1
|
Solorzano Aldana MC, Matava CT, Blake CM. Impact of Skin Pigmentation on Light-Based Medical Devices: Current State and Future Directions for Inclusive Technology. Anesth Analg 2025:00000539-990000000-01178. [PMID: 39964941 DOI: 10.1213/ane.0000000000007401] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/20/2025]
Affiliation(s)
- Maria C Solorzano Aldana
- From the Department of Anesthesia, the Hospital for Sick Children, Toronto, Ontario, Canada
- Department of Anesthesiology and Pain Medicine, University of Toronto, Toronto, Ontario, Canada
| | - Clyde T Matava
- From the Department of Anesthesia, the Hospital for Sick Children, Toronto, Ontario, Canada
- Department of Anesthesiology and Pain Medicine, University of Toronto, Toronto, Ontario, Canada
| | - Charlene M Blake
- Department of Anesthesia and Perioperative Care, University of California San Francisco School of Medicine, San Francisco, California
| |
Collapse
|
2
|
Lacerenza M, Amendola C, Bargigia I, Bossi A, Buttafava M, Calcaterra V, Contini D, Damagatla V, Negretti F, Rossi V, Spinelli L, Zanelli S, Zuccotti G, Torricelli A. Challenging the skin pigmentation bias in tissue oximetry via time-domain near-infrared spectroscopy. BIOMEDICAL OPTICS EXPRESS 2025; 16:690-708. [PMID: 39958842 PMCID: PMC11828448 DOI: 10.1364/boe.541239] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/03/2024] [Revised: 11/26/2024] [Accepted: 12/15/2024] [Indexed: 02/18/2025]
Abstract
Recently, skin pigmentation has been shown to affect the performance of pulse oximeters and other light-based techniques like photo-acoustic imaging, tissue oximetry, and continuous wave near-infrared spectroscopy. Evaluating the robustness to changes in skin pigmentation is therefore essential for the proper use of optical technologies in the clinical scenario. We conducted systematic time-domain near-infrared spectroscopy measurements on calibrated tissue phantoms and in vivo on volunteers during static and dynamic (i.e., arterial occlusion) measurements. To simulate varying melanosome volume fractions in the skin, we inserted, between the target sample and the measurement probe, thin tissue phantoms made of silicone and nigrosine (skin phantoms). Additionally, we conducted an extensive measurement campaign on a large cohort of pediatric subjects, covering the full spectrum of skin pigmentation. Our findings consistently demonstrate that skin pigmentation has a negligible effect on time-domain near-infrared spectroscopy results, underscoring the reliability and potential of this emerging technology in diverse clinical settings.
Collapse
Affiliation(s)
| | - Caterina Amendola
- Politecnico di Milano, Dipartimento di Fisica, piazza Leonardo da Vinci 32, 20133 Milan, Italy
| | - Ilaria Bargigia
- Politecnico di Milano, Dipartimento di Fisica, piazza Leonardo da Vinci 32, 20133 Milan, Italy
- Center for Nano Science and Technology@PoliMi, Istituto Italiano di Tecnologia, via Rubattino 81, 20134 Milan, Italy
| | - Alessandro Bossi
- Politecnico di Milano, Dipartimento di Fisica, piazza Leonardo da Vinci 32, 20133 Milan, Italy
| | | | - Valeria Calcaterra
- Buzzi Children’s Hospital, Pediatric Department, Via Lodovico Castelvetro, 32, 20154 Milan, Italy
- University of Pavia, Pediatric and Adolescent Unit, Department of Internal Medicine, Viale Golgi 19, 27100 Pavia, Italy
| | - Davide Contini
- Politecnico di Milano, Dipartimento di Fisica, piazza Leonardo da Vinci 32, 20133 Milan, Italy
| | - Vamshi Damagatla
- Politecnico di Milano, Dipartimento di Fisica, piazza Leonardo da Vinci 32, 20133 Milan, Italy
| | - Fabio Negretti
- Politecnico di Milano, Dipartimento di Fisica, piazza Leonardo da Vinci 32, 20133 Milan, Italy
| | - Virginia Rossi
- Buzzi Children’s Hospital, Pediatric Department, Via Lodovico Castelvetro, 32, 20154 Milan, Italy
| | - Lorenzo Spinelli
- Consiglio Nazionale delle Ricerche, Istituto di Fotonica e Nanotecnologie, Piazza Leonardo da Vinci 32, 20133 Milan, Italy
| | - Sara Zanelli
- Buzzi Children’s Hospital, Pediatric Department, Via Lodovico Castelvetro, 32, 20154 Milan, Italy
| | - Gianvincenzo Zuccotti
- Buzzi Children’s Hospital, Pediatric Department, Via Lodovico Castelvetro, 32, 20154 Milan, Italy
- University of Milan, Department of Biomedical and Clinical Science, Via Giovanni Battista Grassi 74, 20157 Milan, Italy
| | - Alessandro Torricelli
- Politecnico di Milano, Dipartimento di Fisica, piazza Leonardo da Vinci 32, 20133 Milan, Italy
- Consiglio Nazionale delle Ricerche, Istituto di Fotonica e Nanotecnologie, Piazza Leonardo da Vinci 32, 20133 Milan, Italy
| |
Collapse
|
3
|
Burkett LS, Ghatas M, Query H, Daniels P, Grob G, Matthew A, Rogers D, Stothers L, Speich JE, Klausner AP. Comparative Neuroexcitation Patterns Using fNIRS in Women With Overactive Bladder. UROGYNECOLOGY (PHILADELPHIA, PA.) 2024:02273501-990000000-00315. [PMID: 39715049 DOI: 10.1097/spv.0000000000001625] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/25/2024]
Abstract
IMPORTANCE Functional near-infrared spectroscopy (fNIRS) is a noninvasive technique used to quantify prefrontal cortex (PFC) neuroexcitation. The PFC is involved in the decision to void, and dysfunction in the region has been associated with overactive bladder (OAB). This study demonstrates neuroexcitation differences in the brain region associated with the decision to void (prefrontal cortex) using noninvasive fNIRS. OBJECTIVE The objective of this study was to compare PFC neuroexcitation during natural filling in female participants with and without OAB. STUDY DESIGN Female participants with OAB were cross-sectionally compared with controls without urinary urgency. The fNIRS signals were continuously recorded during an oral hydration protocol. Simultaneously, recordings of real-time bladder sensation of fullness were completed. A period of "high sensation" was defined as the time from first desire to 100% sensation. Signal analysis included removal of motion artifact, low pass filtering, and interpolated to standardize reporting bladder filling time. RESULTS A total of 25 female participants were enrolled and had complete analyzable data, including 14 with OAB and 11 controls without OAB. Change in O2Hb during the high sensation period was significantly lower in all PFC regions in the OAB group compared with controls (P < 0.001). The majority of OAB participants had a constant or decreasing neuroexcitation pattern, which differenced in comparison to normal controls who displayed an increasing pattern. CONCLUSIONS This study demonstrates that fNIRS PFC excitation during a period of high sensation is consistently lower in women with OAB as compared with controls. These data support the hypothesis that the PFC plays an inhibitory role in voiding function and that there may be a lack of inhibitory control in women with OAB.
Collapse
Affiliation(s)
| | - Mina Ghatas
- Division of Urology, Department of Surgery, Virginia Commonwealth University Health System, Richmond, VA
| | | | | | - Gabrielle Grob
- Division of Urology, Department of Surgery, Virginia Commonwealth University Health System, Richmond, VA
| | | | | | - Lynn Stothers
- Department of Urology, University of California Los Angeles, Los Angeles, CA
| | - John E Speich
- Department of Mechanical and Nuclear Engineering, Virginia Commonwealth University, Richmond, VA
| | | |
Collapse
|
4
|
Vasudevan S, Vogt WC, Weininger S, Pfefer TJ. Melanometry for objective evaluation of skin pigmentation in pulse oximetry studies. COMMUNICATIONS MEDICINE 2024; 4:138. [PMID: 38992188 PMCID: PMC11239860 DOI: 10.1038/s43856-024-00550-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2023] [Accepted: 06/11/2024] [Indexed: 07/13/2024] Open
Abstract
Pulse oximetry enables real-time, noninvasive monitoring of arterial blood oxygen levels. However, results can vary with skin color, thus detecting disparities during clinical validation studies requires an accurate measure of skin pigmentation. Recent clinical studies have used subjective methods such as self-reported color, race/ethnicity to categorize skin. Melanometers based on optical reflectance may offer a more effective, objective approach to assess pigmentation. Here, we review melanometry approaches and assess evidence supporting their use as clinical research tools. We compare performance data, including repeatability, robustness to confounders, and compare devices to each other, to subjective methods, and high-quality references. Finally, we propose best practices for evaluating melanometers and discuss alternate optical approaches that may improve accuracy. Whilst evidence indicates that melanometers can provide superior performance to subjective approaches, we encourage additional research and standardization efforts, as these are needed to ensure consistent and reliable results in clinical studies.
Collapse
Affiliation(s)
- Sandhya Vasudevan
- Center for Devices and Radiological Health, Food and Drug Administration, 10903 New Hampshire Ave, Silver Spring, MD, 20993, USA.
| | - William C Vogt
- Center for Devices and Radiological Health, Food and Drug Administration, 10903 New Hampshire Ave, Silver Spring, MD, 20993, USA
| | - Sandy Weininger
- Center for Devices and Radiological Health, Food and Drug Administration, 10903 New Hampshire Ave, Silver Spring, MD, 20993, USA
| | - T Joshua Pfefer
- Center for Devices and Radiological Health, Food and Drug Administration, 10903 New Hampshire Ave, Silver Spring, MD, 20993, USA
| |
Collapse
|
5
|
Roy S, Wu J, Cao J, Disu J, Bharadwaj S, Meinert-Spyker E, Grover P, Kainerstorfer JM, Wood S. Exploring the impact and influence of melanin on frequency-domain near-infrared spectroscopy measurements. JOURNAL OF BIOMEDICAL OPTICS 2024; 29:S33310. [PMID: 39323492 PMCID: PMC11423252 DOI: 10.1117/1.jbo.29.s3.s33310] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/30/2024] [Revised: 08/12/2024] [Accepted: 08/30/2024] [Indexed: 09/27/2024]
Abstract
Significance Near-infrared spectroscopy (NIRS) is a non-invasive optical method that measures changes in hemoglobin concentration and oxygenation. The measured light intensity is susceptible to reduced signal quality due to the presence of melanin. Aim We quantify the influence of melanin concentration on NIRS measurements taken with a frequency-domain near-infrared spectroscopy system using 690 and 830 nm. Approach Using a forehead NIRS probe, we measured 35 healthy participants and investigated the correlation between melanin concentration indices, which were determined using a colorimeter, and several key metrics from the NIRS signal. These metrics include signal-to-noise ratio (SNR), two measurements of oxygen saturation (arterial oxygen saturation,SpO 2 , and tissue oxygen saturation,StO 2 ), and optical properties represented by the absorption coefficient (μ a ) and the reduced scattering coefficient (μ s ' ). Results We found a significant negative correlation between the melanin index and the SNR estimated in oxy-hemoglobin signals (r s = - 0.489 , p = 0.006 ) andSpO 2 levels (r s = - 0.413 , p = 0.023 ). However, no significant changes were observed in the optical properties andStO 2 (r s = - 0.146 , p = 0.44 ). Conclusions We found that estimated SNR andSpO 2 values show a significant decline and dependence on the melanin index, whereasStO 2 and optical properties do not show any correlation with the melanin index.
Collapse
Affiliation(s)
- Shidhartho Roy
- Carnegie Mellon University, Department of Biomedical Engineering, Pittsburgh, Pennsylvania, United States
- Carnegie Mellon University, Department of Electrical and Computer Engineering, Pittsburgh, Pennsylvania, United States
| | - Jingyi Wu
- Carnegie Mellon University, Department of Biomedical Engineering, Pittsburgh, Pennsylvania, United States
| | - Jiaming Cao
- Carnegie Mellon University, Department of Biomedical Engineering, Pittsburgh, Pennsylvania, United States
| | - Joel Disu
- Carnegie Mellon University, Department of Biomedical Engineering, Pittsburgh, Pennsylvania, United States
| | - Sharadhi Bharadwaj
- Carnegie Mellon University, Department of Biomedical Engineering, Pittsburgh, Pennsylvania, United States
| | - Elizabeth Meinert-Spyker
- Carnegie Mellon University, Department of Biomedical Engineering, Pittsburgh, Pennsylvania, United States
| | - Pulkit Grover
- Carnegie Mellon University, Department of Biomedical Engineering, Pittsburgh, Pennsylvania, United States
- Carnegie Mellon University, Department of Electrical and Computer Engineering, Pittsburgh, Pennsylvania, United States
- Carnegie Mellon University, Neuroscience Institute, Pittsburgh, Pennsylvania, United States
| | - Jana M. Kainerstorfer
- Carnegie Mellon University, Department of Biomedical Engineering, Pittsburgh, Pennsylvania, United States
- Carnegie Mellon University, Department of Electrical and Computer Engineering, Pittsburgh, Pennsylvania, United States
- Carnegie Mellon University, Neuroscience Institute, Pittsburgh, Pennsylvania, United States
| | - Sossena Wood
- Carnegie Mellon University, Department of Biomedical Engineering, Pittsburgh, Pennsylvania, United States
- Carnegie Mellon University, Department of Electrical and Computer Engineering, Pittsburgh, Pennsylvania, United States
- Carnegie Mellon University, Neuroscience Institute, Pittsburgh, Pennsylvania, United States
| |
Collapse
|
6
|
Bhusal A, Farahmand M, Hasan MS, Vasudevan S, Vogt WC, Ibarra B, Weininger S, Scully CG, Frank Zhang X, Chen Y, Pfefer TJ. Development and characterization of silicone-based tissue phantoms for pulse oximeter performance testing. JOURNAL OF BIOMEDICAL OPTICS 2024; 29:S33314. [PMID: 39776836 PMCID: PMC11706025 DOI: 10.1117/1.jbo.29.s3.s33314] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/25/2024] [Revised: 11/22/2024] [Accepted: 12/10/2024] [Indexed: 01/11/2025]
Abstract
Significance Pulse oximeter measurements are commonly relied upon for managing patient care and thus often require human testing before they can be legally marketed. Recent clinical studies have also identified disparities in their measurement of blood oxygen saturation by race or skin pigmentation. Aim The development of a reliable bench-top performance test method based on tissue-simulating phantoms has the potential to facilitate pre-market assessment and the development of more accurate and equitable devices. To generate phantoms capable of mimicking physical mechanisms and providing realistic results, customized tissue-mimicking materials (TMMs) are needed. Approach We focused on the development of channelized finger phantoms based on flexible silicone elastomers and their implementation in a pulsatile pressurized fluid network. Candidate TMMs were formulated to achieve a range of biologically relevant mechanical and optical properties by modifying components and curing protocols. Results Our final optimized TMM had a Shore OO hardness of 32 and an elastic modulus of 130 kPa. TMM samples with sub-millimeter diameter channels exhibited compliance-increase in channel diameter with internal fluid pressure, as measured by optical coherence tomography-that was linearly dependent on internal pressure. Phantoms implemented in the pressurized network with an absorber-doped fluid and measured by a photoplethysmographic (PPG) sensor displayed tunable modulation levels ranging from 0.6% to 18.1% at 940 nm. Finally, we demonstrated that the system could be used to generate measurements in several clinical pulse oximeters and variations in PPG waveform could be produced by varying the simulated epidermal melanin content. Conclusions Overall, we provide significant insights into potential best practices for creating silicone-based tissue phantom tools for pulse oximetry performance testing.
Collapse
Affiliation(s)
- Anant Bhusal
- University of Massachusetts, Department of Biomedical Engineering, Amherst, Massachusetts, United States
- Food and Drug Administration, Center for Devices and Radiological Health, Silver Spring, Maryland, United States
| | - Masoud Farahmand
- Food and Drug Administration, Center for Devices and Radiological Health, Silver Spring, Maryland, United States
| | - Md Sadique Hasan
- Food and Drug Administration, Center for Devices and Radiological Health, Silver Spring, Maryland, United States
| | - Sandhya Vasudevan
- Food and Drug Administration, Center for Devices and Radiological Health, Silver Spring, Maryland, United States
| | - William C. Vogt
- Food and Drug Administration, Center for Devices and Radiological Health, Silver Spring, Maryland, United States
| | - Bryan Ibarra
- Food and Drug Administration, Center for Devices and Radiological Health, Silver Spring, Maryland, United States
| | - Sandy Weininger
- Food and Drug Administration, Center for Devices and Radiological Health, Silver Spring, Maryland, United States
| | - Christopher G. Scully
- Food and Drug Administration, Center for Devices and Radiological Health, Silver Spring, Maryland, United States
| | - X. Frank Zhang
- University of Massachusetts, Department of Biomedical Engineering, Amherst, Massachusetts, United States
| | - Yu Chen
- University of Massachusetts, Department of Biomedical Engineering, Amherst, Massachusetts, United States
| | - T. Joshua Pfefer
- Food and Drug Administration, Center for Devices and Radiological Health, Silver Spring, Maryland, United States
| |
Collapse
|
7
|
Sharma M, Brown AW, Powell NM, Rajaram N, Tong L, Mourani PM, Schootman M. Racial and skin color mediated disparities in pulse oximetry in infants and young children. Paediatr Respir Rev 2024; 50:62-72. [PMID: 38233229 PMCID: PMC11139570 DOI: 10.1016/j.prrv.2023.12.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/02/2023] [Revised: 12/18/2023] [Accepted: 12/19/2023] [Indexed: 01/19/2024]
Abstract
Race-based and skin pigmentation-related inaccuracies in pulse oximetry have recently been highlighted in several large electronic health record-based retrospective cohort studies across diverse patient populations and healthcare settings. Overestimation of oxygen saturation by pulse oximeters, particularly in hypoxic states, is disparately higher in Black compared to other racial groups. Compared to adult literature, pediatric studies are relatively few and mostly reliant on birth certificates or maternal race-based classification of comparison groups. Neonates, infants, and young children are particularly susceptible to the adverse life-long consequences of hypoxia and hyperoxia. Successful neonatal resuscitation, precise monitoring of preterm and term neonates with predominantly lung pathology, screening for congenital heart defects, and critical decisions on home oxygen, ventilator support and medication therapies, are only a few examples of situations that are highly reliant on the accuracy of pulse oximetry. Undetected hypoxia, especially if systematically different in certain racial groups may delay appropriate therapies and may further perpetuate health care disparities. The role of biological factors that may differ between racial groups, particularly skin pigmentation that may contribute to biased pulse oximeter readings needs further evaluation. Developmental and maturational changes in skin physiology and pigmentation, and its interaction with the operating principles of pulse oximetry need further study. Importantly, clinicians should recognize the limitations of pulse oximetry and use additional objective measures of oxygenation (like co-oximetry measured arterial oxygen saturation) where hypoxia is a concern.
Collapse
Affiliation(s)
- Megha Sharma
- Department of Pediatrics, Division of Neonatology, University of Arkansas for Medical Sciences, Little Rock, AR, United States; Arkansas Children's Research Institute, Little Rock, AR, United States.
| | - Andrew W Brown
- Department of Biostatistics, University of Arkansas for Medical Sciences, Little Rock, AR, United States; Arkansas Children's Research Institute, Little Rock, AR, United States
| | - Nicholas M Powell
- Department of Biomedical Engineering, University of Arkansas, Fayetteville, AR, United States
| | - Narasimhan Rajaram
- Department of Biomedical Engineering, University of Arkansas, Fayetteville, AR, United States; Winthrop P. Rockefeller Cancer Institute, Little Rock, AR, United States
| | - Lauren Tong
- Clinical Library Services, University of Arkansas for Medical Sciences, Little Rock, AR, United States
| | - Peter M Mourani
- Arkansas Children's Research Institute, Little Rock, AR, United States; Department of Pediatrics, Division of Pediatric Critical Care, University of Arkansas for Medical Sciences, Little Rock, AR, United States
| | - Mario Schootman
- Department of Internal Medicine, University of Arkansas for Medical Sciences, Little Rock, AR, United States
| |
Collapse
|
8
|
Huo Z, Wang S, Wei H, Cheng X, Li L, Li C, Wang Z. Dynamic model for the strain-modulated spectral reflectance of the human skin in vivo. BIOMEDICAL OPTICS EXPRESS 2024; 15:2238-2250. [PMID: 38633061 PMCID: PMC11019687 DOI: 10.1364/boe.507361] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/03/2023] [Revised: 12/05/2023] [Accepted: 12/05/2023] [Indexed: 04/19/2024]
Abstract
Hyperspectral imaging (HSI) offers a wealth of information regarding human skin. In this study, we established a dynamic skin spectral reflectance model (DSSR) relating the reflectance to skin surface strain, considering multi physiological and physical parameters of the skin. Experimentally, by HSI, we measured the reflectance variance of the forearm skin in vivo caused by the surface strain, and assessed these key parameters. For the human skin in vivo, within the strain range covered in this paper, stretching increases spectral reflectance, while compression decreases it. Our proposed model provides a possibility for non-contact strain measurement and health monitoring on the skin in vivo based on HSI.
Collapse
Affiliation(s)
- Zongze Huo
- Department of Mechanics, School of Mechanical Engineering, Tianjin University, Tianjin 300350, China
| | - Shibin Wang
- Department of Mechanics, School of Mechanical Engineering, Tianjin University, Tianjin 300350, China
| | - Huixin Wei
- Department of Mechanics, School of Mechanical Engineering, Tianjin University, Tianjin 300350, China
| | - Xuanshi Cheng
- Department of Mechanics, School of Mechanical Engineering, Tianjin University, Tianjin 300350, China
| | - Linan Li
- Department of Mechanics, School of Mechanical Engineering, Tianjin University, Tianjin 300350, China
| | - Chuanwei Li
- Department of Mechanics, School of Mechanical Engineering, Tianjin University, Tianjin 300350, China
| | - Zhiyong Wang
- Department of Mechanics, School of Mechanical Engineering, Tianjin University, Tianjin 300350, China
| |
Collapse
|
9
|
Rodriguez AJ, Vasudevan S, Farahmand M, Weininger S, Vogt WC, Scully CG, Ramella-Roman J, Pfefer TJ. Tissue mimicking materials and finger phantom design for pulse oximetry. BIOMEDICAL OPTICS EXPRESS 2024; 15:2308-2327. [PMID: 38633081 PMCID: PMC11019708 DOI: 10.1364/boe.518967] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/17/2024] [Revised: 03/03/2024] [Accepted: 03/03/2024] [Indexed: 04/19/2024]
Abstract
Pulse oximetry represents a ubiquitous clinical application of optics in modern medicine. Recent studies have raised concerns regarding the potential impact of confounders, such as variable skin pigmentation and perfusion, on blood oxygen saturation measurement accuracy in pulse oximeters. Tissue-mimicking phantom testing offers a low-cost, well-controlled solution for characterizing device performance and studying potential error sources, which may thus reduce the need for costly in vivo trials. The purpose of this study was to develop realistic phantom-based test methods for pulse oximetry. Material optical and mechanical properties were reviewed, selected, and tuned for optimal biological relevance, e.g., oxygenated tissue absorption and scattering, strength, elasticity, hardness, and other parameters representing the human finger's geometry and composition, such as blood vessel size and distribution, and perfusion. Relevant anatomical and physiological properties are summarized and implemented toward the creation of a preliminary finger phantom. To create a preliminary finger phantom, we synthesized a high-compliance silicone matrix with scatterers for embedding flexible tubing and investigated the addition of these scatterers to novel 3D printing resins for optical property control without altering mechanical stability, streamlining the production of phantoms with biologically relevant characteristics. Phantom utility was demonstrated by applying dynamic, pressure waveforms to produce tube volume change and resultant photoplethysmography (PPG) signals. 3D printed phantoms achieved more biologically relevant conditions compared to molded phantoms. These preliminary results indicate that the phantoms show strong potential to be developed into tools for evaluating pulse oximetry performance. Gaps, recommendations, and strategies are presented for continued phantom development.
Collapse
Affiliation(s)
- Andres J. Rodriguez
- Department of Biomedical Engineering, Florida International University, Miami. Florida, 33174, USA
| | - Sandhya Vasudevan
- Division of Biomedical Physics, Office of Science and Engineering Laboratories, Center for Devices and Radiological Health, Food and Drug Administration, Silver Spring, MD 20993, USA
| | - Masoud Farahmand
- Division of Biomedical Physics, Office of Science and Engineering Laboratories, Center for Devices and Radiological Health, Food and Drug Administration, Silver Spring, MD 20993, USA
| | - Sandy Weininger
- Division of Biomedical Physics, Office of Science and Engineering Laboratories, Center for Devices and Radiological Health, Food and Drug Administration, Silver Spring, MD 20993, USA
| | - William C. Vogt
- Division of Biomedical Physics, Office of Science and Engineering Laboratories, Center for Devices and Radiological Health, Food and Drug Administration, Silver Spring, MD 20993, USA
| | - Christopher G. Scully
- Division of Biomedical Physics, Office of Science and Engineering Laboratories, Center for Devices and Radiological Health, Food and Drug Administration, Silver Spring, MD 20993, USA
| | - Jessica Ramella-Roman
- Department of Biomedical Engineering, Florida International University, Miami. Florida, 33174, USA
| | - T. Joshua Pfefer
- Division of Biomedical Physics, Office of Science and Engineering Laboratories, Center for Devices and Radiological Health, Food and Drug Administration, Silver Spring, MD 20993, USA
| |
Collapse
|
10
|
Bauer AQ, Gibson EA, Wang H, Srinivasan VJ. Introduction to the Optics and the Brain 2023 feature issue. BIOMEDICAL OPTICS EXPRESS 2024; 15:2110-2113. [PMID: 38633102 PMCID: PMC11019680 DOI: 10.1364/boe.517678] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/02/2024] [Indexed: 04/19/2024]
Abstract
A feature issue is being presented by a team of guest editors containing papers based on contributed submissions including studies presented at Optics and the Brain, held April 24-27, 2023 as part of Optica Biophotonics Congress: Optics in the Life Sciences, in Vancouver, Canada.
Collapse
Affiliation(s)
- Adam Q. Bauer
- Department of Radiology, Washington University in St. Louis, St. Louis, Missouri, USA
- Department of Biomedical Engineering, Washington University School of Medicine, St. Louis, Missouri, USA
| | - Emily A. Gibson
- Department of Bioengineering, University of Colorado Denver, Anschutz Medical Campus, Aurora, Colorado 80045, USA
| | - Hui Wang
- Athinoula A. Martinos Center for Biomedical Imaging, Department of Radiology, Massachusetts General Hospital/Harvard Medical School, Charlestown, MA 02129, USA
| | - Vivek J. Srinivasan
- Tech4Health Institute, NYU Langone Health, New York, New York 10010, USA
- Department of Ophthalmology, NYU Langone Health, New York, New York 10017, USA
| |
Collapse
|
11
|
Perrey S, Quaresima V, Ferrari M. Muscle Oximetry in Sports Science: An Updated Systematic Review. Sports Med 2024; 54:975-996. [PMID: 38345731 PMCID: PMC11052892 DOI: 10.1007/s40279-023-01987-x] [Citation(s) in RCA: 22] [Impact Index Per Article: 22.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/15/2023] [Indexed: 04/28/2024]
Abstract
BACKGROUND In the last 5 years since our last systematic review, a significant number of articles have been published on the technical aspects of muscle near-infrared spectroscopy (NIRS), the interpretation of the signals and the benefits of using the NIRS technique to measure the physiological status of muscles and to determine the workload of working muscles. OBJECTIVES Considering the consistent number of studies on the application of muscle oximetry in sports science published over the last 5 years, the objectives of this updated systematic review were to highlight the applications of muscle oximetry in the assessment of skeletal muscle oxidative performance in sports activities and to emphasize how this technology has been applied to exercise and training over the last 5 years. In addition, some recent instrumental developments will be briefly summarized. METHODS Preferred Reporting Items for Systematic Reviews guidelines were followed in a systematic fashion to search, appraise and synthesize existing literature on this topic. Electronic databases such as Scopus, MEDLINE/PubMed and SPORTDiscus were searched from March 2017 up to March 2023. Potential inclusions were screened against eligibility criteria relating to recreationally trained to elite athletes, with or without training programmes, who must have assessed physiological variables monitored by commercial oximeters or NIRS instrumentation. RESULTS Of the identified records, 191 studies regrouping 3435 participants, met the eligibility criteria. This systematic review highlighted a number of key findings in 37 domains of sport activities. Overall, NIRS information can be used as a meaningful marker of skeletal muscle oxidative capacity and can become one of the primary monitoring tools in practice in conjunction with, or in comparison with, heart rate or mechanical power indices in diverse exercise contexts and across different types of training and interventions. CONCLUSIONS Although the feasibility and success of the use of muscle oximetry in sports science is well documented, there is still a need for further instrumental development to overcome current instrumental limitations. Longitudinal studies are urgently needed to strengthen the benefits of using muscle oximetry in sports science.
Collapse
Affiliation(s)
- Stephane Perrey
- EuroMov Digital Health in Motion, University of Montpellier, IMT Mines Ales, Montpellier, France
| | - Valentina Quaresima
- Department of Life, Health and Environmental Sciences, University of L'Aquila, L'Aquila, Italy.
| | - Marco Ferrari
- Department of Life, Health and Environmental Sciences, University of L'Aquila, L'Aquila, Italy
| |
Collapse
|
12
|
Patel NA, Bhattal HS, Griesdale DE, Hoiland RL, Sekhon MS. Impact of Skin Pigmentation on Cerebral Regional Saturation of Oxygen Using Near-Infrared Spectroscopy: A Systematic Review. Crit Care Explor 2024; 6:e1049. [PMID: 38352943 PMCID: PMC10863935 DOI: 10.1097/cce.0000000000001049] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/16/2024] Open
Abstract
OBJECTIVES Near-infrared spectroscopy (NIRS) is used in critical care settings to measure regional cerebral tissue oxygenation (rSo2). However, the accuracy of such measurements has been questioned in darker-skinned individuals due to the confounding effects of light absorption by melanin. In this systematic review, we aim to synthesize the available evidence on the effect of skin pigmentation on rSo2 readings. DATA SOURCES We systematically searched MEDLINE, Cochrane Database of Systematic Reviews, Embase, and Google Scholar from inception to July 1, 2023. STUDY SELECTION In compliance with our PROSPERO registration (CRD42022347548), we selected articles comparing rSo2 measurements in adults either between racial groups or at different levels of skin pigmentation. Two independent reviewers conducted full-text reviews of all potentially relevant articles. DATA EXTRACTION We extracted data on self-reported race or level of skin pigmentation and mean rSo2 values. DATA SYNTHESIS Of the 11,495 unique records screened, two studies (n = 7,549) met our inclusion criteria for systematic review. Sun et al (2015) yielded significantly lower rSo2 values for African Americans compared with Caucasians, whereas Stannard et al (2021) found little difference between self-reported racial groups. This discrepancy is likely because Stannard et al (2021) used a NIRS platform which specifically purports to control for the effects of melanin. Several other studies that did not meet our inclusion criteria corroborated the notion that skin pigmentation results in lower rSo2 readings. CONCLUSIONS Skin pigmentation likely results in attenuated rSo2 readings. However, the magnitude of this effect may depend on the specific NIRS platform used.
Collapse
Affiliation(s)
- Nikunj A Patel
- Department of Anesthesiology, Pharmacology and Therapeutics, Faculty of Medicine, Vancouver General Hospital, University of British Columbia, Vancouver, BC, Canada
| | - Harvir S Bhattal
- Faculty of Medicine, University of British Columbia, Vancouver, BC, Canada
| | - Donald E Griesdale
- Department of Anesthesiology, Pharmacology and Therapeutics, Faculty of Medicine, Vancouver General Hospital, University of British Columbia, Vancouver, BC, Canada
| | - Ryan L Hoiland
- Department of Anesthesiology, Pharmacology and Therapeutics, Faculty of Medicine, Vancouver General Hospital, University of British Columbia, Vancouver, BC, Canada
- Department of Cellular and Physiological Sciences, Faculty of Medicine, University of British Columbia, Vancouver, BC, Canada
- Centre for Heart, Lung, and Vascular Health, School of Health and Exercise Sciences, Faculty of Health and Social Development, University of British Columbia Okanagan, Kelowna, BC, Canada
- International Collaboration on Repair Discoveries, University of British Columbia, Vancouver, BC, Canada
- Collaborative Entity for Researching Brain Ischemia, University of British Columbia, Vancouver, BC, Canada
| | - Mypinder S Sekhon
- International Collaboration on Repair Discoveries, University of British Columbia, Vancouver, BC, Canada
- Collaborative Entity for Researching Brain Ischemia, University of British Columbia, Vancouver, BC, Canada
- Djavad Mowafaghian Centre for Brain Health, University of British Columbia, Vancouver, BC, Canada
- Division of Critical Care Medicine, Department of Medicine, Vancouver General Hospital, West 12th Avenue, University of British Columbia, Vancouver, BC, Canada
| |
Collapse
|
13
|
Else TR, Hacker L, Gröhl J, Bunce EV, Tao R, Bohndiek SE. Effects of skin tone on photoacoustic imaging and oximetry. JOURNAL OF BIOMEDICAL OPTICS 2024; 29:S11506. [PMID: 38125716 PMCID: PMC10732256 DOI: 10.1117/1.jbo.29.s1.s11506] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/17/2023] [Revised: 11/02/2023] [Accepted: 11/28/2023] [Indexed: 12/23/2023]
Abstract
Significance Photoacoustic imaging (PAI) provides contrast based on the concentration of optical absorbers in tissue, enabling the assessment of functional physiological parameters such as blood oxygen saturation (sO 2 ). Recent evidence suggests that variation in melanin levels in the epidermis leads to measurement biases in optical technologies, which could potentially limit the application of these biomarkers in diverse populations. Aim To examine the effects of skin melanin pigmentation on PAI and oximetry. Approach We evaluated the effects of skin tone in PAI using a computational skin model, two-layer melanin-containing tissue-mimicking phantoms, and mice of a consistent genetic background with varying pigmentations. The computational skin model was validated by simulating the diffuse reflectance spectrum using the adding-doubling method, allowing us to assign our simulation parameters to approximate Fitzpatrick skin types. Monte Carlo simulations and acoustic simulations were run to obtain idealized photoacoustic images of our skin model. Photoacoustic images of the phantoms and mice were acquired using a commercial instrument. Reconstructed images were processed with linear spectral unmixing to estimate blood oxygenation. Linear unmixing results were compared with a learned unmixing approach based on gradient-boosted regression. Results Our computational skin model was consistent with representative literature for in vivo skin reflectance measurements. We observed consistent spectral coloring effects across all model systems, with an overestimation of sO 2 and more image artifacts observed with increasing melanin concentration. The learned unmixing approach reduced the measurement bias, but predictions made at lower blood sO 2 still suffered from a skin tone-dependent effect. Conclusion PAI demonstrates measurement bias, including an overestimation of blood sO 2 , in higher Fitzpatrick skin types. Future research should aim to characterize this effect in humans to ensure equitable application of the technology.
Collapse
Affiliation(s)
- Thomas R. Else
- University of Cambridge, CRUK Cambridge Institute, Cambridge, United Kingdom
- University of Cambridge, Department of Physics, Cambridge, United Kingdom
| | - Lina Hacker
- University of Cambridge, CRUK Cambridge Institute, Cambridge, United Kingdom
- University of Cambridge, Department of Physics, Cambridge, United Kingdom
| | - Janek Gröhl
- University of Cambridge, CRUK Cambridge Institute, Cambridge, United Kingdom
- University of Cambridge, Department of Physics, Cambridge, United Kingdom
| | - Ellie V. Bunce
- University of Cambridge, CRUK Cambridge Institute, Cambridge, United Kingdom
- University of Cambridge, Department of Physics, Cambridge, United Kingdom
| | - Ran Tao
- University of Cambridge, CRUK Cambridge Institute, Cambridge, United Kingdom
- University of Cambridge, Department of Physics, Cambridge, United Kingdom
| | - Sarah E. Bohndiek
- University of Cambridge, CRUK Cambridge Institute, Cambridge, United Kingdom
- University of Cambridge, Department of Physics, Cambridge, United Kingdom
| |
Collapse
|
14
|
Vogt WC, Wear KA, Pfefer TJ. Phantoms for evaluating the impact of skin pigmentation on photoacoustic imaging and oximetry performance. BIOMEDICAL OPTICS EXPRESS 2023; 14:5735-5748. [PMID: 38021140 PMCID: PMC10659791 DOI: 10.1364/boe.501950] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/28/2023] [Revised: 08/25/2023] [Accepted: 09/11/2023] [Indexed: 12/01/2023]
Abstract
Recent reports have raised concerns of potential racial disparities in performance of optical oximetry technologies. To investigate how variable epidermal melanin content affects performance of photoacoustic imaging (PAI) devices, we developed plastisol phantoms combining swappable skin-mimicking layers with a breast phantom containing either India ink or blood adjusted to 50-100% SO2 using sodium dithionite. Increasing skin pigmentation decreased maximum imaging depth by up to 25%, enhanced image clutter, and increased root-mean-square error in SO2 from 8.0 to 17.6% due to signal attenuation and spectral coloring effects. This phantom tool can aid in evaluating PAI device robustness to ensure high performance in all patients.
Collapse
Affiliation(s)
- William C. Vogt
- Center for Devices and Radiological Health, U.S. Food and Drug Administration, 10903 New Hampshire Avenue, Silver Spring, MD 20993, USA
| | - Keith A. Wear
- Center for Devices and Radiological Health, U.S. Food and Drug Administration, 10903 New Hampshire Avenue, Silver Spring, MD 20993, USA
| | - T. Joshua Pfefer
- Center for Devices and Radiological Health, U.S. Food and Drug Administration, 10903 New Hampshire Avenue, Silver Spring, MD 20993, USA
| |
Collapse
|
15
|
Morsink CF, Dam-Vervloet AJ, Krommendijk ME, Kaya M, Cuartas-Vélez C, Knop T, Francis KJ, Bosschaart N. Design and characterization of color printed polyurethane films as biomedical phantom layers. BIOMEDICAL OPTICS EXPRESS 2023; 14:4485-4506. [PMID: 37791261 PMCID: PMC10545194 DOI: 10.1364/boe.491695] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/27/2023] [Revised: 06/30/2023] [Accepted: 07/05/2023] [Indexed: 10/05/2023]
Abstract
We propose a new, user-friendly and accessible approach for fabricating thin phantoms with controllable absorption properties in magnitude, spectral shape, and spatial distribution. We utilize a standard office laser color printer to print on polyurethane thin films (40 - 60 μm), commonly available as medical film dressings and ultrasound probe covers. We demonstrate that the optical attenuation and absorption of the printed films correlate linearly with the printer input settings (opacity), which facilitates a systematic phantom design. The optical and acoustic properties of these polyurethane films are similar to biological tissue. We argue that these thin phantoms are applicable to a wide range of biomedical applications. Here, we introduce two potential applications: (1) homogeneous epidermal melanin phantoms and (2) spatially resolved absorbers for photoacoustic imaging. We characterize the thin phantoms in terms of optical properties, thickness, microscopic structure, and reproducibility of the printing process.
Collapse
Affiliation(s)
- Claudia F. Morsink
- Biomedical Photonic Imaging Group, Technical Medical Center, University of Twente, The Netherlands
| | - Alida J. Dam-Vervloet
- Biomedical Photonic Imaging Group, Technical Medical Center, University of Twente, The Netherlands
- Medical Physics Department, Isala Hospital, Zwolle, The Netherlands
| | - Marleen E. Krommendijk
- Biomedical Photonic Imaging Group, Technical Medical Center, University of Twente, The Netherlands
| | - Michael Kaya
- Biomedical Photonic Imaging Group, Technical Medical Center, University of Twente, The Netherlands
| | - Carlos Cuartas-Vélez
- Biomedical Photonic Imaging Group, Technical Medical Center, University of Twente, The Netherlands
| | - Tom Knop
- Biomedical Photonic Imaging Group, Technical Medical Center, University of Twente, The Netherlands
| | - Kalloor Joseph Francis
- Biomedical Photonic Imaging Group, Technical Medical Center, University of Twente, The Netherlands
| | - Nienke Bosschaart
- Biomedical Photonic Imaging Group, Technical Medical Center, University of Twente, The Netherlands
| |
Collapse
|
16
|
Assi H, Cao R, Castelino M, Cox B, Gilbert FJ, Gröhl J, Gurusamy K, Hacker L, Ivory AM, Joseph J, Knieling F, Leahy MJ, Lilaj L, Manohar S, Meglinski I, Moran C, Murray A, Oraevsky AA, Pagel MD, Pramanik M, Raymond J, Singh MKA, Vogt WC, Wang L, Yang S, Members of IPASC, Bohndiek SE. A review of a strategic roadmapping exercise to advance clinical translation of photoacoustic imaging: From current barriers to future adoption. PHOTOACOUSTICS 2023; 32:100539. [PMID: 37600964 PMCID: PMC10432856 DOI: 10.1016/j.pacs.2023.100539] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/20/2023] [Revised: 07/27/2023] [Accepted: 07/27/2023] [Indexed: 08/22/2023]
Abstract
Photoacoustic imaging (PAI), also referred to as optoacoustic imaging, has shown promise in early-stage clinical trials in a range of applications from inflammatory diseases to cancer. While the first PAI systems have recently received regulatory approvals, successful adoption of PAI technology into healthcare systems for clinical decision making must still overcome a range of barriers, from education and training to data acquisition and interpretation. The International Photoacoustic Standardisation Consortium (IPASC) undertook an community exercise in 2022 to identify and understand these barriers, then develop a roadmap of strategic plans to address them. Here, we outline the nature and scope of the barriers that were identified, along with short-, medium- and long-term community efforts required to overcome them, both within and beyond the IPASC group.
Collapse
Affiliation(s)
- Hisham Assi
- Department of Physics, Toronto Metropolitan University, Toronto, Canada
| | - Rui Cao
- Caltech Optical Imaging Laboratory, Andrew and Peggy Cherng Department of Medical Engineering, Department of Electrical Engineering, California Institute of Technology, Pasadena, CA, USA
| | - Madhura Castelino
- Department of Rheumatology, University College London Hospital, London, UK
| | - Ben Cox
- Department of Medical Physics and Bioengineering, University College London, London, UK
| | | | - Janek Gröhl
- Department of Physics, University of Cambridge, Cambridge, UK
- CRUK Cambridge Institute, University of Cambridge, Cambridge, UK
| | - Kurinchi Gurusamy
- Department of Surgical Biotechnology, University College London, London, UK
| | - Lina Hacker
- Department of Physics, University of Cambridge, Cambridge, UK
- CRUK Cambridge Institute, University of Cambridge, Cambridge, UK
| | - Aoife M. Ivory
- Department of Medical, Marine and Nuclear Physics, National Physical Laboratory, Teddington, UK
| | - James Joseph
- School of Science and Engineering, University of Dundee, Dundee, UK
| | - Ferdinand Knieling
- Department of Pediatrics and Adolescent Medicine, University Hospital Erlangen, Friedrich-Alexander-Universität, Erlangen-Nürnberg, Germany
| | - Martin J. Leahy
- School of Natural Sciences – Physics, University of Galway, Galway, Ireland
| | | | | | - Igor Meglinski
- College of Engineering and Physical Sciences, Aston University, Birmingham, UK
| | - Carmel Moran
- Centre for Cardiovascular Science, University of Edinburgh, Edinburgh, UK
| | - Andrea Murray
- Centre for Musculoskeletal Research, University of Manchester, Manchester Academic Health Science Centre (MAHSC), Salford Care Organisation, NCA NHS Foundation Trust, UK
| | | | - Mark D. Pagel
- Department of Cancer Systems Imaging, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Manojit Pramanik
- Department of Electrical and Computer Engineering, Iowa State University, Ames, IA, USA
| | - Jason Raymond
- Department of Engineering Science, University of Oxford, UK
| | | | - William C. Vogt
- Center for Devices and Radiological Health, US Food and Drug Administration, Silver Spring, MD, USA
| | - Lihong Wang
- Caltech Optical Imaging Laboratory, Andrew and Peggy Cherng Department of Medical Engineering, Department of Electrical Engineering, California Institute of Technology, Pasadena, CA, USA
| | - Shufan Yang
- School of Computing, Edinburgh Napier University, UK
| | - Members of IPASC
- Department of Physics, University of Cambridge, Cambridge, UK
- CRUK Cambridge Institute, University of Cambridge, Cambridge, UK
| | - Sarah E. Bohndiek
- Department of Physics, University of Cambridge, Cambridge, UK
- CRUK Cambridge Institute, University of Cambridge, Cambridge, UK
| |
Collapse
|
17
|
Kwasa J, Peterson HM, Karrobi K, Jones L, Parker T, Nickerson N, Wood S. Demographic reporting and phenotypic exclusion in fNIRS. Front Neurosci 2023; 17:1086208. [PMID: 37229429 PMCID: PMC10203458 DOI: 10.3389/fnins.2023.1086208] [Citation(s) in RCA: 22] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2022] [Accepted: 04/05/2023] [Indexed: 05/27/2023] Open
Abstract
Functional near-infrared spectroscopy (fNIRS) promises to be a leading non-invasive neuroimaging method due to its portability and low cost. However, concerns are rising over its inclusivity of all skin tones and hair types (Parker and Ricard, 2022, Webb et al., 2022). Functional NIRS relies on direct contact of light-emitting optodes to the scalp, which can be blocked more by longer, darker, and especially curlier hair. Additionally, NIR light can be attenuated by melanin, which is accounted for in neither fNIRS hardware nor analysis methods. Recent work has shown that overlooking these considerations in other modalities like EEG leads to the disproportionate exclusion of individuals with these phenotypes-especially Black people-in both clinical and research literature (Choy, 2020; Bradford et al., 2022; Louis et al., 2023). In this article, we sought to determine if (Jöbsis, 1977) biomedical optics developers and researchers report fNIRS performance variability between skin tones and hair textures, (2a) fNIRS neuroscience practitioners report phenotypic and demographic details in their articles, and thus, (2b) is a similar pattern of participant exclusion found in EEG also present in the fNIRS literature. We present a literature review of top Biomedical Optics and Human Neuroscience journals, showing that demographic and phenotypic reporting is unpopular in both fNIRS development and neuroscience applications. We conclude with a list of recommendations to the fNIRS community including examples of Black researchers addressing these issues head-on, inclusive best practices for fNIRS researchers, and recommendations to funding and regulatory bodies to achieve an inclusive neuroscience enterprise in fNIRS and beyond.
Collapse
Affiliation(s)
- Jasmine Kwasa
- Neuroscience Institute, Carnegie Mellon University, Pittsburgh, PA, United States
| | - Hannah M. Peterson
- Center for Systems Biology, Massachusetts General Hospital, Boston, MA, United States
| | - Kavon Karrobi
- Department of Biomedical Engineering, Boston University, Boston, MA, United States
| | - Lietsel Jones
- Burnett School of Biomedical Sciences, University of Central Florida, Orlando, FL, United States
| | - Termara Parker
- Interdepartmental Neuroscience Program, School of Medicine, Yale University, New Haven, CT, United States
| | - Nia Nickerson
- Combined Program in Education and Psychology, University of Michigan, Ann Arbor, MI, United States
| | - Sossena Wood
- Neuroscience Institute, Carnegie Mellon University, Pittsburgh, PA, United States
- Department of Biomedical Engineering, Carnegie Mellon University, Pittsburgh, PA, United States
| |
Collapse
|
18
|
Schroeder PA, Artemenko C, Kosie JE, Cockx H, Stute K, Pereira J, Klein F, Mehler DMA. Using preregistration as a tool for transparent fNIRS study design. NEUROPHOTONICS 2023; 10:023515. [PMID: 36908680 PMCID: PMC9993433 DOI: 10.1117/1.nph.10.2.023515] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/09/2022] [Accepted: 01/11/2023] [Indexed: 05/04/2023]
Abstract
Significance The expansion of functional near-infrared spectroscopy (fNIRS) methodology and analysis tools gives rise to various design and analytical decisions that researchers have to make. Several recent efforts have developed guidelines for preprocessing, analyzing, and reporting practices. For the planning stage of fNIRS studies, similar guidance is desirable. Study preregistration helps researchers to transparently document study protocols before conducting the study, including materials, methods, and analyses, and thus, others to verify, understand, and reproduce a study. Preregistration can thus serve as a useful tool for transparent, careful, and comprehensive fNIRS study design. Aim We aim to create a guide on the design and analysis steps involved in fNIRS studies and to provide a preregistration template specified for fNIRS studies. Approach The presented preregistration guide has a strong focus on fNIRS specific requirements, and the associated template provides examples based on continuous-wave (CW) fNIRS studies conducted in humans. These can, however, be extended to other types of fNIRS studies. Results On a step-by-step basis, we walk the fNIRS user through key methodological and analysis-related aspects central to a comprehensive fNIRS study design. These include items specific to the design of CW, task-based fNIRS studies, but also sections that are of general importance, including an in-depth elaboration on sample size planning. Conclusions Our guide introduces these open science tools to the fNIRS community, providing researchers with an overview of key design aspects and specification recommendations for comprehensive study planning. As such it can be used as a template to preregister fNIRS studies or merely as a tool for transparent fNIRS study design.
Collapse
Affiliation(s)
- Philipp A. Schroeder
- University of Tuebingen, Department of Psychology, Faculty of Science, Tuebingen, Germany
| | - Christina Artemenko
- University of Tuebingen, Department of Psychology, Faculty of Science, Tuebingen, Germany
| | - Jessica E. Kosie
- Princeton University, Social and Natural Sciences, Department of Psychology, Princeton, New Jersey, United States
| | - Helena Cockx
- Radboud University, Donders Institute for Brain, Cognition and Behaviour, Biophysics Department, Faculty of Science, Nijmegen, The Netherlands
| | - Katharina Stute
- Chemnitz University of Technology, Institute of Human Movement Science and Health, Faculty of Behavioural and Social Sciences, Chemnitz, Germany
| | - João Pereira
- University of Coimbra, Coimbra Institute for Biomedical Imaging and Translational Research, Coimbra, Portugal
| | - Franziska Klein
- University of Oldenburg, Department of Psychology, Neurocognition and functional Neurorehabilitation Group, Oldenburg (Oldb), Germany
- RWTH Aachen University, Medical School, Department of Psychiatry, Psychotherapy and Psychosomatics, Aachen, Germany
| | - David M. A. Mehler
- RWTH Aachen University, Medical School, Department of Psychiatry, Psychotherapy and Psychosomatics, Aachen, Germany
- University of Münster, Institute for Translational Psychiatry, Medical School, Münster, Germany
| |
Collapse
|
19
|
Wickramasinghe VA, Decker SM, Streeter SS, Sloop AM, Petusseau AF, Alexander DA, Bruza P, Gladstone DJ, Zhang R, Pogue BW. Color-resolved Cherenkov imaging allows for differential signal detection in blood and melanin content. JOURNAL OF BIOMEDICAL OPTICS 2023; 28:036005. [PMID: 36923987 PMCID: PMC10008915 DOI: 10.1117/1.jbo.28.3.036005] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/13/2022] [Accepted: 02/15/2023] [Indexed: 06/18/2023]
Abstract
Significance High-energy x-ray delivery from a linear accelerator results in the production of spectrally continuous broadband Cherenkov light inside tissue. In the absence of attenuation, there is a linear relationship between Cherenkov emission and deposited dose; however, scattering and absorption result in the distortion of this linear relationship. As Cherenkov emission exits the absorption by tissue dominates the observed Cherenkov emission spectrum. Spectroscopic interpretation of this effects may help to better relate Cherenkov emission to ionizing radiation dose delivered during radiotherapy. Aim In this study, we examined how color Cherenkov imaging intensity variations are caused by absorption from both melanin and hemoglobin level variations, so that future Cherenkov emission imaging might be corrected for linearity to delivered dose. Approach A custom, time-gated, three-channel intensified camera was used to image the red, green, and blue wavelengths of Cherenkov emission from tissue phantoms with synthetic melanin layers and varying blood concentrations. Our hypothesis was that spectroscopic separation of Cherenkov emission would allow for the identification of attenuated signals that varied in response to changes in blood content versus melanin content, because of their different characteristic absorption spectra. Results Cherenkov emission scaled with dose linearly in all channels. Absorption in the blue and green channels increased with increasing oxy-hemoglobin in the blood to a greater extent than in the red channel. Melanin was found to absorb with only slight differences between all channels. These spectral differences can be used to derive dose from measured Cherenkov emission. Conclusions Color Cherenkov emission imaging may be used to improve the optical measurement and determination of dose delivered in tissues. Calibration for these factors to minimize the influence of the tissue types and skin tones may be possible using color camera system information based upon the linearity of the observed signals.
Collapse
Affiliation(s)
| | - Savannah M. Decker
- Dartmouth College, Thayer School of Engineering, Hanover, New Hampshire, United States
| | - Samuel S. Streeter
- Dartmouth College, Thayer School of Engineering, Hanover, New Hampshire, United States
| | - Austin M. Sloop
- Dartmouth College, Thayer School of Engineering, Hanover, New Hampshire, United States
| | - Arthur F. Petusseau
- Dartmouth College, Thayer School of Engineering, Hanover, New Hampshire, United States
| | - Daniel A. Alexander
- Dartmouth College, Thayer School of Engineering, Hanover, New Hampshire, United States
| | - Petr Bruza
- Dartmouth College, Thayer School of Engineering, Hanover, New Hampshire, United States
| | - David J. Gladstone
- Dartmouth College, Thayer School of Engineering, Hanover, New Hampshire, United States
- Dartmouth College, Geisel School of Medicine, Department of Medicine, Hanover, New Hampshire, United States
| | - Rongxiao Zhang
- Dartmouth College, Thayer School of Engineering, Hanover, New Hampshire, United States
- Dartmouth College, Geisel School of Medicine, Department of Medicine, Hanover, New Hampshire, United States
| | - Brian W. Pogue
- Dartmouth College, Thayer School of Engineering, Hanover, New Hampshire, United States
- University of Wisconsin–Madison, Department of Medical Physics, Madison, Wisconsin, United States
| |
Collapse
|
20
|
Saytashev I, Yoon YC, Vakoc BJ, Vasudevan S, Hammer DX. Improved in vivo optical coherence tomography imaging of animal peripheral nerves using a prism nerve holder. JOURNAL OF BIOMEDICAL OPTICS 2023; 28:026002. [PMID: 36785561 PMCID: PMC9921515 DOI: 10.1117/1.jbo.28.2.026002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/07/2022] [Accepted: 01/20/2023] [Indexed: 06/01/2023]
Abstract
Significance Modern optical volumetric imaging modalities, such as optical coherence tomography (OCT), provide enormous information about the structure, function, and physiology of living tissue. Although optical imaging achieves lateral resolution on the order of the wavelength of light used, and OCT achieves axial resolution on a similar micron scale, tissue optical properties, particularly high scattering and absorption, limit light penetration to only a few millimeters. In addition, in vivo imaging modalities are susceptible to significant motion artifacts due to cardiac and respiratory function. These effects limit access to artifact-free optical measurements during peripheral neurosurgery to only a portion of the exposed nerve without further modification to the procedure. Aim We aim to improve in vivo OCT imaging during peripheral neurosurgery in small and large animals by increasing the amount of visualized nerve volume as well as suppressing motion of the imaged area. Approach We designed a nerve holder with embedded mirror prisms for peripheral nerve volumetric imaging as well as a specific beam steering strategy to acquire prism and direct view volumes in one session with minimal motion artifacts. Results The axially imaged volumes from mirror prisms increased the OCT signal intensity by > 22 dB over a 1.25-mm imaging depth in tissue-mimicking phantoms. We then demonstrated the new imaging capabilities in visualizing peripheral nerves from direct and side views in living rats and minipigs using a polarization-sensitive OCT system. Prism views have shown nerve fascicles and vasculature from the bottom half of the imaged nerve which was not visible in direct view. Conclusions We demonstrated improved OCT imaging during neurosurgery in small and large animals by combining the use of a prism nerve holder with a specifically designed beam scanning protocol. Our strategy can be applied to existing OCT imaging systems with minimal hardware modification, increasing the nerve tissue volume visualized. Enhanced imaging depth techniques may lead to a greater adoption of structural and functional optical biomarkers in preclinical and clinical medicine.
Collapse
Affiliation(s)
- Ilyas Saytashev
- U. S. Food and Drug Administration, Center for Devices and Radiological Health, Office of Science and Engineering Laboratories, Silver Spring, Maryland, United States
| | - Yong-Chul Yoon
- Massachusetts General Hospital, Wellman Center for Photomedicine, Boston, Massachusetts, United States
| | - Benjamin J. Vakoc
- Massachusetts General Hospital, Wellman Center for Photomedicine, Boston, Massachusetts, United States
| | - Srikanth Vasudevan
- U. S. Food and Drug Administration, Center for Devices and Radiological Health, Office of Science and Engineering Laboratories, Silver Spring, Maryland, United States
| | - Daniel X. Hammer
- U. S. Food and Drug Administration, Center for Devices and Radiological Health, Office of Science and Engineering Laboratories, Silver Spring, Maryland, United States
| |
Collapse
|
21
|
Quaresima V, Scholkmann F, Ferrari M. Skin pigmentation bias in regional brain oximetry measurements? Crit Care 2023; 27:10. [PMID: 36627689 PMCID: PMC9830604 DOI: 10.1186/s13054-022-04295-4] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2022] [Accepted: 12/25/2022] [Indexed: 01/12/2023] Open
Affiliation(s)
- V. Quaresima
- grid.158820.60000 0004 1757 2611Department of Life, Health and Environmental Science, University of L’Aquila, L’Aquila, Italy
| | - F. Scholkmann
- grid.7400.30000 0004 1937 0650Biomedical Optics Research Laboratory, Department of Neonatology, University Hospital Zurich, University of Zurich, Zurich, Switzerland
| | - M. Ferrari
- grid.158820.60000 0004 1757 2611Department of Life, Health and Environmental Science, University of L’Aquila, L’Aquila, Italy
| |
Collapse
|
22
|
Yim W, Zhou J, Sasi L, Zhao J, Yeung J, Cheng Y, Jin Z, Johnson W, Xu M, Palma-Chavez J, Fu L, Qi B, Retout M, Shah NJ, Bae J, Jokerst JV. 3D-Bioprinted Phantom with Human Skin Phototypes for Biomedical Optics. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2023; 35:e2206385. [PMID: 36305604 PMCID: PMC9868107 DOI: 10.1002/adma.202206385] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/14/2022] [Revised: 10/21/2022] [Indexed: 06/16/2023]
Abstract
3D-bioprinted skin-mimicking phantoms with skin colors ranging across the Fitzpatrick scale are reported. These tools can help understand the impact of skin phototypes on biomedical optics. Synthetic melanin nanoparticles of different sizes (70-500 nm) and clusters are fabricated to mimic the optical behavior of melanosome. The absorption coefficient and reduced scattering coefficient of the phantoms are comparable to real human skin. Further the melanin content and distribution in the phantoms versus real human skins are validated via photoacoustic (PA) imaging. The PA signal of the phantom can be improved by: 1) increasing melanin size (3-450-fold), 2) increasing clustering (2-10.5-fold), and 3) increasing concentration (1.3-8-fold). Then, multiple biomedical optics tools (e.g., PA, fluorescence imaging, and photothermal therapy) are used to understand the impact of skin tone on these modalities. These well-defined 3D-bioprinted phantoms may have value in translating biomedical optics and reducing racial bias.
Collapse
Affiliation(s)
- Wonjun Yim
- Materials Science and Engineering Program, University of California San Diego, La Jolla, CA, USA
| | - Jiajing Zhou
- Department of Nanoengineering, University of California San Diego, La Jolla, CA, USA
| | - Lekshmi Sasi
- Department of Nanoengineering, University of California San Diego, La Jolla, CA, USA
| | - Jiayu Zhao
- Department of Nanoengineering, University of California San Diego, La Jolla, CA, USA
| | - Justin Yeung
- Department of Bioengineering, University of California San Diego, La Jolla, CA, USA
| | - Yong Cheng
- Department of Nanoengineering, University of California San Diego, La Jolla, CA, USA
| | - Zhicheng Jin
- Department of Nanoengineering, University of California San Diego, La Jolla, CA, USA
| | - Wade Johnson
- Department of Nanoengineering, University of California San Diego, La Jolla, CA, USA
| | - Ming Xu
- Department of Nanoengineering, University of California San Diego, La Jolla, CA, USA
| | - Jorge Palma-Chavez
- Department of Nanoengineering, University of California San Diego, La Jolla, CA, USA
| | - Lei Fu
- Department of Nanoengineering, University of California San Diego, La Jolla, CA, USA
| | - Baiyan Qi
- Materials Science and Engineering Program, University of California San Diego, La Jolla, CA, USA
| | - Maurice Retout
- Department of Nanoengineering, University of California San Diego, La Jolla, CA, USA
| | - Nisarg J. Shah
- Department of Nanoengineering, University of California San Diego, La Jolla, CA, USA
- Chemical Engineering Program, University of California San Diego, La Jolla, CA, USA
| | - Jinhye Bae
- Materials Science and Engineering Program, University of California San Diego, La Jolla, CA, USA
- Department of Nanoengineering, University of California San Diego, La Jolla, CA, USA
- Chemical Engineering Program, University of California San Diego, La Jolla, CA, USA
| | - Jesse V. Jokerst
- Materials Science and Engineering Program, University of California San Diego, La Jolla, CA, USA
- Department of Nanoengineering, University of California San Diego, La Jolla, CA, USA
- Chemical Engineering Program, University of California San Diego, La Jolla, CA, USA
- Department of Radiology, University of California San Diego, La Jolla, CA, USA
| |
Collapse
|
23
|
Caratenuto A, Li S, Wan Y, Zheng Y. Optical Epidermal Mimicry from Ultraviolet to Infrared Wavelengths. ACS APPLIED BIO MATERIALS 2022; 5:5231-5239. [PMID: 36331184 DOI: 10.1021/acsabm.2c00660] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
Optical tissue phantoms present substantial value for medical imaging and therapeutic applications. We have developed an epidermal tissue phantom to mimic the optical properties of human skin from the ultraviolet to the infrared region, exceeding the breadth of existing studies. An epoxy matrix is combined with melanin-mimicking polydopamine via a cost-effective fabrication strategy. Reflectance and transmittance measurements enable calculation of the wavelength-dependent complex refractive index and absorption coefficient. Results are compared with literature data to establish agreement with a real human epidermis. By analyzing emissive power at a typical skin temperature, the epidermal tissue phantom is shown to accurately mimic the radiative properties of human skin. This simple, multifunctional material represents a promising substitute for human tissue for a variety of medical and bioengineering applications.
Collapse
Affiliation(s)
- Andrew Caratenuto
- Department of Mechanical and Industrial Engineering, Northeastern University, Boston, Massachusetts02115, United States
| | - Su Li
- Department of Mechanical and Industrial Engineering, Northeastern University, Boston, Massachusetts02115, United States
| | - Yinsheng Wan
- Department of Biology, Providence College, Providence, Rhode Island02918, United States
| | - Yi Zheng
- Department of Mechanical and Industrial Engineering, Northeastern University, Boston, Massachusetts02115, United States.,Department of Chemical Engineering, Northeastern University, Boston, Massachusetts02115, United States
| |
Collapse
|