1
|
Barlow BR, Kim J. Next generation gold nanomaterials for photoacoustic imaging. Nanomedicine (Lond) 2025:1-15. [PMID: 40356229 DOI: 10.1080/17435889.2025.2504330] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2025] [Accepted: 05/07/2025] [Indexed: 05/15/2025] Open
Abstract
Photoacoustic (PA) imaging integrates ultrasound with the molecular contrast afforded by optical imaging, enabling noninvasive, real-time visualization of tissue structures and contrasts. Gold nanoparticles (GNPs) have been extensively studied as contrast agents for PA imaging due to their strong optical absorption derived from localized surface plasmon resonance, particularly when engineered to absorb in the near-infrared (NIR) region to enhance tissue penetration. However, the use of conventional anisotropic nanoparticles that absorb the NIR wavelengths is limited by their poor photostability under pulsed lasing conditions, which restricts their applicability in longitudinal in vivo imaging studies. This review first outlines the fundamental principles of PA imaging and introduces conventional GNP-based contrast agents, emphasizing their applications and inherent limitations. Subsequently, recent advances in GNP engineering are discussed, with particular focus on strategies to improve photostability, and a future perspective on the development of GNP-based PA contrast agents is provided.
Collapse
Affiliation(s)
- Brendan R Barlow
- Department of Surgery, School of Medicine, University of California, Davis, Sacramento, CA, USA
- Department of Biomedical Engineering, University of California, Davis, Davis, CA, USA
| | - Jinhwan Kim
- Department of Surgery, School of Medicine, University of California, Davis, Sacramento, CA, USA
- Department of Biomedical Engineering, University of California, Davis, Davis, CA, USA
| |
Collapse
|
2
|
Kulkarni AD, Mukarrama T, Barlow BR, Kim J. Recent advances in non-invasive in vivo tracking of cell-based cancer immunotherapies. Biomater Sci 2025; 13:1939-1959. [PMID: 40099377 PMCID: PMC11980607 DOI: 10.1039/d4bm01677g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/19/2025]
Abstract
Immunotherapy has been at the forefront of cancer treatment research in recent years due to an increased understanding of the immune system's role in cancer and the substantial benefits it has demonstrated compared to conventional treatment methods. In particular, immune cell-based approaches utilizing T cells, natural killer (NK) cells, macrophages, and more have shown great potential as cancer treatments. While these treatments hold promise, there are still numerous issues that limit their clinical translation, including a lack of understanding of their mechanisms and inconsistent responses to treatment. Traditionally, tissue or blood samples are collected as a means of monitoring treatment progression. However, these in vitro diagnostics are invasive and provide limited information about the real-time status of the treatment or its long-term effectiveness. To address these limitations, novel non-invasive imaging modalities have been developed. These include optical imaging, X-ray computed tomography (CT), magnetic resonance imaging (MRI), positron emission tomography (PET) and single-photon emission computed tomography (SPECT), and photoacoustic (PA) imaging. This review focuses on methods for tracking cell-based cancer immunotherapies using these in vivo imaging modalities, thereby enhancing real-time monitoring of their therapeutic effect and predictions of their long-term efficacy.
Collapse
Affiliation(s)
- Anika D Kulkarni
- Department of Biomedical Engineering, University of California, Davis, Davis, 95616, USA.
| | - Tasneem Mukarrama
- Department of Surgery, School of Medicine, University of California, Davis, Sacramento, 95817, USA
| | - Brendan R Barlow
- Department of Surgery, School of Medicine, University of California, Davis, Sacramento, 95817, USA
| | - Jinhwan Kim
- Department of Biomedical Engineering, University of California, Davis, Davis, 95616, USA.
- Department of Surgery, School of Medicine, University of California, Davis, Sacramento, 95817, USA
| |
Collapse
|
3
|
Schwartz‐Duval AS, Sokolov KV. Prospecting Cellular Gold Nanoparticle Biomineralization as a Viable Alternative to Prefabricated Gold Nanoparticles. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2022; 9:e2105957. [PMID: 35508715 PMCID: PMC9284136 DOI: 10.1002/advs.202105957] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/22/2021] [Revised: 03/17/2022] [Indexed: 06/14/2023]
Abstract
Gold nanoparticles (GNPs) have shown considerable potential in a vast number of biomedical applications. However, currently there are no clinically approved injectable GNP formulations. Conversely, gold salts have been used in the clinic for nearly a century. Further, there is evidence of GNP formation in patients treated with gold salts (i.e., chrysiasis). Recent reports evaluating this phenomenon in human cells and in murine models indicate that the use of gold ions for in situ formation of theranostic GNPs could greatly improve the delivery within dense biological tissues, increase efficiency of intracellular gold uptake, and specificity of GNP formation within cancer cells. These attributes in combination with safe clinical application of gold salts make this process a viable strategy for clinical translation. Here, the first summary of the current knowledge related to GNP biomineralization in mammalian cells is provided along with critical assessment of potential biomedical applications of this newly emergent field.
Collapse
Affiliation(s)
- Aaron S. Schwartz‐Duval
- Department of Imaging PhysicsThe University of Texas MD Anderson Cancer Center1515 Holcombe BoulevardHoustonTX77030USA
| | - Konstantin V. Sokolov
- Department of Imaging PhysicsThe University of Texas MD Anderson Cancer Center1515 Holcombe BoulevardHoustonTX77030USA
- The University of Texas MD Anderson Cancer Center UTHealth Graduate School of Biomedical Sciences6767 Bertner AveHoustonTX77030USA
- Department of BioengineeringRice University6100 Main St.HoustonTX77030USA
- Department of Biomedical EngineeringThe University of Texas at Austin107 W Dean Keeton St.AustinTX78712USA
| |
Collapse
|
4
|
Mitiche S, Gueffrache S, Marguet S, Audibert JF, Pansu RB, Palpant B. Coating gold nanorods with silica prevents the generation of reactive oxygen species under laser light irradiation for safe biomedical applications. J Mater Chem B 2022; 10:589-597. [PMID: 34985476 DOI: 10.1039/d1tb02207e] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Gold nanoparticles can produce reactive oxygen species (ROS) under the action of ultrashort pulsed light. While beneficial for photodynamic therapy, this phenomenon is prohibitive for other biomedical applications such as imaging, photo-thermal drug release, or targeted gene delivery. Here, ROS are produced in water by irradiating gold nanorods and silica-coated gold nanorods with near-infrared femtosecond laser pulses and are detected using two fluorescent probes. Our results demonstrate that a dense silica shell around gold nanorods inhibits the formation of singlet oxygen (1O2) and hydroxyl radical (˙OH) efficiently. The silica coating prevents the Dexter energy transfer between the nanoparticles and 3O2, stopping thus the generation of 1O2. In addition, numerical simulations accounting for the use of ultrashort laser pulses show that the plasmonic field enhancement at the nanoparticle vicinity is lessened once adding the silica layer. With the multiphotonic ejection of electrons being also blocked, all the possible pathways for ROS production are hindered by adding the silica shell around gold nanorods, making them safer for a range of biomedical developments.
Collapse
Affiliation(s)
- Sarra Mitiche
- Université Paris-Saclay, CNRS, ENS Paris-Saclay, CentraleSupélec, LuMIn, 91190 Gif-sur-Yvette, France.
| | - Syrine Gueffrache
- Université Paris-Saclay, CNRS, ENS Paris-Saclay, CentraleSupélec, LuMIn, 91190 Gif-sur-Yvette, France.
| | - Sylvie Marguet
- Université Paris-Saclay, CEA, CNRS, NIMBE, 91190 Gif-sur-Yvette, France
| | | | - Robert Bernard Pansu
- Université Paris-Saclay, CNRS, ENS Paris-Saclay, CentraleSupélec, LuMIn, 91190 Gif-sur-Yvette, France.
| | - Bruno Palpant
- Université Paris-Saclay, CNRS, ENS Paris-Saclay, CentraleSupélec, LuMIn, 91190 Gif-sur-Yvette, France.
| |
Collapse
|
5
|
Lázár I, Szabó HJ. Prevention of the Aggregation of Nanoparticles during the Synthesis of Nanogold-Containing Silica Aerogels. Gels 2018; 4:E55. [PMID: 30674831 PMCID: PMC6209257 DOI: 10.3390/gels4020055] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2018] [Revised: 06/11/2018] [Accepted: 06/14/2018] [Indexed: 11/16/2022] Open
Abstract
Nanogold is widely used in many areas of physics and chemistry due to its environment-sensitive plasmon resonance absorption. The immobilization of gold nanoparticles in highly porous silica aerogel offers an attractive alternative to liquid gold solutions as they show a mechanically stable structure, are permeable to gases, and can even be used at elevated temperatures. We have found that the commercially available citrate-stabilized 10 nm gold nanoparticles may suffer from aggregation prior to or under the base-catalyzed gelation process of tetramethoxy silane. In the wet gels, Au particles increased in size, changed shape, and demonstrated the loss of plasmon resonance absorption, due to the formation of larger aggregates. We have studied a range of water-miscible organic solvents, stabilizing agents, and the gelation conditions to minimize changes from occurring in the aerogel setting and the supercritical drying process. It has been found that atmospheric carbon dioxide has a significant effect on aggregation, and it cannot be entirely excluded under normal synthetic conditions. Methanol resulted in an increase in the particle size only, while dimethyl sulfoxide, dimethylformamide, and urea changed the shape of nanoparticles to rod-like shapes, and diols led to an increase in both size and shape. However, using the polymeric stabilizer poly(vinyl pyrrolidone) efficiently prevented the aggregation of the particles, even in the presence of high concentrations of carbon dioxide, and allowed the production of nanoAu containing silica aerogels in a single step, without the modification of technology.
Collapse
Affiliation(s)
- István Lázár
- Department of Inorganic and Analytical Chemsitry, University of Debrecen, Egyetem tér 1, H-4032 Debrecen, Hungary.
| | - Hanna Judit Szabó
- Department of Inorganic and Analytical Chemsitry, University of Debrecen, Egyetem tér 1, H-4032 Debrecen, Hungary.
| |
Collapse
|
6
|
Park J, Andrade B, Seo Y, Kim MJ, Zimmerman SC, Kong H. Engineering the Surface of Therapeutic "Living" Cells. Chem Rev 2018; 118:1664-1690. [PMID: 29336552 DOI: 10.1021/acs.chemrev.7b00157] [Citation(s) in RCA: 96] [Impact Index Per Article: 13.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Biological cells are complex living machines that have garnered significant attention for their potential to serve as a new generation of therapeutic and delivery agents. Because of their secretion, differentiation, and homing activities, therapeutic cells have tremendous potential to treat or even cure various diseases and injuries that have defied conventional therapeutic strategies. Therapeutic cells can be systemically or locally transplanted. In addition, with their ability to express receptors that bind specific tissue markers, cells are being studied as nano- or microsized drug carriers capable of targeted transport. Depending on the therapeutic targets, these cells may be clustered to promote intercellular adhesion. Despite some impressive results with preclinical studies, there remain several obstacles to their broader development, such as a limited ability to control their transport, engraftment, secretion and to track them in vivo. Additionally, creating a particular spatial organization of therapeutic cells remains difficult. Efforts have recently emerged to resolve these challenges by engineering cell surfaces with a myriad of bioactive molecules, nanoparticles, and microparticles that, in turn, improve the therapeutic efficacy of cells. This review article assesses the various technologies developed to engineer the cell surfaces. The review ends with future considerations that should be taken into account to further advance the quality of cell surface engineering.
Collapse
Affiliation(s)
| | | | | | - Myung-Joo Kim
- Department of Prosthodontics and Dental Research Institute, School of Dentistry, Seoul National University , Seoul 110-749, Korea
| | | | | |
Collapse
|
7
|
Lai S, Centi S, Borri C, Ratto F, Cavigli L, Micheletti F, Kemper B, Ketelhut S, Kozyreva T, Gonnelli L, Rossi F, Colagrande S, Pini R. A multifunctional organosilica cross-linker for the bio-conjugation of gold nanorods. Colloids Surf B Biointerfaces 2017; 157:174-181. [PMID: 28586730 DOI: 10.1016/j.colsurfb.2017.05.068] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2016] [Revised: 05/03/2017] [Accepted: 05/26/2017] [Indexed: 12/21/2022]
Abstract
We report on the use of organosilica shells to couple gold nanorods to functional peptides and modulate their physiochemical and biological profiles. In particular, we focus on the case of cell penetrating peptides, which are used to load tumor-tropic macrophages and implement an innovative drug delivery system for photothermal and photoacoustic applications. The presence of organosilica exerts subtle effects on multiple parameters of the particles, including their size, shape, electrokinetic potential, photostability, kinetics of endocytic uptake and cytotoxicity, which are investigated by the interplay of colorimetric methods and digital holographic microscopy. As a rule of thumb, as the thickness of organosilica increases from none to ∼30nm, we find an improvement of the photophysical performances at the expense of a deterioration of the biological parameters. Therefore, detailed engineering of the particles for a certain application will require a careful trade-off between photophysical and biological specifications.
Collapse
Affiliation(s)
- Sarah Lai
- Institute of Applied Physics, National Research Council of Italy, Sesto Fiorentino, Italy
| | - Sonia Centi
- Institute of Applied Physics, National Research Council of Italy, Sesto Fiorentino, Italy
| | - Claudia Borri
- Institute of Applied Physics, National Research Council of Italy, Sesto Fiorentino, Italy; Department of Experimental and Clinical Biomedical Science, University of Florence, Florence, Italy
| | - Fulvio Ratto
- Institute of Applied Physics, National Research Council of Italy, Sesto Fiorentino, Italy.
| | - Lucia Cavigli
- Institute of Applied Physics, National Research Council of Italy, Sesto Fiorentino, Italy
| | - Filippo Micheletti
- Institute of Applied Physics, National Research Council of Italy, Sesto Fiorentino, Italy
| | - Bjӧrn Kemper
- Biomedical Technology Center, University of Muenster, Muenster, Germany
| | - Steffi Ketelhut
- Biomedical Technology Center, University of Muenster, Muenster, Germany
| | | | | | - Francesca Rossi
- Institute of Applied Physics, National Research Council of Italy, Sesto Fiorentino, Italy
| | - Stefano Colagrande
- Department of Experimental and Clinical Biomedical Science, University of Florence, Florence, Italy
| | - Roberto Pini
- Institute of Applied Physics, National Research Council of Italy, Sesto Fiorentino, Italy
| |
Collapse
|
8
|
Kim J, Chhour P, Hsu J, Litt HI, Ferrari VA, Popovtzer R, Cormode DP. Use of Nanoparticle Contrast Agents for Cell Tracking with Computed Tomography. Bioconjug Chem 2017; 28:1581-1597. [PMID: 28485976 PMCID: PMC5481820 DOI: 10.1021/acs.bioconjchem.7b00194] [Citation(s) in RCA: 95] [Impact Index Per Article: 11.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
![]()
Efforts
to develop novel cell-based therapies originated with the
first bone marrow transplant on a leukemia patient in 1956. Preclinical
and clinical examples of cell-based treatment strategies have shown
promising results across many disciplines in medicine, with recent
advances in immune cell therapies for cancer producing remarkable
response rates, even in patients with multiple treatment failures.
However, cell-based therapies suffer from inconsistent outcomes, motivating
the search for tools that allow monitoring of cell delivery and behavior
in vivo. Noninvasive cell imaging techniques, also known as cell tracking,
have been developed to address this issue. These tools can allow real-time,
quantitative, and long-term monitoring of transplanted cells in the
recipient, providing insight on cell migration, distribution, viability,
differentiation, and fate, all of which play crucial roles in treatment
efficacy. Understanding these parameters allows the optimization of
cell choice, delivery route, and dosage for therapy and advances cell-based
therapy for specific clinical uses. To date, most cell tracking work
has centered on imaging modalities such as MRI, radionuclide imaging,
and optical imaging. However, X-ray computed tomography (CT) is an
emerging method for cell tracking that has several strengths such
as high spatial and temporal resolution, and excellent quantitative
capabilities. The advantages of CT for cell tracking are enhanced
by its wide availability and cost effectiveness, allowing CT to become
one of the most popular clinical imaging modalities and a key asset
in disease diagnosis. In this review, we will discuss recent advances
in cell tracking methods using X-ray CT in various applications, in
addition to predictions on how the field will progress.
Collapse
Affiliation(s)
| | | | | | | | | | - Rachela Popovtzer
- Department of Engineering, Bar-Ilan University , Ramat Gan, 5290002, Israel
| | | |
Collapse
|
9
|
Varna M, Xuan HV, Fort E. Gold nanoparticles in cardiovascular imaging. WILEY INTERDISCIPLINARY REVIEWS-NANOMEDICINE AND NANOBIOTECHNOLOGY 2017; 10. [DOI: 10.1002/wnan.1470] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/11/2016] [Revised: 02/01/2017] [Accepted: 02/25/2017] [Indexed: 01/12/2023]
Affiliation(s)
- Mariana Varna
- Institut LangevinESPCI Paris, CNRS, PSL Research UniversityParisFrance
- Institut Galien Paris‐Sud UMR 8612, CNRSUniversité Paris‐Sud/Paris‐Saclay Faculté de PharmacieChâtenay‐MalabryFrance
| | - Hoa V. Xuan
- Institut LangevinESPCI Paris, CNRS, PSL Research UniversityParisFrance
- Faculty of Physics and TechnologyThai Nguyen University of Science (TNUS)Thai NguyenVietnam
| | - Emmanuel Fort
- Institut LangevinESPCI Paris, CNRS, PSL Research UniversityParisFrance
| |
Collapse
|
10
|
Wang Q, Huang JY, Li HQ, Chen Z, Zhao AZJ, Wang Y, Zhang KQ, Sun HT, Al-Deyab SS, Lai YK. TiO 2 nanotube platforms for smart drug delivery: a review. Int J Nanomedicine 2016; 11:4819-4834. [PMID: 27703349 PMCID: PMC5036548 DOI: 10.2147/ijn.s108847] [Citation(s) in RCA: 75] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
Titania nanotube (TNT) arrays are recognized as promising materials for localized drug delivery implants because of their excellent properties and facile preparation process. This review highlights the concept of localized drug delivery systems based on TNTs, considering their outstanding biocompatibility in a series of ex vivo and in vivo studies. Considering the safety of TNT implants in the host body, studies of the biocompatibility present significant importance for the clinical application of TNT implants. Toward smart TNT platforms for sustainable drug delivery, several advanced approaches were presented in this review, including controlled release triggered by temperature, light, radiofrequency magnetism, and ultrasonic stimulation. Moreover, TNT implants used in medical therapy have been demonstrated by various examples including dentistry, orthopedic implants, cardiovascular stents, and so on. Finally, a future perspective of TNTs for clinical applications is provided.
Collapse
Affiliation(s)
- Qun Wang
- National Engineering Laboratory for Modern Silk, College of Textile and Clothing Engineering, Soochow University, Suzhou
- College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou, People’s Republic of China
| | - Jian-Ying Huang
- National Engineering Laboratory for Modern Silk, College of Textile and Clothing Engineering, Soochow University, Suzhou
| | - Hua-Qiong Li
- Wenzhou Institute of Biomaterials and Engineering, Chinese Academy of Sciences, Wenzhou, People’s Republic of China
| | - Zhong Chen
- School of Materials Science and Engineering, Nanyang Technological University, Singapore, Singapore
| | - Allan Zi-Jian Zhao
- Wenzhou Institute of Biomaterials and Engineering, Chinese Academy of Sciences, Wenzhou, People’s Republic of China
| | - Yi Wang
- Wenzhou Institute of Biomaterials and Engineering, Chinese Academy of Sciences, Wenzhou, People’s Republic of China
| | - Ke-Qin Zhang
- National Engineering Laboratory for Modern Silk, College of Textile and Clothing Engineering, Soochow University, Suzhou
| | - Hong-Tao Sun
- College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou, People’s Republic of China
| | - Salem S Al-Deyab
- Department of Chemistry, College of Science, King Saud University, Riyadh, Saudi Arabia
| | - Yue-Kun Lai
- National Engineering Laboratory for Modern Silk, College of Textile and Clothing Engineering, Soochow University, Suzhou
| |
Collapse
|
11
|
Conniot J, Silva JM, Fernandes JG, Silva LC, Gaspar R, Brocchini S, Florindo HF, Barata TS. Cancer immunotherapy: nanodelivery approaches for immune cell targeting and tracking. Front Chem 2014; 2:105. [PMID: 25505783 PMCID: PMC4244808 DOI: 10.3389/fchem.2014.00105] [Citation(s) in RCA: 115] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2014] [Accepted: 10/31/2014] [Indexed: 12/14/2022] Open
Abstract
Cancer is one of the most common diseases afflicting people globally. New therapeutic approaches are needed due to the complexity of cancer as a disease. Many current treatments are very toxic and have modest efficacy at best. Increased understanding of tumor biology and immunology has allowed the development of specific immunotherapies with minimal toxicity. It is important to highlight the performance of monoclonal antibodies, immune adjuvants, vaccines and cell-based treatments. Although these approaches have shown varying degrees of clinical efficacy, they illustrate the potential to develop new strategies. Targeted immunotherapy is being explored to overcome the heterogeneity of malignant cells and the immune suppression induced by both the tumor and its microenvironment. Nanodelivery strategies seek to minimize systemic exposure to target therapy to malignant tissue and cells. Intracellular penetration has been examined through the use of functionalized particulates. These nano-particulate associated medicines are being developed for use in imaging, diagnostics and cancer targeting. Although nano-particulates are inherently complex medicines, the ability to confer, at least in principle, different types of functionality allows for the plausible consideration these nanodelivery strategies can be exploited for use as combination medicines. The development of targeted nanodelivery systems in which therapeutic and imaging agents are merged into a single platform is an attractive strategy. Currently, several nanoplatform-based formulations, such as polymeric nanoparticles, micelles, liposomes and dendrimers are in preclinical and clinical stages of development. Herein, nanodelivery strategies presently investigated for cancer immunotherapy, cancer targeting mechanisms and nanocarrier functionalization methods will be described. We also intend to discuss the emerging nano-based approaches suitable to be used as imaging techniques and as cancer treatment options.
Collapse
Affiliation(s)
- João Conniot
- Faculdade de Farmácia, Instituto de Investigação do Medicamento (iMed.ULisboa), Universidade de Lisboa Lisboa, Portugal
| | - Joana M Silva
- Faculdade de Farmácia, Instituto de Investigação do Medicamento (iMed.ULisboa), Universidade de Lisboa Lisboa, Portugal
| | - Joana G Fernandes
- Faculdade de Farmácia, Instituto de Investigação do Medicamento (iMed.ULisboa), Universidade de Lisboa Lisboa, Portugal
| | - Liana C Silva
- Faculdade de Farmácia, Instituto de Investigação do Medicamento (iMed.ULisboa), Universidade de Lisboa Lisboa, Portugal
| | - Rogério Gaspar
- Faculdade de Farmácia, Instituto de Investigação do Medicamento (iMed.ULisboa), Universidade de Lisboa Lisboa, Portugal
| | - Steve Brocchini
- EPSRC Centre for Innovative Manufacturing in Emergent Macromolecular Therapies, UCL School of Pharmacy London, UK
| | - Helena F Florindo
- Faculdade de Farmácia, Instituto de Investigação do Medicamento (iMed.ULisboa), Universidade de Lisboa Lisboa, Portugal
| | - Teresa S Barata
- EPSRC Centre for Innovative Manufacturing in Emergent Macromolecular Therapies, UCL School of Pharmacy London, UK
| |
Collapse
|
12
|
Tzoumas S, Zaremba A, Klemm U, Nunes A, Schaefer K, Ntziachristos V. Immune cell imaging using multi-spectral optoacoustic tomography. OPTICS LETTERS 2014; 39:3523-3526. [PMID: 24978527 DOI: 10.1364/ol.39.003523] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/03/2023]
Abstract
Multispectral optoacoustic tomography (MSOT) offers the potential to image in high-resolution cells tagged with optical labels. In contrast to single wavelength imaging, multispectral excitation and spectral unmixing can differentiate labeled moieties over tissue absorption in the absence of background measurements. This feature can enable longitudinal cellular biology studies well beyond the depths reached by optical microscopy. However, the relation between spectrally resolved fluorescently labeled cells and optoacoustic detection has not been systematically investigated. Herein, we measured titrations of fluorescently labeled cells and establish the optoacoustic signal generated by these cells as a function of cell number and across different cell types. We then assess the MSOT sensitivity to resolve cells implanted in animals.
Collapse
|
13
|
Hoshino K, Joshi PP, Bhave G, Sokolov KV, Zhang X. Use of colloidal quantum dots as a digitally switched swept light source for gold nanoparticle based hyperspectral microscopy. BIOMEDICAL OPTICS EXPRESS 2014; 5:1610-5. [PMID: 24877018 PMCID: PMC4026901 DOI: 10.1364/boe.5.001610] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/21/2014] [Revised: 04/10/2014] [Accepted: 04/15/2014] [Indexed: 05/21/2023]
Abstract
We propose a method to utilize colloidal quantum dots (QDs) as a swept light source for hyperspectral microscopy. The use of QD allows for uniform multicolor emission which covers visible-NIR wavelengths. We used 8 colors of CdSe/ZnS and CdTe/ZnS colloidal quantum dots with the peak emission wavelengths from 520 nm to 800 nm. The QDs are packed in a compact enclosure, composing a low-cost, solid-state swept light source that can be easily used in most microscopes. Multicolor emission from the QDs is simply controlled by digitally switching excitation UVLEDs, eliminating the use of mechanically-driven gratings or filters. We used gold nanoparticles as optical markers for hyperspectral microscopy. Due to the effect of localized surface plasmon resonance, gold nanoparticles demonstrate size and shape-dependent absorption spectra. Employed in a standard microscope, the QD light source enabled multispectral absorption imaging of macrophage cells labeled with gold nanorods and nanospheres.
Collapse
Affiliation(s)
- Kazunori Hoshino
- Biomedical Engineering Department, University of Connecticut, 260 Glenbrook Rd Unit 3247, Storrs, Connecticut 06269-3247, USA
| | - Pratixa. P. Joshi
- Department of Biomedical Engineering, The University of Texas at Austin, 1 University Station C0800, Austin, Texas 78712-0238, USA
| | - Gauri. Bhave
- Department of Biomedical Engineering, The University of Texas at Austin, 1 University Station C0800, Austin, Texas 78712-0238, USA
| | - Konstantin V. Sokolov
- Department of Biomedical Engineering, The University of Texas at Austin, 1 University Station C0800, Austin, Texas 78712-0238, USA
| | - Xiaojing Zhang
- Department of Biomedical Engineering, The University of Texas at Austin, 1 University Station C0800, Austin, Texas 78712-0238, USA
| |
Collapse
|
14
|
Chen AL, Hu YS, Jackson MA, Lin AY, Young JK, Langsner RJ, Drezek RA. Quantifying spectral changes experienced by plasmonic nanoparticles in a cellular environment to inform biomedical nanoparticle design. NANOSCALE RESEARCH LETTERS 2014; 9:454. [PMID: 25258596 PMCID: PMC4164329 DOI: 10.1186/1556-276x-9-454] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/30/2014] [Accepted: 08/23/2014] [Indexed: 05/14/2023]
Abstract
Metal nanoparticles (NPs) scatter and absorb light in precise, designable ways, making them agile candidates for a variety of biomedical applications. When NPs are introduced to a physiological environment and interact with cells, their physicochemical properties can change as proteins adsorb on their surface and they agglomerate within intracellular endosomal vesicles. Since the plasmonic properties of metal NPs are dependent on their geometry and local environment, these physicochemical changes may alter the NPs' plasmonic properties, on which applications such as plasmonic photothermal therapy and photonic gene circuits are based. Here we systematically study and quantify how metal NPs' optical spectra change upon introduction to a cellular environment in which NPs agglomerate within endosomal vesicles. Using darkfield hyperspectral imaging, we measure changes in the peak wavelength, broadening, and distribution of 100-nm spherical gold NPs' optical spectra following introduction to human breast adenocarcinoma Sk-Br-3 cells as a function of NP exposure dose and time. On a cellular level, spectra shift up to 78.6 ± 23.5 nm after 24 h of NP exposure. Importantly, spectra broaden with time, achieving a spectral width of 105.9 ± 11.7 nm at 95% of the spectrum's maximum intensity after 24 h. On an individual intracellular NP cluster (NPC) level, spectra also show significant shifting, broadening, and heterogeneity after 24 h. Cellular transmission electron microscopy (TEM) and electromagnetic simulations of NPCs support the trends in spectral changes we measured. These quantitative data can help guide the design of metal NPs introduced to cellular environments in plasmonic NP-mediated biomedical technologies.
Collapse
Affiliation(s)
- Allen L Chen
- Department of Bioengineering, Rice University, Houston, TX 77005, USA
| | - Ying S Hu
- Waitt Advanced Biophotonics Center, Salk Institute for Biological Studies, La Jolla, CA 92037, USA
| | | | - Adam Y Lin
- Department of Bioengineering, Rice University, Houston, TX 77005, USA
| | - Joseph K Young
- Department of Electrical and Computer Engineering, Rice University, Houston, TX 77005, USA
| | - Robert J Langsner
- Department of Bioengineering, Rice University, Houston, TX 77005, USA
| | - Rebekah A Drezek
- Department of Bioengineering, Rice University, Houston, TX 77005, USA
- Department of Electrical and Computer Engineering, Rice University, Houston, TX 77005, USA
| |
Collapse
|