1
|
Sorvina A, Antoniou M, Esmaeili Z, Kochetkova M. Unusual Suspects: Bone and Cartilage ECM Proteins as Carcinoma Facilitators. Cancers (Basel) 2023; 15:cancers15030791. [PMID: 36765749 PMCID: PMC9913341 DOI: 10.3390/cancers15030791] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2022] [Revised: 01/25/2023] [Accepted: 01/25/2023] [Indexed: 01/31/2023] Open
Abstract
The extracellular matrix (ECM) is the complex three-dimensional network of fibrous proteins and proteoglycans that constitutes an essential part of every tissue to provide support for normal tissue homeostasis. Tissue specificity of the ECM in its topology and structure supports unique biochemical and mechanical properties of each organ. Cancers, like normal tissues, require the ECM to maintain multiple processes governing tumor development, progression and spread. A large body of experimental and clinical evidence has now accumulated to demonstrate essential roles of numerous ECM components in all cancer types. Latest findings also suggest that multiple tumor types express, and use to their advantage, atypical ECM components that are not found in the cancer tissue of origin. However, the understanding of cancer-specific expression patterns of these ECM proteins and their exact roles in selected tumor types is still sketchy. In this review, we summarize the latest data on the aberrant expression of bone and cartilage ECM proteins in epithelial cancers and their specific functions in the pathogenesis of carcinomas and discuss future directions in exploring the utility of this selective group of ECM components as future drug targets.
Collapse
|
2
|
Piekna-Przybylska D, Na D, Zhang J, Baker C, Ashton JM, White PM. Single cell RNA sequencing analysis of mouse cochlear supporting cell transcriptomes with activated ERBB2 receptor indicates a cell-specific response that promotes CD44 activation. Front Cell Neurosci 2023; 16:1096872. [PMID: 36687526 PMCID: PMC9853549 DOI: 10.3389/fncel.2022.1096872] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2022] [Accepted: 12/12/2022] [Indexed: 01/07/2023] Open
Abstract
Hearing loss caused by the death of cochlear hair cells (HCs) might be restored through regeneration from supporting cells (SCs) via dedifferentiation and proliferation, as observed in birds. In a previous report, ERBB2 activation in a subset of cochlear SCs promoted widespread down-regulation of SOX2 in neighboring cells, proliferation, and the differentiation of HC-like cells. Here we analyze single cell transcriptomes from neonatal mouse cochlear SCs with activated ERBB2, with the goal of identifying potential secreted effectors. ERBB2 induction in vivo generated a new population of cells with de novo expression of a gene network. Called small integrin-binding ligand n-linked glycoproteins (SIBLINGs), these ligands and their regulators can alter NOTCH signaling and promote cell survival, proliferation, and differentiation in other systems. We validated mRNA expression of network members, and then extended our analysis to older stages. ERBB2 signaling in young adult SCs also promoted protein expression of gene network members. Furthermore, we found proliferating cochlear cell aggregates in the organ of Corti. Our results suggest that ectopic activation of ERBB2 signaling in cochlear SCs can alter the microenvironment, promoting proliferation and cell rearrangements. Together these results suggest a novel mechanism for inducing stem cell-like activity in the adult mammalian cochlea.
Collapse
Affiliation(s)
- Dorota Piekna-Przybylska
- Department of Neuroscience, University of Rochester School of Medicine and Dentistry, Rochester, NY, United States
| | - Daxiang Na
- Department of Neuroscience, University of Rochester School of Medicine and Dentistry, Rochester, NY, United States
| | - Jingyuan Zhang
- Department of Biology, University of Rochester, Rochester, NY, United States
| | - Cameron Baker
- Genomic Research Center, University of Rochester School of Medicine and Dentistry, Rochester, NY, United States
| | - John M. Ashton
- Genomic Research Center, University of Rochester School of Medicine and Dentistry, Rochester, NY, United States
| | - Patricia M. White
- Department of Neuroscience, University of Rochester School of Medicine and Dentistry, Rochester, NY, United States
| |
Collapse
|
3
|
Abstract
PURPOSE OF REVIEW Chronic kidney disease-mineral and bone disorder (CKD-MBD) has become a global health crisis with very limited therapeutic options. Dentin matrix protein 1 (DMP1) is a matrix extracellular protein secreted by osteocytes that has generated recent interest for its possible involvement in CKD-MBD pathogenesis. This is a review of DMP1 established regulation and function, and early studies implicating DMP1 in CKD-MBD. RECENT FINDINGS Patients and mice with CKD show perturbations of DMP1 expression in bone, associated with impaired osteocyte maturation, mineralization, and increased fibroblast growth factor 23 (FGF23) production. In humans with CKD, low circulating DMP1 levels are independently associated with increased cardiovascular events. We recently showed that DMP1 supplementation lowers circulating FGF23 levels and improves bone mineralization and cardiac outcomes in mice with CKD. Mortality rates are extremely high among patients with CKD and have only marginally improved over decades. Bone disease and FGF23 excess contribute to mortality in CKD by increasing the risk of bone fractures and cardiovascular disease, respectively. Previous studies focused on DMP1 loss-of-function mutations have established its role in the regulation of FGF23 and bone mineralization. Recent studies show that DMP1 supplementation may fill a crucial therapeutic gap by improving bone and cardiac health in CKD.
Collapse
Affiliation(s)
- Aline Martin
- Division of Nephrology and Hypertension, Center for Translational Metabolism and Health, Feinberg Cardiovascular and Renal Research Institute, Northwestern University, Chicago, IL, 60611, USA.
| | - Dominik Kentrup
- Division of Nephrology and Hypertension, Center for Translational Metabolism and Health, Feinberg Cardiovascular and Renal Research Institute, Northwestern University, Chicago, IL, 60611, USA
| |
Collapse
|
4
|
Shu Y, Huang J, Gao M, Gan S, Zhu S, Xu S, Yang Z, Liao Y, Lu W. Small Interfering RNA Targeting DMP1 Protects Mice Against Blood-Brain Barrier Disruption and Brain Injury After Intracerebral Hemorrhage. J Stroke Cerebrovasc Dis 2021; 30:105760. [PMID: 33845422 DOI: 10.1016/j.jstrokecerebrovasdis.2021.105760] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2020] [Revised: 03/05/2021] [Accepted: 03/09/2021] [Indexed: 01/30/2023] Open
Abstract
Dentin matrix protein 1 (DMP1) is an extracellular matrix phosphoprotein that is known to facilitate mineralization of collagen in bone and promote osteoblast/odontoblast differentiation. Blood-brain barrier (BBB) disruption is the major pathogenesis in secondary brain injury after intracerebral hemorrhage (ICH). This study aimed to investigate the expression pattern of DMP1 in the mouse brain and explore the role of DMP1 in BBB disruption and brain injury in a mouse model of ICH. Mice were subjected to autologous blood injection-induced ICH. Immunofluorescence staining, western blot analysis, neurobehavioral tests, brain water content measurements, Evans blue permeability assay, and transmission electron microscopy were performed. Small interfering RNA targeting DMP1 (DMP1 siRNA) was administered at 72 h prior to ICH. Results showed that DMP1 is expressed extensively in the mouse brain, and is upregulated in the ICH model. Administration of DMP1 siRNA effectively ameliorated BBB disruption, attenuated brain edema, and improved neurological function after ICH. Moreover, the expression of zonula occludens-1 (ZO-1) and occludin were upregulated, and matrix metalloproteinase-9 (MMP-9) was downregulated in the ICH model. DMP1 siRNA administration reversed the expression of ZO-1, occludin, and MMP-9. These results demonstrated that DMP1 upregulation plays an essential role in inducing BBB disruption and brain injury after ICH. The inhibition of DMP1 could be a potential therapeutic strategy for ICH treatment.
Collapse
Affiliation(s)
- Yue Shu
- Department of Anatomy, Basic Medical College, Chongqing Medical University, Chongqing 400016, China; Institute of Neuroscience, Chongqing Medical University, Chongqing 400016, China.
| | - Juan Huang
- Department of Anatomy, Basic Medical College, Chongqing Medical University, Chongqing 400016, China; Institute of Neuroscience, Chongqing Medical University, Chongqing 400016, China.
| | - Meng Gao
- Department of Clinical Laboratory, 521 Hospital of Ordnance Industry, Xi'an 7100065, China.
| | - Shengwei Gan
- Department of Anatomy, Basic Medical College, Chongqing Medical University, Chongqing 400016, China; Institute of Neuroscience, Chongqing Medical University, Chongqing 400016, China.
| | - Shujuan Zhu
- Department of Anatomy, Basic Medical College, Chongqing Medical University, Chongqing 400016, China; Institute of Neuroscience, Chongqing Medical University, Chongqing 400016, China.
| | - Shiye Xu
- Department of Anatomy, Basic Medical College, Chongqing Medical University, Chongqing 400016, China; Institute of Neuroscience, Chongqing Medical University, Chongqing 400016, China.
| | - Zhengyu Yang
- Department of Anatomy, Basic Medical College, Chongqing Medical University, Chongqing 400016, China; Institute of Neuroscience, Chongqing Medical University, Chongqing 400016, China.
| | - Yuhui Liao
- Department of Anatomy, Basic Medical College, Chongqing Medical University, Chongqing 400016, China; Institute of Neuroscience, Chongqing Medical University, Chongqing 400016, China.
| | - Weitian Lu
- Department of Anatomy, Basic Medical College, Chongqing Medical University, Chongqing 400016, China; Institute of Neuroscience, Chongqing Medical University, Chongqing 400016, China.
| |
Collapse
|
5
|
The Roles of Osteopontin in the Pathogenesis of West Nile Encephalitis. Vaccines (Basel) 2020; 8:vaccines8040748. [PMID: 33317005 PMCID: PMC7768535 DOI: 10.3390/vaccines8040748] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2020] [Revised: 12/03/2020] [Accepted: 12/06/2020] [Indexed: 12/18/2022] Open
Abstract
Osteopontin (OPN), a multifunctional protein encoded by the secreted phosphoprotein-1 (Spp-1) gene in humans, plays important roles in a variety of physiological conditions, such as biomineralization, bone remodeling and immune functions. OPN also has significant roles in the pathogenesis of autoimmune, allergy and inflammatory diseases, as well as bacterial, fungal and viral infections. West Nile virus (WNV), a mosquito-transmitted flavivirus, is the leading agent for viral encephalitis in North America. Recent progress has been made in understanding both the biological functions of OPN and the pathogenesis of WNV. In this review article, we have summarized the current understanding of the biology of OPN and its vital roles in the pathogenesis of WNV encephalitis.
Collapse
|
6
|
Schramm HM. The Epithelial-Myeloid-Transition (EMyeT) of cancer cells as a wrongly perceived primary inflammatory process eventually progressing to a bone remodeling malignancy: the alternative pathway for Epithelial- Mesenchymal-Transition hypothesis (EMT)? J Cancer 2019; 10:3798-3809. [PMID: 31333797 PMCID: PMC6636288 DOI: 10.7150/jca.31364] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2018] [Accepted: 05/10/2019] [Indexed: 02/07/2023] Open
Abstract
Cancer cells express multiple markers expressed by mesenchymal as well as myeloid cells in common and in addition specific markers of the myeloid lineages, especially those of dendritic cells, macrophages and preosteoclasts. It has also been possible to identify monocyte-macrophage gene clusters in cancer cell specimens as well as in cancer cell lines. Accordingly, like myeloid cells cancer cells often express pro-inflammatory cytokines, and consequently the carcinoma may be perceived by the organism as a primary inflammatory process comparable to the immune inflammatory reactions in the eye or in the case of arthritis. This would explain why a carcinoma may induce a certain alarm state in the organism by increasing a fatal sympathetic tone in the patient, supplying the carcinomas with nutrients at the cost of other requirements, inducing tolerance against the cancer cells mistaken as myeloid cells, provoking fibrosis and neoangiogenesis, and increasing inflammatory cells at the carcinoma site. This seemingly inflammatory process of Epithelial-Myeloid-Transition (EMyeT) is superimposed by the progression of part of the myeloid cancer cells to stages comparable to preosteoclasts and osteoclasts, and their development to metastasizing carcinomas often at the site of bone. This concept of carcinogenesis and malignant progression described here challenges the widely accepted EMT-hypotheses and could deliver the rationale for the various peculiar aspects of cancer and the variety of therapeutic antitumoral measures.
Collapse
Affiliation(s)
- Henning M Schramm
- Institute for Integral Cancer Research (IFIK), CH-4144 Arlesheim/Switzerland
| |
Collapse
|
7
|
Zavodovskaya R, Stover SM, Murphy BG, Katzman S, Durbin-Johnson B, Britton M, Finno CJ. Bone formation transcripts dominate the differential gene expression profile in an equine osteoporotic condition associated with pulmonary silicosis. PLoS One 2018; 13:e0197459. [PMID: 29856822 PMCID: PMC5983561 DOI: 10.1371/journal.pone.0197459] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2018] [Accepted: 05/02/2018] [Indexed: 12/11/2022] Open
Abstract
Osteoporosis has been associated with pulmonary silicosis in California horses exposed to soils rich in cytotoxic silica dioxide crystals, a syndrome termed silicate associated osteoporosis (SAO). The causal mechanism for the development of osteoporosis is unknown. Osteoporotic lesions are primarily located in bone marrow-rich sites such as ribs, scapula and pelvis. Gene transcription patterns within bone marrow and pulmonary lymph nodes of affected horses may offer clues to disease pathobiology. Bone marrow core and tracheobronchial lymph node tissue samples harvested postmortem from affected and unaffected horses were examined histologically and subjected to RNA sequencing (RNA-seq). Sequenced data were analyzed for differential gene expression and gene ontology. Metatranscriptomic and metagenomic assays evaluated samples for infectious agents. Thirteen of 17 differentially expressed transcripts in bone marrow were linked to bone and cartilage formation such as integrin binding bone sialoprotein (log2FC = 3.39, PFDR = 0.013) and chondroadherin (log2FC = 4.48, PFDR = 0.031). Equus caballus solute carrier family 9, subfamily A2 (log2FC = 3.77, PFDR = 0.0034) was one of the four differentially expressed transcripts linked to osteoclast activity. Osteoblasts were hyperplastic and hypertrophic in bone marrow from affected horses. Biological pathways associated with skeletal morphogenesis were significantly enriched in affected horses. The 30 differentially expressed genes in affected lymph nodes were associated with inflammatory responses. Evidence of infectious agents was not found. The SAO affected bone marrow molecular signature demonstrated increased transcription and heightened activation of osteoblasts. Increased osteoblastic activity could be part of the pathological mechanism for osteoporosis or a compensatory response to the accelerated osteolysis. Transcriptome data offer gene targets for inquiries into the role of osteocytes and osteoblasts in SAO pathogenesis. Viral or bacterial infectious etiology in SAO is less likely based on metatranscriptomic and metagenomic data but cannot be completely ruled out.
Collapse
Affiliation(s)
- Regina Zavodovskaya
- Department of Anatomy, Physiology and Cell Biology, UC Davis School of Veterinary Medicine, University of California, Davis, California, United States of America
| | - Susan M. Stover
- Department of Anatomy, Physiology and Cell Biology, UC Davis School of Veterinary Medicine, University of California, Davis, California, United States of America
| | - Brian G. Murphy
- Department of Pathology, Microbiology and Immunology, UC Davis School of Veterinary Medicine, University of California, Davis, California, United States of America
| | - Scott Katzman
- Department of Surgical & Radiological Sciences, UC Davis School of Veterinary Medicine, University of California, Davis, California, United States of America
| | - Blythe Durbin-Johnson
- Department of Public Health Sciences, UC Davis School of Medicine, University of California, Davis, Davis, California, United States of America
| | - Monica Britton
- UC Davis Genome Center, Bioinformatics Core Facility, University of California, Davis, Davis, California, United States of America
| | - Carrie J. Finno
- Department of Population Health & Reproduction, UC Davis School of Veterinary Medicine, University of California, Davis, California, United States of America
| |
Collapse
|
8
|
Qin C, D’Souza R, Feng J. Dentin Matrix Protein 1 (DMP1): New and Important Roles for Biomineralization and Phosphate Homeostasis. J Dent Res 2016; 86:1134-41. [DOI: 10.1177/154405910708601202] [Citation(s) in RCA: 170] [Impact Index Per Article: 18.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023] Open
Abstract
Previously, non-collagenous matrix proteins, such as DMP1, were viewed with little biological interest. The last decade of research has increased our understanding of DMP1, as it is now widely recognized that this protein is expressed in non-mineralized tissues, as well as in cancerous lesions. Protein chemistry studies have shown that the full length of DMP1, as a precursor, is cleaved into two distinct forms: the C-terminal and N-terminal fragments. Functional studies have demonstrated that DMP1 is essential in the maturation of odontoblasts and osteoblasts, as well as in mineralization via local and systemic mechanisms. The identification of DMP1 mutations in humans has led to the discovery of a novel disease: autosomal-recessive hypophosphatemic rickets. Furthermore, the regulation of phosphate homeostasis by DMP1 through FGF23, a newly identified hormone that is released from bone and targeted in the kidneys, sets a new direction for research that associates biomineralization with phosphate regulation.
Collapse
Affiliation(s)
- C. Qin
- Department of Biomedical Sciences, Texas A&M Health Science Center, Baylor College of Dentistry, 3302 Gaston Avenue, Dallas, TX 75246, USA
| | - R. D’Souza
- Department of Biomedical Sciences, Texas A&M Health Science Center, Baylor College of Dentistry, 3302 Gaston Avenue, Dallas, TX 75246, USA
| | - J.Q. Feng
- Department of Biomedical Sciences, Texas A&M Health Science Center, Baylor College of Dentistry, 3302 Gaston Avenue, Dallas, TX 75246, USA
| |
Collapse
|
9
|
Hamilton SL, Ferando B, Eapen AS, Yu JC, Joy AR. Cancer Secretome May Influence BSP and DSP Expression in Human Salivary Gland Cells. J Histochem Cytochem 2016; 65:139-151. [PMID: 27881474 DOI: 10.1369/0022155416676064] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
One of the biggest challenges in managing head and neck cancers, especially salivary gland cancers, is the identification of secreted biomarkers of the disease that can be evaluated noninvasively. A relevant source of enriched tumor markers could potentially be found in the tumor secretome. Although numerous studies have evaluated secretomes from various cancers, the influence of the cancer secretome derived from salivary gland cancers on the behavior of normal cells has not yet been elucidated. Our data indicate that secretome derived from salivary gland cancer cells can influence the expression of two potential biomarkers of oral cancer-namely, bone sialoprotein (BSP) and dentin sialoprotein (DSP)-in normal salivary gland cells. Using routine immunohistochemistry, immunofluorescence, and immunoblotting techniques, we demonstrate an enrichment of BSP and DSP in human salivary gland (HSG) cancer tissue, unique localizations of BSP and DSP in HSG cancer cells, and enriched expression of BSP and DSP in normal salivary gland cells exposed to a cancer secretome. The secretome domain of the cancer microenvironment could alter signaling cascades responsible for normal cell proliferation, migration, and invasion, thus enhancing cancer cell survival and the potential for cancer progression. The cancer secretome may be critical in maintaining and stimulating "cancer-ness," thus potentially promoting specific hallmarks of metastasis.
Collapse
Affiliation(s)
- Samantha Lynn Hamilton
- Department of Growth, Development and Structure, Southern Illinois University School of Dental Medicine, Alton, Illinois (SLH, BF, ASE, JCY, ARJ).,Department of Biological Sciences, College of Arts and Sciences, Southern Illinois University Edwardsville, Edwardsville, Illinois (SLH, JCY, ARJ)
| | - Blake Ferando
- Department of Growth, Development and Structure, Southern Illinois University School of Dental Medicine, Alton, Illinois (SLH, BF, ASE, JCY, ARJ)
| | - Asha Sarah Eapen
- Department of Growth, Development and Structure, Southern Illinois University School of Dental Medicine, Alton, Illinois (SLH, BF, ASE, JCY, ARJ)
| | - Jennifer Chian Yu
- Department of Growth, Development and Structure, Southern Illinois University School of Dental Medicine, Alton, Illinois (SLH, BF, ASE, JCY, ARJ).,Department of Biological Sciences, College of Arts and Sciences, Southern Illinois University Edwardsville, Edwardsville, Illinois (SLH, JCY, ARJ)
| | - Anita Rose Joy
- Department of Growth, Development and Structure, Southern Illinois University School of Dental Medicine, Alton, Illinois (SLH, BF, ASE, JCY, ARJ).,Department of Biological Sciences, College of Arts and Sciences, Southern Illinois University Edwardsville, Edwardsville, Illinois (SLH, JCY, ARJ)
| |
Collapse
|
10
|
Trotter TN, Yang Y. Matricellular proteins as regulators of cancer metastasis to bone. Matrix Biol 2016; 52-54:301-314. [PMID: 26807761 DOI: 10.1016/j.matbio.2016.01.006] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2015] [Revised: 01/19/2016] [Accepted: 01/19/2016] [Indexed: 01/08/2023]
Abstract
Metastasis is the major cause of death in cancer patients, and a frequent site of metastasis for many cancers is the bone marrow. Therefore, understanding the mechanisms underlying the metastatic process is necessary for future prevention and treatment. The tumor microenvironment is now known to play a role in the metastatic cascade, both at the primary tumor and in metastatic sites, and includes both cellular and non-cellular components. The extracellular matrix (ECM) provides structural support and signaling cues to cells. One particular group of molecules associated with the ECM, known as matricellular proteins, modulate multiple aspects of tumor biology, including growth, migration, invasion, angiogenesis and metastasis. These proteins are also important for normal function in the bone by regulating bone formation and bone resorption. Recent studies have described a link between some of these proteins and metastasis of various tumors to the bone. The aim of this review is to summarize what is currently known about matricellular protein influence on bone metastasis. Particular attention to the contribution of both tumor cells and non-malignant cells in the bone has been given.
Collapse
Affiliation(s)
- Timothy N Trotter
- Department of Pathology, University of Alabama at Birmingham, Birmingham, AL, United States
| | - Yang Yang
- Department of Pathology, University of Alabama at Birmingham, Birmingham, AL, United States; Comprehensive Cancer Center and the Center for Metabolic Bone Disease, University of Alabama at Birmingham, Birmingham, AL, United States.
| |
Collapse
|
11
|
Koli K, Saxena G, Ogbureke KUE. Expression of Matrix Metalloproteinase (MMP)-20 and Potential Interaction with Dentin Sialophosphoprotein (DSPP) in Human Major Salivary Glands. J Histochem Cytochem 2015; 63:524-33. [PMID: 25805840 DOI: 10.1369/0022155415580817] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2015] [Accepted: 03/12/2015] [Indexed: 12/23/2022] Open
Abstract
Matrix metalloproteinase-20 (MMP-20) expression is widely regarded as tooth-specific, with expression limited to dental hard tissues. Necessary for sound enamel formation, MMP-20 and MMP-2 proteolytically process dentin sialophosphoprotein (DSPP) into dentin sialoprotein, dentin phosphoprotein, and dentin glycoprotein during tooth formation. In the mid-2000s, three members of the small integrin-binding ligand N-linked glycoproteins (SIBLINGs) were reported to bind specifically with high affinity (nM) to, and activate, three MMPs in vitro: bone sialoprotein with MMP-2; osteopontin with MMP-3; and dentin matrix protein1 with MMP-9. The SIBLING-MMP interaction was confirmed in biological systems such as the ducts of salivary glands, where all five members of the SIBLINGs are expressed. Recently, we documented MMP-20 expression and interaction with DSPP (another member of the SIBLING family) in human oral squamous cell carcinoma. Here we report the expression of MMP-20, and confirm its co-expression and potential interaction with DSPP in human major salivary gland tissues and cell line using immunohistochemistry, immunofluorescence, western blot, quantitative RT-PCR, and proximity ligation assay. This report reinforces our earlier suggestion that the SIBLING-MMP complexes may be involved in the turnover of extracellular proteins damaged by oxidation byproducts in metabolically active duct epithelial systems.
Collapse
Affiliation(s)
- Komal Koli
- Department of Diagnostic and Biomedical Sciences, The University of Texas School of Dentistry at Houston, Houston, Texas (KK, GS, KUEO)
| | - Geetu Saxena
- Department of Diagnostic and Biomedical Sciences, The University of Texas School of Dentistry at Houston, Houston, Texas (KK, GS, KUEO)
| | - Kalu U E Ogbureke
- Department of Diagnostic and Biomedical Sciences, The University of Texas School of Dentistry at Houston, Houston, Texas (KK, GS, KUEO)
| |
Collapse
|
12
|
Inagaki Y, Kashima TG, Hookway ES, Tanaka Y, Hassan AB, Oppermann U, Athanasou NA. Dentine matrix protein 1 (DMP-1) is a marker of bone formation and mineralisation in soft tissue tumours. Virchows Arch 2015; 466:445-52. [DOI: 10.1007/s00428-014-1706-3] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2014] [Revised: 11/15/2014] [Accepted: 12/02/2014] [Indexed: 01/29/2023]
|
13
|
Lin S, Zhang Q, Cao Z, Lu Y, Zhang H, Yan K, Liu Y, McKee MD, Qin C, Chen Z, Feng JQ. Constitutive nuclear expression of dentin matrix protein 1 fails to rescue the Dmp1-null phenotype. J Biol Chem 2014; 289:21533-43. [PMID: 24917674 PMCID: PMC4118114 DOI: 10.1074/jbc.m113.543330] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2013] [Revised: 06/02/2014] [Indexed: 12/12/2022] Open
Abstract
Dentin matrix protein 1 (DMP1) plays multiple roles in bone, tooth, phosphate homeostasis, kidney, salivary gland, reproductive cycles, and the development of cancer. In vitro studies have indicated two different biological mechanisms: 1) as a matrix protein, DMP1 interacts with αvβ3 integrin and activates MAP kinase signaling; and 2) DMP1 serves as a transcription co-factor. In vivo studies have demonstrated its key role in osteocytes. This study attempted to determine whether DMP1 functions as a transcription co-factor and regulates osteoblast functions. For gene expression comparisons using adenovirus constructs, we targeted the expression of DMP1 either to the nucleus only by replacing the endogenous signal peptide with a nuclear localization signal (NLS) sequence (referred to as (NLS)DMP1) or to the extracellular matrix as the WT type (referred to as (SP)DMP1) in MC3T3 osteoblasts. High levels of DMP1 in either form greatly increased osteogenic gene expression in an identical manner. However, the targeted (NLS)DMP1 transgene driven by a 3.6-kb rat Col 1α1 promoter in the nucleus of osteoblasts and osteocytes failed to rescue the phenotyope of Dmp1-null mice, whereas the (SP)DMP1 transgene rescued the rickets defect. These studies support the notion that DMP1 functions as an extracellular matrix protein, rather than as a transcription co-factor in vivo. We also show that DMP1 continues its expression in osteoblasts during postnatal development and that the deletion of Dmp1 leads to an increase in osteoblast proliferation. However, poor mineralization in the metaphysis indicates a critical role for DMP1 in both osteoblasts and osteocytes.
Collapse
Affiliation(s)
- Shuxian Lin
- From the Department of Biomedical Sciences, Texas A&M University, Baylor College of Dentistry, Dallas, Texas 75246, The State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei-MOST) and Key Laboratory of Oral Biomedicine, Ministry of Education, School and Hospital of Stomatology, Wuhan University, Wuhan 430072, Hubei, China
| | - Qi Zhang
- Laboratory of Oral Biomedical Science and Translational Medicine, Department of Endodontics, School of Stomatology, Tongji University, Shanghai 200092, China
| | - Zhengguo Cao
- The State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei-MOST) and Key Laboratory of Oral Biomedicine, Ministry of Education, School and Hospital of Stomatology, Wuhan University, Wuhan 430072, Hubei, China
| | - Yongbo Lu
- From the Department of Biomedical Sciences, Texas A&M University, Baylor College of Dentistry, Dallas, Texas 75246
| | - Hua Zhang
- From the Department of Biomedical Sciences, Texas A&M University, Baylor College of Dentistry, Dallas, Texas 75246
| | - Kevin Yan
- the Department of Biological Sciences, Columbia University, New York, New York 10027, and
| | - Ying Liu
- From the Department of Biomedical Sciences, Texas A&M University, Baylor College of Dentistry, Dallas, Texas 75246
| | - Marc D McKee
- the Faculty of Dentistry, and Department of Anatomy and Cell Biology, McGill University, Montreal, Quebec H3A 0G4, Canada
| | - Chunlin Qin
- From the Department of Biomedical Sciences, Texas A&M University, Baylor College of Dentistry, Dallas, Texas 75246
| | - Zhi Chen
- The State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei-MOST) and Key Laboratory of Oral Biomedicine, Ministry of Education, School and Hospital of Stomatology, Wuhan University, Wuhan 430072, Hubei, China,
| | - Jian Q Feng
- From the Department of Biomedical Sciences, Texas A&M University, Baylor College of Dentistry, Dallas, Texas 75246,
| |
Collapse
|
14
|
Schramm HM. Should EMT of Cancer Cells Be Understood as Epithelial-Myeloid Transition? J Cancer 2014; 5:125-32. [PMID: 24494030 PMCID: PMC3909767 DOI: 10.7150/jca.8242] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2013] [Accepted: 01/02/2014] [Indexed: 12/11/2022] Open
Abstract
Cancer cells express epithelial markers, and when progressing in malignancy they may express markers of the mesenchymal cell type. Therefore an epithelial-mesenchymal transition of the cancer cells is assumed. However the mesenchymal markers can equally well be interpreted as myeloid markers since they are common in both types of cell lineages. Moreover, cancer cells express multiple specific markers of the myeloid lineages thus giving rise to the hypothesis that the transition of cancer cells may be from epithelial to myeloid cells and not to mesenchymal cells. This interpretation would better explain why cancer cells, often already in their primary cancer site, frequently show properties common to those of macrophages, platelets and pre-/osteoclasts.
Collapse
Affiliation(s)
- Henning M. Schramm
- Institute Hiscia, Society for Cancer Research, CH-4144 Arlesheim/Switzerland
| |
Collapse
|
15
|
Li C, Xie X, Wang X, Sun Y, Liu P, Chen L, Qin C. Differential expression and localization of dentin matrix protein 1 (DMP1) fragments in mouse submandibular glands. J Mol Histol 2013; 44:231-9. [PMID: 23111467 PMCID: PMC3694222 DOI: 10.1007/s10735-012-9464-5] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2012] [Accepted: 10/22/2012] [Indexed: 10/27/2022]
Abstract
It has been demonstrated that dentin matrix protein 1 (DMP1) is an essential regulator in the formation of bone and tooth. In addition to the mineralized tissues, DMP1 is also expressed in the non-mineralized tissues such as kidney, brain and salivary glands. Some studies have shown that the expression of DMP1 is significantly elevated in cancerous glands, while details about the expression and localization patterns of DMP1 in these glandular tissues still remain largely unknown. In this study, with multiple approaches, we systematically analyzed the expression and localization of DMP1 in mouse submandibular glands (SMGs). The results showed that although DMP1 was expressed in both female and male mouse SMGs, the mRNA levels of DMP1 in male mice were higher than those in female mice after the appearance of granular convoluted tubule (GCT). In mouse SMGs, DMP1 was primarily present as the 46 kDa C-terminal fragment and the 37 kDa N-terminal fragment. The C-terminal fragment was mainly localized in the nuclei of acinar and ductal cells, while the N-terminal fragment was restricted to the cytoplasm of ductal cells. This study showed the expression of DMP1 in the GCT of male mice, a novel finding different from the result of previous reports. Collectively, the differential localization patterns of DMP1 fragments indicate that different forms of DMP1 may play distinct roles in the SMGs.
Collapse
Affiliation(s)
- Changcheng Li
- Longjiang Scholar Laboratory, The First Affiliated Hospital of Harbin Medical University, 23 Youzheng Street, Harbin 150001, Heilongjiang, China. Department of Biomedical Sciences, Baylor College of Dentistry, Texas A&M University System Health Science Center, 3302 Gaston Ave. Room 400, Dallas, TX 75246, USA
| | - Xiaohua Xie
- Longjiang Scholar Laboratory, The First Affiliated Hospital of Harbin Medical University, 23 Youzheng Street, Harbin 150001, Heilongjiang, China
| | - Xiaofang Wang
- Department of Biomedical Sciences, Baylor College of Dentistry, Texas A&M University System Health Science Center, 3302 Gaston Ave. Room 400, Dallas, TX 75246, USA
| | - Yao Sun
- Department of Biomedical Sciences, Baylor College of Dentistry, Texas A&M University System Health Science Center, 3302 Gaston Ave. Room 400, Dallas, TX 75246, USA
| | - Peihong Liu
- Longjiang Scholar Laboratory, The First Affiliated Hospital of Harbin Medical University, 23 Youzheng Street, Harbin 150001, Heilongjiang, China
| | - Li Chen
- Longjiang Scholar Laboratory, The First Affiliated Hospital of Harbin Medical University, 23 Youzheng Street, Harbin 150001, Heilongjiang, China
| | - Chunlin Qin
- Department of Biomedical Sciences, Baylor College of Dentistry, Texas A&M University System Health Science Center, 3302 Gaston Ave. Room 400, Dallas, TX 75246, USA
| |
Collapse
|
16
|
Suzuki S, Haruyama N, Nishimura F, Kulkarni AB. Dentin sialophosphoprotein and dentin matrix protein-1: Two highly phosphorylated proteins in mineralized tissues. Arch Oral Biol 2012; 57:1165-75. [PMID: 22534175 DOI: 10.1016/j.archoralbio.2012.03.005] [Citation(s) in RCA: 106] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2011] [Revised: 02/23/2012] [Accepted: 03/20/2012] [Indexed: 12/15/2022]
Abstract
Dentin sialophosphoprotein (DSPP) and dentin matrix protein-1 (DMP-1) are highly phosphorylated proteins that belong to the family of small integrin-binding ligand N-linked glycoproteins (SIBLINGs), and are essential for proper development of hard tissues such as teeth and bones. In order to understand how they contribute to tissue organization, DSPP and DMP-1 have been analyzed for over a decade using both in vivo and in vitro techniques. Among the five SIBLINGs, the DSPP and DMP-1 genes are located next to each other and their gene and protein structures are most similar. In this review we examine the phenotypes of the genetically engineered mouse models of DSPP and DMP-1 and also introduce complementary in vitro studies into the molecular mechanisms underlying these phenotypes. DSPP affects the mineralization of dentin more profoundly than DMP-1. In contrast, DMP-1 significantly affects bone mineralization and importantly controls serum phosphate levels by regulating serum FGF-23 levels, whereas DSPP does not show any systemic effects. DMP-1 activates integrin signalling and is endocytosed into the cytoplasm whereupon it is translocated to the nucleus. In contrast, DSPP only activates integrin-dependent signalling. Thus it is now clear that both DSPP and DMP-1 contribute to hard tissue mineralization and the tissues affected by each are different presumably as a result of their different expression levels. In fact, in comparison with DMP-1, the functional analysis of cell signalling by DSPP remains relatively unexplored.
Collapse
Affiliation(s)
- Shigeki Suzuki
- Department of Dental Science for Health Promotion, Division of Cervico-Gnathostomatology, Hiroshima University Graduate School of Biomedical Sciences, Hiroshima, Japan.
| | | | | | | |
Collapse
|
17
|
Abd-Elmeguid A, Yu DC, Kline LW, Moqbel R, Vliagoftis H. Dentin Matrix Protein-1 Activates Dental Pulp Fibroblasts. J Endod 2012; 38:75-80. [DOI: 10.1016/j.joen.2011.10.005] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2011] [Revised: 10/04/2011] [Accepted: 10/16/2011] [Indexed: 11/25/2022]
|
18
|
Dentin matrix protein 1 induces membrane expression of VE-cadherin on endothelial cells and inhibits VEGF-induced angiogenesis by blocking VEGFR-2 phosphorylation. Blood 2010; 117:2515-26. [PMID: 21190990 DOI: 10.1182/blood-2010-08-298810] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
Dentin matrix protein 1 (DMP1) is a member of the small integrin-binding ligand N-linked glycoprotein (SIBLING) family, a group of proteins initially described as mineralized extracellular matrices components. More recently, SIBLINGs have been implicated in several key steps of cancer progression, including angiogenesis. Although proangiogenic activities have been demonstrated for 2 SIBLINGs, the role of DMP1 in angiogenesis has not yet been addressed. We demonstrate that this extracellular matrix protein induced the expression of vascular endothelial cadherin (VE-cadherin), a key regulator of intercellular junctions and contact inhibition of growth of endothelial cells that is also known to modulate vascular endothelial growth factor receptor 2 (VEGFR-2) activity, the major high-affinity receptor for VEGF. DMP1 induced VE-cadherin and p27(Kip1) expression followed by cell-cycle arrest in human umbilical vein endothelial cells (HUVECs) in a CD44-dependent manner. VEGF-induced proliferation, migration, and tubulogenesis responses were specifically blocked on DMP1 pretreatment of HUVECs. Indeed, after VE-cadherin induction, DMP1 inhibited VEGFR-2 phosphorylation and Src-mediated signaling. However, DMP1 did not interfere with basic fibroblast growth factor-induced angiogenesis. In vivo, DMP1 significantly reduced laser-induced choroidal neovascularization lesions and tumor-associated angiogenesis. These data enable us to put DMP1 on the angiogenic chessboard for the first time and to identify this protein as a new specific inhibitor of VEGF-induced angiogenesis.
Collapse
|
19
|
Bellahcène A, Castronovo V, Ogbureke KUE, Fisher LW, Fedarko NS. Small integrin-binding ligand N-linked glycoproteins (SIBLINGs): multifunctional proteins in cancer. Nat Rev Cancer 2008; 8:212-26. [PMID: 18292776 PMCID: PMC2484121 DOI: 10.1038/nrc2345] [Citation(s) in RCA: 351] [Impact Index Per Article: 20.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Numerous components and pathways are involved in the complex interplay between cancer cells and their environment. The family of glycophosphoproteins comprising osteopontin, bone sialoprotein, dentin matrix protein 1, dentin sialophosphoprotein and matrix extracellular phosphoglycoprotein - small integrin-binding ligand N-linked glycoproteins (SIBLINGs) - are emerging as important players in many stages of cancer progression. From their detection in various human cancers to the demonstration of their key functional roles during malignant transformation, invasion and metastasis, the SIBLINGs are proteins with potential as diagnostic and prognostic tools, as well as new therapeutic targets.
Collapse
Affiliation(s)
- Akeila Bellahcène
- Metastasis Research Laboratory, University of Liege, Tour de Pathologie, -1, Bât. B23, Sart Tilman via 4000 Liège, Belgium
| | | | | | | | | |
Collapse
|
20
|
Feng JQ, Scott G, Guo D, Jiang B, Harris M, Ward T, Ray M, Bonewald LF, Harris SE, Mishina Y. Generation of a conditional null allele for Dmp1 in mouse. Genesis 2008; 46:87-91. [PMID: 18257058 DOI: 10.1002/dvg.20370] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
Dentin matrix protein1 (DMP1), highly conserved in humans and mice, is highly expressed in teeth, the skeleton, and to a lesser extent in nonskeletal tissues such as brain, kidney, and salivary gland. Pathologically, DMP1 is associated with several forms of cancers and with tumor-induced osteomalacia. Conventional disruption of the murine Dmp1 gene results in defects in dentin in teeth and in the skeleton, including hypophosphatemic rickets, and abnormalities in phosphate homeostasis. Human DMP1 mutations are responsible for the condition known as autosomal recessive hypophosphatemic rickets. For better understanding of the roles of DMP1 in different tissues at different stages of development and in pathological conditions, we generated Dmp1 floxed mice in which loxP sites flank exon 6 that encodes for over 80% of DMP1 protein. We demonstrate that Cre-mediated recombination using Sox2-Cre, a Cre line expressed in epiblast during early embryogenesis, results in early deletion of the gene and protein. These homozygous Cre-recombined null mice display an identical phenotype to conventional null mice. This animal model will be useful to reveal distinct roles of DMP1 in different tissues at different ages.
Collapse
Affiliation(s)
- Jian Q Feng
- Department of Biomedical Sciences, Baylor College of Dentistry, Texas A&M Health Science Center, Dallas, Texas 75246, USA.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
21
|
Ogbureke KUE, Nikitakis NG, Warburton G, Ord RA, Sauk JJ, Waller JL, Fisher LW. Up-regulation of SIBLING proteins and correlation with cognate MMP expression in oral cancer. Oral Oncol 2007; 43:920-32. [PMID: 17306612 DOI: 10.1016/j.oraloncology.2006.11.011] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2006] [Revised: 10/27/2006] [Accepted: 11/01/2006] [Indexed: 10/23/2022]
Abstract
Various combinations of the SIBLING family of proteins have been found to be up-regulated in many human cancers and have been linked to different stages of tumor progression, including metastasis. Bone sialoprotein (BSP), osteopontin (OPN) and dentin matrix protein 1 (DMP1) specifically bind and activate MMP-2, MMP-3, and MMP-9, respectively. These proteases have also been shown to play important roles in oral squamous cell carcinoma (OSCC) invasion and metastasis. However, with the exception of OPN, there are no reports on the expression of the family of five SIBLING proteins in OSCC. This study examines the expression patterns of the SIBLING family (and MMP partners when known) in OSCC, correlating expression to outcome variables. Archived paraffin sections of 87 cases of primary OSCC were screened by immunohistochemistry for the SIBLINGs and their MMP partners. Three SIBLINGs (BSP, DSPP, and OPN), were expressed in OSCC, while DMP1 and MEPE expression were never observed. Furthermore, BSP and OPN were always expressed with their known MMP partners, MMP-2 and MMP-3, respectively. Poorly differentiated tumors exhibited reduced or no immunoreactivity for BSP and OPN but increased immunoreactivity for DSPP. Seventy eight (90%) cases were positive for BSP and DSPP, while 79 cases (91%) were positive for OPN. Overall, 91% of the cases were positive for at least one SIBLING. There were no correlations between SIBLING expression and tumor size ("T"; of the Union Internationale Contre le Cancer [UICC]-TNM classification for OSCC), and between SIBLING expression and lymph node spread for the T1/T2 tumors. The levels of DSPP expression for floor of mouth and retromolar region tumors were higher than for tongue tumors. Statistically significant correlations were, however, found between the expression levels of BSP and MMP-2 (p<0.0001), BSP and MMP-3 (p<0.0001), and OPN and MMP-3 (p<0.0024). We conclude that BSP, DSPP, and OPN are highly up-regulated in OSCC. While the production of these SIBLINGs is independent of T, they correlate with oral location of tumor, cognate MMP expression, and for DSPP, the degree of tumor differentiation.
Collapse
Affiliation(s)
- Kalu U E Ogbureke
- Department of Oral Biology and Maxillofacial Pathology, AD1442, Medical College of Georgia, 1120 Fifteenth Avenue, Augusta, GA 30912, USA.
| | | | | | | | | | | | | |
Collapse
|
22
|
Bucciarelli E, Sidoni A, Bellezza G, Cavaliere A, Brachelente G, Costa G, Chaplet M, Castronovo V, Bellahcène A. Low dentin matrix protein 1 expression correlates with skeletal metastases development in breast cancer patients and enhances cell migratory capacity in vitro. Breast Cancer Res Treat 2006; 105:95-104. [PMID: 17136477 DOI: 10.1007/s10549-006-9436-0] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2006] [Accepted: 10/20/2006] [Indexed: 10/23/2022]
Abstract
Small integrin-binding ligand N-linked glycoproteins (SIBLINGs) constitute a family of extracellular matrix proteins involved in bone homeostasis. Their pattern of expression has been primarily reported in bone and tooth and, more recently, in several cancer types. Dentin matrix protein 1 (DMP1), a SIBLING family member, expression was investigated by immunohistochemistry in a retrospective series of 148 primary human breast cancers. Correlations between DMP1 expression levels in the tumors and clinicopathologic features, bone metastases development and relapse of the disease were examined. DMP1 was expressed by 63.5% of the breast tumors analyzed. Significant inverse associations were found between DMP1 expression levels and the size and grade of the tumors (both, P < 0.0001). High DMP1 expression levels in the primary breast lesions were associated with a lower risk of subsequent development of skeletal metastases (P = 0.009). Patients with tumors expressing high levels of DMP1 had a significantly higher disease-free survival rate than those with low DMP1-expressing tumors (P = 0.0062). When DMP1 expression was examined in breast cancer cell lines, we found that non invasive MCF-7 and T47-D cells expressed higher levels than highly invasive MDA-MB-231 and Hs578T cells. Moreover, the specific inhibition of DMP1 expression in MCF-7 cells using siRNAs promoted significantly their migratory capability. Our data implicate for the first time DMP1 expression in breast cancer progression and bone metastases development.
Collapse
Affiliation(s)
- E Bucciarelli
- Institute of Pathologic Anatomy and Histology, Perugia University, Policlinico Monteluce, Perugia, Italy
| | | | | | | | | | | | | | | | | |
Collapse
|
23
|
Karadag A, Fisher LW. Bone sialoprotein enhances migration of bone marrow stromal cells through matrices by bridging MMP-2 to alpha(v)beta3-integrin. J Bone Miner Res 2006; 21:1627-36. [PMID: 16995818 DOI: 10.1359/jbmr.060710] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
UNLABELLED BMSCs migrate through matrix barriers and differentiate into osteoblasts. BSP enhances osteogenic cell migration through basement membrane and collagen matrices in vitro by localizing MMP-2 on the cell surface through alpha(v)beta(3)-integrin. INTRODUCTION The specific mechanisms by which bone marrow stromal cells (BMSCs) leave their primary sites, move through matrices encountered during homing to their site of final differentiation, and remove preexisting matrices in preparation for bone matrix production are not well understood. MATERIALS AND METHODS The enhanced migration of human osteoblast precursor cells through matrix barriers by bone sialoprotein (BSP) was studied by a modified Boyden-chamber assay. The bridging of normally soluble matrix metalloproteinase 2 (MMP-2) to the cell surface receptor, alpha(v)beta(3)-integrin, by BSP was analyzed by flow cytometry. RESULTS BSP enhanced the in vitro passage of BMSCs and pre-osteoblasts through matrix barriers (Matrigel and denatured type I collagen) in a dose-dependent manner. An intact ArgGlyAsp (RGD) was required in the BSP for enhanced migration through the barriers but was not sufficient, as shown by the inactivity of two other SIBLING (Small Integrin-Binding LIgand, N-linked Glycoprotein) family members, osteopontin and dentin matrix protein-1. The specificity of the BSP enhancement activity was apparently caused by this molecule's ability to bridge MMP-2 to the cell surfaces. CONCLUSIONS Pre-osteoblasts and their BMSC precursors may use MMP-2/BSP/integrin complexes to disrupt matrix barriers during migration to their final destinations in vivo.
Collapse
Affiliation(s)
- Abdullah Karadag
- Craniofacial and Skeletal Diseases Branch, National Institute of Dental and Craniofacial Research, National Institutes of Health, Department of Health and Human Services, Bethesda, Maryland 20892-4320, USA
| | | |
Collapse
|
24
|
Zhang H, Niu Y, Feng J, Guo H, Ye X, Cui H. Use of proteomic analysis of endometriosis to identify different protein expression in patients with endometriosis versus normal controls. Fertil Steril 2006; 86:274-82. [PMID: 16750201 DOI: 10.1016/j.fertnstert.2006.01.028] [Citation(s) in RCA: 68] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2005] [Revised: 01/02/2006] [Accepted: 01/02/2006] [Indexed: 10/24/2022]
Abstract
OBJECTIVE To use proteomic techniques, including two-dimensional electrophoresis (2-DE), Western blot, and mass spectrometry, to screen and identify proteins that were expressed differently in patients with endometriosis versus normal controls. DESIGN First, we aimed to find a difference in the way serum and eutopic endometrial proteins were expressed in women with and without endometriosis. Second, we were interested in searching for endometriotic proteins, which were specifically recognized by sera from patients with endometriosis. SETTING Collaborative investigation in an academic research environment. PATIENT(S) Consenting women of reproductive age taking no medications and with laparoscopically proven endometriosis. INTERVENTION(S) Surgical excision of eutopic and ectopic endometrial biopsy and phlebotomization of patients with endometriosis and controls. MAIN OUTCOME MEASURE(S) Protein expression. RESULT(S) Thirteen protein spots from serum correlated with 11 known proteins and 11 protein spots from endometrium correlated with 11 known proteins were found differently expressed between women with and without endometriosis. Some proteins may be cytoskeletons, and some may be involved in the regulation of cell cycle, signal transduction, or immunological function. Three proteins, which were identified as vimentin, beta-actin, and ATP synthase beta subunit, hybridized significantly differently between endometriosis sera and normal sera. CONCLUSION(S) The data help to establish a human endometriosis proteome database and broaden our understanding of the pathogenesis of endometriosis. Further study of the proteins identified herein will assist in the eventual development of new diagnoses and treatments for endometriosis.
Collapse
Affiliation(s)
- Hong Zhang
- Gynecological Oncology Center, Peking University People's Hospital, Beijing, Peoples Republic of China
| | | | | | | | | | | |
Collapse
|
25
|
Lu Y, Zhang S, Xie Y, Pi Y, Feng JQ. Differential Regulation of Dentin Matrix Protein 1 Expression during Odontogenesis. Cells Tissues Organs 2006; 181:241-7. [PMID: 16612089 DOI: 10.1159/000091385] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
Dentin matrix protein 1 (DMP1) is highly expressed in mineralized tooth and bone. Both in vitro and in vivo data show that DMP1 is critical for mineralization and tooth morphogenesis (growth and development). In this study, we studied Dmp1 gene regulation. The in vitro transient transfection assay identified two important DNA fragments, the 2.4- and 9.6-kb promoter regions. We next generated and analyzed transgenic mice bearing the beta-galactosidase (lacZ) reporter gene driven by the 2.4- or 9.6-kb promoter with the complete 4-kb intron 1. The 9.6-kb Dmp1-lacZ mice conferred a DMP1 expression pattern in odontoblasts identical to that in the endogenous Dmp1 gene. This is reflected by lacZ expression in Dmp1-lacZ knock-in mice during all stages of odontogenesis. In contrast, the 2.4-kb Dmp1-lacZ mice display activity in odontoblast cells only at the early stage of odontogenesis. Thus, we propose that different transcription factors regulate early or later cis-regulatory domains of the Dmp1 promoter, which gives rise to the unique spatial and temporal expression pattern of Dmp1 gene at different stages of tooth development.
Collapse
Affiliation(s)
- Yongbo Lu
- Department of Oral Biology, School of Dentistry, University of Missouri-Kansas City, Kansas City, MO 64108, USA
| | | | | | | | | |
Collapse
|
26
|
Karadag A, Fedarko NS, Fisher LW. Dentin matrix protein 1 enhances invasion potential of colon cancer cells by bridging matrix metalloproteinase-9 to integrins and CD44. Cancer Res 2006; 65:11545-52. [PMID: 16357164 PMCID: PMC1350722 DOI: 10.1158/0008-5472.can-05-2861] [Citation(s) in RCA: 46] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
The up-regulation of various matrix metalloproteinases (MMP), certain cell receptors such as integrins and CD44, and the SIBLING family of integrin-binding glycophosphoproteins have been reported separately and in various combinations for many types of tumors. The mechanisms by which these different proteins may be interacting and enhancing the ability of a cancer cell to survive and metastasize have become an interesting issue in cancer biology. Dentin matrix protein 1 (DMP1) has been known for a number of years to bind to CD44 and ArgGlyAsp sequence-dependent integrins. This SIBLING was recently shown to be able to specifically bind and activate proMMP-9 and to make MMP-9 much less sensitive to inhibition by tissue inhibitors of metalloproteinases and synthetic inhibitors. In this study, we used a modified Boyden chamber assay to show that DMP1 enhanced the invasiveness of the MMP-9 expressing colon cancer cell line, SW480, through Matrigel in a dose-dependant manner. DMP1 (100 nmol/L) increased invasion 4-fold over controls (86.1 +/- 13.9 versus 22.3 +/- 9.8, P < 0.001). The enhanced invasive potential required the presence of MMP-9 and at least one of the cell surface receptors, CD44, alpha(v)beta(3), or alpha(v)beta(5) integrin. The bridging of MMP-9 to the cell surface receptors was shown by both pull-down and fluorescence activated cell sorting experiments. Because all of these proteins were also shown by immunohistochemistry to be expressed in serial sections of a colon adenocarcinoma, we have hypothesized that the MMP-9/DMP1/cell surface complexes observed to enhance cell invasion in vitro may be aiding metastatic events in vivo.
Collapse
Affiliation(s)
- Abdullah Karadag
- Craniofacial & Skeletal Diseases Branch, National Institute of Dental and Craniofacial Research, National Institutes of Health, Department of Health and Human Services, Bethesda, MD, U.S.A
| | - Neal S. Fedarko
- Craniofacial & Skeletal Diseases Branch, National Institute of Dental and Craniofacial Research, National Institutes of Health, Department of Health and Human Services, Bethesda, MD, U.S.A
- Division of Geriatrics, Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, MD, U.S.A
| | - Larry W. Fisher
- Craniofacial & Skeletal Diseases Branch, National Institute of Dental and Craniofacial Research, National Institutes of Health, Department of Health and Human Services, Bethesda, MD, U.S.A
- Address correspondence to: Larry W. Fisher, Ph.D., 9000 Rockville Pike, Building 30, Room 228, Craniofacial and Skeletal Diseases Branch, National Institute of Dental and Craniofacial Research, NIH, DHHS, Bethesda, MD 20892-4320, Tel: 301-496-5769, Fax: 301-402-0824,
| |
Collapse
|
27
|
Ling Y, Rios HF, Myers ER, Lu Y, Feng JQ, Boskey AL. DMP1 depletion decreases bone mineralization in vivo: an FTIR imaging analysis. J Bone Miner Res 2005; 20:2169-77. [PMID: 16294270 PMCID: PMC1456072 DOI: 10.1359/jbmr.050815] [Citation(s) in RCA: 144] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/12/2005] [Revised: 07/28/2005] [Accepted: 08/15/2005] [Indexed: 01/29/2023]
Abstract
UNLABELLED The role of DMP1 in mineralization was analyzed by comparing bone mineral and matrix properties in dmp1-null female mice to heterozygous and wildtype controls by FTIR imaging spectroscopy. The observed decreased mineral content in dmp1 null mice indicates a key role for dmp1 in bone mineralization. Indirect effects of DMP1 on other systems also determine the KO phenotype. INTRODUCTION Dentin matrix protein 1 (DMP1), an acidic phosphorylated extracellular matrix protein, is highly expressed in mineralized tissues. In vitro, DMP1 peptides can promote or inhibit mineralization depending on the extent of phosphorylation, the peptide size, and concentration. To clarify the biological function of DMP1 protein on in vivo mineralization, this study analyzed bone properties of dmp1 knockout (KO) mice compared with heterozygous (HET) and wildtype (WT) controls. MATERIALS AND METHODS Tibias from dmp1 KO and age-, sex-, and background-matched HET and WT mice at 4 and 16 weeks (N(total) = 60) were examined by Fourier transform infrared imaging (FTIRI), histology (n = 6 per genotype and age; N = 36), and geometry by muCT (n = 4 per genotype and age; N = 24). Serum ionic calcium and phosphate concentrations were also determined. RESULTS The mineral-to-matrix ratios (spectroscopic parameter of relative mineral content) were significantly lower in dmp1 KO mice tibias compared with WT and HET at 4 and 16 weeks. The mineral crystallinity (crystal size/perfection) was significantly increased in dmp1 KO and HET mice relative to WT. Collagen cross-link ratios (a spectroscopic parameter related to the relative amounts of nonreducible/reducible collagen cross-links) in dmp1 KO were not significantly different from WT and HET. Based on muCT, cortical bone cross-sectional areas at 16 but not 4 weeks were significantly reduced in the KO compared with controls. Maximum, minimum, and polar cross-sectional moments of inertia were significantly lower in dmp1 KO than in HET at 16 weeks but not at 4 weeks. Histological analysis and muCT 3-D images suggested that dmp1 KO mice had osteomalacia. Dmp1 KO mice had significantly lower ionic calcium and phosphate concentrations relative to WT, whereas in the HET, values for phosphate were equivalent, and calcium values were decreased relative to WT values. CONCLUSIONS The findings of decreased mineral-to-matrix ratio and increased crystal size in bones of dmp1 KO mice suggest that DMP1 has multiple roles (both direct and indirect) in the regulation of postnatal mineralization. We suggest that direct effects on mineral formation, crystal growth, and indirect effects on regulation of Ca x P concentrations and matrix turnover all contribute to the dominant phenotype in the dmp1 KO mouse.
Collapse
Affiliation(s)
- Yunfeng Ling
- Musculoskeletal Integrity Program, Hospital for Special Surgery, New York, New York, USA
| | - Hector F Rios
- Department of Oral Biology, School of Dentistry, University of Missouri-Kansas City, Kansas City, Missouri, USA
| | - Elizabeth R Myers
- Musculoskeletal Integrity Program, Hospital for Special Surgery, New York, New York, USA
| | - Yongbo Lu
- Department of Oral Biology, School of Dentistry, University of Missouri-Kansas City, Kansas City, Missouri, USA
| | - Jian Q Feng
- Department of Oral Biology, School of Dentistry, University of Missouri-Kansas City, Kansas City, Missouri, USA
| | - Adele L Boskey
- Musculoskeletal Integrity Program, Hospital for Special Surgery, New York, New York, USA
| |
Collapse
|
28
|
Fisher LW, Jain A, Tayback M, Fedarko NS. Small integrin binding ligand N-linked glycoprotein gene family expression in different cancers. Clin Cancer Res 2005; 10:8501-11. [PMID: 15623631 DOI: 10.1158/1078-0432.ccr-04-1072] [Citation(s) in RCA: 95] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
PURPOSE Members of the small integrin binding ligand N-linked glycoprotein (SIBLING) gene family have the capacity to bind and modulate the activity of matrix metalloproteinases (MMPs). The expression levels of five SIBLING gene family members [bone sialoprotein (BSP), osteopontin (OPN), dentin matrix protein 1 (DMP1), matrix extracellular phosphoglycoprotein (MEPE), and dentin sialophosphoprotein (DSPP)] and certain MMPs were determined using a commercial cancer array. EXPERIMENTAL DESIGN Cancer profiling arrays containing normalized cDNA from both tumor and corresponding normal tissues from 241 individual patients were used to screen for SIBLING and MMP expression in nine distinct cancer types. RESULTS Significantly elevated expression levels were observed for BSP in cancer of the breast, colon, stomach, rectum, thyroid, and kidney; OPN in cancer of the breast, uterus, colon, ovary, lung, rectum, and thyroid; DMP1 in cancer of the breast, uterus, colon, and lung; and dentin sialophosphoprotein in breast and lung cancer. The degree of correlation between a SIBLING and its partner MMP was found to be significant within a given cancer type (e.g., BSP and MMP-2 in colon cancer, OPN and MMP-3 in ovarian cancer; DMP1 and MMP-9 in lung cancer). The expression levels of SIBLINGs were distinct within subtypes of cancer (e.g., breast ductal tumors compared with lobular tumors). In general, SIBLING expression increased with cancer stage for breast, colon, lung, and rectal cancer. CONCLUSIONS These results suggest SIBLINGs as potential markers of early disease progression in a number of different cancer types, some of which currently lack vigorous clinical markers.
Collapse
Affiliation(s)
- Larry W Fisher
- Craniofacial and Skeletal Diseases Branch, National Institute of Dental and Craniofacial Research, National Institutes of Health, Department of Health and Human Services, Bethesda, Maryland, USA
| | | | | | | |
Collapse
|
29
|
Chaplet M, Waltregny D, Detry C, Fisher LW, Castronovo V, Bellahcène A. Expression of dentin sialophosphoprotein in human prostate cancer and its correlation with tumor aggressiveness. Int J Cancer 2005; 118:850-6. [PMID: 16108038 DOI: 10.1002/ijc.21442] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
Recent studies have demonstrated that two SIBLING family members, bone sialoprotein (BSP) and osteopontin (OPN), are overexpressed in human prostate cancer. The expression of these proteins is associated with the acquisition of a metastatic phenotype by cancer cells and a poor prognosis for the patient. Dentin sialophosphoprotein (DSPP) shares several structural and genetic features with OPN and BSP. The presence of DSPP has been recently established in salivary glands, indicating that its expression is not restricted to mineralized tissues. However, its potential expression in human tumors has not been addressed yet. In this study, we sought to evaluate the expression of DSPP in human prostate cancer. Immunohistochemistry was performed on 69 prostate cancer specimens using LFMb-21 anti-DSPP monoclonal antibody. All of the prostate cancer lesions examined expressed detectable levels of DSPP, as compared with no or low level of expression in adjacent normal glands (p < 0.0001). High grade prostatic intraepithelial neoplasia (HGPIN) glands generally displayed DSPP expression levels that were similar to those found in neighboring cancer glands. DSPP expression was significantly associated with the pathological stage (p = 0.0087) and the Gleason score (p = 0.0176) of the tumors. Western Blot was performed on 5 representative prostate tumor extracts and 3 prostatic tumor cell lines (PC3, LNCaP and DU145). All tumor extracts and cell lines analyzed have been found to express DSPP. In addition, in situ hybridization was used to assess the presence of DSPP mRNA. DSPP was detected at the RNA level in both HGPIN and tumoral glands. This study shows for the first time that DSPP is ectopically expressed in human prostate cancer. The expression of this SIBLING protein strongly correlates with conventional histopathological prognostic indicators of prostate cancer progression.
Collapse
Affiliation(s)
- Michaël Chaplet
- Metastasis Research Laboratory, Center of Experimental Cancer Research, University of Liège, 4000 Liège, Belgium
| | | | | | | | | | | |
Collapse
|
30
|
Jadlowiec J, Koch H, Zhang X, Campbell PG, Seyedain M, Sfeir C. Phosphophoryn regulates the gene expression and differentiation of NIH3T3, MC3T3-E1, and human mesenchymal stem cells via the integrin/MAPK signaling pathway. J Biol Chem 2004; 279:53323-30. [PMID: 15371433 DOI: 10.1074/jbc.m404934200] [Citation(s) in RCA: 123] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Extracellular matrix proteins (ECMs) serve as both a structural support for cells and a dynamic biochemical network that directs cellular activities. ECM proteins such as those of the SIBLING family (small integrin-binding ligand glycoprotein) could possess inherent growth factor activity. In this study, we demonstrate that exon 5 of dentin matrix protein 3 (phosphophoryn (PP)), a non-collagenous dentin ECM protein and SIBLING protein family member, up-regulates osteoblast marker genes in primary human adult mesenchymal stem cells (hMSCs), a mouse osteoblastic cell line (MC3T3-E1), and a mouse fibroblastic cell line (NIH3T3). Quantitative real-time PCR technology was used to quantify gene expression levels of bone markers such as Runx2, Osx (Osterix), bone/liver/kidney Alp (alkaline phosphatase), Ocn (osteocalcin), and Bsp (bone sialoprotein) in response to recombinant PP and stably transfected PP. PP up-regulated Runx2, Osx, and Ocn gene expression. PP increased OCN protein production in hMSCs and MC3T3-E1. ALP activity and calcium deposition was increased by PP in hMSC. Furthermore, an alpha(v)beta(3) integrin-blocking antibody significantly inhibited recombinant PP-induced expression of Runx2 in hMSCs, suggesting that signaling by PP is mediated through the integrin pathway. PP was also shown to activate p38, ERK1/2, and JNK, three components of the MAPK pathway. These data demonstrate a novel signaling function for PP in cell differentiation beyond the hypothesized role of PP in biomineralization.
Collapse
Affiliation(s)
- Julie Jadlowiec
- Department of Oral Medicine and Pathology, School of Dental Medicine, University of Pittsburgh, 3501 Terrace St., Pittsburgh, PA 15261-1964, USA
| | | | | | | | | | | |
Collapse
|
31
|
Abstract
Three members of the SIBLING family of integrin-binding phosphoglycoproteins (bone sialoprotein, BSP; osteopontin, OPN; and dentin matrix protein-1, DMP1) were recently shown to bind with high affinity (nM) and to activate 3 different matrix metalloproteinases (MMP-2, MMP-3, and MMP-9, respectively) in vitro. The current study was designed to document the possible biological relevance of the SIBLING-MMP activation pathway in vivo by showing that these 3 SIBLINGs and their known MMP partners are co-expressed in normal adult tissue. BSP, OPN, and DMP1 were invariably co-expressed with their partner MMPs in salivary glands of humans and mice. The 2 SIBLING proteins without known MMP partners, dentin sialophosphoprotein (DSPP) and matrix extracellular phosphoglycoprotein (MEPE), were also expressed in salivary glands. Expression of all SIBLINGs in this normal, non-mineralizing epithelial tissue suggests that they serve at least one function in vivo other than directly promoting matrix mineralization--a function we hypothesize involves local activation of MMPs.
Collapse
Affiliation(s)
- K U E Ogbureke
- Craniofacial and Skeletal Diseases Branch, Building 30, Room 228, National Institute of Dental and Craniofacial Research, National Institutes of Health, DHHS, 9000 Rockville Pike, Bethesda, MD 20892-4320, USA
| | | |
Collapse
|
32
|
Karadag A, Ogbureke KUE, Fedarko NS, Fisher LW. Bone Sialoprotein, Matrix Metalloproteinase 2, and v 3 Integrin in Osteotropic Cancer Cell Invasion. J Natl Cancer Inst 2004; 96:956-65. [PMID: 15199115 DOI: 10.1093/jnci/djh169] [Citation(s) in RCA: 85] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
BACKGROUND Bone sialoprotein (BSP) interacts separately with both matrix metalloproteinase 2 (MMP-2) and integrin alpha(v)beta3 and is overexpressed in many metastatic tumors. Its role in tumor biology, however, remains unclear. We investigated whether BSP enhances cancer cell invasiveness by forming a trimolecular complex with MMP-2 and cell-surface integrin alpha(v)beta3. METHODS Invasiveness of breast, prostate, lung, and thyroid tumor cell lines was measured with a modified Boyden chamber assay. Binding and co-localization of BSP, MMP-2, and integrin alpha(v)beta3 were investigated with immunoprecipitation and in situ hybridization. All statistical tests were two-sided. RESULTS Treatment with BSP increased invasiveness of many breast, prostate, lung, and thyroid cancer cells through Matrigel in a dose-dependent manner. BSP at 50 nM increased the invasiveness of SW-579 thyroid cancer cells (95.2 units, 95% confidence interval [CI] = 90.4 to 100 units) by approximately 10-fold compared with that of untreated control SW-579 cells (9.1 units, 95% CI = 5.7 to 12.5 units) (P<.001). Addition of an inactive mutated BSP, in which BSP's integrin-binding RGD tripeptide was altered, or addition of integrin alpha(v)beta3-blocking antibodies resulted in invasiveness equivalent to that of untreated cells. Inhibiting cellular MMP-2 activity with chemical inhibitors or a specific antibody also blocked BSP-enhanced invasiveness. Osteopontin and dentin matrix protein 1, proteins related to BSP that also bind integrin alpha(v)beta3 and form complexes with other MMPs (but not MMP-2), did not enhance invasiveness. Immunoprecipitation showed that a complex containing BSP, integrin alpha(v)beta3, and MMP-2 formed in vitro. Addition of BSP increased the amount of MMP-2 bound by cells in an integrin-dependent fashion. Co-expression of BSP, integrin alpha(v)beta3, and MMP-2 in papillary thyroid carcinoma cells was shown by in situ hybridization. CONCLUSION Cancer cells appear to become more invasive when BSP forms a cell-surface trimolecular complex by linking MMP-2 to integrin alpha(v)beta3.
Collapse
Affiliation(s)
- Abdullah Karadag
- Craniofacial and Skeletal Diseases Branch, National Institute of Dental and Craniofacial Research, National Institutes of Health, Department of Health and Human Services, Bethesda, MD 20892-4320, USA.
| | | | | | | |
Collapse
|
33
|
Tartaix PH, Doulaverakis M, George A, Fisher LW, Butler WT, Qin C, Salih E, Tan M, Fujimoto Y, Spevak L, Boskey AL. In Vitro Effects of Dentin Matrix Protein-1 on Hydroxyapatite Formation Provide Insights into in Vivo Functions. J Biol Chem 2004; 279:18115-20. [PMID: 14769788 DOI: 10.1074/jbc.m314114200] [Citation(s) in RCA: 148] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Dentin matrix protein-1 (DMP1) is a mineralized tissue matrix protein synthesized by osteoblasts, hypertrophic chondrocytes, and ameloblasts as well as odontoblasts. DMP1 is believed to have multiple in vivo functions, acting both as a signaling molecule and a regulator of biomineralization. Using a cell-free system in vitro, we evaluated the action of DMP1 in the regulation of hydroxylapatite (HA) formation and crystal growth. The non-phosphorylated recombinant protein acted as an HA nucleator, increasing the amount of mineral formed in a gelatin gel HA growth system relative to protein-free controls. The recombinant protein phosphorylated in vitro had no detectable effect on HA formation and growth. In contrast, phosphorylated bovine DMP1 expressed in marrow stromal cells with an adenovirus vector containing 29.7 phosphates/mol was an effective inhibitor of HA formation and growth. The native full-length protein appeared to be absent or present in only small amounts in the extracellular matrix of bones and teeth. However, two highly phosphorylated fragments representing the N- and C-terminal portions of DMP1 have been identified, apparently arising from proteolytic cleavage of four X-Asp bonds. The highly phosphorylated C-terminal 57-kDa fragment (containing 42 phosphates/mol), like the non-phosphorylated DMP1, was an HA nucleator. These data suggest that, in its native form, DMP1 inhibits mineralization, but when cleaved or dephosphorylated, it initiates mineralization. These in vitro data are consistent with the findings in the DMP1 knockout mouse.
Collapse
Affiliation(s)
- Philippe H Tartaix
- Columbia University School of Dental and Oral Surgery, New York, New York 10032, USA
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
34
|
Fedarko NS, Jain A, Karadag A, Fisher LW. Three small integrin‐binding ligand N‐linked glycoproteins (SIBLINGs) bind and activate specific matrix metalloproteinases. FASEB J 2004; 18:734-6. [PMID: 14766790 DOI: 10.1096/fj.03-0966fje] [Citation(s) in RCA: 165] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Matrix metalloproteinases (MMPs) are critical for development, wound healing, and for the progression of cancer. It is generally accepted that MMPs are secreted in a latent form (proMMP) and are activated only upon removal of their inhibitory propeptides. This report shows that three members of the SIBLING (Small, Integrin-Binding LIgand, N-linked Glycoprotein) family can specifically bind (Kd approximately equal nM) and activate three different MMPs. Binding of SIBLING to their corresponding proMMPs is associated with structural changes as indicated by quenching of intrinsic tryptophan fluorescence, increased susceptibility to plasmin cleavage, and decreased inhibition by specific natural and synthetic inhibitors. Activation includes both making the proMMPs enzymatically active and the reactivation of the TIMP (tissue inhibitors of MMP) inhibited MMPs. Bone sialoprotein specifically binds proMMP-2 and active MMP-2, while osteopontin binds proMMP-3 and active MMP-3, and dentin matrix protein-1 binds proMMP-9 and active MMP-9. Both pro and active MMP-SIBLING complexes are disrupted by the abundant serum protein, complement Factor H, thereby probably limiting SIBLING-mediated activation to regions immediately adjacent to sites of secretion in vivo. These data suggest that the SIBLING family offers an alternative method of controlling the activity of at least three MMPs.
Collapse
Affiliation(s)
- Neal S Fedarko
- Division of Geriatrics, Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA.
| | | | | | | |
Collapse
|