1
|
Punase N, Jamdar GV, Mapare G, Patil VS, Nagpure N, Patil N, Pardeshi CV, Patil CR. In silico, in vitro, and in vivo assessment of chitosan-diltiazem nanoparticles against pulmonary fibrosis. Ther Deliv 2025:1-14. [PMID: 40125984 DOI: 10.1080/20415990.2025.2478803] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2024] [Accepted: 03/10/2025] [Indexed: 03/25/2025] Open
Abstract
AIMS Diltiazem (DIL), a calcium channel blocker, has demonstrated potential ininhibiting fibrosis-related processes, including TGF-β activation, collagen production, and epithelial-mesenchymal transition, making it a promising candidate for idiopathic pulmonary fibrosis (IPF). This study evaluates the anti-fibrotic efficacy of DIL-loaded chitosan (DIL-CHT) and trimethyl chitosan (DIL-TMC) nanoparticles through molecular and experimental approaches. METHODS DIL-CHT and DIL-TMC nanoformulations were developed and analyzed particle size, ζ-potential, entrapment efficiency, and in vitro release. Antifibrotic efficacy in bleomycin (BLM)-induced IPF rat model, was tested at subtherapeutic doses (3 mg/kg/day, i.t.) and DIL alone (10 mg/kg/day, p.o.). DFT (B3LYP/6-31 G**) optimization and molecular docking were conducted to assess electronic properties and interactions among CHT, TMC, and DIL. RESULTS DIL-TMC and DIL-CHT nanoparticles were 175.6 nm and 267.8 nm, with entrapment efficiencies of 81.72% and 66.0%, respectively; TMC showed a superior 24-hour sustained release. TMC's larger HOMO-LUMO gap (ΔE = -0.260 eV vs. -0.253 eV for CHT) suggests greater stability, supporting its enhanced interaction with DIL. TMC nanoparticles significantly reduced BLM-induced IPF symptoms, i.e. BLM induced increased lung index, hydroxyproline accumulation, oxidative stress in lung tissue, and blood pressure. CONCLUSIONS These findings indicate the strong therapeutic potential of DIL-TMC for IPF with minimal cardiovascular side effects.
Collapse
Affiliation(s)
- Nandeeni Punase
- Department of Pharmacology, R. C. Patel Institute of Pharmaceutical Education and Research, Shirpur, India
| | - Ganesh V Jamdar
- Department of Pharmaceutics, R. C. Patel Institute of Pharmaceutical Education and Research, Shirpur, India
| | - Ghanshyam Mapare
- Department of Pharmacology, R. C. Patel Institute of Pharmaceutical Education and Research, Shirpur, India
| | - Vishal S Patil
- Department of Pharmacology, R. C. Patel Institute of Pharmaceutical Education and Research, Shirpur, India
| | - Narendra Nagpure
- Department of Pharmaceutical Chemistry, R. C. Patel Institute of Pharmaceutical Education and Research, Shirpur, India
| | - Niharika Patil
- Department of Pharmacology, R. C. Patel Institute of Pharmaceutical Education and Research, Shirpur, India
| | - Chandrakantsing V Pardeshi
- Department of Pharmaceutics, R. C. Patel Institute of Pharmaceutical Education and Research, Shirpur, India
| | - Chandragouda R Patil
- Department of Pharmacology, R. C. Patel Institute of Pharmaceutical Education and Research, Shirpur, India
| |
Collapse
|
2
|
Yang H, Cao G, Li X, Zhao Z, Wang Y, Xu F. Berberine Intervention Mitigates Myocardial Ischemia-Reperfusion Injury in a Rat Model: Mechanistic Insights via miR-184 Signaling. Biologics 2025; 19:31-42. [PMID: 40026702 PMCID: PMC11871928 DOI: 10.2147/btt.s479430] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2024] [Accepted: 12/31/2024] [Indexed: 03/05/2025]
Abstract
Background Ischemia-reperfusion (I/R) injury is a major contributor to myocardial dysfunction and tissue damage. A natural alkaloid-Berberine having a wide range of pharmacological properties, has garnered interest for its potential cardioprotective properties. This study aimed to investigate the protective effects of berberine on myocardial tissue in a rat model of myocardial ischemia-reperfusion (I/R) injury. Additionally, the study explored the role of the miR-184/NOTCH1 signaling pathway in mediating these effects. Methods Male Wistar rats were randomly assigned to five groups: sham-operated control, I/R injury, I/R treated with berberine, I/R treated with inhibitor NC and I/R treated with a miR-184 inhibitor. The I/R injury was induced by ligating the left anterior descending (LAD) coronary artery for 30 minutes, followed by 2 hours of reperfusion. Berberine was administered orally at 100 mg/kg/day for 2 weeks, and the miR-184 inhibitor was administered via intraperitoneal injection. Hemodynamic parameters were recorded using a pressure sensor connected to a catheter inserted into the left ventricle. Myocardial infarct size was assessed using TTC staining, while histological and molecular changes were evaluated through H&E staining, TUNEL assay, and Western blotting. The expression levels of target genes were analyzed using quantitative real-time PCR (qRT-PCR). Results Berberine significantly reduced myocardial infarct size and improved hemodynamic parameters compared to the untreated I/R group. Additionally, berberine treatment attenuated apoptosis as evidenced by decreased TUNEL-positive cells. The miR-184 inhibitor also demonstrated protective effects by modulating key signaling pathways involved in myocardial injury. Western blot analysis revealed downregulation of NOTCH1 and HES1 expression in treated groups, indicating a potential mechanism for the observed cardio protection. Conclusion Berberine and miR-184 inhibition offer significant protection against myocardial ischemia-reperfusion injury. These findings suggest that targeting miR-184 and associated pathways may be a promising therapeutic strategy for reducing cardiac damage following ischemia-reperfusion.
Collapse
Affiliation(s)
- Haichen Yang
- Department of Emergency, The Affiliated Huai’an Hospital of Xuzhou Medical University and Huai’an second People’s Hospital, Huai’an, People’s Republic of China
| | - Gang Cao
- Department of Respiratory Medicine, Hongze District People’s Hospital, Hongze, Jiangsu, People’s Republic of China
| | - Xia Li
- Department of Geriatric, The Affiliated Huai’an Hospital of Xuzhou Medical University and Huai’an Second People’s Hospital, Huai’an, People’s Republic of China
| | - Zhikun Zhao
- Department of Intensive Care Unit, The Affiliated Huai’an Hospital of Xuzhou Medical University and Huai’an Second People’s Hospital, Huai’an, People’s Republic of China
| | - Yong Wang
- Department of Cardiology, The Affiliated Huai’an Hospital of Xuzhou Medical University and Huai’an Second People’s Hospital, Huai’an, People’s Republic of China
| | - Fei Xu
- Department of Intensive Care Unit, Lianshui County People’s Hospital, Huai’an, People’s Republic of China
| |
Collapse
|
3
|
Aladenika YV, Akinjiyan MO, Elekofehinti OO, Adanlawo IG. Bambusa vulgaris leaf extract inhibits the inflammatory and oxidative pathways in streptozotocin-induced diabetic rats. JOURNAL OF ETHNOPHARMACOLOGY 2025; 339:119116. [PMID: 39580128 DOI: 10.1016/j.jep.2024.119116] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/20/2024] [Revised: 11/09/2024] [Accepted: 11/14/2024] [Indexed: 11/25/2024]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Traditional and medicinal plant treatments for diabetes mellitus (DM) include Bambusa vulgaris (Shrad.), but little is known about the mechanism. AIM OF THE STUDY This study investigated the antioxidant and hepatoprotective effects of B. vulgaris. MATERIALS AND METHODS DM was induced by intraperitoneal injection of streptozotocin (60 mg/kg). Thirty (30) male Wistar rats were then divided into six groups: control; diabetic control; metformin (100 mg/kg); 50, 100, and 200 mg/kg of B. vulgaris (BV) treated. Fasting blood glucose and weights of rats were monitored at three-day intervals and sacrifice was done after twenty-one days. The activities of SOD, CAT, and liver marker enzymes were investigated. The expressions of insulin-sensitive (TGR5, GLP-1), pro-inflammatory cytokines (TNF-α, IL-1β, IL-6, ICAM), and antioxidant genes (SOD, CAT) were investigated using RT-PCR. Schrödinger suites and Auto-Dock Vina were used for docking B. vulgaris phytocompounds identified from works of literature with TGR-5. The liver's histology was also assessed. RESULTS BV increased antioxidant activities and reduced liver marker activities in the serum. BV downregulated the expressions of genes associated with inflammation and upregulated antioxidant and insulin-sensitive genes relative to diabetic control. BV regenerated the liver architectural tissue degenerated by inflammation due to STZ. B. vulgaris phytocompounds like farobin A (-11.493 kcal/mol), orientin (-12.296 kcal/mol), and rutin (-12.581 kcal/mol) have better binding energy with TGR5 than metformin (-1.961 kcal/mol). CONCLUSION The hepatoprotective and ameliorative effect of B. vulgaris in DM could be due to its ability to boost antioxidant status and insulin secretion and reduce inflammation.
Collapse
Affiliation(s)
- Yetunde Victoria Aladenika
- Department of Biochemistry, Faculty of Science, Ekiti State University, Ado-Ekiti, Nigeria; Department of Science Laboratory Technology, Biochemistry Option, Gateway (ICT) Polytechnic, Sapaade, Ogun state, Nigeria
| | - Moses Orimoloye Akinjiyan
- Bioinformatics and Molecular Biology Unit, Department of Biochemistry, Federal University of Technology Akure, Akure, Ondo State, Nigeria; Medical Biochemistry, School of Basic Medical Sciences, Federal University of Technology, Akure, Ondo State, Nigeria.
| | - Olusola Olalekan Elekofehinti
- Bioinformatics and Molecular Biology Unit, Department of Biochemistry, Federal University of Technology Akure, Akure, Ondo State, Nigeria
| | - Isaac Gbadura Adanlawo
- Department of Biochemistry, Faculty of Science, Ekiti State University, Ado-Ekiti, Nigeria
| |
Collapse
|
4
|
Latif S, Sameeullah M, Abbasi HQ, Masood Z, Demiral Sert T, Aslam N, Pekdemir T, Imren M, Çiftçi V, Saba K, Malik MS, Ijaz F, Batool N, Mirza B, Waheed MT. Broccoli ( Brassica oleracea var. italica) leaves exhibit significant antidiabetic potential in alloxan-induced diabetic rats: the putative role of ABC vacuolar transporter for accumulation of Quercetin and Kaempferol. Front Pharmacol 2024; 15:1421131. [PMID: 39737071 PMCID: PMC11683327 DOI: 10.3389/fphar.2024.1421131] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2024] [Accepted: 11/26/2024] [Indexed: 01/01/2025] Open
Abstract
Background The global prevalence of diabetes among adults over 18 years of age is expected to increase from 10.5% to 12.2% (between 2021 and 2045). Plants can be a cost-effective source of flavonoids like quercetin and kaempferol with anti-diabetic properties. Methodology We aimed to assess the antidiabetic potential of leaves of Brassica oleracea cvs. Green Sprout and Marathon. Further, flavonoid contents were measured in broccoli leaves grown under light and dark conditions. The methanolic extracts of Green Sprout (GSL-M) and Marathon (ML-M) were first evaluated in vitro for their α-amylase and α-glucosidase inhibitory potential and then for antidiabetic activity in vivo in alloxan-induced diabetic rat models. Results Treatment with plant extracts promoted the reduced glutathione (GSH) content and CAT, POD, and SOD activities in the pancreas, liver, kidney, heart, and brain of diabetic rats, whereas lowered lipid peroxidation, H2O2, and nitrite concentrations. The histopathological studies revealed the protective effect of plant extracts at high dose (300 mg/kg), which could be due to broccoli's rich content of chlorogenic acid, quercetin, and kaempferol. Strikingly, etiolated leaves of broccoli manifested higher levels of quercetin and kaempferol than green ones. The putative role of an ABC transporter in the accumulation of quercetin and kaempferol in etiolated leaves was observed as evaluated by qRT-PCR and in silico analyses. Conclusion In conclusion, the present study shows a strong link between the antidiabetic potential of broccoli due to the presence of chlorogenic acid, quercetin, and kaempferol and the role of an ABC transporter in their accumulation within the vacuole.
Collapse
Affiliation(s)
- Sara Latif
- Department of Biology, University of Haripur, Haripur, Pakistan
| | - Muhammad Sameeullah
- Department of Field Crops, Faculty of Agriculture, Bolu Abant Izzet Baysal University, Bolu, Türkiye
- Centre for Innovative Food Technologies Development, Application and Research, Bolu Abant Izzet Baysal University, Bolu, Türkiye
| | | | - Zainab Masood
- Department of Biochemistry, Quaid-i-Azam University, Islamabad, Pakistan
| | - Tijen Demiral Sert
- Department of Biology, Faculty of Engineering and Natural Sciences, Süleyman Demirel University, Isparta, Türkiye
| | - Noreen Aslam
- Department of Biology, Faculty of Science and Literature, Bolu Abant Izzet Baysal University, Bolu, Türkiye
| | - Turgay Pekdemir
- Centre for Innovative Food Technologies Development, Application and Research, Bolu Abant Izzet Baysal University, Bolu, Türkiye
- Department of Chemical Engineering, Faculty of Engineering, Bolu Abant Izzet Baysal University, Bolu, Türkiye
| | - Mustafa Imren
- Department of Plant Protection, Faculty of Agriculture, Bolu Abant Izzet Baysal University, Bolu, Türkiye
| | - Vahdettin Çiftçi
- Department of Field Crops, Faculty of Agriculture, Bolu Abant Izzet Baysal University, Bolu, Türkiye
| | - Kiran Saba
- Department of Biochemistry, Faculty of Life Sciences, Shaheed Benazir Bhutto Women University, Peshawar, Pakistan
| | | | - Fatima Ijaz
- Department of Biochemistry, Quaid-i-Azam University, Islamabad, Pakistan
| | - Neelam Batool
- Department of Biochemistry, Quaid-i-Azam University, Islamabad, Pakistan
| | - Bushra Mirza
- Department of Biochemistry, Quaid-i-Azam University, Islamabad, Pakistan
| | | |
Collapse
|
5
|
Pathirage K, Virmani A, Scott AJ, Traub RJ, Ernst RK, Ghodssi R, Babadi B, Abshire PA. Interpretable dimensionality reduction and classification of mass spectrometry imaging data in a visceral pain model via non-negative matrix factorization. PLoS One 2024; 19:e0300526. [PMID: 39388402 PMCID: PMC11466421 DOI: 10.1371/journal.pone.0300526] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2023] [Accepted: 02/28/2024] [Indexed: 10/12/2024] Open
Abstract
Mass spectrometry imaging (MSI) is a powerful scientific tool for understanding the spatial distribution of biochemical compounds in tissue structures. In this paper, we introduce three novel approaches in MSI data processing to perform the tasks of data augmentation, feature ranking, and image registration. We use these approaches in conjunction with non-negative matrix factorization (NMF) to resolve two of the biggest challenges in MSI data analysis, namely: 1) the large file sizes and associated computational resource requirements and 2) the complexity of interpreting the very high dimensional raw spectral data. There are many dimensionality reduction techniques that address the first challenge but do not necessarily result in readily interpretable features, leaving the second challenge unaddressed. We demonstrate that NMF is an effective dimensionality reduction algorithm that reduces the size of MSI datasets by three orders of magnitude with limited loss of information, yielding spatial and spectral components with meaningful correlation to tissue structure that may be used directly for subsequent data analysis without the need for additional clustering steps. This analysis is demonstrated on an MSI dataset from female Sprague-Dawley rats for an animal model of comorbid visceral pain hypersensitivity (CPH). We find that high-dimensional MSI data (∼ 100,000 ions per pixel) can be reduced to 20 spectral NMF components with < 20% loss in reconstruction accuracy. The resulting spatial NMF components are reproducible and correlate well with H&E-stained tissue images. These components may also be used to generate images with enhanced specificity for different tissue types. Small patches of NMF data (i.e., 20 spatial NMF components over 20 × 20 pixels) provide an accuracy of ∼ 87% in classifying CPH vs naïve control subjects. This paper presents the novel data processing methodologies that were used to produce these results, encompassing novel data processing pipelines for data augmentation to support training for classification, ranking of features according to their contribution to classification, and image registration to enhance tissue-specific imaging.
Collapse
Affiliation(s)
- Kasun Pathirage
- Institute for Systems Research, University of Maryland, College Park, Maryland, United States of America
- Department of Electrical and Computer Engineering, University of Maryland, College Park, Maryland, United States of America
| | - Aman Virmani
- Institute for Systems Research, University of Maryland, College Park, Maryland, United States of America
- Department of Electrical and Computer Engineering, University of Maryland, College Park, Maryland, United States of America
| | - Alison J. Scott
- Department of Microbial Pathogenesis, University of Maryland, Baltimore, Maryland, United States of America
| | - Richard J. Traub
- Department of Neural and Pain Sciences, University of Maryland School of Dentistry, Baltimore, Maryland, United States of America
| | - Robert K. Ernst
- Department of Microbial Pathogenesis, University of Maryland, Baltimore, Maryland, United States of America
| | - Reza Ghodssi
- Institute for Systems Research, University of Maryland, College Park, Maryland, United States of America
- Department of Electrical and Computer Engineering, University of Maryland, College Park, Maryland, United States of America
| | - Behtash Babadi
- Institute for Systems Research, University of Maryland, College Park, Maryland, United States of America
- Department of Electrical and Computer Engineering, University of Maryland, College Park, Maryland, United States of America
| | - Pamela Ann Abshire
- Institute for Systems Research, University of Maryland, College Park, Maryland, United States of America
- Department of Electrical and Computer Engineering, University of Maryland, College Park, Maryland, United States of America
| |
Collapse
|
6
|
Padrez Y, Golubewa L, Timoshchenko I, Enache A, Eftimie LG, Hristu R, Rutkauskas D. Machine learning-based diagnostics of capsular invasion in thyroid nodules with wide-field second harmonic generation microscopy. Comput Med Imaging Graph 2024; 117:102440. [PMID: 39383763 DOI: 10.1016/j.compmedimag.2024.102440] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2024] [Revised: 09/20/2024] [Accepted: 09/26/2024] [Indexed: 10/11/2024]
Abstract
Papillary thyroid carcinoma (PTC) is one of the most common, well-differentiated carcinomas of the thyroid gland. PTC nodules are often surrounded by a collagen capsule that prevents the spread of cancer cells. However, as the malignant tumor progresses, the integrity of this protective barrier is compromised, and cancer cells invade the surroundings. The detection of capsular invasion is, therefore, crucial for the diagnosis and the choice of treatment and the development of new approaches aimed at the increase of diagnostic performance are of great importance. In the present study, we exploited the wide-field second harmonic generation (SHG) microscopy in combination with texture analysis and unsupervised machine learning (ML) to explore the possibility of quantitative characterization of collagen structure in the capsule and designation of different capsule areas as either intact, disrupted by invasion, or apt to invasion. Two-step k-means clustering showed that the collagen capsules in all analyzed tissue sections were highly heterogeneous and exhibited distinct segments described by characteristic ML parameter sets. The latter allowed a structural interpretation of the collagen fibers at the sites of overt invasion as fragmented and curled fibers with rarely formed distributed networks. Clustering analysis also distinguished areas in the PTC capsule that were not categorized as invasion sites by the initial histopathological analysis but could be recognized as prospective micro-invasions after additional inspection. The characteristic features of suspicious and invasive sites identified by the proposed unsupervised ML approach can become a reliable complement to existing methods for diagnosing encapsulated PTC, increase the reliability of diagnosis, simplify decision making, and prevent human-related diagnostic errors. In addition, the proposed automated ML-based selection of collagen capsule images and exclusion of non-informative regions can greatly accelerate and simplify the development of reliable methods for fully automated ML diagnosis that can be integrated into clinical practice.
Collapse
Affiliation(s)
- Yaraslau Padrez
- Center for Physical Sciences and Technology, Sauletekio Ave. 3, Vilnius LT-10257, Lithuania.
| | - Lena Golubewa
- Center for Physical Sciences and Technology, Sauletekio Ave. 3, Vilnius LT-10257, Lithuania
| | - Igor Timoshchenko
- Center for Physical Sciences and Technology, Sauletekio Ave. 3, Vilnius LT-10257, Lithuania
| | - Adrian Enache
- Central University Emergency Military Hospital, Pathology Department, 134 Calea Plevnei, Bucharest 010825, Romania
| | - Lucian G Eftimie
- Central University Emergency Military Hospital, Pathology Department, 134 Calea Plevnei, Bucharest 010825, Romania; Department of Special Motricity and Medical Recovery, The National University of Physical Education and Sports, Bucharest, Romania
| | - Radu Hristu
- Center for Microscopy-Microanalysis and Information Processing, National University of Science and Technology Politehnica Bucharest, 313 Splaiul Independentei, Bucharest 060042, Romania
| | - Danielis Rutkauskas
- Center for Physical Sciences and Technology, Sauletekio Ave. 3, Vilnius LT-10257, Lithuania
| |
Collapse
|
7
|
Breznik E, Wetzer E, Lindblad J, Sladoje N. Cross-modality sub-image retrieval using contrastive multimodal image representations. Sci Rep 2024; 14:18798. [PMID: 39138271 PMCID: PMC11322435 DOI: 10.1038/s41598-024-68800-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2022] [Accepted: 07/29/2024] [Indexed: 08/15/2024] Open
Abstract
In tissue characterization and cancer diagnostics, multimodal imaging has emerged as a powerful technique. Thanks to computational advances, large datasets can be exploited to discover patterns in pathologies and improve diagnosis. However, this requires efficient and scalable image retrieval methods. Cross-modality image retrieval is particularly challenging, since images of similar (or even the same) content captured by different modalities might share few common structures. We propose a new application-independent content-based image retrieval (CBIR) system for reverse (sub-)image search across modalities, which combines deep learning to generate representations (embedding the different modalities in a common space) with robust feature extraction and bag-of-words models for efficient and reliable retrieval. We illustrate its advantages through a replacement study, exploring a number of feature extractors and learned representations, as well as through comparison to recent (cross-modality) CBIR methods. For the task of (sub-)image retrieval on a (publicly available) dataset of brightfield and second harmonic generation microscopy images, the results show that our approach is superior to all tested alternatives. We discuss the shortcomings of the compared methods and observe the importance of equivariance and invariance properties of the learned representations and feature extractors in the CBIR pipeline. Code is available at: https://github.com/MIDA-group/CrossModal_ImgRetrieval .
Collapse
Affiliation(s)
- Eva Breznik
- Department of Information Technology, Uppsala University, 751 05, Uppsala, Sweden
- Department of Biomedical Engineering and Health Systems, Royal Institute of Technology, 141 52, Stockholm, Sweden
| | - Elisabeth Wetzer
- Department of Information Technology, Uppsala University, 751 05, Uppsala, Sweden.
- Department of Physics and Technology, UiT The Arctic University of Norway, 9037, Tromsø, Norway.
| | - Joakim Lindblad
- Department of Information Technology, Uppsala University, 751 05, Uppsala, Sweden
| | - Nataša Sladoje
- Department of Information Technology, Uppsala University, 751 05, Uppsala, Sweden
| |
Collapse
|
8
|
Harvey M, Lane B, Cisek R, Veres SP, Kreplak L, Tokarz D. Histological staining alters circular dichroism SHG measurements of collagen. OPTICS LETTERS 2024; 49:3705-3708. [PMID: 38950247 DOI: 10.1364/ol.523689] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/14/2024] [Accepted: 05/28/2024] [Indexed: 07/03/2024]
Abstract
Circular dichroism second harmonic generation microscopy (CDSHG) is a powerful imaging technique, which allows three-dimensional visualization of collagen fibril orientation in tissues. However, recent publications have obtained contradictory results on whether CDSHG can be used to reveal the relative out-of-plane polarity of collagen fibrils. Here we compare CDSHG images of unstained tendon and tendon which has been stained with hematoxylin and eosin. We find significant differences in the CDSHG between these two conditions, which explain the recent contradictory results within the literature.
Collapse
|
9
|
Sessa F, Chisari M, Salerno M, Esposito M, Zuccarello P, Capasso E, Scoto E, Cocimano G. Congenital heart diseases (CHDs) and forensic investigations: Searching for the cause of death. Exp Mol Pathol 2024; 137:104907. [PMID: 38820762 DOI: 10.1016/j.yexmp.2024.104907] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2024] [Revised: 05/17/2024] [Accepted: 05/22/2024] [Indexed: 06/02/2024]
Abstract
Congenital Heart Diseases (CHDs) are a group of structural abnormalities or defects of the heart that are present at birth. CHDs could be connected to sudden death (SD), defined by the WHO (World Health Organization) as "death occurring within 24 h after the onset of the symptoms" in an apparently "healthy" subject. These conditions can range from relatively mild defects to severe, life-threatening anomalies. The prevalence of CHDs varies across populations, but they affect millions of individuals worldwide. This article aims to discuss the post-mortem investigation of death related to CHDs, exploring the forensic approach, current methodologies, challenges, and potential advancements in this challenging field. A further goal of this article is to provide a guide for understanding these complex diseases, highlighting the pivotal role of autopsy, histopathology, and genetic investigations in defining the cause of death, and providing evidence about the translational use of autopsy reports. Forensic investigations play a crucial role in understanding the complexities of CHDs and determining the cause of death accurately. Through collaboration between medical professionals and forensic experts, meticulous examinations, and analysis of evidence, valuable insights can be gained. These insights not only provide closure to the families affected but also contribute to the prevention of future tragedies.
Collapse
Affiliation(s)
- Francesco Sessa
- Department of Medical, Surgical and Advanced Technologies "G.F. Ingrassia", University of Catania, 95121 Catania, Italy.
| | - Mario Chisari
- "Rodolico-San Marco" Hospital, Santa Sofia Street, 87, Catania 95121, Italy.
| | - Monica Salerno
- Department of Medical, Surgical and Advanced Technologies "G.F. Ingrassia", University of Catania, 95121 Catania, Italy.
| | | | - Pietro Zuccarello
- Department of Medical, Surgical and Advanced Technologies "G.F. Ingrassia", University of Catania, 95121 Catania, Italy.
| | - Emanuele Capasso
- Department of Advanced Biomedical Science-Legal Medicine Section, University of Naples "Federico II", 80131 Naples, Italy.
| | - Edmondo Scoto
- Department of Medical, Surgical and Advanced Technologies "G.F. Ingrassia", University of Catania, 95121 Catania, Italy
| | - Giuseppe Cocimano
- Department of Mental and Physical Health and Preventive Medicine, University of Campania "Vanvitelli", 80121 Napoli, Italy.
| |
Collapse
|
10
|
Wang Z, Wu Y, Li X, Ji X, Liu W. The gut microbiota facilitate their host tolerance to extreme temperatures. BMC Microbiol 2024; 24:131. [PMID: 38643098 PMCID: PMC11031955 DOI: 10.1186/s12866-024-03277-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2023] [Accepted: 03/25/2024] [Indexed: 04/22/2024] Open
Abstract
BACKGROUND Exposure to extreme cold or heat temperature is one leading cause of weather-associated mortality and morbidity in animals. Emerging studies demonstrate that the microbiota residing in guts act as an integral factor required to modulate host tolerance to cold or heat exposure, but common and unique patterns of animal-temperature associations between cold and heat have not been simultaneously examined. Therefore, we attempted to investigate the roles of gut microbiota in modulating tolerance to cold or heat exposure in mice. RESULTS The results showed that both cold and heat acutely change the body temperature of mice, but mice efficiently maintain their body temperature at conditions of chronic extreme temperatures. Mice adapt to extreme temperatures by adjusting body weight gain, food intake and energy harvest. Fascinatingly, 16 S rRNA sequencing shows that extreme temperatures result in a differential shift in the gut microbiota. Moreover, transplantation of the extreme-temperature microbiota is sufficient to enhance host tolerance to cold and heat, respectively. Metagenomic sequencing shows that the microbiota assists their hosts in resisting extreme temperatures through regulating the host insulin pathway. CONCLUSIONS Our findings highlight that the microbiota is a key factor orchestrating the overall energy homeostasis under extreme temperatures, providing an insight into the interaction and coevolution of hosts and gut microbiota.
Collapse
Affiliation(s)
- Ziguang Wang
- School of Plant Protection, Anhui Province Key Laboratory of Crop Integrated Pest Management, Anhui Province Engineering Laboratory for Green Pesticide Development and Application, Anhui Agricultural University, Hefei, China
- First Clinical Medical College, Mudanjiang Medical College, Mudanjiang, China
| | - Yujie Wu
- School of Plant Protection, Anhui Province Key Laboratory of Crop Integrated Pest Management, Anhui Province Engineering Laboratory for Green Pesticide Development and Application, Anhui Agricultural University, Hefei, China
| | - Xinxin Li
- China-Japan Union Hospital, Jilin University, Changchun, China
| | - Xiaowen Ji
- School of Plant Protection, Anhui Province Key Laboratory of Crop Integrated Pest Management, Anhui Province Engineering Laboratory for Green Pesticide Development and Application, Anhui Agricultural University, Hefei, China.
| | - Wei Liu
- School of Plant Protection, Anhui Province Key Laboratory of Crop Integrated Pest Management, Anhui Province Engineering Laboratory for Green Pesticide Development and Application, Anhui Agricultural University, Hefei, China.
| |
Collapse
|
11
|
Kim J, Dwivedi G, Boughton BA, Sharma A, Lee S. Advances in cellular and tissue-based imaging techniques for sarcoid granulomas. Am J Physiol Cell Physiol 2024; 326:C10-C26. [PMID: 37955119 DOI: 10.1152/ajpcell.00507.2023] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2023] [Revised: 11/06/2023] [Accepted: 11/08/2023] [Indexed: 11/14/2023]
Abstract
Sarcoidosis embodies a complex inflammatory disorder spanning multiple systems, with its origin remaining elusive. It manifests as the infiltration of inflammatory cells that coalesce into distinctive noncaseous granulomas within afflicted organs. Unraveling this disease necessitates the utilization of cellular or tissue-based imaging methods to both visualize and characterize the biochemistry of these sarcoid granulomas. Although hematoxylin and eosin stain, standard in routine use alongside cytological stains have found utility in diagnosis within clinical contexts, special stains such as Masson's trichrome, reticulin, methenamine silver, and Ziehl-Neelsen provide additional varied perspectives of sarcoid granuloma imaging. Immunohistochemistry aids in pinpointing specific proteins and gene expressions further characterizing these granulomas. Finally, recent advances in spatial transcriptomics promise to divulge profound insights into their spatial orientation and three-dimensional (3-D) molecular mapping. This review focuses on a range of preexisting imaging methods employed for visualizing sarcoid granulomas at the cellular level while also exploring the potential of the latest cutting-edge approaches like spatial transcriptomics and matrix-assisted laser desorption ionization mass spectrometry imaging (MALDI-MSI), with the overarching goal of shedding light on the trajectory of sarcoidosis research.
Collapse
Affiliation(s)
- Junwoo Kim
- Department of Advanced Clinical and Translational Cardiovascular Imaging, Harry Perkins Institute of Medical Research, Murdoch, Western Australia, Australia
- School of Medicine, The University of Western Australia, Perth, Western Australia, Australia
| | - Girish Dwivedi
- Department of Advanced Clinical and Translational Cardiovascular Imaging, Harry Perkins Institute of Medical Research, Murdoch, Western Australia, Australia
- School of Medicine, The University of Western Australia, Perth, Western Australia, Australia
- Department of Cardiology, Fiona Stanley Hospital, Murdoch, Western Australia, Australia
| | - Berin A Boughton
- Australian National Phenome Centre, Murdoch University, Murdoch, Western Australia, Australia
| | - Ankur Sharma
- Onco-Fetal Ecosystem Laboratory, Harry Perkins Institute of Medical Research, Nedlands, Western Australia, Australia
- Curtin Medical School, Curtin University, Perth, Western Australia, Australia
| | - Silvia Lee
- Department of Advanced Clinical and Translational Cardiovascular Imaging, Harry Perkins Institute of Medical Research, Murdoch, Western Australia, Australia
- School of Medicine, The University of Western Australia, Perth, Western Australia, Australia
- Curtin Medical School, Curtin University, Perth, Western Australia, Australia
| |
Collapse
|
12
|
Dunne J, Griner J, Romeo M, Macdonald J, Krieg C, Lim M, Yagnik G, Rothschild KJ, Drake RR, Mehta AS, Angel PM. Evaluation of antibody-based single cell type imaging techniques coupled to multiplexed imaging of N-glycans and collagen peptides by matrix-assisted laser desorption/ionization mass spectrometry imaging. Anal Bioanal Chem 2023; 415:7011-7024. [PMID: 37843548 PMCID: PMC10632234 DOI: 10.1007/s00216-023-04983-2] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2023] [Revised: 09/07/2023] [Accepted: 09/18/2023] [Indexed: 10/17/2023]
Abstract
The integration of matrix-assisted laser desorption/ionization mass spectrometry imaging (MALDI-MSI) with single cell spatial omics methods allows for a comprehensive investigation of single cell spatial information and matrisomal N-glycan and extracellular matrix protein imaging. Here, the performance of the antibody-directed single cell workflows coupled with MALDI-MSI are evaluated. Miralys™ photocleavable mass-tagged antibody probes (MALDI-IHC, AmberGen, Inc.), GeoMx DSP® (NanoString, Inc.), and Imaging Mass Cytometry (IMC, Standard BioTools Inc.) were used in series with MALDI-MSI of N-glycans and extracellular matrix peptides on formalin-fixed paraffin-embedded tissues. Single cell omics protocols were performed before and after MALDI-MSI. The data suggests that for each modality combination, there is an optimal order for performing both techniques on the same tissue section. An overall conclusion is that MALDI-MSI studies may be completed on the same tissue section as used for antibody-directed single cell modalities. This work increases access to combined cellular and extracellular information within the tissue microenvironment to enhance research on the pathological origins of disease.
Collapse
Affiliation(s)
- Jaclyn Dunne
- Department of Cell and Molecular Pharmacology & Experimental Therapeutics, Medical University of South Carolina, 173 Ashley Avenue BSB 358, Charleston, SC, 29425, USA
| | - Jake Griner
- Department of Cell and Molecular Pharmacology & Experimental Therapeutics, Medical University of South Carolina, 173 Ashley Avenue BSB 358, Charleston, SC, 29425, USA
| | - Martin Romeo
- Translational Science Laboratory, Hollings Cancer Center, Charleston, SC, 29425, USA
| | - Jade Macdonald
- Department of Cell and Molecular Pharmacology & Experimental Therapeutics, Medical University of South Carolina, 173 Ashley Avenue BSB 358, Charleston, SC, 29425, USA
| | - Carsten Krieg
- Department of Pathology and Laboratory Medicine, Medical University of South Carolina, Charleston, SC, 29425, USA
| | - Mark Lim
- AmberGen, Inc, 44 Manning Road, Billerica, MA, 01821, USA
| | - Gargey Yagnik
- AmberGen, Inc, 44 Manning Road, Billerica, MA, 01821, USA
| | - Kenneth J Rothschild
- AmberGen, Inc, 44 Manning Road, Billerica, MA, 01821, USA
- Department of Physics and Photonics Center, Boston University, Boston, MA, 02215, USA
| | - Richard R Drake
- Department of Cell and Molecular Pharmacology & Experimental Therapeutics, Medical University of South Carolina, 173 Ashley Avenue BSB 358, Charleston, SC, 29425, USA
| | - Anand S Mehta
- Department of Cell and Molecular Pharmacology & Experimental Therapeutics, Medical University of South Carolina, 173 Ashley Avenue BSB 358, Charleston, SC, 29425, USA
| | - Peggi M Angel
- Department of Cell and Molecular Pharmacology & Experimental Therapeutics, Medical University of South Carolina, 173 Ashley Avenue BSB 358, Charleston, SC, 29425, USA.
| |
Collapse
|
13
|
Stanciu SG, Hristu R, Stanciu GA, Tranca DE, Eftimie L, Dumitru A, Costache M, Stenmark HA, Manders H, Cherian A, Tark-Dame M, Manders EMM. Super-resolution re-scan second harmonic generation microscopy. Proc Natl Acad Sci U S A 2022; 119:e2214662119. [PMID: 36375085 PMCID: PMC9704717 DOI: 10.1073/pnas.2214662119] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2022] [Accepted: 10/13/2022] [Indexed: 07/26/2023] Open
Abstract
Second harmonic generation microscopy (SHG) is generally acknowledged as a powerful tool for the label-free three-dimensional visualization of tissues and advanced materials, with one of its most popular applications being collagen imaging. Despite the great need, progress in super-resolved SHG imaging lags behind the developments reported over the past years in fluorescence-based optical nanoscopy. In this work, we demonstrate super-resolved re-scan SHG, qualitatively and quantitatively showing on collagenous tissues the available resolution advantage over the diffraction limit. We introduce as well super-resolved re-scan two-photon excited fluorescence microscopy, an imaging modality not explored to date.
Collapse
Affiliation(s)
- Stefan G. Stanciu
- Center for Microscopy-Microanalysis and Information Processing, University Politehnica of Bucharest, 060042 Bucharest, Romania
| | - Radu Hristu
- Center for Microscopy-Microanalysis and Information Processing, University Politehnica of Bucharest, 060042 Bucharest, Romania
| | - George A. Stanciu
- Center for Microscopy-Microanalysis and Information Processing, University Politehnica of Bucharest, 060042 Bucharest, Romania
| | - Denis E. Tranca
- Center for Microscopy-Microanalysis and Information Processing, University Politehnica of Bucharest, 060042 Bucharest, Romania
| | - Lucian Eftimie
- Pathology Department, Emergency Military Hospital, 010825 Bucharest, Romania
| | - Adrian Dumitru
- Department of Pathology, Bucharest Emergency University Hospital, 050098 Bucharest, Romania
- Department of Pathology, Carol Davila University of Medicine and Pharmacy, 050474 Bucharest, Romania
| | - Mariana Costache
- Department of Pathology, Bucharest Emergency University Hospital, 050098 Bucharest, Romania
- Department of Pathology, Carol Davila University of Medicine and Pharmacy, 050474 Bucharest, Romania
| | - Harald A. Stenmark
- Department of Molecular Cell Biology, Institute for Cancer Research, Oslo University Hospital, 0379 Oslo, Norway
| | - Harm Manders
- Confocal.nl BV, Science Park 406, 1098XG Amsterdam, The Netherlands
| | - Amit Cherian
- Confocal.nl BV, Science Park 406, 1098XG Amsterdam, The Netherlands
| | | | | |
Collapse
|
14
|
PSHG-TISS: A collection of polarization-resolved second harmonic generation microscopy images of fixed tissues. Sci Data 2022; 9:376. [PMID: 35780180 PMCID: PMC9250519 DOI: 10.1038/s41597-022-01477-1] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2022] [Accepted: 06/13/2022] [Indexed: 11/23/2022] Open
Abstract
Second harmonic generation (SHG) microscopy is acknowledged as an established imaging technique capable to provide information on the collagen architecture in tissues that is highly valuable for the diagnostics of various pathologies. The polarization-resolved extension of SHG (PSHG) microscopy, together with associated image processing methods, retrieves extensive image sets under different input polarization settings, which are not fully exploited in clinical settings. To facilitate this, we introduce PSHG-TISS, a collection of PSHG images, accompanied by additional computationally generated images which can be used to complement the subjective qualitative analysis of SHG images. These latter have been calculated using the single-axis molecule model for collagen and provide 2D representations of different specific PSHG parameters known to account for the collagen structure and distribution. PSHG-TISS can aid refining existing PSHG image analysis methods, while also supporting the development of novel image processing and analysis methods capable to extract meaningful quantitative data from the raw PSHG image sets. PSHG-TISS can facilitate the breadth and widespread of PSHG applications in tissue analysis and diagnostics. Measurement(s) | Type I Collagen | Technology Type(s) | multi-photon laser scanning microscopy | Factor Type(s) | second order susceptibility tensor elements | Sample Characteristic - Organism | Homo sapiens | Sample Characteristic - Environment | laboratory environment | Sample Characteristic - Location | Romania |
Collapse
|
15
|
Assessment of Ultra-Early-Stage Liver Fibrosis in Human Non-Alcoholic Fatty Liver Disease by Second-Harmonic Generation Microscopy. Int J Mol Sci 2022; 23:ijms23063357. [PMID: 35328778 PMCID: PMC8949080 DOI: 10.3390/ijms23063357] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2022] [Revised: 03/15/2022] [Accepted: 03/18/2022] [Indexed: 12/10/2022] Open
Abstract
Non-alcoholic fatty liver disease (NAFLD) is associated with the chronic progression of fibrosis. In general, the progression of liver fibrosis is determined by a histopathological assessment with a collagen-stained section; however, the ultra-early stage of liver fibrosis is challenging to identify because of the low sensitivity in the collagen-selective staining method. In the present study, we demonstrate the feasibility of second-harmonic generation (SHG) microscopy in the histopathological diagnosis of the liver of NAFLD patients for the quantitative assessment of the ultra-early stage of fibrosis. We investigated four representative NAFLD patients with early stages of fibrosis. SHG microscopy visualised well-matured fibrotic structures and early fibrosis diffusely involving liver tissues, whereas early fibrosis is challenging to be identified by conventional histopathological methods. Furthermore, the SHG emission directionality analysis revealed the maturation of each collagen fibre of each patient. As a result, SHG microscopy is feasible for assessing liver fibrosis on NAFLD patients, including the ultra-early stage of liver fibrosis that is difficult to diagnose by the conventional histopathological method. The assessment method of the ultra-early fibrosis by using SHG microscopy may serve as a crucial means for pathological, clinical, and prognostic diagnosis of NAFLD patients.
Collapse
|
16
|
Second-Harmonic Generation Imaging Reveals Changes in Breast Tumor Collagen Induced by Neoadjuvant Chemotherapy. Cancers (Basel) 2022; 14:cancers14040857. [PMID: 35205605 PMCID: PMC8869853 DOI: 10.3390/cancers14040857] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2022] [Accepted: 02/03/2022] [Indexed: 12/10/2022] Open
Abstract
Breast cancer is the most common invasive cancer in women, with most deaths attributed to metastases. Neoadjuvant chemotherapy (NACT) may be prescribed prior to surgical removal of the tumor for subsets of breast cancer patients but can have diverse undesired and off-target effects, including the increased appearance of the 'tumor microenvironment of metastasis', image-based multicellular signatures that are prognostic of breast tumor metastasis. To assess whether NACT can induce changes in two other image-based prognostic/predictive signatures derived from tumor collagen, we quantified second-harmonic generation (SHG) directionality and fiber alignment in formalin-fixed, paraffin-embedded sections of core needle biopsies and primary tumor excisions from 22 human epidermal growth factor receptor 2-overexpressing (HER2+) and 22 triple-negative breast cancers. In both subtypes, we found that SHG directionality (i.e., the forward-to-backward scattering ratio, or F/B) is increased by NACT in the bulk of the tumor, but not the adjacent tumor-stroma interface. Overall collagen fiber alignment is increased by NACT in triple-negative but not HER2+ breast tumors. These results suggest that NACT impacts the collagenous extracellular matrix in a complex and subtype-specific manner, with some prognostic features being unchanged while others are altered in a manner suggestive of a more metastatic phenotype.
Collapse
|