1
|
Tomar A, Engelmann SA, Woods AL, Dunn AK. Non-degenerate two-photon imaging of deep rodent cortex using indocyanine green in the water absorption window. BIOMEDICAL OPTICS EXPRESS 2024; 15:5053-5066. [PMID: 39296386 PMCID: PMC11407249 DOI: 10.1364/boe.520977] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/21/2024] [Revised: 07/15/2024] [Accepted: 07/20/2024] [Indexed: 09/21/2024]
Abstract
We present a novel approach for deep vascular imaging in rodent cortex at excitation wavelengths susceptible to water absorption using two-photon microscopy with photons of dissimilar wavelengths. We demonstrate that non-degenerate two-photon excitation (ND-2PE) enables imaging in the water absorption window from 1400-1550 nm using two excitation sources with temporally overlapped pulses at 1300 nm and 1600 nm that straddle the absorption window. We explore the brightness spectra of indocyanine green (ICG) and assess its suitability for imaging in the water absorption window. Further, we demonstrate in vivo imaging of the rodent cortex vascular structure up to 1.2 mm using ND-2PE. Lastly, a comparative analysis of ND-2PE at 1435 nm and single-wavelength, two-photon imaging at 1300 nm and 1435 nm is presented. Our work extends the excitation range for fluorescent dyes to include water absorption regimes and underscores the feasibility of deep two-photon imaging at these wavelengths.
Collapse
Affiliation(s)
- Alankrit Tomar
- Department of Eletrical and Computer Engineering, The University of Texas at Austin, 2501 Speedway, Austin, TX 78712, USA
| | - Shaun A Engelmann
- Department of Biomedical Engineering, The University of Texas at Austin, 107 W. Dean Keeton, Austin, TX 78712, USA
| | - Aaron L Woods
- Department of Biomedical Engineering, The University of Texas at Austin, 107 W. Dean Keeton, Austin, TX 78712, USA
| | - Andrew K Dunn
- Department of Eletrical and Computer Engineering, The University of Texas at Austin, 2501 Speedway, Austin, TX 78712, USA
- Department of Biomedical Engineering, The University of Texas at Austin, 107 W. Dean Keeton, Austin, TX 78712, USA
| |
Collapse
|
2
|
Lee LCC, Lo KKW. Shining New Light on Biological Systems: Luminescent Transition Metal Complexes for Bioimaging and Biosensing Applications. Chem Rev 2024; 124:8825-9014. [PMID: 39052606 PMCID: PMC11328004 DOI: 10.1021/acs.chemrev.3c00629] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/27/2024]
Abstract
Luminescence imaging is a powerful and versatile technique for investigating cell physiology and pathology in living systems, making significant contributions to life science research and clinical diagnosis. In recent years, luminescent transition metal complexes have gained significant attention for diagnostic and therapeutic applications due to their unique photophysical and photochemical properties. In this Review, we provide a comprehensive overview of the recent development of luminescent transition metal complexes for bioimaging and biosensing applications, with a focus on transition metal centers with a d6, d8, and d10 electronic configuration. We elucidate the structure-property relationships of luminescent transition metal complexes, exploring how their structural characteristics can be manipulated to control their biological behavior such as cellular uptake, localization, biocompatibility, pharmacokinetics, and biodistribution. Furthermore, we introduce the various design strategies that leverage the interesting photophysical properties of luminescent transition metal complexes for a wide variety of biological applications, including autofluorescence-free imaging, multimodal imaging, organelle imaging, biological sensing, microenvironment monitoring, bioorthogonal labeling, bacterial imaging, and cell viability assessment. Finally, we provide insights into the challenges and perspectives of luminescent transition metal complexes for bioimaging and biosensing applications, as well as their use in disease diagnosis and treatment evaluation.
Collapse
Affiliation(s)
- Lawrence Cho-Cheung Lee
- Department of Chemistry, City University of Hong Kong, Tat Chee Avenue, Kowloon, Hong Kong, P. R. China
- Laboratory for Synthetic Chemistry and Chemical Biology Limited, Units 1503-1511, 15/F, Building 17W, Hong Kong Science Park, New Territories, Hong Kong, P. R. China
| | - Kenneth Kam-Wing Lo
- Department of Chemistry, City University of Hong Kong, Tat Chee Avenue, Kowloon, Hong Kong, P. R. China
- State Key Laboratory of Terahertz and Millimeter Waves, City University of Hong Kong, Tat Chee Avenue, Kowloon, Hong Kong, P. R. China
| |
Collapse
|
3
|
Dönmez-Demir B, Yemisci M, Uruk G, Söylemezoğlu F, Bolbos R, Kazmi S, Dalkara T. Cortical spreading depolarization-induced constriction of penetrating arteries can cause watershed ischemia: A potential mechanism for white matter lesions. J Cereb Blood Flow Metab 2023; 43:1951-1966. [PMID: 37435741 PMCID: PMC10676143 DOI: 10.1177/0271678x231186959] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/28/2023] [Revised: 06/05/2023] [Accepted: 06/05/2023] [Indexed: 07/13/2023]
Abstract
Periventricular white matter lesions (WMLs) are common MRI findings in migraine with aura (MA). Although hemodynamic disadvantages of vascular supply to this region create vulnerability, the pathophysiological mechanisms causing WMLs are unclear. We hypothesize that prolonged oligemia, a consequence of cortical spreading depolarization (CSD) underlying migraine aura, may lead to ischemia/hypoxia at hemodynamically vulnerable watershed zones fed by long penetrating arteries (PAs). For this, we subjected mice to KCl-triggered single or multiple CSDs. We found that post-CSD oligemia was significantly deeper at medial compared to lateral cortical areas, which induced ischemic/hypoxic changes at watershed areas between the MCA/ACA, PCA/anterior choroidal and at the tip of superficial and deep PAs, as detected by histological and MRI examination of brains 2-4 weeks after CSD. BALB-C mice, in which MCA occlusion causes large infarcts due to deficient collaterals, exhibited more profound CSD-induced oligemia and were more vulnerable compared to Swiss mice such that a single CSD was sufficient to induce ischemic lesions at the tip of PAs. In conclusion, CSD-induced prolonged oligemia has potential to cause ischemic/hypoxic injury at hemodynamically vulnerable brain areas, which may be one of the mechanisms underlying WMLs located at the tip of medullary arteries seen in MA patients.
Collapse
Affiliation(s)
- Buket Dönmez-Demir
- Institute of Neurological Sciences and Psychiatry, Hacettepe University, Ankara, Turkey
| | - Muge Yemisci
- Institute of Neurological Sciences and Psychiatry, Hacettepe University, Ankara, Turkey
- Department of Neurology, Faculty of Medicine, Hacettepe University, Ankara, Turkey
| | - Gökhan Uruk
- Institute of Neurological Sciences and Psychiatry, Hacettepe University, Ankara, Turkey
| | - Figen Söylemezoğlu
- Department of Pathology, Faculty of Medicine, Hacettepe University, Ankara, Turkey
| | - Radu Bolbos
- CERMEP – imagerie du vivant, Groupement Hospitalier Est, Bron, France
| | - Shams Kazmi
- Biomedical Engineering Department, The University of Texas at Austin, Austin, Texas, USA
| | - Turgay Dalkara
- Institute of Neurological Sciences and Psychiatry, Hacettepe University, Ankara, Turkey
| |
Collapse
|
4
|
Delafontaine-Martel P, Zhang C, Lu X, Damseh R, Lesage F, Marchand PJ. Targeted capillary photothrombosis via multiphoton excitation of Rose Bengal. J Cereb Blood Flow Metab 2023; 43:1713-1725. [PMID: 36647768 PMCID: PMC10581236 DOI: 10.1177/0271678x231151560] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/01/2021] [Revised: 12/12/2022] [Accepted: 12/19/2022] [Indexed: 01/18/2023]
Abstract
Microvascular stalling, the process occurring when a capillary temporarily loses perfusion, has gained increasing interest in recent years through its demonstrated presence in various neuropathologies. Studying the impact of such stalls on the surrounding brain tissue is of paramount importance to understand their role in such diseases. Despite efforts trying to study the stalling events, investigations are hampered by their elusiveness and scarcity. In an attempt to alleviate these hurdles, we present here a novel methodology enabling transient occlusions of targeted microvascular segments through multiphoton excitation of Rose Bengal, an established photothrombotic agent. With n = 7 mice C57BL/6 J (5 males and 2 females) and 95 photothrombosis trials, we demonstrate the ability of triggering reversible blockages by illuminating a capillary segment during ∼300 s at 1000 nm, using a standard Ti:Sapphire femtosecond laser. Furthermore, we performed concurrent Optical Coherence Microscopy (OCM) angiography imaging of the microvascular network to highlight the specificity of the targeted occlusion and its duration. Through comparison with a control group, we conclude that blood flow cessation is indeed created by the photothrombotic agent via multiphoton excitation and is temporary, followed by a flow recovery in less than 24 h. Moreover, Immunohistology points toward a stalling mechanism driven by adherence of the neutrophil in the vascular lumen. This observation seems to be promoted by the inflammation locally created via multiphoton activation of Rose Bengal.
Collapse
Affiliation(s)
- Patrick Delafontaine-Martel
- Department of Electrical Engineering, Polytechnique Montreal, Montreal, Canada
- Research Center, Montreal Heart Institute, Montreal, Canada
| | - Cong Zhang
- Department of Electrical Engineering, Polytechnique Montreal, Montreal, Canada
- Research Center, Montreal Heart Institute, Montreal, Canada
| | - Xuecong Lu
- Research Center, Montreal Heart Institute, Montreal, Canada
- DeGroote School of Business – McMaster University, Ontario, Canada
| | - Rafat Damseh
- Research Center, Montreal Heart Institute, Montreal, Canada
- College of Information Technology, United Arab Emirates University, Al Ain, United Arab Emirates
| | - Frédéric Lesage
- Department of Electrical Engineering, Polytechnique Montreal, Montreal, Canada
- Research Center, Montreal Heart Institute, Montreal, Canada
| | - Paul J Marchand
- Department of Electrical Engineering, Polytechnique Montreal, Montreal, Canada
- Research Center, Montreal Heart Institute, Montreal, Canada
- École polytechnique fédérale de Lausanne- EPFL, Lausanne, Switzerland
| |
Collapse
|
5
|
Arora S, Nagpal R, Gusain M, Singh B, Pan Y, Yadav D, Ahmed I, Kumar V, Parshad B. Organic-Inorganic Porphyrinoid Frameworks for Biomolecule Sensing. ACS Sens 2023; 8:443-464. [PMID: 36683281 DOI: 10.1021/acssensors.2c02408] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Abstract
Porphyrinoids and their analogous compounds play an important role in biosensing applications on account of their unique and versatile catalytic, coordination, photophysical, and electrochemical properties. Their remarkable arrays of properties can be finely tuned by synthetically modifying the porphyrinoid ring and varying the various structural parameters such as peripheral functionalization, metal coordination, and covalent or physical conjugation with other organic or inorganic scaffolds such as nanoparticles, metal-organic frameworks, and polymers. Porphyrinoids and their organic-inorganic conjugates are not only used as responsive materials but also utilized for the immobilization and embedding of biomolecules for applications in wearable devices, fast sensing devices, and other functional materials. The present review delineates the impact of different porphyrinoid conjugates on their physicochemical properties and their specificity as biosensors in a range of applications. The newest porphyrinoid types and their synthesis, modification, and functionalization are presented along with their advantages and performance improvements.
Collapse
Affiliation(s)
- Smriti Arora
- Institut für Chemie und Biochemie Organische Chemie, Freie Universität Berlin, Takustr. 3, 14195 Berlin, Germany
| | - Ritika Nagpal
- Department of Chemistry, SRM University, 39, Rajiv Gandhi Education City, Delhi-NCR, Sonipat, Haryana 131029, India
| | - Meenakshi Gusain
- Centre of Micro-Nano System, School of Information Science and Technology, Fudan University, 200433 Shanghai, China
| | | | - Yuanwei Pan
- Department of Diagnostic Radiology, Department of Chemical and Biomolecular Engineering, and Department of Biomedical Engineering, Yong Loo Lin School of Medicine and Faculty of Engineering, National University of Singapore, Singapore 119074, Singapore
| | - Deepak Yadav
- Department of Chemistry, Gurugram University, Gurugram, Haryana 122003, India
| | - Ishtiaq Ahmed
- Department of Chemical Engineering and Biotechnology, University of Cambridge, Cambridge CB3 0AS, U.K
| | - Vinod Kumar
- Department of Chemistry, Central University of Haryana, Mahendergarh, Haryana 123031, India
| | - Badri Parshad
- Department of Chemical Engineering and Biotechnology, University of Cambridge, Cambridge CB3 0AS, U.K
| |
Collapse
|
6
|
Erlebach E, Ravotto L, Wyss MT, Condrau J, Troxler T, Vinogradov SA, Weber B. Measurement of cerebral oxygen pressure in living mice by two-photon phosphorescence lifetime microscopy. STAR Protoc 2022; 3:101370. [PMID: 35573482 PMCID: PMC9092998 DOI: 10.1016/j.xpro.2022.101370] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/02/2022] Open
Abstract
The ability to quantify partial pressure of oxygen (pO2) is of primary importance for studies of metabolic processes in health and disease. Here, we present a protocol for imaging of oxygen distributions in tissue and vasculature of the cerebral cortex of anesthetized and awake mice. We describe in vivo two-photon phosphorescence lifetime microscopy (2PLM) of oxygen using the probe Oxyphor 2P. This minimally invasive protocol outperforms existing approaches in terms of accuracy, resolution, and imaging depth. For complete details on the use and execution of this protocol, please refer to Esipova et al. (2019). Two-photon phosphorescence imaging of Oxyphor 2P allows for oxygen measurement in vivo Oxygen imaging can be performed in anesthetized or awake, behaving mice Intravenous injection enables oxygen imaging in the vasculature Cisterna magna injection enables extra- and intravascular oxygen imaging in the brain
Collapse
Affiliation(s)
- Eva Erlebach
- Institute of Pharmacology and Toxicology, University of Zurich, 8057 Zürich, Switzerland
| | - Luca Ravotto
- Institute of Pharmacology and Toxicology, University of Zurich, 8057 Zürich, Switzerland
| | - Matthias T. Wyss
- Institute of Pharmacology and Toxicology, University of Zurich, 8057 Zürich, Switzerland
| | - Jacqueline Condrau
- Institute of Pharmacology and Toxicology, University of Zurich, 8057 Zürich, Switzerland
| | - Thomas Troxler
- Department of Biochemistry and Biophysics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
- Department of Chemistry, School of Arts and Sciences, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Sergei A. Vinogradov
- Department of Biochemistry and Biophysics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
- Department of Chemistry, School of Arts and Sciences, University of Pennsylvania, Philadelphia, PA 19104, USA
- Corresponding author
| | - Bruno Weber
- Institute of Pharmacology and Toxicology, University of Zurich, 8057 Zürich, Switzerland
- Corresponding author
| |
Collapse
|
7
|
Brunner C, Macé E, Montaldo G, Urban A. Quantitative Hemodynamic Measurements in Cortical Vessels Using Functional Ultrasound Imaging. Front Neurosci 2022; 16:831650. [PMID: 35495056 PMCID: PMC9039668 DOI: 10.3389/fnins.2022.831650] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2021] [Accepted: 02/23/2022] [Indexed: 01/17/2023] Open
Abstract
Red blood cell velocity (RBCv), cerebral blood flow (CBF), and volume (CBV) are three key parameters when describing brain hemodynamics. Functional ultrasound imaging is a Doppler-based method allowing for real-time measurement of relative CBV at high spatiotemporal resolution (100 × 110 × 300 μm3, up to 10 Hz) and large scale. Nevertheless, the measure of RBCv and CBF in small cortical vessels with functional ultrasound imaging remains challenging because of their orientation and size, which impairs the ability to perform precise measurements. We designed a directional flow filter to overpass these limitations allowing us to measure RBCv in single vessels using a standard functional ultrasound imaging system without contrast agents (e.g., microbubbles). This method allows to quickly extract the number of vessels in the cortex that was estimated to be approximately 650/cm3 in adult rats, with a 55-45% ratio for penetrating arterioles versus ascending venules. Then, we analyzed the changes in RBCv in these vessels during forepaw stimulation. We observed that ∼40 vessels located in the primary somatosensory forelimb cortex display a significant increase of the RBCv (median ΔRBCv ∼15%, maximal ΔRBCv ∼60%). As expected, we show that RBCv was higher for penetrating arterioles located in the center than in the periphery of the activated area. The proposed approach extends the capabilities of functional ultrasound imaging, which may contribute to a better understanding of the neurovascular coupling at the brain-wide scale.
Collapse
Affiliation(s)
- Clément Brunner
- Neuro-Electronics Research Flanders, Leuven, Belgium
- VIB, Leuven, Belgium
- Imec, Leuven, Belgium
- Department of Neuroscience, Faculty of Medicine, KU Leuven, Leuven, Belgium
| | - Emilie Macé
- Brain-Wide Circuits for Behavior Research Group, Max Planck Institute of Neurobiology, Martinsried, Germany
| | - Gabriel Montaldo
- Neuro-Electronics Research Flanders, Leuven, Belgium
- VIB, Leuven, Belgium
- Imec, Leuven, Belgium
- Department of Neuroscience, Faculty of Medicine, KU Leuven, Leuven, Belgium
| | - Alan Urban
- Neuro-Electronics Research Flanders, Leuven, Belgium
- VIB, Leuven, Belgium
- Imec, Leuven, Belgium
- Department of Neuroscience, Faculty of Medicine, KU Leuven, Leuven, Belgium
| |
Collapse
|
8
|
Fukuda M, Matsumura T, Suda T, Hirase H. Depth-targeted intracortical microstroke by two-photon photothrombosis in rodent brain. NEUROPHOTONICS 2022; 9:021910. [PMID: 35311215 PMCID: PMC8929553 DOI: 10.1117/1.nph.9.2.021910] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/31/2021] [Accepted: 02/24/2022] [Indexed: 05/21/2023]
Abstract
Significance: Photothrombosis is a widely used model of ischemic stroke in rodent experiments. In the photothrombosis model, the photosensitizer rose bengal (RB) is systemically introduced into the blood stream and activated by green light to induce aggregation of platelets that eventually cause vessel occlusion. Since the activation of RB is a one-photon phenomenon and the molecules in the illuminated area (light path) are subject to excitation, targeting of thrombosis is unspecific, especially in the depth dimension. We developed a photothrombosis protocol that can target a single vessel in the cortical parenchyma by two-photon excitation. Aim: We aim to induce a thrombotic stroke in the cortical parenchyma by two-photon activation of RB to confine photothrombosis within a vessel of a target depth. Approach: FITC-dextran is injected into the blood stream to visualize the cerebral blood flow in anesthetized adult mice with a cranial window. After a target vessel is chosen by two-photon imaging (950 nm), RB is injected into the blood stream. The scanning wavelength is changed to 720 nm, and photothrombosis is induced by scanning the target vessel. Results: Two-photon depth-targeted single-vessel photothrombosis was achieved with a success rate of 84.9 % ± 1.7 % and an irradiation duration of < 80 s . Attempts without RB (i.e., only with FITC) did not result in photothrombosis at the excitation wavelength of 720 nm. Conclusions: We described a protocol that achieves depth-targeted single-vessel photothrombosis by two-photon excitation. Simultaneous imaging of blood flow in the targeted vessel using FITC dextran enabled the confirmation of vessel occlusion and prevention of excess irradiation that possibly induces unintended photodamage.
Collapse
Affiliation(s)
- Masahiro Fukuda
- Kumamoto University, International Research Center for Medical Sciences, Kumamoto, Japan
- Duke-NUS Medical School, Signature Program in Neuroscience and Behavioral Disorders, Singapore
- Address all correspondence to Masahiro Fukuda, ; Hajime Hirase,
| | - Takayoshi Matsumura
- Jichi Medical University, Division of Inflammation Research, Center for Molecular Medicine, Tochigi, Japan
- National University of Singapore, Cancer Science Institute of Singapore, Singapore
| | - Toshio Suda
- Kumamoto University, International Research Center for Medical Sciences, Kumamoto, Japan
- National University of Singapore, Cancer Science Institute of Singapore, Singapore
| | - Hajime Hirase
- University of Copenhagen, Center for Translational Neuromedicine, Faculty of Health and Life Sciences, Copenhagen, Denmark
- Address all correspondence to Masahiro Fukuda, ; Hajime Hirase,
| |
Collapse
|
9
|
Abdelfattah AS, Ahuja S, Akkin T, Allu SR, Brake J, Boas DA, Buckley EM, Campbell RE, Chen AI, Cheng X, Čižmár T, Costantini I, De Vittorio M, Devor A, Doran PR, El Khatib M, Emiliani V, Fomin-Thunemann N, Fainman Y, Fernandez-Alfonso T, Ferri CGL, Gilad A, Han X, Harris A, Hillman EMC, Hochgeschwender U, Holt MG, Ji N, Kılıç K, Lake EMR, Li L, Li T, Mächler P, Miller EW, Mesquita RC, Nadella KMNS, Nägerl UV, Nasu Y, Nimmerjahn A, Ondráčková P, Pavone FS, Perez Campos C, Peterka DS, Pisano F, Pisanello F, Puppo F, Sabatini BL, Sadegh S, Sakadzic S, Shoham S, Shroff SN, Silver RA, Sims RR, Smith SL, Srinivasan VJ, Thunemann M, Tian L, Tian L, Troxler T, Valera A, Vaziri A, Vinogradov SA, Vitale F, Wang LV, Uhlířová H, Xu C, Yang C, Yang MH, Yellen G, Yizhar O, Zhao Y. Neurophotonic tools for microscopic measurements and manipulation: status report. NEUROPHOTONICS 2022; 9:013001. [PMID: 35493335 PMCID: PMC9047450 DOI: 10.1117/1.nph.9.s1.013001] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/30/2023]
Abstract
Neurophotonics was launched in 2014 coinciding with the launch of the BRAIN Initiative focused on development of technologies for advancement of neuroscience. For the last seven years, Neurophotonics' agenda has been well aligned with this focus on neurotechnologies featuring new optical methods and tools applicable to brain studies. While the BRAIN Initiative 2.0 is pivoting towards applications of these novel tools in the quest to understand the brain, this status report reviews an extensive and diverse toolkit of novel methods to explore brain function that have emerged from the BRAIN Initiative and related large-scale efforts for measurement and manipulation of brain structure and function. Here, we focus on neurophotonic tools mostly applicable to animal studies. A companion report, scheduled to appear later this year, will cover diffuse optical imaging methods applicable to noninvasive human studies. For each domain, we outline the current state-of-the-art of the respective technologies, identify the areas where innovation is needed, and provide an outlook for the future directions.
Collapse
Affiliation(s)
- Ahmed S. Abdelfattah
- Brown University, Department of Neuroscience, Providence, Rhode Island, United States
| | - Sapna Ahuja
- University of Pennsylvania, Perelman School of Medicine, Department of Biochemistry and Biophysics, Philadelphia, Pennsylvania, United States
- University of Pennsylvania, School of Arts and Sciences, Department of Chemistry, Philadelphia, Pennsylvania, United States
| | - Taner Akkin
- University of Minnesota, Department of Biomedical Engineering, Minneapolis, Minnesota, United States
| | - Srinivasa Rao Allu
- University of Pennsylvania, Perelman School of Medicine, Department of Biochemistry and Biophysics, Philadelphia, Pennsylvania, United States
- University of Pennsylvania, School of Arts and Sciences, Department of Chemistry, Philadelphia, Pennsylvania, United States
| | - Joshua Brake
- Harvey Mudd College, Department of Engineering, Claremont, California, United States
| | - David A. Boas
- Boston University, Department of Biomedical Engineering, Boston, Massachusetts, United States
| | - Erin M. Buckley
- Georgia Institute of Technology and Emory University, Wallace H. Coulter Department of Biomedical Engineering, Atlanta, Georgia, United States
- Emory University, Department of Pediatrics, Atlanta, Georgia, United States
| | - Robert E. Campbell
- University of Tokyo, Department of Chemistry, Tokyo, Japan
- University of Alberta, Department of Chemistry, Edmonton, Alberta, Canada
| | - Anderson I. Chen
- Boston University, Department of Biomedical Engineering, Boston, Massachusetts, United States
| | - Xiaojun Cheng
- Boston University, Department of Biomedical Engineering, Boston, Massachusetts, United States
| | - Tomáš Čižmár
- Institute of Scientific Instruments of the Czech Academy of Sciences, Brno, Czech Republic
| | - Irene Costantini
- University of Florence, European Laboratory for Non-Linear Spectroscopy, Department of Biology, Florence, Italy
- National Institute of Optics, National Research Council, Rome, Italy
| | - Massimo De Vittorio
- Istituto Italiano di Tecnologia, Center for Biomolecular Nanotechnologies, Arnesano, Italy
| | - Anna Devor
- Boston University, Department of Biomedical Engineering, Boston, Massachusetts, United States
- Massachusetts General Hospital, Harvard Medical School, Athinoula A. Martinos Center for Biomedical Imaging, Charlestown, Massachusetts, United States
| | - Patrick R. Doran
- Boston University, Department of Biomedical Engineering, Boston, Massachusetts, United States
| | - Mirna El Khatib
- University of Pennsylvania, Perelman School of Medicine, Department of Biochemistry and Biophysics, Philadelphia, Pennsylvania, United States
- University of Pennsylvania, School of Arts and Sciences, Department of Chemistry, Philadelphia, Pennsylvania, United States
| | | | - Natalie Fomin-Thunemann
- Boston University, Department of Biomedical Engineering, Boston, Massachusetts, United States
| | - Yeshaiahu Fainman
- University of California San Diego, Department of Electrical and Computer Engineering, La Jolla, California, United States
| | - Tomas Fernandez-Alfonso
- University College London, Department of Neuroscience, Physiology and Pharmacology, London, United Kingdom
| | - Christopher G. L. Ferri
- University of California San Diego, Departments of Neurosciences, La Jolla, California, United States
| | - Ariel Gilad
- The Hebrew University of Jerusalem, Institute for Medical Research Israel–Canada, Department of Medical Neurobiology, Faculty of Medicine, Jerusalem, Israel
| | - Xue Han
- Boston University, Department of Biomedical Engineering, Boston, Massachusetts, United States
| | - Andrew Harris
- Weizmann Institute of Science, Department of Brain Sciences, Rehovot, Israel
| | | | - Ute Hochgeschwender
- Central Michigan University, Department of Neuroscience, Mount Pleasant, Michigan, United States
| | - Matthew G. Holt
- University of Porto, Instituto de Investigação e Inovação em Saúde (i3S), Porto, Portugal
| | - Na Ji
- University of California Berkeley, Department of Physics, Berkeley, California, United States
| | - Kıvılcım Kılıç
- Boston University, Department of Biomedical Engineering, Boston, Massachusetts, United States
| | - Evelyn M. R. Lake
- Yale School of Medicine, Department of Radiology and Biomedical Imaging, New Haven, Connecticut, United States
| | - Lei Li
- California Institute of Technology, Andrew and Peggy Cherng Department of Medical Engineering, Department of Electrical Engineering, Pasadena, California, United States
| | - Tianqi Li
- University of Minnesota, Department of Biomedical Engineering, Minneapolis, Minnesota, United States
| | - Philipp Mächler
- Boston University, Department of Biomedical Engineering, Boston, Massachusetts, United States
| | - Evan W. Miller
- University of California Berkeley, Departments of Chemistry and Molecular & Cell Biology and Helen Wills Neuroscience Institute, Berkeley, California, United States
| | | | | | - U. Valentin Nägerl
- Interdisciplinary Institute for Neuroscience University of Bordeaux & CNRS, Bordeaux, France
| | - Yusuke Nasu
- University of Tokyo, Department of Chemistry, Tokyo, Japan
| | - Axel Nimmerjahn
- Salk Institute for Biological Studies, Waitt Advanced Biophotonics Center, La Jolla, California, United States
| | - Petra Ondráčková
- Institute of Scientific Instruments of the Czech Academy of Sciences, Brno, Czech Republic
| | - Francesco S. Pavone
- National Institute of Optics, National Research Council, Rome, Italy
- University of Florence, European Laboratory for Non-Linear Spectroscopy, Department of Physics, Florence, Italy
| | - Citlali Perez Campos
- Columbia University, Zuckerman Mind Brain Behavior Institute, New York, United States
| | - Darcy S. Peterka
- Columbia University, Zuckerman Mind Brain Behavior Institute, New York, United States
| | - Filippo Pisano
- Istituto Italiano di Tecnologia, Center for Biomolecular Nanotechnologies, Arnesano, Italy
| | - Ferruccio Pisanello
- Istituto Italiano di Tecnologia, Center for Biomolecular Nanotechnologies, Arnesano, Italy
| | - Francesca Puppo
- University of California San Diego, Departments of Neurosciences, La Jolla, California, United States
| | - Bernardo L. Sabatini
- Harvard Medical School, Howard Hughes Medical Institute, Department of Neurobiology, Boston, Massachusetts, United States
| | - Sanaz Sadegh
- University of California San Diego, Departments of Neurosciences, La Jolla, California, United States
| | - Sava Sakadzic
- Massachusetts General Hospital, Harvard Medical School, Athinoula A. Martinos Center for Biomedical Imaging, Charlestown, Massachusetts, United States
| | - Shy Shoham
- New York University Grossman School of Medicine, Tech4Health and Neuroscience Institutes, New York, New York, United States
| | - Sanaya N. Shroff
- Boston University, Department of Biomedical Engineering, Boston, Massachusetts, United States
| | - R. Angus Silver
- University College London, Department of Neuroscience, Physiology and Pharmacology, London, United Kingdom
| | - Ruth R. Sims
- Sorbonne University, INSERM, CNRS, Institut de la Vision, Paris, France
| | - Spencer L. Smith
- University of California Santa Barbara, Department of Electrical and Computer Engineering, Santa Barbara, California, United States
| | - Vivek J. Srinivasan
- New York University Langone Health, Departments of Ophthalmology and Radiology, New York, New York, United States
| | - Martin Thunemann
- Boston University, Department of Biomedical Engineering, Boston, Massachusetts, United States
| | - Lei Tian
- Boston University, Departments of Electrical Engineering and Biomedical Engineering, Boston, Massachusetts, United States
| | - Lin Tian
- University of California Davis, Department of Biochemistry and Molecular Medicine, Davis, California, United States
| | - Thomas Troxler
- University of Pennsylvania, Perelman School of Medicine, Department of Biochemistry and Biophysics, Philadelphia, Pennsylvania, United States
- University of Pennsylvania, School of Arts and Sciences, Department of Chemistry, Philadelphia, Pennsylvania, United States
| | - Antoine Valera
- University College London, Department of Neuroscience, Physiology and Pharmacology, London, United Kingdom
| | - Alipasha Vaziri
- Rockefeller University, Laboratory of Neurotechnology and Biophysics, New York, New York, United States
- The Rockefeller University, The Kavli Neural Systems Institute, New York, New York, United States
| | - Sergei A. Vinogradov
- University of Pennsylvania, Perelman School of Medicine, Department of Biochemistry and Biophysics, Philadelphia, Pennsylvania, United States
- University of Pennsylvania, School of Arts and Sciences, Department of Chemistry, Philadelphia, Pennsylvania, United States
| | - Flavia Vitale
- Center for Neuroengineering and Therapeutics, Departments of Neurology, Bioengineering, Physical Medicine and Rehabilitation, Philadelphia, Pennsylvania, United States
| | - Lihong V. Wang
- California Institute of Technology, Andrew and Peggy Cherng Department of Medical Engineering, Department of Electrical Engineering, Pasadena, California, United States
| | - Hana Uhlířová
- Institute of Scientific Instruments of the Czech Academy of Sciences, Brno, Czech Republic
| | - Chris Xu
- Cornell University, School of Applied and Engineering Physics, Ithaca, New York, United States
| | - Changhuei Yang
- California Institute of Technology, Departments of Electrical Engineering, Bioengineering and Medical Engineering, Pasadena, California, United States
| | - Mu-Han Yang
- University of California San Diego, Department of Electrical and Computer Engineering, La Jolla, California, United States
| | - Gary Yellen
- Harvard Medical School, Department of Neurobiology, Boston, Massachusetts, United States
| | - Ofer Yizhar
- Weizmann Institute of Science, Department of Brain Sciences, Rehovot, Israel
| | - Yongxin Zhao
- Carnegie Mellon University, Department of Biological Sciences, Pittsburgh, Pennsylvania, United States
| |
Collapse
|
10
|
Abstract
Two-photon Phosphorescence Lifetime Microscopy (2PLM) is an emerging nonlinear optical technique that has great potential to improve our understanding of the basic biology underlying human health and disease. Although analogous to 2-photon Fluorescence Lifetime Imaging Microscopy (2P-FLIM), the contrast in 2PLM is fundamentally different from various intensity-based forms of imaging since it is based on the lifetime of an excited state and can be regarded as a "functional imaging" technique. 2PLM signal originates from the deactivation of the excited triplet state (phosphorescence) [1, 2]. Typically, this triplet state is a much longer-lived excited state than the singlet excited state resulting in phosphorescence emission times of microseconds to milliseconds at room temperature as opposed to nanoseconds for fluorescence emission [3]. The long-lived nature of the triplet state makes it highly sensitive to quenching molecules in the surrounding environment such as biomolecular oxygen (O2). Therefore, 2PLM can provide not only information on the distribution pattern of the probe in the sample (via intensity) but also determine the local oxygen tension (via phosphorescence lifetime quenching) [1]. The ability to create three-dimensional optical sections in the plane of focus within a thick biological specimen while maintaining relatively low phototoxicity due to the use of near-infrared wavelengths for two-photon excitation gives 2PLM powerful advantages over other techniques for longitudinal imaging and monitoring of oxygen within living organisms [4]. In this chapter, we will provide background on the development of 2PLM, discuss the most common oxygen sensing measurement methods and concepts, and explain the general principles and optical configuration of a 2PLM system. We also discuss the key characteristics and strategies for improvement of the technique. Finally, we will present an overview of the current primary scientific literature of how 2PLM has been used for oxygen sensing in biological applications and how this technique is improving our understanding of the basic biology underlying several areas of human health.
Collapse
|
11
|
Sunil S, Erdener SE, Lee BS, Postnov D, Tang J, Kura S, Cheng X, Chen IA, Boas DA, Kılıç K. Awake chronic mouse model of targeted pial vessel occlusion via photothrombosis. NEUROPHOTONICS 2020; 7:015005. [PMID: 32042854 PMCID: PMC6992450 DOI: 10.1117/1.nph.7.1.015005] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/15/2019] [Accepted: 01/02/2020] [Indexed: 05/09/2023]
Abstract
Animal models of stroke are used extensively to study the mechanisms involved in the acute and chronic phases of recovery following stroke. A translatable animal model that closely mimics the mechanisms of a human stroke is essential in understanding recovery processes as well as developing therapies that improve functional outcomes. We describe a photothrombosis stroke model that is capable of targeting a single distal pial branch of the middle cerebral artery with minimal damage to the surrounding parenchyma in awake head-fixed mice. Mice are implanted with chronic cranial windows above one hemisphere of the brain that allow optical access to study recovery mechanisms for over a month following occlusion. Additionally, we study the effect of laser spot size used for occlusion and demonstrate that a spot size with small axial and lateral resolution has the advantage of minimizing unwanted photodamage while still monitoring macroscopic changes to cerebral blood flow during photothrombosis. We show that temporally guiding illumination using real-time feedback of blood flow dynamics also minimized unwanted photodamage to the vascular network. Finally, through quantifiable behavior deficits and chronic imaging we show that this model can be used to study recovery mechanisms or the effects of therapeutics longitudinally.
Collapse
Affiliation(s)
- Smrithi Sunil
- Boston University, Neurophotonics Center, Department of Biomedical Engineering, Boston, Massachusetts, United States
- Address all correspondence to Smrithi Sunil, E-mail:
| | - Sefik Evren Erdener
- Boston University, Neurophotonics Center, Department of Biomedical Engineering, Boston, Massachusetts, United States
- Hacettepe University, Institute of Neurological Sciences and Psychiatry, Ankara, Turkey
| | - Blaire S. Lee
- Boston University, Neurophotonics Center, Department of Biomedical Engineering, Boston, Massachusetts, United States
| | - Dmitry Postnov
- Boston University, Neurophotonics Center, Department of Biomedical Engineering, Boston, Massachusetts, United States
- Copenhagen University, Department of Biomedical Sciences, Copenhagen, Denmark
| | - Jianbo Tang
- Boston University, Neurophotonics Center, Department of Biomedical Engineering, Boston, Massachusetts, United States
| | - Sreekanth Kura
- Boston University, Neurophotonics Center, Department of Biomedical Engineering, Boston, Massachusetts, United States
| | - Xiaojun Cheng
- Boston University, Neurophotonics Center, Department of Biomedical Engineering, Boston, Massachusetts, United States
| | - Ichun Anderson Chen
- Boston University, Neurophotonics Center, Department of Biomedical Engineering, Boston, Massachusetts, United States
| | - David A. Boas
- Boston University, Neurophotonics Center, Department of Biomedical Engineering, Boston, Massachusetts, United States
| | - Kıvılcım Kılıç
- Boston University, Neurophotonics Center, Department of Biomedical Engineering, Boston, Massachusetts, United States
| |
Collapse
|
12
|
Schilling K, El Khatib M, Plunkett S, Xue J, Xia Y, Vinogradov SA, Brown E, Zhang X. Electrospun Fiber Mesh for High-Resolution Measurements of Oxygen Tension in Cranial Bone Defect Repair. ACS APPLIED MATERIALS & INTERFACES 2019; 11:33548-33558. [PMID: 31436082 PMCID: PMC6916729 DOI: 10.1021/acsami.9b08341] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/07/2023]
Abstract
Tissue oxygenation is one of the key determining factors in bone repair and bone tissue engineering. Adequate tissue oxygenation is essential for survival and differentiation of the bone-forming cells and ultimately the success of bone tissue regeneration. Two-photon phosphorescence lifetime microscopy (2PLM) has been successfully applied in the past to image oxygen distributions in tissue with high spatial resolution. However, delivery of phosphorescent probes into avascular compartments, such as those formed during early bone defect healing, poses significant problems. Here, we report a multifunctional oxygen-reporting fibrous matrix fabricated through encapsulation of a hydrophilic oxygen-sensitive, two-photon excitable phosphorescent probe, PtP-C343, in the core of fibers during coaxial electrospinning. The oxygen-sensitive fibers support bone marrow stromal cell growth and differentiation and at the same time enable real-time high-resolution probing of partial pressures of oxygen via 2PLM. The hydrophilicity of the probe facilitates its gradual release into the nearby microenvironment, allowing fibers to act as a vehicle for probe delivery into the healing tissue. In conjunction with a cranial defect window chamber model, which permits simultaneous imaging of the bone and neovasculature in vivo via two-photon laser scanning microscopy, the oxygen-reporting fibers provide a useful tool for minimally invasive, high-resolution, real-time 3D mapping of tissue oxygenation during bone defect healing, facilitating studies aimed at understanding the healing process and advancing design of tissue-engineered constructs for enhanced bone repair and regeneration.
Collapse
Affiliation(s)
- Kevin Schilling
- Department of Biomedical Engineering, University of Rochester, Rochester, NY 14620, USA
- Center for Musculoskeletal Research, University of Rochester, School of Medicine and Dentistry, Rochester, NY 146421, USA
| | - Mirna El Khatib
- Departments of Biochemistry and Biophysics and of Chemistry, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Shane Plunkett
- Departments of Biochemistry and Biophysics and of Chemistry, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Jiajia Xue
- The Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, Atlanta, GA 30332, USA
| | - Younan Xia
- The Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, Atlanta, GA 30332, USA
| | - Sergei A. Vinogradov
- Departments of Biochemistry and Biophysics and of Chemistry, University of Pennsylvania, Philadelphia, PA 19104, USA
- Corresponding authors contact information: Xinping Zhang, The Center for Musculoskeletal Research, University of Rochester Medical Center, 601 Elmwood Avenue, Rochester, NY 14642, USA, ; Edward Brown, Department of Biomedical Engineering, University of Rochester, Goergen Hall Box 270168Rochester, NY 14642, USA, ; Sergei A. Vinogradov, Department of Biochemistry and Biophysics, Perelman School of Medicine, Department of Chemistry, School of Arts and Sciences University of Pennsylvania Philadelphia, PA 19104,
| | - Edward Brown
- Department of Biomedical Engineering, University of Rochester, Rochester, NY 14620, USA
- Corresponding authors contact information: Xinping Zhang, The Center for Musculoskeletal Research, University of Rochester Medical Center, 601 Elmwood Avenue, Rochester, NY 14642, USA, ; Edward Brown, Department of Biomedical Engineering, University of Rochester, Goergen Hall Box 270168Rochester, NY 14642, USA, ; Sergei A. Vinogradov, Department of Biochemistry and Biophysics, Perelman School of Medicine, Department of Chemistry, School of Arts and Sciences University of Pennsylvania Philadelphia, PA 19104,
| | - Xinping Zhang
- Department of Biomedical Engineering, University of Rochester, Rochester, NY 14620, USA
- Center for Musculoskeletal Research, University of Rochester, School of Medicine and Dentistry, Rochester, NY 146421, USA
- Corresponding authors contact information: Xinping Zhang, The Center for Musculoskeletal Research, University of Rochester Medical Center, 601 Elmwood Avenue, Rochester, NY 14642, USA, ; Edward Brown, Department of Biomedical Engineering, University of Rochester, Goergen Hall Box 270168Rochester, NY 14642, USA, ; Sergei A. Vinogradov, Department of Biochemistry and Biophysics, Perelman School of Medicine, Department of Chemistry, School of Arts and Sciences University of Pennsylvania Philadelphia, PA 19104,
| |
Collapse
|
13
|
Li B, Esipova TV, Sencan I, Kılıç K, Fu B, Desjardins M, Moeini M, Kura S, Yaseen MA, Lesage F, Østergaard L, Devor A, Boas DA, Vinogradov SA, Sakadžić S. More homogeneous capillary flow and oxygenation in deeper cortical layers correlate with increased oxygen extraction. eLife 2019; 8:42299. [PMID: 31305237 PMCID: PMC6636997 DOI: 10.7554/elife.42299] [Citation(s) in RCA: 67] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2018] [Accepted: 07/01/2019] [Indexed: 01/01/2023] Open
Abstract
Our understanding of how capillary blood flow and oxygen distribute across cortical layers to meet the local metabolic demand is incomplete. We addressed this question by using two-photon imaging of resting-state microvascular oxygen partial pressure (PO2) and flow in the whisker barrel cortex in awake mice. Our measurements in layers I-V show that the capillary red-blood-cell flux and oxygenation heterogeneity, and the intracapillary resistance to oxygen delivery, all decrease with depth, reaching a minimum around layer IV, while the depth-dependent oxygen extraction fraction is increased in layer IV, where oxygen demand is presumably the highest. Our findings suggest that more homogeneous distribution of the physiological observables relevant to oxygen transport to tissue is an important part of the microvascular network adaptation to local brain metabolism. These results will inform the biophysical models of layer-specific cerebral oxygen delivery and consumption and improve our understanding of the diseases that affect cerebral microcirculation.
Collapse
Affiliation(s)
- Baoqiang Li
- Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Harvard Medical School, Charlestown, United States
| | - Tatiana V Esipova
- Department of Biochemistry and Biophysics, University of Pennsylvania, Philadelphia, United States.,Department of Chemistry, University of Pennsylvania, Philadelphia, United States
| | - Ikbal Sencan
- Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Harvard Medical School, Charlestown, United States
| | - Kıvılcım Kılıç
- Department of Neurosciences, University of California, San Diego, La Jolla, United States
| | - Buyin Fu
- Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Harvard Medical School, Charlestown, United States
| | - Michele Desjardins
- Department of Radiology, University of California, San Diego, La Jolla, United States
| | - Mohammad Moeini
- Institute of Biomedical Engineering, École Polytechnique de Montréal, Montréal, Canada.,Research Centre, Montreal Heart Institute, Montréal, Canada
| | - Sreekanth Kura
- Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Harvard Medical School, Charlestown, United States
| | - Mohammad A Yaseen
- Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Harvard Medical School, Charlestown, United States
| | - Frederic Lesage
- Institute of Biomedical Engineering, École Polytechnique de Montréal, Montréal, Canada.,Research Centre, Montreal Heart Institute, Montréal, Canada
| | - Leif Østergaard
- Center of Functionally Integrative Neuroscience and MINDLab, Institute of Clinical Medicine, Aarhus University, Aarhus, Denmark
| | - Anna Devor
- Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Harvard Medical School, Charlestown, United States.,Department of Neurosciences, University of California, San Diego, La Jolla, United States.,Department of Radiology, University of California, San Diego, La Jolla, United States
| | - David A Boas
- Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Harvard Medical School, Charlestown, United States.,Department of Biomedical Engineering, Boston University, Boston, United States
| | - Sergei A Vinogradov
- Department of Biochemistry and Biophysics, University of Pennsylvania, Philadelphia, United States.,Department of Chemistry, University of Pennsylvania, Philadelphia, United States
| | - Sava Sakadžić
- Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Harvard Medical School, Charlestown, United States
| |
Collapse
|
14
|
Esipova TV, Barrett MJP, Erlebach E, Masunov AE, Weber B, Vinogradov SA. Oxyphor 2P: A High-Performance Probe for Deep-Tissue Longitudinal Oxygen Imaging. Cell Metab 2019; 29:736-744.e7. [PMID: 30686745 PMCID: PMC6402963 DOI: 10.1016/j.cmet.2018.12.022] [Citation(s) in RCA: 94] [Impact Index Per Article: 15.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/16/2018] [Revised: 10/22/2018] [Accepted: 12/26/2018] [Indexed: 01/09/2023]
Abstract
Quantitative imaging of oxygen distributions in tissue can provide invaluable information about metabolism in normal and diseased states. Two-photon phosphorescence lifetime microscopy (2PLM) has been developed to perform measurements of oxygen in vivo with micron-scale resolution in 3D; however, the method's potential has not yet been fully realized due to the limitations of current phosphorescent probe technology. Here, we report a new sensor, Oxyphor 2P, that enables oxygen microscopy twice as deep (up to 600 μm below the tissue surface) and with ∼60 times higher speed than previously possible. Oxyphor 2P allows longitudinal oxygen measurements without having to inject the probe directly into the imaged region. As proof of principle, we monitored oxygen dynamics for days following micro-stroke induced by occlusion of a single capillary in the mouse brain. Oxyphor 2P opens up new possibilities for studies of tissue metabolic states using 2PLM in a wide range of biomedical research areas.
Collapse
Affiliation(s)
- Tatiana V Esipova
- Department of Biochemistry and Biophysics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Matthew J P Barrett
- Institute of Pharmacology and Toxicology, University of Zurich, Zürich 8057, Switzerland
| | - Eva Erlebach
- Institute of Pharmacology and Toxicology, University of Zurich, Zürich 8057, Switzerland; Neuroscience Center, University of Zurich, Zurich 8057, Switzerland
| | - Artëm E Masunov
- NanoScience Technology Center, Department of Chemistry, University of Central Florida, Orlando, FL 32826, USA; School of Modeling, Simulation and Training, University of Central Florida, Orlando, FL 32826, USA; National Research Nuclear University MEPhI, Kashirskoye Shosse 31, Moscow 115409, Russia; South Ural State University, Lenin Pr. 76, Chelyabinsk 454080, Russia
| | - Bruno Weber
- Institute of Pharmacology and Toxicology, University of Zurich, Zürich 8057, Switzerland; Neuroscience Center, University of Zurich, Zurich 8057, Switzerland.
| | - Sergei A Vinogradov
- Department of Biochemistry and Biophysics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA; Department of Chemistry, School of Arts and Sciences, University of Pennsylvania, Philadelphia, PA 19104, USA.
| |
Collapse
|
15
|
Hassan AM, Wu X, Jarrett JW, Xu S, Yu J, Miller DR, Perillo EP, Liu YL, Chiu DT, Yeh HC, Dunn AK. Polymer dots enable deep in vivo multiphoton fluorescence imaging of microvasculature. BIOMEDICAL OPTICS EXPRESS 2019; 10:584-599. [PMID: 30800501 PMCID: PMC6377892 DOI: 10.1364/boe.10.000584] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/04/2018] [Revised: 12/12/2018] [Accepted: 12/20/2018] [Indexed: 06/09/2023]
Abstract
Deep in vivo imaging of vasculature requires small, bright, and photostable fluorophores suitable for multiphoton microscopy (MPM). Although semiconducting polymer dots (pdots) are an emerging class of highly fluorescent contrast agents with favorable advantages for the next generation of in vivo imaging, their use for deep MPM has never before been demonstrated. Herein, we characterize the multiphoton properties of three pdot variants and perform deep in vivo MPM imaging of cortical rodent microvasculature. We find pdot brightness exceeds conventional fluorophores, including quantum dots, and their broad multiphoton absorption spectrum permits imaging at wavelengths better-suited for biological imaging and confers compatibility with a range of longer excitation wavelengths. This results in substantial improvements in signal-to-background ratio (>3.5-fold) and greater cortical imaging depths (z = 1,300 µm). Ultimately, pdots are a versatile tool for MPM due to their extraordinary brightness and broad absorption, enabling interrogation of deep structures in vivo.
Collapse
Affiliation(s)
- Ahmed M Hassan
- Department of Biomedical Engineering, The University of Texas at Austin, 107 W. Dean Keeton C0800, Austin, TX 78712, USA
| | - Xu Wu
- Department of Chemistry and Bioengineering, University of Washington, Seattle, WA 98195, USA
| | - Jeremy W Jarrett
- Department of Biomedical Engineering, The University of Texas at Austin, 107 W. Dean Keeton C0800, Austin, TX 78712, USA
| | - Shihan Xu
- Department of Chemistry and Bioengineering, University of Washington, Seattle, WA 98195, USA
| | - Jiangbo Yu
- Department of Chemistry and Bioengineering, University of Washington, Seattle, WA 98195, USA
| | - David R Miller
- Department of Biomedical Engineering, The University of Texas at Austin, 107 W. Dean Keeton C0800, Austin, TX 78712, USA
| | - Evan P Perillo
- Department of Biomedical Engineering, The University of Texas at Austin, 107 W. Dean Keeton C0800, Austin, TX 78712, USA
| | - Yen-Liang Liu
- Department of Biomedical Engineering, The University of Texas at Austin, 107 W. Dean Keeton C0800, Austin, TX 78712, USA
| | - Daniel T Chiu
- Department of Chemistry and Bioengineering, University of Washington, Seattle, WA 98195, USA
| | - Hsin-Chih Yeh
- Department of Biomedical Engineering, The University of Texas at Austin, 107 W. Dean Keeton C0800, Austin, TX 78712, USA
- Texas Materials Institute, The University of Texas at Austin, Austin, TX 78712, USA
| | - Andrew K Dunn
- Department of Biomedical Engineering, The University of Texas at Austin, 107 W. Dean Keeton C0800, Austin, TX 78712, USA
| |
Collapse
|
16
|
Sullender CT, Mark AE, Clark TA, Esipova TV, Vinogradov SA, Jones TA, Dunn AK. Imaging of cortical oxygen tension and blood flow following targeted photothrombotic stroke. NEUROPHOTONICS 2018; 5:035003. [PMID: 30137881 PMCID: PMC6062776 DOI: 10.1117/1.nph.5.3.035003] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/27/2018] [Accepted: 07/02/2018] [Indexed: 05/24/2023]
Abstract
We present a dual-modality imaging system combining laser speckle contrast imaging and oxygen-dependent quenching of phosphorescence to simultaneously map cortical blood flow and oxygen tension ( pO 2 ) in mice. Phosphorescence signal localization is achieved through the use of a digital micromirror device (DMD) that allows for selective excitation of arbitrary regions of interest. By targeting both excitation maxima of the oxygen-sensitive Oxyphor PtG4, we are able to examine the effects of excitation wavelength on the measured phosphorescence lifetime. We demonstrate the ability to measure the differences in pO 2 between arteries and veins and large changes during a hyperoxic challenge. We dynamically monitor blood flow and pO 2 during DMD-targeted photothrombotic occlusion of an arteriole and highlight the presence of an ischemia-induced depolarization. Chronic tracking of the ischemic lesion over eight days revealed a rapid recovery, with the targeted vessel fully reperfusing and pO 2 returning to baseline values within five days. This system has broad applications for studying the acute and chronic pathophysiology of ischemic stroke and other vascular diseases of the brain.
Collapse
Affiliation(s)
- Colin T. Sullender
- University of Texas at Austin, Department of Biomedical Engineering, Austin, Texas, United States
| | - Andrew E. Mark
- University of Texas at Austin, Department of Biomedical Engineering, Austin, Texas, United States
| | - Taylor A. Clark
- University of Texas at Austin, Department of Psychology, Austin, Texas, United States
- University of Texas at Austin, Institute for Neuroscience, Austin, Texas, United States
| | - Tatiana V. Esipova
- University of Pennsylvania, Department of Biochemistry and Biophysics, Philadelphia, Pennsylvania, United States
| | - Sergei A. Vinogradov
- University of Pennsylvania, Department of Biochemistry and Biophysics, Philadelphia, Pennsylvania, United States
| | - Theresa A. Jones
- University of Texas at Austin, Department of Psychology, Austin, Texas, United States
- University of Texas at Austin, Institute for Neuroscience, Austin, Texas, United States
| | - Andrew K. Dunn
- University of Texas at Austin, Department of Biomedical Engineering, Austin, Texas, United States
- University of Texas at Austin, Institute for Neuroscience, Austin, Texas, United States
| |
Collapse
|
17
|
Kisler K, Lazic D, Sweeney MD, Plunkett S, Khatib ME, Vinogradov SA, Boas DA, Sakadžić S, Zlokovic BV. In vivo imaging and analysis of cerebrovascular hemodynamic responses and tissue oxygenation in the mouse brain. Nat Protoc 2018; 13:1377-1402. [PMID: 29844521 PMCID: PMC6402338 DOI: 10.1038/nprot.2018.034] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Cerebrovascular dysfunction has an important role in the pathogenesis of multiple brain disorders. Measurement of hemodynamic responses in vivo can be challenging, particularly as techniques are often not described in sufficient detail and vary between laboratories. We present a set of standardized in vivo protocols that describe high-resolution two-photon microscopy and intrinsic optical signal (IOS) imaging to evaluate capillary and arteriolar responses to a stimulus, regional hemodynamic responses, and oxygen delivery to the brain. The protocol also describes how to measure intrinsic NADH fluorescence to understand how blood O2 supply meets the metabolic demands of activated brain tissue, and to perform resting-state absolute oxygen partial pressure (pO2) measurements of brain tissue. These methods can detect cerebrovascular changes at far higher resolution than MRI techniques, although the optical nature of these techniques limits their achievable imaging depths. Each individual procedure requires 1-2 h to complete, with two to three procedures typically performed per animal at a time. These protocols are broadly applicable in studies of cerebrovascular function in healthy and diseased brain in any of the existing mouse models of neurological and vascular disorders. All these procedures can be accomplished by a competent graduate student or experienced technician, except the two-photon measurement of absolute pO2 level, which is better suited to a more experienced, postdoctoral-level researcher.
Collapse
Affiliation(s)
- Kassandra Kisler
- Department of Physiology and Neuroscience and the Zilkha Neurogenetic Institute, Keck School of Medicine of the University of Southern California, Los Angeles, CA 90089
| | - Divna Lazic
- Department of Physiology and Neuroscience and the Zilkha Neurogenetic Institute, Keck School of Medicine of the University of Southern California, Los Angeles, CA 90089
- Department of Neurobiology, Institute for Biological Research, University of Belgrade, Belgrade, Republic of Serbia
| | - Melanie D. Sweeney
- Department of Physiology and Neuroscience and the Zilkha Neurogenetic Institute, Keck School of Medicine of the University of Southern California, Los Angeles, CA 90089
| | - Shane Plunkett
- Departments of Biochemistry and Biophysics and of Chemistry, University of Pennsylvania, Philadelphia, PA 19104
| | - Mirna El Khatib
- Departments of Biochemistry and Biophysics and of Chemistry, University of Pennsylvania, Philadelphia, PA 19104
| | - Sergei A. Vinogradov
- Departments of Biochemistry and Biophysics and of Chemistry, University of Pennsylvania, Philadelphia, PA 19104
| | - David A. Boas
- Optics Division, MGH/HMS/MIT Athinoula A. Martinos Center for Biomedical Imaging, Department of Radiology, Massachusetts General Hospital and Harvard Medical School, 149 13th Street, Charlestown, MA 02129
- Department of Biomedical Engineering, Boston University, 44 Cummington Mall, Boston, MA 02215
| | - Sava Sakadžić
- Optics Division, MGH/HMS/MIT Athinoula A. Martinos Center for Biomedical Imaging, Department of Radiology, Massachusetts General Hospital and Harvard Medical School, 149 13th Street, Charlestown, MA 02129
| | - Berislav V. Zlokovic
- Department of Physiology and Neuroscience and the Zilkha Neurogenetic Institute, Keck School of Medicine of the University of Southern California, Los Angeles, CA 90089
| |
Collapse
|
18
|
Zhang KY, Yu Q, Wei H, Liu S, Zhao Q, Huang W. Long-Lived Emissive Probes for Time-Resolved Photoluminescence Bioimaging and Biosensing. Chem Rev 2018; 118:1770-1839. [DOI: 10.1021/acs.chemrev.7b00425] [Citation(s) in RCA: 479] [Impact Index Per Article: 68.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Affiliation(s)
- Kenneth Yin Zhang
- Key Laboratory for Organic Electronics and Information Displays & Jiangsu Key Laboratory for Biosensors, Institute of Advanced Materials (IAM), Jiangsu National Synergetic Innovation Center for Advanced Materials (SICAM), Nanjing University of Posts & Telecommunications, 9 Wenyuan Road, Nanjing 210023, P. R. China
| | - Qi Yu
- Key Laboratory for Organic Electronics and Information Displays & Jiangsu Key Laboratory for Biosensors, Institute of Advanced Materials (IAM), Jiangsu National Synergetic Innovation Center for Advanced Materials (SICAM), Nanjing University of Posts & Telecommunications, 9 Wenyuan Road, Nanjing 210023, P. R. China
| | - Huanjie Wei
- Key Laboratory for Organic Electronics and Information Displays & Jiangsu Key Laboratory for Biosensors, Institute of Advanced Materials (IAM), Jiangsu National Synergetic Innovation Center for Advanced Materials (SICAM), Nanjing University of Posts & Telecommunications, 9 Wenyuan Road, Nanjing 210023, P. R. China
| | - Shujuan Liu
- Key Laboratory for Organic Electronics and Information Displays & Jiangsu Key Laboratory for Biosensors, Institute of Advanced Materials (IAM), Jiangsu National Synergetic Innovation Center for Advanced Materials (SICAM), Nanjing University of Posts & Telecommunications, 9 Wenyuan Road, Nanjing 210023, P. R. China
| | - Qiang Zhao
- Key Laboratory for Organic Electronics and Information Displays & Jiangsu Key Laboratory for Biosensors, Institute of Advanced Materials (IAM), Jiangsu National Synergetic Innovation Center for Advanced Materials (SICAM), Nanjing University of Posts & Telecommunications, 9 Wenyuan Road, Nanjing 210023, P. R. China
| | - Wei Huang
- Key Laboratory for Organic Electronics and Information Displays & Jiangsu Key Laboratory for Biosensors, Institute of Advanced Materials (IAM), Jiangsu National Synergetic Innovation Center for Advanced Materials (SICAM), Nanjing University of Posts & Telecommunications, 9 Wenyuan Road, Nanjing 210023, P. R. China
- Shaanxi
Institute of Flexible Electronics (SIFE), Northwestern Polytechnical University (NPU), Xi’an 710072, P. R. China
- Key
Laboratory of Flexible Electronics (KLOFE) and Institute of Advanced
Materials (IAM), Jiangsu National Synergetic Innovation Center for
Advanced Materials (SICAM), Nanjing Tech University (NanjingTech), Nanjing 211800, P. R. China
| |
Collapse
|
19
|
Shewring JR, Cankut AJ, McKenzie LK, Crowston BJ, Botchway SW, Weinstein JA, Edwards E, Ward MD. Multimodal Probes: Superresolution and Transmission Electron Microscopy Imaging of Mitochondria, and Oxygen Mapping of Cells, Using Small-Molecule Ir(III) Luminescent Complexes. Inorg Chem 2017; 56:15259-15270. [PMID: 29199820 DOI: 10.1021/acs.inorgchem.7b02633] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
We describe an Ir(III)-based small-molecule, multimodal probe for use in both light and electron microscopy. The direct correlation of data between light- and electron-microscopy-based imaging to investigate cellular processes at the ultrastructure level is a current challenge, requiring both dyes that must be brightly emissive for luminescence imaging and scatter electrons to give contrast for electron microscopy, at a single working concentration suitable for both methods. Here we describe the use of Ir(III) complexes as probes that provide excellent image contrast and quality for both luminescence and electron microscopy imaging, at the same working concentration. Significant contrast enhancement of cellular mitochondria was observed in transmission electron microscopy imaging, with and without the use of typical contrast agents. The specificity for cellular mitochondria was also confirmed with MitoTracker using confocal and 3D-structured illumination microscopy. These phosphorescent dyes are part of a very exclusive group of transition-metal complexes that enable imaging beyond the diffraction limit. Triplet excited-state phosphorescence was also utilized to probe the O2 concentration at the mitochondria in vitro, using lifetime mapping techniques.
Collapse
Affiliation(s)
| | - Ahmet J Cankut
- Department of Chemistry, University of Sheffield , Sheffield S3 7HF, U.K
| | - Luke K McKenzie
- Department of Chemistry, University of Sheffield , Sheffield S3 7HF, U.K
| | - Bethany J Crowston
- Department of Chemistry, University of Sheffield , Sheffield S3 7HF, U.K
| | - Stanley W Botchway
- Rutherford Appleton Laboratory, STFC Research Complex at Harwell, Harwell Science and Innovation Campus , Didcot OX11 0FA, U.K
| | - Julia A Weinstein
- Department of Chemistry, University of Sheffield , Sheffield S3 7HF, U.K
| | - Elizabeth Edwards
- Department of Chemistry, University of Sheffield , Sheffield S3 7HF, U.K
| | - Michael D Ward
- Department of Chemistry, University of Warwick , Coventry CV4 7AL, U.K
| |
Collapse
|
20
|
Esipova TV, Rivera-Jacquez HJ, Weber B, Masunov AE, Vinogradov SA. Stabilizing g-States in Centrosymmetric Tetrapyrroles: Two-Photon-Absorbing Porphyrins with Bright Phosphorescence. J Phys Chem A 2017; 121:6243-6255. [DOI: 10.1021/acs.jpca.7b04333] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Affiliation(s)
| | - Héctor J. Rivera-Jacquez
- NanoScience
Technology Center, Department of Chemistry and Department of Physics, University of Central Florida, Orlando, Florida United States
| | - Bruno Weber
- Institute
of Pharmacology and Toxicology, University of Zurich, Zurich CH-8057, Switzerland
| | - Artëm E. Masunov
- NanoScience
Technology Center, Department of Chemistry and Department of Physics, University of Central Florida, Orlando, Florida United States
- Photochemistry Center RAS, ul. Novatorov
7a, Moscow 119421, Russia
- South Ural State University, Lenin
pr. 76, Chelyabinsk 454080, Russia
- National Nuclear Research University MEPhI, Kashirskoye sh. 31, Moscow 115409, Russia
| | | |
Collapse
|
21
|
Miller DR, Hassan AM, Jarrett JW, Medina FA, Perillo EP, Hagan K, Shams Kazmi SM, Clark TA, Sullender CT, Jones TA, Zemelman BV, Dunn AK. In vivo multiphoton imaging of a diverse array of fluorophores to investigate deep neurovascular structure. BIOMEDICAL OPTICS EXPRESS 2017; 8:3470-3481. [PMID: 28717582 PMCID: PMC5508843 DOI: 10.1364/boe.8.003470] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/01/2017] [Revised: 05/15/2017] [Accepted: 06/20/2017] [Indexed: 05/05/2023]
Abstract
We perform high-resolution, non-invasive, in vivo deep-tissue imaging of the mouse neocortex using multiphoton microscopy with a high repetition rate optical parametric amplifier laser source tunable between λ=1,100 and 1,400 nm. By combining the high repetition rate (511 kHz) and high pulse energy (400 nJ) of our amplifier laser system, we demonstrate imaging of vasculature labeled with Texas Red and Indocyanine Green, and neurons expressing tdTomato and yellow fluorescent protein. We measure the blood flow speed of a single capillary at a depth of 1.2 mm, and image vasculature to a depth of 1.53 mm with fine axial steps (5 μm) and reasonable acquisition times. The high image quality enabled analysis of vascular morphology at depths to 1.45 mm.
Collapse
Affiliation(s)
- David R. Miller
- Department of Biomedical Engineering, The University of Texas at Austin, 107 W. Dean Keeton C0800, Austin, TX 78712,
USA
| | - Ahmed M. Hassan
- Department of Biomedical Engineering, The University of Texas at Austin, 107 W. Dean Keeton C0800, Austin, TX 78712,
USA
| | - Jeremy W. Jarrett
- Department of Biomedical Engineering, The University of Texas at Austin, 107 W. Dean Keeton C0800, Austin, TX 78712,
USA
| | - Flor A. Medina
- Department of Biomedical Engineering, The University of Texas at Austin, 107 W. Dean Keeton C0800, Austin, TX 78712,
USA
| | - Evan P. Perillo
- Department of Biomedical Engineering, The University of Texas at Austin, 107 W. Dean Keeton C0800, Austin, TX 78712,
USA
| | - Kristen Hagan
- Department of Biomedical Engineering, The University of Texas at Austin, 107 W. Dean Keeton C0800, Austin, TX 78712,
USA
| | - S. M. Shams Kazmi
- Department of Biomedical Engineering, The University of Texas at Austin, 107 W. Dean Keeton C0800, Austin, TX 78712,
USA
| | - Taylor A. Clark
- Department of Neuroscience, The University of Texas at Austin, 2415 Speedway, Austin, TX 78712,
USA
| | - Colin T. Sullender
- Department of Biomedical Engineering, The University of Texas at Austin, 107 W. Dean Keeton C0800, Austin, TX 78712,
USA
| | - Theresa A. Jones
- Department of Neuroscience, The University of Texas at Austin, 2415 Speedway, Austin, TX 78712,
USA
| | - Boris V. Zemelman
- Department of Neuroscience, The University of Texas at Austin, 2415 Speedway, Austin, TX 78712,
USA
| | - Andrew K. Dunn
- Department of Biomedical Engineering, The University of Texas at Austin, 107 W. Dean Keeton C0800, Austin, TX 78712,
USA
| |
Collapse
|
22
|
Oxygen imaging of living cells and tissues using luminescent molecular probes. JOURNAL OF PHOTOCHEMISTRY AND PHOTOBIOLOGY C-PHOTOCHEMISTRY REVIEWS 2017. [DOI: 10.1016/j.jphotochemrev.2017.01.001] [Citation(s) in RCA: 92] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
23
|
Perillo EP, Jarrett JW, Liu YL, Hassan A, Fernée DC, Goldak JR, Bonteanu A, Spence DJ, Yeh HC, Dunn AK. Two-color multiphoton in vivo imaging with a femtosecond diamond Raman laser. LIGHT, SCIENCE & APPLICATIONS 2017; 6. [PMID: 29576887 PMCID: PMC5863928 DOI: 10.1038/lsa.2017.95] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/05/2023]
Abstract
Two-color multiphoton microscopy through wavelength mixing of synchronized lasers has been shown to increase the spectral window of excitable fluorophores without the need for wavelength tuning. However, most currently available dual output laser sources rely on the costly and complicated optical parametric generation approach. In this report, we detail a relatively simple and low cost diamond Raman laser pumped by a ytterbium fiber amplifier emitting at 1055 nm, which generates a first Stokes emission centered at 1240 nm with a pulse width of 100 fs. The two excitation wavelengths of 1055 and 1240 nm, along with the effective two-color excitation wavelength of 1140 nm, provide an almost complete coverage of fluorophores excitable within the range of 1000-1300 nm. When compared with 1055 nm excitation, two-color excitation at 1140 nm offers a 90% increase in signal for many far-red emitting fluorescent proteins (for example, tdKatushka2). We demonstrate multicolor imaging of tdKa-tushka2 and Hoechst 33342 via simultaneous two-color two-photon, and two-color three-photon microscopy in engineered 3D multicellular spheroids. We further discuss potential benefits and applications for two-color three-photon excitation. In addition, we show that this laser system is capable of in vivo imaging in mouse cortex to nearly 1 mm in depth with two-color excitation.
Collapse
Affiliation(s)
- Evan P Perillo
- Department of Biomedical Engineering, The University of Texas at Austin, TX 78712, USA
| | - Jeremy W Jarrett
- Department of Biomedical Engineering, The University of Texas at Austin, TX 78712, USA
| | - Yen-Liang Liu
- Department of Biomedical Engineering, The University of Texas at Austin, TX 78712, USA
| | - Ahmed Hassan
- Department of Biomedical Engineering, The University of Texas at Austin, TX 78712, USA
| | - Daniel C Fernée
- Department of Biomedical Engineering, The University of Texas at Austin, TX 78712, USA
| | - John R Goldak
- Department of Physics, The University of Texas at Austin, TX 78712, USA
| | - Andrei Bonteanu
- Department of Biomedical Engineering, The University of Texas at Austin, TX 78712, USA
| | - David J Spence
- MQ Photonics, Department of Physics and Astronomy, Macquarie University, Sydney, NSW 2109, Australia
| | - Hsin-Chih Yeh
- Department of Biomedical Engineering, The University of Texas at Austin, TX 78712, USA
| | - Andrew K Dunn
- Department of Biomedical Engineering, The University of Texas at Austin, TX 78712, USA
| |
Collapse
|
24
|
Esipova TV, Rivera-Jacquez HJ, Weber B, Masunov AE, Vinogradov SA. Two-Photon Absorbing Phosphorescent Metalloporphyrins: Effects of π-Extension and Peripheral Substitution. J Am Chem Soc 2016; 138:15648-15662. [PMID: 27934026 PMCID: PMC8281454 DOI: 10.1021/jacs.6b09157] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
The ability to form triplet excited states upon two-photon excitation is important for several applications of metalloporphyrins, including two-photon phosphorescence lifetime microscopy (2PLM) and two-photon photodynamic therapy (PDT). Here we analyzed one-photon (1P) and degenerate two-photon (2P) absorption properties of several phosphorescent Pt (II) porphyrins, focusing on the effects of aromatic π-extension and peripheral substitution on triplet emissivity and two-photon absorption (2PA). Our 2PA measurements for the first time made use of direct time-resolved detection of phosphorescence, having the ability to efficiently reject laser background through microsecond time gating. π-Extension of the porphyrin macrocycle by way of syn-fusion with two external aromatic fragments, such as in syn-dibenzo- (DBP) and syn-dinaphthoporphyrins (DNP), lowers the symmetry of the porphyrin skeleton. As a result, DBPs and DNPs exhibit stronger 2PA into the one-photon-allowed B (Soret) and Q states than fully symmetric (D4h) nonextended porphyrins. However, much more 2P-active states lie above the B state and cannot be accessed due to the interfering linear absorption. Alkoxycarbonyl groups (CO2R) in the benzo-rings dramatically enhance 2PA near the B state level. Time-dependent density functional theory (TDDFT) calculations in combinations with the sum-over-states (SOS) formalism revealed that the enhancement is due to the stabilization of higher-lying 2P-active states, which are dominated by the excitations involving orbitals extending onto the carbonyl groups. Furthermore, calculations predicted even stronger stabilization of the 2P-allowed gerade-states in symmetric Pt octaalkoxycarbonyl-tetrabenzoporphyrins. Experiments confirmed that the 2PA cross-section of PtTBP(CO2Bu)8 near 810 nm reaches above 500 GM in spite of its completely centrosymmetric structure. Combined with exceptionally bright phosphorescence (ϕphos = 0.45), strong 2PA makes Pt(II) complexes of π-extended porphyrins a valuable class of chromophores for 2P applications. Another important advantage of these porphyrinoids is their compact size and easily scalable synthesis.
Collapse
Affiliation(s)
| | - Héctor J Rivera-Jacquez
- NanoScience Technology Center, Department of Chemistry and Department of Physics, University of Central Florida , Orlando, Florida 32816, United States
| | - Bruno Weber
- Institute of Pharmacology and Toxicology, University of Zurich , Zurich CH-8057, Switzerland
| | - Artëm E Masunov
- NanoScience Technology Center, Department of Chemistry and Department of Physics, University of Central Florida , Orlando, Florida 32816, United States
- Photochemistry Center, Russian Academy of Sciences , ul. Novatorov 7a, Moscow 119421, Russia
- South Ural State University , Lenin pr. 76, Chelyabinsk 454080, Russia
- National Nuclear Research University MEPhI , Kashirskoye sh. 31, Moscow 115409, Russia
| | | |
Collapse
|
25
|
Sakadžić S, Yaseen MA, Jaswal R, Roussakis E, Dale AM, Buxton RB, Vinogradov SA, Boas DA, Devor A. Two-photon microscopy measurement of cerebral metabolic rate of oxygen using periarteriolar oxygen concentration gradients. NEUROPHOTONICS 2016; 3:045005. [PMID: 27774493 PMCID: PMC5066455 DOI: 10.1117/1.nph.3.4.045005] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/23/2016] [Accepted: 09/16/2016] [Indexed: 05/05/2023]
Abstract
The cerebral metabolic rate of oxygen ([Formula: see text]) is an essential parameter for evaluating brain function and pathophysiology. However, the currently available approaches for quantifying [Formula: see text] rely on complex multimodal imaging and mathematical modeling. Here, we introduce a method that allows estimation of [Formula: see text] based on a single measurement modality-two-photon imaging of the partial pressure of oxygen ([Formula: see text]) in cortical tissue. We employed two-photon phosphorescence lifetime microscopy (2PLM) and the oxygen-sensitive nanoprobe PtP-C343 to map the tissue [Formula: see text] distribution around cortical penetrating arterioles. [Formula: see text] is subsequently estimated by fitting the changes of tissue [Formula: see text] around arterioles with the Krogh cylinder model of oxygen diffusion. We measured the baseline [Formula: see text] in anesthetized rats and modulated tissue [Formula: see text] levels by manipulating the depth of anesthesia. This method provides [Formula: see text] measurements localized within [Formula: see text] and it may provide oxygen consumption measurements in individual cortical layers or within confined cortical regions, such as in ischemic penumbra and the foci of functional activation.
Collapse
Affiliation(s)
- Sava Sakadžić
- Massachusetts General Hospital and Harvard Medical School, Optics Division, MGH/HMS/MIT Athinoula A. Martinos Center for Biomedical Imaging, Department of Radiology, 149 13th Street, Charlestown, Massachusetts 02129, United States
- Address all correspondence to: Sava Sakadžić, E-mail:
| | - Mohammad A. Yaseen
- Massachusetts General Hospital and Harvard Medical School, Optics Division, MGH/HMS/MIT Athinoula A. Martinos Center for Biomedical Imaging, Department of Radiology, 149 13th Street, Charlestown, Massachusetts 02129, United States
| | - Rajeshwer Jaswal
- Massachusetts General Hospital and Harvard Medical School, Optics Division, MGH/HMS/MIT Athinoula A. Martinos Center for Biomedical Imaging, Department of Radiology, 149 13th Street, Charlestown, Massachusetts 02129, United States
| | - Emmanuel Roussakis
- University of Pennsylvania, Departments of Biochemistry and Biophysics and Chemistry, 422 Curie Boulevard, Philadelphia, Pennsylvania 19104, United States
| | - Anders M. Dale
- University of California San Diego, Department of Neurosciences, 9500 Gilman Drive, La Jolla, California 92093, United States
- University of California San Diego, Department of Radiology, 9500 Gilman Drive, La Jolla, California 92093, United States
| | - Richard B. Buxton
- University of California San Diego, Department of Radiology, 9500 Gilman Drive, La Jolla, California 92093, United States
| | - Sergei A. Vinogradov
- University of Pennsylvania, Departments of Biochemistry and Biophysics and Chemistry, 422 Curie Boulevard, Philadelphia, Pennsylvania 19104, United States
| | - David A. Boas
- Massachusetts General Hospital and Harvard Medical School, Optics Division, MGH/HMS/MIT Athinoula A. Martinos Center for Biomedical Imaging, Department of Radiology, 149 13th Street, Charlestown, Massachusetts 02129, United States
| | - Anna Devor
- Massachusetts General Hospital and Harvard Medical School, Optics Division, MGH/HMS/MIT Athinoula A. Martinos Center for Biomedical Imaging, Department of Radiology, 149 13th Street, Charlestown, Massachusetts 02129, United States
- University of California San Diego, Department of Neurosciences, 9500 Gilman Drive, La Jolla, California 92093, United States
- University of California San Diego, Department of Radiology, 9500 Gilman Drive, La Jolla, California 92093, United States
| |
Collapse
|
26
|
Jana A, Crowston BJ, Shewring JR, McKenzie LK, Bryant HE, Botchway SW, Ward AD, Amoroso AJ, Baggaley E, Ward MD. Heteronuclear Ir(III)-Ln(III) Luminescent Complexes: Small-Molecule Probes for Dual Modal Imaging and Oxygen Sensing. Inorg Chem 2016; 55:5623-33. [PMID: 27219675 DOI: 10.1021/acs.inorgchem.6b00702] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Luminescent, mixed metal d-f complexes have the potential to be used for dual (magnetic resonance imaging (MRI) and luminescence) in vivo imaging. Here, we present dinuclear and trinuclear d-f complexes, comprising a rigid framework linking a luminescent Ir center to one (Ir·Ln) or two (Ir·Ln2) lanthanide metal centers (where Ln = Eu(III) and Gd(III), respectively). A range of physical, spectroscopic, and imaging-based properties including relaxivity arising from the Gd(III) units and the occurrence of Ir(III) → Eu(III) photoinduced energy-transfer are presented. The rigidity imposed by the ligand facilitates high relaxivities for the Gd(III) complexes, while the luminescence from the Ir(III) and Eu(III) centers provide luminescence imaging capabilities. Dinuclear (Ir·Ln) complexes performed best in cellular studies, exhibiting good solubility in aqueous solutions, low toxicity after 4 and 18 h, respectively, and punctate lysosomal staining. We also demonstrate the first example of oxygen sensing in fixed cells using the dyad Ir·Gd, via two-photon phosphorescence lifetime imaging (PLIM).
Collapse
Affiliation(s)
- Atanu Jana
- Department of Chemistry, University of Sheffield , Sheffield, S3 7HF, United Kingdom
| | - Bethany J Crowston
- Department of Chemistry, University of Sheffield , Sheffield, S3 7HF, United Kingdom
| | - Jonathan R Shewring
- Department of Chemistry, University of Sheffield , Sheffield, S3 7HF, United Kingdom
| | - Luke K McKenzie
- Department of Chemistry, University of Sheffield , Sheffield, S3 7HF, United Kingdom.,Department of Oncology & Metabolism, University of Sheffield , Sheffield, S10 2RX, United Kingdom
| | - Helen E Bryant
- Department of Oncology & Metabolism, University of Sheffield , Sheffield, S10 2RX, United Kingdom
| | - Stanley W Botchway
- Rutherford Appleton Laboratory, STFC, Research Complex at Harwell, Harwell Science and Innovation Campus , Didcot, OX11 0FA, United Kingdom
| | - Andrew D Ward
- Rutherford Appleton Laboratory, STFC, Research Complex at Harwell, Harwell Science and Innovation Campus , Didcot, OX11 0FA, United Kingdom
| | - Angelo J Amoroso
- School of Chemistry, Cardiff University , Main Building, Park Place, Cardiff CF10 3AT, United Kingdom
| | - Elizabeth Baggaley
- Department of Chemistry, University of Sheffield , Sheffield, S3 7HF, United Kingdom
| | - Michael D Ward
- Department of Chemistry, University of Sheffield , Sheffield, S3 7HF, United Kingdom
| |
Collapse
|
27
|
Perillo EP, McCracken JE, Fernée DC, Goldak JR, Medina FA, Miller DR, Yeh HC, Dunn AK. Deep in vivo two-photon microscopy with a low cost custom built mode-locked 1060 nm fiber laser. BIOMEDICAL OPTICS EXPRESS 2016; 7:324-34. [PMID: 26977343 PMCID: PMC4771452 DOI: 10.1364/boe.7.000324] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/11/2015] [Revised: 12/17/2015] [Accepted: 12/17/2015] [Indexed: 05/21/2023]
Abstract
Here we demonstrate that a mode-locked ytterbium fiber laser for two-photon fluorescence microscopy can be built for $13,000. The laser emits at a wavelength of 1060 nm with a usable average power of 1 W at a repetition rate of 40 MHz and a compressed pulse width of 81 fs at the sample. The laser is used to obtain deep in vivo two-color images of layer-V pyramidal neurons expressing YFP and vasculature labelled with Texas Red at depths up to 900 µm. The sub-1 µm features of dendritic spines can be resolved at a 200 µm depth.
Collapse
Affiliation(s)
- Evan P. Perillo
- Department of Biomedical Engineering, The University of Texas at Austin, 107 W. Dean Keeton C0800, Austin, Texas 78712, USA
| | - Justin E. McCracken
- Department of Biomedical Engineering, The University of Texas at Austin, 107 W. Dean Keeton C0800, Austin, Texas 78712, USA
| | - Daniel C. Fernée
- Department of Biomedical Engineering, The University of Texas at Austin, 107 W. Dean Keeton C0800, Austin, Texas 78712, USA
| | - John R. Goldak
- Department of Biomedical Engineering, The University of Texas at Austin, 107 W. Dean Keeton C0800, Austin, Texas 78712, USA
| | - Flor A. Medina
- Department of Biomedical Engineering, The University of Texas at Austin, 107 W. Dean Keeton C0800, Austin, Texas 78712, USA
| | - David R. Miller
- Department of Biomedical Engineering, The University of Texas at Austin, 107 W. Dean Keeton C0800, Austin, Texas 78712, USA
| | - Hsin-Chih Yeh
- Department of Biomedical Engineering, The University of Texas at Austin, 107 W. Dean Keeton C0800, Austin, Texas 78712, USA
| | - Andrew K. Dunn
- Department of Biomedical Engineering, The University of Texas at Austin, 107 W. Dean Keeton C0800, Austin, Texas 78712, USA
| |
Collapse
|
28
|
Staudinger C, Borisov SM. Long-wavelength analyte-sensitive luminescent probes and optical (bio)sensors. Methods Appl Fluoresc 2015; 3:042005. [PMID: 27134748 PMCID: PMC4849553 DOI: 10.1088/2050-6120/3/4/042005] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Long-wavelength luminescent probes and sensors become increasingly popular. They offer the advantage of lower levels of autofluorescence in most biological probes. Due to high penetration depth and low scattering of red and NIR light such probes potentially enable in vivo measurements in tissues and some of them have already reached a high level of reliability required for such applications. This review focuses on the recent progress in development and application of long-wavelength analyte-sensitive probes which can operate both reversibly and irreversibly. Photophysical properties, sensing mechanisms, advantages and limitations of individual probes are discussed.
Collapse
Affiliation(s)
- Christoph Staudinger
- Institute of Analytical Chemistry and Food Chemistry, Graz University of Technology, Stremayrgasse 9, 8010, Graz, Austria
| | - Sergey M Borisov
- Institute of Analytical Chemistry and Food Chemistry, Graz University of Technology, Stremayrgasse 9, 8010, Graz, Austria
| |
Collapse
|
29
|
Sakadžić S, Lee J, Boas DA, Ayata C. High-resolution in vivo optical imaging of stroke injury and repair. Brain Res 2015; 1623:174-92. [PMID: 25960347 PMCID: PMC4569527 DOI: 10.1016/j.brainres.2015.04.044] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2015] [Revised: 04/21/2015] [Accepted: 04/22/2015] [Indexed: 12/15/2022]
Abstract
Central nervous system (CNS) function and dysfunction are best understood within a framework of interactions between neuronal, glial and vascular compartments comprising the neurovascular unit (NVU), all of which contribute to stroke-induced CNS injury, plasticity, repair, and recovery. Recent advances in in vivo optical microscopy have enabled us to observe and interrogate cells and their processes with high spatial resolution in real time and in their natural environment deep in the brain tissue. Here, we review some of these state-of-the-art imaging techniques with an emphasis on imaging the interactions among the constituents of the NVU during ischemic injury and repair in small animal models. This article is part of a Special Issue entitled SI: Cell Interactions In Stroke.
Collapse
Affiliation(s)
- Sava Sakadžić
- Optics Division, MHG/MIT/HMS Athinoula A Martinos Center for Biomedical Imaging, Department of Radiology, Massachusetts General Hospital and Harvard Medical School, Charlestown, MA 02129, USA.
| | - Jonghwan Lee
- Optics Division, MHG/MIT/HMS Athinoula A Martinos Center for Biomedical Imaging, Department of Radiology, Massachusetts General Hospital and Harvard Medical School, Charlestown, MA 02129, USA
| | - David A Boas
- Optics Division, MHG/MIT/HMS Athinoula A Martinos Center for Biomedical Imaging, Department of Radiology, Massachusetts General Hospital and Harvard Medical School, Charlestown, MA 02129, USA
| | - Cenk Ayata
- Neurovascular Research Laboratory, Department of Radiology, Massachusetts General Hospital and Harvard Medical School, Charlestown, MA 02129, USA; Stroke Service and Neuroscience Intensive Care Unit, Department of Neurology, Massachusetts General Hospital and Harvard Medical School, Boston, MA 02114, USA
| |
Collapse
|
30
|
Maeda A, Kulbatski I, DaCosta RS. Emerging Applications for Optically Enabled Intravital Microscopic Imaging in Radiobiology. Mol Imaging 2015. [DOI: 10.2310/7290.2015.00022] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Affiliation(s)
- Azusa Maeda
- From the Princess Margaret Cancer Centre, University Health Network, MaRS Centre; Techna Institute for Advancement of Technologies for Health; and Department of Medical Biophysics, University of Toronto, MaRS Centre, Toronto, ON
| | - Iris Kulbatski
- From the Princess Margaret Cancer Centre, University Health Network, MaRS Centre; Techna Institute for Advancement of Technologies for Health; and Department of Medical Biophysics, University of Toronto, MaRS Centre, Toronto, ON
| | - Ralph S. DaCosta
- From the Princess Margaret Cancer Centre, University Health Network, MaRS Centre; Techna Institute for Advancement of Technologies for Health; and Department of Medical Biophysics, University of Toronto, MaRS Centre, Toronto, ON
| |
Collapse
|
31
|
Kazmi SMS, Richards LM, Schrandt CJ, Davis MA, Dunn AK. Expanding applications, accuracy, and interpretation of laser speckle contrast imaging of cerebral blood flow. J Cereb Blood Flow Metab 2015; 35:1076-84. [PMID: 25944593 PMCID: PMC4640282 DOI: 10.1038/jcbfm.2015.84] [Citation(s) in RCA: 58] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/15/2014] [Revised: 02/17/2015] [Accepted: 03/09/2015] [Indexed: 12/21/2022]
Abstract
Laser speckle contrast imaging (LSCI) provides a rapid characterization of cortical flow dynamics for functional monitoring of the microcirculation. The technique stems from interactions of laser light with moving particles. These interactions encode the encountered Doppler phenomena within a random interference pattern imaged in widefield, known as laser speckle. Studies of neurovascular function and coupling with LSCI have benefited from the real-time characterization of functional dynamics in the laboratory setting through quantification of perfusion dynamics. While the technique has largely been relegated to acute small animal imaging, its scalability is being assessed and characterized for both chronic and clinical neurovascular imaging.
Collapse
Affiliation(s)
- S M Shams Kazmi
- Department of Biomedical Engineering, The University of Texas at Austin, Austin, Texas, USA
| | - Lisa M Richards
- Department of Biomedical Engineering, The University of Texas at Austin, Austin, Texas, USA
| | - Christian J Schrandt
- Department of Biomedical Engineering, The University of Texas at Austin, Austin, Texas, USA
| | - Mitchell A Davis
- Department of Biomedical Engineering, The University of Texas at Austin, Austin, Texas, USA
| | - Andrew K Dunn
- Department of Biomedical Engineering, The University of Texas at Austin, Austin, Texas, USA
| |
Collapse
|
32
|
Roussakis E, Li Z, Nichols AJ, Evans CL. Sauerstoffmessung in der Biomedizin - von der Makro- zur Mikroebene. Angew Chem Int Ed Engl 2015. [DOI: 10.1002/ange.201410646] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
33
|
Roussakis E, Li Z, Nichols AJ, Evans CL. Oxygen-Sensing Methods in Biomedicine from the Macroscale to the Microscale. Angew Chem Int Ed Engl 2015; 54:8340-62. [DOI: 10.1002/anie.201410646] [Citation(s) in RCA: 114] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2014] [Revised: 01/05/2015] [Indexed: 12/15/2022]
|
34
|
Chronic monitoring of vascular progression after ischemic stroke using multiexposure speckle imaging and two-photon fluorescence microscopy. J Cereb Blood Flow Metab 2015; 35:933-42. [PMID: 25712498 PMCID: PMC4640252 DOI: 10.1038/jcbfm.2015.26] [Citation(s) in RCA: 47] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/22/2014] [Revised: 12/24/2014] [Accepted: 01/08/2015] [Indexed: 01/17/2023]
Abstract
Monitoring the progression of the vascular structure and cerebral blood flow (CBF) after brain injury is vital to understand the neurovascular recovery process. Multiexposure speckle imaging (MESI) provides a quantitatively accurate technique for chronically measuring the postocclusion CBF perfusion of the infarct and peri-infarct regions in rodent stroke models, while multiphoton microscopy offers direct visualization of the microvascular structure. In this paper, we present imaging outcomes extending 35 days after photo-thrombotic occlusion, tracking the progression of the vasculature throughout this period. We compare MESI flow estimates within the unresolvable parenchyma with subsurface microvascular volume fractions taken with two-photon microscopy in the same regions to assess how the vascular density influences the surface-integrated MESI flow values. The MESI flow measurements and volume fractions are shown to have high correlations (r=0.90) within areas of recovering vasculature in the peri-infarct region. We also observe vascular reorientation occurring within the microvascular structure throughout the 35-day postocclusion period. With the combination of a chronic mouse model and relatively noninvasive optical imaging techniques, we present an imaging protocol for monitoring long-term vascular progression after photo-thrombotic occlusion with the potential to test the efficacy of rehabilitation and pharmacological therapies.
Collapse
|
35
|
Dmitriev RI, Papkovsky DB. Multi-parametric O₂ imaging in three-dimensional neural cell models with the phosphorescent probes. Methods Mol Biol 2015; 1254:55-71. [PMID: 25431057 DOI: 10.1007/978-1-4939-2152-2_5] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/04/2023]
Abstract
Recent progress in bio-imaging has allowed detailed mechanistic studies of neural cell function in complex 3D tissue models including multicellular aggregates, neurospheres, excised brain slices, ganglia, and organoids. Molecular oxygen (O2 ) is an important metabolite and an environmental parameter which determines the viability and physiological status of neural cells within tissue. Here we describe standard method for monitoring O2 in 3D tissue models using phosphorescence lifetime imaging microscopy (PLIM ) and cell-penetrating O2-sensing probes. The O2 probes can be multiplexed with many conventional fluorescence based live cell biomarkers and also end-point immunofluorescence staining. The multi-parametric O2 imaging method is particularly useful for areas such as stem cell development and differentiation , hypoxia research, neurodegenerative disorders, regeneration of brain tissue, evaluation of new drugs, and development of novel tissue models.
Collapse
Affiliation(s)
- Ruslan I Dmitriev
- School of Biochemistry and Cell Biology, University College Cork, Cavanagh Pharmacy Building, College Road, Cork, Ireland,
| | | |
Collapse
|
36
|
Dmitriev RI, Borisov SM, Kondrashina AV, Pakan JMP, Anilkumar U, Prehn JHM, Zhdanov AV, McDermott KW, Klimant I, Papkovsky DB. Imaging oxygen in neural cell and tissue models by means of anionic cell-permeable phosphorescent nanoparticles. Cell Mol Life Sci 2015; 72:367-81. [PMID: 25006059 PMCID: PMC11113450 DOI: 10.1007/s00018-014-1673-5] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2014] [Revised: 06/20/2014] [Accepted: 06/23/2014] [Indexed: 11/30/2022]
Abstract
Cell-permeable phosphorescent probes enable the study of cell and tissue oxygenation, bioenergetics, metabolism, and pathological states such as stroke and hypoxia. A number of such probes have been described in recent years, the majority consisting of cationic small molecule and nanoparticle structures. While these probes continue to advance, adequate staining for the study of certain cell types using live imaging techniques remains elusive; this is particularly true for neural cells. Here we introduce novel probes for the analysis of neural cells and tissues: negatively charged poly(methyl methacrylate-co-methacrylic acid)-based nanoparticles impregnated with a phosphorescent Pt(II)-tetrakis(pentafluorophenyl)porphyrin (PtPFPP) dye (this form is referred to as PA1), and with an additional reference/antennae dye poly(9,9-diheptylfluorene-alt-9,9-di-p-tolyl-9H-fluorene) (this form is referred to as PA2). PA1 and PA2 are internalised by endocytosis, result in efficient staining in primary neurons, astrocytes, and PC12 cells and multi-cellular aggregates, and allow for the monitoring of local O(2) levels on a time-resolved fluorescence plate reader and PLIM microscope. PA2 also efficiently stains rat brain slices and permits detailed O(2) imaging experiments using both one and two-photon intensity-based modes and PLIM modes. Multiplexed analysis of embryonic rat brain slices reveals age-dependent staining patterns for PA2 and a highly heterogeneous distribution of O(2) in tissues, which we relate to the localisation of specific progenitor cell populations. Overall, these anionic probes are useful for sensing O(2) levels in various cells and tissues, particularly in neural cells, and facilitate high-resolution imaging of O(2) in 3D tissue models.
Collapse
Affiliation(s)
- Ruslan I Dmitriev
- School of Biochemistry and Cell Biology, University College Cork, Cork, Ireland,
| | | | | | | | | | | | | | | | | | | |
Collapse
|
37
|
Khan AA, Fullerton-Shirey SK, Howard SS. Easily prepared ruthenium-complex nanomicelle probes for two-photon quantitative imaging of oxygen in aqueous media. RSC Adv 2015. [DOI: 10.1039/c4ra11229f] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Easily prepared, biocompatible, and oxygen-sensitive optical probes with a large two-photon cross-section: towards inexpensive quantitative oxygen imaging in vivo.
Collapse
Affiliation(s)
- Aamir A. Khan
- Department of Electrical Engineering
- University of Notre Dame
- Notre Dame
- USA
| | | | - Scott S. Howard
- Department of Electrical Engineering
- University of Notre Dame
- Notre Dame
- USA
| |
Collapse
|
38
|
Roussakis E, Spencer JA, Lin CP, Vinogradov SA. Two-photon antenna-core oxygen probe with enhanced performance. Anal Chem 2014; 86:5937-45. [PMID: 24848643 PMCID: PMC4066907 DOI: 10.1021/ac501028m] [Citation(s) in RCA: 57] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Recent development of two-photon phosphorescence lifetime microscopy (2PLM) of oxygen enabled first noninvasive high-resolution measurements of tissue oxygenation in vivo in 3D, providing valuable physiological information. The so far developed two-photon-enhanced phosphorescent probes comprise antenna-core constructs, in which two-photon absorbing chromophores (antenna) capture and channel excitation energy to a phosphorescent core (metalloporphyrin) via intramolecular excitation energy transfer (EET). These probes allowed demonstration of the methods' potential; however, they suffer from a number of limitations, such as partial loss of emissivity to competing triplet state deactivation pathways (e.g., electron transfer) and suboptimal sensitivity to oxygen, thereby limiting spatial and temporal resolution of the method. Here we present a new probe, PtTCHP-C307, designed to overcome these limitations. The key improvements include significant increase in the phosphorescence quantum yield, higher efficiency of the antenna-core energy transfer, minimized quenching of the phosphorescence by electron transfer and increased signal dynamic range. For the same excitation flux, the new probe is able to produce up to 6-fold higher signal output than previously reported molecules. Performance of PtTCHP-C307 was demonstrated in vivo in pO2 measurements through the intact mouse skull into the bone marrow, where all blood cells are made from hematopoietic stem cells.
Collapse
Affiliation(s)
- Emmanuel Roussakis
- Department of Biochemistry and Biophysics, University of Pennsylvania , Philadelphia, Pennsylvania 19104, United States
| | | | | | | |
Collapse
|
39
|
Giuntini F, Chauhan VM, Aylott JW, Rosser GA, Athanasiadis A, Beeby A, MacRobert AJ, Brown RA, Boyle RW. Conjugatable water-soluble Pt(II) and Pd(II) porphyrin complexes: novel nano- and molecular probes for optical oxygen tension measurement in tissue engineering. Photochem Photobiol Sci 2014; 13:1039-51. [PMID: 24818569 DOI: 10.1039/c4pp00026a] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Measurement of oxygen tension in compressed collagen sheets was performed using matrix-embedded optical oxygen sensors based on platinum(II) and palladium(II) porphyrins supported on polyacrylamide nanoparticles. Bespoke, fully water-soluble, mono-functionalised Pt(II) and Pd(II) porphyrin complexes designed for conjugation under mild conditions were obtained using microwave-assisted metallation. The new sensors display a linear response (1/τ vs. O2) to varying oxygen tension over a biologically relevant range (7.0 × 10(-4) to 2.7 × 10(-1) mM) in aqueous solutions; a behaviour that is maintained following conjugation to polyacrylamide nanoparticles, and following embedding of the nanosensors in compressed collagen sheets, paving the way to innovative approaches for real-time resolution of oxygen gradients throughout 3D matrices useful for tissue regeneration.
Collapse
Affiliation(s)
- F Giuntini
- Department of Chemistry, University of Hull, Hull, UK.
| | | | | | | | | | | | | | | | | |
Collapse
|
40
|
Spencer JA, Ferraro F, Roussakis E, Klein A, Wu J, Runnels JM, Zaher W, Mortensen LJ, Alt C, Turcotte R, Yusuf R, Côté D, Vinogradov SA, Scadden DT, Lin CP. Direct measurement of local oxygen concentration in the bone marrow of live animals. Nature 2014; 508:269-73. [PMID: 24590072 PMCID: PMC3984353 DOI: 10.1038/nature13034] [Citation(s) in RCA: 841] [Impact Index Per Article: 76.5] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2013] [Accepted: 01/16/2014] [Indexed: 12/16/2022]
Abstract
Characterizing how the microenvironment, or niche, regulates stem cell activity is central to understanding stem cell biology and to developing strategies for therapeutic manipulation of stem cells1. Low oxygen tension (hypoxia) is commonly thought to be a shared niche characteristic in maintaining quiescence in multiple stem cell types2–4. However, support for the existence of a hypoxic niche has largely come from indirect evidence such as proteomic analysis5, expression of HIF-1 and related genes6, and staining with surrogate hypoxic markers (e.g. pimonidazole)6–8. Here we perform direct in vivo measurements of local oxygen tension (pO2) in the bone marrow (BM) of live mice. Using two-photon phosphorescence lifetime microscopy (2PLM), we determined the absolute pO2 of the BM to be quite low (<32 mmHg) despite very high vascular density. We further uncovered heterogeneities in local pO2, with the lowest pO2 (~9.9 mmHg, or 1.3%) found in deeper peri-sinusoidal regions. The endosteal region, by contrast, is less hypoxic as it is perfused with small arteries that are often positive for the marker nestin. These pO2 values change dramatically after radiation and chemotherapy, pointing to the role of stress in altering the stem cell metabolic microenvironment.
Collapse
Affiliation(s)
- Joel A Spencer
- 1] Wellman Center for Photomedicine, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts 02114, USA [2] Center for Systems Biology, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts 02114, USA [3] Department of Biomedical Engineering, Tufts University, Medford, Massachusetts 02155, USA
| | - Francesca Ferraro
- 1] Center for Regenerative Medicine, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts 02114, USA [2] Harvard Stem Cell Institute, Cambridge, Massachusetts 02138, USA [3] Department of Stem Cell and Regenerative Biology, Harvard University, Cambridge, Massachusetts 02138, USA
| | - Emmanuel Roussakis
- 1] Wellman Center for Photomedicine, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts 02114, USA [2] Department of Biochemistry and Biophysics, University of Pennsylvania, Philadelphia, Pennsylvania 19104, USA
| | - Alyssa Klein
- 1] Center for Regenerative Medicine, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts 02114, USA [2] Harvard Stem Cell Institute, Cambridge, Massachusetts 02138, USA [3] Department of Stem Cell and Regenerative Biology, Harvard University, Cambridge, Massachusetts 02138, USA
| | - Juwell Wu
- 1] Wellman Center for Photomedicine, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts 02114, USA [2] Center for Systems Biology, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts 02114, USA
| | - Judith M Runnels
- 1] Wellman Center for Photomedicine, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts 02114, USA [2] Center for Systems Biology, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts 02114, USA
| | - Walid Zaher
- 1] Wellman Center for Photomedicine, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts 02114, USA [2] Center for Systems Biology, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts 02114, USA [3] Stem Cell Unit, Department of Anatomy, College of Medicine, King Saud University, Riyadh 11461, Saudi Arabia
| | - Luke J Mortensen
- 1] Wellman Center for Photomedicine, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts 02114, USA [2] Center for Systems Biology, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts 02114, USA
| | - Clemens Alt
- 1] Wellman Center for Photomedicine, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts 02114, USA [2] Center for Systems Biology, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts 02114, USA
| | - Raphaël Turcotte
- 1] Wellman Center for Photomedicine, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts 02114, USA [2] Center for Systems Biology, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts 02114, USA [3] Department of Biomedical Engineering, Boston University, Boston, Massachusetts 02215, USA
| | - Rushdia Yusuf
- 1] Center for Regenerative Medicine, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts 02114, USA [2] Harvard Stem Cell Institute, Cambridge, Massachusetts 02138, USA [3] Department of Stem Cell and Regenerative Biology, Harvard University, Cambridge, Massachusetts 02138, USA
| | - Daniel Côté
- Département de Physique, Génie Physique et Optique and Centre de Recherche de l'Institut Universitaire en Santé Mentale de Québec, Université Laval, Québec City, Québec G1J 2G3, Canada
| | - Sergei A Vinogradov
- Department of Biochemistry and Biophysics, University of Pennsylvania, Philadelphia, Pennsylvania 19104, USA
| | - David T Scadden
- 1] Center for Regenerative Medicine, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts 02114, USA [2] Harvard Stem Cell Institute, Cambridge, Massachusetts 02138, USA [3] Department of Stem Cell and Regenerative Biology, Harvard University, Cambridge, Massachusetts 02138, USA
| | - Charles P Lin
- 1] Wellman Center for Photomedicine, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts 02114, USA [2] Center for Systems Biology, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts 02114, USA [3] Harvard Stem Cell Institute, Cambridge, Massachusetts 02138, USA
| |
Collapse
|
41
|
Dmitriev RI, Kondrashina AV, Koren K, Klimant I, Zhdanov AV, Pakan JMP, McDermott KW, Papkovsky DB. Small molecule phosphorescent probes for O2imaging in 3D tissue models. Biomater Sci 2014; 2:853-866. [DOI: 10.1039/c3bm60272a] [Citation(s) in RCA: 81] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
PtPFPP-carbohydrate conjugates are promising O2probes for 3D PLIM imaging of live spheroids and brain explants.
Collapse
Affiliation(s)
| | | | - Klaus Koren
- Institute of Analytical Chemistry and Food Chemistry
- Graz University of Technology
- 8010 Graz, Austria
| | - Ingo Klimant
- Institute of Analytical Chemistry and Food Chemistry
- Graz University of Technology
- 8010 Graz, Austria
| | | | | | | | | |
Collapse
|
42
|
Baggaley E, Sazanovich IV, Williams JAG, Haycock JW, Botchway SW, Weinstein JA. Two-photon phosphorescence lifetime imaging of cells and tissues using a long-lived cyclometallated Npyridyl^Cphenyl^Npyridyl Pt(ii) complex. RSC Adv 2014. [DOI: 10.1039/c4ra04489d] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
The ‘longer’ picture: emission bio-imaging over microsecond time frame with scanning, multi-photon posphorescence-lifetime-imaging-microscopy (PLIM).
Collapse
Affiliation(s)
| | - Igor V. Sazanovich
- Department of Chemistry
- University of Sheffield
- Sheffield S3 7HF, U.K
- Central Laser Facility
- Science and Technology Facilities Council
| | | | - John W. Haycock
- Department of Engineering Materials
- The Kroto Research Institute
- University of Sheffield
- Sheffield, UK
| | | | | |
Collapse
|
43
|
Time-Resolved Emission Imaging Microscopy Using Phosphorescent Metal Complexes: Taking FLIM and PLIM to New Lengths. LUMINESCENT AND PHOTOACTIVE TRANSITION METAL COMPLEXES AS BIOMOLECULAR PROBES AND CELLULAR REAGENTS 2014. [DOI: 10.1007/430_2014_168] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
|