1
|
Chen K, Abbasi N, Wong A, Bizheva K. In vivo, contactless, cellular resolution imaging of the human cornea with Powell lens based line field OCT. Sci Rep 2024; 14:22553. [PMID: 39343797 PMCID: PMC11439927 DOI: 10.1038/s41598-024-73402-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2024] [Accepted: 09/17/2024] [Indexed: 10/01/2024] Open
Abstract
Potentially blinding corneal diseases alter the morphology of the human cornea. At the early stages of disease development, these changes occur at the cellular level. The ability to visualize and quantify such changes can lead to early diagnostics of corneal pathologies, which is pivotal for the long-term preservation of vision. Here we present a Powell Lens-based Line-Field Optical Coherence Tomography system that combines high spatial resolution (2.4 μm × 2.2 μm × 1.7 μm (x × y × z)) in biological tissue, sufficient to resolve individual cells, high sensitivity (90.5 dB), sufficient to image the semi-transparent human cornea, and fast image acquisition rate (~ 2,400 fps), sufficient to suppress most involuntary eye motion artifacts and allow for contactless, in-vivo imaging of the cellular structure of the human cornea. Volumetric images acquired in-vivo from corneas of healthy subjects show epithelial, endothelial and keratocytes cells, as well as sub-basal and stromal nerves. The system's high axial resolution also allows for volumetric morphometry of the corneal endothelium, Descemet's membrane and the pre-Descemet's (Dua) layer.
Collapse
Affiliation(s)
- Keyu Chen
- Department of Physics and Astronomy, University of Waterloo, Waterloo, Canada
| | - Nima Abbasi
- Systems Design Engineering Department, University of Waterloo, Waterloo, Canada
| | - Alexander Wong
- Systems Design Engineering Department, University of Waterloo, Waterloo, Canada
| | - Kostadinka Bizheva
- Department of Physics and Astronomy, University of Waterloo, Waterloo, Canada.
- Systems Design Engineering Department, University of Waterloo, Waterloo, Canada.
- School of Optometry and Vision Sciences, University of Waterloo, Waterloo, Canada.
| |
Collapse
|
2
|
Iyer RR, Yang L, Sorrells JE, Chaney EJ, Spillman DR, Boppart SA. Dispersion mismatch correction for evident chromatic anomaly in low coherence interferometry. APL PHOTONICS 2024; 9:076114. [PMID: 39072189 PMCID: PMC11273218 DOI: 10.1063/5.0207414] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/07/2024] [Accepted: 07/02/2024] [Indexed: 07/30/2024]
Abstract
The applications of ultrafast optics to biomedical microscopy have expanded rapidly in recent years, including interferometric techniques like optical coherence tomography and microscopy (OCT/OCM). The advances of ultra-high resolution OCT and the inclusion of OCT/OCM in multimodal systems combined with multiphoton microscopy have marked a transition from using pseudo-continuous broadband sources, such as superluminescent diodes, to ultrafast supercontinuum optical sources. We report anomalies in the dispersion profiles of low-coherence ultrafast pulses through long and non-identical arms of a Michelson interferometer that are well beyond group delay or third-order dispersions. This chromatic anomaly worsens the observed axial resolution and causes fringe artifacts in the reconstructed tomograms in OCT/OCM using traditional algorithms. We present DISpersion COmpensation Techniques for Evident Chromatic Anomalies (DISCOTECA) as a universal solution to address the problem of chromatic dispersion mismatch in interferometry, especially with ultrafast sources. First, we demonstrate the origin of these artifacts through the self-phase modulation of ultrafast pulses due to focusing elements in the beam path. Next, we present three solution paradigms for DISCOTECA: optical, optoelectronic, and computational, along with quantitative comparisons to traditional methods to highlight the improvements to the dynamic range and axial profile. We explain the piecewise reconstruction of the phase mismatch between the arms of the spectral-domain interferometer using a modified short-term Fourier transform algorithm inspired by spectroscopic OCT. Finally, we present a decision-making guide for evaluating the utility of DISCOTECA in interferometry and for the artifact-free reconstruction of OCT images using an ultrafast supercontinuum source for biomedical applications.
Collapse
Affiliation(s)
| | | | | | | | | | - Stephen A. Boppart
- Author to whom correspondence should be addressed: . Tel.: (217) 244-7479
| |
Collapse
|
3
|
Iyer RR, Žurauskas M, Rao Y, Chaney EJ, Boppart SA. Bichromatic tetraphasic full-field optical coherence microscopy. JOURNAL OF BIOMEDICAL OPTICS 2024; 29:S22704. [PMID: 38584966 PMCID: PMC10996847 DOI: 10.1117/1.jbo.29.s2.s22704] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/03/2023] [Revised: 02/29/2024] [Accepted: 03/05/2024] [Indexed: 04/09/2024]
Abstract
Significance Full-field optical coherence microscopy (FF-OCM) is a prevalent technique for backscattering and phase imaging with epi-detection. Traditional methods have two limitations: suboptimal utilization of functional information about the sample and complicated optical design with several moving parts for phase contrast. Aim We report an OCM setup capable of generating dynamic intensity, phase, and pseudo-spectroscopic contrast with single-shot full-field video-rate imaging called bichromatic tetraphasic (BiTe) full-field OCM with no moving parts. Approach BiTe OCM resourcefully uses the phase-shifting properties of anti-reflection (AR) coatings outside the rated bandwidths to create four unique phase shifts, which are detected with two emission filters for spectroscopic contrast. Results BiTe OCM overcomes the disadvantages of previous FF-OCM setup techniques by capturing both the intensity and phase profiles without any artifacts or speckle noise for imaging scattering samples in three-dimensional (3D). BiTe OCM also utilizes the raw data effectively to generate three complementary contrasts: intensity, phase, and color. We demonstrate BiTe OCM to observe cellular dynamics, image live, and moving micro-animals in 3D, capture the spectroscopic hemodynamics of scattering tissues along with dynamic intensity and phase profiles, and image the microstructure of fall foliage with two different colors. Conclusions BiTe OCM can maximize the information efficiency of FF-OCM while maintaining overall simplicity in design for quantitative, dynamic, and spectroscopic characterization of biological samples.
Collapse
Affiliation(s)
- Rishyashring R. Iyer
- University of Illinois Urbana-Champaign, Beckman Institute for Advanced Science and Technology, Urbana, Illinois, United States
- University of Illinois Urbana-Champaign, Department of Electrical and Computer Engineering, Urbana, Illinois, United States
| | - Mantas Žurauskas
- University of Illinois Urbana-Champaign, Beckman Institute for Advanced Science and Technology, Urbana, Illinois, United States
| | - Yug Rao
- University of Illinois Urbana-Champaign, Beckman Institute for Advanced Science and Technology, Urbana, Illinois, United States
- University of Illinois Urbana-Champaign, Department of Electrical and Computer Engineering, Urbana, Illinois, United States
| | - Eric J. Chaney
- University of Illinois Urbana-Champaign, Beckman Institute for Advanced Science and Technology, Urbana, Illinois, United States
| | - Stephen A. Boppart
- University of Illinois Urbana-Champaign, Beckman Institute for Advanced Science and Technology, Urbana, Illinois, United States
- University of Illinois Urbana-Champaign, Department of Electrical and Computer Engineering, Urbana, Illinois, United States
- University of Illinois Urbana-Champaign, Department of Bioengineering, Urbana, Illinois, United States
- University of Illinois Urbana Champaign, NIH/NIBIB P41 Center for Label-free Imaging and Multiscale Biophotonics (CLIMB), Urbana, Illinois, United States
- University of Illinois Urbana-Champaign, Cancer Center at Illinois, Urbana, Illinois, United States
- University of Illinois Urbana-Champaign, Carle Illinois College of Medicine, Urbana, Illinois, United States
| |
Collapse
|
4
|
Fei K, Luo Z, Chen Y, Huang Y, Li S, Mazlin V, Boccara AC, Yuan J, Xiao P. Cellular structural and functional imaging of donor and pathological corneas with label-free dual-mode full-field optical coherence tomography. BIOMEDICAL OPTICS EXPRESS 2024; 15:3869-3888. [PMID: 38867788 PMCID: PMC11166435 DOI: 10.1364/boe.525116] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/28/2024] [Revised: 05/10/2024] [Accepted: 05/14/2024] [Indexed: 06/14/2024]
Abstract
In this study, a dual-mode full-field optical coherence tomography (FFOCT) was customized for label-free static and dynamic imaging of corneal tissues, including donor grafts and pathological specimens. Static images effectively depict relatively stable structures such as stroma, scar, and nerve fibers, while dynamic images highlight cells with active intracellular metabolism, specifically for corneal epithelial cells. The dual-mode images complementarily demonstrate the 3D microstructural features of the cornea and limbus. Dual-modal imaging reveals morphological and functional changes in corneal epithelial cells without labeling, indicating cellular apoptosis, swelling, deformation, dynamic signal alterations, and distinctive features of inflammatory cells in keratoconus and corneal leukoplakia. These findings propose dual-mode FFOCT as a promising technique for cellular-level cornea and limbus imaging.
Collapse
Affiliation(s)
- Keyi Fei
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Guangzhou 510060, China
| | - Zhongzhou Luo
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Guangzhou 510060, China
| | - Yupei Chen
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Guangzhou 510060, China
| | - Yuancong Huang
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Guangzhou 510060, China
| | - Saiqun Li
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Guangzhou 510060, China
| | - Viacheslav Mazlin
- Institut Langevin, ESPCI Paris, PSL Research University, CNRS, 1 rue Jussieu, Paris 75005, France
| | - Albert Claude Boccara
- Institut Langevin, ESPCI Paris, PSL Research University, CNRS, 1 rue Jussieu, Paris 75005, France
| | - Jin Yuan
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Guangzhou 510060, China
| | - Peng Xiao
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Guangzhou 510060, China
| |
Collapse
|
5
|
Mao W, Bui HTD, Cho W, Yoo HS. Spectroscopic techniques for monitoring stem cell and organoid proliferation in 3D environments for therapeutic development. Adv Drug Deliv Rev 2023; 201:115074. [PMID: 37619771 DOI: 10.1016/j.addr.2023.115074] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2023] [Revised: 07/22/2023] [Accepted: 08/20/2023] [Indexed: 08/26/2023]
Abstract
Spectroscopic techniques for monitoring stem cell and organoid proliferation have gained significant attention in therapeutic development. Spectroscopic techniques such as fluorescence, Raman spectroscopy, and infrared spectroscopy offer noninvasive and real-time monitoring of biochemical and biophysical changes that occur during stem cell and organoid proliferation. These techniques provide valuable insight into the underlying mechanisms of action of potential therapeutic agents, allowing for improved drug discovery and screening. This review highlights the importance of spectroscopic monitoring of stem cell and organoid proliferation and its potential impact on therapeutic development. Furthermore, this review discusses recent advances in spectroscopic techniques and their applications in stem cell and organoid research. Overall, this review emphasizes the importance of spectroscopic techniques as valuable tools for studying stem cell and organoid proliferation and their potential to revolutionize therapeutic development in the future.
Collapse
Affiliation(s)
- Wei Mao
- Department of Biomedical Materials Engineering, Kangwon National University, Chuncheon 24341, Republic of Korea; Institute for Molecular Science and Fusion Technology, Kangwon National University, Chuncheon 24341, Republic of Korea
| | - Hoai-Thuong Duc Bui
- Department of Biomedical Materials Engineering, Kangwon National University, Chuncheon 24341, Republic of Korea
| | - Wanho Cho
- Department of Biomedical Materials Engineering, Kangwon National University, Chuncheon 24341, Republic of Korea
| | - Hyuk Sang Yoo
- Department of Biomedical Materials Engineering, Kangwon National University, Chuncheon 24341, Republic of Korea; Institute for Molecular Science and Fusion Technology, Kangwon National University, Chuncheon 24341, Republic of Korea; Institue of Biomedical Science, Kangwon National University, Chuncheon 24341, Republic of Korea; Kangwon Radiation Convergence Research Support Center, Kangwon National University, Chuncheon 24341, Republic of Korea.
| |
Collapse
|
6
|
Puyo L, Pfäffle C, Spahr H, Franke J, Bublitz D, Hillmann D, Hüttmann G. Diffuse-illumination holographic optical coherence tomography. OPTICS EXPRESS 2023; 31:33500-33517. [PMID: 37859131 DOI: 10.1364/oe.498654] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/23/2023] [Accepted: 09/11/2023] [Indexed: 10/21/2023]
Abstract
Holographic optical coherence tomography (OCT) is a powerful imaging technique, but its ability to reveal low-reflectivity features is limited. In this study, we performed holographic OCT by incoherently averaging volumes with changing diffuse illumination of numerical aperture (NA) equal to the detection NA. While the reduction of speckle from singly scattered light is only modest, we discovered that speckle from multiply scattered light can be arbitrarily reduced, resulting in substantial improvements in image quality. This technique also offers the advantage of suppressing noises arising from spatial coherence, and can be implemented with a partially spatially incoherent light source for further mitigation of multiple scattering. Finally, we show that although holographic reconstruction capabilities are increasingly lost with decreasing spatial coherence, they can be retained over an axial range sufficient to standard OCT applications.
Collapse
|
7
|
Rutkauskas D, Auksorius E. Time-domain full-field optical coherence tomography with digital confocal line scanning. OPTICS LETTERS 2023; 48:3539-3542. [PMID: 37390175 DOI: 10.1364/ol.488431] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/21/2023] [Accepted: 05/23/2023] [Indexed: 07/02/2023]
Abstract
Full-field optical coherence tomography (FF-OCT) is a camera-based interferometric microscopy technique that can image deep in tissue with high spatial resolution. However, the absence of confocal gating leads to suboptimal imaging depth. Here, we implement digital confocal line scanning in time-domain FF-OCT by exploiting the row-by-row detection feature of a rolling-shutter camera. A digital micromirror device (DMD) is used in conjunction with the camera to produce synchronized line illumination. An improvement in the SNR by an order of magnitude is demonstrated on a sample of a US Air Force (USAF) target mounted behind a scattering layer.
Collapse
|
8
|
Zheng W, Kou SS, Sheppard CJR, Roy M. Advancing full-field metrology: rapid 3D imaging with geometric phase ferroelectric liquid crystal technology in full-field optical coherence microscopy. BIOMEDICAL OPTICS EXPRESS 2023; 14:3433-3445. [PMID: 37497495 PMCID: PMC10368045 DOI: 10.1364/boe.488806] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/03/2023] [Revised: 05/30/2023] [Accepted: 05/31/2023] [Indexed: 07/28/2023]
Abstract
Optical coherence microscopy (OCM) is a variant of OCT in which a high-numerical aperture lens is used. Full-field OCM (FF-OCM) is an emerging non-invasive, label-free, interferometric technique for imaging of surface structures or semi-transparent biomedical subjects with micron-scale resolutions. Different approaches to three dimensional full-field optical metrology are reviewed. The usual method for the phase-shifting technique in FF-OCM involves mechanically moving a mirror to change the optical path difference for obtaining en-face OCM images. However, with the use of a broadband source in FF-OCM, the phase shifts of different spectral components are not the same, resulting in the ambiguities in 3D image reconstruction. In this study, we demonstrate, by imaging tissues and cells, a unique geometric phase-shifter based on ferroelectric liquid crystal technology, to realize achromatic phase-shifting for rapid three-dimensional imaging in a FF-OCM system.
Collapse
Affiliation(s)
- Wei Zheng
- Department of Biomedical Engineering, National University of Singapore, Singapore 117576, Singapore
| | - Shan S. Kou
- Chemistry and Physics, La Trobe University, Bundoora, Victoria 3083, Australia
| | - Colin J. R. Sheppard
- Nanoscopy and NIC@IIT, Istituto Italiano di Tecnologia, Via Enrico Melen, 83 Edificio B, 16152 Genova, Italy
- Molecular Horizons, School of Chemistry and Molecular Biosciences, University of Wollongong, Wollongong NSW 2522, Australia
| | - Maitreyee Roy
- School of Optometry and Vision Science, University of New South Wales, NSW 2052, Australia
| |
Collapse
|
9
|
Jie Y, Li X, Wang M, Tan H. Multi-Focus Image Fusion for Full-Field Optical Angiography. ENTROPY (BASEL, SWITZERLAND) 2023; 25:951. [PMID: 37372294 DOI: 10.3390/e25060951] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/04/2023] [Revised: 06/13/2023] [Accepted: 06/14/2023] [Indexed: 06/29/2023]
Abstract
Full-field optical angiography (FFOA) has considerable potential for clinical applications in the prevention and diagnosis of various diseases. However, owing to the limited depth of focus attainable using optical lenses, only information about blood flow in the plane within the depth of field can be acquired using existing FFOA imaging techniques, resulting in partially unclear images. To produce fully focused FFOA images, an FFOA image fusion method based on the nonsubsampled contourlet transform and contrast spatial frequency is proposed. Firstly, an imaging system is constructed, and the FFOA images are acquired by intensity-fluctuation modulation effect. Secondly, we decompose the source images into low-pass and bandpass images by performing nonsubsampled contourlet transform. A sparse representation-based rule is introduced to fuse the lowpass images to effectively retain the useful energy information. Meanwhile, a contrast spatial frequency rule is proposed to fuse bandpass images, which considers the neighborhood correlation and gradient relationships of pixels. Finally, the fully focused image is produced by reconstruction. The proposed method significantly expands the range of focus of optical angiography and can be effectively extended to public multi-focused datasets. Experimental results confirm that the proposed method outperformed some state-of-the-art methods in both qualitative and quantitative evaluations.
Collapse
Affiliation(s)
- Yuchan Jie
- Shien-Ming Wu School of Intelligent Engineering, South China University of Technology, Guangzhou 510640, China
| | - Xiaosong Li
- Shien-Ming Wu School of Intelligent Engineering, South China University of Technology, Guangzhou 510640, China
| | - Mingyi Wang
- School of Physics and Optoelectronic Engineering, Foshan University, Foshan 528225, China
| | - Haishu Tan
- School of Physics and Optoelectronic Engineering, Foshan University, Foshan 528225, China
| |
Collapse
|
10
|
Zhang J, Mazlin V, Fei K, Boccara AC, Yuan J, Xiao P. Time-domain full-field optical coherence tomography (TD-FF-OCT) in ophthalmic imaging. Ther Adv Chronic Dis 2023; 14:20406223231170146. [PMID: 37152350 PMCID: PMC10161339 DOI: 10.1177/20406223231170146] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2022] [Accepted: 03/29/2023] [Indexed: 05/09/2023] Open
Abstract
Ocular imaging plays an irreplaceable role in the evaluation of eye diseases. Developing cellular-resolution ophthalmic imaging technique for more accurate and effective diagnosis and pathogenesis analysis of ocular diseases is a hot topic in the cross-cutting areas of ophthalmology and imaging. Currently, ocular imaging with traditional optical coherence tomography (OCT) is limited in lateral resolution and thus can hardly resolve cellular structures. Conventional OCT technology obtains ultra-high resolution at the expense of a certain imaging range and cannot achieve full field of view imaging. In the early years, Time-domain full-field OCT (TD-FF-OCT) has been mainly used for ex vivo ophthalmic tissue studies, limited by the low speed and low full-well capacity of existing two-dimensional (2D) cameras. The recent improvements in system design opened new imaging possibilities for in vivo applications thanks to its distinctive optical properties of TD-FF-OCT such as a spatial resolution almost insensitive to aberrations, and the possibility to control the curvature of the optical slice. This review also attempts to look at the future directions of TD-FF-OCT evolution, for example, the potential transfer of the functional-imaging dynamic TD-FF-OCT from the ex vivo into in vivo use and its expected benefit in basic and clinical ophthalmic research. Through non-invasive, wide-field, and cellular-resolution imaging, TD-FF-OCT has great potential to be the next-generation imaging modality to improve our understanding of human eye physiology and pathology.
Collapse
Affiliation(s)
- Jinze Zhang
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Guangzhou, China
| | - Viacheslav Mazlin
- ESPCI Paris, PSL University, CNRS, Langevin Institute, Paris, France
| | - Keyi Fei
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Guangzhou, China
| | | | - Jin Yuan
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Jinsui Road 7, Guangzhou 510060, Guangdong, China
| | - Peng Xiao
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Jinsui Road 7, Guangzhou 510060, Guangdong, China
| |
Collapse
|
11
|
Montgomery PC, Flury M, Anstotz F, Marbach S, Cordier C, Bartringer J, Mukhtar H, Leong-Hoï A, Rubin A, Shpiruk A, Del Nero M, Barillon R. Characterization of Functional Materials Using Coherence Scanning Interferometry and Environmental Chambers. ACS OMEGA 2023; 8:10643-10655. [PMID: 37008104 PMCID: PMC10061652 DOI: 10.1021/acsomega.2c07007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/31/2022] [Accepted: 02/28/2023] [Indexed: 06/19/2023]
Abstract
Functional materials are challenging to characterize because of the presence of small structures and inhomogeneous materials. If interference microscopy was initially developed for use for the optical profilometry of homogeneous, static surfaces, it has since been considerably improved in its capacity to measure a greater variety of samples and parameters. This review presents our own contributions to extending the usefulness of interference microscopy. For example, 4D microscopy allows real-time topographic measurement of moving or changing surfaces. High-resolution tomography can be used to characterize transparent layers; local spectroscopy allows the measurement of local optical properties; and glass microspheres improve the lateral resolution of measurements. Environmental chambers have been particularly useful in three specific applications. The first one controls the pressure, temperature, and humidity for measuring the mechanical properties of ultrathin polymer films; the second controls automatically the deposition of microdroplets for measuring the drying properties of polymers; and the third one employs an immersion system for studying changes in colloidal layers immersed in water in the presence of pollutants. The results of each system and technique demonstrate that interference microscopy can be used for more fully characterizing the small structures and inhomogeneous materials typically found in functional materials.
Collapse
Affiliation(s)
- Paul C. Montgomery
- Laboratoire
des Sciences de l’Ingénieur de l’Informatique
et de l’Imagerie (ICube), University
of Strasbourg - CNRS − INSA, 300 Boulevard Sébastien Brant, Illkirch 67412, France
| | - Manuel Flury
- Laboratoire
des Sciences de l’Ingénieur de l’Informatique
et de l’Imagerie (ICube), University
of Strasbourg - CNRS − INSA, 300 Boulevard Sébastien Brant, Illkirch 67412, France
| | - Freddy Anstotz
- Laboratoire
des Sciences de l’Ingénieur de l’Informatique
et de l’Imagerie (ICube), University
of Strasbourg - CNRS − INSA, 300 Boulevard Sébastien Brant, Illkirch 67412, France
| | - Sébastien Marbach
- Laboratoire
des Sciences de l’Ingénieur de l’Informatique
et de l’Imagerie (ICube), University
of Strasbourg - CNRS − INSA, 300 Boulevard Sébastien Brant, Illkirch 67412, France
| | - Christophe Cordier
- Laboratoire
des Sciences de l’Ingénieur de l’Informatique
et de l’Imagerie (ICube), University
of Strasbourg - CNRS − INSA, 300 Boulevard Sébastien Brant, Illkirch 67412, France
| | - Jérémy Bartringer
- Laboratoire
des Sciences de l’Ingénieur de l’Informatique
et de l’Imagerie (ICube), University
of Strasbourg - CNRS − INSA, 300 Boulevard Sébastien Brant, Illkirch 67412, France
| | - Husneni Mukhtar
- Laboratoire
des Sciences de l’Ingénieur de l’Informatique
et de l’Imagerie (ICube), University
of Strasbourg - CNRS − INSA, 300 Boulevard Sébastien Brant, Illkirch 67412, France
| | - Audrey Leong-Hoï
- Laboratoire
des Sciences de l’Ingénieur de l’Informatique
et de l’Imagerie (ICube), University
of Strasbourg - CNRS − INSA, 300 Boulevard Sébastien Brant, Illkirch 67412, France
| | - Anne Rubin
- Institut
Charles Sadron (ICS), CNRS, 23 rue du Loess, Strasbourg 67034, France
| | - Anastasiia Shpiruk
- Institut
Charles Sadron (ICS), CNRS, 23 rue du Loess, Strasbourg 67034, France
| | - Mireille Del Nero
- Institut
Pluridisciplinaire Hubert Curien (IPHC), CNRS - University of Strasbourg, 23 rue du Loess, Strasbourg 67037, France
| | - Rémi Barillon
- Institut
Pluridisciplinaire Hubert Curien (IPHC), CNRS - University of Strasbourg, 23 rue du Loess, Strasbourg 67037, France
| |
Collapse
|
12
|
Durand T, Paul-Gilloteaux P, Gora M, Laboudie L, Coron E, Neveu I, Neunlist M, Naveilhan P. Visualizing enteric nervous system activity through dye-free dynamic full-field optical coherence tomography. Commun Biol 2023; 6:236. [PMID: 36864093 PMCID: PMC9981581 DOI: 10.1038/s42003-023-04593-9] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2022] [Accepted: 02/14/2023] [Indexed: 03/04/2023] Open
Abstract
Major advances have been achieved in imaging technologies but most methodological approaches currently used to study the enteric neuronal functions rely on exogenous contrast dyes that can interfere with cellular functions or survival. In the present paper, we investigated whether full-field optical coherence tomography (FFOCT), could be used to visualize and analyze the cells of the enteric nervous system. Experimental work on whole-mount preparations of unfixed mouse colons showed that FFOCT enables the visualization of the myenteric plexus network whereas dynamic FFOCT enables to visualize and identify in situ individual cells in the myenteric ganglia. Analyzes also showed that dynamic FFOCT signal could be modified by external stimuli such veratridine or changes in osmolarity. These data suggest that dynamic FFOCT could be of great interest to detect changes in the functions of enteric neurons and glia in normal and disease conditions.
Collapse
Affiliation(s)
- Tony Durand
- Nantes Université, CHU Nantes, Inserm, TENS, The Enteric Nervous System in Gut and Brain Diseases, IMAD, Nantes, France
| | - Perrine Paul-Gilloteaux
- Nantes Université, CNRS, INSERM, l'institut du thorax, F-44000, Nantes, France
- Nantes Université, CHU Nantes, Inserm, CNRS, SFR Santé, Inserm UMS 016, CNRS UAR 3556, F-44000, Nantes, France
| | - Michalina Gora
- Wyss Center for Bio and Neuroengineering, Campus Biotech, Geneva, Switzerland
- ICube Laboratory, CNRS, Strasbourg University, Strasbourg, France
| | - Lara Laboudie
- Nantes Université, CHU Nantes, Inserm, TENS, The Enteric Nervous System in Gut and Brain Diseases, IMAD, Nantes, France
| | - Emmanuel Coron
- Nantes Université, CHU Nantes, Inserm, TENS, The Enteric Nervous System in Gut and Brain Diseases, IMAD, Nantes, France
- Department of Gastroenterology and Hepatology, University Hospital of Geneva (HUG), rue Gabrielle Perret-Gentil 4, 1211, Genève, 1205, Switzerland
| | - Isabelle Neveu
- Nantes Université, CHU Nantes, Inserm, TENS, The Enteric Nervous System in Gut and Brain Diseases, IMAD, Nantes, France
| | - Michel Neunlist
- Nantes Université, CHU Nantes, Inserm, TENS, The Enteric Nervous System in Gut and Brain Diseases, IMAD, Nantes, France.
| | - Philippe Naveilhan
- Nantes Université, CHU Nantes, Inserm, TENS, The Enteric Nervous System in Gut and Brain Diseases, IMAD, Nantes, France
| |
Collapse
|
13
|
Saleah SA, Seong D, Wijesinghe RE, Han S, Kim S, Jeon M, Kim J. Development of a deviated focusing-based optical coherence microscope with a variable depth of focus for high-resolution imaging. OPTICS EXPRESS 2023; 31:1258-1268. [PMID: 36785165 DOI: 10.1364/oe.479709] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/02/2022] [Accepted: 12/12/2022] [Indexed: 06/18/2023]
Abstract
The aim of this study was to develop an optically deviated focusing-based variable depth-of-focus (DOF) oriented optical coherence microscopy (OCM) system to improve the DOF in high-resolution and precise focused imaging. In this study, an approach of varying beam diameter using deviated focusing was employed in the sample arm to enhance the DOF and to confirm precise focusing in OCM imaging. The optically deviated focusing technique was used to vary the focal point and DOF by altering the sample arm beam. The efficacy of the variable DOF imaging approach utilizing an optimized sample arm was confirmed by tissue-level imaging, where OCM images with varying DOF were obtained using deviated focusing. Experimentally confirmed lateral resolution of 2.19 µm was sufficient for the precise non-invasive visualization of abnormalities of fruit specimens. Thus, the proposed variable DOF-OCM system can be an alternative for precisely focused, high-resolution, and variable DOF imaging by improving the DOF in minimum lateral resolution variation.
Collapse
|
14
|
Real-time holographic lensless micro-endoscopy through flexible fibers via fiber bundle distal holography. Nat Commun 2022; 13:6055. [PMID: 36229450 PMCID: PMC9563069 DOI: 10.1038/s41467-022-33462-y] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2021] [Accepted: 09/15/2022] [Indexed: 12/24/2022] Open
Abstract
Fiber-based micro-endoscopes are a critically important tool for minimally-invasive deep-tissue imaging. However, current micro-endoscopes cannot perform three-dimensional imaging through dynamically-bent fibers without the use of bulky optical elements such as lenses and scanners at the distal end, increasing the footprint and tissue-damage. Great efforts have been invested in developing approaches that avoid distal bulky optical elements. However, the fundamental barrier of dynamic optical wavefront-distortions in propagation through flexible fibers limits current approaches to nearly-static or non-flexible fibers. Here, we present an approach that allows holographic, bend-insensitive, coherence-gated, micro-endoscopic imaging using commercially available multi-core fibers (MCFs). We achieve this by adding a partially-reflecting mirror to the distal fiber-tip, allowing to perform low-coherence full-field phase-shifting holography. We demonstrate widefield diffraction-limited reflection imaging of amplitude and phase targets through dynamically bent fibers at video-rate. Our approach holds potential for label-free investigations of dynamic samples.
Collapse
|
15
|
Han L, Tan B, Hosseinaee Z, Chen LK, Hileeto D, Bizheva K. Line-scanning SD-OCT for in-vivo, non-contact, volumetric, cellular resolution imaging of the human cornea and limbus. BIOMEDICAL OPTICS EXPRESS 2022; 13:4007-4020. [PMID: 35991928 PMCID: PMC9352278 DOI: 10.1364/boe.465916] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/07/2022] [Accepted: 06/08/2022] [Indexed: 05/12/2023]
Abstract
In-vivo, non-contact, volumetric imaging of the cellular and sub-cellular structure of the human cornea and limbus with optical coherence tomography (OCT) is challenging due to involuntary eye motion that introduces both motion artifacts and blur in the OCT images. Here we present the design of a line-scanning (LS) spectral-domain (SD) optical coherence tomography system that combines 2 × 3 × 1.7 µm (x, y, z) resolution in biological tissue with an image acquisition rate of ∼2,500 fps, and demonstrate its ability to image in-vivo and without contact with the tissue surface, the cellular structure of the human anterior segment tissues. Volumetric LS-SD-OCT images acquired over a field-of-view (FOV) of 0.7 mm × 1.4 mm reveal fine morphological details in the healthy human cornea, such as epithelial and endothelial cells, sub-basal nerves, as well as the cellular structure of the limbal crypts, the palisades of Vogt (POVs) and the blood microvasculature of the human limbus. LS-SD-OCT is a promising technology that can assist ophthalmologists with the early diagnostics and optimal treatment planning of ocular diseases affecting the human anterior eye.
Collapse
Affiliation(s)
- Le Han
- Department of Physics and Astronomy,
University of Waterloo, Waterloo, Ontario
N2L 3G1, Canada
- Contributed equally
| | - Bingyao Tan
- Department of Physics and Astronomy,
University of Waterloo, Waterloo, Ontario
N2L 3G1, Canada
- School of Chemical and Biomedical
Engineering, Nanyang Technological
University, 637460, Singapore
- SERI-NTU Advanced Ocular
Engineering (STANCE), 639798, Singapore
- Singapore Eye Research Institute,
Singapore National Eye Center, 169856,
Singapore
- Contributed equally
| | - Zohreh Hosseinaee
- Department of Physics and Astronomy,
University of Waterloo, Waterloo, Ontario
N2L 3G1, Canada
- Department of Systems Design Engineering,
University of Waterloo, Waterloo, Ontario
N2L 3G1, Canada
| | - Lin Kun Chen
- Department of Physics and Astronomy,
University of Waterloo, Waterloo, Ontario
N2L 3G1, Canada
| | - Denise Hileeto
- School of Optometry and Vision Science,
University of Waterloo, Waterloo, Ontario
N2L 3G1, Canada
| | - Kostadinka Bizheva
- Department of Physics and Astronomy,
University of Waterloo, Waterloo, Ontario
N2L 3G1, Canada
- Department of Systems Design Engineering,
University of Waterloo, Waterloo, Ontario
N2L 3G1, Canada
- School of Optometry and Vision Science,
University of Waterloo, Waterloo, Ontario
N2L 3G1, Canada
| |
Collapse
|
16
|
Dynamic full-field optical coherence tomography allows live imaging of retinal pigment epithelium stress model. Commun Biol 2022; 5:575. [PMID: 35688936 PMCID: PMC9187748 DOI: 10.1038/s42003-022-03479-6] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2021] [Accepted: 05/11/2022] [Indexed: 12/24/2022] Open
Abstract
Retinal degenerative diseases lead to the blindness of millions of people around the world. In case of age-related macular degeneration (AMD), the atrophy of retinal pigment epithelium (RPE) precedes neural dystrophy. But as crucial as understanding both healthy and pathological RPE cell physiology is for those diseases, no current technique allows subcellular in vivo or in vitro live observation of this critical cell layer. To fill this gap, we propose dynamic full-field OCT (D-FFOCT) as a candidate for live observation of in vitro RPE phenotype. In this way, we monitored primary porcine and human stem cell-derived RPE cells in stress model conditions by performing scratch assays. In this study, we quantified wound healing parameters on the stressed RPE, and observed different cell phenotypes, displayed by the D-FFOCT signal. In order to decipher the subcellular contributions to these dynamic profiles, we performed immunohistochemistry to identify which organelles generate the signal and found mitochondria to be the main contributor to D-FFOCT contrast. Altogether, D-FFOCT appears to be an innovative method to follow degenerative disease evolution and could be an appreciated method in the future for live patient diagnostics and to direct treatment choice. Dynamic full-field optical coherence tomography (D-FFOCT) is used for live cell imaging of primary porcine retinal pigment epithelium (ppRPE) cultures and human induced pluripotent stem cell-derived RPE (hiRPE) cultures, allowing non-invasive realtime access to organelles and cytoskeleton dynamics in RPE cells.
Collapse
|
17
|
Fei K, Zhang J, Yuan J, Xiao P. Present Application and Perspectives of Organoid Imaging Technology. Bioengineering (Basel) 2022; 9:121. [PMID: 35324810 PMCID: PMC8945799 DOI: 10.3390/bioengineering9030121] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2022] [Revised: 02/23/2022] [Accepted: 03/13/2022] [Indexed: 11/18/2022] Open
Abstract
An organoid is a miniaturized and simplified in vitro model with a similar structure and function to a real organ. In recent years, the use of organoids has increased explosively in the field of growth and development, disease simulation, drug screening, cell therapy, etc. In order to obtain necessary information, such as morphological structure, cell function and dynamic signals, it is necessary and important to directly monitor the culture process of organoids. Among different detection technologies, imaging technology is a simple and convenient choice and can realize direct observation and quantitative research. In this review, the principle, advantages and disadvantages of imaging technologies that have been applied in organoids research are introduced. We also offer an overview of prospective technologies for organoid imaging. This review aims to help biologists find appropriate imaging techniques for different areas of organoid research, and also contribute to the development of organoid imaging systems.
Collapse
Affiliation(s)
| | | | - Jin Yuan
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Sun Yat-Sen University, Guangzhou 510060, China; (K.F.); (J.Z.)
| | - Peng Xiao
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Sun Yat-Sen University, Guangzhou 510060, China; (K.F.); (J.Z.)
| |
Collapse
|
18
|
Liu Y, Levenson RM, Jenkins MW. Slide Over: Advances in Slide-Free Optical Microscopy as Drivers of Diagnostic Pathology. THE AMERICAN JOURNAL OF PATHOLOGY 2022; 192:180-194. [PMID: 34774514 PMCID: PMC8883436 DOI: 10.1016/j.ajpath.2021.10.010] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/09/2021] [Revised: 10/12/2021] [Accepted: 10/18/2021] [Indexed: 02/03/2023]
Abstract
Conventional analysis using clinical histopathology is based on bright-field microscopy of thinly sliced tissue specimens. Although bright-field microscopy is a simple and robust method of examining microscope slides, the preparation of the slides needed is a lengthy and labor-intensive process. Slide-free histopathology, however, uses direct imaging of intact, minimally processed tissue samples using advanced optical-imaging systems, bypassing the extended workflow now required for the preparation of tissue sections. This article explains the technical basis of slide-free microscopy, reviews common slide-free optical microscopy techniques, and discusses the opportunities and challenges involved in clinical implementation.
Collapse
Affiliation(s)
- Yehe Liu
- Department of Biomedical Engineering, Case Western Reserve University, Cleveland, Ohio
| | - Richard M. Levenson
- Department of Pathology and Laboratory Medicine, University of California–Davis, Sacramento, California,Address correspondence to Richard M. Levenson, M.D., UC Davis Health, Path Building, 4400 V St., Sacramento, CA 95817; or Michael W. Jenkins, Ph.D., 2109 Adelbert Rd., Wood Bldg., WG28, Cleveland, OH 44106.
| | - Michael W. Jenkins
- Department of Biomedical Engineering, Case Western Reserve University, Cleveland, Ohio,Address correspondence to Richard M. Levenson, M.D., UC Davis Health, Path Building, 4400 V St., Sacramento, CA 95817; or Michael W. Jenkins, Ph.D., 2109 Adelbert Rd., Wood Bldg., WG28, Cleveland, OH 44106.
| |
Collapse
|
19
|
Gurov I, Kapranova V, Skakov P. Dynamical evaluation of interference fringe parameters by the Wiener adaptive filtering method. APPLIED OPTICS 2021; 60:6799-6808. [PMID: 34613159 DOI: 10.1364/ao.428251] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/22/2021] [Accepted: 07/07/2021] [Indexed: 06/13/2023]
Abstract
Application of the Wiener adaptive filtering method for estimation of interferometric signal parameters is presented and analyzed. It is shown that the fringe phase, as well as the envelope of low-coherence interference fringes, can be evaluated directly from the adaptive filter impulse response obtained under the criterion of the minimum error variance of a processed fringe signal and predefined reference signal. The method does not limit the number and value of the phase shifts and allows determination of the actual phase step. The accuracy of the method is evaluated and experimental results of dynamical fringe processing in low-coherence interferometry are presented.
Collapse
|
20
|
Ahmad A, Dubey V, Jayakumar N, Habib A, Butola A, Nystad M, Acharya G, Basnet P, Mehta DS, Ahluwalia BS. High-throughput spatial sensitive quantitative phase microscopy using low spatial and high temporal coherent illumination. Sci Rep 2021; 11:15850. [PMID: 34349138 PMCID: PMC8338969 DOI: 10.1038/s41598-021-94915-w] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2021] [Accepted: 07/09/2021] [Indexed: 11/09/2022] Open
Abstract
High space-bandwidth product with high spatial phase sensitivity is indispensable for a single-shot quantitative phase microscopy (QPM) system. It opens avenue for widespread applications of QPM in the field of biomedical imaging. Temporally low coherence light sources are implemented to achieve high spatial phase sensitivity in QPM at the cost of either reduced temporal resolution or smaller field of view (FOV). In addition, such light sources have low photon degeneracy. On the contrary, high temporal coherence light sources like lasers are capable of exploiting the full FOV of the QPM systems at the expense of less spatial phase sensitivity. In the present work, we demonstrated that use of narrowband partially spatially coherent light source also called pseudo-thermal light source (PTLS) in QPM overcomes the limitations of conventional light sources. The performance of PTLS is compared with conventional light sources in terms of space bandwidth product, phase sensitivity and optical imaging quality. The capabilities of PTLS are demonstrated on both amplitude (USAF resolution chart) and phase (thin optical waveguide, height ~ 8 nm) objects. The spatial phase sensitivity of QPM using PTLS is measured to be equivalent to that for white light source and supports the FOV (18 times more) equivalent to that of laser light source. The high-speed capabilities of PTLS based QPM is demonstrated by imaging live sperm cells that is limited by the camera speed and large FOV is demonstrated by imaging histopathology human placenta tissue samples. Minimal invasive, high-throughput, spatially sensitive and single-shot QPM based on PTLS will enable wider penetration of QPM in life sciences and clinical applications.
Collapse
Affiliation(s)
- Azeem Ahmad
- Department of Physics and Technology, UiT The Arctic University of Norway, 9037, Tromsø, Norway.
| | - Vishesh Dubey
- Department of Physics and Technology, UiT The Arctic University of Norway, 9037, Tromsø, Norway
| | - Nikhil Jayakumar
- Department of Physics and Technology, UiT The Arctic University of Norway, 9037, Tromsø, Norway
| | - Anowarul Habib
- Department of Physics and Technology, UiT The Arctic University of Norway, 9037, Tromsø, Norway
| | - Ankit Butola
- Department of Physics and Technology, UiT The Arctic University of Norway, 9037, Tromsø, Norway
| | - Mona Nystad
- Department of Clinical Medicine, Women's Health and Perinatology Research Group, Faculty of Health Sciences, UiT The Arctic University of Norway, Tromsø, Norway
- Department of Obstetrics and Gynecology, University Hospital of North Norway, 9037, Tromsø, Norway
| | - Ganesh Acharya
- Department of Clinical Medicine, Women's Health and Perinatology Research Group, Faculty of Health Sciences, UiT The Arctic University of Norway, Tromsø, Norway
- Department of Obstetrics and Gynecology, University Hospital of North Norway, 9037, Tromsø, Norway
- Department of Clinical Science, Intervention and Technology Karolinska Institute, and Center for Fetal Medicine, Karolinska University Hospital, 17177, Stockholm, Sweden
| | - Purusotam Basnet
- Department of Clinical Medicine, Women's Health and Perinatology Research Group, Faculty of Health Sciences, UiT The Arctic University of Norway, Tromsø, Norway
- Department of Obstetrics and Gynecology, University Hospital of North Norway, 9037, Tromsø, Norway
| | - Dalip Singh Mehta
- Applied Optics and Biophotonics Laboratory, Department of Physics, Indian Institute of Technology Delhi, New Delhi, 110016, India
| | - Balpreet Singh Ahluwalia
- Department of Physics and Technology, UiT The Arctic University of Norway, 9037, Tromsø, Norway.
- Department of Clinical Science, Intervention and Technology Karolinska Institute, and Center for Fetal Medicine, Karolinska University Hospital, 17177, Stockholm, Sweden.
| |
Collapse
|
21
|
Lin SE, Jheng DY, Hsu KY, Liu YR, Huang WH, Lee HC, Tsai CC. Rapid pseudo-H&E imaging using a fluorescence-inbuilt optical coherence microscopic imaging system. BIOMEDICAL OPTICS EXPRESS 2021; 12:5139-5158. [PMID: 34513247 PMCID: PMC8407814 DOI: 10.1364/boe.431586] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/17/2021] [Revised: 07/12/2021] [Accepted: 07/13/2021] [Indexed: 06/13/2023]
Abstract
A technique using Linnik-based optical coherence microscopy (OCM), with built-in fluorescence microscopy (FM), is demonstrated here to describe cellular-level morphology for fresh porcine and biobank tissue specimens. The proposed method utilizes color-coding to generate digital pseudo-H&E (p-H&E) images. Using the same camera, colocalized FM images are merged with corresponding morphological OCM images using a 24-bit RGB composition process to generate position-matched p-H&E images. From receipt of dissected fresh tissue piece to generation of stitched images, the total processing time is <15 min for a 1-cm2 specimen, which is on average two times faster than frozen-section H&E process for fatty or water-rich fresh tissue specimens. This technique was successfully used to scan human and animal fresh tissue pieces, demonstrating its applicability for both biobank and veterinary purposes. We provide an in-depth comparison between p-H&E and human frozen-section H&E images acquired from the same metastatic sentinel lymph node slice (∼10 µm thick), and show the differences, like elastic fibers of a tiny blood vessel and cytoplasm of tumor cells. This optical sectioning technique provides histopathologists with a convenient assessment method that outputs large-field H&E-like images of fresh tissue pieces without requiring any physical embedment.
Collapse
Affiliation(s)
- Sey-En Lin
- AcuSolutions Inc., 3F., No. 2, Ln. 263, Chongyang Rd., Nangang Dist., Taipei, Taiwan
- Department of Anatomic Pathology, New Taipei Municipal Tucheng Hospital (Built and operated by Chang Gung Medical Foundation), New Taipei City, Taiwan
| | - Dong-Yo Jheng
- AcuSolutions Inc., 3F., No. 2, Ln. 263, Chongyang Rd., Nangang Dist., Taipei, Taiwan
| | - Kuang-Yu Hsu
- AcuSolutions Inc., 3F., No. 2, Ln. 263, Chongyang Rd., Nangang Dist., Taipei, Taiwan
| | - Yun-Ru Liu
- Joint Biobank, Office of Human Research, Taipei Medical University, Taipei, Taiwan
| | - Wei-Hsiang Huang
- Graduate Institute of Molecular and Comparative Pathobiology, School of Veterinary Medicine, National Taiwan University, Taipei, Taiwan
| | - Hsiang-Chieh Lee
- Graduate Institute of Photonics and Optoelectronics, National Taiwan University, Taipei, Taiwan
- Department of Electrical Engineering, National Taiwan University, Taipei, Taiwan
| | - Chien-Chung Tsai
- AcuSolutions Inc., 3F., No. 2, Ln. 263, Chongyang Rd., Nangang Dist., Taipei, Taiwan
| |
Collapse
|
22
|
Tang Y, Gao W. Effects of orientation deviation of a beam splitter and a reference mirror on the stability of a two-interferometer-based handheld FFOCT imaging probe. APPLIED OPTICS 2021; 60:5942-5952. [PMID: 34263816 DOI: 10.1364/ao.428454] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/20/2021] [Accepted: 06/14/2021] [Indexed: 06/13/2023]
Abstract
In this work, we present a handheld full-field optical coherence tomography (FFOCT) system based on a series connection of two interferometers: the Michelson interferometer is used as a compensation part and the Fizeau interferometer is used as a detection part. Owing to the common-path arrangement of the Fizeau interferometer, this handheld FFOCT system has a compact detection arm and is insensitive to the external disturbance. A high-output halogen lamp and high NA microscope objective contribute to achieving the spatial resolution of 0.7µm×0.5µm (transverse × axial). Low imaging stability is caused by an extremely short coherence length. We found that to generate en face images with high quality and high stability using a probe with an extremely short coherence length, the range of deviation of the orientation of the beam splitter must be less than 1°, and the range of orientation deviation of the mirror in the Michelson interferometer corresponds to the displacement between the two field stop images at a distance not to exceed 10 µm.
Collapse
|
23
|
Barolle V, Scholler J, Mecê P, Chassot JM, Groux K, Fink M, Claude Boccara A, Aubry A. Manifestation of aberrations in full-field optical coherence tomography. OPTICS EXPRESS 2021; 29:22044-22065. [PMID: 34265978 DOI: 10.1364/oe.419963] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/15/2021] [Accepted: 04/28/2021] [Indexed: 05/25/2023]
Abstract
We report on a theoretical model for image formation in full-field optical coherence tomography (FFOCT). Because the spatial incoherence of the illumination acts as a virtual confocal pinhole in FFOCT, its imaging performance is equivalent to a scanning time-gated coherent confocal microscope. In agreement with optical experiments enabling a precise control of aberrations, FFOCT is shown to have nearly twice the resolution of standard imaging at moderate aberration level. Beyond a rigorous study on the sensitivity of FFOCT with respect to aberrations, this theoretical model paves the way towards an optimized design of adaptive optics and computational tools for high-resolution and deep imaging of biological tissues.
Collapse
|
24
|
Al-Mohamedi H, Kelly-Pérez I, Oltrup T, Cayless A, Bende T. Extended measuring depth dual-wavelength Fourier domain optical coherence tomography. ACTA ACUST UNITED AC 2021; 66:557-562. [PMID: 34087968 DOI: 10.1515/bmt-2020-0350] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2020] [Accepted: 05/18/2021] [Indexed: 11/15/2022]
Abstract
In this work an enhanced wide range dual band spectral domain optical coherence tomography technique (SD-OCT) is presented to increase the depth and accuracy of the measurement of optical A-scan biometry. The setup uses a Michelson interferometer with two wide-spectrum Superluminescent Diodes (SLD). The emissions of the SLDs are filtered by a long-pass filter (900 nm) in front of the reference mirror. The light is spectrally decomposed using a single reflective diffraction grating (1,800 lines/mm) and the whole spectrum captured with two CCD line sensors. The capabilities of the system have been validated using a self-made human model eye.
Collapse
Affiliation(s)
- Haroun Al-Mohamedi
- Sektion für Experimentelle Ophthalmochirurgie, Universitätsklinikum Tübingen, Tübingen, Germany
| | - Ismael Kelly-Pérez
- Sektion für Experimentelle Ophthalmochirurgie, Universitätsklinikum Tübingen, Tübingen, Germany.,Department of Mechanical and Electrical Engineering, Universidad Veracruzana, Xalapa, Veracruz, Mexico
| | - Theo Oltrup
- Stiftungslabor für Grundlagen-forschung, Universitäts-Augenklinik Tübingen, Tübingen, Germany
| | - Alan Cayless
- Department of Physical Sciences, Open University, Milton Keynes, UK
| | - Thomas Bende
- Stiftungslabor für Grundlagen-forschung, Universitäts-Augenklinik Tübingen, Tübingen, Germany
| |
Collapse
|
25
|
Cauzzo J, Jayakumar N, Ahluwalia BS, Ahmad A, Škalko-Basnet N. Characterization of Liposomes Using Quantitative Phase Microscopy (QPM). Pharmaceutics 2021; 13:pharmaceutics13050590. [PMID: 33919040 PMCID: PMC8142990 DOI: 10.3390/pharmaceutics13050590] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2021] [Revised: 04/16/2021] [Accepted: 04/20/2021] [Indexed: 11/16/2022] Open
Abstract
The rapid development of nanomedicine and drug delivery systems calls for new and effective characterization techniques that can accurately characterize both the properties and the behavior of nanosystems. Standard methods such as dynamic light scattering (DLS) and fluorescent-based assays present challenges in terms of system's instability, machine sensitivity, and loss of tracking ability, among others. In this study, we explore some of the downsides of batch-mode analyses and fluorescent labeling, while introducing quantitative phase microscopy (QPM) as a label-free complimentary characterization technique. Liposomes were used as a model nanocarrier for their therapeutic relevance and structural versatility. A successful immobilization of liposomes in a non-dried setup allowed for static imaging conditions in an off-axis phase microscope. Image reconstruction was then performed with a phase-shifting algorithm providing high spatial resolution. Our results show the potential of QPM to localize subdiffraction-limited liposomes, estimate their size, and track their integrity over time. Moreover, QPM full-field-of-view images enable the estimation of a single-particle-based size distribution, providing an alternative to the batch mode approach. QPM thus overcomes some of the drawbacks of the conventional methods, serving as a relevant complimentary technique in the characterization of nanosystems.
Collapse
Affiliation(s)
- Jennifer Cauzzo
- Drug Transport and Delivery Research Group, Department of Pharmacy, Faculty of Health Sciences, University of Tromsø The Arctic University of Norway, N-9037 Tromsø, Norway;
| | - Nikhil Jayakumar
- Optical Nanoscopy Research Group, Department of Physics and Technology, Faculty of Science and Technology, University of Tromsø The Arctic University of Norway, N-9037 Tromsø, Norway; (N.J.); (B.S.A.); (A.A.)
| | - Balpreet Singh Ahluwalia
- Optical Nanoscopy Research Group, Department of Physics and Technology, Faculty of Science and Technology, University of Tromsø The Arctic University of Norway, N-9037 Tromsø, Norway; (N.J.); (B.S.A.); (A.A.)
| | - Azeem Ahmad
- Optical Nanoscopy Research Group, Department of Physics and Technology, Faculty of Science and Technology, University of Tromsø The Arctic University of Norway, N-9037 Tromsø, Norway; (N.J.); (B.S.A.); (A.A.)
| | - Nataša Škalko-Basnet
- Drug Transport and Delivery Research Group, Department of Pharmacy, Faculty of Health Sciences, University of Tromsø The Arctic University of Norway, N-9037 Tromsø, Norway;
- Correspondence: ; Tel.: +47-776-46-640
| |
Collapse
|
26
|
Moon J, Lim YS, Yoon S, Choi W. Single-shot multi-depth full-field optical coherence tomography using spatial frequency division multiplexing. OPTICS EXPRESS 2021; 29:7060-7069. [PMID: 33726214 DOI: 10.1364/oe.417950] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/18/2020] [Accepted: 02/11/2021] [Indexed: 06/12/2023]
Abstract
Fast 3D volumetric imaging has been essential for biology, medicine and industrial inspections, and various optical coherence tomography (OCT) methods have been developed to meet such needs. Point-scanning based approaches, such as swept-source OCT and spectral domain OCT, can obtain a depth information at once, but they require lateral scan for full 3D imaging. On the contrary, full-field OCT needs the scanning of imaging depth while it records a full lateral information at once. Here, we present a full-field OCT system that can obtain multi-depth information at once by a single-shot recording. We combine a 2D diffraction grating and a custom-made echelon to prepare multiple reference beams having different pathlengths and propagating angles. By recording a single interference image between the reflected wave from a sample and these multiple reference beams, we reconstruct full-field images at multiple depths associated with the pathlengths of the individual reference beams. We demonstrated the single-shot recording of 7 different depth images at 10 µm for biological tissues. Our method can potentially be useful for applications where high-speed recording of multiple en-face images is crucial.
Collapse
|
27
|
Tsai MR, Ho TS, Wu YH, Lu CW. In vivo dual-mode full-field optical coherence tomography for differentiation of types of melanocytic nevi. JOURNAL OF BIOMEDICAL OPTICS 2021; 26:JBO-200353LR. [PMID: 33624460 PMCID: PMC7901856 DOI: 10.1117/1.jbo.26.2.020501] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/09/2020] [Accepted: 02/03/2021] [Indexed: 05/04/2023]
Abstract
SIGNIFICANCE Melanocytic nevi represent the most common dermal melanocytic lesions in humans. Nevus is typically diagnosed clinically with the naked eye or with dermoscopy. However, it is essential to identify the type of nevus by invasive biopsy for histopathological examination. The use of noninvasive imaging tools can be used to evaluate the types of nevi to reduce unnecessary excisions of benign entities. AIM To evaluate the feasibility of using en face and cross-sectional full-field optical coherence tomography (FF-OCT) in differentiation of melanocytic nevi that can facilitate the reduction of unnecessary excisions of benign entities. APPROACH Dual-mode Mirau-type FF-OCT for cross-sectional imaging (B-scan) and en face imaging were used to distinguish the types of nevi. RESULTS Although the B-scan reveals the distribution of melanosomes, users can set a specific depth of the en face image to explore the morphology of surrounding skin cells instantly. According to the locations of nevus nests, the different types of nevi, including junction nevus and compound nevus, can be identified using this dual-mode FF-OCT system. CONCLUSIONS Combining B-scan and en face imaging in vivo FF-OCT enables the examination and navigation of skin tissues in real time and in three dimensions.
Collapse
Affiliation(s)
| | | | - Yu-Hung Wu
- Mackay Memorial Hospital, Department of Dermatology, Taipei, Taiwan
- Mackay Medical College, Department of Medicine, New Taipei City, Taiwan
| | - Chih-Wei Lu
- Apollo Medical Optics, Ltd., Taipei, Taiwan
- Address all correspondence to Chih-Wei Lu,
| |
Collapse
|
28
|
Wang Y, Liu X. Line field Fourier domain optical coherence tomography based on a spatial light modulator. APPLIED OPTICS 2021; 60:985-992. [PMID: 33690414 PMCID: PMC8341167 DOI: 10.1364/ao.404162] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/30/2020] [Accepted: 01/08/2021] [Indexed: 06/12/2023]
Abstract
In this study, we developed a line-field Fourier domain optical coherence tomography (LF-FDOCT) system that performs lateral scanning using a two-dimension spatial light modulator and detects multiple channels of spectral domain OCT signal in parallel using a two-dimensional sensor. The LF-FDOCT system eliminates the need for mechanical scanning to acquire volumetric OCT data. It allows parallel acquisition of signal for B mode scan imaging through snapshot detection and offers unprecedented flexibility to select a fast scanning dimension. In this work, we describe the principle of LF-FDOCT imaging and present experimental results to demonstrate the effectiveness of this technology.
Collapse
|
29
|
Quénéhervé L, Olivier R, Gora MJ, Bossard C, Mosnier JF, Benoit A la Guillaume E, Boccara C, Brochard C, Neunlist M, Coron E. Full-field optical coherence tomography: novel imaging technique for extemporaneous high-resolution analysis of mucosal architecture in human gut biopsies. Gut 2021; 70:6-8. [PMID: 32447309 DOI: 10.1136/gutjnl-2020-321228] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/28/2020] [Revised: 04/23/2020] [Accepted: 05/07/2020] [Indexed: 02/06/2023]
Abstract
Full-field optical coherence tomography (FFOCT) is an imaging technique of biological tissue based on tissue light reflectance analysis. We evaluated the feasibility of imaging fresh digestive mucosal biopsies after a quick mounting procedure (5 min) using two distinct modalities of FFOCT. In static FFOCT mode, we gained high-resolution images of general gut tissue-specific architecture, such as oesophageal papillae, gastric pits, duodenal villi and colonic crypts. In dynamic FFOCT mode, we imaged individual epithelial cells of the mucosal lining with a cellular or subcellular resolution and identified cellular components of the lamina propria. FFOCT represents a promising dye-free imaging tool for on-site analysis of gut tissue remodelling.
Collapse
Affiliation(s)
- Lucille Quénéhervé
- Université de Nantes, Inserm, TENS, The Enteric Nervous System in Gut and Brain Diseases, IMAD, Nantes, France.,Institut des Maladies de l'Appareil Digestif, IMAD, Hôtel Dieu, CHU Nantes, Nantes, France
| | - Raphael Olivier
- Université de Nantes, Inserm, TENS, The Enteric Nervous System in Gut and Brain Diseases, IMAD, Nantes, France.,Gastroenterology Department, CHU Poitiers, Poitiers, France
| | - Michalina J Gora
- ICube Laboratory, CNRS, Strasbourg University, Strasbourg, France
| | - Céline Bossard
- Service d'Anatomie et Cytologie Pathologique, INSERM, CRCINA, Université de Nantes, CHU Nantes, F44000 Nantes, France
| | - Jean-François Mosnier
- Service d'Anatomie et Cytologie Pathologique, INSERM, CRCINA, Université de Nantes, CHU Nantes, F44000 Nantes, France
| | | | - Claude Boccara
- LLTech, LLTech SAS, Paris, France.,Institut Langevin, ESPCI Paris, PSL University, CNRS, 1 rue Jussieu, Paris, France
| | - Charlène Brochard
- Université de Nantes, Inserm, TENS, The Enteric Nervous System in Gut and Brain Diseases, IMAD, Nantes, France.,Service d'Explorations Fonctionnelles Digestives, CHU Rennes, Rennes, France
| | - Michel Neunlist
- Université de Nantes, Inserm, TENS, The Enteric Nervous System in Gut and Brain Diseases, IMAD, Nantes, France .,Institut des Maladies de l'Appareil Digestif, IMAD, Hôtel Dieu, CHU Nantes, Nantes, France
| | - Emmanuel Coron
- Université de Nantes, Inserm, TENS, The Enteric Nervous System in Gut and Brain Diseases, IMAD, Nantes, France.,Institut des Maladies de l'Appareil Digestif, IMAD, Hôtel Dieu, CHU Nantes, Nantes, France
| |
Collapse
|
30
|
Iyer RR, Žurauskas M, Cui Q, Gao L, Theodore Smith R, Boppart SA. Full-field spectral-domain optical interferometry for snapshot three-dimensional microscopy. BIOMEDICAL OPTICS EXPRESS 2020; 11:5903-5919. [PMID: 33149995 PMCID: PMC7587259 DOI: 10.1364/boe.402796] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/14/2020] [Revised: 09/16/2020] [Accepted: 09/16/2020] [Indexed: 05/08/2023]
Abstract
Prevalent techniques in label-free linear optical microscopy are either confined to imaging in two dimensions or rely on scanning, both of which restrict their applications in imaging subtle biological dynamics. In this paper, we present the theoretical basis along with demonstrations supporting that full-field spectral-domain interferometry can be used for imaging samples in 3D with no moving parts in a single shot. Consequently, we propose a novel optical imaging modality that combines low-coherence interferometry with hyperspectral imaging using a light-emitting diode and an image mapping spectrometer, called Snapshot optical coherence microscopy (OCM). Having first proved the feasibility of Snapshot OCM through theoretical modeling and a comprehensive simulation, we demonstrate an implementation of the technique using off-the-shelf components capable of capturing an entire volume in 5 ms. The performance of Snapshot OCM, when imaging optical targets, shows its capability to axially localize and section images over an axial range of ±10 µm, while maintaining a transverse resolution of 0.8 µm, an axial resolution of 1.4 µm, and a sensitivity of up to 80 dB. Additionally, its performance in imaging weakly scattering live cells shows its capability to not only localize the cells in a densely populated culture but also to generate detailed phase profiles of the structures at each depth for long durations. Consolidating the advantages of several widespread optical microscopy modalities, Snapshot OCM has the potential to be a versatile imaging technique for a broad range of applications.
Collapse
Affiliation(s)
- Rishyashring R. Iyer
- Beckman Institute for Advanced Science and Technology, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
- Department of Electrical and Computer Engineering, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
| | - Mantas Žurauskas
- Beckman Institute for Advanced Science and Technology, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
| | - Qi Cui
- Department of Bioengineering, University of California Los Angeles, Los Angeles, CA 90095, USA
| | - Liang Gao
- Department of Bioengineering, University of California Los Angeles, Los Angeles, CA 90095, USA
| | - R. Theodore Smith
- Department of Ophthalmology, New York Eye and Ear Infirmary of Mount Sinai, New York, NY 10003, USA
| | - Stephen A. Boppart
- Beckman Institute for Advanced Science and Technology, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
- Department of Electrical and Computer Engineering, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
- Department of Bioengineering, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
- Carle Illinois College of Medicine, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
| |
Collapse
|
31
|
Mecê P, Groux K, Scholler J, Thouvenin O, Fink M, Grieve K, Boccara C. Coherence gate shaping for wide field high-resolution in vivo retinal imaging with full-field OCT. BIOMEDICAL OPTICS EXPRESS 2020; 11:4928-4941. [PMID: 33014591 PMCID: PMC7510855 DOI: 10.1364/boe.400522] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/16/2020] [Revised: 07/20/2020] [Accepted: 07/29/2020] [Indexed: 05/05/2023]
Abstract
Allying high-resolution with a large field-of-view (FOV) is of great importance in the fields of biology and medicine, but it is particularly challenging when imaging non-flat living samples such as the human retina. Indeed, high-resolution is normally achieved with adaptive optics (AO) and scanning methods, which considerably reduce the useful FOV and increase the system complexity. An alternative technique is time-domain full-field optical coherence tomography (FF-OCT), which has already shown its potential for in-vivo high-resolution retinal imaging. Here, we introduce coherence gate shaping for FF-OCT, to optically shape the coherence gate geometry to match the sample curvature, thus achieving a larger FOV than previously possible. Using this instrument, we obtained high-resolution images of living human photoreceptors close to the foveal center without AO and with a 1 mm × 1 mm FOV in a single shot. This novel advance enables the extraction of photoreceptor-based biomarkers with ease and spatiotemporal monitoring of individual photoreceptors. We compare our findings with AO-assisted ophthalmoscopes, highlighting the potential of FF-OCT, as a compact system, to become a routine clinical imaging technique.
Collapse
Affiliation(s)
- Pedro Mecê
- Institut Langevin, ESPCI Paris, CNRS, PSL University, 1 rue Jussieu, 75005 Paris, France
| | - Kassandra Groux
- Institut Langevin, ESPCI Paris, CNRS, PSL University, 1 rue Jussieu, 75005 Paris, France
| | - Jules Scholler
- Institut Langevin, ESPCI Paris, CNRS, PSL University, 1 rue Jussieu, 75005 Paris, France
| | - Olivier Thouvenin
- Institut Langevin, ESPCI Paris, CNRS, PSL University, 1 rue Jussieu, 75005 Paris, France
| | - Mathias Fink
- Institut Langevin, ESPCI Paris, CNRS, PSL University, 1 rue Jussieu, 75005 Paris, France
| | - Kate Grieve
- Institut de la Vision, Sorbonne Université, INSERM, CNRS, F-75012, Paris, France
- Quinze-Vingts National Eye Hospital, 28 Rue de Charenton, Paris, 75012, France
| | - Claude Boccara
- Institut Langevin, ESPCI Paris, CNRS, PSL University, 1 rue Jussieu, 75005 Paris, France
| |
Collapse
|
32
|
Scholler J, Groux K, Goureau O, Sahel JA, Fink M, Reichman S, Boccara C, Grieve K. Dynamic full-field optical coherence tomography: 3D live-imaging of retinal organoids. LIGHT, SCIENCE & APPLICATIONS 2020; 9:140. [PMID: 32864115 PMCID: PMC7429964 DOI: 10.1038/s41377-020-00375-8] [Citation(s) in RCA: 82] [Impact Index Per Article: 16.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/09/2019] [Revised: 06/19/2020] [Accepted: 07/27/2020] [Indexed: 05/07/2023]
Abstract
Optical coherence tomography offers astounding opportunities to image the complex structure of living tissue but lacks functional information. We present dynamic full-field optical coherence tomography as a technique to noninvasively image living human induced pluripotent stem cell-derived retinal organoids. Coloured images with an endogenous contrast linked to organelle motility are generated, with submicrometre spatial resolution and millisecond temporal resolution, creating a way to identify specific cell types in living tissue via their function.
Collapse
Affiliation(s)
- Jules Scholler
- Institut Langevin, ESPCI Paris, PSL University, CNRS, 10 rue Vauquelin, Paris, France
| | - Kassandra Groux
- Institut Langevin, ESPCI Paris, PSL University, CNRS, 10 rue Vauquelin, Paris, France
| | - Olivier Goureau
- Institut de la Vision, Sorbonne Université, INSERM, CNRS, F-75012 Paris, France
| | - José-Alain Sahel
- Institut de la Vision, Sorbonne Université, INSERM, CNRS, F-75012 Paris, France
- Quinze-Vingts National Eye Hospital, 28 Rue de Charenton, Paris, 75012 France
- Fondation Ophtalmologique Rothschild, F-75019 Paris, France
- Department of Ophthalmology, The University of Pittsburgh School of Medicine, Pittsburgh, PA 15213 United States
| | - Mathias Fink
- Institut Langevin, ESPCI Paris, PSL University, CNRS, 10 rue Vauquelin, Paris, France
| | - Sacha Reichman
- Institut de la Vision, Sorbonne Université, INSERM, CNRS, F-75012 Paris, France
| | - Claude Boccara
- Institut Langevin, ESPCI Paris, PSL University, CNRS, 10 rue Vauquelin, Paris, France
| | - Kate Grieve
- Institut de la Vision, Sorbonne Université, INSERM, CNRS, F-75012 Paris, France
- Quinze-Vingts National Eye Hospital, 28 Rue de Charenton, Paris, 75012 France
| |
Collapse
|
33
|
Rasedujjaman M, Affannoukoué K, Garcia-Seyda N, Robert P, Giovannini H, Chaumet PC, Theodoly O, Valignat MP, Belkebir K, Sentenac A, Maire G. Three-dimensional imaging with reflection synthetic confocal microscopy. OPTICS LETTERS 2020; 45:3721-3724. [PMID: 32630938 DOI: 10.1364/ol.397364] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/12/2020] [Accepted: 05/30/2020] [Indexed: 06/11/2023]
Abstract
Biomedical imaging lacks label-free microscopy techniques able to reconstruct the contour of biological cells in solution, in 3D and with high resolution, as required for the fast diagnosis of numerous diseases. Inspired by computational optical coherence tomography techniques, we present a tomographic diffractive microscope in reflection geometry used as a synthetic confocal microscope, compatible with this goal and validated with the 3D reconstruction of a human effector T lymphocyte.
Collapse
|
34
|
Ghoubay D, Borderie M, Grieve K, Martos R, Bocheux R, Nguyen TM, Callard P, Chédotal A, Borderie VM. Corneal stromal stem cells restore transparency after N 2 injury in mice. Stem Cells Transl Med 2020; 9:917-935. [PMID: 32379938 PMCID: PMC7381812 DOI: 10.1002/sctm.19-0306] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2019] [Revised: 03/23/2020] [Accepted: 03/27/2020] [Indexed: 12/12/2022] Open
Abstract
Corneal scarring associated with various corneal conditions is a leading cause of blindness worldwide. The present study aimed to test the hypothesis that corneal stromal stem cells have a therapeutic effect and are able to restore the extracellular matrix organization and corneal transparency in vivo. We first developed a mouse model of corneal stromal scar induced by liquid nitrogen (N2) application. We then reversed stromal scarring by injecting mouse or human corneal stromal stem cells in injured cornea. To characterize the mouse model developed in this study and the therapeutic effect of corneal stromal stem cells, we used a combination of in vivo (slit lamp, optical coherence tomography, in vivo confocal microscopy, optical coherence tomography shear wave elastography, and optokinetic tracking response) and ex vivo (full field optical coherence microscopy, flow cytometry, transmission electron microscopy, and histology) techniques. The mouse model obtained features early inflammation, keratocyte apoptosis, keratocyte transformation into myofibroblasts, collagen type III synthesis, impaired stromal ultrastructure, corneal stromal haze formation, increased corneal rigidity, and impaired visual acuity. Injection of stromal stem cells in N2‐injured cornea resulted in improved corneal transparency associated with corneal stromal stem cell migration and growth in the recipient stroma, absence of inflammatory response, recipient corneal epithelial cell growth, decreased collagen type III stromal content, restored stromal ultrastructure, decreased stromal haze, decreased corneal rigidity, and improved vision. Our study demonstrates the ability of corneal stromal stem cells to promote regeneration of transparent stromal tissue after corneal scarring induced by liquid nitrogen.
Collapse
Affiliation(s)
- Djida Ghoubay
- Institut de la Vision, Sorbonne Université, INSERM, CNRS, Paris, France.,Centre Hospitalier National d'Ophtalmologie des 15-20, DHU Sight Restore, INSERM-DHOS CIC, Paris, France
| | - Marie Borderie
- Centre Hospitalier National d'Ophtalmologie des 15-20, DHU Sight Restore, INSERM-DHOS CIC, Paris, France
| | - Kate Grieve
- Institut de la Vision, Sorbonne Université, INSERM, CNRS, Paris, France
| | - Raphaël Martos
- Laboratoire de Recherche Vasculaire Translationnelle, INSERM U1148, Université Paris Diderot, Sorbonne Paris Cité, Paris, France
| | - Romain Bocheux
- Laboratoire d'Optique et Biosciences (LOB) École polytechnique, CNRS UMR 7645, INSERM U 1182, Palaiseau cedex, France
| | - Thu-Mai Nguyen
- Institut Langevin Ondes et images CNRS UMR 7587, INSERM U979 Physiques des ondes pour la médecine, ESPCI, Paris, France
| | - Patrice Callard
- Sorbonne Université, APHP, Hôpital Pitié Salpêtrière, Paris, France
| | - Alain Chédotal
- Institut de la Vision, Sorbonne Université, INSERM, CNRS, Paris, France
| | - Vincent M Borderie
- Institut de la Vision, Sorbonne Université, INSERM, CNRS, Paris, France.,Centre Hospitalier National d'Ophtalmologie des 15-20, DHU Sight Restore, INSERM-DHOS CIC, Paris, France
| |
Collapse
|
35
|
Auksorius E, Borycki D, Stremplewski P, Liżewski K, Tomczewski S, Niedźwiedziuk P, Sikorski BL, Wojtkowski M. In vivo imaging of the human cornea with high-speed and high-resolution Fourier-domain full-field optical coherence tomography. BIOMEDICAL OPTICS EXPRESS 2020; 11:2849-2865. [PMID: 32499965 PMCID: PMC7249809 DOI: 10.1364/boe.393801] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/27/2020] [Revised: 04/22/2020] [Accepted: 04/23/2020] [Indexed: 05/06/2023]
Abstract
Corneal evaluation in ophthalmology necessitates cellular-resolution and fast imaging techniques that allow for accurate diagnoses. Currently, the fastest volumetric imaging technique is Fourier-domain full-field optical coherence tomography (FD-FF-OCT), which uses a fast camera and a rapidly tunable laser source. Here, we demonstrate high-resolution, high-speed, non-contact corneal volumetric imaging in vivo with FD-FF-OCT that can acquire a single 3D volume with a voxel rate of 7.8 GHz. The spatial coherence of the laser source was suppressed to prevent it from focusing on a spot on the retina, and therefore, exceeding the maximum permissible exposure (MPE). The inherently volumetric nature of FD-FF-OCT data enabled flattening of curved corneal layers. The acquired FD-FF-OCT images revealed corneal cellular structures, such as epithelium, stroma and endothelium, as well as subbasal and mid-stromal nerves.
Collapse
Affiliation(s)
- Egidijus Auksorius
- Institute of Physical Chemistry, Polish Academy of Sciences, Kasprzaka 44/52, 01-224 Warsaw, Poland
- Equal contribution
| | - Dawid Borycki
- Institute of Physical Chemistry, Polish Academy of Sciences, Kasprzaka 44/52, 01-224 Warsaw, Poland
- Equal contribution
| | - Patrycjusz Stremplewski
- Institute of Physical Chemistry, Polish Academy of Sciences, Kasprzaka 44/52, 01-224 Warsaw, Poland
| | - Kamil Liżewski
- Institute of Physical Chemistry, Polish Academy of Sciences, Kasprzaka 44/52, 01-224 Warsaw, Poland
| | - Slawomir Tomczewski
- Institute of Physical Chemistry, Polish Academy of Sciences, Kasprzaka 44/52, 01-224 Warsaw, Poland
| | - Paulina Niedźwiedziuk
- Institute of Physical Chemistry, Polish Academy of Sciences, Kasprzaka 44/52, 01-224 Warsaw, Poland
| | - Bartosz L. Sikorski
- Department of Ophthalmology, Nicolaus Copernicus University, 9 M. Sklodowskiej-Curie St., Bydgoszcz 85-309, Poland
- Oculomedica Eye Research & Development Center, 9 Broniewskiego St, 85-391 Bydgoszcz, Poland
| | - Maciej Wojtkowski
- Institute of Physical Chemistry, Polish Academy of Sciences, Kasprzaka 44/52, 01-224 Warsaw, Poland
| |
Collapse
|
36
|
Dubois A, Xue W, Levecq O, Bulkin P, Coutrot AL, Ogien J. Mirau-based line-field confocal optical coherence tomography. OPTICS EXPRESS 2020; 28:7918-7927. [PMID: 32225427 DOI: 10.1364/oe.389637] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/04/2020] [Accepted: 02/06/2020] [Indexed: 05/21/2023]
Abstract
Line-field confocal optical coherence tomography (LC-OCT) is an imaging technique in which A-scans are acquired in parallel through line illumination with a broadband laser and line detection with a line-scan camera. B-scan imaging at high spatial resolution is achieved by dynamic focusing in a Linnik interferometer. This paper presents an LC-OCT device based on a custom-designed Mirau interferometer that offers similar spatial resolution and detection sensitivity. The device has the advantage of being more compact and lighter. In vivo imaging of human skin with a resolution of 1.3 µm × 1.1 µm (lateral × axial) is demonstrated over a field of 0.9 mm × 0.4 mm (lateral × axial) at 12 frames per second.
Collapse
|
37
|
Borycki D, Auksorius E, Węgrzyn P, Wojtkowski M. Computational aberration correction in spatiotemporal optical coherence (STOC) imaging. OPTICS LETTERS 2020; 45:1293-1296. [PMID: 32163948 DOI: 10.1364/ol.384796] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/06/2023]
Abstract
Spatiotemporal optical coherence (STOC) imaging is a new technique for suppressing coherent cross talk noise in Fourier-domain full-field optical coherence tomography (FD-FF-OCT). In STOC imaging, the time-varying inhomogeneous phase masks modulate the incident light to alter the interferometric signal. Resulting interference images are then processed as in standard FD-FF-OCT and averaged incoherently or coherently to produce cross-talk-free volumetric optical coherence tomography (OCT) images of the sample. Here, we show that coherent averaging is suitable when phase modulation is performed for both interferometer arms simultaneously. We explain the advantages of coherent over incoherent averaging. Specifically, we show that modulated signal, after coherent averaging, preserves lateral phase stability, enabling computational phase correction to compensate for geometrical aberrations. Ultimately, we employ it to correct for aberrations present in the image of the photoreceptor layer of the human retina that reveals otherwise invisible photoreceptor mosaics.
Collapse
|
38
|
Matlock A, Sentenac A, Chaumet PC, Yi J, Tian L. Inverse scattering for reflection intensity phase microscopy. BIOMEDICAL OPTICS EXPRESS 2020; 11:911-926. [PMID: 32206398 PMCID: PMC7041473 DOI: 10.1364/boe.380845] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/17/2019] [Revised: 01/07/2020] [Accepted: 01/07/2020] [Indexed: 05/05/2023]
Abstract
Reflection phase imaging provides label-free, high-resolution characterization of biological samples, typically using interferometric-based techniques. Here, we investigate reflection phase microscopy from intensity-only measurements under diverse illumination. We evaluate the forward and inverse scattering model based on the first Born approximation for imaging scattering objects above a glass slide. Under this design, the measured field combines linear forward-scattering and height-dependent nonlinear back-scattering from the object that complicates object phase recovery. Using only the forward-scattering, we derive a linear inverse scattering model and evaluate this model's validity range in simulation and experiment using a standard reflection microscope modified with a programmable light source. Our method provides enhanced contrast of thin, weakly scattering samples that complement transmission techniques. This model provides a promising development for creating simplified intensity-based reflection quantitative phase imaging systems easily adoptable for biological research.
Collapse
Affiliation(s)
- Alex Matlock
- Department of Electrical and Computer Engineering, Boston University, Boston, MA 02215, USA
| | - Anne Sentenac
- Institut Fresnel, Aix Marseille Univ., CNRS, Centrale Marseille, Marseille, France
| | - Patrick C. Chaumet
- Institut Fresnel, Aix Marseille Univ., CNRS, Centrale Marseille, Marseille, France
| | - Ji Yi
- Department of Medicine, Boston University School of Medicine, Boston, MA 02215, USA
| | - Lei Tian
- Department of Electrical and Computer Engineering, Boston University, Boston, MA 02215, USA
| |
Collapse
|
39
|
Ilina E, Nyman M, Mondal T, Kaivola M, Setälä T, Shevchenko A. Interferometric imaging of reflective micro-objects in the presence of strong aberrations. OPTICS EXPRESS 2020; 28:1817-1826. [PMID: 32121886 DOI: 10.1364/oe.383451] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/14/2019] [Accepted: 01/04/2020] [Indexed: 06/10/2023]
Abstract
Some imaging techniques reduce the effect of optical aberrations either by detecting and actively compensating for them or by utilizing interferometry. A microscope based on a Mach-Zehnder interferometer has been recently introduced to allow obtaining sharp images of light-transmitting objects in the presence of strong aberrations. However, the method is not capable of imaging microstructures on opaque substrates. In this work, we use a Michelson interferometer to demonstrate imaging of reflecting and back-scattering objects on any substrate with micrometer-scale resolution. The system is remarkably insensitive to both deterministic and random aberrations that can completely destroy the object's intensity image.
Collapse
|
40
|
Claveau R, Montgomery P, Flury M. Coherence scanning interferometry allows accurate characterization of micrometric spherical particles contained in complex media. Ultramicroscopy 2020; 208:112859. [DOI: 10.1016/j.ultramic.2019.112859] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2019] [Revised: 08/22/2019] [Accepted: 10/15/2019] [Indexed: 10/25/2022]
|
41
|
Mecê P, Scholler J, Groux K, Boccara C. High-resolution in-vivo human retinal imaging using full-field OCT with optical stabilization of axial motion. BIOMEDICAL OPTICS EXPRESS 2020; 11:492-504. [PMID: 32010530 PMCID: PMC6968740 DOI: 10.1364/boe.381398] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/23/2019] [Revised: 12/12/2019] [Accepted: 12/16/2019] [Indexed: 05/05/2023]
Abstract
Time-domain full-field OCT (FF-OCT) represents an imaging modality capable of recording high-speed en-face sections of a sample at a given depth. One of the biggest challenges to transfer this technique to image in-vivo human retina is the presence of continuous involuntary head and eye axial motion during image acquisition. In this paper, we demonstrate a solution to this problem by implementing an optical stabilization in an FF-OCT system. This was made possible by combining an FF-OCT system, an SD-OCT system, and a high-speed voice-coil translation stage. B-scans generated by the SD-OCT were used to measure the retina axial position and to drive the position of the high-speed voice coil translation stage, where the FF-OCT reference arm is mounted. Closed-loop optical stabilization reduced the RMS error by a factor of 7, significantly increasing the FF-OCT image acquisition efficiency. By these means, we demonstrate the capacity of the FF-OCT to resolve cone mosaic as close as 1.5 o from the fovea center with high consistency and without using adaptive optics.
Collapse
|
42
|
Auksorius E, Borycki D, Wojtkowski M. Crosstalk-free volumetric in vivo imaging of a human retina with Fourier-domain full-field optical coherence tomography. BIOMEDICAL OPTICS EXPRESS 2019; 10:6390-6407. [PMID: 31853406 PMCID: PMC6913414 DOI: 10.1364/boe.10.006390] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/17/2019] [Revised: 11/09/2019] [Accepted: 11/12/2019] [Indexed: 05/05/2023]
Abstract
Fourier-domain full-field optical coherence tomography (FD-FF-OCT) is currently the fastest volumetric imaging technique that is able to generate a single 3-D volume of retina in less than 9 ms, corresponding to a voxel rate of 7.8 GHz. FD-FF-OCT is based on a fast camera, a rapidly tunable laser source, and Fourier-domain signal detection. However, crosstalk appearing due to multiply scattered light corrupts images with the speckle pattern, and therefore, lowers image quality. Here, for the first time, we report on a system that can acquire essentially crosstalk-free volumes of the retina by using a fast deformable membrane. It enables the visualization of choroids and a clear delineation of the retinal layers that is not possible with conventional FD-FF-OCT.
Collapse
|
43
|
Saba A, Usmani A, Islam QU, Assad T. Unfolding the enigma of lamina cribrosa morphometry and its association with glaucoma. Pak J Med Sci 2019; 35:1730-1735. [PMID: 31777524 PMCID: PMC6861505 DOI: 10.12669/pjms.35.6.568] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2019] [Revised: 04/11/2019] [Accepted: 08/22/2019] [Indexed: 11/28/2022] Open
Abstract
Primary open angle glaucoma (POAG) is worldwide prevalent ailment, affecting millions, and leading irreversible cause of blindness. The treatment strategies revolve around one modifiable factor, elevated intraocular pressure (IOP), despite POAG presenting with normal IOP. Emphasis is put forth in recent past detecting structural elements of glaucoma; lamina cribrosa (LC) is found to be a promising prospect. Morphological alterations of LC are implicated as early sign before onset of glaucomatous optic neuropathy (GON). In this review, the authors explored scientific works from 1976 till 2018 through Google, Google Scholar, PubMed, HEC Digital Library, Springerlink, and PakMedinet in four months' time, extracted structural features of LC, its measurable attributes, fresh innovations employed for in-vivo visualization and clinical signs aiding in establishing diagnosis of glaucoma which will assist as a prophylactic measure against GON. No such work has ever been done in South-East Asia including our country. So LC opens a new horizon for research in Pakistan.
Collapse
Affiliation(s)
- Ayesha Saba
- Dr. Ayesha Saba Naz, MBBS. Senior Lecturer, Department of Anatomy, Bahria University Medical and Dental College, Karachi, Pakistan
| | - Ambreen Usmani
- Dr. Ambreen Usmani, M. Phil, PhD, Vice Principal, Professor, Department of Anatomy. Bahria University Medical and Dental College, Karachi, Pakistan
| | - Qamar Ul Islam
- Dr. Qamar Ul Islam, FCPS. Associate Professor, Consultant PHACO and Vitreoretinal Surgeon, PNS Shifa Hospital, Karachi, Pakistan
| | - Tahira Assad
- Dr. Tahira Assad, M. Phil, PhD, Associate Professor, Department of Pharmacology, Karachi Institute of Medical Sciences, Pakistan
| |
Collapse
|
44
|
Kandel ME, Hu C, Naseri Kouzehgarani G, Min E, Sullivan KM, Kong H, Li JM, Robson DN, Gillette MU, Best-Popescu C, Popescu G. Epi-illumination gradient light interference microscopy for imaging opaque structures. Nat Commun 2019; 10:4691. [PMID: 31619681 PMCID: PMC6795907 DOI: 10.1038/s41467-019-12634-3] [Citation(s) in RCA: 47] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2019] [Accepted: 09/17/2019] [Indexed: 02/06/2023] Open
Abstract
Multiple scattering and absorption limit the depth at which biological tissues can be imaged with light. In thick unlabeled specimens, multiple scattering randomizes the phase of the field and absorption attenuates light that travels long optical paths. These obstacles limit the performance of transmission imaging. To mitigate these challenges, we developed an epi-illumination gradient light interference microscope (epi-GLIM) as a label-free phase imaging modality applicable to bulk or opaque samples. Epi-GLIM enables studying turbid structures that are hundreds of microns thick and otherwise opaque to transmitted light. We demonstrate this approach with a variety of man-made and biological samples that are incompatible with imaging in a transmission geometry: semiconductors wafers, specimens on opaque and birefringent substrates, cells in microplates, and bulk tissues. We demonstrate that the epi-GLIM data can be used to solve the inverse scattering problem and reconstruct the tomography of single cells and model organisms.
Collapse
Affiliation(s)
- Mikhail E Kandel
- Department of Electrical and Computer Engineering, University of Illinois at Urbana-Champaign, Urbana, IL, USA
- Beckman Institute, University of Illinois at Urbana-Champaign, Urbana, IL, USA
| | - Chenfei Hu
- Department of Electrical and Computer Engineering, University of Illinois at Urbana-Champaign, Urbana, IL, USA
- Beckman Institute, University of Illinois at Urbana-Champaign, Urbana, IL, USA
| | - Ghazal Naseri Kouzehgarani
- Beckman Institute, University of Illinois at Urbana-Champaign, Urbana, IL, USA
- Neuroscience Program, University of Illinois at Urbana-Champaign, Urbana, IL, USA
| | - Eunjung Min
- Rowland Institute at Harvard University, Cambridge, Cambridge, MA, USA
| | | | - Hyunjoon Kong
- Beckman Institute, University of Illinois at Urbana-Champaign, Urbana, IL, USA
- Department of Bioengineering, University of Illinois at Urbana-Champaign, Urbana, IL, USA
- Department of Chemical and Biomolecular Engineering, University of Illinois at Urbana-Champaign, Urbana, IL, USA
- Car R. Woese Institute for Genomic Biology, University of Illinois at Urbana-, Champaign, IL, USA
| | - Jennifer M Li
- Rowland Institute at Harvard University, Cambridge, Cambridge, MA, USA
| | - Drew N Robson
- Rowland Institute at Harvard University, Cambridge, Cambridge, MA, USA
| | - Martha U Gillette
- Beckman Institute, University of Illinois at Urbana-Champaign, Urbana, IL, USA
- Neuroscience Program, University of Illinois at Urbana-Champaign, Urbana, IL, USA
- Department of Bioengineering, University of Illinois at Urbana-Champaign, Urbana, IL, USA
- Department of Cell & Developmental Biology, University of Illinois at Urbana-Champaign, Urbana, IL, USA
| | - Catherine Best-Popescu
- Beckman Institute, University of Illinois at Urbana-Champaign, Urbana, IL, USA
- Department of Bioengineering, University of Illinois at Urbana-Champaign, Urbana, IL, USA
| | - Gabriel Popescu
- Department of Electrical and Computer Engineering, University of Illinois at Urbana-Champaign, Urbana, IL, USA.
- Beckman Institute, University of Illinois at Urbana-Champaign, Urbana, IL, USA.
- Department of Bioengineering, University of Illinois at Urbana-Champaign, Urbana, IL, USA.
| |
Collapse
|
45
|
Krishnamurthy S, Brown JQ, Iftimia N, Levenson RM, Rajadhyaksha M. Ex Vivo Microscopy: A Promising Next-Generation Digital Microscopy Tool for Surgical Pathology Practice. Arch Pathol Lab Med 2019; 143:1058-1068. [PMID: 31295016 PMCID: PMC7365575 DOI: 10.5858/arpa.2019-0058-ra] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
CONTEXT.— The rapid evolution of optical imaging modalities in recent years has opened the opportunity for ex vivo tissue imaging, which has significant implications for surgical pathology practice. These modalities have promising potential to be used as next-generation digital microscopy tools for examination of fresh tissue, with or without labeling with contrast agents. OBJECTIVE.— To review the literature regarding various types of ex vivo optical imaging platforms that can generate digital images for tissue recognition with potential for utilization in anatomic pathology clinical practices. DATA SOURCES.— Literature relevant to ex vivo tissue imaging obtained from the PubMed database. CONCLUSIONS.— Ex vivo imaging of tissues can be performed by using various types of optical imaging techniques. These next-generation digital microscopy tools have a promising potential for utilization in surgical pathology practice.
Collapse
Affiliation(s)
- Savitri Krishnamurthy
- From the Department of Pathology and Laboratory Medicine, The University of Texas, MD Anderson Cancer Center, Houston (Dr Krishnamurthy); Biomedical Engineering, Tulane University, New Orleans, Louisiana (Dr Brown); Physical Sciences Inc, Andover, Massachusetts (Dr Iftimia); the Department of Pathology and Laboratory Medicine, University of California Davis, Davis (Dr Levenson); and Dermatology Section, Memorial Sloan Kettering Cancer Center, New York, New York (Dr Rajadhyaksha)
| | - Jonathan Quincy Brown
- From the Department of Pathology and Laboratory Medicine, The University of Texas, MD Anderson Cancer Center, Houston (Dr Krishnamurthy); Biomedical Engineering, Tulane University, New Orleans, Louisiana (Dr Brown); Physical Sciences Inc, Andover, Massachusetts (Dr Iftimia); the Department of Pathology and Laboratory Medicine, University of California Davis, Davis (Dr Levenson); and Dermatology Section, Memorial Sloan Kettering Cancer Center, New York, New York (Dr Rajadhyaksha)
| | - Nicusor Iftimia
- From the Department of Pathology and Laboratory Medicine, The University of Texas, MD Anderson Cancer Center, Houston (Dr Krishnamurthy); Biomedical Engineering, Tulane University, New Orleans, Louisiana (Dr Brown); Physical Sciences Inc, Andover, Massachusetts (Dr Iftimia); the Department of Pathology and Laboratory Medicine, University of California Davis, Davis (Dr Levenson); and Dermatology Section, Memorial Sloan Kettering Cancer Center, New York, New York (Dr Rajadhyaksha)
| | - Richard M Levenson
- From the Department of Pathology and Laboratory Medicine, The University of Texas, MD Anderson Cancer Center, Houston (Dr Krishnamurthy); Biomedical Engineering, Tulane University, New Orleans, Louisiana (Dr Brown); Physical Sciences Inc, Andover, Massachusetts (Dr Iftimia); the Department of Pathology and Laboratory Medicine, University of California Davis, Davis (Dr Levenson); and Dermatology Section, Memorial Sloan Kettering Cancer Center, New York, New York (Dr Rajadhyaksha)
| | - Milind Rajadhyaksha
- From the Department of Pathology and Laboratory Medicine, The University of Texas, MD Anderson Cancer Center, Houston (Dr Krishnamurthy); Biomedical Engineering, Tulane University, New Orleans, Louisiana (Dr Brown); Physical Sciences Inc, Andover, Massachusetts (Dr Iftimia); the Department of Pathology and Laboratory Medicine, University of California Davis, Davis (Dr Levenson); and Dermatology Section, Memorial Sloan Kettering Cancer Center, New York, New York (Dr Rajadhyaksha)
| |
Collapse
|
46
|
Scholler J. Motion artifact removal and signal enhancement to achieve in vivo dynamic full field OCT. OPTICS EXPRESS 2019; 27:19562-19572. [PMID: 31503714 DOI: 10.1364/oe.27.019562] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/27/2019] [Accepted: 06/06/2019] [Indexed: 05/21/2023]
Abstract
We present a filtering procedure based on singular value decomposition to remove artifacts arising from sample motion during dynamic full field OCT acquisitions. The presented method succeeded in removing artifacts created by environmental noise from data acquired in a clinical setting, including in vivo data. Moreover, we report on a new method based on using the cumulative sum to compute dynamic images from raw signals, leading to a higher signal to noise ratio, and thus enabling dynamic imaging deeper in tissues.
Collapse
|
47
|
Abstract
Gabor-domain optical coherence microscopy (GDOCM) is a high-definition imaging technique leveraging principles of low-coherence interferometry, liquid lens technology, high-speed imaging, and precision scanning. GDOCM achieves isotropic 2 μm resolution in 3D, effectively breaking the cellular resolution limit of optical coherence tomography (OCT). In the ten years since its introduction, GDOCM has been used for cellular imaging in 3D in a number of clinical applications, including dermatology, oncology and ophthalmology, as well as to characterize materials in industrial applications. Future developments will enhance the structural imaging capability of GDOCM by adding functional modalities, such as fluorescence and elastography, by estimating thicknesses on the nano-scale, and by incorporating machine learning techniques.
Collapse
|
48
|
Differentiating Generic versus Branded Pharmaceutical Tablets Using Ultra-High-Resolution Optical Coherence Tomography. COATINGS 2019. [DOI: 10.3390/coatings9050326] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Optical coherence tomography (OCT) has recently been demonstrated as a powerful tool to image through pharmaceutical film coatings. Majority of the existing systems can, however, resolve film coatings for thickness greater than 10 µm. Here we report on an ultra-high-resolution (UHR) OCT system, with 1 µm axial and 1.6 µm lateral resolutions, which can resolve thin coatings at approximately 4 µm. We further demonstrate a novel application of the system for differentiating generic and branded suppliers of paracetamol tablets.
Collapse
|
49
|
Zhang Z, Ikpatt U, Lawman S, Williams B, Zheng Y, Lin H, Shen Y. Sub-surface imaging of soiled cotton fabric using full-field optical coherence tomography. OPTICS EXPRESS 2019; 27:13951-13964. [PMID: 31163852 DOI: 10.1364/oe.27.013951] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/18/2019] [Accepted: 03/15/2019] [Indexed: 05/23/2023]
Abstract
In the laundry industry, colorimetry is a common way to evaluate the stain removal efficiency of detergents and cleaning products. For ease of visualization, the soiling agent is treated with a dye before measurement. However, it effectively measures the dye removal rather than stain removal, and it cannot provide depth-resolved information of the sample. In this study, we show that full-field (FF) optical coherence tomography (OCT) technique is capable of measuring the cleaning effect on cotton fabric by imaging the sub-surface features of fabric samples. We used a broadband light-emitting diode (LED) source to power the FF-OCT system that achieves the resolution of 1 µm axially and 1.6 µm laterally. This allows the micron-sized cotton fibres/fibrils at different depth positions to be resolved. The clean, the soiled, and the washed samples can be differentiated from their cross-sectional images using OCT, where the cleaning effect can be correlated with the sub-surface fibre volume. The experimental results of the proposed method were found to be in good agreement with those of the standard colorimetry method. The proposed technique therefore offers an alternative way for measuring the stain removal from fabric substrate to assess the effectiveness of laundry detergent products.
Collapse
|
50
|
Borycki D, Hamkało M, Nowakowski M, Szkulmowski M, Wojtkowski M. Spatiotemporal optical coherence (STOC) manipulation suppresses coherent cross-talk in full-field swept-source optical coherence tomography. BIOMEDICAL OPTICS EXPRESS 2019; 10:2032-2054. [PMID: 31086716 PMCID: PMC6485009 DOI: 10.1364/boe.10.002032] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/07/2018] [Revised: 02/01/2019] [Accepted: 02/01/2019] [Indexed: 05/05/2023]
Abstract
Full-field swept-source optical coherence tomography (FF-SS-OCT) provides high-resolution depth-resolved images of the sample by parallel Fourier-domain interferometric detection. Although FF-SS-OCT implements high-speed volumetric imaging, it suffers from the cross-talk-generated noise from spatially coherent lasers. This noise reduces the transversal image resolution, which in turn, limits the wide adaptation of FF-SS-OCT for practical and clinical applications. Here, we introduce the novel spatiotemporal optical coherence (STOC) manipulation. In STOC the time-varying inhomogeneous phase masks are used to modulate the light incident on the sample. By properly adjusting these phase masks, the spatial coherence can be reduced. Consequently, the cross-talk-generated noise is suppressed, the transversal image resolution is improved by the factor of2 , and sample features become visible. STOC approach is validated by imaging 1951 USAF resolution test chart covered by the diffuser, scattering phantom and the rat skin ex vivo. In all these cases STOC suppresses the cross-talk-generated noise, and importantly, do not compromise the transversal resolution. Thus, our method provides an enhancement of FF-SS-OCT that can be beneficial for imaging biological samples.
Collapse
Affiliation(s)
- Dawid Borycki
- Institute of Physical Chemistry, Polish Academy of Sciences, Kasprzaka 44/52, 01-224 Warsaw, Poland
| | - Michał Hamkało
- Institute of Physical Chemistry, Polish Academy of Sciences, Kasprzaka 44/52, 01-224 Warsaw, Poland
- Institute of Physics, Faculty of Physics, Astronomy and Informatics, Nicolaus Copernicus University, Grudziadzka 5, 87-100 Torun, Poland
| | - Maciej Nowakowski
- Institute of Physics, Faculty of Physics, Astronomy and Informatics, Nicolaus Copernicus University, Grudziadzka 5, 87-100 Torun, Poland
| | - Maciej Szkulmowski
- Institute of Physics, Faculty of Physics, Astronomy and Informatics, Nicolaus Copernicus University, Grudziadzka 5, 87-100 Torun, Poland
| | - Maciej Wojtkowski
- Institute of Physical Chemistry, Polish Academy of Sciences, Kasprzaka 44/52, 01-224 Warsaw, Poland
- Institute of Physics, Faculty of Physics, Astronomy and Informatics, Nicolaus Copernicus University, Grudziadzka 5, 87-100 Torun, Poland
| |
Collapse
|