1
|
Sastry K, Aborahama Y, Luo Y, Zhang Y, Cui M, Cao R, Ku G, Wang LV. Transcranial Photoacoustic Tomography De-Aberrated Using Boundary Elements. IEEE TRANSACTIONS ON MEDICAL IMAGING 2025; 44:2068-2078. [PMID: 40030863 DOI: 10.1109/tmi.2025.3526000] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/05/2025]
Abstract
Photoacoustic tomography holds tremendous potential for neuroimaging due to its functional magnetic resonance imaging (fMRI)-like functional contrast and greater specificity, richer contrast, portability, open platform, faster imaging, magnet-free and quieter operation, and lower cost. However, accounting for the skull-induced acoustic distortion remains a long-standing challenge due to the problem size. This is aggravated in functional imaging, where high accuracy is needed to detect minuscule functional changes. Here, we develop an acoustic solver based on the boundary-element method (BEM) to model the skull and de-aberrate the images. BEM uses boundary meshes and compression for superior computational efficiency compared to volumetric discretization-based methods. We demonstrate BEM's higher accuracy and favorable scalability relative to the widely used pseudo-spectral time-domain method (PSTD). In imaging through an ex-vivo adult human skull, BEM outperforms PSTD in several metrics. Our work establishes BEM as a valuable and naturally suited technique in photoacoustic tomography and lays the foundation for BEM-based de-aberration methods.
Collapse
|
2
|
Farajollahi A, Baharvand M. Advancements in photoacoustic imaging for cancer diagnosis and treatment. Int J Pharm 2024; 665:124736. [PMID: 39326479 DOI: 10.1016/j.ijpharm.2024.124736] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2024] [Revised: 09/10/2024] [Accepted: 09/19/2024] [Indexed: 09/28/2024]
Abstract
Photoacoustic imaging provides in vivo morphological and functional information about tumors within surrounding tissue. By integrating ultrasound guidance, this technique enables precise localization and characterization of tumors. Moreover, the introduction of targeted contrast agents has further expanded the capabilities of photoacoustic imaging in the realm of in vivo molecular imaging. These contrast agents facilitate enhanced molecular and cellular characterization of cancer, enabling detailed insights into the disease. This review aims to provide a concise summary of the extensive research conducted in the field of Photoacoustic imaging for cancer management. It encompasses the development of the technology, its applications in clinical settings, and the advancements made in molecular imaging. By consolidating and synthesizing the existing knowledge, this review contributes to a better understanding of the potential of photoacoustic imaging in cancer care. In conclusion, photoacoustic imaging has emerged as a non-ionizing and noninvasive modality with the ability to visualize tissue's optical absorption properties while maintaining ultrasound's spatial resolution. Its integration with targeted contrast agents has enhanced molecular and cellular characterization of cancer. This review serves as a succinct overview of the extensive research conducted in the field, shedding light on the potential of photoacoustic imaging in the management of cancer.
Collapse
Affiliation(s)
| | - Mohammad Baharvand
- Department of Mechanical Engineering, Islamic Azad University, Tehran, Iran
| |
Collapse
|
3
|
Tong J, Wang Z, Zhang J, Gao R, Liu X, Liao Y, Guo X, Wei Y. Advanced Applications of Nanomaterials in Atherosclerosis Diagnosis and Treatment: Challenges and Future Prospects. ACS APPLIED MATERIALS & INTERFACES 2024; 16:58072-58099. [PMID: 39432384 DOI: 10.1021/acsami.4c13607] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/23/2024]
Abstract
Atherosclerosis-induced coronary artery disease is a major cause of cardiovascular mortality. Clinically, conservative treatment strategies for atherosclerosis still focus on lifestyle interventions and the use of lipid-lowering and anticoagulant medications. Despite achieving some therapeutic effects, these approaches are limited by low bioavailability, long intervention periods, and significant side effects. With the advancement of nanotechnology, nanomaterials have demonstrated extraordinary potential in the biomedical field. Their excellent biocompatibility, surface modifiability, and high targeting capability not only enable efficient diagnosis of plaque progression but also allow precise drug delivery within atherosclerotic plaques, significantly enhancing drug bioavailability and reducing systemic side effects. Here, we systematically review the current research progress of nanomaterials in the field of atherosclerosis to summarize not only the types of nanomaterials but also their applications in both the diagnosis and treatment of atherosclerosis. Notably, in the context of plaque therapy, we provide a comprehensive overview of current nanomaterial applications based on their targeted therapeutic systems for different cell types within plaques. Additionally, we address the persistent challenge of clinical translation of nanomaterials by summarizing current issues and providing directions for innovation and improvement in nanomaterial design. Overall, we believe that this review systematically summarizes the applications and challenges of biomedical nanomaterials in atherosclerosis diagnosis and therapy, thereby offering insights and references for the development of therapeutic materials for atherosclerosis.
Collapse
Affiliation(s)
- Junran Tong
- Department of Cardiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
- Hubei Key Laboratory of Biological Targeted Therapy, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
- Hubei Engineering Research Center for Immunological Diagnosis and Therapy of Cardiovascular Diseases, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Zhiwen Wang
- Department of Nephrology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Jiahui Zhang
- Department of Cardiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
- Hubei Key Laboratory of Biological Targeted Therapy, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
- Hubei Engineering Research Center for Immunological Diagnosis and Therapy of Cardiovascular Diseases, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Ran Gao
- Department of Cardiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
- Hubei Key Laboratory of Biological Targeted Therapy, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
- Hubei Engineering Research Center for Immunological Diagnosis and Therapy of Cardiovascular Diseases, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Xiangfei Liu
- Department of Cardiology, Beijing Hospital, National Center of Gerontology, Institute of Geriatric Medicine, Chinese Academy of Medical Sciences, Beijing, 100005, China
| | - Yuhan Liao
- Department of Cardiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
- Hubei Key Laboratory of Biological Targeted Therapy, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
- Hubei Engineering Research Center for Immunological Diagnosis and Therapy of Cardiovascular Diseases, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Xiaopeng Guo
- Department of Radiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Yumiao Wei
- Department of Cardiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
- Hubei Key Laboratory of Biological Targeted Therapy, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
- Hubei Engineering Research Center for Immunological Diagnosis and Therapy of Cardiovascular Diseases, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| |
Collapse
|
4
|
Wang S, Huang B, Chan SC, Tsang VT, Wong TT. Tri-modality in vivo imaging for tumor detection with combined ultrasound, photoacoustic, and photoacoustic elastography. PHOTOACOUSTICS 2024; 38:100630. [PMID: 39040971 PMCID: PMC11261081 DOI: 10.1016/j.pacs.2024.100630] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/16/2024] [Revised: 06/14/2024] [Accepted: 06/24/2024] [Indexed: 07/24/2024]
Abstract
A comprehensive understanding of a tumor is required for accurate diagnosis and effective treatment. However, currently, there is no single imaging modality that can provide sufficient information. Photoacoustic (PA) imaging is a hybrid imaging technique with high spatial resolution and detection sensitivity, which can be combined with ultrasound (US) imaging to provide both optical and acoustic contrast. Elastography can noninvasively map the elasticity distribution of biological tissue, which reflects pathological conditions. In this study, we incorporated PA elastography into a commercial US/PA imaging system to develop a tri-modality imaging system, which has been tested for tumor detection using four mice with different physiological conditions. The results show that this tri-modality imaging system can provide complementary information on acoustic, optical, and mechanical properties. The enabled visualization and dimension estimation of tumors can lead to a more comprehensive tissue characterization for diagnosis and treatment.
Collapse
Affiliation(s)
- Shuaihu Wang
- Translational and Advanced Bioimaging Laboratory, Department of Chemical and Biological Engineering, The Hong Kong University of Science and Technology, Hong Kong, China
- Department of Mechanical Engineering and Material Science, Washington University in St. Louis, St. Louis, MO 63130, USA
| | - Bingxin Huang
- Translational and Advanced Bioimaging Laboratory, Department of Chemical and Biological Engineering, The Hong Kong University of Science and Technology, Hong Kong, China
| | - Simon C.K. Chan
- Translational and Advanced Bioimaging Laboratory, Department of Chemical and Biological Engineering, The Hong Kong University of Science and Technology, Hong Kong, China
| | - Victor T.C. Tsang
- Translational and Advanced Bioimaging Laboratory, Department of Chemical and Biological Engineering, The Hong Kong University of Science and Technology, Hong Kong, China
| | - Terence T.W. Wong
- Translational and Advanced Bioimaging Laboratory, Department of Chemical and Biological Engineering, The Hong Kong University of Science and Technology, Hong Kong, China
- Research Center for Medical Imaging and Analysis, The Hong Kong University of Science and Technology, Hong Kong, China
| |
Collapse
|
5
|
Raghunathan R, Vasquez M, Zhang K, Zhao H, Wong STC. Label-free optical imaging for brain cancer assessment. Trends Cancer 2024; 10:557-570. [PMID: 38575412 PMCID: PMC11168891 DOI: 10.1016/j.trecan.2024.03.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2024] [Revised: 03/12/2024] [Accepted: 03/13/2024] [Indexed: 04/06/2024]
Abstract
Advances in label-free optical imaging offer a promising avenue for brain cancer assessment, providing high-resolution, real-time insights without the need for radiation or exogeneous agents. These cost-effective and intricately detailed techniques overcome the limitations inherent in magnetic resonance imaging (MRI), computed tomography (CT), and positron emission tomography (PET) scans by offering superior resolution and more readily accessible imaging options. This comprehensive review explores a variety of such methods, including photoacoustic imaging (PAI), optical coherence tomography (OCT), Raman imaging, and IR microscopy. It focuses on their roles in the detection, diagnosis, and management of brain tumors. By highlighting recent advances in these imaging techniques, the review aims to underscore the importance of label-free optical imaging in enhancing early detection and refining therapeutic strategies for brain cancer.
Collapse
Affiliation(s)
- Raksha Raghunathan
- Department of Systems Medicine and Bioengineering and T.T. and W.F. Chao Center for BRAIN, Houston Methodist Neal Cancer Center, Houston Methodist Hospital, Houston, TX 77030, USA; Advanced Cellular and Tissue Microscopy Core, Houston Methodist Neal Cancer Center and Houston Methodist Research Institute, Houston, TX 77030, USA
| | - Matthew Vasquez
- Department of Systems Medicine and Bioengineering and T.T. and W.F. Chao Center for BRAIN, Houston Methodist Neal Cancer Center, Houston Methodist Hospital, Houston, TX 77030, USA; Advanced Cellular and Tissue Microscopy Core, Houston Methodist Neal Cancer Center and Houston Methodist Research Institute, Houston, TX 77030, USA
| | - Katherine Zhang
- Department of Systems Medicine and Bioengineering and T.T. and W.F. Chao Center for BRAIN, Houston Methodist Neal Cancer Center, Houston Methodist Hospital, Houston, TX 77030, USA; Advanced Cellular and Tissue Microscopy Core, Houston Methodist Neal Cancer Center and Houston Methodist Research Institute, Houston, TX 77030, USA
| | - Hong Zhao
- Department of Systems Medicine and Bioengineering and T.T. and W.F. Chao Center for BRAIN, Houston Methodist Neal Cancer Center, Houston Methodist Hospital, Houston, TX 77030, USA; Advanced Cellular and Tissue Microscopy Core, Houston Methodist Neal Cancer Center and Houston Methodist Research Institute, Houston, TX 77030, USA; Department of Medicine, Weill Cornell Medicine, New York, NY 10065, USA.
| | - Stephen T C Wong
- Department of Systems Medicine and Bioengineering and T.T. and W.F. Chao Center for BRAIN, Houston Methodist Neal Cancer Center, Houston Methodist Hospital, Houston, TX 77030, USA; Advanced Cellular and Tissue Microscopy Core, Houston Methodist Neal Cancer Center and Houston Methodist Research Institute, Houston, TX 77030, USA; Departments of Radiology, Pathology, and Laboratory Medicine and Brain and Mind Research Institute, Weill Cornell Medicine, New York, NY 10065, USA
| |
Collapse
|
6
|
Wang Y, Tsytsarev V, Liao LD. In vivo laser speckle contrast imaging of 4-aminopyridine- or pentylenetetrazole-induced seizures. APL Bioeng 2023; 7:036119. [PMID: 37781728 PMCID: PMC10541235 DOI: 10.1063/5.0158791] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2023] [Accepted: 08/28/2023] [Indexed: 10/03/2023] Open
Abstract
Clinical and preclinical studies on epileptic seizures are closely linked to the study of neurovascular coupling. Obtaining reliable information about cerebral blood flow (CBF) in the area of epileptic activity through minimally invasive techniques is crucial for research in this field. In our studies, we used laser speckle contrast imaging (LSCI) to gather information about the local blood circulation in the area of epileptic activity. We used two models of epileptic seizures: one based on 4-aminopyridine (4-AP) and another based on pentylenetetrazole (PTZ). We verified the duration of an epileptic seizure using electrocorticography (ECoG). We applied the antiepileptic drug topiramate (TPM) to both models, but its effect was different in each case. However, in both models, TPM had an effect on neurovascular coupling in the area of epileptic activity, as shown by both LSCI and ECoG data. We demonstrated that TPM significantly reduced the amplitude of 4-AP-induced epileptic seizures (4-AP+TPM: 0.61 ± 0.13 mV vs 4-AP: 1.08 ± 0.19 mV; p < 0.05), and it also reduced gamma power in ECoG in PTZ-induced epileptic seizures (PTZ+TPM: 38.5% ± 11.9% of the peak value vs PTZ: 59.2% ± 3.0% of peak value; p < 0.05). We also captured the pattern of CBF changes during focal epileptic seizures induced by 4-AP. Our data confirm that the system of simultaneous cortical LSCI and registration of ECoG makes it possible to evaluate the effectiveness of pharmacological agents in various types of epileptic seizures in in vivo models and provides spatial and temporal information on the process of ictogenesis.
Collapse
Affiliation(s)
| | - Vassiliy Tsytsarev
- Department of Anatomy and Neurobiology, University of Maryland School of Medicine, 20 Penn Street, HSF-2, Baltimore, Maryland 21201, USA
| | - Lun-De Liao
- Institute of Biomedical Engineering and Nanomedicine, National Health Research Institutes, No. 35, Keyan Rd., Zhunan Township, Miaoli County 350, Taiwan
| |
Collapse
|
7
|
Gezginer I, Chen Z, Yoshihara HA, Deán-Ben XL, Razansky D. Volumetric registration framework for multimodal functional magnetic resonance and optoacoustic tomography of the rodent brain. PHOTOACOUSTICS 2023; 31:100522. [PMID: 37362869 PMCID: PMC10285284 DOI: 10.1016/j.pacs.2023.100522] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/22/2023] [Revised: 06/06/2023] [Accepted: 06/08/2023] [Indexed: 06/28/2023]
Abstract
Optoacoustic tomography (OAT) provides a non-invasive means to characterize cerebral hemodynamics across an entire murine brain while attaining multi-parametric readouts not available with other modalities. This unique capability can massively impact our understanding of brain function. However, OAT largely lacks the soft tissue contrast required for unambiguous identification of brain regions. Hence, its accurate registration to a reference brain atlas is paramount for attaining meaningful functional readings. Herein, we capitalized on the simultaneously acquired bi-modal data from the recently-developed hybrid magnetic resonance optoacoustic tomography (MROT) scanner in order to devise an image coregistration paradigm that facilitates brain parcellation and anatomical referencing. We evaluated the performance of the proposed methodology by coregistering OAT data acquired with a standalone system using different registration methods. The enhanced performance is further demonstrated for functional OAT data analysis and characterization of stimulus-evoked brain responses. The suggested approach enables better consolidation of the research findings thus facilitating wider acceptance of OAT as a powerful neuroimaging tool to study brain functions and diseases.
Collapse
Affiliation(s)
- Irmak Gezginer
- Institute for Biomedical Engineering and Institute of Pharmacology and Toxicology, Faculty of Medicine, University of Zurich, Switzerland
- Institute for Biomedical Engineering, Department of Information Technology and Electrical Engineering, ETH Zurich, Switzerland
| | - Zhenyue Chen
- Institute for Biomedical Engineering and Institute of Pharmacology and Toxicology, Faculty of Medicine, University of Zurich, Switzerland
- Institute for Biomedical Engineering, Department of Information Technology and Electrical Engineering, ETH Zurich, Switzerland
| | - Hikari A.I. Yoshihara
- Institute for Biomedical Engineering and Institute of Pharmacology and Toxicology, Faculty of Medicine, University of Zurich, Switzerland
- Institute for Biomedical Engineering, Department of Information Technology and Electrical Engineering, ETH Zurich, Switzerland
| | - Xosé Luís Deán-Ben
- Institute for Biomedical Engineering and Institute of Pharmacology and Toxicology, Faculty of Medicine, University of Zurich, Switzerland
- Institute for Biomedical Engineering, Department of Information Technology and Electrical Engineering, ETH Zurich, Switzerland
| | - Daniel Razansky
- Institute for Biomedical Engineering and Institute of Pharmacology and Toxicology, Faculty of Medicine, University of Zurich, Switzerland
- Institute for Biomedical Engineering, Department of Information Technology and Electrical Engineering, ETH Zurich, Switzerland
| |
Collapse
|
8
|
Biswas D, Roy S, Vasudevan S. Biomedical Application of Photoacoustics: A Plethora of Opportunities. MICROMACHINES 2022; 13:1900. [PMID: 36363921 PMCID: PMC9692656 DOI: 10.3390/mi13111900] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/30/2022] [Revised: 10/19/2022] [Accepted: 10/29/2022] [Indexed: 06/16/2023]
Abstract
The photoacoustic (PA) technique is a non-invasive, non-ionizing hybrid technique that exploits laser irradiation for sample excitation and acquires an ultrasound signal generated due to thermoelastic expansion of the sample. Being a hybrid technique, PA possesses the inherent advantages of conventional optical (high resolution) and ultrasonic (high depth of penetration in biological tissue) techniques and eliminates some of the major limitations of these conventional techniques. Hence, PA has been employed for different biomedical applications. In this review, we first discuss the basic physics of PA. Then, we discuss different aspects of PA techniques, which includes PA imaging and also PA frequency spectral analysis. The theory of PA signal generation, detection and analysis is also detailed in this work. Later, we also discuss the major biomedical application area of PA technique.
Collapse
Affiliation(s)
- Deblina Biswas
- School of Bioengineering and Food Technology, Shoolini University, Solan 173229, HP, India
| | - Swarup Roy
- School of Bioengineering and Food Technology, Shoolini University, Solan 173229, HP, India
| | - Srivathsan Vasudevan
- Discipline of Electrical Engineering, Indian Institute of Technology Indore, Khandwa Road, Simrol 453552, MP, India
| |
Collapse
|
9
|
Mirg S, Turner KL, Chen H, Drew PJ, Kothapalli SR. Photoacoustic imaging for microcirculation. Microcirculation 2022; 29:e12776. [PMID: 35793421 PMCID: PMC9870710 DOI: 10.1111/micc.12776] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2021] [Revised: 06/13/2022] [Accepted: 06/28/2022] [Indexed: 01/26/2023]
Abstract
Microcirculation facilitates the blood-tissue exchange of nutrients and regulates blood perfusion. It is, therefore, essential in maintaining tissue health. Aberrations in microcirculation are potentially indicative of underlying cardiovascular and metabolic pathologies. Thus, quantitative information about it is of great clinical relevance. Photoacoustic imaging (PAI) is a capable technique that relies on the generation of imaging contrast via the absorption of light and can image at micron-scale resolution. PAI is especially desirable to map microvasculature as hemoglobin strongly absorbs light and can generate a photoacoustic signal. This paper reviews the current state of the art for imaging microvascular networks using photoacoustic imaging. We further describe how quantitative information about blood dynamics such as the total hemoglobin concentration, oxygen saturation, and blood flow rate is obtained using PAI. We also discuss its importance in understanding key pathophysiological processes in neurovascular, cardiovascular, ophthalmic, and cancer research fields. We then discuss the current challenges and limitations of PAI and the approaches that can help overcome these limitations. Finally, we provide the reader with an overview of future trends in the field of PAI for imaging microcirculation.
Collapse
Affiliation(s)
- Shubham Mirg
- Department of Biomedical Engineering, Pennsylvania State University, University Park, PA 16802, USA
| | - Kevin L. Turner
- Department of Biomedical Engineering, Pennsylvania State University, University Park, PA 16802, USA
| | - Haoyang Chen
- Department of Biomedical Engineering, Pennsylvania State University, University Park, PA 16802, USA
- Center for Neural Engineering, Pennsylvania State University, University Park, PA 16802, USA
| | - Patrick J. Drew
- Department of Biomedical Engineering, Pennsylvania State University, University Park, PA 16802, USA
- Department of Engineering Science and Mechanics, Pennsylvania State University, University Park, PA 16802, USA
- Department of Neurosurgery, Pennsylvania State University, University Park, PA 16802, USA
- Center for Neural Engineering, Pennsylvania State University, University Park, PA 16802, USA
| | - Sri-Rajasekhar Kothapalli
- Department of Biomedical Engineering, Pennsylvania State University, University Park, PA 16802, USA
- Penn State Cancer Institute, Pennsylvania State University, Hershey, PA 17033, USA
- Graduate Program in Acoustics, Pennsylvania State University, University Park, PA 16802, USA
- Center for Neural Engineering, Pennsylvania State University, University Park, PA 16802, USA
| |
Collapse
|
10
|
Shahid H, Khalid A, Yue Y, Liu X, Ta D. Feasibility of a Generative Adversarial Network for Artifact Removal in Experimental Photoacoustic Imaging. ULTRASOUND IN MEDICINE & BIOLOGY 2022; 48:1628-1643. [PMID: 35660105 DOI: 10.1016/j.ultrasmedbio.2022.04.008] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/08/2021] [Revised: 03/06/2022] [Accepted: 04/16/2022] [Indexed: 06/15/2023]
Abstract
Photoacoustic tomography (PAT) reconstruction is an expeditiously growing interest among biomedical researchers because of its possible transition from laboratory to clinical pre-eminence. Nonetheless, the PAT inverse problem is yet to achieve an optimal solution in rapid and precise reconstruction under practical constraints. Precisely, the sparse sampling problem and random noise are the main impediments to attaining accuracy but in support of rapid PAT reconstruction. The limitations are associated with acquiring undersampled artifacts that deteriorate the optimality of the reconstruction task. Therefore, the former achievements of fast image formation limit the modality for clinical settings. Delving into the problem, here we explore a deep learning-based generative adversarial network (GAN) to improve the image quality by denoising and removing these artifacts. The specially designed attributes and unique manner of optimizing the problem, such as incorporating the data set limitations and providing stable training performance, constitute the main motivation behind the employment of GAN. Moreover, exploitation of the U-net variant as a generator network offers robust performance in terms of quality and computational cost, which is further validated with the detailed quantitative and qualitative analysis. The quantitatively evaluated structured similarity indexing method = 0.980 ± 0.043 and peak signal-to-noise ratio = 31 ± 0.002 dB state that the proposed solution provides the high-resolution image at the output, even training with a low-quality data set.
Collapse
Affiliation(s)
- Husnain Shahid
- Center for Biomedical Engineering, Fudan University, China
| | - Adnan Khalid
- School of Information and Communication Engineering, Tianjin University, China
| | - Yaoting Yue
- Center for Biomedical Engineering, Fudan University, China
| | - Xin Liu
- Academy for Engineering and Technology, Fudan University, Shanghai, China.
| | - Dean Ta
- Center for Biomedical Engineering, Fudan University, China; Academy for Engineering and Technology, Fudan University, Shanghai, China.
| |
Collapse
|
11
|
Robin J, Ozbek A, Reiss M, Dean-Ben XL, Razansky D. Dual-Mode Volumetric Optoacoustic and Contrast Enhanced Ultrasound Imaging With Spherical Matrix Arrays. IEEE TRANSACTIONS ON MEDICAL IMAGING 2022; 41:846-856. [PMID: 34735340 DOI: 10.1109/tmi.2021.3125398] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Spherical matrix arrays represent an advantageous tomographic detection geometry for non-invasive deep tissue mapping of vascular networks and oxygenation with volumetric optoacoustic tomography (VOT). Hybridization of VOT with ultrasound (US) imaging remains difficult with this configuration due to the relatively large inter-element pitch of spherical arrays. We suggest a new approach for combining VOT and US contrast-enhanced 3D imaging employing injection of clinically-approved microbubbles. Power Doppler (PD) and US localization imaging were enabled with a sparse US acquisition sequence and model-based inversion based on infimal convolution of total variation (ICTV) regularization. In vitro experiments in tissue-mimicking phantoms and in living mouse brain demonstrate the powerful capabilities of the new dual-mode imaging approach attaining 80 μm spatial resolution and a more than 10 dB signal to noise improvement with respect to a classical delay and sum beamformer. Microbubble localization and tracking allowed for flow velocity mapping up to 40 mm/s.
Collapse
|
12
|
Shin Low S, Nong Lim C, Yew M, Siong Chai W, Low LE, Manickam S, Ti Tey B, Show PL. Recent ultrasound advancements for the manipulation of nanobiomaterials and nanoformulations for drug delivery. ULTRASONICS SONOCHEMISTRY 2021; 80:105805. [PMID: 34706321 PMCID: PMC8555278 DOI: 10.1016/j.ultsonch.2021.105805] [Citation(s) in RCA: 41] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/28/2021] [Revised: 10/08/2021] [Accepted: 10/20/2021] [Indexed: 05/04/2023]
Abstract
Recent advances in ultrasound (US) have shown its great potential in biomedical applications as diagnostic and therapeutic tools. The coupling of US-assisted drug delivery systems with nanobiomaterials possessing tailor-made functions has been shown to remove the limitations of conventional drug delivery systems. The low-frequency US has significantly enhanced the targeted drug delivery effect and efficacy, reducing limitations posed by conventional treatments such as a limited therapeutic window. The acoustic cavitation effect induced by the US-mediated microbubbles (MBs) has been reported to replace drugs in certain acute diseases such as ischemic stroke. This review briefly discusses the US principles, with particular attention to the recent advancements in drug delivery applications. Furthermore, US-assisted drug delivery coupled with nanobiomaterials to treat different diseases (cancer, neurodegenerative disease, diabetes, thrombosis, and COVID-19) are discussed in detail. Finally, this review covers the future perspectives and challenges on the applications of US-mediated nanobiomaterials.
Collapse
Affiliation(s)
- Sze Shin Low
- Continental-NTU Corporate Lab, Nanyang Technological University, 50 Nanyang Drive, Singapore 637553, Singapore; Department of Chemical and Environmental Engineering, Faculty of Science and Engineering, University of Nottingham Malaysia, Jalan Broga, Semenyih 43500, Selangor Darul Ehsan, Malaysia
| | - Chang Nong Lim
- School of Engineering and Physical Sciences, Heriot-Watt University Malaysia, No. 1, Jalan Venna P5/2, Precinct 5, Putrajaya 62200, Malaysia
| | - Maxine Yew
- Department of Mechanical, Materials and Manufacturing Engineering, University of Nottingham Ningbo China, 199 Taikang East Road, Ningbo 315100, Zhejiang, China
| | - Wai Siong Chai
- School of Mechanical Engineering and Automation, Harbin Institute of Technology, Shenzhen, Shenzhen 518055, Guangdong, China
| | - Liang Ee Low
- Biofunctional Molecule Exploratory (BMEX) Research Group, School of Pharmacy, Monash University Malaysia, Jalan Lagoon Selatan, Bandar Sunway 47500, Selangor Darul Ehsan, Malaysia; Advanced Engineering Platform, Monash University Malaysia, Jalan Lagoon Selatan, Bandar Sunway 47500, Selangor Darul Ehsan, Malaysia; Institute of Pharmaceutics, College of Pharmaceutical Sciences, Zhejiang University, 866 Yuhangtang Road, Hangzhou 310058, Zhejiang, China.
| | - Sivakumar Manickam
- Petroleum and Chemical Engineering, Faculty of Engineering, Universiti Teknologi Brunei, Jalan Tungku Link Gadong, Bandar Seri Begawan, BE1410, Brunei Darussalam.
| | - Beng Ti Tey
- Advanced Engineering Platform, Monash University Malaysia, Jalan Lagoon Selatan, Bandar Sunway 47500, Selangor Darul Ehsan, Malaysia; Chemical Engineering Discipline, School of Engineering, Monash University Malaysia, Jalan Lagoon Selatan, Bandar Sunway 47500, Selangor Darul Ehsan, Malaysia
| | - Pau Loke Show
- Department of Chemical and Environmental Engineering, Faculty of Science and Engineering, University of Nottingham Malaysia, Jalan Broga, Semenyih 43500, Selangor Darul Ehsan, Malaysia.
| |
Collapse
|
13
|
Recent Advances in Metal-Based Magnetic Composites as High-Efficiency Candidates for Ultrasound-Assisted Effects in Cancer Therapy. Int J Mol Sci 2021; 22:ijms221910461. [PMID: 34638801 PMCID: PMC8508863 DOI: 10.3390/ijms221910461] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2021] [Revised: 09/23/2021] [Accepted: 09/24/2021] [Indexed: 11/16/2022] Open
Abstract
Metal-based magnetic materials have been used in different fields due to their particular physical or chemical properties. The original magnetic properties can be influenced by the composition of constituent metals. As utilized in different application fields, such as imaging monitoring, thermal treatment, and combined integration in cancer therapies, fabricated metal-based magnetic materials can be doped with target metal elements in research. Furthermore, there is one possible new trend in human activities and basic cancer treatment. As has appeared in characterizations such as magnetic resonance, catalytic performance, thermal efficiency, etc., structural information about the real morphology, size distribution, and composition play important roles in its further applications. In cancer studies, metal-based magnetic materials are considered one appropriate material because of their ability to penetrate biological tissues, interact with cellular components, and induce noxious effects. The disruptions of cytoskeletons, membranes, and the generation of reactive oxygen species (ROS) further influence the efficiency of metal-based magnetic materials in related applications. While combining with cancer cells, these magnetic materials are not only applied in imaging monitoring focus areas but also could give the exact area information in the cure process while integrating ultrasound treatment. Here, we provide an overview of metal-based magnetic materials of various types and then their real applications in the magnetic resonance imaging (MRI) field and cancer cell treatments. We will demonstrate advancements in using ultrasound fields co-worked with MRI or ROS approaches. Besides iron oxides, there is a super-family of heterogeneous magnetic materials used as magnetic agents, imaging materials, catalytic candidates in cell signaling and tissue imaging, and the expression of cancer cells and their high sensitivity to chemical, thermal, and mechanical stimuli. On the other hand, the interactions between magnetic candidates and cancer tissues may be used in drug delivery systems. The materials’ surface structure characteristics are introduced as drug loading substrates as much as possible. We emphasize that further research is required to fully characterize the mechanisms of underlying ultrasounds induced together, and their appropriate relevance for materials toxicology and biomedical applications.
Collapse
|
14
|
Gröhl J, Schellenberg M, Dreher K, Maier-Hein L. Deep learning for biomedical photoacoustic imaging: A review. PHOTOACOUSTICS 2021; 22:100241. [PMID: 33717977 PMCID: PMC7932894 DOI: 10.1016/j.pacs.2021.100241] [Citation(s) in RCA: 112] [Impact Index Per Article: 28.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/05/2020] [Revised: 01/18/2021] [Accepted: 01/20/2021] [Indexed: 05/04/2023]
Abstract
Photoacoustic imaging (PAI) is a promising emerging imaging modality that enables spatially resolved imaging of optical tissue properties up to several centimeters deep in tissue, creating the potential for numerous exciting clinical applications. However, extraction of relevant tissue parameters from the raw data requires the solving of inverse image reconstruction problems, which have proven extremely difficult to solve. The application of deep learning methods has recently exploded in popularity, leading to impressive successes in the context of medical imaging and also finding first use in the field of PAI. Deep learning methods possess unique advantages that can facilitate the clinical translation of PAI, such as extremely fast computation times and the fact that they can be adapted to any given problem. In this review, we examine the current state of the art regarding deep learning in PAI and identify potential directions of research that will help to reach the goal of clinical applicability.
Collapse
Affiliation(s)
- Janek Gröhl
- German Cancer Research Center, Computer Assisted Medical Interventions, Heidelberg, Germany
- Heidelberg University, Medical Faculty, Heidelberg, Germany
| | - Melanie Schellenberg
- German Cancer Research Center, Computer Assisted Medical Interventions, Heidelberg, Germany
| | - Kris Dreher
- German Cancer Research Center, Computer Assisted Medical Interventions, Heidelberg, Germany
- Heidelberg University, Faculty of Physics and Astronomy, Heidelberg, Germany
| | - Lena Maier-Hein
- German Cancer Research Center, Computer Assisted Medical Interventions, Heidelberg, Germany
- Heidelberg University, Medical Faculty, Heidelberg, Germany
- Heidelberg University, Faculty of Mathematics and Computer Science, Heidelberg, Germany
| |
Collapse
|
15
|
Kratkiewicz K, Manwar R, Zhou Y, Mozaffarzadeh M, Avanaki K. Technical considerations in the Verasonics research ultrasound platform for developing a photoacoustic imaging system. BIOMEDICAL OPTICS EXPRESS 2021; 12:1050-1084. [PMID: 33680559 PMCID: PMC7901326 DOI: 10.1364/boe.415481] [Citation(s) in RCA: 39] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/24/2020] [Revised: 12/23/2020] [Accepted: 12/23/2020] [Indexed: 05/20/2023]
Abstract
Photoacoustic imaging (PAI) is an emerging functional and molecular imaging technology that has attracted much attention in the past decade. Recently, many researchers have used the vantage system from Verasonics for simultaneous ultrasound (US) and photoacoustic (PA) imaging. This was the motivation to write on the details of US/PA imaging system implementation and characterization using Verasonics platform. We have discussed the experimental considerations for linear array based PAI due to its popularity, simple setup, and high potential for clinical translatability. Specifically, we describe the strategies of US/PA imaging system setup, signal generation, amplification, data processing and study the system performance.
Collapse
Affiliation(s)
- Karl Kratkiewicz
- Wayne State University, Department of
Biomedical Engineering, Detroit, MI 48201, USA
- These authors have contributed
equally
| | - Rayyan Manwar
- Richard and Loan Hill Department of
Bioengineering, University of Illinois at Chicago, IL 60607, USA
- These authors have contributed
equally
| | - Yang Zhou
- Wayne State University, Department of
Biomedical Engineering, Detroit, MI 48201, USA
| | - Moein Mozaffarzadeh
- Laboratory of Medical Imaging, Department
of Imaging Physics, Delft University of Technology, The Netherlands
| | - Kamran Avanaki
- Richard and Loan Hill Department of
Bioengineering, University of Illinois at Chicago, IL 60607, USA
| |
Collapse
|
16
|
Yang JM, Ghim CM. Photoacoustic Tomography Opening New Paradigms in Biomedical Imaging. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2021; 1310:239-341. [PMID: 33834440 DOI: 10.1007/978-981-33-6064-8_11] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
After the emergence of the ultrasound, X-ray CT, PET, and MRI, photoacoustic tomography (PAT) is now in the phase of its exponential growth, with its expected full maturation being another form of mainstream clinical imaging modality. By combining the high contrast benefit of optical imaging and the high-resolution deep imaging capability of ultrasound, PAT can provide unprecedented anatomical image contrasts at clinically relevant depths as well as enable the use of a variety of functional and molecular imaging information, which is not possible with conventional imaging modalities. With these strengths, PAT has achieved numerous breakthroughs in various biomedical applications and also provided new technical platforms that may be able to resolve unmet issues in clinics. In this chapter, we provide an overview of the development of PAT technology for several major biomedical applications and provide an approximate projection of the future of PAT.
Collapse
Affiliation(s)
- Joon-Mo Yang
- Center for Photoacoustic Medical Instruments, Department of Biomedical Engineering, Ulsan National Institute of Science and Technology, Ulsan, Republic of Korea.
| | - Cheol-Min Ghim
- Department of Physics, School of Natural Science, Ulsan National Institute of Science and Technology, Ulsan, Republic of Korea
| |
Collapse
|
17
|
Widyaningrum R, Mitrayana M, Sola Gracea R, Agustina D, Mudjosemedi M, Miyosi Silalahi H. The Influence of Diode Laser Intensity Modulation on Photoacoustic Image Quality for Oral Soft Tissue Imaging. J Lasers Med Sci 2020; 11:S92-S100. [PMID: 33995976 PMCID: PMC7956033 DOI: 10.34172/jlms.2020.s15] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/01/2023]
Abstract
Introduction: Imaging technologies have been developed to assist physicians and dentists in detecting various diseases. Photoacoustic imaging (PAI) is a new technique that shows great applicability to soft tissues. This study aimed to investigate the effect of diode laser intensity modulation on photoacoustic (PA) image quality. Methods: The prototype of the PAI system in this study utilized a non-ionizing 532 nm continuouswave (CW) diode laser illumination. Samples in this study were oral soft tissues of Sprague-Dawley rats fixed in 10% formalin solution. PA images were taken ex vivo by using the PAI system. The laser exposure for oral soft tissue imaging was set in various duty cycles (16%, 24%, 31%, 39%, and 47%). The samples were embedded in paraffin, and PA images were taken from the paraffinembedded tissue blocks in a similar method by using duty cycles of 40%, 45%, 50%, 55%, 60% respectively to reveal the influence of the laser duty cycle on PA image quality. Results: The oral soft tissue is clearly shown as a yellow to red area in PA images, whereas the nonbiological material appears as a blue background. The color of the PA image is determined by the PA intensity. Hence, the PA intensity of oral soft tissue was generally higher than that of the nonbiological material around it. The Kruskal-Wallis test followed by Mann-Whitney post-hoc analysis revealed significant differences (P<0.05) in the quality of PA images produced by using a 16%-47% duty cycle of laser intensity modulation for direct imaging of oral soft tissue fixed in 10% formalin solution. The PA image quality of paraffin-embedded tissue was higher than that of direct oral soft tissue images, but no significant differences in PA image quality were found between the groups. Conclusion: The PAI system built in this study can image oral soft tissue. The sample preparation and the diode laser intensity modulation may influence the PA image quality for oral soft tissue imaging. Nonetheless, the influence of diode laser intensity modulation is not significant for the PA image quality of paraffin-embedded tissue.
Collapse
Affiliation(s)
- Rini Widyaningrum
- Department of Dentomaxillofacial Radiology, Faculty of Dentistry, Universitas Gadjah Mada, Jl. Denta, Sekip Utara, Yogyakarta, Indonesia
| | - Mitrayana Mitrayana
- Department of Physics, Faculty of Mathematics and Natural Sciences, Universitas Gadjah Mada, Sekip Utara Unit III BLS 21, Yogyakarta, Indonesia
| | - Rellyca Sola Gracea
- Department of Dentomaxillofacial Radiology, Faculty of Dentistry, Universitas Gadjah Mada, Jl. Denta, Sekip Utara, Yogyakarta, Indonesia
| | - Dewi Agustina
- Department of Oral Medicine, Faculty of Dentistry, Universitas Gadjah Mada, Jl. Denta, Sekip Utara, Yogyakarta, Indonesia
| | - Munakhir Mudjosemedi
- Department of Dentomaxillofacial Radiology, Faculty of Dentistry, Universitas Gadjah Mada, Jl. Denta, Sekip Utara, Yogyakarta, Indonesia
| | | |
Collapse
|
18
|
Feng J, Deng J, Li Z, Sun Z, Dou H, Jia K. End-to-end Res-Unet based reconstruction algorithm for photoacoustic imaging. BIOMEDICAL OPTICS EXPRESS 2020; 11:5321-5340. [PMID: 33014617 PMCID: PMC7510873 DOI: 10.1364/boe.396598] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/01/2020] [Revised: 07/30/2020] [Accepted: 08/20/2020] [Indexed: 05/03/2023]
Abstract
Recently, deep neural networks have attracted great attention in photoacoustic imaging (PAI). In PAI, reconstructing the initial pressure distribution from acquired photoacoustic (PA) signals is a typically inverse problem. In this paper, an end-to-end Unet with residual blocks (Res-Unet) is designed and trained to solve the inverse problem in PAI. The performance of the proposed algorithm is explored and analyzed by comparing a recent model-resolution-based regularization algorithm (MRR) with numerical and physical phantom experiments. The improvement obtained in the reconstructed images was more than 95% in pearson correlation and 39% in peak signal-to-noise ratio in comparison to the MRR. The Res-Unet also achieved superior performance over the state-of-the-art Unet++ architecture by more than 18% in PSNR in simulation experiments.
Collapse
Affiliation(s)
- Jinchao Feng
- Beijing Key Laboratory of Computational Intelligence and Intelligent System, Faculty of Information Technology, Beijing University of Technology, Beijing 100124, China
- Beijing Laboratory of Advanced Information Networks, Beijing 100124, China
| | - Jianguang Deng
- Beijing Key Laboratory of Computational Intelligence and Intelligent System, Faculty of Information Technology, Beijing University of Technology, Beijing 100124, China
- Beijing Laboratory of Advanced Information Networks, Beijing 100124, China
| | - Zhe Li
- Beijing Key Laboratory of Computational Intelligence and Intelligent System, Faculty of Information Technology, Beijing University of Technology, Beijing 100124, China
- Beijing Laboratory of Advanced Information Networks, Beijing 100124, China
| | - Zhonghua Sun
- Beijing Key Laboratory of Computational Intelligence and Intelligent System, Faculty of Information Technology, Beijing University of Technology, Beijing 100124, China
- Beijing Laboratory of Advanced Information Networks, Beijing 100124, China
| | - Huijing Dou
- Beijing Key Laboratory of Computational Intelligence and Intelligent System, Faculty of Information Technology, Beijing University of Technology, Beijing 100124, China
| | - Kebin Jia
- Beijing Key Laboratory of Computational Intelligence and Intelligent System, Faculty of Information Technology, Beijing University of Technology, Beijing 100124, China
- Beijing Laboratory of Advanced Information Networks, Beijing 100124, China
| |
Collapse
|
19
|
Wojtynek NE, Mohs AM. Image-guided tumor surgery: The emerging role of nanotechnology. WILEY INTERDISCIPLINARY REVIEWS. NANOMEDICINE AND NANOBIOTECHNOLOGY 2020; 12:e1624. [PMID: 32162485 PMCID: PMC9469762 DOI: 10.1002/wnan.1624] [Citation(s) in RCA: 35] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/20/2019] [Revised: 02/12/2020] [Accepted: 02/14/2020] [Indexed: 12/15/2022]
Abstract
Surgical resection is a mainstay treatment for solid tumors. Yet, methods to distinguish malignant from healthy tissue are primarily limited to tactile and visual cues as well as the surgeon's experience. As a result, there is a possibility that a positive surgical margin (PSM) or the presence of residual tumor left behind after resection may occur. It is well-documented that PSMs can negatively impact treatment outcomes and survival, as well as pose an economic burden. Therefore, surgical tumor imaging techniques have emerged as a promising method to decrease PSM rates. Nanoparticles (NPs) have unique characteristics to serve as optical contrast agents during image-guided surgery (IGS). Recently, there has been tremendous growth in the volume and types of NPs used for IGS, including clinical trials. Herein, we describe the most recent contributions of nanotechnology for surgical tumor identification. This article is categorized under: Therapeutic Approaches and Drug Discovery > Nanomedicine for Oncologic Disease Implantable Materials and Surgical Technologies > Nanoscale Tools and Techniques in Surgery Diagnostic Tools > in vivo Nanodiagnostics and Imaging.
Collapse
Affiliation(s)
- Nicholas E. Wojtynek
- Eppley Institute for Research in Cancer and Allied Diseases, University of Nebraska Medical Center, Omaha, Nebraska
- Fred and Pamela Buffett Cancer Center, University of Nebraska Medical Center, Omaha, Nebraska
| | - Aaron M. Mohs
- Fred and Pamela Buffett Cancer Center, University of Nebraska Medical Center, Omaha, Nebraska
- Department of Pharmaceutical Sciences, University of Nebraska Medical Center, Omaha, Nebraska
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, Nebraska
- Center for Drug Delivery and Nanomedicine, University of Nebraska Medical Center, Omaha, Nebraska
| |
Collapse
|
20
|
Shrestha B, DeLuna F, Anastasio MA, Yong Ye J, Brey EM. Photoacoustic Imaging in Tissue Engineering and Regenerative Medicine. TISSUE ENGINEERING. PART B, REVIEWS 2020; 26:79-102. [PMID: 31854242 PMCID: PMC7041335 DOI: 10.1089/ten.teb.2019.0296] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/31/2019] [Accepted: 12/13/2019] [Indexed: 12/16/2022]
Abstract
Several imaging modalities are available for investigation of the morphological, functional, and molecular features of engineered tissues in small animal models. While research in tissue engineering and regenerative medicine (TERM) would benefit from a comprehensive longitudinal analysis of new strategies, researchers have not always applied the most advanced methods. Photoacoustic imaging (PAI) is a rapidly emerging modality that has received significant attention due to its ability to exploit the strong endogenous contrast of optical methods with the high spatial resolution of ultrasound methods. Exogenous contrast agents can also be used in PAI for targeted imaging. Applications of PAI relevant to TERM include stem cell tracking, longitudinal monitoring of scaffolds in vivo, and evaluation of vascularization. In addition, the emerging capabilities of PAI applied to the detection and monitoring of cancer and other inflammatory diseases could be exploited by tissue engineers. This article provides an overview of the operating principles of PAI and its broad potential for application in TERM. Impact statement Photoacoustic imaging, a new hybrid imaging technique, has demonstrated high potential in the clinical diagnostic applications. The optical and acoustic aspect of the photoacoustic imaging system works in harmony to provide better resolution at greater tissue depth. Label-free imaging of vasculature with this imaging can be used to track and monitor disease, as well as the therapeutic progression of treatment. Photoacoustic imaging has been utilized in tissue engineering to some extent; however, the full benefit of this technique is yet to be explored. The increasing availability of commercial photoacoustic systems will make application as an imaging tool for tissue engineering application more feasible. This review first provides a brief description of photoacoustic imaging and summarizes its current and potential application in tissue engineering.
Collapse
Affiliation(s)
- Binita Shrestha
- Department of Biomedical Engineering, University of Texas at San Antonio, San Antonio, Texas
| | - Frank DeLuna
- Department of Biomedical Engineering, University of Texas at San Antonio, San Antonio, Texas
| | - Mark A. Anastasio
- Department of Bioengineering, University of Illinois at Urbana-Champaign, Urbana, Illinois
| | - Jing Yong Ye
- Department of Biomedical Engineering, University of Texas at San Antonio, San Antonio, Texas
| | - Eric M. Brey
- Department of Biomedical Engineering, University of Texas at San Antonio, San Antonio, Texas
| |
Collapse
|
21
|
Liu WW, Li PC. Photoacoustic imaging of cells in a three-dimensional microenvironment. J Biomed Sci 2020; 27:3. [PMID: 31948442 PMCID: PMC6966874 DOI: 10.1186/s12929-019-0594-x] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2019] [Accepted: 11/18/2019] [Indexed: 12/21/2022] Open
Abstract
Imaging live cells in a three-dimensional (3D) culture system yields more accurate information and spatial visualization of the interplay of cells and the surrounding matrix components compared to using a two-dimensional (2D) cell culture system. However, the thickness of 3D cultures results in a high degree of scattering that makes it difficult for the light to penetrate deeply to allow clear optical imaging. Photoacoustic (PA) imaging is a powerful imaging modality that relies on a PA effect generated when light is absorbed by exogenous contrast agents or endogenous molecules in a medium. It combines a high optical contrast with a high acoustic spatiotemporal resolution, allowing the noninvasive visualization of 3D cellular scaffolds at considerable depths with a high resolution and no image distortion. Moreover, advances in targeted contrast agents have also made PA imaging capable of molecular and cellular characterization for use in preclinical personalized diagnostics or PA imaging-guided therapeutics. Here we review the applications and challenges of PA imaging in a 3D cellular microenvironment. Potential future developments of PA imaging in preclinical applications are also discussed.
Collapse
Affiliation(s)
- Wei-Wen Liu
- Graduate Institute of Biomedical Electronics and Bioinformatics, National Taiwan University, Taipei, Taiwan
| | - Pai-Chi Li
- Graduate Institute of Biomedical Electronics and Bioinformatics, National Taiwan University, Taipei, Taiwan.
- Department of Electrical Engineering, National Taiwan University, Taipei, Taiwan.
| |
Collapse
|
22
|
Mozaffarzadeh M, Varnosfaderani MHH, Sharma A, Pramanik M, de Jong N, Verweij MD. Enhanced contrast acoustic-resolution photoacoustic microscopy using double-stage delay-multiply-and-sum beamformer for vasculature imaging. JOURNAL OF BIOPHOTONICS 2019; 12:e201900133. [PMID: 31353839 PMCID: PMC7065614 DOI: 10.1002/jbio.201900133] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/11/2019] [Revised: 06/14/2019] [Accepted: 07/17/2019] [Indexed: 05/18/2023]
Abstract
In acoustic-resolution photoacoustic microscopy (AR-PAM) systems, the lateral resolution in the focal zone of the ultrasound (US) transducer is determined by the numerical aperture (NA) of the transducer. To have a high lateral resolution, a large NA is used. However, the larger the NA, the smaller the depth of focus [DOF]. As a result, the lateral resolution is deteriorated at depths out of the focal region. The synthetic aperture focusing technique (SAFT) along with a beamformer can be used to improve the resolution outside the focal region. In this work, for image formation in AR-PAM, we propose the double-stage delay-multiply-and-sum (DS_DMAS) algorithm to be combined with SAFT. The proposed method is evaluated experimentally using hair targets and in vivo vasculature imaging. It is shown that DS_DMAS provides a higher resolution and contrast compared to other methods. For the B-mode images obtained using the hair phantom, the proposed method reduces the average noise level for all the depths by about 134%, 57% and 23%, compared to the original low- resolution, SAFT+DAS and SAFT+DMAS methods, respectively. All the results indicate that the proposed method can be an appropriate algorithm for image formation in AR-PAM systems.
Collapse
Affiliation(s)
- Moein Mozaffarzadeh
- Department of Imaging Physics, Laboratory of Acoustical Wavefield ImagingDelft University of TechnologyDelftThe Netherlands
| | | | - Arunima Sharma
- School of Chemical and Biomedical EngineeringNanyang Technological UniversitySingaporeSingapore
| | - Manojit Pramanik
- School of Chemical and Biomedical EngineeringNanyang Technological UniversitySingaporeSingapore
| | - Nico de Jong
- Department of Imaging Physics, Laboratory of Acoustical Wavefield ImagingDelft University of TechnologyDelftThe Netherlands
- Department Biomedical EngineeringThoraxcenter, Erasmus MCRotterdamThe Netherlands
| | - Martin D. Verweij
- Department of Imaging Physics, Laboratory of Acoustical Wavefield ImagingDelft University of TechnologyDelftThe Netherlands
- Department Biomedical EngineeringThoraxcenter, Erasmus MCRotterdamThe Netherlands
| |
Collapse
|
23
|
Liu S, Feng X, Jin H, Zhang R, Luo Y, Zheng Z, Gao F, Zheng Y. Handheld Photoacoustic Imager for Theranostics in 3D. IEEE TRANSACTIONS ON MEDICAL IMAGING 2019; 38:2037-2046. [PMID: 30802853 DOI: 10.1109/tmi.2019.2900656] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/22/2023]
Abstract
A handheld approach to 3D photoacoustic imaging is essential in clinical applications. To this end, we develop a 3D handheld photoacoustic imager for dynamic (temporally and spatially) volumetric visualization. In this 3D imager, the optically transmitting part and the acoustically receiving part are integrated into a single handheld probe with a compact size about 160 mm ×64 mm ×40 mm. Besides, a dedicated imaging reconstruction algorithm for the heterogeneous medium is developed based on the phase-shift migration method in the frequency domain, which deals well with the stratified condition in the designed system. Dynamic 3D imaging supporting flexible handheld operation is demonstrated with needle biopsy and in vitro temperature measurement for photothermal therapy. The development of such a 3D handheld photoacoustic system paves the way for compact and handheld-operating implementations, and its further clinical exploration is promising.
Collapse
|
24
|
Steinberg I, Huland DM, Vermesh O, Frostig HE, Tummers WS, Gambhir SS. Photoacoustic clinical imaging. PHOTOACOUSTICS 2019; 14:77-98. [PMID: 31293884 PMCID: PMC6595011 DOI: 10.1016/j.pacs.2019.05.001] [Citation(s) in RCA: 326] [Impact Index Per Article: 54.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/06/2018] [Revised: 04/09/2019] [Accepted: 05/30/2019] [Indexed: 05/18/2023]
Abstract
Photoacoustic is an emerging biomedical imaging modality, which allows imaging optical absorbers in the tissue by acoustic detectors (light in - sound out). Such a technique has an immense potential for clinical translation since it allows high resolution, sufficient imaging depth, with diverse endogenous and exogenous contrast, and is free from ionizing radiation. In recent years, tremendous developments in both the instrumentation and imaging agents have been achieved. These opened avenues for clinical imaging of various sites allowed applications such as brain functional imaging, breast cancer screening, diagnosis of psoriasis and skin lesions, biopsy and surgery guidance, the guidance of tumor therapies at the reproductive and urological systems, as well as imaging tumor metastases at the sentinel lymph nodes. Here we survey the various clinical and pre-clinical literature and discuss the potential applications and hurdles that still need to be overcome.
Collapse
Affiliation(s)
- Idan Steinberg
- Department of Radiology, At Stanford University, School of Medicine, Stanford, CA, United States
- Department of Bioengineering, At Stanford University, School of Medicine, Stanford, CA, United States
| | - David M. Huland
- Department of Radiology, At Stanford University, School of Medicine, Stanford, CA, United States
- Molecular Imaging Program at Stanford, Canary Center at Stanford for Cancer Early Detection, At Stanford University, School of Medicine, Stanford, CA, United States
| | - Ophir Vermesh
- Department of Radiology, At Stanford University, School of Medicine, Stanford, CA, United States
- Molecular Imaging Program at Stanford, Canary Center at Stanford for Cancer Early Detection, At Stanford University, School of Medicine, Stanford, CA, United States
| | - Hadas E. Frostig
- Department of Radiology, At Stanford University, School of Medicine, Stanford, CA, United States
- Molecular Imaging Program at Stanford, Canary Center at Stanford for Cancer Early Detection, At Stanford University, School of Medicine, Stanford, CA, United States
| | - Willemieke S. Tummers
- Department of Radiology, At Stanford University, School of Medicine, Stanford, CA, United States
- Molecular Imaging Program at Stanford, Canary Center at Stanford for Cancer Early Detection, At Stanford University, School of Medicine, Stanford, CA, United States
| | - Sanjiv S. Gambhir
- Department of Radiology, At Stanford University, School of Medicine, Stanford, CA, United States
- Department of Bioengineering, At Stanford University, School of Medicine, Stanford, CA, United States
- Department of Materials Science & Engineering, At Stanford University, School of Medicine, Stanford, CA, United States
- Molecular Imaging Program at Stanford, Canary Center at Stanford for Cancer Early Detection, At Stanford University, School of Medicine, Stanford, CA, United States
| |
Collapse
|
25
|
Chen J, Ning C, Zhou Z, Yu P, Zhu Y, Tan G, Mao C. Nanomaterials as photothermal therapeutic agents. PROGRESS IN MATERIALS SCIENCE 2019; 99:1-26. [PMID: 30568319 PMCID: PMC6295417 DOI: 10.1016/j.pmatsci.2018.07.005] [Citation(s) in RCA: 419] [Impact Index Per Article: 69.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/20/2023]
Abstract
Curing cancer has been one of the greatest conundrums in the modern medical field. To reduce side-effects associated with the traditional cancer therapy such as radiotherapy and chemotherapy, photothermal therapy (PTT) has been recognized as one of the most promising treatments for cancer over recent years. PTT relies on ablation agents such as nanomaterials with a photothermal effect, for converting light into heat. In this way, elevated temperature could kill cancer cells while avoiding significant side effects on normal cells. This theory works because normal cells have a higher heat tolerance than cancer cells. Thus, nanomaterials with photothermal effects have attracted enormous attention due to their selectivity and non-invasive attributes. This review article summarizes the current status of employing nanomaterials with photothermal effects for anti-cancer treatment. Mechanisms of the photothermal effect and various factors affecting photothermal performance will be discussed. Efficient and selective PTT is believed to play an increasingly prominent role in cancer treatment. Moreover, merging PTT with other methods of cancer therapies is also discussed as a future trend.
Collapse
Affiliation(s)
- Junqi Chen
- College of Material Science and Engineering, South China University of Technology, Guangzhou 510641, China
- Guangdong Key Laboratory for Biomedical Engineering, Guangzhou 510641, China
| | - Chengyun Ning
- College of Material Science and Engineering, South China University of Technology, Guangzhou 510641, China
- Guangdong Key Laboratory for Biomedical Engineering, Guangzhou 510641, China
| | - Zhengnan Zhou
- College of Material Science and Engineering, South China University of Technology, Guangzhou 510641, China
- Guangdong Key Laboratory for Biomedical Engineering, Guangzhou 510641, China
| | - Peng Yu
- College of Material Science and Engineering, South China University of Technology, Guangzhou 510641, China
- Guangdong Key Laboratory for Biomedical Engineering, Guangzhou 510641, China
| | - Ye Zhu
- Department of Chemistry & Biochemistry, Stephenson Life Sciences Research Center, Institute for Biomedical Engineering, Science and Technology, University of Oklahoma, Oklahoma, United States
| | - Guoxin Tan
- Institute of Chemical Engineering and Light Industry, Guangdong University of Technology, Guangzhou 510006, China
| | - Chuanbin Mao
- Department of Chemistry & Biochemistry, Stephenson Life Sciences Research Center, Institute for Biomedical Engineering, Science and Technology, University of Oklahoma, Oklahoma, United States
- School of Materials Science and Engineering, Zhejiang University, Hangzhou, Zhejiang 310027, China
| |
Collapse
|
26
|
Optoacoustic Breast Imaging: Imaging-Pathology Correlation of Optoacoustic Features in Benign and Malignant Breast Masses. AJR Am J Roentgenol 2018; 211:1155-1170. [PMID: 30106610 DOI: 10.2214/ajr.17.18435] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
OBJECTIVE Optoacoustic ultrasound breast imaging is a fused anatomic and functional modality that shows morphologic features, as well as hemoglobin amount and relative oxygenation within and around breast masses. The purpose of this study is to investigate the positive predictive value (PPV) of optoacoustic ultrasound features in benign and malignant masses. SUBJECTS AND METHODS In this study, 92 masses assessed as BI-RADS category 3, 4, or 5 in 94 subjects were imaged with optoacoustic ultrasound. Each mass was scored by seven blinded independent readers according to three internal features in the tumor interior and two external features in its boundary zone and periphery. Mean and median optoacoustic ultrasound scores were compared with histologic findings for biopsied masses and nonbiopsied BI-RADS category 3 masses, which were considered benign if they were stable at 12-month follow-up. Statistical significance was analyzed using a two-sided Wilcoxon rank sum test with a 0.05 significance level. RESULTS Mean and median optoacoustic ultrasound scores for all individual internal and external features, as well as summed scores, were higher for malignant masses than for benign masses (p < 0.0001). High external scores, indicating increased hemoglobin and deoxygenation and abnormal vessel morphologic features in the tumor boundary zone and periphery, better distinguished benign from malignant masses than did high internal scores reflecting increased hemoglobin and deoxygenation within the tumor interior. CONCLUSION High optoacoustic ultrasound scores, particularly those based on external features in the boundary zone and periphery of breast masses, have high PPVs for malignancy and, conversely, low optoacoustic ultrasound scores have low PPV for malignancy. The functional component of optoacoustic ultrasound may help to overcome some of the limitations of morphologic overlap in the distinction of benign and malignant masses.
Collapse
|
27
|
Ban Q, Bai T, Duan X, Kong J. Noninvasive photothermal cancer therapy nanoplatforms via integrating nanomaterials and functional polymers. Biomater Sci 2018; 5:190-210. [PMID: 27990534 DOI: 10.1039/c6bm00600k] [Citation(s) in RCA: 119] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
In the cutting-edge field of cancer therapy, noninvasive photothermal therapy (PTT) has received great attention because it is considered to overcome the drawbacks of conventional surgery, radiotherapy and chemotherapy of severe body injuries and side effects on the immune system. The construction of PTT therapeutic and theranostic nanoplatforms is the key issue in achieving tumor targeting, imaging and therapy in a synergetic manner. In this review, we focus on the recent advances in constructing PTT therapeutic and theranostic nanoplatforms by integrating nanomaterials and functional polymers. The noninvasive photothermal cancer therapy mechanism and achievement strategies of PTT therapeutic and theranostic nanoplatforms are presented as well as the innovative construction strategies and perspectives for the future. Owing to their high tumor ablation efficiency, biological availability and low- or non-toxicity, PTT therapeutic and theranostic nanoplatforms are promising and emerging in medicine and clinical applications.
Collapse
Affiliation(s)
- Qingfu Ban
- MOE Key Laboratory of Space Applied Physics and Chemistry, Shaanxi Key Laboratory of Macromolecular Science and Technology, School of Sciences, Northwestern Polytechnical University, Xi'an, 710072, P. R. China.
| | - Ting Bai
- MOE Key Laboratory of Space Applied Physics and Chemistry, Shaanxi Key Laboratory of Macromolecular Science and Technology, School of Sciences, Northwestern Polytechnical University, Xi'an, 710072, P. R. China.
| | - Xiao Duan
- MOE Key Laboratory of Space Applied Physics and Chemistry, Shaanxi Key Laboratory of Macromolecular Science and Technology, School of Sciences, Northwestern Polytechnical University, Xi'an, 710072, P. R. China.
| | - Jie Kong
- MOE Key Laboratory of Space Applied Physics and Chemistry, Shaanxi Key Laboratory of Macromolecular Science and Technology, School of Sciences, Northwestern Polytechnical University, Xi'an, 710072, P. R. China.
| |
Collapse
|
28
|
Downgrading and Upgrading Gray-Scale Ultrasound BI-RADS Categories of Benign and Malignant Masses With Optoacoustics: A Pilot Study. AJR Am J Roentgenol 2018; 211:689-700. [PMID: 29975115 DOI: 10.2214/ajr.17.18436] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
OBJECTIVE False-positive findings remain challenging in breast imaging. This study investigates the incremental value of optoacoustic imaging in improving BI-RADS categorization of breast masses at ultrasound. SUBJECTS AND METHODS The study device is an optoacoustic breast imaging device with a handheld duplex laser and internal gray-scale ultrasound probe, fusing functional and morphologic information (optoacoustic ultrasound). In this prospective multisite study, breast masses assessed as BI-RADS category 3, 4A, 4B, 4C, or 5 by site radiologists underwent both gray-scale ultrasound and optoacoustic imaging with the study device. Independent reader radiologists assessed internal gray-scale ultrasound and optoacoustic ultrasound features for each mass and assigned a BI-RADS category. The percentage of mass reads for which optoacoustic ultrasound resulted in a downgrade or upgrade of BI-RADS category relative to internal gray-scale ultrasound was determined. RESULTS Of 94 total masses, 39 were biopsy-proven malignant, 44 were biopsy-proven benign, and 11 BI-RADS category 3 masses were stable at 12-month follow-up. The sensitivity of both optoacoustic ultrasound and internal gray-scale ultrasound was 97.1%. The specificity was 44.3% for optoacoustic ultrasound and 36.4% for internal gray-scale ultrasound. Using optoacoustic ultrasound, 41.7% of benign masses or BI-RADS category 3 masses that were stable at 12-month follow-up were downgraded to BI-RADS category 2 by independent readers; 36.6% of masses assigned BI-RADS category 4A were downgraded to BI-RADS category 3 or 2, and 10.1% assigned BI-RADS category 4B were downgraded to BI-RADS category 3 or 2. Using optoacoustic ultrasound, independent readers upgraded 75.0% of the malignant masses classified as category 4A, 4B, 4C, or 5, and 49.4% of the malignant masses were classified as category 4B, 4C, or 5. CONCLUSION Optoacoustic ultrasound resulted in BI-RADS category downgrading of benign masses and upgrading of malignant masses compared with gray-scale ultrasound.
Collapse
|
29
|
An L, Cox BT. Estimating relative chromophore concentrations from multiwavelength photoacoustic images using independent component analysis. JOURNAL OF BIOMEDICAL OPTICS 2018; 23:1-10. [PMID: 29992796 DOI: 10.1117/1.jbo.23.7.076007] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/09/2017] [Accepted: 06/15/2018] [Indexed: 05/07/2023]
Abstract
Independent component analysis (ICA) is an unmixing method based on a linear model. It has previously been applied in in vivo multiwavelength photoacoustic imaging studies to unmix the components representing individual chromophores by assuming that they are statistically independent. Numerically simulated and experimentally acquired two-dimensional images of tissue-mimicking phantoms are used to investigate the conditions required for ICA to give accurate estimates of the relative chromophore concentrations. A simple approximate fluence correction was applied to reduce but not completely remove the nonlinear fluence distortion, as might be possible in practice. The results show that ICA is robust against the residual effect of the partially corrected fluence distortion. ICA is shown to provide accurate unmixing of the chromophores when the absorption coefficient is within a certain range of values, where the upper absorption threshold is comparable to the absorption of blood. When the absorption is increased beyond these thresholds, ICA abruptly fails to unmix the chromophores accurately. The ICA approach was compared to a linear spectroscopic inversion (SI) with known absorption spectra. In cases where the mixing matrix with the specific absorption spectra is ill-conditioned, ICA is able to provide accurate unmixing when SI results in large errors.
Collapse
Affiliation(s)
- Lu An
- University College London, Department of Medical Physics and Biomedical Engineering, London, United Kingdom
| | - Benjamin T Cox
- University College London, Department of Medical Physics and Biomedical Engineering, London, United Kingdom
| |
Collapse
|
30
|
Zafar H, Leahy M, Wijns W, Kolios M, Zafar J, Johnson N, Sharif F. Photoacoustic cardiovascular imaging: a new technique for imaging of atherosclerosis and vulnerable plaque detection. Biomed Phys Eng Express 2018. [DOI: 10.1088/2057-1976/aab640] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
|
31
|
Clinical photoacoustic imaging platforms. Biomed Eng Lett 2018; 8:139-155. [PMID: 30603199 DOI: 10.1007/s13534-018-0062-7] [Citation(s) in RCA: 120] [Impact Index Per Article: 17.1] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2018] [Accepted: 03/18/2018] [Indexed: 01/08/2023] Open
Abstract
Photoacoustic imaging (PAI) is a new promising medical imaging technology available for diagnosing and assessing various pathologies. PAI complements existing imaging modalities by providing information not currently available for diagnosing, e.g., oxygenation level of the underlying tissue. Currently, researchers are translating PAI from benchside to bedside to make unique clinical advantages of PAI available for patient care. The requirements for a successful clinical PAI system are; deeper imaging depth, wider field of view, and faster scan time than the laboratory-level PAI systems. Currently, many research groups and companies are developing novel technologies for data acquisition/signal processing systems, detector geometry, and an acoustic sensor. In this review, we summarize state-of-the-art clinical PAI systems with three types of the imaging transducers: linear array transducer, curved linear array transducer, and volumetric array transducer. We will also discuss the limitations of the current PAI systems and describe latest techniques being developed to address these for further enhancing the image quality of PAI for successful clinical translation.
Collapse
|
32
|
Zhou L, Zhou H, Wu C. Semiconducting polymer nanoparticles for amplified photoacoustic imaging. WILEY INTERDISCIPLINARY REVIEWS-NANOMEDICINE AND NANOBIOTECHNOLOGY 2018; 10:e1510. [DOI: 10.1002/wnan.1510] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/30/2017] [Revised: 12/01/2017] [Accepted: 12/19/2017] [Indexed: 12/15/2022]
Affiliation(s)
- Libo Zhou
- State Key Laboratory on Integrated Optoelectronics, College of Electronic Science and EngineeringJilin UniversityChangchunChina
| | - Hua Zhou
- State Key Laboratory on Integrated Optoelectronics, College of Electronic Science and EngineeringJilin UniversityChangchunChina
| | - Changfeng Wu
- Department of Biomedical EngineeringSouthern University of Science and TechnologyShenzhenChina
| |
Collapse
|
33
|
Upputuri PK, Pramanik M. Recent advances toward preclinical and clinical translation of photoacoustic tomography: a review. JOURNAL OF BIOMEDICAL OPTICS 2017; 22:41006. [PMID: 27893078 DOI: 10.1117/1.jbo.22.4.041006] [Citation(s) in RCA: 111] [Impact Index Per Article: 13.9] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/18/2016] [Accepted: 10/31/2016] [Indexed: 05/18/2023]
Affiliation(s)
- Paul Kumar Upputuri
- Nanyang Technological University, School of Chemical and Biomedical Engineering, 62 Nanyang Drive, Singapore 637459, Singapore
| | - Manojit Pramanik
- Nanyang Technological University, School of Chemical and Biomedical Engineering, 62 Nanyang Drive, Singapore 637459, Singapore
| |
Collapse
|
34
|
Kalva SK, Pramanik M. Use of acoustic reflector to make a compact photoacoustic tomography system. JOURNAL OF BIOMEDICAL OPTICS 2017; 22:26009. [PMID: 28241275 DOI: 10.1117/1.jbo.22.2.026009] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/17/2016] [Accepted: 02/08/2017] [Indexed: 06/06/2023]
Abstract
A typical photoacoustic tomography (PAT) system uses a Q-switched Nd:YAG laser for irradiating the sample and a single-element ultrasound transducer (UST) for acquiring the photoacoustic data. Conventionally, in PAT systems, the UST is held in a horizontal position and moved in a circular motion around the sample in full 2 ? radians. Horizontal positioning of the UST requires a large water tank to house, and load on the motor is also high. To overcome this limitation, we used the UST in the vertical plane instead of the horizontal plane. The photoacoustic (PA) waves generated from the sample are directed to the detector surface using an acoustic reflector placed at 45 deg to the transducer body. Hence, we can reduce the scanning radius, which, in turn, will reduce the size of the water tank and load on the motor, and the overall conventional PAT system size can be minimized. In this work, we demonstrate that with this system configuration, we acquire nearly similar images for phantom and in vivo data as that of the conventional PAT system using both flat and focused USTs.
Collapse
Affiliation(s)
- Sandeep Kumar Kalva
- Nanyang Technological University, School of Chemical and Biomedical Engineering, Singapore
| | - Manojit Pramanik
- Nanyang Technological University, School of Chemical and Biomedical Engineering, Singapore
| |
Collapse
|
35
|
Abstract
Photoacoustic imaging is a rapidly developing tool capable of achieving high-resolution images with optical contrast at imaging depths up to a few centimeters. When combined with targeted nanoparticle contrast agents, sensitive detection of molecular signatures is possible. In this chapter, we discuss the achievements and future directions of nanoparticle-augmented photoacoustic imaging. We present a method to synthesize silica-coated gold nanorods, which are highly stable, signal amplifying photoacoustic contrast agents, and also describe spectroscopic image acquisition and processing steps to provide a specific map of nanoparticle distribution in vivo.
Collapse
Affiliation(s)
- Austin Van Namen
- Thayer School of Engineering, Dartmouth College, 14 Engineering Drive, Hanover, NH, 03755, USA
| | - Geoffrey P Luke
- Thayer School of Engineering, Dartmouth College, 14 Engineering Drive, Hanover, NH, 03755, USA.
| |
Collapse
|
36
|
Laviña B. Brain Vascular Imaging Techniques. Int J Mol Sci 2016; 18:ijms18010070. [PMID: 28042833 PMCID: PMC5297705 DOI: 10.3390/ijms18010070] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2016] [Revised: 12/13/2016] [Accepted: 12/26/2016] [Indexed: 12/13/2022] Open
Abstract
Recent major improvements in a number of imaging techniques now allow for the study of the brain in ways that could not be considered previously. Researchers today have well-developed tools to specifically examine the dynamic nature of the blood vessels in the brain during development and adulthood; as well as to observe the vascular responses in disease situations in vivo. This review offers a concise summary and brief historical reference of different imaging techniques and how these tools can be applied to study the brain vasculature and the blood-brain barrier integrity in both healthy and disease states. Moreover, it offers an overview on available transgenic animal models to study vascular biology and a description of useful online brain atlases.
Collapse
Affiliation(s)
- Bàrbara Laviña
- Department of Immunology, Genetics and Pathology, Rudbeck Laboratory, Uppsala University, 75185 Uppsala, Sweden.
| |
Collapse
|
37
|
Oeri M, Bost W, Tretbar S, Fournelle M. Calibrated Linear Array-Driven Photoacoustic/Ultrasound Tomography. ULTRASOUND IN MEDICINE & BIOLOGY 2016; 42:2697-2707. [PMID: 27523424 DOI: 10.1016/j.ultrasmedbio.2016.06.028] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/29/2016] [Revised: 05/25/2016] [Accepted: 06/29/2016] [Indexed: 05/07/2023]
Abstract
The anisotropic resolution of linear arrays, tools that are widely used in diagnostics, can be overcome by compounding approaches. We investigated the ability of a recently developed calibration and a novel algorithm to determine the actual radial transducer array distance and its misalignment (tilt) with respect to the center of rotation in a 2-D and 3-D tomographic setup. By increasing the time-of-flight accuracy, we force in-phase summation during the reconstruction. Our setup is composed of a linear transducer and a rotation and translation axis enabling multidimensional imaging in ultrasound and photoacoustic mode. Our approach is validated on phantoms and young mice ex vivo. The results indicate that application of the proposed analytical calibration algorithms prevents image artifacts. The spatial resolution achieved was 160 and 250 μm in photoacoustic mode of 2-D and 3-D tomography, respectively.
Collapse
Affiliation(s)
- Milan Oeri
- Fraunhofer Institute for Biomedical Engineering (IBMT), Medical Ultrasound Group, St. Ingbert, Germany.
| | - Wolfgang Bost
- Fraunhofer Institute for Biomedical Engineering (IBMT), Medical Ultrasound Group, St. Ingbert, Germany
| | - Steffen Tretbar
- Fraunhofer Institute for Biomedical Engineering (IBMT), Medical Ultrasound Group, St. Ingbert, Germany
| | - Marc Fournelle
- Fraunhofer Institute for Biomedical Engineering (IBMT), Medical Ultrasound Group, St. Ingbert, Germany
| |
Collapse
|
38
|
Meiburger KM, Nam SY, Chung E, Suggs LJ, Emelianov SY, Molinari F. Skeletonization algorithm-based blood vessel quantification usingin vivo3D photoacoustic imaging. Phys Med Biol 2016; 61:7994-8009. [DOI: 10.1088/0031-9155/61/22/7994] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
|
39
|
Ku G, Fornage BD, Jin X, Xu M, Hunt KK, Wang LV. Thermoacoustic and Photoacoustic Tomography of Thick Biological Tissues toward Breast Imaging. Technol Cancer Res Treat 2016; 4:559-66. [PMID: 16173826 DOI: 10.1177/153303460500400509] [Citation(s) in RCA: 64] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
Microwave-based thermoacoustic tomography (TAT) and laser-based photoacoustic tomography (PAT) in a circular scanning configuration were both developed to image deeply seated lesions and objects in biological tissues. Because malignant breast tissue absorbs microwaves more strongly than benign breast tissue, cancers were imaged with good spatial resolution and contrast by TAT in human breast mastectomy specimens. Based on the intrinsic optical contrast between blood and chicken breast muscle, an embedded blood object that was 5 cm deep in the tissue was also detected using PAT at a wavelength of 1064 nm.
Collapse
Affiliation(s)
- Geng Ku
- Optical Imaging Laboratory, Department of Biomedical Engineering, Texas A&M University, 3120 TAMU, College Station, TX 77843-3120, USA
| | | | | | | | | | | |
Collapse
|
40
|
Nikitichev DI, Xia W, Hill E, Mosse CA, Perkins T, Konyn K, Ourselin S, Desjardins AE, Vercauteren T. Music-of-light stethoscope: a demonstration of the photoacoustic effect. ACTA ACUST UNITED AC 2016; 51:045015. [PMID: 29249838 PMCID: PMC5717520 DOI: 10.1088/0031-9120/51/4/045015] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2016] [Revised: 04/11/2016] [Accepted: 04/25/2016] [Indexed: 11/17/2022]
Abstract
In this paper we present a system aimed at demonstrating the photoacoustic (PA) effect for educational purposes. PA imaging is a hybrid imaging modality that requires no contrast agent and has a great potential for spine and brain lesion characterisation, breast cancer and blood flow monitoring notably in the context of fetal surgery. It relies on combining light excitation with ultrasound reception. Our brief was to present and explain PA imaging in a public-friendly way suitable for a variety of ages and backgrounds. We developed a simple, accessible demonstration unit using readily available materials. We used a modulated light emitting diode (LED) torch and an electronic stethoscope. The output of a music player was used for light modulation and the chest piece of the stethoscope covered by a black tape was used as an absorbing target and an enclosed chamber. This demonstration unit was presented to the public at the Bloomsbury Festival On Light in October 2015. Our stall was visited by over 100 people of varying ages. Twenty families returned in-depth evaluation questionnaires, which show that our explanations of the photoacoustic effect were well understood. Their interest in biomedical engineering was increased.
Collapse
Affiliation(s)
- D I Nikitichev
- Translational Imaging group, Centre for Medical Image Computing, University College London, London, UK.,Department of Medical Physics and Biomedical Engineering, University College London, Gower Street, WC1E 6BT, London, UK.,
| | - W Xia
- Translational Imaging group, Centre for Medical Image Computing, University College London, London, UK
| | - E Hill
- Translational Imaging group, Centre for Medical Image Computing, University College London, London, UK
| | - C A Mosse
- Translational Imaging group, Centre for Medical Image Computing, University College London, London, UK
| | - T Perkins
- Department of Medical Physics and Biomedical Engineering, University College London, Gower Street, WC1E 6BT, London, UK
| | - K Konyn
- Translational Imaging group, Centre for Medical Image Computing, University College London, London, UK.,Department of Medical Physics and Biomedical Engineering, University College London, Gower Street, WC1E 6BT, London, UK
| | - S Ourselin
- Translational Imaging group, Centre for Medical Image Computing, University College London, London, UK.,Department of Medical Physics and Biomedical Engineering, University College London, Gower Street, WC1E 6BT, London, UK
| | - A E Desjardins
- Translational Imaging group, Centre for Medical Image Computing, University College London, London, UK
| | - T Vercauteren
- Translational Imaging group, Centre for Medical Image Computing, University College London, London, UK.,Department of Medical Physics and Biomedical Engineering, University College London, Gower Street, WC1E 6BT, London, UK
| |
Collapse
|
41
|
Shi W, Pawlick R, Bruni A, Rafiei Y, Pepper AR, Gala-Lopez B, Choi M, Malcolm A, Zemp RJ, Shapiro AMJ. Photoacoustic imaging of angiogenesis in a subcutaneous islet transplant site in a murine model. JOURNAL OF BIOMEDICAL OPTICS 2016; 21:66003. [PMID: 27264493 DOI: 10.1117/1.jbo.21.6.066003] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/02/2016] [Accepted: 05/09/2016] [Indexed: 06/05/2023]
Abstract
Islet transplantation (IT) is an established clinical therapy for select patients with type-1 diabetes. Clinically, the hepatic portal vein serves as the site for IT. Despite numerous advances in clinical IT, limitations remain, including early islet cell loss posttransplant, procedural complications, and the inability to effectively monitor islet grafts. Hence, alternative sites for IT are currently being explored, with the subcutaneous space as one potential option. When left unmodified, the subcutaneous space routinely fails to promote successful islet engraftment. However, when employing the previously developed subcutaneous “deviceless” technique, a favorable microenvironment for islet survival and function is established. In this technique, an angiocatheter was temporarily implanted subcutaneously, which facilitated angiogenesis to promote subsequent islet engraftment. This technique has been employed in preclinical animal models, providing a sufficient means to develop techniques to monitor functional aspects of the graft such as angiogenesis. Here, we utilize photoacoustic imaging to track angiogenesis during the priming of the subcutaneous site by the implanted catheter at 1 to 4 weeks postcatheter. Quantitative analysis on vessel densities shows gradual growth of vasculature in the implant position. These results demonstrate the ability to track angiogenesis, thus facilitating a means to optimize and assess the pretransplant microenvironment.
Collapse
Affiliation(s)
- Wei Shi
- University of Alberta, Department of Electrical and Computer Engineering, Edmonton T6G 2V4, Canada
| | - Rena Pawlick
- University of Alberta, Alberta Diabetes Institute, Edmonton T6G 2C8, Canada
| | - Antonio Bruni
- University of Alberta, Alberta Diabetes Institute, Edmonton T6G 2C8, CanadacUniversity of Alberta, Department of Surgery, Edmonton T6G 2C8, Canada
| | - Yasmin Rafiei
- University of Alberta, Alberta Diabetes Institute, Edmonton T6G 2C8, Canada
| | - Andrew R Pepper
- University of Alberta, Alberta Diabetes Institute, Edmonton T6G 2C8, Canada
| | - Boris Gala-Lopez
- University of Alberta, Alberta Diabetes Institute, Edmonton T6G 2C8, CanadacUniversity of Alberta, Department of Surgery, Edmonton T6G 2C8, Canada
| | - Min Choi
- University of Alberta, Department of Electrical and Computer Engineering, Edmonton T6G 2V4, Canada
| | - Andrew Malcolm
- University of Alberta, Alberta Diabetes Institute, Edmonton T6G 2C8, CanadacUniversity of Alberta, Department of Surgery, Edmonton T6G 2C8, Canada
| | - Roger J Zemp
- University of Alberta, Department of Electrical and Computer Engineering, Edmonton T6G 2V4, Canada
| | - A M James Shapiro
- University of Alberta, Alberta Diabetes Institute, Edmonton T6G 2C8, CanadacUniversity of Alberta, Department of Surgery, Edmonton T6G 2C8, Canada
| |
Collapse
|
42
|
Van de Sompel D, Sasportas LS, Jokerst JV, Gambhir SS. Comparison of Deconvolution Filters for Photoacoustic Tomography. PLoS One 2016; 11:e0152597. [PMID: 27031832 PMCID: PMC4816281 DOI: 10.1371/journal.pone.0152597] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2015] [Accepted: 03/16/2016] [Indexed: 11/18/2022] Open
Abstract
In this work, we compare the merits of three temporal data deconvolution methods for use in the filtered backprojection algorithm for photoacoustic tomography (PAT). We evaluate the standard Fourier division technique, the Wiener deconvolution filter, and a Tikhonov L-2 norm regularized matrix inversion method. Our experiments were carried out on subjects of various appearances, namely a pencil lead, two man-made phantoms, an in vivo subcutaneous mouse tumor model, and a perfused and excised mouse brain. All subjects were scanned using an imaging system with a rotatable hemispherical bowl, into which 128 ultrasound transducer elements were embedded in a spiral pattern. We characterized the frequency response of each deconvolution method, compared the final image quality achieved by each deconvolution technique, and evaluated each method's robustness to noise. The frequency response was quantified by measuring the accuracy with which each filter recovered the ideal flat frequency spectrum of an experimentally measured impulse response. Image quality under the various scenarios was quantified by computing noise versus resolution curves for a point source phantom, as well as the full width at half maximum (FWHM) and contrast-to-noise ratio (CNR) of selected image features such as dots and linear structures in additional imaging subjects. It was found that the Tikhonov filter yielded the most accurate balance of lower and higher frequency content (as measured by comparing the spectra of deconvolved impulse response signals to the ideal flat frequency spectrum), achieved a competitive image resolution and contrast-to-noise ratio, and yielded the greatest robustness to noise. While the Wiener filter achieved a similar image resolution, it tended to underrepresent the lower frequency content of the deconvolved signals, and hence of the reconstructed images after backprojection. In addition, its robustness to noise was poorer than that of the Tikhonov filter. The performance of the Fourier filter was found to be the poorest of all three methods, based on the reconstructed images' lowest resolution (blurriest appearance), generally lowest contrast-to-noise ratio, and lowest robustness to noise. Overall, the Tikhonov filter was deemed to produce the most desirable image reconstructions.
Collapse
Affiliation(s)
- Dominique Van de Sompel
- Molecular Imaging Program at Stanford (MIPS), Stanford University School of Medicine, Stanford University, Stanford, CA 94305, United States of America
| | - Laura S. Sasportas
- Molecular Imaging Program at Stanford (MIPS), Stanford University School of Medicine, Stanford University, Stanford, CA 94305, United States of America
| | - Jesse V. Jokerst
- Department of NanoEngineering, UC San Diego, La Jolla, CA 92093, United States of America
| | - Sanjiv S. Gambhir
- Molecular Imaging Program at Stanford (MIPS), Stanford University School of Medicine, Stanford University, Stanford, CA 94305, United States of America
| |
Collapse
|
43
|
Park J, Jeon S, Meng J, Song L, Lee JS, Kim C. Delay-multiply-and-sum-based synthetic aperture focusing in photoacoustic microscopy. JOURNAL OF BIOMEDICAL OPTICS 2016; 21:36010. [PMID: 27020602 DOI: 10.1117/1.jbo.21.3.036010] [Citation(s) in RCA: 70] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/20/2015] [Accepted: 03/07/2016] [Indexed: 05/18/2023]
Abstract
We propose an improved version of a synthetic aperture focusing technique (SAFT) based on a delay-multiply-and-sum algorithm for acoustic-resolution photoacoustic microscopy (AR-PAM). In this method, the photoacoustic (PA) signals from multiple scan-lines are combinatorially coupled, multiplied, and then summed. This process can be considered a correlation operation of the PA signals in each scan-line, so the spatial coherent information between the PA signals can be efficiently extracted. By applying this method in conventional AR-PAM, lateral resolution and signal-to-noise ratio in out-of-focus regions are much improved compared with those estimated from the previously developed SAFT, respectively, thereby achieving the extension of the imaging focal region. Our phantom and in vivo imaging experiments prove the validity of our proposed method.
Collapse
Affiliation(s)
- Jongin Park
- Pohang University of Science and Technology, Departments of Electrical Engineering and Creative IT Engineering, 77 Cheongam-Ro, Nam-Gu, Pohang, Gyeongbuk 790-784, Republic of Korea
| | - Seungwan Jeon
- Pohang University of Science and Technology, Departments of Electrical Engineering and Creative IT Engineering, 77 Cheongam-Ro, Nam-Gu, Pohang, Gyeongbuk 790-784, Republic of Korea
| | - Jing Meng
- Qufu Normal University, School of Information Science and Technology, 80 Yantai Road North, Rizhao 276826, China
| | - Liang Song
- Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Institute of Biomedical and Health, 1068 Xueyuan Avenue, University Town of Shenzhen, Shenzhen 518055, China
| | - Jin S Lee
- Pohang University of Science and Technology, Departments of Electrical Engineering and Creative IT Engineering, 77 Cheongam-Ro, Nam-Gu, Pohang, Gyeongbuk 790-784, Republic of Korea
| | - Chulhong Kim
- Pohang University of Science and Technology, Departments of Electrical Engineering and Creative IT Engineering, 77 Cheongam-Ro, Nam-Gu, Pohang, Gyeongbuk 790-784, Republic of Korea
| |
Collapse
|
44
|
Chen G, Roy I, Yang C, Prasad PN. Nanochemistry and Nanomedicine for Nanoparticle-based Diagnostics and Therapy. Chem Rev 2016; 116:2826-85. [DOI: 10.1021/acs.chemrev.5b00148] [Citation(s) in RCA: 987] [Impact Index Per Article: 109.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Affiliation(s)
- Guanying Chen
- Institute
for Lasers, Photonics, and Biophotonics and Department of Chemistry, University at Buffalo, State University of New York, Buffalo, New York 14260, United States
- School
of Chemical Engineering and Technology, Harbin Institute of Technology, Harbin, Heilongjiang 150001, China
| | - Indrajit Roy
- Institute
for Lasers, Photonics, and Biophotonics and Department of Chemistry, University at Buffalo, State University of New York, Buffalo, New York 14260, United States
- Department
of Chemistry, University of Delhi, Delhi 110007, India
| | - Chunhui Yang
- School
of Chemical Engineering and Technology, Harbin Institute of Technology, Harbin, Heilongjiang 150001, China
| | - Paras N. Prasad
- Institute
for Lasers, Photonics, and Biophotonics and Department of Chemistry, University at Buffalo, State University of New York, Buffalo, New York 14260, United States
| |
Collapse
|
45
|
Lam Z, Balasundaram G, Kong KV, Chor BY, Goh D, Khezri B, Webster RD, Leong WK, Olivo M. High nuclearity carbonyl clusters as near-IR contrast agents for photoacoustic in vivo imaging. J Mater Chem B 2016; 4:3886-3891. [DOI: 10.1039/c6tb00075d] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
The high nuclearity osmium carbonyl cluster Na2[Os10(μ6-C)(CO)24] is a good near-IR photoacoustic contrast agent for full body imaging.
Collapse
Affiliation(s)
- Zhiyong Lam
- Division of Chemistry and Biological Chemistry
- Nanyang Technological University
- Singapore
- Singapore Bioimaging Consortium
- Agency for Science and Technology and Research (A*STAR)
| | - Ghayathri Balasundaram
- Singapore Bioimaging Consortium
- Agency for Science and Technology and Research (A*STAR)
- Singapore
| | | | - Bo Yang Chor
- Division of Chemistry and Biological Chemistry
- Nanyang Technological University
- Singapore
| | - Douglas Goh
- Singapore Bioimaging Consortium
- Agency for Science and Technology and Research (A*STAR)
- Singapore
| | - Bahareh Khezri
- Division of Chemistry and Biological Chemistry
- Nanyang Technological University
- Singapore
| | - Richard D. Webster
- Division of Chemistry and Biological Chemistry
- Nanyang Technological University
- Singapore
| | - Weng Kee Leong
- Division of Chemistry and Biological Chemistry
- Nanyang Technological University
- Singapore
| | - Malini Olivo
- Singapore Bioimaging Consortium
- Agency for Science and Technology and Research (A*STAR)
- Singapore
- School of Physics
- National University of Ireland
| |
Collapse
|
46
|
Lee N, Yoo D, Ling D, Cho MH, Hyeon T, Cheon J. Iron Oxide Based Nanoparticles for Multimodal Imaging and Magnetoresponsive Therapy. Chem Rev 2015; 115:10637-89. [PMID: 26250431 DOI: 10.1021/acs.chemrev.5b00112] [Citation(s) in RCA: 618] [Impact Index Per Article: 61.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Affiliation(s)
- Nohyun Lee
- School of Advanced Materials Engineering, Kookmin University , Seoul 136-702, Korea
| | - Dongwon Yoo
- Department of Chemistry, Yonsei University , Seoul 120-749, Korea
| | - Daishun Ling
- Center for Nanoparticle Research, Institute for Basic Science (IBS) , Seoul 151-742, Korea.,School of Chemical and Biological Engineering, Seoul National University , Seoul 151-742, Korea.,Institute of Pharmaceutics, College of Pharmaceutical Sciences, Zhejiang University , Hangzhou 310058, PR China
| | - Mi Hyeon Cho
- Department of Chemistry, Yonsei University , Seoul 120-749, Korea
| | - Taeghwan Hyeon
- Center for Nanoparticle Research, Institute for Basic Science (IBS) , Seoul 151-742, Korea.,School of Chemical and Biological Engineering, Seoul National University , Seoul 151-742, Korea
| | - Jinwoo Cheon
- Department of Chemistry, Yonsei University , Seoul 120-749, Korea
| |
Collapse
|
47
|
Lindsey BD, Shelton SE, Dayton PA. Optimization of Contrast-to-Tissue Ratio Through Pulse Windowing in Dual-Frequency "Acoustic Angiography" Imaging. ULTRASOUND IN MEDICINE & BIOLOGY 2015; 41:1884-95. [PMID: 25819467 PMCID: PMC4804889 DOI: 10.1016/j.ultrasmedbio.2015.02.011] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/02/2014] [Revised: 02/16/2015] [Accepted: 02/21/2015] [Indexed: 05/09/2023]
Abstract
Early-stage tumors in many cancers are characterized by vascular remodeling, indicative of transformations in cell function. We have previously presented a high-resolution ultrasound imaging approach to detecting these changes that is based on microbubble contrast agents. In this technique, images are formed from only the higher harmonics of microbubble contrast agents, producing images of vasculature alone with 100- to 200-μm resolution. In this study, shaped transmit pulses were used to image the higher broadband harmonic echoes of microbubble contrast agents, and the effects of varying pulse window and phasing on microbubble and tissue harmonic echoes were evaluated using a dual-frequency transducer in vitro and in vivo. An increase in the contrast-to-tissue ratio of 6.8 ± 2.3 dB was observed in vitro using an inverted pulse with a cosine window relative to a non-inverted pulse with a rectangular window. The increase in mean image intensity resulting from contrast enhancement in vivo in five rodents was 13.9 ± 3.0 dB greater for an inverted cosine-windowed pulse and 17.8 ± 3.6 dB greater for a non-inverted Gaussian-windowed pulse relative to a non-inverted pulse with a rectangular window. Implications for pre-clinical and diagnostic imaging are discussed.
Collapse
Affiliation(s)
- Brooks D Lindsey
- Joint Department of Biomedical Engineering, University of North Carolina at Chapel Hill and North Carolina State University, Biomedical Research Imaging Center, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
| | - Sarah E Shelton
- Joint Department of Biomedical Engineering, University of North Carolina at Chapel Hill and North Carolina State University, Biomedical Research Imaging Center, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
| | - Paul A Dayton
- Joint Department of Biomedical Engineering, University of North Carolina at Chapel Hill and North Carolina State University, Biomedical Research Imaging Center, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA.
| |
Collapse
|
48
|
Listen to the chemical and histological information in biological tissue. CHINESE CHEM LETT 2015. [DOI: 10.1016/j.cclet.2015.01.030] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
49
|
Lin R, Chen J, Wang H, Yan M, Zheng W, Song L. Longitudinal label-free optical-resolution photoacoustic microscopy of tumor angiogenesis in vivo. Quant Imaging Med Surg 2015; 5:23-9. [PMID: 25694950 DOI: 10.3978/j.issn.2223-4292.2014.11.08] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2014] [Accepted: 10/21/2014] [Indexed: 01/09/2023]
Abstract
BACKGROUND Optical-resolution photoacoustic microscopy (OR-PAM) is a high-resolution imaging technology capable of label-free imaging of the morphology and functions of the microvasculature in vivo. Previous studies of angiogenesis by OR-PAM were carried out primarily with transgenic mice and the mouse ear model. While important findings have been generated using this approach, the application of OR-PAM to the more widely used subcutaneous dorsal tumor models remains challenging, largely due to the respiratory and cardiac motion artifacts, as well as the protruding tumor contours. METHODS AND MATERIALS A noninvasive dorsal skin-fold (N-DSF) model, along with adaptive z-scanning and a corresponding experimental protocol, is developed. Mammary carcinoma cells (4T1) were administered subcutaneously to the backs of female BALB/c mice for tumor inoculation. The mice were anesthetized using a mixture of isofluorane and oxygen. RESULTS In vivo OR-PAM of angiogenesis with subcutaneous dorsal tumor models in mice has been demonstrated. To test the performance of this method, we have monitored the growth of 4T1 mouse mammary carcinoma in BALB/c mice over a period of 9 days. The major features of tumor angiogenesis, including the change of vascular tortuosity, the dilation of vessel diameters, and the increase of blood supply, have been clearly captured with OR-PAM. CONCLUSIONS In combination with N-DSF model, OR-PAM has demonstrated outstanding capacity to provide label-free monitoring of angiogenesis in tumor. Thus, OR-PAM is of great potential to find broad biomedical applications in the pathophysiological studies of tumor and the treatments for anti-angiogenesis.
Collapse
Affiliation(s)
- Riqiang Lin
- Research Laboratory for Biomedical Optics and Molecular Imaging, Shenzhen Key Laboratory for Molecular Imaging, Institute of Biomedical and Health Engineering, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China
| | - Jianhua Chen
- Research Laboratory for Biomedical Optics and Molecular Imaging, Shenzhen Key Laboratory for Molecular Imaging, Institute of Biomedical and Health Engineering, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China
| | - Huina Wang
- Research Laboratory for Biomedical Optics and Molecular Imaging, Shenzhen Key Laboratory for Molecular Imaging, Institute of Biomedical and Health Engineering, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China
| | - Meng Yan
- Research Laboratory for Biomedical Optics and Molecular Imaging, Shenzhen Key Laboratory for Molecular Imaging, Institute of Biomedical and Health Engineering, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China
| | - Wei Zheng
- Research Laboratory for Biomedical Optics and Molecular Imaging, Shenzhen Key Laboratory for Molecular Imaging, Institute of Biomedical and Health Engineering, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China
| | - Liang Song
- Research Laboratory for Biomedical Optics and Molecular Imaging, Shenzhen Key Laboratory for Molecular Imaging, Institute of Biomedical and Health Engineering, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China
| |
Collapse
|
50
|
Balasundaram G, Ho CJH, Li K, Driessen W, Dinish US, Wong CL, Ntziachristos V, Liu B, Olivo M. Molecular photoacoustic imaging of breast cancer using an actively targeted conjugated polymer. Int J Nanomedicine 2015; 10:387-97. [PMID: 25609951 PMCID: PMC4294657 DOI: 10.2147/ijn.s73558] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023] Open
Abstract
Conjugated polymers (CPs) are upcoming optical contrast agents in view of their unique optical properties and versatile synthetic chemistry. Biofunctionalization of these polymer-based nanoparticles enables molecular imaging of biological processes. In this work, we propose the concept of using a biofunctionalized CP for noninvasive photoacoustic (PA) molecular imaging of breast cancer. In particular, after verifying the PA activity of a CP nanoparticle (CP dots) in phantoms and the targeting efficacy of a folate-functionalized version of the same (folate-CP dots) in vitro, we systemically administered the probe into a folate receptor-positive (FR+ve) MCF-7 breast cancer xenograft model to demonstrate the possible application of folate-CP dots for imaging FR+ve breast cancers in comparison to CP dots with no folate moieties. We observed a strong PA signal at the tumor site of folate-CP dots-administered mice as early as 1 hour after administration as a result of the active targeting of the folate-CP dots to the FR+ve tumor cells but a weak PA signal at the tumor site of CP-dots-administered mice as a result of the passive accumulation of the probe by enhanced permeability and retention effect. We also observed that folate-CP dots produced ~4-fold enhancement in the PA signal in the tumor, when compared to CP dots. These observations demonstrate the great potential of this active-targeting CP to be used as a contrast agent for molecular PA diagnostic imaging in various biomedical applications.
Collapse
Affiliation(s)
| | - Chris Jun Hui Ho
- Bio-Optical Imaging Group, Singapore Bioimaging Consortium (SBIC), Singapore
| | - Kai Li
- Institute of Materials Research and Engineering (IMRE), Agency for Science, Technology and Research (ASTAR), Singapore
| | - Wouter Driessen
- Institute of Biological and Medical Imaging, Helmholtz Center Munich, Neuherberg, Germany
| | - U S Dinish
- Bio-Optical Imaging Group, Singapore Bioimaging Consortium (SBIC), Singapore
| | - Chi Lok Wong
- Bio-Optical Imaging Group, Singapore Bioimaging Consortium (SBIC), Singapore
| | - Vasilis Ntziachristos
- Institute of Biological and Medical Imaging, Helmholtz Center Munich, Neuherberg, Germany
| | - Bin Liu
- Institute of Materials Research and Engineering (IMRE), Agency for Science, Technology and Research (ASTAR), Singapore
| | - Malini Olivo
- Bio-Optical Imaging Group, Singapore Bioimaging Consortium (SBIC), Singapore ; School of Physics, National University of Ireland, Galway, Ireland
| |
Collapse
|