1
|
Batool S, Sohail S, Ud Din F, Alamri AH, Alqahtani AS, Alshahrani MA, Alshehri MA, Choi HG. A detailed insight of the tumor targeting using nanocarrier drug delivery system. Drug Deliv 2023; 30:2183815. [PMID: 36866455 DOI: 10.1080/10717544.2023.2183815] [Citation(s) in RCA: 42] [Impact Index Per Article: 21.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/04/2023] Open
Abstract
Human struggle against the deadly disease conditions is continued since ages. The contribution of science and technology in fighting against these diseases cannot be ignored exclusively due to the invention of novel procedure and products, extending their size ranges from micro to nano. Recently nanotechnology has been gaining more consideration for its ability to diagnose and treat different cancers. Different nanoparticles have been used to evade the issues related with conservative anticancer delivery systems, including their nonspecificity, adverse effects and burst release. These nanocarriers including, solid lipid nanoparticles (SLNs), liposomes, nano lipid carriers (NLCs), nano micelles, nanocomposites, polymeric and magnetic nanocarriers, have brought revolutions in antitumor drug delivery. Nanocarriers improved the therapeutic efficacy of anticancer drugs with better accumulation at the specific site with sustained release, improved bioavailability and apoptosis of the cancer cells while bypassing the normal cells. In this review, the cancer targeting techniques and surface modification on nanoparticles are discussed briefly with possible challenges and opportunities. It can be concluded that understanding the role of nanomedicine in tumor treatment is significant, and therefore, the modern progressions in this arena is essential to be considered for a prosperous today and an affluent future of tumor patients.
Collapse
Affiliation(s)
- Sibgha Batool
- Department of Pharmacy, Faculty of Biological Sciences, Quaid-i-Azam University, Islamabad, Pakistan.,Nanomedicine Research Group, Department of Pharmacy, Faculty of Biological Sciences, Quaid-i-Azam University, Islamabad, Pakistan
| | - Saba Sohail
- Department of Pharmacy, Faculty of Biological Sciences, Quaid-i-Azam University, Islamabad, Pakistan.,Nanomedicine Research Group, Department of Pharmacy, Faculty of Biological Sciences, Quaid-i-Azam University, Islamabad, Pakistan
| | - Fakhar Ud Din
- Department of Pharmacy, Faculty of Biological Sciences, Quaid-i-Azam University, Islamabad, Pakistan.,Nanomedicine Research Group, Department of Pharmacy, Faculty of Biological Sciences, Quaid-i-Azam University, Islamabad, Pakistan
| | - Ali H Alamri
- Department of Pharmaceutics, College of Pharmacy, King Khalid University, Abha, Saudi Arabia
| | - Ahmad S Alqahtani
- Department of Pharmacy, Mental Health Hospital, Ministry of Health, Abha, Saudi Arabia
| | - Mohammad A Alshahrani
- Department of Medical Supply in Khamis Mushet General Hospital, Ministry of Health, Khamis Mushet, Saudi Arabia
| | - Mohammed A Alshehri
- Department of Pharmacy, Abha Maternity and Children Hospital, Ministry of Health, Abha, Saudi Arabia
| | - Han Gon Choi
- College of Pharmacy & Institute of Pharmaceutical Science and Technology, Hanyang University, Ansan, South Korea
| |
Collapse
|
2
|
Rehman M, Ihsan A, Iftikhar M, Anwar M, Khalid Q. Gold nanoshells for imaging and photothermal ablation of cancer. Nanomedicine (Lond) 2023. [DOI: 10.1016/b978-0-12-818627-5.00005-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/19/2023] Open
|
3
|
Ifijen IH, Maliki M. A comprehensive review on the synthesis and photothermal cancer therapy of titanium nitride nanostructures. INORG NANO-MET CHEM 2022. [DOI: 10.1080/24701556.2022.2068596] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Affiliation(s)
- Ikhazuagbe H. Ifijen
- Department of Research Operations, Rubber Research Institute of Nigeria, Benin, Nigeria
| | - Muniratu Maliki
- Department of Industrial Chemistry, Edo State University, Uzairue, Iyamho, Nigeria
| |
Collapse
|
4
|
González-Colsa J, Serrera G, Saiz JM, Ortiz D, González F, Bresme F, Moreno F, Albella P. Gold nanodoughnut as an outstanding nanoheater for photothermal applications. OPTICS EXPRESS 2022; 30:125-137. [PMID: 35201187 DOI: 10.1364/oe.446637] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/25/2021] [Accepted: 11/22/2021] [Indexed: 05/18/2023]
Abstract
Photoinduced hyperthermia is a cancer therapy technique that induces death to cancerous cells via heat generated by plasmonic nanoparticles. While previous studies have shown that some nanoparticles can be effective at killing cancer cells under certain conditions, there is still a necessity (or the need) to improve its heating efficiency. In this work, we perform a detailed theoretical study comparing the thermoplasmonic response of the most effective nanoparticle geometries up to now with a doughnut-shaped nanoparticle. We numerically demonstrate that the latter exhibits a superior tunable photothermal response in practical illumination conditions (unpolarized light). Furthermore, we show that nanoparticle heating in fluidic environments, i.e., nanoparticles undergoing Brownian rotations, strongly depends on the particle orientation with respect to the illumination source. We conclude that nanodoughnuts are the best nanoheaters in our set of structures, with an average temperature increment 40% higher than the second best nanoheater (nanodisk). Furthermore, nanodoughnuts feature a weak dependence on orientation, being therefore ideal candidates for photothermal therapy applications. Finally, we present a designing guide, covering a wide range of toroid designs, which can help on its experimental implementation.
Collapse
|
5
|
D'Acunto M, Cioni P, Gabellieri E, Presciuttini G. Exploiting gold nanoparticles for diagnosis and cancer treatments. NANOTECHNOLOGY 2021; 32:192001. [PMID: 33524960 DOI: 10.1088/1361-6528/abe1ed] [Citation(s) in RCA: 43] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Gold nanoparticles (AuNPs) represent a relatively simple nanosystem to be synthesised and functionalized. AuNPs offer numerous advantages over different nanomaterials, primarily due to highly optimized protocols for their production with sizes in the range 1-150 nm and shapes, spherical, nanorods (AuNRs), nanocages, nanostars or nanoshells (AuNSs), just to name a few. AuNPs possess unique properties both from the optical and chemical point of view. AuNPs can absorb and scatter light with remarkable efficiency. Their outstanding interaction with light is due to the conduction electrons on the metal surface undergoing a collective oscillation when they are excited by light at specific wavelengths. This oscillation, known as a localized surface plasmon resonance, causes the absorption and scattering intensities of AuNPs to be significantly higher than identically sized non-plasmonic nanoparticles. In addition, AuNP absorption and scattering properties can be tuned by controlling the particle size, shape, and the local refractive index near the particle surface. By the chemical side, AuNPs offer the advantage of functionalization with therapeutic agents through covalent and ionic binding, which can be useful for biomedical applications, with particular emphasis on cancer treatments. Functionalized AuNPs exhibit good biocompatibility and controllable distribution patterns when delivered in cells and tissues, which make them particularly fine candidates for the basis of innovative therapies. Currently, major available AuNP-based cancer therapeutic approaches are the photothermal therapy (PTT) or photodynamic therapy (PDT). PTT and PDT rely upon irradiation of surface plasmon resonant AuNPs (previously delivered in cancer cells) by light, in particular, in the near-infrared range. Under irradiation, AuNPs surface electrons are excited and resonate intensely, and fast conversion of light into heat takes place in about 1 ps. The cancer cells are destroyed by the induced hyperthermia, i.e. the condition under which cells are subject to temperature in the range of 41 °C-47 °C for tens of minutes. The review is focused on the description of the optical and thermal properties of AuNPs that underlie their continuous and progressive exploitation for diagnosis and cancer therapy.
Collapse
Affiliation(s)
- Mario D'Acunto
- Institute of Biophysics, Italian National Research Council, CNR-IBF, via Moruzzi 1,I- 56124, Pisa, Italy
| | - Patrizia Cioni
- Institute of Biophysics, Italian National Research Council, CNR-IBF, via Moruzzi 1,I- 56124, Pisa, Italy
| | - Edi Gabellieri
- Institute of Biophysics, Italian National Research Council, CNR-IBF, via Moruzzi 1,I- 56124, Pisa, Italy
| | - Gianluca Presciuttini
- Institute of Biophysics, Italian National Research Council, CNR-IBF, via Moruzzi 1,I- 56124, Pisa, Italy
| |
Collapse
|
6
|
Lv Z, He S, Wang Y, Zhu X. Noble Metal Nanomaterials for NIR-Triggered Photothermal Therapy in Cancer. Adv Healthc Mater 2021; 10:e2001806. [PMID: 33470542 DOI: 10.1002/adhm.202001806] [Citation(s) in RCA: 194] [Impact Index Per Article: 48.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2020] [Revised: 01/06/2021] [Indexed: 12/24/2022]
Abstract
It is of great significance to develop anticancer therapeutic agents or technologies with high degree of specificity and patient compliance, while low toxicity. The emerging photothermal therapy (PTT) has become a new and powerful therapeutic technology due to its noninvasiveness, high specificity, low side effects to normal tissues and strong anticancer efficacy. Noble metal nanomaterials possess strong surface plasmon resonance (SPR) effect and synthetic tunability, which make them facile and effective PTT agents with superior optical and photothermal characteristics, such as high absorption cross-section, incomparable optical-thermal conversion efficiency in the near infrared (NIR) region, as well as the potential of bioimaging. By incorporating with various functional reagents such as antibodies, peptides, biocompatible polymers, chemo-drug and immune factors, noble metal nanomaterials have presented strong potential in multifunctional cancer therapy. Herein, the recent development regarding the application of noble metal nanomaterials for NIR-triggered PTT in cancer treatment is summarized. A variety of studies with good therapeutic effects against cancer from impressive photothermal efficacy of noble metal nanomaterials are concluded. Intelligent nanoplatforms through ingenious fabrication showing potential of multifunctional PTT, combined with chemo-therapy, immunotherapy, photodynamic therapy (PDT), as well as simultaneous imaging modality are also demonstrated.
Collapse
Affiliation(s)
- Zhuoqian Lv
- School of Chemistry and Chemical Engineering Frontiers Science Center for Transformative Molecules Shanghai Jiao Tong University 800 Dongchuan Road Shanghai 200240 China
| | - Sijia He
- Cancer Center Shanghai General Hospital Shanghai Jiao Tong University School of Medicine 650 Xinsongjiang Road Shanghai 201620 China
| | - Youfu Wang
- School of Chemistry and Chemical Engineering Frontiers Science Center for Transformative Molecules Shanghai Jiao Tong University 800 Dongchuan Road Shanghai 200240 China
| | - Xinyuan Zhu
- School of Chemistry and Chemical Engineering Frontiers Science Center for Transformative Molecules Shanghai Jiao Tong University 800 Dongchuan Road Shanghai 200240 China
| |
Collapse
|
7
|
Cavigli L, Khlebtsov BN, Centi S, Khlebtsov NG, Pini R, Ratto F. Photostability of Contrast Agents for Photoacoustics: The Case of Gold Nanorods. NANOMATERIALS (BASEL, SWITZERLAND) 2021; 11:E116. [PMID: 33419130 PMCID: PMC7825532 DOI: 10.3390/nano11010116] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/22/2020] [Revised: 12/16/2020] [Accepted: 12/23/2020] [Indexed: 12/12/2022]
Abstract
Plasmonic particles as gold nanorods have emerged as powerful contrast agents for critical applications as the photoacoustic imaging and photothermal ablation of cancer. However, their unique efficiency of photothermal conversion may turn into a practical disadvantage, and expose them to the risk of overheating and irreversible photodamage. Here, we outline the main ideas behind the technology of photoacoustic imaging and the use of relevant contrast agents, with a main focus on gold nanorods. We delve into the processes of premelting and reshaping of gold nanorods under illumination with optical pulses of a typical duration in the order of few ns, and we present different approaches to mitigate this issue. We undertake a retrospective classification of such approaches according to their underlying, often implicit, principles as: constraining the initial shape; or speeding up their thermal coupling to the environment by lowering their interfacial thermal resistance; or redistributing the input energy among more particles. We discuss advantages, disadvantages and contexts of practical interest where one solution may be more appropriate than the other.
Collapse
Affiliation(s)
- Lucia Cavigli
- Istituto di Fisica Applicata Nello Carrara, IFAC-CNR, Via Madonna del Piano 10, 50019 Sesto Fiorentino, Italy; (S.C.); (R.P.); (F.R.)
| | - Boris N. Khlebtsov
- Institute of Biochemistry and Physiology of Plants and Microorganisms, Russian Academy of Sciences, 13 Prospekt Entuziastov, 410049 Saratov, Russia; (B.N.K.); (N.G.K.)
| | - Sonia Centi
- Istituto di Fisica Applicata Nello Carrara, IFAC-CNR, Via Madonna del Piano 10, 50019 Sesto Fiorentino, Italy; (S.C.); (R.P.); (F.R.)
| | - Nikolai G. Khlebtsov
- Institute of Biochemistry and Physiology of Plants and Microorganisms, Russian Academy of Sciences, 13 Prospekt Entuziastov, 410049 Saratov, Russia; (B.N.K.); (N.G.K.)
- Saratov State University, 83 Ulitsa Astrakhanskaya, 410026 Saratov, Russia
| | - Roberto Pini
- Istituto di Fisica Applicata Nello Carrara, IFAC-CNR, Via Madonna del Piano 10, 50019 Sesto Fiorentino, Italy; (S.C.); (R.P.); (F.R.)
| | - Fulvio Ratto
- Istituto di Fisica Applicata Nello Carrara, IFAC-CNR, Via Madonna del Piano 10, 50019 Sesto Fiorentino, Italy; (S.C.); (R.P.); (F.R.)
| |
Collapse
|
8
|
Pakravan A, Salehi R, Mahkam M. Comparison study on the effect of gold nanoparticles shape in the forms of star, hallow, cage, rods, and Si-Au and Fe-Au core-shell on photothermal cancer treatment. Photodiagnosis Photodyn Ther 2020; 33:102144. [PMID: 33307234 DOI: 10.1016/j.pdpdt.2020.102144] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2020] [Revised: 11/10/2020] [Accepted: 11/30/2020] [Indexed: 12/20/2022]
Abstract
Gold nanoparticles (GNPs) indicate potential in the development of cancer treatments as vehicles for thermal damage of cancer cells because of their photothermal heating capability. Herein, we aim to investigate the effect of GNPs geometry as photothermal transducers on cellular uptake and photothermal therapy (PTT) efficacy. For this aim, seven different shapes of anisotropic GNPs: stars, hollow, rods, cages, spheres, Fe-Au, and Si-Au core shells were synthesized and investigate the effect of shape on GNPs optical properties. The physic-chemical characterization of prepared GNPs was investigated by UV-vis, DLS-Zeta, and TEM analysis. The effect of GNPs geometry on cellular uptake was investigated by ICP-MS and flow cytometry method. The PTT potential of these GNPs was compared on MCF7 cells in vitro using MTT assay, cell cycle, and Annexin-V apoptosis assay. While all these GNPs could absorb and convert near-infrared light into heat, gold nanostars exhibited the lowest cytotoxicity, highest cellular uptake and highest heat generation compared to other structures. Following photothermal treatment, due to substantial heat production in MCF7 cells, the apoptosis induction rate was greatly increased for all anisotropic gold nanostructures (stars, hollow, rods, and cages) especially gold nanostars. Combined, we can conclude that GNPs geometry affects cellular uptake and heat generation amount as well as cell destruction by apoptosis pathway. The gold nanostar is promising candidates for photothermal destruction.
Collapse
Affiliation(s)
- Asrin Pakravan
- Chemistry Department, Faculty of Science, Azarbaijan Shahid Madani University, Tabriz, Iran
| | - Roya Salehi
- Drug Applied Research Center and Department of Medical Nanotechnology, Faculty of Advanced Medical Science, Tabriz University of Medical Science, Tabriz, Iran.
| | - Mehrdad Mahkam
- Chemistry Department, Faculty of Science, Azarbaijan Shahid Madani University, Tabriz, Iran.
| |
Collapse
|
9
|
Ha Lien NT, Phan AD, Van Khanh BT, Thuy NT, Trong Nghia N, My Nhung HT, Hong Nhung T, Quang Hoa D, Duong V, Minh Hue N. Applications of Mesoporous Silica-Encapsulated Gold Nanorods Loaded Doxorubicin in Chemo-photothermal Therapy. ACS OMEGA 2020; 5:20231-20237. [PMID: 32832776 PMCID: PMC7439364 DOI: 10.1021/acsomega.0c01939] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/27/2020] [Accepted: 07/24/2020] [Indexed: 06/11/2023]
Abstract
We investigate the chemo-photothermal effects of gold nanorods (GNRs) coated using mesoporous silica (mSiO2) loading doxorubicin (DOX). When the mesoporous silica layer is embedded by doxorubicin drugs, a significant change in absorption spectra enables to quantify the drug loading. We carried out photothermal experiments on saline and livers of mice having GNRs@mSiO2 and GNRs@mSiO2-DOX. We also injected the gold nanostructures into many tumor-implanted mice and used laser illumination on some of them. By measuring the weight and size of tumors, the distinct efficiency of photothermal therapy and chemotherapy on treatment is determined. We experimentally confirm the accumulation of gold nanostructures in the liver.
Collapse
Affiliation(s)
- Nghiem Thi Ha Lien
- Center
for Quantum and Electronics, Institute of Physics, VAST, Dao Tan 10, Hanoi 10000, Vietnam
| | - Anh D. Phan
- Faculty
of Materials Science and Engineering, Phenikaa Institute for Advanced
Study, Phenikaa University, Hanoi 12116, Vietnam
- Faculty
of Information Technology, Artificial Intelligence Laboratory, Phenikaa University, Hanoi 12116, Vietnam
| | - Bui Thi Van Khanh
- College
of Science, Vietnam National University
(VNU), Hanoi, 334 Nguyen Trai Road, Thanh Xuan, Hanoi 10000, Vietnam
| | - Nguyen Thi Thuy
- Center
for Quantum and Electronics, Institute of Physics, VAST, Dao Tan 10, Hanoi 10000, Vietnam
| | - Nguyen Trong Nghia
- Center
for Quantum and Electronics, Institute of Physics, VAST, Dao Tan 10, Hanoi 10000, Vietnam
| | - Hoang Thi My Nhung
- College
of Science, Vietnam National University
(VNU), Hanoi, 334 Nguyen Trai Road, Thanh Xuan, Hanoi 10000, Vietnam
| | - Tran Hong Nhung
- Center
for Quantum and Electronics, Institute of Physics, VAST, Dao Tan 10, Hanoi 10000, Vietnam
| | - Do Quang Hoa
- Center
for Quantum and Electronics, Institute of Physics, VAST, Dao Tan 10, Hanoi 10000, Vietnam
| | - Vu Duong
- Center
for Quantum and Electronics, Institute of Physics, VAST, Dao Tan 10, Hanoi 10000, Vietnam
| | - Nguyen Minh Hue
- Department
of Physics, Le Quy Don Technical University, Cau Giay, Hanoi 10000, Vietnam
| |
Collapse
|
10
|
Physical Properties of Nanoparticles That Result in Improved Cancer Targeting. JOURNAL OF ONCOLOGY 2020; 2020:5194780. [PMID: 32765604 PMCID: PMC7374236 DOI: 10.1155/2020/5194780] [Citation(s) in RCA: 131] [Impact Index Per Article: 26.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/02/2020] [Revised: 04/26/2020] [Accepted: 05/30/2020] [Indexed: 11/17/2022]
Abstract
The therapeutic efficacy of drugs is dependent upon the ability of a drug to reach its target, and drug penetration into tumors is limited by abnormal vasculature and high interstitial pressure. Chemotherapy is the most common systemic treatment for cancer but can cause undesirable adverse effects, including toxicity to the bone marrow and gastrointestinal system. Therefore, nanotechnology-based drug delivery systems have been developed to reduce the adverse effects of traditional chemotherapy by enhancing the penetration and selective drug retention in tumor tissues. A thorough knowledge of the physical properties (e.g., size, surface charge, shape, and mechanical strength) and chemical attributes of nanoparticles is crucial to facilitate the application of nanotechnology to biomedical applications. This review provides a summary of how the attributes of nanoparticles can be exploited to improve therapeutic efficacy. An ideal nanoparticle is proposed at the end of this review in order to guide future development of nanoparticles for improved drug targeting in vivo.
Collapse
|
11
|
Singh S, Melnik R. Thermal ablation of biological tissues in disease treatment: A review of computational models and future directions. Electromagn Biol Med 2020; 39:49-88. [PMID: 32233691 DOI: 10.1080/15368378.2020.1741383] [Citation(s) in RCA: 51] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Percutaneous thermal ablation has proven to be an effective modality for treating both benign and malignant tumours in various tissues. Among these modalities, radiofrequency ablation (RFA) is the most promising and widely adopted approach that has been extensively studied in the past decades. Microwave ablation (MWA) is a newly emerging modality that is gaining rapid momentum due to its capability of inducing rapid heating and attaining larger ablation volumes, and its lesser susceptibility to the heat sink effects as compared to RFA. Although the goal of both these therapies is to attain cell death in the target tissue by virtue of heating above 50°C, their underlying mechanism of action and principles greatly differs. Computational modelling is a powerful tool for studying the effect of electromagnetic interactions within the biological tissues and predicting the treatment outcomes during thermal ablative therapies. Such a priori estimation can assist the clinical practitioners during treatment planning with the goal of attaining successful tumour destruction and preservation of the surrounding healthy tissue and critical structures. This review provides current state-of-the-art developments and associated challenges in the computational modelling of thermal ablative techniques, viz., RFA and MWA, as well as touch upon several promising avenues in the modelling of laser ablation, nanoparticles assisted magnetic hyperthermia and non-invasive RFA. The application of RFA in pain relief has been extensively reviewed from modelling point of view. Additionally, future directions have also been provided to improve these models for their successful translation and integration into the hospital work flow.
Collapse
Affiliation(s)
- Sundeep Singh
- MS2Discovery Interdisciplinary Research Institute, Wilfrid Laurier University, Waterloo, Ontario, Canada
| | - Roderick Melnik
- MS2Discovery Interdisciplinary Research Institute, Wilfrid Laurier University, Waterloo, Ontario, Canada.,BCAM - Basque Center for Applied Mathematics, Bilbao, Spain
| |
Collapse
|
12
|
Hadilou N, Souri S, Navid HA, Sadighi Bonabi R, Anvari A, Palpant B. An optimal architecture of magneto-plasmonic core-shell nanoparticles for potential photothermal applications. Phys Chem Chem Phys 2020; 22:14318-14328. [PMID: 32567612 DOI: 10.1039/d0cp01509a] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Abstract
In this work, the optical responses of Fe3O4@Au and Fe3O4@Ag are comprehensively investigated using the discrete dipole approximation. It is found that the resonance wavelength and absorption efficiency strongly depend on the composition of the core and shell, geometry of the nanoparticles, core to particle volume ratio, core radius and shell thickness. The strongest impact is due to the shell material, the shape of the nanoparticles and their combination. When the composition of the shell is changed from gold to silver, instead of one fundamental resonance peak the absorption spectrum shows two, corresponding to the bonding plasmon mode at the nanoparticle-environment interface and antibonding mode at the core-shell interface. The results also reveal a much higher tunability of the resonance wavelength as well as larger enhancement of the absorption efficiency as the spherical nanoparticle stretches to a prolate ellipsoidal shape. Furthermore, higher order plasmon modes appear in the absorption spectrum of prolate nanoparticles with a large aspect ratio. The existence of several plasmon modes together with wide tunability makes these nanoparticles good candidates for applications where two or more simultaneous absorption bands at different frequencies are required. These results might motivate experimentalists to optimize the synthesis of magnetic-plasmonic core-shell NPs in different applications as far as absorption is concerned.
Collapse
Affiliation(s)
- Naby Hadilou
- Department of Laser and Optical Engineering, University of Bonab, Bonab, Iran. and Department of Physics, Sharif University of Technology, Tehran, Iran.
| | - Somayeh Souri
- Department of Physics, Sharif University of Technology, Tehran, Iran.
| | - H A Navid
- Department of Laser and Optical Engineering, University of Bonab, Bonab, Iran.
| | | | - Abbas Anvari
- Department of Physics, Sharif University of Technology, Tehran, Iran.
| | - Bruno Palpant
- Université Paris-Saclay, CNRS, ENS Paris-Saclay, CentraleSupélec, LuMIn, 91190 Gif-sur-Yvette, France
| |
Collapse
|
13
|
Optimization of Nonspherical Gold Nanoparticles for Photothermal Therapy. APPLIED SCIENCES-BASEL 2019. [DOI: 10.3390/app9204300] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Previous investigations devoted to the optimization of nonspherical gold nanoparticles for photothermal therapy (PTT) encountered two issues, namely, the appropriate selection of objective functions and the processing of particle random orientations. In this study, these issues were resolved, and accurate optimization results were obtained for the three typical nonspherical gold nanoparticles (nanospheroid, nanocylinder, and nanorod) by using the T-matrix method. The dependence of the optimization results on the excitation wavelength and the refractive index of tissue was investigated. Regardless of the excitation wavelength and tissue type, gold nanospheroids were found to be the most effective therapeutic agents for PTT. The light absorption ability of optimized nanoparticles could be enhanced by using a laser with a longer wavelength. Finally, the design tolerance for the different sizes of nanoparticles was provided.
Collapse
|
14
|
Sun X, Sun M, Liu M, Yuan B, Gao W, Rao W, Liu J. Shape tunable gallium nanorods mediated tumor enhanced ablation through near-infrared photothermal therapy. NANOSCALE 2019; 11:2655-2667. [PMID: 30601530 DOI: 10.1039/c8nr08296k] [Citation(s) in RCA: 63] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/27/2023]
Abstract
To date, photothermal sensitizers include organic and inorganic nanomaterials for biomedical applications. However, the impediments of low biodegradability and potential toxicity hinder their further applications in clinics. Liquid metal nanospheres show superior photothermal effects under near-infrared laser irradiation, in addition, a transformation in shape can be triggered, which also promotes biodegradability that helps to avoid potential systemic toxicity. Here, we fabricated tunable liquid metal nanoparticles having sphere-shaped to rod-shaped characteristics, resulting in good biocompatibility, favorable photothermal conversion efficiency, and targeting capability to tumors. The synthesis strategy is easy to achieve through one-step sonication. We systematically evaluated the photothermal properties of these liquid metal nanoparticles as well as their destructive effects on tumors in a quantitative way both in vitro and in vivo under laser exposure. Results have shown for the first time in mice that gallium nanorods, regulated and controlled through the production of GaO(OH), displayed outstanding photothermal conversion efficiency and exhibited distinct temperature elevation compared to gallium nanospheres and gallium-indium alloy nanorods. These shape transformable and biocompatible gallium nanorods establish the basis for the future laser ablation of tumors to achieve enhanced therapeutic outcomes. This shape tunability of a smart nano-liquid metal directly contributes to enhanced photothermal therapy in mice and opens new opportunities for potential applications with tumor therapy and imaging.
Collapse
Affiliation(s)
- Xuyang Sun
- Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing 100190, China.
| | | | | | | | | | | | | |
Collapse
|
15
|
Inostroza-Riquelme M, Vivanco A, Lara P, Guerrero S, Salas-Huenuleo E, Chamorro A, Leyton L, Bolaños K, Araya E, Quest AFG, Kogan MJ, Oyarzun-Ampuero F. Encapsulation of Gold Nanostructures and Oil-in-Water Nanocarriers in Microgels with Biomedical Potential. Molecules 2018; 23:E1208. [PMID: 29783629 PMCID: PMC6099665 DOI: 10.3390/molecules23051208] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2018] [Revised: 05/13/2018] [Accepted: 05/14/2018] [Indexed: 12/21/2022] Open
Abstract
Here we report the incorporation of gold nanostructures (nanospheres or nanorods, functionalized with carboxylate-end PEG) and curcumin oil-in-water (O/W) nanoemulsions (CurNem) into alginate microgels using the dripping technique. While gold nanostructures are promising nanomaterials for photothermal therapy applications, CurNem possess important pharmacological activities as reported here. In this sense, we evaluated the effect of CurNem on cell viability of both cancerous and non-cancerous cell lines (AGS and HEK293T, respectively), demonstrating preferential toxicity in cancer cells and safety for the non-cancerous cells. After incorporating gold nanostructures and CurNem together into the microgels, microstructures with diameters of 220 and 540 µm were obtained. When stimulating microgels with a laser, the plasmon effect promoted a significant rise in the temperature of the medium; the temperature increase was higher for those containing gold nanorods (11⁻12 °C) than nanospheres (1⁻2 °C). Interestingly, the incorporation of both nanosystems in the microgels maintains the photothermal properties of the gold nanostructures unmodified and retains with high efficiency the curcumin nanocarriers. We conclude that these results will be of interest to design hydrogel formulations with therapeutic applications.
Collapse
Affiliation(s)
- Mariela Inostroza-Riquelme
- Advanced Center of Chronic Diseases (ACCDiS), Universidad de Chile. Santos Dumont 964, Independencia, Santiago 8380494, Chile.
- Departamento de Ciencias y Tecnología Farmacéuticas, Facultad de Ciencias Químicas y Farmacéuticas, Universidad de Chile, Santos Dumont 964, Independencia, Santiago 8380494, Chile.
| | - Andrea Vivanco
- Advanced Center of Chronic Diseases (ACCDiS), Universidad de Chile. Santos Dumont 964, Independencia, Santiago 8380494, Chile.
- Departamento de Ciencias y Tecnología Farmacéuticas, Facultad de Ciencias Químicas y Farmacéuticas, Universidad de Chile, Santos Dumont 964, Independencia, Santiago 8380494, Chile.
| | - Pablo Lara
- Advanced Center of Chronic Diseases (ACCDiS), Universidad de Chile. Santos Dumont 964, Independencia, Santiago 8380494, Chile.
- Departamento de Química Farmacológica y Toxicológica, Facultad de Ciencias Químicas y Farmacéuticas, Universidad de Chile, Santos Dumont 964, Independencia, Santiago 8380494, Chile.
| | - Simón Guerrero
- Advanced Center of Chronic Diseases (ACCDiS), Universidad de Chile. Santos Dumont 964, Independencia, Santiago 8380494, Chile.
- Departamento de Química Farmacológica y Toxicológica, Facultad de Ciencias Químicas y Farmacéuticas, Universidad de Chile, Santos Dumont 964, Independencia, Santiago 8380494, Chile.
- Cellular Communication Laboratory, Programa de Biología Celular y Molecular, Instituto de Ciencias Biomédicas, Facultad de Medicina, Universidad de Chile, Av. Independencia 1027, Independencia, Santiago 8380453, Chile.
| | - Edison Salas-Huenuleo
- Advanced Center of Chronic Diseases (ACCDiS), Universidad de Chile. Santos Dumont 964, Independencia, Santiago 8380494, Chile.
- Departamento de Química Farmacológica y Toxicológica, Facultad de Ciencias Químicas y Farmacéuticas, Universidad de Chile, Santos Dumont 964, Independencia, Santiago 8380494, Chile.
| | - Alejandro Chamorro
- Advanced Center of Chronic Diseases (ACCDiS), Universidad de Chile. Santos Dumont 964, Independencia, Santiago 8380494, Chile.
- Cellular Communication Laboratory, Programa de Biología Celular y Molecular, Instituto de Ciencias Biomédicas, Facultad de Medicina, Universidad de Chile, Av. Independencia 1027, Independencia, Santiago 8380453, Chile.
- Center for studies on Exercise, Metabolism and Cancer (CEMC), Universidad de Chile, Av. Independencia 1027, Independencia, Santiago 8380453, Chile.
| | - Lisette Leyton
- Advanced Center of Chronic Diseases (ACCDiS), Universidad de Chile. Santos Dumont 964, Independencia, Santiago 8380494, Chile.
- Cellular Communication Laboratory, Programa de Biología Celular y Molecular, Instituto de Ciencias Biomédicas, Facultad de Medicina, Universidad de Chile, Av. Independencia 1027, Independencia, Santiago 8380453, Chile.
- Center for studies on Exercise, Metabolism and Cancer (CEMC), Universidad de Chile, Av. Independencia 1027, Independencia, Santiago 8380453, Chile.
| | - Karen Bolaños
- Departamento de Ciencias Quimicas, Facultad de Ciencias Exactas, Universidad Andres Bello, Av. Republica 275, Santiago 8370251, Chile.
| | - Eyleen Araya
- Advanced Center of Chronic Diseases (ACCDiS), Universidad de Chile. Santos Dumont 964, Independencia, Santiago 8380494, Chile.
- Departamento de Ciencias Quimicas, Facultad de Ciencias Exactas, Universidad Andres Bello, Av. Republica 275, Santiago 8370251, Chile.
| | - Andrew F G Quest
- Advanced Center of Chronic Diseases (ACCDiS), Universidad de Chile. Santos Dumont 964, Independencia, Santiago 8380494, Chile.
- Cellular Communication Laboratory, Programa de Biología Celular y Molecular, Instituto de Ciencias Biomédicas, Facultad de Medicina, Universidad de Chile, Av. Independencia 1027, Independencia, Santiago 8380453, Chile.
- Center for studies on Exercise, Metabolism and Cancer (CEMC), Universidad de Chile, Av. Independencia 1027, Independencia, Santiago 8380453, Chile.
| | - Marcelo J Kogan
- Advanced Center of Chronic Diseases (ACCDiS), Universidad de Chile. Santos Dumont 964, Independencia, Santiago 8380494, Chile.
- Departamento de Química Farmacológica y Toxicológica, Facultad de Ciencias Químicas y Farmacéuticas, Universidad de Chile, Santos Dumont 964, Independencia, Santiago 8380494, Chile.
| | - Felipe Oyarzun-Ampuero
- Advanced Center of Chronic Diseases (ACCDiS), Universidad de Chile. Santos Dumont 964, Independencia, Santiago 8380494, Chile.
- Departamento de Ciencias y Tecnología Farmacéuticas, Facultad de Ciencias Químicas y Farmacéuticas, Universidad de Chile, Santos Dumont 964, Independencia, Santiago 8380494, Chile.
| |
Collapse
|
16
|
Morales-Dalmau J, Vilches C, de Miguel I, Sanz V, Quidant R. Optimum morphology of gold nanorods for light-induced hyperthermia. NANOSCALE 2018; 10:2632-2638. [PMID: 29355866 DOI: 10.1039/c7nr06825e] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
Owing to their unique chemical and physical properties, colloidal gold nanoparticles have prompted a wide variety of biocompatible nano-agents for cancer imaging, diagnosis and treatment. In this context, biofunctionalized gold nanorods (AuNRs) are promising candidates for light-induced hyperthermia, to cause local and selective damage in malignant tissue. Yet, the efficacy of AuNR-based hyperthermia is highly dependent on several experimental parameters; in particular, the AuNR morphology strongly affects both physical and biological processes. In the present work, we systematically study the influence of different structural parameters like the AuNR aspect ratio, length and molecular weight on in vitro cytotoxicity, cellular uptake and heat generation efficiency. Our results enable us to identify the optimum AuNR morphology to be used for in vivo hyperthermia treatment.
Collapse
Affiliation(s)
- Jordi Morales-Dalmau
- ICFO - Institut de Ciències Fotòniques, the Barcelona Institute of Science and Technology, 08860 Barcelona, Spain.
| | | | | | | | | |
Collapse
|
17
|
Chakraborty S, Dhakshinamurthy GS, Misra SK. Tailoring of physicochemical properties of nanocarriers for effective anti-cancer applications. J Biomed Mater Res A 2017. [PMID: 28643475 DOI: 10.1002/jbm.a.36141] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Nanotechnology has emerged strongly as a viable option to overcome the challenge of early diagnosis and effective drug delivery, for cancer treatment. Emerging research articles have expounded the advantages of using a specific type of nanomaterial-based system called as "nanocarriers," for anti-cancer therapy. The nanocarrier system is used as a transport unit for targeted drug delivery of the therapeutic drug moiety. In order for the nanocarriers to be effective for anticancer therapy, their physicochemical parameter needs to be tuned so that bio-functionalisation can be achieved to (1) allow drugs being attached to the substrate and for their controlled release, (2) ensure the stability of the nanocarrier up to the point of delivery, and (3) clearance of the nanocarrier after the delivery. It is therefore envisaged that tailoring of the physicochemical properties of nanocarriers can greatly influence their reactivity and interaction in the biological milieu, and this is becoming an important parameter for increasing the efficacy of cancer therapy. This review emphasizes the importance of physicochemical properties of nanocarriers, and how they influence its usage as chemotherapeutic drug carriers. The goal of this review is to present a correlation between the physicochemical properties of the nanocarriers and its intended action, and how their design based on these properties can enhance their cancer combating abilities while minimizing damage to the healthy tissues. © 2017 Wiley Periodicals, Inc. J Biomed Mater Res Part A: 105A: 2906-2928, 2017.
Collapse
Affiliation(s)
- Swaroop Chakraborty
- Biological Engineering, Indian Institute of Technology-Gandhinagar, Ahmedabad, 382424, India
| | | | - Superb K Misra
- Materials Science and Engineering, Indian Institute of Technology-Gandhinagar, Ahmedabad, 382424, India
| |
Collapse
|
18
|
Song J, Yang X, Yang Z, Lin L, Liu Y, Zhou Z, Shen Z, Yu G, Dai Y, Jacobson O, Munasinghe J, Yung B, Teng GJ, Chen X. Rational Design of Branched Nanoporous Gold Nanoshells with Enhanced Physico-Optical Properties for Optical Imaging and Cancer Therapy. ACS NANO 2017; 11:6102-6113. [PMID: 28605594 DOI: 10.1021/acsnano.7b02048] [Citation(s) in RCA: 76] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/23/2023]
Abstract
Reported procedures on the synthesis of gold nanoshells with smooth surfaces have merely demonstrated efficient control of shell thickness and particle size, yet no branch and nanoporous features on the nanoshell have been implemented to date. Herein, we demonstrate the ability to control the roughness and nanoscale porosity of gold nanoshells by using redox-active polymer poly(vinylphenol)-b-(styrene) nanoparticles as reducing agent and template. The porosity and size of the branches on this branched nanoporous gold nanoshell (BAuNSP) material can be facilely adjusted by control of the reaction speed or the reaction time between the redox-active polymer nanoparticles and gold ions (Au3+). Due to the strong reduction ability of the redox-active polymer, the yield of BAuNSP was virtually 100%. By taking advantage of the sharp branches and nanoporous features, BAuNSP exhibited greatly enhanced physico-optical properties, including photothermal effect, surface-enhanced Raman scattering (SERS), and photoacoustic (PA) signals. The photothermal conversion efficiency can reach as high as 75.5%, which is greater than most gold nanocrystals. Furthermore, the nanoporous nature of the shells allows for effective drug loading and controlled drug release. The thermoresponsive polymer coated on the BAuNSP surface serves as a gate keeper, governing the drug release behavior through photothermal heating. Positron emission tomography imaging demonstrated a high passive tumor accumulation of 64Cu-labeled BAuNSP. The strong SERS signal generated by the SERS-active BAuNSP in vivo, accompanied by enhanced PA signals in the tumor region, provide significant tumor information, including size, morphology, position, and boundaries between tumor and healthy tissues. In vivo tumor therapy experiments demonstrated a highly synergistic chemo-photothermal therapy effect of drug-loaded BAuNSPs, guided by three modes of optical imaging.
Collapse
Affiliation(s)
| | - Xiangyu Yang
- Jiangsu Key Laboratory of Molecular Imaging and Functional Imaging, Department of Radiology, Zhongda Hospital, Medical School of Southeast University , Nanjing 210009, China
| | | | | | | | | | | | | | | | | | | | | | - Gao-Jun Teng
- Jiangsu Key Laboratory of Molecular Imaging and Functional Imaging, Department of Radiology, Zhongda Hospital, Medical School of Southeast University , Nanjing 210009, China
| | | |
Collapse
|
19
|
Song J, Hu H, Jian C, Wu K, Chen X. New Generation of Gold Nanoshell-Coated Esophageal Stent: Preparation and Biomedical Applications. ACS APPLIED MATERIALS & INTERFACES 2016; 8:27523-27529. [PMID: 27684285 DOI: 10.1021/acsami.6b09104] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
Esophageal cancer is one of the six most common cancers in the world, constituting ∼7% of the gastrointestinal cancers. Esophageal stents can be inserted into the esophagus to open the pathway as a palliative treatment for advanced esophageal cancer. For the treatment of esophageal cancer, a series of anticancer drug-loaded stents such as paclitaxel or 5-fluorouracil/esophageal stent combinations have been prepared by covering a nitinol stent with a polymer or hydrogel shell. For the first time, we developed a gold nanoshell (AuNS)-coated stent with high photothermal efficiency and used in the repetitive photothermal therapy of esophageal cancer. The functionalized stent was prepared by using surface-coated polydopamine as the Au3+ anchor and template. The thickness of the AuNS can be easily adjusted by controlling the reaction time and amount of Au3+. The AuNS-coated stent efficiently increased the temperature of pork and porcine intestines irradiated with a near-infrared (NIR) laser. The deep penetration of the NIR laser and excellent stability of the stent provide opportunity for the clinical applications of the newly functionalized stent. In vitro toxicity experiments showed excellent biocompatibility and safety of this device. Compared with bare metal stent, AuNS-modified stent exhibits great potential to open the duct passageway and suppress tumor growth in future clinical applications.
Collapse
Affiliation(s)
- Jibin Song
- Laboratory of Molecular Imaging and Nanomedicine (LOMIN), National Institute of Biomedical Imaging and Bioengineering (NIBIB), National Institutes of Health , Bethesda, Maryland 20892, United States
| | - Hao Hu
- Sate Key Laboratory of Cancer Biology & Xijing Hospital of Digestive Diseases, Fourth Military Medical University , Xi'an, China
| | - Chao Jian
- Sate Key Laboratory of Cancer Biology & Xijing Hospital of Digestive Diseases, Fourth Military Medical University , Xi'an, China
| | - Kaichun Wu
- Sate Key Laboratory of Cancer Biology & Xijing Hospital of Digestive Diseases, Fourth Military Medical University , Xi'an, China
| | - Xiaoyuan Chen
- Laboratory of Molecular Imaging and Nanomedicine (LOMIN), National Institute of Biomedical Imaging and Bioengineering (NIBIB), National Institutes of Health , Bethesda, Maryland 20892, United States
| |
Collapse
|
20
|
Quantitative Comparison of Photothermal Heat Generation between Gold Nanospheres and Nanorods. Sci Rep 2016; 6:29836. [PMID: 27445172 PMCID: PMC4956767 DOI: 10.1038/srep29836] [Citation(s) in RCA: 79] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2016] [Accepted: 06/21/2016] [Indexed: 01/09/2023] Open
Abstract
Gold nanoparticles (GNPs) are widely used for biomedical applications due to unique optical properties, established synthesis methods, and biological compatibility. Despite important applications of plasmonic heating in thermal therapy, imaging, and diagnostics, the lack of quantification in heat generation leads to difficulties in comparing the heating capability for new plasmonic nanostructures and predicting the therapeutic and diagnostic outcome. This study quantifies GNP heat generation by experimental measurements and theoretical predictions for gold nanospheres (GNS) and nanorods (GNR). Interestingly, the results show a GNP-type dependent agreement between experiment and theory. The measured heat generation of GNS matches well with theory, while the measured heat generation of GNR is only 30% of that predicted theoretically at peak absorption. This then leads to a surprising finding that the polydispersity, the deviation of nanoparticle size and shape from nominal value, significantly influences GNR heat generation (>70% reduction), while having a limited effect for GNS (<10% change). This work demonstrates that polydispersity is an important metric in quantitatively predicting plasmonic heat generation and provides a validated framework to quantitatively compare the heating capabilities between gold and other plasmonic nanostructures.
Collapse
|
21
|
Fekrazad R, Naghdi N, Nokhbatolfoghahaei H, Bagheri H. The Combination of Laser Therapy and Metal Nanoparticles in Cancer Treatment Originated From Epithelial Tissues: A Literature Review. J Lasers Med Sci 2016; 7:62-75. [PMID: 27330701 DOI: 10.15171/jlms.2016.13] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Several methods have been employed for cancer treatment including surgery, chemotherapy and radiation therapy. Today, recent advances in medical science and development of new technologies, have led to the introduction of new methods such as hormone therapy, Photodynamic therapy (PDT), treatments using nanoparticles and eventually combinations of lasers and nanoparticles. The unique features of LASERs such as photo-thermal properties and the particular characteristics of nanoparticles, given their extremely small size, may provide an interesting combined therapeutic effect. The purpose of this study was to review the simultaneous application of lasers and metal nanoparticles for the treatment of cancers with epithelial origin. A comprehensive search in electronic sources including PubMed, Google Scholar and Science Direct was carried out between 2000 and 2013. Among the initial 400 articles, 250 articles applied nanoparticles and lasers in combination, in which more than 50 articles covered the treatment of cancer with epithelial origin. In the future, the combination of laser and nanoparticles may be used as a new or an alternative method for cancer therapy or diagnosis. Obviously, to exclude the effect of laser's wavelength and nanoparticle's properties more animal studies and clinical trials are required as a lack of perfect studies.
Collapse
Affiliation(s)
- Reza Fekrazad
- Laser Research Center in Medical Sciences (LRCMS), Department of Periodontics, Faculty of Dentistry, AJA University of Medical Sciences, Tehran, Iran
| | - Nafiseh Naghdi
- Laser Research Center of Dentistry, Tehran Research Institute, Tehran University of Medical Sciences, Tehran, Iran
| | - Hanieh Nokhbatolfoghahaei
- School of Advanced Technologies in Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Hossein Bagheri
- Dental Materials Research Center and Department of Operative Dentistry, Faculty of Dentistry, Mashhad University of Medical Sciences, Mashhad, Iran
| |
Collapse
|
22
|
Chandrasekaran R, Lee ASW, Yap LW, Jans DA, Wagstaff KM, Cheng W. Tumor cell-specific photothermal killing by SELEX-derived DNA aptamer-targeted gold nanorods. NANOSCALE 2016; 8:187-196. [PMID: 26646051 DOI: 10.1039/c5nr07831h] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/05/2023]
Abstract
Despite widespread availability of cytotoxic chemotherapeutic agents, the killing of tumour cells without affecting healthy surrounding tissue remains elusive, although recent developments in terms of plasmonic nanoparticles capable of photothermal killing have some promise. Here we describe novel DNA aptamer-tethered gold nanorods (GNRs) that act as efficient photothermal therapeutics against tumour cells, but not their isogenic normal cell counterparts. A modified Cell-SELEX process was developed to select a novel DNA aptamer (KW16-13) that specifically recognised and was internalised by cells of the MCF10CA1h human breast ductal carcinoma line but not by those of its isogenic normal counterpart (MCF10A). GNRs conjugated to KW16-13 were readily internalized by the MCF10CA1h tumour cells with minimal uptake by MCF10A normal cells. Upon near infrared (NIR) light irradiation, tumour cell death of >96%, could be effected, compared to <1% in the normal cells or cells incubated with GNRs alone, our KW16-13 aptamer-targeted GNRs thus showing >71-fold tumor cell death than GNRs-targeted with a previously described aptamer. This demonstrates the significant potential for aptamer functionalised-GNRs to be used effective and above all selective anti-cancer photothermal therapeutics.
Collapse
Affiliation(s)
| | | | - Lim Wei Yap
- Department of Chemical Engineering, Monash University, VIC 3800 Australia.
| | - David A Jans
- Department of Biochemistry and Molecular Biology, Monash University, VIC3800, Australia.
| | - Kylie M Wagstaff
- Department of Biochemistry and Molecular Biology, Monash University, VIC3800, Australia.
| | - Wenlong Cheng
- Department of Chemical Engineering, Monash University, VIC 3800 Australia.
| |
Collapse
|
23
|
Encabo-Berzosa MM, Gimeno M, Lujan L, Sancho-Albero M, Gomez L, Sebastian V, Quintanilla M, Arruebo M, Santamaria J, Martin-Duque P. Selective delivery of photothermal nanoparticles to tumors using mesenchymal stem cells as Trojan horses. RSC Adv 2016. [DOI: 10.1039/c6ra10058a] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023] Open
Abstract
Mesenchymal stem cells can be usedin vivoas carriers of photothermal nanoparticles thanks to their ability to migrate and incorporate into tumors. A superior ablative effect is reached when using this strategy compared to the EPR effect.
Collapse
Affiliation(s)
- M. Mar Encabo-Berzosa
- Department of Chemical Engineering
- Aragon Nanoscience Institute (INA)
- University of Zaragoza
- Spain
- CIBER de Bioingeniería
| | - Marina Gimeno
- Department of Animal Pathology
- Veterinary Faculty
- University of Zaragoza
- Spain
| | - Lluis Lujan
- Department of Animal Pathology
- Veterinary Faculty
- University of Zaragoza
- Spain
| | - Maria Sancho-Albero
- Department of Chemical Engineering
- Aragon Nanoscience Institute (INA)
- University of Zaragoza
- Spain
- CIBER de Bioingeniería
| | - Leyre Gomez
- Department of Chemical Engineering
- Aragon Nanoscience Institute (INA)
- University of Zaragoza
- Spain
- CIBER de Bioingeniería
| | - Victor Sebastian
- Department of Chemical Engineering
- Aragon Nanoscience Institute (INA)
- University of Zaragoza
- Spain
- CIBER de Bioingeniería
| | | | - Manuel Arruebo
- Department of Chemical Engineering
- Aragon Nanoscience Institute (INA)
- University of Zaragoza
- Spain
- CIBER de Bioingeniería
| | - Jesus Santamaria
- Department of Chemical Engineering
- Aragon Nanoscience Institute (INA)
- University of Zaragoza
- Spain
- CIBER de Bioingeniería
| | - Pilar Martin-Duque
- Instituto Aragonés de Ciencias de la Salud (IACS/IIS Aragon)
- Centro de Investigación Biomédica de Aragón (CIBA)
- Zaragoza
- Spain
- Universidad Francisco de Vitoria
| |
Collapse
|
24
|
Kaneti YV, Chen C, Liu M, Wang X, Yang JL, Taylor RA, Jiang X, Yu A. Carbon-Coated Gold Nanorods: A Facile Route to Biocompatible Materials for Photothermal Applications. ACS APPLIED MATERIALS & INTERFACES 2015; 7:25658-25668. [PMID: 26535913 DOI: 10.1021/acsami.5b07975] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/05/2023]
Abstract
Gold nanorods and their core-shell nanocomposites have been widely studied because of their well-defined anisotropy and unique optical properties and applications. This study demonstrates a facile hydrothermal synthesis strategy for generating carbon coating on gold nanorods (AuNRs@C) under mild conditions (<200 °C), where the carbon shell is composed of polymerized sugar molecules (glucose). The structure and composition of the produced core-shell nanocomposites were characterized using advanced microscopic and spectroscopic techniques. The functional properties, particularly the photothermal and biocompatibility properties of the produced AuNRs@C, were quantified to assess their potential in photothermal hyperthermia. These AuNRs@C were tested in vitro (under representative treatment conditions) using near-infrared (NIR) light irradiation. It was found that the AuNRs produced here exhibit exemplary heat generation capability. Temperature changes of 10.5, 9, and 8 °C for AuNRs@C were observed with carbon shell thicknesses of 10, 17, and 25 nm, respectively, at a concentration of 50 μM, after 600 s of irradiation with a laser power of 0.17 W/cm(2). In addition, the synthesized AuNRs@C also exhibit good biocompatibility toward two soft tissue sarcoma cell lines (HT1080, a fibrosarcoma; and GCT, a fibrous histiocytoma). The cell viability study shows that AuNRs@C (at a concentration of <0.1 mg/mL) core-shell particles induce significantly lower cytotoxicity on both HT1080 and GCT cell lines, as compared with cetyltrimethylammonium bromide (CTAB)-capped AuNRs. Furthermore, similar to PEG-modified AuNRs, they are also safe to both HT1080 and GCT cell lines. This biocompatibility results from a surface full of -OH or -COH groups, which are suitable for linking and are nontoxic Therefore, the AuNRs@C represent a viable alternative to PEG-coated AuNRs for facile synthesis and improved photothermal conversion. Overall, these findings open up a new class of carbon-coated nanostructures that are biocompatible and could potentially be employed in a wide range of biomedical applications.
Collapse
Affiliation(s)
- Yusuf Valentino Kaneti
- School of Materials Science and Engineering, The University of New South Wales , Sydney, New South Wales 2052, Australia
| | - Chuyang Chen
- School of Materials Science and Engineering, The University of New South Wales , Sydney, New South Wales 2052, Australia
| | - Minsu Liu
- Department of Chemical Engineering, Monash University , Clayton, Victoria 3800, Australia
| | - Xiaochun Wang
- Sarcoma and Nanooncology Group, Adult Cancer Program, prince of Wales Clinical School and Lowy Cancer Research Centre, Faculty of Medicine, The University of New South Wales , Sydney, New South Wales 2052, Australia
| | - Jia Lin Yang
- Sarcoma and Nanooncology Group, Adult Cancer Program, prince of Wales Clinical School and Lowy Cancer Research Centre, Faculty of Medicine, The University of New South Wales , Sydney, New South Wales 2052, Australia
| | - Robert Allen Taylor
- School of Mechanical and Manufacturing Engineering, The University of New South Wales , Sydney, New South Wales 2052, Australia
- School of Photovoltaic and Renewable Energy Engineering, The University of New South Wales , Sydney, New South Wales 2052, Australia
| | - Xuchuan Jiang
- Department of Chemical Engineering, Monash University , Clayton, Victoria 3800, Australia
| | - Aibing Yu
- Department of Chemical Engineering, Monash University , Clayton, Victoria 3800, Australia
| |
Collapse
|
25
|
Barchiesi D. Lycurgus Cup: inverse problem using photographs for characterization of matter. JOURNAL OF THE OPTICAL SOCIETY OF AMERICA. A, OPTICS, IMAGE SCIENCE, AND VISION 2015; 32:1544-1555. [PMID: 26367298 DOI: 10.1364/josaa.32.001544] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/05/2023]
Abstract
Photographs of the Lycurgus Cup with a source light inside and outside exhibit purple and green colors, respectively (dichroism). A model relying on the scattering of light to colors in the photographs is proposed and used within an inverse problem algorithm, to deduce radius and composition of metallic particles, and the refractive index of the surrounding glass medium. The inverse problem algorithm is based on a hybridization of particle swarm optimization and of the simulated annealing methods. The results are compared to experimental measurements on a small sample of glass. The linear laws that are deduced from sets of possible parameters producing the same color in the photographs help simplify the understanding of phenomena. The proportion of silver to gold in nanoparticles is found to be in agreement, but a large proportion of copper is also found. The retrieved refractive index of the surrounding glass is close to 2.
Collapse
|
26
|
Yamada M, Foote M, Prow TW. Therapeutic gold, silver, and platinum nanoparticles. WILEY INTERDISCIPLINARY REVIEWS-NANOMEDICINE AND NANOBIOTECHNOLOGY 2014; 7:428-45. [PMID: 25521618 DOI: 10.1002/wnan.1322] [Citation(s) in RCA: 138] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/25/2014] [Revised: 10/06/2014] [Accepted: 10/29/2014] [Indexed: 12/22/2022]
Abstract
There are an abundance of nanoparticle technologies being developed for use as part of therapeutic strategies. This review focuses on a narrow class of metal nanoparticles that have therapeutic potential that is a consequence of elemental composition and size. The most widely known of these are gold nanoshells that have been developed over the last two decades for photothermal ablation in superficial cancers. The therapeutic effect is the outcome of the thickness and diameter of the gold shell that enables fine tuning of the plasmon resonance. When these metal nanoparticles are exposed to the relevant wavelength of light, their temperature rapidly increases. This in turn induces a localized photothermal ablation that kills the surrounding tumor tissue. Similarly, gold nanoparticles have been developed to enhance radiotherapy. The high-Z nature of gold dramatically increases the photoelectric cross-section. Thus, the photoelectric effects are significantly increased. The outcome of these interactions is enhanced tumor killing with lower doses of radiation, all while sparing tissue without gold nanoparticles. Silver nanoparticles have been used for their wound healing properties in addition to enhancing the tumor-killing effects of anticancer drugs. Finally, platinum nanoparticles are thought to serve as a reservoir for platinum ions that can induce DNA damage in cancer cells. The future is bright with the path to clinical trials is largely cleared for some of the less complex therapeutic metal nanoparticle systems.
Collapse
Affiliation(s)
- Miko Yamada
- Dermatology Research Centre, The University of Queensland, School of Medicine, Translational Research Institute, Brisbane, Australia
| | | | | |
Collapse
|
27
|
Jabeen F, Najam-ul-Haq M, Javeed R, Huck CW, Bonn GK. Au-nanomaterials as a superior choice for near-infrared photothermal therapy. Molecules 2014; 19:20580-93. [PMID: 25501919 PMCID: PMC6270707 DOI: 10.3390/molecules191220580] [Citation(s) in RCA: 60] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2014] [Revised: 12/03/2014] [Accepted: 12/04/2014] [Indexed: 01/09/2023] Open
Abstract
Photothermal therapy (PPT) is a platform to fight cancer by using multiplexed interactive plasmonic nanomaterials as probes in combination with the excellent therapeutic performance of near-infrared (NIR) light. With recent rapid developments in optics and nanotechnology, plasmonic materials have potential in cancer diagnosis and treatment, but there are some concerns regarding their clinical use. The primary concerns include the design of plasmonic nanomaterials which are taken up by the tissues, perform their function and then clear out from the body. Gold nanoparticles (Au NPs) can be developed in different morphologies and functionalized to assist the photothermal therapy in a way that they have clinical value. This review outlines the diverse Au morphologies, their distinctive characteristics, concerns and limitations to provide an idea of the requirements in the field of NIR-based therapeutics.
Collapse
Affiliation(s)
- Fahmida Jabeen
- Division of Analytical Chemistry, Institute of Chemical Sciences, Bahauddin Zakariya University, Multan 60800, Pakistan.
| | - Muhammad Najam-ul-Haq
- Division of Analytical Chemistry, Institute of Chemical Sciences, Bahauddin Zakariya University, Multan 60800, Pakistan.
| | - Rabia Javeed
- Division of Analytical Chemistry, Institute of Chemical Sciences, Bahauddin Zakariya University, Multan 60800, Pakistan.
| | - Christian W Huck
- Institute of Analytical Chemistry and Radiochemistry, Leopold-Franzens University, Innrain 80-82. Innsbruck 6020, Austria.
| | - Guenther K Bonn
- Institute of Analytical Chemistry and Radiochemistry, Leopold-Franzens University, Innrain 80-82. Innsbruck 6020, Austria.
| |
Collapse
|
28
|
Zhao J, Wallace M, Melancon MP. Cancer theranostics with gold nanoshells. Nanomedicine (Lond) 2014; 9:2041-57. [DOI: 10.2217/nnm.14.136] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Gold nanoshells (AuNSs) present a vivid example of integrating nanoscience in order to solve a biomedical problem. AuNSs exhibit tunable surface plasmon resonance, which can be tuned to the near-infrared region in order to realize optimal tissue penetration. The highly efficient light-to-heat transformation by AuNSs during laser irradiation causes thermal damage to the tumor without damaging healthy organs. Transient nanobubbles can form around AuNSs during laser treatment and induce mechanical stress specifically in tumor cells. AuNSs also serve as a versatile platform for the delivery of various diagnostic and therapeutic agents. In this article, we describe the physicochemical properties of AuNSs in the context of their design, preparation and application in cancer theranostics. Ultimately, we look beyond the current research on AuNSs and discussed future challenges to their successful translation into clinical use.
Collapse
Affiliation(s)
- Jun Zhao
- Department of Cancer Systems Imaging, The University of Texas MD Anderson Cancer Center, 1515 Holcombe Boulevard, Houston, TX 77030, USA
| | - Michael Wallace
- Department of Interventional Radiology – Unit 1471, The University of Texas MD Anderson Cancer Center, 1515 Holcombe Boulevard, Houston, TX 77030, USA
| | - Marites P Melancon
- Department of Interventional Radiology – Unit 1471, The University of Texas MD Anderson Cancer Center, 1515 Holcombe Boulevard, Houston, TX 77030, USA
- Graduate School for Biomedical Science, The University of Texas at Houston, 6767 Bertner Avenue, Houston, TX 77030, USA
| |
Collapse
|
29
|
Direct readout SERS multiplex sensing of pesticides via gold nanoplate-in-shell monolayer substrate. Colloids Surf A Physicochem Eng Asp 2014. [DOI: 10.1016/j.colsurfa.2014.03.034] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
30
|
DeWitt MR, Pekkanen AM, Robertson J, Rylander CG, Nichole Rylander M. Influence of hyperthermia on efficacy and uptake of carbon nanohorn-cisplatin conjugates. J Biomech Eng 2014; 136:021003. [PMID: 24763615 PMCID: PMC4023656 DOI: 10.1115/1.4026318] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2013] [Revised: 12/17/2013] [Accepted: 12/23/2013] [Indexed: 01/13/2023]
Abstract
Single-walled carbon nanohorns (SWNHs) have significant potential for use in photothermal therapies due to their capability to absorb near infrared light and deposit heat. Additionally, their extensive relative surface area and volume makes them ideal drug delivery vehicles. Novel multimodal treatments are envisioned in which laser excitation can be utilized in combination with chemotherapeutic-SWNH conjugates to thermally enhance the therapeutic efficacy of the transported drug. Although mild hyperthermia (41-43 °C) has been shown to increase cellular uptake of drugs such as cisplatin (CDDP) leading to thermal enhancement, studies on the effects of hyperthermia on cisplatin loaded nanoparticles are currently limited. After using a carbodiimide chemical reaction to attach CDDP to the exterior surface of SWNHs and nitric acid to incorporate CDDP in the interior volume, we determined the effects of mild hyperthermia on the efficacy of the CDDP-SWNH conjugates. Rat bladder transitional carcinoma cells were exposed to free CDDP or one of two CDDP-SWNH conjugates in vitro at 37 °C and 42 °C with the half maximal inhibitory concentration (IC50) for each treatment. The in vitro results demonstrate that unlike free CDDP, CDDP-SWNH conjugates do not exhibit thermal enhancement at 42 °C. An increase in viability of 16% and 7% was measured when cells were exposed at 42 deg compared to 37 deg for the surface attached and volume loaded CDDP-SWNH conjugates, respectively. Flow cytometry and confocal microscopy showed a decreased uptake of CDDP-SWNH conjugates at 42 °C compared to 37 °C, revealing the importance of nanoparticle uptake on the CDDP-SWNH conjugate's efficacy, particularly when hyperthermia is used as an adjuvant, and demonstrates the effect of particle size on uptake during mild hyperthermia. The uptake and drug release studies elucidated the difference in viability seen in the drug efficacy studies at different temperatures. We speculate that the disparity in thermal enhancement efficacy observed for free drug compared to the drug SWNH conjugates is due to their intrinsic size differences and, therefore, their mode of cellular uptake: diffusion or endocytosis. These experiments indicate the importance of tuning properties of nanoparticle-drug conjugates to maximize cellular uptake to ensure thermal enhancement in nanoparticle mediated photothermal-chemotherapy treatments.
Collapse
Affiliation(s)
- Matthew R. DeWitt
- School of Biomedical Engineering and Sciences,Virginia Tech–Wake Forest,Blacksburg, VA 24061
| | - Allison M. Pekkanen
- School of Biomedical Engineering and Sciences,Virginia Tech–Wake Forest,Blacksburg, VA 24061
| | - John Robertson
- School of Biomedical Engineering and Sciences,Virginia Tech–Wake Forest,Blacksburg, VA 24061
| | - Christopher G. Rylander
- School of Biomedical Engineering and Sciences,Virginia Tech–Wake Forest,Blacksburg, VA 24061
| | - Marissa Nichole Rylander
- School of Biomedical Engineering and Sciences,Virginia Tech–Wake Forest,Blacksburg, VA 24061e-mail:
| |
Collapse
|
31
|
Kannadorai RK, Liu Q. Optimization in interstitial plasmonic photothermal therapy for treatment planning. Med Phys 2013; 40:103301. [DOI: 10.1118/1.4810935] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
|
32
|
Sikdar D, Rukhlenko ID, Cheng W, Premaratne M. Optimized gold nanoshell ensembles for biomedical applications. NANOSCALE RESEARCH LETTERS 2013; 8:142. [PMID: 23537206 PMCID: PMC3680205 DOI: 10.1186/1556-276x-8-142] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/04/2013] [Accepted: 03/16/2013] [Indexed: 05/27/2023]
Abstract
: We theoretically study the properties of the optimal size distribution in the ensemble of hollow gold nanoshells (HGNs) that exhibits the best performance at in vivo biomedical applications. For the first time, to the best of our knowledge, we analyze the dependence of the optimal geometric means of the nanoshells' thicknesses and core radii on the excitation wavelength and the type of human tissue, while assuming lognormal fit to the size distribution in a real HGN ensemble. Regardless of the tissue type, short-wavelength, near-infrared lasers are found to be the most effective in both absorption- and scattering-based applications. We derive approximate analytical expressions enabling one to readily estimate the parameters of optimal distribution for which an HGN ensemble exhibits the maximum efficiency of absorption or scattering inside a human tissue irradiated by a near-infrared laser.
Collapse
Affiliation(s)
- Debabrata Sikdar
- Advanced Computing and Simulation Laboratory (A χL), Department of Electrical and Computer Systems Engineering, Monash University, Clayton 3800, Victoria, Australia
| | - Ivan D Rukhlenko
- Advanced Computing and Simulation Laboratory (A χL), Department of Electrical and Computer Systems Engineering, Monash University, Clayton 3800, Victoria, Australia
| | - Wenlong Cheng
- Department of Chemical Engineering, Faculty of Engineering, Monash University, Clayton 3800, Victoria, Australia
- , The Melbourne Centre for Nanofabrication, 151 Wellington RoadClayton 3168, Victoria, Australia
| | - Malin Premaratne
- Advanced Computing and Simulation Laboratory (A χL), Department of Electrical and Computer Systems Engineering, Monash University, Clayton 3800, Victoria, Australia
| |
Collapse
|
33
|
Barchiesi D, Kessentini S, Guillot N, de la Chapelle ML, Grosges T. Localized surface plasmon resonance in arrays of nano-gold cylinders: inverse problem and propagation of uncertainties. OPTICS EXPRESS 2013; 21:2245-2262. [PMID: 23389205 DOI: 10.1364/oe.21.002245] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/01/2023]
Abstract
The plasmonic nanostructures are widely used to design sensors with improved capabilities. The position of the localized surface plasmon resonance (LSPR) is part of their characteristics and deserves to be specifically studied, according to its importance in sensor tuning, especially for spectroscopic applications. In the visible and near infra-red domain, the LSPR of an array of nano-gold-cylinders is considered as a function of the diameter, height of cylinders and the thickness of chromium adhesion layer and roughness. A numerical experience plan is used to calculate heuristic laws governing the inverse problem and the propagation of uncertainties. Simple linear formulae are deduced from fitting of discrete dipole approximation (DDA) calculations of spectra and a good agreement with various experimental results is found. The size of cylinders can be deduced from a target position of the LSPR and conversely, the approximate position of the LSPR can be simply deduced from the height and diameter of cylinders. The sensitivity coefficients and the propagation of uncertainties on these parameters are evaluated from the fitting of 15500 computations of the DDA model. The case of a grating of nanodisks and of homothetic cylinders is presented and expected trends in the improvement of the fabrication process are proposed.
Collapse
Affiliation(s)
- Dominique Barchiesi
- Project Group for Automatic Mesh Generation and Advanced Methods, Gamma3 project (UTT-INRIA), University of Technology of Troyes – 12 Rue Marie Curie – CS 42060, 10004 Troyes Cedex, France.
| | | | | | | | | |
Collapse
|
34
|
Sikdar D, Rukhlenko ID, Cheng W, Premaratne M. Effect of number density on optimal design of gold nanoshells for plasmonic photothermal therapy. BIOMEDICAL OPTICS EXPRESS 2013; 4:15-31. [PMID: 23304644 PMCID: PMC3539187 DOI: 10.1364/boe.4.000015] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/31/2012] [Revised: 11/29/2012] [Accepted: 11/29/2012] [Indexed: 05/29/2023]
Abstract
Despite much research efforts being devoted to the design optimization of metallic nanoshells, no account is taken of the fact that the number of the nanoshells that can be delivered to a given cancerous site vary with their size. In this paper, we study the effect of the nanoshell number density on the absorption and scattering properties of a gold-nanoshell ensemble exposed to a broadband near-infrared radiation, and optimize the nanoshells' dimensions for efficient cancer treatment by analyzing a wide range of human tissues. We first consider the general situation in which the number of the delivered nanoshells decreases with their mean radius R as ∝ R(-β), and demonstrate that the optimal design of nanoshells required to treat cancer most efficiently depends critically on β. In the case of β = 2, the maximal energy absorbed (scattered) by the ensemble is achieved for the same dimensions that maximize the absorption (scattering) efficiency of a single nanoshell. We thoroughly study this special case by the example of gold nanoshells with silica core. To ensure that minimal thermal injury is caused to the healthy tissue surrounding a cancerous site, we estimate the optimal dimensions that minimize scattering by the nanoshells for a desired value of the absorption efficiency. The comparison of gold nanoshells with different cores shows that hollow nanoshells exhibiting relatively low absorption efficiency are less harmful to the healthy tissue and, hence, are preferred over the strongly absorbing nanoshells. For each of the cases analyzed, we provide approximate analytical expressions for the optimal nanoshell dimensions, which may be used as design guidelines by experimentalists, in order to optimize the synthesis of gold nanoshells for treating different types of human cancer at their various growth stages.
Collapse
Affiliation(s)
- Debabrata Sikdar
- Advanced Computing and Simulation Laboratory (AχL), Department of Electrical and Computer Systems Engineering, Monash University, Clayton 3800, Victoria,
Australia
| | - Ivan D. Rukhlenko
- Advanced Computing and Simulation Laboratory (AχL), Department of Electrical and Computer Systems Engineering, Monash University, Clayton 3800, Victoria,
Australia
| | - Wenlong Cheng
- Department of Chemical Engineering, Faculty of Engineering, Monash University, Clayton 3800, Victoria,
Australia
- The Melbourne Centre for Nanofabrication, 151 Wellington Road, Clayton 3168, Victoria,
Australia
| | - Malin Premaratne
- Advanced Computing and Simulation Laboratory (AχL), Department of Electrical and Computer Systems Engineering, Monash University, Clayton 3800, Victoria,
Australia
| |
Collapse
|
35
|
Cebrián V, Martín-Saavedra F, Gómez L, Arruebo M, Santamaria J, Vilaboa N. Enhancing of plasmonic photothermal therapy through heat-inducible transgene activity. NANOMEDICINE-NANOTECHNOLOGY BIOLOGY AND MEDICINE 2012. [PMID: 23178286 DOI: 10.1016/j.nano.2012.11.002] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
UNLABELLED We explore the synergistic effect of photothermal therapy and gene therapy, simultaneously triggered by silica-gold nanoshells (NS) or hollow gold nanoparticles (HGNPs) in human HeLa cells following near-infrared (NIR) light irradiation. Thermal transfer from NS was higher than that displayed by HGNPs, owing to a differential interaction of the nanomaterial with the biological environment. Under sublethal photothermal conditions, NS and HGNPs effectively modulated the expression levels of a DsRed-monomer reporter gene controlled by the highly heat-inducible human HSP70B promoter, as a function of nanomaterial concentration and length of laser exposure. Hyperthermia treatments at doses that do not promote cell death generated a lethal outcome in HeLa cells harboring the fusogenic GALV-FMG transgene under the control of the HSP70B promoter. Combination of lethal photothermia with the triggering of the cytotoxic transgene resulted in a dramatic increase of the cell-ablation area as a result of the synergistic activity established. FROM THE CLINICAL EDITOR In this study photothermal therapy and gene therapy, simultaneously triggered by silica-gold nanoshells or hollow gold nanoparticles, was investigated in human HeLa cells following near-infrared (NIR) light irradiation. It is shown that the combination of lethal photothermia with the triggering of the cytotoxic transgene at sublethal levels results in a synergistic cytotoxic effect in vitro.
Collapse
Affiliation(s)
- Virginia Cebrián
- CIBER de Bioingeniería, Biomateriales y Nanomedicina, CIBER-BBN, Spain
| | | | | | | | | | | |
Collapse
|