoral head or femoral neck was removed, and osteoblasts and osteoclasts were isolated and cultured in vitro. The proliferation and apoptosis in the two groups of osteoblasts and osteoclasts were detected by 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) colorimetry and Annexin V/PI double staining method, respectively. The expression levels of Bcl-2 and CXCL12 mRNA and protein in the two groups of osteoblasts and osteoclasts were determined by reverse transcription quantitative polymerase chain reaction (RT-qPCR) and western blot analysis. The analysis of cell proliferation and apoptosis showed that compared with the CK group, osteoblast proliferation was significantly inhibited and apoptosis rate was distinctly increased in the OP group, compared with the CK group, osteoclast proliferation was distinctly enhanced and apoptosis rate was remarkably reduced in the OP group. The results of RT-qPCR and western blot analysis displayed that Bcl-2 and CXCL12 mRNA and protein levels in osteoblasts of the OP group were significantly lower than those of the CK group, while mRNA and protein levels of Bcl-2 and CXCL12 in osteoclast of the OP group were distinctly increased compared to those in the CK group. The incidence of OP is closely associated with the bone balance maintained by osteoblasts and osteoclasts, and this mechanism may be achieved by inhibiting osteoblast proliferation and osteoclast apoptosis via regulating Bcl-2 and CXCL12 gene expression changes.
Collapse
Affiliation(s)
- Tongtao Pang
- Department of Trauma and Orthopedics, The Second Hospital of Shandong University, Jinan, Shandong 250033, P.R. China
| | - Mingzhi Gong
- Department of Trauma and Orthopedics, The Second Hospital of Shandong University, Jinan, Shandong 250033, P.R. China
| | - Jiangtao Han
- Department of Trauma and Orthopedics, The Second Hospital of Shandong University, Jinan, Shandong 250033, P.R. China
| | - Dan Liu
- Department of Trauma and Orthopedics, The Second Hospital of Shandong University, Jinan, Shandong 250033, P.R. China
| |
Collapse
|
29
|
Huang Y, Lin Y, Wu Y, Zeng J, Huang M, Guo S, Luo W, Lin H, Lin Y. Molecular mechanisms of the inhibitory effects of jiangu granule‑containing serum on RANKL‑induced osteoclastogenesis. Mol Med Rep 2017; 16:8420-8426. [PMID: 28983609 DOI: 10.3892/mmr.2017.7645] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2016] [Accepted: 07/26/2017] [Indexed: 11/05/2022] Open
Abstract
Postmenopausal osteoporosis (PMOP) is characterized by increased bone loss due to enhanced osteoclastogenesis and bone resorption. A Chinese herbal formula, jiangugranule (JG), exhibited great efficacy in the clinical treatment of PMOP. However, the molecular mechanisms underlying the therapeutic effects remain unclear. The present study aimed to examine the effects of JG‑containing serum on receptor activator of nuclear factor‑κB (NF‑κB) ligand (RANKL)‑induced osteoclastogenesis. Osteoclast precursor RAW264.7 cells were cultured and treated with JG‑containing serum in the presence of RANKL. Following 6 days of culture, the cells were stained with tartrate‑resistant acid phosphatase and the rate of differentiation was calculated. In addition, cells were treated with JG‑containing serum for 24, 48 and 96 h and total RNA and proteins were extracted for reverse transcription‑quantitative polymerase chain reaction and western blot analysis to detect mRNA and protein expression, respectively, of key molecules in the RANK/RANKL signaling pathway, including RANK, tumor necrosis factor receptor‑associated factor 6, NF‑κB (p50 and p52 subunits), c‑Fos and nuclear factor of activated T cells, cytoplasmic 1 (NFATc1). The results revealed that JG‑containing serum inhibited RANKL‑induced osteoclastogenesis and reduced mRNA and protein expression of RANK, c‑Fos and NFATc1. The results suggested that JG may regulate osteoclast differentiation through the RANK/RANKL signaling pathway, which may be a possible mechanism for the therapeutic effects of JG on PMOP.
Collapse
Affiliation(s)
- Yunmei Huang
- Academy of Integrative Medicine, Fujian University of Traditional Chinese Medicine, Minhou Shangjie, Fuzhou, Fujian 350122, P.R. China
| | - Yu Lin
- Joint Surgery, Fuzhou No. 2 Hospital Affiliated Xiamen University, Fuzhou, Fujian 350007, P.R. China
| | - Yinsheng Wu
- Academy of Integrative Medicine, Fujian University of Traditional Chinese Medicine, Minhou Shangjie, Fuzhou, Fujian 350122, P.R. China
| | - Jianwei Zeng
- Academy of Integrative Medicine, Fujian University of Traditional Chinese Medicine, Minhou Shangjie, Fuzhou, Fujian 350122, P.R. China
| | - Meiya Huang
- Fujian Provincial Key Laboratory of Integrative Medicine on Geriatrics, Fujian University of Traditional Chinese Medicine, Minhou Shangjie, Fuzhou, Fujian 350122, P.R. China
| | - Shiming Guo
- Academy of Integrative Medicine, Fujian University of Traditional Chinese Medicine, Minhou Shangjie, Fuzhou, Fujian 350122, P.R. China
| | - Wenjuan Luo
- Academy of Integrative Medicine, Fujian University of Traditional Chinese Medicine, Minhou Shangjie, Fuzhou, Fujian 350122, P.R. China
| | - Haiming Lin
- Academy of Integrative Medicine, Fujian University of Traditional Chinese Medicine, Minhou Shangjie, Fuzhou, Fujian 350122, P.R. China
| | - Yanping Lin
- Academy of Integrative Medicine, Fujian University of Traditional Chinese Medicine, Minhou Shangjie, Fuzhou, Fujian 350122, P.R. China
| |
Collapse
|
30
|
Liu Y, Fang S, Li X, Feng J, Du J, Guo L, Su Y, Zhou J, Ding G, Bai Y, Wang S, Wang H, Liu Y. Aspirin inhibits LPS-induced macrophage activation via the NF-κB pathway. Sci Rep 2017; 7:11549. [PMID: 28912509 PMCID: PMC5599518 DOI: 10.1038/s41598-017-10720-4] [Citation(s) in RCA: 67] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2017] [Accepted: 08/14/2017] [Indexed: 12/26/2022] Open
Abstract
Aspirin (acetylsalicylic acid, ASA) has been shown to improve bone marrow mesenchymal stem cell-based calvarial bone regeneration by promoting osteogenesis and inhibiting osteoclastogenesis. However, it remains unknown whether aspirin influences other immune cells during bone formation. In the present study, we investigated whether ASA treatment influenced macrophage activation during the LPS inducement. We found that ASA could downregulate the expressions of iNOS and TNF-α both in mouse peritoneum macrophages and RAW264.7 cells induced by LPS via the IκK/IκB/NF-κB pathway and a COX2/PGE2/EP2/NF-κB feedback loop, without affecting the expressions of FIZZ/YM-1/ARG1 induced by IL-4. Furthermore, we created a rat mandibular bone defect model and showed that ASA treatment improved bone regeneration by inhibiting LPS-induced macrophage activation in the early stages of inflammation. Taken together, our results indicated that ASA treatment was a feasible strategy for improving bone regeneration, particularly in inflammatory conditions.
Collapse
Affiliation(s)
- Yitong Liu
- Laboratory of Tissue Regeneration and Immunology and Department of Periodontics, Beijing Key Laboratory of Tooth Regeneration and Function Reconstruction, School of Stomatology, Capital Medical University, Beijing, P. R. China
| | - Silian Fang
- Department of Oral and Maxillofacial Surgery, the Sixth affiliated Hospital of Sun Yat-sen University, Beijing, P. R. China
| | - Xiaoyan Li
- Laboratory of Tissue Regeneration and Immunology and Department of Periodontics, Beijing Key Laboratory of Tooth Regeneration and Function Reconstruction, School of Stomatology, Capital Medical University, Beijing, P. R. China
| | - Jie Feng
- Laboratory of Tissue Regeneration and Immunology and Department of Periodontics, Beijing Key Laboratory of Tooth Regeneration and Function Reconstruction, School of Stomatology, Capital Medical University, Beijing, P. R. China
| | - Juan Du
- Laboratory of Tissue Regeneration and Immunology and Department of Periodontics, Beijing Key Laboratory of Tooth Regeneration and Function Reconstruction, School of Stomatology, Capital Medical University, Beijing, P. R. China
| | - Lijia Guo
- Department of Oral and Maxillofacial Surgery, the Sixth affiliated Hospital of Sun Yat-sen University, Beijing, P. R. China
| | - Yingying Su
- Department of Stomatology, Beijing Tiantan Hospital, Capital Medical University, Beijing, P. R. China
| | - Jian Zhou
- Laboratory of Tissue Regeneration and Immunology and Department of Periodontics, Beijing Key Laboratory of Tooth Regeneration and Function Reconstruction, School of Stomatology, Capital Medical University, Beijing, P. R. China
| | - Gang Ding
- Department of Stomatology, Yidu Central Hospital, Weifang Medical University, Weifang, P. R. China
| | - Yuxing Bai
- Department of Orthodontics, School of Stomatology, Capital Medical University, Beijing, P. R. China
| | - Songling Wang
- Salivary Gland Disease Center and Molecular Laboratory for Gene Therapy and Tooth Regeneration, School of Stomatology, Capital Medical University, Beijing, P. R. China
| | - Hao Wang
- Department of Stomatology, Beijing Tiantan Hospital, Capital Medical University, Beijing, P. R. China
| | - Yi Liu
- Laboratory of Tissue Regeneration and Immunology and Department of Periodontics, Beijing Key Laboratory of Tooth Regeneration and Function Reconstruction, School of Stomatology, Capital Medical University, Beijing, P. R. China.
| |
Collapse
|
31
|
Jiang WD, Xu J, Zhou XQ, Wu P, Liu Y, Jiang J, Kuang SY, Tang L, Tang WN, Zhang YA, Feng L. Dietary protein levels regulated antibacterial activity, inflammatory response and structural integrity in the head kidney, spleen and skin of grass carp (Ctenopharyngodon idella) after challenged with Aeromonas hydrophila. FISH & SHELLFISH IMMUNOLOGY 2017; 68:154-172. [PMID: 28698127 DOI: 10.1016/j.fsi.2017.07.019] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/09/2017] [Revised: 07/02/2017] [Accepted: 07/08/2017] [Indexed: 06/07/2023]
Abstract
This study investigated the effects of dietary protein levels on disease resistance, immune function and structural integrity in the head kidney, spleen and skin of grass carp (Ctenopharyngodon idella). A total of 540 grass carp (264.11 ± 0.76 g) were fed six diets containing graded levels of protein (143.1, 176.7, 217.2, 257.5, 292.2 and 322.8 g digestible protein kg-1 diet) for 8 weeks. After the growth trial, fish were challenged with Aeromonas hydrophila for 14 days. The results indicated that optimal levels of dietary protein: (1) (1) increased the lysozyme (LA) and acid phosphatase (ACP) activities and the complement 3 (C3) and C4 contents, up-regulated antimicrobial peptides, anti-inflammatory cytokines, inhibitor of κBα, target of rapamycin and ribosomal protein S6 kinases 1 mRNA levels, whereas down-regulated pro-inflammatory cytokines, nuclear factor kappa B (NF-κB) P65, IKKβ, IKKγ, eIF4E-binding proteins (4E-BP) 1 and 4E-BP2 mRNA levels in the head kidney, spleen and skin of grass carp (P < 0.05), suggesting that optimal level of dietary protein could enhance immune function in the head kidney, spleen and skin of fish; (2) increased the activities and mRNA levels of antioxidant enzymes, enhanced the glutathione content, decreased reactive oxygen species, malondialdehyde (MDA) and protein carbonyl contents, and up-regulated the mRNA levels of NF-E2-related factor 2, B-cell lymphoma protein-2, inhibitor of apoptosis proteins, myeloid cell leukemia-1 and tight junction complexes, whereas down-regulated Kelch-like-ECH-associated protein (Keap) 1b, cysteinyl aspartic acid-protease 3, 8, 9, Fas ligand, apoptotic protease activating factor-1, Bcl-2 associated X protein and myosin light chain kinase mRNA levels in the head kidney, spleen and skin of grass carp (P < 0.05), indicating that optimal level of dietary protein could improve structural integrity in the head kidney, spleen and skin of fish. Finally, based on the skin hemorrhage and lesion morbidity, LA activity and MDA content, the optimal levels of dietary protein for grass carp (264 g-787 g) were estimated to be 241.45 g kg-1 diet (217.68 g digestible protein kg-1 diet), 301.68 g kg-1 diet (265.48 g digestible protein kg-1 diet) and 307.84 g kg-1 diet (272.71 g digestible protein kg-1 diet), respectively.
Collapse
Affiliation(s)
- Wei-Dan Jiang
- Animal Nutrition Institute, Sichuan Agricultural University, Sichuan, Chengdu 611130, China; Fish Nutrition and Safety Production University Key Laboratory of Sichuan Province, Sichuan Agricultural University, Sichuan, Chengdu 611130, China; Key Laboratory for Animal Disease-Resistance Nutrition of China Ministry of Education, Sichuan Agricultural University, Sichuan, Chengdu 611130, China
| | - Jing Xu
- Animal Nutrition Institute, Sichuan Agricultural University, Sichuan, Chengdu 611130, China
| | - Xiao-Qiu Zhou
- Animal Nutrition Institute, Sichuan Agricultural University, Sichuan, Chengdu 611130, China; Fish Nutrition and Safety Production University Key Laboratory of Sichuan Province, Sichuan Agricultural University, Sichuan, Chengdu 611130, China; Key Laboratory for Animal Disease-Resistance Nutrition of China Ministry of Education, Sichuan Agricultural University, Sichuan, Chengdu 611130, China
| | - Pei Wu
- Animal Nutrition Institute, Sichuan Agricultural University, Sichuan, Chengdu 611130, China; Fish Nutrition and Safety Production University Key Laboratory of Sichuan Province, Sichuan Agricultural University, Sichuan, Chengdu 611130, China; Key Laboratory for Animal Disease-Resistance Nutrition of China Ministry of Education, Sichuan Agricultural University, Sichuan, Chengdu 611130, China
| | - Yang Liu
- Animal Nutrition Institute, Sichuan Agricultural University, Sichuan, Chengdu 611130, China; Fish Nutrition and Safety Production University Key Laboratory of Sichuan Province, Sichuan Agricultural University, Sichuan, Chengdu 611130, China; Key Laboratory for Animal Disease-Resistance Nutrition of China Ministry of Education, Sichuan Agricultural University, Sichuan, Chengdu 611130, China
| | - Jun Jiang
- Animal Nutrition Institute, Sichuan Agricultural University, Sichuan, Chengdu 611130, China; Fish Nutrition and Safety Production University Key Laboratory of Sichuan Province, Sichuan Agricultural University, Sichuan, Chengdu 611130, China; Key Laboratory for Animal Disease-Resistance Nutrition of China Ministry of Education, Sichuan Agricultural University, Sichuan, Chengdu 611130, China
| | - Sheng-Yao Kuang
- Animal Nutrition Institute, Sichuan Academy of Animal Science, Chengdu 610066, China
| | - Ling Tang
- Animal Nutrition Institute, Sichuan Academy of Animal Science, Chengdu 610066, China
| | - Wu-Neng Tang
- Animal Nutrition Institute, Sichuan Academy of Animal Science, Chengdu 610066, China
| | - Yong-An Zhang
- Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China
| | - Lin Feng
- Animal Nutrition Institute, Sichuan Agricultural University, Sichuan, Chengdu 611130, China; Fish Nutrition and Safety Production University Key Laboratory of Sichuan Province, Sichuan Agricultural University, Sichuan, Chengdu 611130, China; Key Laboratory for Animal Disease-Resistance Nutrition of China Ministry of Education, Sichuan Agricultural University, Sichuan, Chengdu 611130, China.
| |
Collapse
|
32
|
Vezzani G, Quartesan S, Cancellara P, Camporesi E, Mangar D, Bernasek T, Dalvi P, Yang Z, Paoli A, Rizzato A, Bosco G. Hyperbaric oxygen therapy modulates serum OPG/RANKL in femoral head necrosis patients. J Enzyme Inhib Med Chem 2017; 32:707-711. [PMID: 28385082 PMCID: PMC6009909 DOI: 10.1080/14756366.2017.1302440] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
Hyperbaric oxygen therapy (HBOT) has beneficial effects on avascular necrosis of femoral head (ANFH), but its mechanism of action is still unclear. We investigated if HBOT upregulates serum osteoprotegerin (OPG) and/or inhibits osteoclast activation. 23 patients with unilateral ANFH at stage I, II and III consented to the study: the patients received standard HBOT. Serum OPG levels were obtained at the beginning of HBOT (T0), after 15 sessions (T1), 30 sessions (T2), after a 30-day break (T3), and after 60 sessions (T4). Magnetic resonance imaging (MRI) was obtained at T0 and about one year from the end of HBO treatments. Lesion size was compared between pre- and post-HBOT. 19 patients completed the study. HBOT reduced pain symptoms in all patients. HBOT significantly reduced lesion size in all stage I and II patients and in 2 of 11 stage III patients. HBOT increased serum OPG levels but receptor activator of nuclear factor kappa-B ligand (RANKL) levels did not change.
Collapse
Affiliation(s)
- Giuliano Vezzani
- a Department of Biomedical Sciences, Physiological Laboratory , University of Padova , Padova , Italy
| | - Silvia Quartesan
- a Department of Biomedical Sciences, Physiological Laboratory , University of Padova , Padova , Italy
| | - Pasqua Cancellara
- a Department of Biomedical Sciences, Physiological Laboratory , University of Padova , Padova , Italy
| | - Enrico Camporesi
- b Anesthesia , Tampa General Hospital; TEAM Health Anesthesia Research Institute , Tampa , FL , USA
| | - Devanand Mangar
- b Anesthesia , Tampa General Hospital; TEAM Health Anesthesia Research Institute , Tampa , FL , USA
| | | | - Prachiti Dalvi
- b Anesthesia , Tampa General Hospital; TEAM Health Anesthesia Research Institute , Tampa , FL , USA
| | - Zhongjin Yang
- d The Institute for Human Performance , SUNY Upstate Medical University , Syracuse , NY , USA
| | - Antonio Paoli
- a Department of Biomedical Sciences, Physiological Laboratory , University of Padova , Padova , Italy
| | - Alex Rizzato
- a Department of Biomedical Sciences, Physiological Laboratory , University of Padova , Padova , Italy
| | - Gerardo Bosco
- a Department of Biomedical Sciences, Physiological Laboratory , University of Padova , Padova , Italy
| |
Collapse
|
33
|
Muguruma Y, Hozumi K, Warita H, Yahata T, Uno T, Ito M, Ando K. Maintenance of Bone Homeostasis by DLL1-Mediated Notch Signaling. J Cell Physiol 2017; 232:2569-2580. [PMID: 27735989 PMCID: PMC5485010 DOI: 10.1002/jcp.25647] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2016] [Accepted: 10/10/2016] [Indexed: 02/06/2023]
Abstract
Adult bone mass is maintained through a balance of the activities of osteoblasts and osteoclasts. Although Notch signaling has been shown to maintain bone homeostasis by controlling the commitment, differentiation, and function of cells in both the osteoblast and osteoclast lineages, the precise mechanisms by which Notch performs such diverse and complex roles in bone physiology remain unclear. By using a transgenic approach that modified the expression of delta‐like 1 (DLL1) or Jagged1 (JAG1) in an osteoblast‐specific manner, we investigated the ligand‐specific effects of Notch signaling in bone homeostasis. This study demonstrated for the first time that the proper regulation of DLL1 expression, but not JAG1 expression, in osteoblasts is essential for the maintenance of bone remodeling. DLL1‐induced Notch signaling was responsible for the expansion of the bone‐forming cell pool by promoting the proliferation of committed but immature osteoblasts. However, DLL1‐Notch signaling inhibited further differentiation of the expanded osteoblasts to become fully matured functional osteoblasts, thereby substantially decreasing bone formation. Osteoblast‐specific expression of DLL1 did not alter the intrinsic differentiation ability of cells of the osteoclast lineage. However, maturational arrest of osteoblasts caused by the DLL1 transgene impaired the maturation and function of osteoclasts due to a failed osteoblast‐osteoclast coupling, resulting in severe suppression of bone metabolic turnover. Taken together, DLL1‐mediated Notch signaling is critical for proper bone remodeling as it regulates the differentiation and function of both osteoblasts and osteoclasts. Our study elucidates the importance of ligand‐specific activation of Notch signaling in the maintenance of bone homeostasis. J. Cell. Physiol. 232: 2569–2580, 2017. © 2016 The Authors. Journal of Cellular Physiology Published by Wiley Periodicals Inc.
Collapse
Affiliation(s)
- Yukari Muguruma
- Center for Regenerative Medicine, Tokai University School of Medicine, Isehara, Japan.,Department of Hematology-Oncology, Tokai University School of Medicine, Isehara, Japan
| | - Katsuto Hozumi
- Department of Immunology, Tokai University School of Medicine, Isehara, Japan
| | - Hiroyuki Warita
- Center for Regenerative Medicine, Tokai University School of Medicine, Isehara, Japan
| | - Takashi Yahata
- Center for Regenerative Medicine, Tokai University School of Medicine, Isehara, Japan
| | - Tomoko Uno
- Center for Regenerative Medicine, Tokai University School of Medicine, Isehara, Japan
| | - Mamoru Ito
- Central Institute for Experimental Animals, Kawasaki, Japan
| | - Kiyoshi Ando
- Center for Regenerative Medicine, Tokai University School of Medicine, Isehara, Japan.,Department of Hematology-Oncology, Tokai University School of Medicine, Isehara, Japan
| |
Collapse
|
34
|
Cildir G, Low KC, Tergaonkar V. Noncanonical NF-κB Signaling in Health and Disease. Trends Mol Med 2016; 22:414-429. [PMID: 27068135 DOI: 10.1016/j.molmed.2016.03.002] [Citation(s) in RCA: 225] [Impact Index Per Article: 25.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2016] [Revised: 03/14/2016] [Accepted: 03/16/2016] [Indexed: 12/18/2022]
Abstract
Noncanonical NF-κB signaling differs from canonical NF-κB signaling by being activated through different cell surface receptors, cytoplasmic adaptors, and NF-κB dimers. Under normal physiological conditions, this noncanonical pathway has been implicated in diverse biological processes, including lymphoid organogenesis, B cell maturation, osteoclast differentiation, and various functions of other immune cells. Recently, dysfunction of this pathway has also been causally associated with numerous immune-mediated pathologies and human malignancies. Here, we summarize the core elements as well as the recently identified novel regulators of the noncanonical NF-κB signaling pathway. The involvement of this pathway in different pathologies and the potential therapeutic options that are currently envisaged are also discussed.
Collapse
Affiliation(s)
- Gökhan Cildir
- Laboratory of NF-κB Signaling, Institute of Molecular and Cell Biology (IMCB), 61 Biopolis Drive, Proteos, Singapore 138673, Singapore; Department of Biochemistry, Yong Loo Lin School of Medicine, National University of Singapore (NUS), Singapore 117597, Singapore
| | - Kee Chung Low
- Laboratory of NF-κB Signaling, Institute of Molecular and Cell Biology (IMCB), 61 Biopolis Drive, Proteos, Singapore 138673, Singapore
| | - Vinay Tergaonkar
- Laboratory of NF-κB Signaling, Institute of Molecular and Cell Biology (IMCB), 61 Biopolis Drive, Proteos, Singapore 138673, Singapore; Department of Biochemistry, Yong Loo Lin School of Medicine, National University of Singapore (NUS), Singapore 117597, Singapore; Centre for Cancer Biology, University of South Australia and SA Pathology, Adelaide, SA 5000, Australia.
| |
Collapse
|
35
|
Matsui S, Ogata Y. Effects of miR-223 on expression of IL-1β and IL-6 in human gingival fibroblasts. J Oral Sci 2016; 58:101-8. [DOI: 10.2334/josnusd.58.101] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/01/2022]
Affiliation(s)
- Sari Matsui
- Department of Periodontology, Nihon University School of Dentistry at Matsudo
| | - Yorimasa Ogata
- Department of Periodontology, Nihon University School of Dentistry at Matsudo
- Research Institute of Oral Science, Nihon University School of Dentistry at Matsudo
| |
Collapse
|
36
|
CD44 deficiency inhibits unloading-induced cortical bone loss through downregulation of osteoclast activity. Sci Rep 2015; 5:16124. [PMID: 26530337 PMCID: PMC4632082 DOI: 10.1038/srep16124] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2015] [Accepted: 10/09/2015] [Indexed: 12/13/2022] Open
Abstract
The CD44 is cellular surface adhesion molecule that is involved in physiological processes such as hematopoiesis, lymphocyte homing and limb development. It plays an important role in a variety of cellular functions including adhesion, migration, invasion and survival. In bone tissue, CD44 is widely expressed in osteoblasts, osteoclasts and osteocytes. However, the mechanisms underlying its role in bone metabolism remain unclear. We found that CD44 expression was upregulated during osteoclastogenesis. CD44 deficiency in vitro significantly inhibited osteoclast activity and function by regulating the NF-κB/NFATc1-mediated pathway. In vivo, CD44 mRNA levels were significantly upregulated in osteoclasts isolated from the hindlimb of tail-suspended mice. CD44 deficiency can reduce osteoclast activity and counteract cortical bone loss in the hindlimb of unloaded mice. These results suggest that therapeutic inhibition of CD44 may protect from unloading induced bone loss by inhibiting osteoclast activity.
Collapse
|
37
|
Katsuyama T, Otsuka F, Terasaka T, Inagaki K, Takano-Narazaki M, Matsumoto Y, Sada KE, Makino H. Regulatory effects of fibroblast growth factor-8 and tumor necrosis factor-α on osteoblast marker expression induced by bone morphogenetic protein-2. Peptides 2015; 73:88-94. [PMID: 26409788 DOI: 10.1016/j.peptides.2015.09.007] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/30/2015] [Revised: 08/24/2015] [Accepted: 09/21/2015] [Indexed: 12/31/2022]
Abstract
BMP induces osteoblast differentiation, whereas a key proinflammatory cytokine, TNF-α, causes inflammatory bone damage shown in rheumatoid arthritis. FGF molecules are known to be involved in bone homeostasis. However, the effects of FGF-8 on osteoblast differentiation and the interaction between FGF-8, BMPs and TNF-α have yet to be clarified. Here we investigated the effects of FGF-8 in relation to TNF-α actions on BMP-2-induced osteoblast marker expression using myoblast cell line C2C12, osteoblast precursor cell line MC3T3-E1 and rat calvarial osteoblasts. It was revealed that FGF-8 inhibited BMP-2-induced expression of osteoblast differentiation markers, including Runx2, osteocalcin, alkaline phosphatase, type-1 collagen and osterix, in a concentration-dependent manner. The inhibitory effects of FGF-8 on BMP-induced osteoblast differentiation and Smad1/5/8 activation were enhanced in the presence of TNF-α action. FGF-8 also inhibited BMP-2-induced expression of Wnt5a, which activates a non-canonical Wnt signaling pathway. FGF-8 had no significant influence on the expression levels of TNF receptors, while FGF-8 suppressed the expression of inhibitory Smad6 and Smad7, suggesting a possible feedback activity through FGF to BMP receptor (BMPR) signaling. Of note, inhibition of ERK activity and FGF receptor (FGFR)-dependent protein kinase, but not JNK or NFκB pathway, suppressed the FGF-8 actions on BMP-induced osteoblast differentiation. FGF-8 was revealed to suppress BMP-induced osteoblast differentiation through the ERK pathway and the effects were enhanced by TNF-α. Given the finding that FGF-8 expression was increased in synovial tissues of rheumatoid arthritis, the functional interaction between FGFR and BMPR signaling may be involved in the development process of inflammatory bone damage.
Collapse
Affiliation(s)
- Takayuki Katsuyama
- Department of Medicine and Clinical Science, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, 2-5-1 Shikata-cho, Kitaku, Okayama 700-8558, Japan
| | - Fumio Otsuka
- Department of General Medicine, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, 2-5-1 Shikata-cho, Kitaku, Okayama 700-8558, Japan.
| | - Tomohiro Terasaka
- Department of Medicine and Clinical Science, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, 2-5-1 Shikata-cho, Kitaku, Okayama 700-8558, Japan
| | - Kenichi Inagaki
- Department of Medicine and Clinical Science, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, 2-5-1 Shikata-cho, Kitaku, Okayama 700-8558, Japan
| | - Mariko Takano-Narazaki
- Department of Medicine and Clinical Science, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, 2-5-1 Shikata-cho, Kitaku, Okayama 700-8558, Japan
| | - Yoshinori Matsumoto
- Department of Medicine and Clinical Science, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, 2-5-1 Shikata-cho, Kitaku, Okayama 700-8558, Japan
| | - Ken-Ei Sada
- Department of Medicine and Clinical Science, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, 2-5-1 Shikata-cho, Kitaku, Okayama 700-8558, Japan
| | - Hirofumi Makino
- Okayama University Hospital, 2-5-1 Shikata-cho, Kitaku, Okayama 700-8558, Japan
| |
Collapse
|
38
|
Yang S, Li X, Cheng L, Wu H, Zhang C, Li K. Tenuigenin inhibits RANKL-induced osteoclastogenesis by down-regulating NF-κB activation and suppresses bone loss in vivo. Biochem Biophys Res Commun 2015; 466:615-21. [DOI: 10.1016/j.bbrc.2015.09.093] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2015] [Accepted: 09/17/2015] [Indexed: 12/28/2022]
|
39
|
Yamaguchi M, Vikulina T, Arbiser JL, Weitzmann MN. Suppression of NF-κB activation by gentian violet promotes osteoblastogenesis and suppresses osteoclastogenesis. Curr Mol Med 2015; 14:783-92. [PMID: 25056540 DOI: 10.2174/1566524014666140724104842] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2013] [Revised: 03/28/2014] [Accepted: 04/12/2014] [Indexed: 01/23/2023]
Abstract
Skeletal mass is regulated by the coordinated action of bone forming osteoblasts and bone resorbing osteoclasts. Accelerated rates of bone resorption relative to bone formation lead to net bone loss and the development of osteoporosis, a devastating disease that predisposes the skeleton to fractures. Bone fractures are associated with significant morbidity and in the case of hip fractures, high mortality. Gentian violet (GV), a cationic triphenylmethane dye, has long been used as an antifungal and antibacterial agent and is presently under investigation as a potential chemotherapeutic and antiangiogenic agent. However, effects on bone cells have not been previously reported and the mechanisms of action of GV, are poorly understood. In this study we show that GV suppresses receptor activator of NF-κB ligand (RANKL)-induced differentiation of RAW264.7 osteoclast precursors into mature osteoclasts, but paradoxically stimulates the differentiation of MC3T3 cells into mineralizing osteoblasts. These actions stem from the capacity of GV to suppress activation of the nuclear factor kappa B (NF-κB) signal transduction pathway that is required for osteoclastogenesis, but inhibitory to osteoblast differentiation and activity. Our data reveal that GV is an inhibitor of NF-κB activation and may hold promise for modulation of bone turnover to promote a balance between bone formation and bone resorption, favorable to gain of bone mass.
Collapse
Affiliation(s)
| | | | | | - M N Weitzmann
- (M.N. Weitzmann) 101 Woodruff Circle, 1305 WMRB, Atlanta, Georgia 30322, USA.
| |
Collapse
|
40
|
Abdelmagid SM, Sondag GR, Moussa FM, Belcher JY, Yu B, Stinnett H, Novak K, Mbimba T, Khol M, Hankenson KD, Malcuit C, Safadi FF. Mutation in Osteoactivin Promotes Receptor Activator of NFκB Ligand (RANKL)-mediated Osteoclast Differentiation and Survival but Inhibits Osteoclast Function. J Biol Chem 2015; 290:20128-46. [PMID: 25837253 DOI: 10.1074/jbc.m114.624270] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2014] [Indexed: 12/29/2022] Open
Abstract
We previously reported on the importance of osteoactivin (OA/Gpnmb) in osteogenesis. In this study, we examined the role of OA in osteoclastogenesis, using mice with a nonsense mutation in the Gpnmb gene (D2J) and wild-type controls (D2J/Gpnmb(+)). In these D2J mice, micro-computed tomography and histomorphometric analyses revealed increased cortical thickness, whereas total porosity and eroded surface were significantly reduced in D2J mice compared with wild-type controls, and these results were corroborated by lower serum levels of CTX-1. Contrary to these observations and counterintuitively, temporal gene expression analyses supported up-regulated osteoclastogenesis in D2J mice and increased osteoclast differentiation rates ex vivo, marked by increased number and size. The finding that MAPK was activated in early differentiating and mature D2J osteoclasts and that survival of D2J osteoclasts was enhanced and mediated by activation of the AKT-GSK3β pathway supports this observation. Furthermore, this was abrogated by the addition of recombinant OA to cultures, which restored osteoclastogenesis to wild-type levels. Moreover, mix and match co-cultures demonstrated an induction of osteoclastogenesis in D2J osteoblasts co-cultured with osteoclasts of D2J or wild-type. Last, in functional osteo-assays, we show that bone resorption activity of D2J osteoclasts is dramatically reduced, and these osteoclasts present an abnormal ruffled border over the bone surface. Collectively, these data support a model whereby OA/Gpnmb acts as a negative regulator of osteoclast differentiation and survival but not function by inhibiting the ERK/AKT signaling pathways.
Collapse
Affiliation(s)
- Samir M Abdelmagid
- From the Department of Anatomy and Neurobiology, Northeast Ohio Medical University College of Medicine, Rootstown, Ohio 44272
| | - Gregory R Sondag
- From the Department of Anatomy and Neurobiology, Northeast Ohio Medical University College of Medicine, Rootstown, Ohio 44272, the School of Biomedical Sciences and
| | - Fouad M Moussa
- From the Department of Anatomy and Neurobiology, Northeast Ohio Medical University College of Medicine, Rootstown, Ohio 44272, the School of Biomedical Sciences and
| | - Joyce Y Belcher
- the Department of Anatomy and Cell Biology, Temple University School of Medicine, Philadelphia, Pennsylvania 19140, and
| | - Bing Yu
- From the Department of Anatomy and Neurobiology, Northeast Ohio Medical University College of Medicine, Rootstown, Ohio 44272
| | - Hilary Stinnett
- From the Department of Anatomy and Neurobiology, Northeast Ohio Medical University College of Medicine, Rootstown, Ohio 44272
| | - Kimberly Novak
- From the Department of Anatomy and Neurobiology, Northeast Ohio Medical University College of Medicine, Rootstown, Ohio 44272
| | - Thomas Mbimba
- From the Department of Anatomy and Neurobiology, Northeast Ohio Medical University College of Medicine, Rootstown, Ohio 44272
| | - Matthew Khol
- From the Department of Anatomy and Neurobiology, Northeast Ohio Medical University College of Medicine, Rootstown, Ohio 44272
| | - Kurt D Hankenson
- the Department of Clinical Studies, University of Pennsylvania School of Veterinary Medicine, Philadelphia, Pennsylvania 19104
| | - Christopher Malcuit
- the School of Biomedical Sciences and Department of Biological Sciences, Kent State University, Kent, Ohio 44240
| | - Fayez F Safadi
- From the Department of Anatomy and Neurobiology, Northeast Ohio Medical University College of Medicine, Rootstown, Ohio 44272, the School of Biomedical Sciences and
| |
Collapse
|
41
|
Kim J, Lee H, Kang KS, Chun KH, Hwang GS. Cordyceps militaris Mushroom and Cordycepin Inhibit RANKL-Induced Osteoclast Differentiation. J Med Food 2015; 18:446-52. [DOI: 10.1089/jmf.2014.3215] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Affiliation(s)
- Jinhee Kim
- Laboratory of Cell Differentiation Research, College of Korean Medicine, Gachon University, Seongnam, Korea
| | - Hyejin Lee
- Laboratory of Cell Differentiation Research, College of Korean Medicine, Gachon University, Seongnam, Korea
| | - Ki Sung Kang
- Laboratory of Cell Differentiation Research, College of Korean Medicine, Gachon University, Seongnam, Korea
| | - Kwang-Hoon Chun
- Gachon Institute of Pharmaceutical Sciences, College of Pharmacy, Gachon University, Incheon, Korea
| | - Gwi Seo Hwang
- Laboratory of Cell Differentiation Research, College of Korean Medicine, Gachon University, Seongnam, Korea
| |
Collapse
|
42
|
Aoyama E, Kubota S, Khattab HM, Nishida T, Takigawa M. CCN2 enhances RANKL-induced osteoclast differentiation via direct binding to RANK and OPG. Bone 2015; 73:242-8. [PMID: 25554597 DOI: 10.1016/j.bone.2014.12.058] [Citation(s) in RCA: 54] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/06/2014] [Revised: 12/17/2014] [Accepted: 12/23/2014] [Indexed: 10/24/2022]
Abstract
CCN family protein 2/connective tissue growth factor (CCN2/CTGF) is a multi-potent factor for mesenchymal cells such as chondrocytes, osteoblasts, osteoclasts, and endothelial cells. CCN2 is also known as a modulator of other cytokines and receptors via direct molecular interactions with them. We screened additional factors binding to CCN2 and found receptor activator of NF-kappa B (RANK) as one of them. RANK is also known as TNF-related activation-induced cytokine (TRANCE) receptor, and its signaling plays a critical role in osteoclastogenesis. Notable affinity between CCN2 and RANK was confirmed by using surface plasmon resonance (SPR) analysis. In fact, CCN2 enhanced the RANK-mediated signaling, such as occurs in NF-kappa B, p38 and JNK pathways, in pre-osteoclastic RAW264.7 cells; whereas CCN2 had no influence on RANK-RANK ligand (RANKL) binding. Moreover, CCN2 also significantly bound to osteoprotegerin (OPG), which is a decoy receptor of RANKL. Of note, OPG markedly inhibited the binding between CCN2 and RANK; and CCN2 canceled the inhibitory effect of OPG on osteoclast differentiation. These findings suggest CCN2 as a candidate of the fourth factor in the RANK/RANKL/OPG system for osteoclastogenesis, which regulates OPG and RANK via direct interaction.
Collapse
Affiliation(s)
- Eriko Aoyama
- Advanced Research Center for Oral and Craniofacial Sciences, Okayama University Dental School, Okayama, Japan
| | - Satoshi Kubota
- Advanced Research Center for Oral and Craniofacial Sciences, Okayama University Dental School, Okayama, Japan; Department of Biochemistry and Molecular Dentistry, Okayama University Graduate School of Medicine, Dentistry, and Pharmaceutical Science, Okayama, Japan
| | - Hany Mohamed Khattab
- Advanced Research Center for Oral and Craniofacial Sciences, Okayama University Dental School, Okayama, Japan
| | - Takashi Nishida
- Department of Biochemistry and Molecular Dentistry, Okayama University Graduate School of Medicine, Dentistry, and Pharmaceutical Science, Okayama, Japan
| | - Masaharu Takigawa
- Advanced Research Center for Oral and Craniofacial Sciences, Okayama University Dental School, Okayama, Japan; Department of Biochemistry and Molecular Dentistry, Okayama University Graduate School of Medicine, Dentistry, and Pharmaceutical Science, Okayama, Japan.
| |
Collapse
|
43
|
Abstract
Osteoclasts are multinucleated cells formed mainly on bone surfaces in response to cytokines by fusion of bone marrow-derived myeloid lineage precursors that circulate in the blood. Major advances in understanding of the molecular mechanisms regulating osteoclast formation and functions have been made in the past 20 years since the discovery that their formation requires nuclear factor-κB (NF-κB) signaling and that this is activated in response to the essential osteoclastogenic cytokine, receptor activator of NF-κB ligand (RANKL), which also controls osteoclast activation to resorb (degrade) bone. These studies have revealed that RANKL and some pro-inflammatory cytokines, including tumor necrosis factor, activate NF-κB and downstream signaling, including c-Fos and nuclear factor of activated T-cells, cytoplasmic 1 (NFATc1), and inhibition of repressors of NFATc1 signaling, to positively regulate osteoclast formation and functions. However, these cytokines also activate NF-κB signaling that can limit osteoclast formation through the NF-κB signaling proteins, TRAF3 and p100, and the suppressors of c-Fos/NFATc1 signaling, IRF8, and RBP-J. This paper reviews current understanding of how NF-κB signaling is involved in the positive and negative regulation of cytokine-mediated osteoclast formation and activation.
Collapse
Affiliation(s)
- Brendan F Boyce
- Department of Pathology and Laboratory Medicine, University of Rochester Medical Center, Rochester, NY, USA.
| | - Yan Xiu
- Department of Pathology and Laboratory Medicine, University of Rochester Medical Center, Rochester, NY, USA
| | - Jinbo Li
- Department of Pathology and Laboratory Medicine, University of Rochester Medical Center, Rochester, NY, USA
| | - Lianping Xing
- Department of Pathology and Laboratory Medicine, University of Rochester Medical Center, Rochester, NY, USA
| | - Zhenqiang Yao
- Department of Pathology and Laboratory Medicine, University of Rochester Medical Center, Rochester, NY, USA
| |
Collapse
|
44
|
Shen Y, Jiang T, Wang R, He S, Guo M, Zuo J, He D. (5R)-5-Hydroxytriptolide (LLDT-8) inhibits osteoclastogenesis via RANKL/RANK/OPG signaling pathway. Altern Ther Health Med 2015; 15:77. [PMID: 25887296 PMCID: PMC4379732 DOI: 10.1186/s12906-015-0566-y] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2014] [Accepted: 02/19/2015] [Indexed: 11/10/2022]
Abstract
Background The aim of this study was to investigate the regulative activity of (5R)-5-hydroxytriptolide (LLDT-8) on receptor activator of nuclear factor κ-B ligand (RANKL)/receptor activator of nuclear factor κ-B (RANK)/Osteoprotegerin (OPG) system in rheumatoid arthritis (RA) and its anti-osteoclastogenesis mechanism. Methods The expression of OPG, RANK and RANKL in CD3+ T leukomonocytes in both peripheral blood and synovial fluid of RA patients was evaluated by flow cytometry. The levels of interleukin (IL) 1β, IL-6, IL-10, IL-21 and IL-23 in the supernatants of peripheral blood mononuclear cells (PBMCs) and synovial fluid mononuclear cells (SFMCs) were assayed by ELISA. Tartaric acid phosphatase (TRAP) staining was used to identify the osteoclast-like cells derived from RAW264.7. Western blotting analysis was used to check the downstream molecules of RANKL. Results LLDT-8 increased the rate of OPG expression in CD3+ T leukomonocytes in peripheral blood as well as the ratio of OPG/RANKL in both peripheral blood and synovial fluid. LLDT-8 inhibited IL-1β, IL-6, IL-21 and IL-23 secretion, but promoted the secretion of IL-10 in the supernatants of PBMCs and SFMCs. In addition, LLDT-8 decreased the number of TRAP-positive cells derived from RAW264.7 in the presence of RANKL and M-CSF. Furthermore, LLDT-8 also inhibited the expression of p-IκB, a key regulator of RANKL signaling pathway. Conclusions LLDT-8 exerts its anti-osteoclastogenesis effect in RA probably through regulating RANKL/RANK/OPG system and its downstream signaling pathway as well as cytokine productions.
Collapse
|
45
|
Huang J, Zhou L, Wu H, Pavlos N, Chim SM, Liu Q, Zhao J, Xue W, Tan RX, Ye J, Xu J, Ang ES, Feng H, Tickner J, Xu J, Ding Y. Triptolide inhibits osteoclast formation, bone resorption, RANKL-mediated NF-қB activation and titanium particle-induced osteolysis in a mouse model. Mol Cell Endocrinol 2015; 399:346-53. [PMID: 25448849 DOI: 10.1016/j.mce.2014.10.016] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/18/2014] [Revised: 10/15/2014] [Accepted: 10/17/2014] [Indexed: 12/25/2022]
Abstract
The RANKL-induced NF-κB signaling pathway is required for osteoclast formation and function. By screening for compounds that inhibit RANKL-induced NF-κB activation using a luciferase reporter gene assay in RAW264.7 cells, we identified triptolide (PG490), as a candidate compound targeting osteoclast differentiation and osteoclast-mediated osteolysis. Triptolide (PG490) is an active compound of the medicinal herb Tripterygium wilfordii Hook F (TWHF) or Lei Gong Teng with known anti-inflammatory properties. We found that triptolide inhibited osteoclastogenesis and bone resorption, as well as RANKL-induced NF-қB activities as monitored by luciferase reporter gene assays and the nuclear translocation of p65. In vivo studies showed that triptolide attenuates titanium-induced osteolysis and osteoclast formation in a mouse calvarial model. Considering that drugs which protect against localized bone loss are critically needed for the effective treatment of particle-induced osteolysis, our data suggest that triptolide might have therapeutic potential for the treatment of bone lytic diseases caused by prosthetic wear particles.
Collapse
Affiliation(s)
- Jianbin Huang
- Orthopaedic Department, Memorial Hospital of Sun Yat-sen University, Guangzhou, China
| | - Lin Zhou
- School of Pathology and Laboratory Medicine, The University of Western Australia, Perth, WA 6009, Australia
| | - Huafei Wu
- School of Pathology and Laboratory Medicine, The University of Western Australia, Perth, WA 6009, Australia; Centre for Orthopaedic Research, School of Surgery, The University of Western Australia, Perth, WA 6009, Australia
| | - Nathan Pavlos
- Centre for Orthopaedic Research, School of Surgery, The University of Western Australia, Perth, WA 6009, Australia
| | - Shek Man Chim
- School of Pathology and Laboratory Medicine, The University of Western Australia, Perth, WA 6009, Australia
| | - Qian Liu
- School of Pathology and Laboratory Medicine, The University of Western Australia, Perth, WA 6009, Australia; Research Centre for Regenerative Medicine, Department of Orthopaedic Surgery, The First Affiliated Hospital of Guangxi Medical University, Guangxi, China, 530021
| | - Jinmin Zhao
- Research Centre for Regenerative Medicine, Department of Orthopaedic Surgery, The First Affiliated Hospital of Guangxi Medical University, Guangxi, China, 530021
| | - Wei Xue
- Key Laboratory of Biomaterials of Guangdong Higher Education Institutes, Department of Biomedical Engineering, Jinan University, Guangzhou, China, 510632
| | - Ren Xiang Tan
- Institute of Functional Biomolecules, Medical School, Nanjing University, Nanjing, China, 210093
| | - Jiming Ye
- Health Innovations Research Institute and School of Health Sciences, RMIT University, Melbourne, VIC 3083, Australia
| | - Jun Xu
- Research Center for Drug Discovery (RCDD), School of Pharmaceutical Sciences, Sun Yat-Sen University, 132 East Circle at University City, Guangzhou, China, 510006
| | - Estabelle S Ang
- School of Dentistry, University of Western Australia, Perth, WA 6009, Australia
| | - Haotian Feng
- School of Pathology and Laboratory Medicine, The University of Western Australia, Perth, WA 6009, Australia; Program of Nutrition and Bone & Joint Health, Nestlé R&D (China) Ltd. Building 5, No. 5 Dijin Road, Haidian District, Beijing, China, 100095
| | - Jennifer Tickner
- School of Pathology and Laboratory Medicine, The University of Western Australia, Perth, WA 6009, Australia
| | - Jiake Xu
- School of Pathology and Laboratory Medicine, The University of Western Australia, Perth, WA 6009, Australia.
| | - Yue Ding
- Orthopaedic Department, Memorial Hospital of Sun Yat-sen University, Guangzhou, China.
| |
Collapse
|
46
|
Park B. Triptolide, a diterpene, inhibits osteoclastogenesis, induced by RANKL signaling and human cancer cells. Biochimie 2014; 105:129-36. [DOI: 10.1016/j.biochi.2014.07.003] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2014] [Accepted: 07/06/2014] [Indexed: 10/25/2022]
|
47
|
Li DZ, Zhang QX, Dong XX, Li HD, Ma X. Treatment with hydrogen molecules prevents RANKL-induced osteoclast differentiation associated with inhibition of ROS formation and inactivation of MAPK, AKT and NF-kappa B pathways in murine RAW264.7 cells. J Bone Miner Metab 2014; 32:494-504. [PMID: 24196871 DOI: 10.1007/s00774-013-0530-1] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/01/2013] [Accepted: 10/09/2013] [Indexed: 01/31/2023]
Abstract
The bone protective effects of the hydrogen molecule (H2) have been demonstrated in several osteoporosis models while the underlying molecular mechanism has remained unclear. Osteoclast differentiation is an important factor related to the pathogenesis of bone-loss related diseases. In this work, we evaluated the effects of incubation with H2 on receptor activator of NFκB ligand (RANKL)-induced osteoclast differentiation. We found that treatment with H2 prevented RANKL-induced osteoclast differentiation in RAW264.7 cells and BMMs. Treatment with H2 inhibits the ability to form resorption pits of BMMs stimulated by RANKL. Treatment with H2 reduced mRNA levels of osteoclast-specific markers including tartrate resistant acid phosphatase, calcitonin receptor, cathepsin K, metalloproteinase-9, carbonic anhydrase typeII, and vacuolar-type H(+)-ATPase. Treatment with H2 decreased intracellular reactive oxygen species (ROS) formation, suppressed NADPH oxidase activity, down-regulated Rac1 activity and Nox1 expression, reduced mitochondrial ROS formation, and enhanced nuclear factor E2-related factor 2 nuclear translocation and heme oxygenase-1 activity. In addition, treatment with H2 suppressed RANKL-induced expression of nuclear factor of activated T cells c1 and c-Fos. Furthermore, treatment with H2 suppressed NF-κB activation and reduced phosphorylation of p38, extracellular signal-regulated kinase, c-Jun-N-terminal kinase, and protein kinases B (AKT) stimulated with RANKL. In conclusion, hydrogen molecules prevented RANKL-induced osteoclast differentiation associated with inhibition of reactive oxygen species formation and inactivation of NF-κB, mitogen-activated protein kinase and AKT pathways.
Collapse
Affiliation(s)
- Dong-Zhu Li
- Department of Osteology, The 89th Hospital of The Chinese PLA, 256 Beigong West Street, Weifang, 261021, China,
| | | | | | | | | |
Collapse
|
48
|
Mitigative effect of erythromycin on PMMA challenged preosteoblastic MC3T3-E1 cells. ScientificWorldJournal 2014; 2014:107196. [PMID: 25110723 PMCID: PMC4119688 DOI: 10.1155/2014/107196] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2014] [Accepted: 03/24/2014] [Indexed: 11/19/2022] Open
Abstract
Background. Aseptic loosening (AL) is a major complication of total joint replacement. Recent approaches to limiting AL have focused on inhibiting periprosthetic inflammation and osteoclastogenesis. Questions/Purposes. The purpose of this study was to determine the effects of erythromycin (EM) on polymethylmethacrylate (PMMA) particle-challenged MC3T3 osteoblast precursor cells. Methods. MC3T3 cells were pretreated with EM (0–10 μg/mL) and then stimulated with PMMA (1 mg/mL). Cell viability was evaluated by both a lactate dehydrogenase (LDH) release assay and cell counts. Cell differentiation was determined by activity of alkaline phosphatase (ALP). Gene expression was measured via real-time quantitative RT-PCR. Results. We found that exposure to PMMA particles reduced cellular viability and osteogenetic potential in MC3T3 cell line. EM treatment mitigated the effects of PMMA particles on the proliferation, viability and differentiation of MC3T3 cells. PMMA decreased the gene expression of Runx2, osterix and osteocalcin, which can be partially restored by EM treatment. Furthermore, EM suppressed PMMA- induced increase of NF-κB gene expression. Conclusions. These data demonstrate that EM mitigates the effects of PMMA on MC3T3 cell viability and differentiation, in part through downregulation of NF-κB pathway. EM appeared to represent an anabolic agent on MC3T3 cells challenged with PMMA particles.
Collapse
|
49
|
Zhai Z, Qu X, Yan W, Li H, Liu G, Liu X, Tang T, Qin A, Dai K. Andrographolide prevents human breast cancer-induced osteoclastic bone loss via attenuated RANKL signaling. Breast Cancer Res Treat 2014; 144:33-45. [PMID: 24481680 DOI: 10.1007/s10549-014-2844-7] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2013] [Accepted: 01/16/2014] [Indexed: 12/13/2022]
Abstract
Bone metastasis is a common and serious complication in advanced cancers such as breast cancer, prostate cancer, and multiple myeloma. Agents that prevent bone loss could be used to develop an alternative therapy for bone metastasis. RANKL, a member of the tumor necrosis factor superfamily, has been shown to play a significant role in cancer-associated bone loss. In this study, we examined the efficacy of the natural compound andrographolide (AP), a diterpenoid lactone isolated from the traditional Chinese and Indian medicinal plant Andrographis paniculata, in reducing breast cancer-induced osteolysis. AP prevented human breast cancer-induced bone loss by suppressing RANKL-mediated and human breast cancer cell-induced osteoclast differentiation. Molecular analysis revealed that AP prevented osteoclast function by inhibiting RANKL-induced NF-κB and ERK signaling pathway in lower dose (20 μM), as well as inducing apoptosis at higher dose (40 μM). Thus, AP is a potent inhibitor of breast cancer-induced bone metastasis.
Collapse
Affiliation(s)
- Zanjing Zhai
- Shanghai Key Laboratory of Orthopaedic Implants, Department of Orthopaedics, Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, The People's Republic of China
| | | | | | | | | | | | | | | | | |
Collapse
|
50
|
Liu Q, Wu H, Chim SM, Zhou L, Zhao J, Feng H, Wei Q, Wang Q, Zheng MH, Tan RX, Gu Q, Xu J, Pavlos N, Tickner J, Xu J. SC-514, a selective inhibitor of IKKβ attenuates RANKL-induced osteoclastogenesis and NF-κB activation. Biochem Pharmacol 2013; 86:1775-83. [PMID: 24091016 DOI: 10.1016/j.bcp.2013.09.017] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2013] [Revised: 09/19/2013] [Accepted: 09/19/2013] [Indexed: 01/04/2023]
Abstract
The RANKL-induced NF-κB signaling pathway is essential for osteoclastogenesis. This study aims to identify specific inhibitors targeting NF-κB signaling pathway, which might serve as useful small molecule inhibitors for the treatment and alleviation of osteoclast-mediated bone lytic diseases. By screening for compounds that selectively inhibit RANKL-induced NF-κB activation in RAW264.7 cells as monitored by luciferase reporter gene assay, we identified SC-514, a specific inhibitor of IKKβ, as a candidate compound targeting osteoclastogenesis. SC-514 dose-dependently inhibits RANKL-induced osteoclastogenesis with an IC50 of <5μM. At high concentrations, SC-514 (≥12.5μM) induced apoptosis and caspase 3 activation in RAW264.7 cells. Moreover, SC-514 specifically suppressed NF-κB activity owing to delayed RANKL-induced degradation of IκBα and inhibition of p65 nuclear translocation. Taken together, our results indicate that SC-514 impairs RANKL-induced osteoclastogenesis and NF-κB activation. Thus, targeting IKKβ by SC-514 presents as a potential treatment for osteoclast-related disorders such as osteoporosis and cancer-induced bone loss.
Collapse
Affiliation(s)
- Qian Liu
- Department of Orthopaedic Surgery, The First Affiliated Hospital of Guangxi Medical University, Guangxi 530021, China; School of Pathology and Laboratory Medicine, The University of Western Australia, Crawley 6009, Western Australia, Australia; Centre for Orthopaedic Research, School of Surgery, The University of Western Australia, Crawley 6009, Western Australia, Australia
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|