1
|
Ebrahimi S, Bedggood P, Ding Y, Metha A, Bagchi P. A High-Fidelity Computational Model for Predicting Blood Cell Trafficking and 3D Capillary Hemodynamics in Retinal Microvascular Networks. Invest Ophthalmol Vis Sci 2024; 65:37. [PMID: 39546289 PMCID: PMC11580294 DOI: 10.1167/iovs.65.13.37] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2024] [Accepted: 10/26/2024] [Indexed: 11/17/2024] Open
Abstract
Purpose To present a first principle-based, high-fidelity computational model for predicting full three-dimensional (3D) and time-resolved retinal microvascular hemodynamics taking into consideration the flow and deformation of individual blood cells. Methods The computational model is a 3D fluid-structure interaction model based on combined finite volume/finite element/immersed-boundary methods. Three in silico microvascular networks are built from high-resolution in vivo motion contrast images of the superficial capillary plexus in the parafoveal region of the human retina. The maximum tissue area represented in the model is approximately 500 × 500 µm2, and vessel lumen diameters ranged from 5.5 to 25 µm covering capillaries, arterioles, and venules. Blood is modeled as a suspension of individual blood cells, namely, erythrocytes (RBC), leukocytes (WBC), and platelets in plasma. An accurate and detailed biophysical modeling of each blood cell and their flow-induced deformation is considered. A physiological, pulsatile boundary condition corresponding to an average cardiac cycle of 0.9 second is used. Results Detailed quantitative data and analysis of 3D retinal microvascular hemodynamics are presented, and their relationship to RBC flow dynamics is illustrated. Blood velocity is shown to have temporal oscillations superimposed on the background pulsatile variation, which arise because of the way RBCs partition at vascular junctions, causing repeated clogging and unclogging of vessels. Temporal variations in RBC velocity and hematocrit are anti-correlated in a given vessel, but their time-averaged distributions are positively correlated across the network. Whole blood velocity is 65% to 85% of RBC velocity, with the discrepancy related to the formation of an RBC-free region, adjacent to the vascular endothelium and typically 0.8 to 1.8 µm thick. The 3D velocity and RBC concentration profiles are shown to be oppositely skewed with respect to each other, because of the way that RBCs "hug" the apex of each bifurcation. RBC deformation is predicted to have biphasic behavior with respect to vessel diameter, with minimal cell length for vessels approximately 7 µm in diameter. The wall shear stress (WSS) exhibits a strongly 3D distribution with local regions of high value and gradient spanning a range of 10 to 80 dyn/cm2. WSS is highest where there is faster flow, greater curvature of the vessel wall, capillary bifurcations, and at locations of RBC crowding and associated thinning of the cell-free layer. Conclusions This study highlights the usefulness of high-fidelity cell-resolved modeling to obtain accurate and detailed 3D, time-resolved retinal hemodynamic parameters that are not readily available through noninvasive imaging approaches. The results presented are expected to complement and enhance the interpretation of in vivo data, as well as open new avenues to study retinal hemodynamics in health and disease.
Collapse
Affiliation(s)
- Saman Ebrahimi
- Mechanical and Aerospace Engineering Department, Rutgers, The State University of New Jersey, Piscataway, New Jersey, United States
| | - Phillip Bedggood
- Department of Optometry and Vision Sciences, University of Melbourne, Melbourne, Australia
| | - Yifu Ding
- Department of Optometry and Vision Sciences, University of Melbourne, Melbourne, Australia
| | - Andrew Metha
- Department of Optometry and Vision Sciences, University of Melbourne, Melbourne, Australia
| | - Prosenjit Bagchi
- Mechanical and Aerospace Engineering Department, Rutgers, The State University of New Jersey, Piscataway, New Jersey, United States
| |
Collapse
|
2
|
Ashbery D, Baez HC, Kanarr RE, Kunala K, Power D, Chu CJ, Schallek J, McGregor JE. In Vivo Visualization of Intravascular Patrolling Immune Cells in the Primate Eye. Invest Ophthalmol Vis Sci 2024; 65:23. [PMID: 39283618 PMCID: PMC11407476 DOI: 10.1167/iovs.65.11.23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/19/2024] Open
Abstract
Purpose Insight into the immune status of the living eye is essential as we seek to understand ocular disease and develop new treatments. The nonhuman primate (NHP) is the gold standard preclinical model for therapeutic development in ophthalmology, owing to the similar visual system and immune landscape in the NHP relative to the human. Here, we demonstrate the utility of phase-contrast adaptive optics scanning light ophthalmoscope (AOSLO) to visualize immune cell dynamics on the cellular scale, label-free in the NHP. Methods Phase-contrast AOSLO was used to image preselected areas of retinal vasculature in five NHP eyes. Images were registered to correct for eye motion, temporally averaged, and analyzed for immune cell activity. Cell counts, dimensions, velocities, and frequency per vessel were determined manually and compared between retinal arterioles and venules. Based on cell appearance and circularity index, cells were divided into three morphologies: ovoid, semicircular, and flattened. Results Immune cells were observed migrating along vascular endothelium with and against blood flow. Cell velocity did not significantly differ between morphology or vessel type and was independent of blow flood. Venules had a significantly higher cell frequency than arterioles. A higher proportion of cells resembled "flattened" morphology in arterioles. Based on cell speeds, morphologies, and behaviors, we identified these cells as nonclassical patrolling monocytes (NCPMs). Conclusions Phase-contrast AOSLO has the potential to reveal the once hidden behaviors of single immune cells in retinal circulation and can do so without the requirement of added contrast agents that may disrupt immune cell behavior.
Collapse
Affiliation(s)
- Drew Ashbery
- University of Rochester School of Medicine and Dentistry, Rochester, New York, United States
- Center for Visual Science, University of Rochester, Rochester, New York, United States
| | - Hector C Baez
- Center for Visual Science, University of Rochester, Rochester, New York, United States
- Department of Biomedical Engineering, University of Rochester, Rochester, New York, United States
| | - Rye E Kanarr
- Center for Visual Science, University of Rochester, Rochester, New York, United States
| | - Karteek Kunala
- Byers Eye Institute, Stanford University, Palo Alto, California, United States
| | - Derek Power
- Center for Visual Science, University of Rochester, Rochester, New York, United States
| | - Colin J Chu
- UCL Institute of Ophthalmology, University College London, London, United Kingdom
| | - Jesse Schallek
- Center for Visual Science, University of Rochester, Rochester, New York, United States
- Flaum Eye Institute, University of Rochester, Rochester, New York, United States
- Department of Biomedical Engineering, University of Rochester, Rochester, New York, United States
- Department of Neuroscience, University of Rochester, Rochester, New York, United States
| | - Juliette E McGregor
- Center for Visual Science, University of Rochester, Rochester, New York, United States
- Flaum Eye Institute, University of Rochester, Rochester, New York, United States
| |
Collapse
|
3
|
Raghavendra AJ, Damani A, Oechsli S, Magder LS, Liu Z, Hammer DX, Saeedi OJ. Measurement of retinal blood flow precision in the human eye with multimodal adaptive optics imaging. BIOMEDICAL OPTICS EXPRESS 2024; 15:4625-4641. [PMID: 39346998 PMCID: PMC11427214 DOI: 10.1364/boe.524944] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/15/2024] [Revised: 06/08/2024] [Accepted: 06/30/2024] [Indexed: 10/01/2024]
Abstract
Impaired retinal blood flow (RBF) autoregulation plays a key role in the development and progression of several ocular diseases, including glaucoma and diabetic retinopathy. Clinically, reproducible RBF quantitation could significantly improve early diagnosis and disease management. Several non-invasive techniques have been developed but are limited for retinal microvasculature flow measurements due to their low signal-to-noise ratio and poor lateral resolution. In this study, we demonstrate reproducible vessel caliber and retinal blood flow velocity measurements in healthy human volunteers using a high-resolution (spatial and temporal) multimodal adaptive optics system with scanning laser ophthalmoscopy and optical coherence tomography.
Collapse
Affiliation(s)
- Achyut J Raghavendra
- Department of Ophthalmology and Visual Sciences, University of Maryland School of Medicine, Baltimore, Maryland 21201, USA
- Center for Devices and Radiological Health (CDRH), U. S. Food and Drug Administration (FDA), Silver Spring, Maryland 20993, USA
| | - Aashka Damani
- Department of Ophthalmology and Visual Sciences, University of Maryland School of Medicine, Baltimore, Maryland 21201, USA
| | - Saige Oechsli
- Department of Ophthalmology and Visual Sciences, University of Maryland School of Medicine, Baltimore, Maryland 21201, USA
| | - Laurence S Magder
- Department of Epidemiology and Public Health, University of Maryland School of Medicine, Baltimore, Maryland 21201, USA
| | - Zhuolin Liu
- Center for Devices and Radiological Health (CDRH), U. S. Food and Drug Administration (FDA), Silver Spring, Maryland 20993, USA
| | - Daniel X Hammer
- Center for Devices and Radiological Health (CDRH), U. S. Food and Drug Administration (FDA), Silver Spring, Maryland 20993, USA
| | - Osamah J Saeedi
- Department of Ophthalmology and Visual Sciences, University of Maryland School of Medicine, Baltimore, Maryland 21201, USA
| |
Collapse
|
4
|
Lee S, Choi SS, Meleppat RK, Zawadzki RJ, Doble N. High-speed, phase contrast retinal and blood flow imaging using an adaptive optics partially confocal multi-line ophthalmoscope. BIOMEDICAL OPTICS EXPRESS 2024; 15:1815-1830. [PMID: 38495707 PMCID: PMC10942708 DOI: 10.1364/boe.507449] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/17/2023] [Revised: 12/18/2023] [Accepted: 01/14/2024] [Indexed: 03/19/2024]
Abstract
High-speed, phase contrast retinal and blood flow imaging using an adaptive optics partially confocal multi-line ophthalmosocope (AO-pcMLO) is described. It allows for simultaneous confocal and phase contrast imaging with various directional multi-line illumination by using a single 2D camera and a digital micromirror device (DMD). Both vertical and horizontal line illumination directions were tested, for photoreceptor and vascular imaging. The phase contrast imaging provided improved visualization of retinal structures such as cone inner segments, vessel walls and red blood cells with images being acquired at frame rates up to 500 Hz. Blood flow velocities of small vessels (<40 µm in diameter) were measured using kymographs for capillaries and cross-correlation between subsequent images for arterioles or venules. Cardiac-related pulsatile patterns were observed with normal resting heart-beat rate, and instantaneous blood flow velocities from 0.7 to 20 mm/s were measured.
Collapse
Affiliation(s)
- Soohyun Lee
- College of Optometry, The Ohio State University, 338 West 10th Avenue, Columbus, Ohio 43210, USA
| | - Stacey S. Choi
- College of Optometry, The Ohio State University, 338 West 10th Avenue, Columbus, Ohio 43210, USA
- Department of Ophthalmology and Visual Sciences, Havener Eye Institute, The Ohio State University, 915 Olentangy River Road, Suite 5000, Ohio 43212, USA
| | - Ratheesh K. Meleppat
- UC Davis Eye Center, Department of Ophthalmology and Vision Science, University of California, Davis, 4860 Y Street, Suite 2400, Sacramento, California 95817, USA
- UC Davis EyePod Small Animal Ocular Imaging Laboratory, Department of Cell Biology and Human Anatomy, University of California, Davis, 4320 Tupper Hall, Davis, California 95616, USA
| | - Robert J. Zawadzki
- UC Davis Eye Center, Department of Ophthalmology and Vision Science, University of California, Davis, 4860 Y Street, Suite 2400, Sacramento, California 95817, USA
- UC Davis EyePod Small Animal Ocular Imaging Laboratory, Department of Cell Biology and Human Anatomy, University of California, Davis, 4320 Tupper Hall, Davis, California 95616, USA
| | - Nathan Doble
- College of Optometry, The Ohio State University, 338 West 10th Avenue, Columbus, Ohio 43210, USA
- Department of Ophthalmology and Visual Sciences, Havener Eye Institute, The Ohio State University, 915 Olentangy River Road, Suite 5000, Ohio 43212, USA
| |
Collapse
|
5
|
Bedggood P, Ding Y, Metha A. Changes to the shape, orientation and packing of red cells as a function of retinal capillary size. BIOMEDICAL OPTICS EXPRESS 2024; 15:558-578. [PMID: 38404337 PMCID: PMC10890884 DOI: 10.1364/boe.511093] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/02/2023] [Revised: 12/13/2023] [Accepted: 12/18/2023] [Indexed: 02/27/2024]
Abstract
The free diameter of a red blood cell exceeds the lumen diameter of capillaries in the central nervous system, requiring significant deformation of cells. However the deformations undertaken in vivo are not well established due to the difficulty in observing cellular capillary flow in living human tissue. Here, we used high resolution adaptive optics imaging to non-invasively track 17,842 red blood cells in transit through 121 unique capillary segments of diameter 8 µm or less in the retina of 3 healthy human subjects. Within each vessel, a 2D en face profile was generated for the "average cell", whose shape was then inferred in 3D based on the key assumption of a circular capillary cross-section. From this we estimated the average volume, surface area, orientation, and separation between red cells within each capillary tube. Our results showed a network filtration effect, whereby narrower vessels were more likely to contain smaller cells (defined by surface area, which is thought not to vary during a cell's passage through the vascular system). A bivariate linear model showed that for larger cells in narrower vessels: cells re-orient themselves to align with the flow axis, their shape becomes more elongated, there are longer gaps between successive cells, and remarkably, that cell volume is less which implies the ejection of water from cells to facilitate capillary transit. Taken together, these findings suggest that red cells pass through retinal capillaries with some reluctance. A biphasic distribution for cell orientation and separation was evident, indicating a "tipping point" for vessels narrower than approx. 5 µm. This corresponds closely to the typical capillary lumen diameter, and may maximize sensitivity of cellular flow to small changes in diameter. We suggest that the minimization of unnecessary oxygen exchange, and hence of damage via reactive oxygen pathways, may have provided evolutionary pressure to ensure that capillary lumens are generally narrower than red blood cells.
Collapse
Affiliation(s)
- Phillip Bedggood
- Department of Optometry and Vision Sciences, The University of Melbourne, 3010, Australia
| | - Yifu Ding
- Department of Optometry and Vision Sciences, The University of Melbourne, 3010, Australia
| | - Andrew Metha
- Department of Optometry and Vision Sciences, The University of Melbourne, 3010, Australia
| |
Collapse
|
6
|
Neriyanuri S, Bedggood P, Symons RCA, Metha AB. Validation of an automated method for studying retinal capillary blood flow. BIOMEDICAL OPTICS EXPRESS 2024; 15:802-817. [PMID: 38404315 PMCID: PMC10890846 DOI: 10.1364/boe.504074] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/24/2023] [Revised: 12/13/2023] [Accepted: 12/28/2023] [Indexed: 02/27/2024]
Abstract
Two major approaches for tracking cellular motion across a range of biological tissues are the manual labelling of cells, and automated analysis of spatiotemporal information represented in a kymograph. Here we compare these two approaches for the measurement of retinal capillary flow, a particularly noisy application due to the low intrinsic contrast of single red blood cells (erythrocytes). Image data were obtained using a flood-illuminated adaptive optics ophthalmoscope at 750 nm, allowing the acquisition of flow information over several cardiac cycles which provided key information in evaluating tracking accuracy. Our results show that in addition to being much faster, the automated method is more accurate in the face of rapid flow and reduced image contrast. This study represents the first validation of commonly used kymograph approaches to capillary flow analysis.
Collapse
Affiliation(s)
- Srividya Neriyanuri
- Department of Optometry and Vision Sciences, The University of Melbourne, VIC 3053, Australia
| | - Phillip Bedggood
- Department of Optometry and Vision Sciences, The University of Melbourne, VIC 3053, Australia
| | - R. C. Andrew Symons
- Department of Optometry and Vision Sciences, The University of Melbourne, VIC 3053, Australia
- Department of Surgery, The University of Melbourne, VIC 3053, Australia
- Centre for Eye Research (CERA), VIC 3002, Australia
- Department of Surgery, Alfred Hospital, Monash University, VIC 3004, Australia
| | - Andrew B. Metha
- Department of Optometry and Vision Sciences, The University of Melbourne, VIC 3053, Australia
| |
Collapse
|
7
|
Neriyanuri S, Bedggood P, Symons RCA, Metha A. Mapping the human parafoveal vascular network to understand flow variability in capillaries. PLoS One 2023; 18:e0292962. [PMID: 37831712 PMCID: PMC10575526 DOI: 10.1371/journal.pone.0292962] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2023] [Accepted: 10/03/2023] [Indexed: 10/15/2023] Open
Abstract
Capillary flow is known to be non-homogenous between vessels and variable over time, for reasons that are poorly understood. The local properties of individual vessels have been shown to have limited explanatory power in this regard. This exploratory study investigates the association of network-level properties such as vessel depth, branch order, and distance from the feeding arteriole with capillary flow. Detailed network connectivity analysis was undertaken in 3 healthy young subjects using flood-illuminated adaptive optics retinal imaging, with axial depth of vessels determined via optical coherence tomography angiography. Forty-one out of 70 vessels studied were of terminal capillary type, i.e. fed from an arterial junction and drained by a venous junction. Approximately half of vessel junctions were amenable to fitting with a model of relative branch diameters, with only a few adhering to Murray's Law. A key parameter of the model (the junction exponent) was found to be inversely related to the average velocity (r = -0.59, p = 0.015) and trough velocity (r = -0.67, p = 0.004) in downstream vessels. Aspects of cellular flow, such as the minimum velocity, were also moderately correlated (r = 0.46, p = 0.009) with distance to the upstream feeding arteriole. Overall, this study shows that capillary network topology contributes significantly to the flow variability in retinal capillaries in human eyes. Understanding the heterogeneity in capillary flow is an important first step before pathological flow states can be properly understood. These results show that flow within capillary vessels is not affected by vessel depths but significantly influenced by the upstream feeder distance as well as the downstream vessel junction exponents, but there remains much to be uncovered regarding healthy capillary flow.
Collapse
Affiliation(s)
- Srividya Neriyanuri
- Department of Optometry and Vision Sciences, The University of Melbourne, Victoria, Australia
| | - Phillip Bedggood
- Department of Optometry and Vision Sciences, The University of Melbourne, Victoria, Australia
| | - R. C. Andrew Symons
- Department of Optometry and Vision Sciences, The University of Melbourne, Victoria, Australia
- Department of Surgery, The University of Melbourne, Victoria, Australia
- Centre for Eye Research Australia, Victoria, Australia
- Department of Surgery, Alfred Hospital, Monash University, Victoria, Australia
| | - Andrew Metha
- Department of Optometry and Vision Sciences, The University of Melbourne, Victoria, Australia
| |
Collapse
|
8
|
Neriyanuri S, Bedggood P, Symons RCA, Metha AB. Flow Heterogeneity and Factors Contributing to the Variability in Retinal Capillary Blood Flow. Invest Ophthalmol Vis Sci 2023; 64:15. [PMID: 37450310 DOI: 10.1167/iovs.64.10.15] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/18/2023] Open
Abstract
Purpose Capillary flow plays an important role in the nourishment and maintenance of healthy neural tissue and can be observed directly and non-invasively in the living human retina. Despite their importance, patterns of normal capillary flow are not well understood due to limitations in spatial and temporal resolution of imaging data. Methods Capillary flow characteristics were studied in the retina of three healthy young individuals using a high-resolution adaptive optics ophthalmoscope. Imaging with frame rates of 200 to 300 frames per second was sufficient to capture details of the single-file flow of red blood cells in capillaries over the course of about 3 seconds. Results Erythrocyte velocities were measured from 72 neighboring vessels of the parafoveal capillary network for each subject. We observed strong variability among vessels within a given subject, and even within a given imaged field, across a range of capillary flow parameters including maximum and minimum velocities, pulsatility, abruptness of the systolic peak, and phase of the cardiac cycle. The observed variability was not well explained by "local" factors such as the vessel diameter, tortuosity, length, linear cell density, or hematocrit of the vessel. Within a vessel, a moderate relation between the velocities and hematocrit was noted, suggesting a redistribution of plasma between cells with changes in flow. Conclusions These observations advance our fundamental understanding of normal capillary physiology and raise questions regarding the potential role of network-level effects in explaining the observed flow heterogeneity.
Collapse
Affiliation(s)
- Srividya Neriyanuri
- Department of Optometry and Vision Sciences, The University of Melbourne, Parkville, Victoria, Australia
| | - Phillip Bedggood
- Department of Optometry and Vision Sciences, The University of Melbourne, Parkville, Victoria, Australia
| | - R C Andrew Symons
- Department of Optometry and Vision Sciences, The University of Melbourne, Parkville, Victoria, Australia
- Department of Surgery, The University of Melbourne, Parkville, Victoria, Australia
- Centre for Eye Research Australia, East Melbourne, Victoria, Australia
- Department of Surgery, Alfred Hospital, Monash University, Melbourne, Victoria, Australia
| | - Andrew B Metha
- Department of Optometry and Vision Sciences, The University of Melbourne, Parkville, Victoria, Australia
| |
Collapse
|
9
|
Li B, Leng J, Şencan-Eğilmez I, Takase H, Alfadhel MAH, Fu B, Shahidi M, Lo EH, Arai K, Sakadžić S. Differential reductions in the capillary red-blood-cell flux between retina and brain under chronic global hypoperfusion. NEUROPHOTONICS 2023; 10:035001. [PMID: 37323511 PMCID: PMC10266089 DOI: 10.1117/1.nph.10.3.035001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/09/2023] [Revised: 04/13/2023] [Accepted: 04/26/2023] [Indexed: 06/17/2023]
Abstract
Significance It has been hypothesized that abnormal microcirculation in the retina might predict the risk of ischemic damages in the brain. Direct comparison between the retinal and the cerebral microcirculation using similar animal preparation and under similar experimental conditions would help test this hypothesis. Aim We investigated capillary red-blood-cell (RBC) flux changes under controlled conditions and bilateral-carotid-artery-stenosis (BCAS)-induced hypoperfusion, and then compared them with our previous measurements performed in the brain. Approach We measured capillary RBC flux in mouse retina with two-photon microscopy using a fluorescence-labeled RBC-passage approach. Key physiological parameters were monitored during experiments to ensure stable physiology. Results We found that under the controlled conditions, capillary RBC flux in the retina was much higher than in the brain (i.e., cerebral cortical gray matter and subcortical white matter), and that BCAS induced a much larger decrease in capillary RBC flux in the retina than in the brain. Conclusions We demonstrated a two-photon microscopy-based technique to efficiently measure capillary RBC flux in the retina. Since cerebral subcortical white matter often exhibits early pathological developments due to global hypoperfusion, our results suggest that retinal microcirculation may be utilized as an early marker of brain diseases involving global hypoperfusion.
Collapse
Affiliation(s)
- Baoqiang Li
- Chinese Academy of Sciences, Shenzhen Institute of Advanced Technology, Brain Cognition and Brain Disease Institute; Shenzhen Fundamental Research Institutions, Shenzhen–Hong Kong Institute of Brain Science, Shenzhen, Guangdong, China
- Harvard Medical School, Massachusetts General Hospital, Athinoula A. Martinos Center for Biomedical Imaging, Charlestown, Massachusetts, United States
| | - Ji Leng
- Chinese Academy of Sciences, Shenzhen Institute of Advanced Technology, Brain Cognition and Brain Disease Institute; Shenzhen Fundamental Research Institutions, Shenzhen–Hong Kong Institute of Brain Science, Shenzhen, Guangdong, China
| | - Ikbal Şencan-Eğilmez
- Harvard Medical School, Massachusetts General Hospital, Athinoula A. Martinos Center for Biomedical Imaging, Charlestown, Massachusetts, United States
| | - Hajime Takase
- Harvard Medical School, Massachusetts General Hospital, Department of Radiology, Charlestown, Massachusetts, United States
- Harvard Medical School, Massachusetts General Hospital, Department of Neurology, Charlestown, Massachusetts, United States
| | - Mohammed Ali H. Alfadhel
- Harvard Medical School, Massachusetts General Hospital, Athinoula A. Martinos Center for Biomedical Imaging, Charlestown, Massachusetts, United States
| | - Buyin Fu
- Harvard Medical School, Massachusetts General Hospital, Athinoula A. Martinos Center for Biomedical Imaging, Charlestown, Massachusetts, United States
| | - Mahnaz Shahidi
- University of Southern California, Department of Ophthalmology, Los Angeles, California, United States
| | - Eng H. Lo
- Harvard Medical School, Massachusetts General Hospital, Department of Radiology, Charlestown, Massachusetts, United States
- Harvard Medical School, Massachusetts General Hospital, Department of Neurology, Charlestown, Massachusetts, United States
| | - Ken Arai
- Harvard Medical School, Massachusetts General Hospital, Department of Radiology, Charlestown, Massachusetts, United States
- Harvard Medical School, Massachusetts General Hospital, Department of Neurology, Charlestown, Massachusetts, United States
| | - Sava Sakadžić
- Harvard Medical School, Massachusetts General Hospital, Athinoula A. Martinos Center for Biomedical Imaging, Charlestown, Massachusetts, United States
| |
Collapse
|
10
|
Feng G, Joseph A, Dholakia K, Shang F, Pfeifer CW, Power D, Padmanabhan K, Schallek J. High-resolution structural and functional retinal imaging in the awake behaving mouse. Commun Biol 2023; 6:572. [PMID: 37248385 PMCID: PMC10227058 DOI: 10.1038/s42003-023-04896-x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2022] [Accepted: 05/02/2023] [Indexed: 05/31/2023] Open
Abstract
The laboratory mouse has provided tremendous insight to the underpinnings of mammalian central nervous system physiology. In recent years, it has become possible to image single neurons, glia and vascular cells in vivo by using head-fixed preparations combined with cranial windows to study local networks of activity in the living brain. Such approaches have also succeeded without the use of general anesthesia providing insights to the natural behaviors of the central nervous system. However, the same has not yet been developed for the eye, which is constantly in motion. Here we characterize a novel head-fixed preparation that enables high-resolution adaptive optics retinal imaging at the single-cell level in awake-behaving mice. We reveal three new functional attributes of the normal eye that are overlooked by anesthesia: 1) High-frequency, low-amplitude eye motion of the mouse that is only present in the awake state 2) Single-cell blood flow in the mouse retina is reduced under anesthesia and 3) Mouse retinae thicken in response to ketamine/xylazine anesthesia. Here we show key benefits of the awake-behaving preparation that enables study of retinal physiology without anesthesia to study the normal retinal physiology in the mouse.
Collapse
Affiliation(s)
- Guanping Feng
- Department of Biomedical Engineering, University of Rochester, Rochester, NY, 14620, USA
- Center for Visual Science, University of Rochester, Rochester, NY, 14627, USA
| | - Aby Joseph
- Center for Visual Science, University of Rochester, Rochester, NY, 14627, USA
- The Institute of Optics, University of Rochester, Rochester, NY, 14620, USA
| | - Kosha Dholakia
- Department of Biomedical Engineering, University of Rochester, Rochester, NY, 14620, USA
- Center for Visual Science, University of Rochester, Rochester, NY, 14627, USA
| | - Fei Shang
- Center for Visual Science, University of Rochester, Rochester, NY, 14627, USA
- Department of Neuroscience, University of Rochester, Rochester, NY, 14642, USA
| | - Charles W Pfeifer
- Center for Visual Science, University of Rochester, Rochester, NY, 14627, USA
- Flaum Eye Institute, University of Rochester, Rochester, NY, 14642, USA
| | - Derek Power
- Center for Visual Science, University of Rochester, Rochester, NY, 14627, USA
| | - Krishnan Padmanabhan
- Center for Visual Science, University of Rochester, Rochester, NY, 14627, USA
- Department of Neuroscience, University of Rochester, Rochester, NY, 14642, USA
- Intellectual and Developmental Disabilities Research Center, University of Rochester, Rochester, NY, 14642, USA
| | - Jesse Schallek
- Center for Visual Science, University of Rochester, Rochester, NY, 14627, USA.
- Department of Neuroscience, University of Rochester, Rochester, NY, 14642, USA.
- Flaum Eye Institute, University of Rochester, Rochester, NY, 14642, USA.
| |
Collapse
|
11
|
Liu R, Wang X, Hoshi S, Zhang Y. High-speed measurement of retinal arterial blood flow in the living human eye with adaptive optics ophthalmoscopy. OPTICS LETTERS 2023; 48:1994-1997. [PMID: 37058625 PMCID: PMC11185870 DOI: 10.1364/ol.480896] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/18/2022] [Accepted: 03/06/2023] [Indexed: 06/19/2023]
Abstract
We present a technique to measure the rapid blood velocity in large retinal vessels with high spatiotemporal resolution. Red blood cell motion traces in the vessels were non-invasively imaged using an adaptive optics near-confocal scanning ophthalmoscope at a frame rate of 200 fps. We developed software to measure blood velocity automatically. We demonstrated the ability to measure the spatiotemporal profiles of the pulsatile blood flow with a maximum velocity of 95-156 mm/s in retinal arterioles with a diameter >100 µm. High-speed and high-resolution imaging increased the dynamic range, enhanced sensitivity, and improved the accuracy when studying retinal hemodynamics.
Collapse
Affiliation(s)
- Ruixue Liu
- Doheny Eye Institute, 150 N Orange Grove Blvd, Pasadena, CA 91103
| | - Xiaolin Wang
- Doheny Eye Institute, 150 N Orange Grove Blvd, Pasadena, CA 91103
| | - Sujin Hoshi
- Doheny Eye Institute, 150 N Orange Grove Blvd, Pasadena, CA 91103
- Department of Ophthalmology, University of California - Los Angeles, 100 Stein Plaza Driveway, Los Angeles, CA 90024
- Department of Ophthalmology, University of Tsukuba, Ibaraki, Japan
| | - Yuhua Zhang
- Doheny Eye Institute, 150 N Orange Grove Blvd, Pasadena, CA 91103
- Department of Ophthalmology, University of California - Los Angeles, 100 Stein Plaza Driveway, Los Angeles, CA 90024
| |
Collapse
|
12
|
Sabesan R, Grieve K, Hammer DX, Ji N, Marcos S. Introduction to the Feature Issue on Adaptive Optics for Biomedical Applications. BIOMEDICAL OPTICS EXPRESS 2023; 14:1772-1776. [PMID: 37078031 PMCID: PMC10110319 DOI: 10.1364/boe.488044] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/16/2023] [Indexed: 05/03/2023]
Abstract
The guest editors introduce a feature issue commemorating the 25th anniversary of adaptive optics in biomedical research.
Collapse
Affiliation(s)
- Ramkumar Sabesan
- Department of Ophthalmology, University of Washington School of Medicine, Seattle, WA, USA
| | - Kate Grieve
- Sorbonne Université, INSERM, CNRS, Institut de la Vision, 17 rue Moreau, and CHNO des Quinze-Vingts, INSERM-DGOS CIC 1423, 28 rue de Charenton, F-75012 Paris, France
| | - Daniel X. Hammer
- Center for Devices and Radiological Health (CDRH), U. S. Food and Drug Administration (FDA), Silver Spring, MD 20993, USA
| | - Na Ji
- Department of Physics, Department of Molecular & Cellular Biology, University of California, Berkeley, CA 94720, USA
| | - Susana Marcos
- Visual Optics and Biophotonics Laboratory, Instituto de Óptica, Consejo Superior de Investigaciones Científicas, Calle Serrano 121, Madrid, 28006, Spain
- Center for Visual Sciences; The Institute of Optics and Flaum Eye Institute, University of Rochester, Rochester, NY 14642, USA
| |
Collapse
|
13
|
Bedggood P, Ding Y, Metha A. Measuring red blood cell shape in the human retina. OPTICS LETTERS 2023; 48:1554-1557. [PMID: 37221708 DOI: 10.1364/ol.483062] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/08/2022] [Accepted: 02/11/2023] [Indexed: 05/25/2023]
Abstract
The free diameter of a red blood cell generally exceeds the lumen diameter of capillaries in the central nervous system, requiring significant cellular deformation. However, the deformations undertaken are not well established under natural conditions due to the difficulty in observing corpuscular flow in vivo. Here we describe a novel, to the best of our knowledge, method to noninvasively study the shape of red blood cells as they traverse the narrow capillary networks of the living human retina, using high-speed adaptive optics. One hundred and twenty-three capillary vessels were analyzed in three healthy subjects. For each capillary, image data were motion-compensated and then averaged over time to reveal the appearance of the blood column. Data from hundreds of red blood cells were used to profile the average cell in each vessel. Diverse cellular geometries were observed across lumens ranging from 3.2 to 8.4 µm in diameter. As capillaries narrowed, cells transitioned from rounder to more elongated shapes and from being counter-aligned to aligned with the axis of flow. Remarkably, in many vessels the red blood cells maintained an oblique orientation relative to the axis of flow.
Collapse
|
14
|
Williams DR, Burns SA, Miller DT, Roorda A. Evolution of adaptive optics retinal imaging [Invited]. BIOMEDICAL OPTICS EXPRESS 2023; 14:1307-1338. [PMID: 36950228 PMCID: PMC10026580 DOI: 10.1364/boe.485371] [Citation(s) in RCA: 28] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/12/2023] [Accepted: 02/02/2023] [Indexed: 05/02/2023]
Abstract
This review describes the progress that has been achieved since adaptive optics (AO) was incorporated into the ophthalmoscope a quarter of a century ago, transforming our ability to image the retina at a cellular spatial scale inside the living eye. The review starts with a comprehensive tabulation of AO papers in the field and then describes the technological advances that have occurred, notably through combining AO with other imaging modalities including confocal, fluorescence, phase contrast, and optical coherence tomography. These advances have made possible many scientific discoveries from the first maps of the topography of the trichromatic cone mosaic to exquisitely sensitive measures of optical and structural changes in photoreceptors in response to light. The future evolution of this technology is poised to offer an increasing array of tools to measure and monitor in vivo retinal structure and function with improved resolution and control.
Collapse
Affiliation(s)
- David R. Williams
- The Institute of Optics and the Center for
Visual Science, University of Rochester,
Rochester NY, USA
| | - Stephen A. Burns
- School of Optometry, Indiana
University at Bloomington, Bloomington IN, USA
| | - Donald T. Miller
- School of Optometry, Indiana
University at Bloomington, Bloomington IN, USA
| | - Austin Roorda
- Herbert Wertheim School of Optometry and
Vision Science, University of California at Berkeley, Berkeley CA, USA
| |
Collapse
|
15
|
Li J, Wang D, Pottenburgh J, Bower AJ, Asanad S, Lai EW, Simon C, Im L, Huryn LA, Tao Y, Tam J, Saeedi OJ. Visualization of erythrocyte stasis in the living human eye in health and disease. iScience 2023; 26:105755. [PMID: 36594026 PMCID: PMC9803835 DOI: 10.1016/j.isci.2022.105755] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2022] [Revised: 08/25/2022] [Accepted: 12/05/2022] [Indexed: 12/12/2022] Open
Abstract
Blood cells trapped in stasis have been reported within the microcirculation, but their relevance to health and disease has not been established. In this study, we introduce an in vivo imaging approach that reveals the presence of a previously-unknown pool of erythrocytes in stasis, located within capillary segments of the CNS, and present in 100% of subjects imaged. These results provide a key insight that blood cells pause as they travel through the choroidal microvasculature, a vascular structure that boasts the highest blood flow of any tissue in the body. Demonstration of clinical utility using deep learning reveals that erythrocyte stasis is altered in glaucoma, indicating the possibility of more widespread changes in choroidal microvascular than previously realized. The ability to monitor the choroidal microvasculature at the single cell level may lead to novel strategies for tracking microvascular health in glaucoma, age-related macular degeneration, and other neurodegenerative diseases.
Collapse
Affiliation(s)
- Joanne Li
- National Eye Institute, National Institutes of Health, Bethesda, MD, USA
| | - Dongyi Wang
- Bioimaging and Machine Vision Laboratory, Fischell Department of Bioengineering, University of Maryland, College Park, MD, USA
| | - Jessica Pottenburgh
- Department of Ophthalmology and Visual Sciences, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Andrew J. Bower
- National Eye Institute, National Institutes of Health, Bethesda, MD, USA
| | - Samuel Asanad
- Department of Ophthalmology and Visual Sciences, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Eric W. Lai
- University of Maryland School of Medicine, Baltimore, MD, USA
| | - Caroline Simon
- University of Maryland School of Medicine, Baltimore, MD, USA
| | - Lily Im
- Department of Ophthalmology and Visual Sciences, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Laryssa A. Huryn
- National Eye Institute, National Institutes of Health, Bethesda, MD, USA
| | - Yang Tao
- Bioimaging and Machine Vision Laboratory, Fischell Department of Bioengineering, University of Maryland, College Park, MD, USA
| | - Johnny Tam
- National Eye Institute, National Institutes of Health, Bethesda, MD, USA
| | - Osamah J. Saeedi
- Department of Ophthalmology and Visual Sciences, University of Maryland School of Medicine, Baltimore, MD, USA
| |
Collapse
|
16
|
Böhm EW, Pfeiffer N, Wagner FM, Gericke A. Methods to measure blood flow and vascular reactivity in the retina. Front Med (Lausanne) 2023; 9:1069449. [PMID: 36714119 PMCID: PMC9877427 DOI: 10.3389/fmed.2022.1069449] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2022] [Accepted: 12/23/2022] [Indexed: 01/14/2023] Open
Abstract
Disturbances of retinal perfusion are involved in the onset and maintenance of several ocular diseases, including diabetic retinopathy, glaucoma, and retinal vascular occlusion. Hence, knowledge on ocular vascular anatomy and function is highly relevant for basic research studies and for clinical judgment and treatment. The retinal vasculature is composed of the superficial, intermediate, and deep vascular layer. Detection of changes in blood flow and vascular diameter especially in smaller vessels is essential to understand and to analyze vascular diseases. Several methods to evaluate blood flow regulation in the retina have been described so far, but no gold standard has been established. For highly reliable assessment of retinal blood flow, exact determination of vessel diameter is necessary. Several measurement methods have already been reported in humans. But for further analysis of retinal vascular diseases, studies in laboratory animals, including genetically modified mice, are important. As for mice, the small vessel size is challenging requiring devices with high optic resolution. In this review, we recapitulate different methods for retinal blood flow and vessel diameter measurement. Moreover, studies in humans and in experimental animals are described.
Collapse
|
17
|
Advanced Optical Wavefront Technologies to Improve Patient Quality of Vision and Meet Clinical Requests. Polymers (Basel) 2022; 14:polym14235321. [PMID: 36501713 PMCID: PMC9741482 DOI: 10.3390/polym14235321] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2022] [Revised: 11/28/2022] [Accepted: 12/01/2022] [Indexed: 12/09/2022] Open
Abstract
Adaptive optics (AO) is employed for the continuous measurement and correction of ocular aberrations. Human eye refractive errors (lower-order aberrations such as myopia and astigmatism) are corrected with contact lenses and excimer laser surgery. Under twilight vision conditions, when the pupil of the human eye dilates to 5-7 mm in diameter, higher-order aberrations affect the visual acuity. The combined use of wavefront (WF) technology and AO systems allows the pre-operative evaluation of refractive surgical procedures to compensate for the higher-order optical aberrations of the human eye, guiding the surgeon in choosing the procedure parameters. Here, we report a brief history of AO, starting from the description of the Shack-Hartmann method, which allowed the first in vivo measurement of the eye's wave aberration, the wavefront sensing technologies (WSTs), and their principles. Then, the limitations of the ocular wavefront ascribed to the IOL polymeric materials and design, as well as future perspectives on improving patient vision quality and meeting clinical requests, are described.
Collapse
|
18
|
Barrasa-Ramos S, Dessalles CA, Hautefeuille M, Barakat AI. Mechanical regulation of the early stages of angiogenesis. J R Soc Interface 2022; 19:20220360. [PMID: 36475392 PMCID: PMC9727679 DOI: 10.1098/rsif.2022.0360] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Favouring or thwarting the development of a vascular network is essential in fields as diverse as oncology, cardiovascular disease or tissue engineering. As a result, understanding and controlling angiogenesis has become a major scientific challenge. Mechanical factors play a fundamental role in angiogenesis and can potentially be exploited for optimizing the architecture of the resulting vascular network. Largely focusing on in vitro systems but also supported by some in vivo evidence, the aim of this Highlight Review is dual. First, we describe the current knowledge with particular focus on the effects of fluid and solid mechanical stimuli on the early stages of the angiogenic process, most notably the destabilization of existing vessels and the initiation and elongation of new vessels. Second, we explore inherent difficulties in the field and propose future perspectives on the use of in vitro and physics-based modelling to overcome these difficulties.
Collapse
Affiliation(s)
- Sara Barrasa-Ramos
- LadHyX, CNRS, Ecole Polytechnique, Institut Polytechnique de Paris, Palaiseau, France
| | - Claire A. Dessalles
- LadHyX, CNRS, Ecole Polytechnique, Institut Polytechnique de Paris, Palaiseau, France
| | - Mathieu Hautefeuille
- Laboratoire de Biologie du Développement (UMR7622), Institut de Biologie Paris Seine, Sorbonne Université, Paris, France,Facultad de Ciencias, Universidad Nacional Autónoma de México, CDMX, Mexico
| | - Abdul I. Barakat
- LadHyX, CNRS, Ecole Polytechnique, Institut Polytechnique de Paris, Palaiseau, France
| |
Collapse
|
19
|
Dholakia KY, Guevara-Torres A, Feng G, Power D, Schallek J. In Vivo Capillary Structure and Blood Cell Flux in the Normal and Diabetic Mouse Eye. Invest Ophthalmol Vis Sci 2022; 63:18. [PMID: 35138346 PMCID: PMC8842443 DOI: 10.1167/iovs.63.2.18] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023] Open
Abstract
Purpose To characterize the early structural and functional changes in the retinal microvasculature in response to hyperglycemia in the Ins2Akita mouse. Methods A custom phase-contrast adaptive optics scanning light ophthalmoscope was used to image retinal capillaries of 9 Ins2Akita positive (hyperglycemic) and 9 Ins2Akita negative (euglycemic) mice from postnatal weeks 5 to 18. A 15 kHz point scan was used to image capillaries and measure red blood cell flux at biweekly intervals; measurements were performed manually. Retinal thickness and fundus photos were captured monthly using a commercial scanning laser ophthalmoscope/optical coherence tomography. Retinal thickness was calculated using a custom algorithm. Blood glucose and weight were tracked throughout the duration of the study. Results Elevated blood glucose (>250 mg/dL) was observed at 4 to 5 weeks of age in Ins2Akita mice and remained elevated throughout the study, whereas euglycemic littermates maintained normal glucose levels. There was no significant difference in red blood cell flux, capillary anatomy, lumen diameter, or occurrence of stalled capillaries between hyperglycemic and euglycemic mice between postnatal weeks 5 and 18. Hyperglycemic mice had a thinner retina than euglycemic littermates (p < 0.001), but retinal thickness did not change with duration of hyperglycemia despite glucose levels that were more than twice times normal. Conclusions In early stages of hyperglycemia, retinal microvasculature structure (lumen diameter, capillary anatomy) and function (red blood cell flux, capillary perfusion) were not impaired despite 3 months of chronically elevated blood glucose. These findings suggest that hyperglycemia alone for 3 months does not alter capillary structure or function in profoundly hyperglycemic mice.
Collapse
Affiliation(s)
- Kosha Y Dholakia
- Department of Biomedical Engineering, University of Rochester, Rochester, New York, United States.,Center for Visual Science, University of Rochester, Rochester, New York, United States
| | - Andres Guevara-Torres
- Center for Visual Science, University of Rochester, Rochester, New York, United States.,The Institute of Optics, University of Rochester, Rochester, New York, United States
| | - Guanping Feng
- Department of Biomedical Engineering, University of Rochester, Rochester, New York, United States.,Center for Visual Science, University of Rochester, Rochester, New York, United States
| | - Derek Power
- Center for Visual Science, University of Rochester, Rochester, New York, United States.,Flaum Eye Institute, University of Rochester, Rochester, New York, United States
| | - Jesse Schallek
- Center for Visual Science, University of Rochester, Rochester, New York, United States.,Flaum Eye Institute, University of Rochester, Rochester, New York, United States.,Department of Neuroscience, University of Rochester, Rochester, New York, United States
| |
Collapse
|
20
|
Li H, Deng Y, Sampani K, Cai S, Li Z, Sun JK, Karniadakis GE. Computational investigation of blood cell transport in retinal microaneurysms. PLoS Comput Biol 2022; 18:e1009728. [PMID: 34986147 PMCID: PMC8730408 DOI: 10.1371/journal.pcbi.1009728] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2021] [Accepted: 12/07/2021] [Indexed: 12/15/2022] Open
Abstract
Microaneurysms (MAs) are one of the earliest clinically visible signs of diabetic retinopathy (DR). MA leakage or rupture may precipitate local pathology in the surrounding neural retina that impacts visual function. Thrombosis in MAs may affect their turnover time, an indicator associated with visual and anatomic outcomes in the diabetic eyes. In this work, we perform computational modeling of blood flow in microchannels containing various MAs to investigate the pathologies of MAs in DR. The particle-based model employed in this study can explicitly represent red blood cells (RBCs) and platelets as well as their interaction in the blood flow, a process that is very difficult to observe in vivo. Our simulations illustrate that while the main blood flow from the parent vessels can perfuse the entire lumen of MAs with small body-to-neck ratio (BNR), it can only perfuse part of the lumen in MAs with large BNR, particularly at a low hematocrit level, leading to possible hypoxic conditions inside MAs. We also quantify the impacts of the size of MAs, blood flow velocity, hematocrit and RBC stiffness and adhesion on the likelihood of platelets entering MAs as well as their residence time inside, two factors that are thought to be associated with thrombus formation in MAs. Our results show that enlarged MA size, increased blood velocity and hematocrit in the parent vessel of MAs as well as the RBC-RBC adhesion promote the migration of platelets into MAs and also prolong their residence time, thereby increasing the propensity of thrombosis within MAs. Overall, our work suggests that computational simulations using particle-based models can help to understand the microvascular pathology pertaining to MAs in DR and provide insights to stimulate and steer new experimental and computational studies in this area.
Collapse
Affiliation(s)
- He Li
- School of Engineering, Brown University, Providence, Rhode Island, United States of America
| | - Yixiang Deng
- School of Engineering, Brown University, Providence, Rhode Island, United States of America
| | - Konstantina Sampani
- Beetham Eye Institute, Joslin Diabetes Center, Boston, Massachusetts, United States of America
- Department of Medicine, Harvard Medical School, Boston, Massachusetts, United States of America
| | - Shengze Cai
- Division of Applied Mathematics, Brown University, Providence, Rhode Island, United States of America
| | - Zhen Li
- Department of Mechanical Engineering, Clemson University, Clemson, South Carolina, United States of America
| | - Jennifer K. Sun
- Beetham Eye Institute, Joslin Diabetes Center, Boston, Massachusetts, United States of America
- Department of Ophthalmology, Harvard Medical School, Boston, Massachusetts, United States of America
| | - George E. Karniadakis
- School of Engineering, Brown University, Providence, Rhode Island, United States of America
- Division of Applied Mathematics, Brown University, Providence, Rhode Island, United States of America
| |
Collapse
|
21
|
Joseph A, Power D, Schallek J. Imaging the dynamics of individual processes of microglia in the living retina in vivo. BIOMEDICAL OPTICS EXPRESS 2021; 12:6157-6183. [PMID: 34745728 PMCID: PMC8547988 DOI: 10.1364/boe.426157] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/29/2021] [Revised: 08/29/2021] [Accepted: 08/29/2021] [Indexed: 05/18/2023]
Abstract
Microglia are an essential population of resident immune cells in the central nervous system (CNS) and retina. These microscopic cells possess sub-cellular processes that make them challenging to image due to limited resolution and contrast. The baseline behavior of microglial processes in the living retina has been poorly characterized, and yet are essential to understanding how these cells respond under conditions of health, development, stress and disease. Here we use in vivo adaptive optics scanning light ophthalmoscopy combined with time-lapse imaging and quantification of process motility, to reveal the detailed behavior of microglial cells in a population of healthy mice. We find microglial processes to be dynamic at all branch-levels, from primary to end-protrusions. Cell-processes remodel at average speeds of 0.6 ± 0.4 µm/min with growth and deletion bursts of 0-7.6 µm/min. Longitudinal imaging in the same mice showed cell-somas to remain stable over seconds to minutes, but show migration over days to months. In addition to characterizing in vivo process motility and Sholl analysis using a microglial reporter mouse, we also demonstrate that microglia can be imaged without fluorescent labels at all. Phase-contrast imaging using safe levels of near-infrared light successfully imaged microglia soma and process remodeling with micron-level detail noninvasively, confirmed by simultaneous imaging of fluorescent microglial cells in transgenic mice. This label-free approach provides a new opportunity to investigate CNS immune system noninvasively without requiring transgenic or antibody labeling which could have off-target effects of changing normal microglial behavior. Additionally, CNS microglia study can now be conducted without the need for cranial window surgery which have the potential to change their behavior due to local or systemic inflammation.
Collapse
Affiliation(s)
- Aby Joseph
- The Institute of Optics, University of Rochester, Rochester, NY 14620, USA
- Center for Visual Science, University of Rochester, Rochester, NY 14627, USA
| | - Derek Power
- Center for Visual Science, University of Rochester, Rochester, NY 14627, USA
| | - Jesse Schallek
- Center for Visual Science, University of Rochester, Rochester, NY 14627, USA
- Flaum Eye Institute, University of Rochester, Rochester, NY 14642, USA
- Department of Neuroscience, University of Rochester, Rochester, NY 14642, USA
| |
Collapse
|
22
|
Patel DD, Dhalla AH, Viehland C, Connor TB, Lipinski DM. Development of a Preclinical Laser Speckle Contrast Imaging Instrument for Assessing Systemic and Retinal Vascular Function in Small Rodents. Transl Vis Sci Technol 2021; 10:19. [PMID: 34403474 PMCID: PMC8374978 DOI: 10.1167/tvst.10.9.19] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
Purpose To develop and test a non-contact, contrast-free, retinal laser speckle contrast imaging (LSCI) instrument for use in small rodents to assess vascular anatomy, quantify hemodynamics, and measure physiological changes in response to retinal vascular dysfunction over a wide field of view (FOV). Methods A custom LSCI instrument capable of wide-field and non-contact imaging in small rodents was constructed. The effect of camera gain, laser power, and exposure duration on speckle contrast variance was standardized before the repeatability of LSCI measurements was determined in vivo. Finally, the ability of LSCI to detect alterations in local and systemic vascular function was evaluated using a laser-induced branch retinal vein occlusion and isoflurane anesthesia model, respectively. Results The LSCI system generates contrast-free maps of retinal blood flow with a 50° FOV at >376 frames per second (fps) and under a short exposure duration (>50 µs) with high reliability (intraclass correlation R = 0.946). LSCI was utilized to characterize retinal vascular anatomy affected by laser injury and longitudinally measure alterations in perfusion and blood flow profile. Under varied doses of isoflurane, LSCI could assess cardiac and systemic vascular function, including heart rate, peripheral resistance, contractility, and pulse propagation. Conclusions We present a LSCI system for detecting anatomical and physiological changes in retinal and systemic vascular health and function in small rodents. Translational Relevance Detecting and quantifying early anatomical and physiological changes in vascular function in animal models of retinal, systemic, and neurodegenerative diseases could strengthen our understanding of disease progression and enable the identification of new prognostic and diagnostic biomarkers for disease management and for assessing treatment efficacies.
Collapse
Affiliation(s)
- Dwani D Patel
- Department of Cell Biology, Neurobiology and Anatomy, Medical College of Wisconsin, Milwaukee, WI, USA.,Department of Ophthalmology and Visual Science, Medical College of Wisconsin, Milwaukee, WI, USA
| | - Al-Hafeez Dhalla
- Department of Biomedical Engineering, Duke University, Durham, NC, USA
| | | | - Thomas B Connor
- Department of Ophthalmology and Visual Science, Medical College of Wisconsin, Milwaukee, WI, USA
| | - Daniel M Lipinski
- Department of Cell Biology, Neurobiology and Anatomy, Medical College of Wisconsin, Milwaukee, WI, USA.,Department of Ophthalmology and Visual Science, Medical College of Wisconsin, Milwaukee, WI, USA.,Nuffield Laboratory of Ophthalmology, University of Oxford, Oxford, UK
| |
Collapse
|
23
|
Salmon AE, Chen RCH, Atry F, Gaffney M, Merriman DK, Gil DA, Skala MC, Collery R, Allen KP, Buckland E, Pashaie R, Carroll J. Optical Coherence Tomography Angiography in the Thirteen-Lined Ground Squirrel. Transl Vis Sci Technol 2021; 10:5. [PMID: 34232271 PMCID: PMC8267221 DOI: 10.1167/tvst.10.8.5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
Purpose To assess the performance of two spectral-domain optical coherence tomography-angiography systems in a natural model of hypoperfusion: the hibernating thirteen-lined ground squirrel (13-LGS). Methods Using a high-speed (130 kHz) OCT-A system (HS-OCT-A) and a commercial OCT (36 kHz; Bioptigen Envisu; BE-OCT-A), we imaged the 13-LGS retina throughout its hibernation cycle. Custom software was used to extract the superior, middle, and deep capillary plexus (SCP, MCP, and DCP, respectively). The retinal vasculature was also imaged with adaptive optics scanning light ophthalmoscopy (AOSLO) during torpor to visualize individual blood cells. Finally, correlative histology with immunolabeled or DiI-stained vasculature was performed. Results During euthermia, vessel density was similar between devices for the SCP and MCP (P = 0.88, 0.72, respectively), with a small difference in the DCP (−1.63 ± 1.54%, P = 0.036). Apparent capillary dropout was observed during torpor, but recovered after forced arousal, and this effect was exaggerated in high-speed OCT-A imaging. Based on cell flux measurements with AOSLO, increasing OCT-A scan duration by ∼1000× would avoid the apparent capillary dropout artifact. High correspondence between OCT-A (during euthermia) and histology enabled lateral scale calibration. Conclusions While the HS-OCT-A system provides a more efficient workflow, the shorter interscan interval may render it more susceptible to the apparent capillary dropout artifact. Disambiguation between capillary dropout and transient ischemia can have important implications in the management of retinal disease and warrants additional diagnostics. Translational Relevance The 13-LGS provides a natural model of hypoperfusion that may prove valuable in modeling the utility of OCT-A in human pathologies associated with altered blood flow.
Collapse
Affiliation(s)
- Alexander E Salmon
- Cell Biology, Neurobiology, & Anatomy, Medical College of Wisconsin, Milwaukee, WI, USA.,Translational Imaging Innovations, Hickory, NC, USA
| | - Rex Chin-Hao Chen
- Biomedical Engineering, University of Wisconsin-Madison, Madison, WI, USA
| | - Farid Atry
- Biomedical Engineering, University of Wisconsin-Madison, Madison, WI, USA
| | - Mina Gaffney
- Ophthalmology & Visual Sciences, Medical College of Wisconsin, Milwaukee, WI, USA
| | | | - Daniel A Gil
- Biomedical Engineering, University of Wisconsin-Madison, Madison, WI, USA.,Morgridge Institute for Research, Madison, WI, USA
| | - Melissa C Skala
- Biomedical Engineering, University of Wisconsin-Madison, Madison, WI, USA.,Morgridge Institute for Research, Madison, WI, USA
| | - Ross Collery
- Cell Biology, Neurobiology, & Anatomy, Medical College of Wisconsin, Milwaukee, WI, USA.,Ophthalmology & Visual Sciences, Medical College of Wisconsin, Milwaukee, WI, USA
| | - Kenneth P Allen
- Microbiology & Immunology, Medical College of Wisconsin, Milwaukee, WI, USA
| | | | - Ramin Pashaie
- Computer & Electrical Engineering, Florida Atlantic University, Boca Raton, FL, USA
| | - Joseph Carroll
- Cell Biology, Neurobiology, & Anatomy, Medical College of Wisconsin, Milwaukee, WI, USA.,Ophthalmology & Visual Sciences, Medical College of Wisconsin, Milwaukee, WI, USA.,Biomedical Engineering, Marquette University, Milwaukee WI, USA
| |
Collapse
|
24
|
Jeon J, Hwang Y, Lee J, Kong E, Moon J, Hong S, Kim P. Intravital Imaging of Circulating Red Blood Cells in the Retinal Vasculature of Growing Mice. Transl Vis Sci Technol 2021; 10:31. [PMID: 34004010 PMCID: PMC8083064 DOI: 10.1167/tvst.10.4.31] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
Purpose To establish a custom-built, high-speed 90 frame-per-second laser-scanning confocal microscope for real-time in vivo retinal imaging of individual flowing red blood cells (RBCs) in retinal vasculature of live mouse model. Methods Fluorescently labeled RBCs were injected into mice of different ages (3 to 62 weeks old). Anti-CD31 antibody conjugated with Alexa Fluor 647 was injected to visualize retinal endothelial cells (ECs). Longitudinal and cross-sectional intravital retinal imaging of flowing RBCs and ECs was performed in two strains (C57BL/6 and Balb/c) by using the custom-built confocal microscope. Results Simultaneous tracking of the routes of many fluorescently labeled individual RBCs flowing from a large artery and vein to a single capillary in the retina of live mice was achieved, which enabled in vivo measurement of retinal RBC flow velocities in each vessel type in growing mice from 3 to 62 weeks after birth. Average RBC flow velocities were gradually increased during growing from 3 to 14 weeks by more than two times. Then the average RBC flow velocity was maintained at about 20 mm/s in artery and 16 mm/s in vein until 62 weeks. Conclusions Our study successfully established a custom-built high-speed 90-Hz retinal confocal microscope for measuring RBC flow velocity at the single cell level. It could be a useful tool to investigate the pathophysiology of various retinal diseases associated with blood flow impairment. Translational Relevance This technological method could be a valuable assessment tool to help the development of novel therapeutics for retinal diseases.
Collapse
Affiliation(s)
- Jehwi Jeon
- Graduate School of Medical Science and Engineering, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, Republic of Korea.,KI for Health Science and Technology, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, Republic of Korea
| | - Yoonha Hwang
- KI for Health Science and Technology, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, Republic of Korea.,Graduate School of Nanoscience and Technology, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, Republic of Korea
| | - Jingu Lee
- KI for Health Science and Technology, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, Republic of Korea.,Graduate School of Nanoscience and Technology, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, Republic of Korea
| | - Eunji Kong
- Graduate School of Medical Science and Engineering, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, Republic of Korea.,KI for Health Science and Technology, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, Republic of Korea
| | - Jieun Moon
- KI for Health Science and Technology, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, Republic of Korea.,Graduate School of Nanoscience and Technology, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, Republic of Korea
| | - Sujung Hong
- KI for Health Science and Technology, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, Republic of Korea.,Graduate School of Nanoscience and Technology, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, Republic of Korea
| | - Pilhan Kim
- Graduate School of Medical Science and Engineering, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, Republic of Korea.,KI for Health Science and Technology, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, Republic of Korea.,Graduate School of Nanoscience and Technology, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, Republic of Korea
| |
Collapse
|
25
|
Zhou Q, Perovic T, Fechner I, Edgar LT, Hoskins PR, Gerhardt H, Krüger T, Bernabeu MO. Association between erythrocyte dynamics and vessel remodelling in developmental vascular networks. J R Soc Interface 2021; 18:20210113. [PMID: 34157895 PMCID: PMC8220266 DOI: 10.1098/rsif.2021.0113] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2021] [Accepted: 06/01/2021] [Indexed: 12/14/2022] Open
Abstract
Sprouting angiogenesis is an essential vascularization mechanism consisting of sprouting and remodelling. The remodelling phase is driven by rearrangements of endothelial cells (ECs) within the post-sprouting vascular plexus. Prior work has uncovered how ECs polarize and migrate in response to flow-induced wall shear stress (WSS). However, the question of how the presence of erythrocytes (widely known as red blood cells (RBCs)) and their impact on haemodynamics affect vascular remodelling remains unanswered. Here, we devise a computational framework to model cellular blood flow in developmental mouse retina. We demonstrate a previously unreported highly heterogeneous distribution of RBCs in primitive vasculature. Furthermore, we report a strong association between vessel regression and RBC hypoperfusion, and identify plasma skimming as the driving mechanism. Live imaging in a developmental zebrafish model confirms this association. Taken together, our results indicate that RBC dynamics are fundamental to establishing the regional WSS differences driving vascular remodelling via their ability to modulate effective viscosity.
Collapse
Affiliation(s)
- Qi Zhou
- School of Engineering, Institute for Multiscale Thermofluids, The University of Edinburgh, Edinburgh, UK
| | - Tijana Perovic
- Max-Delbrück-Center for Molecular Medicine in the Helmholtz Association (MDC), Berlin, Germany
| | - Ines Fechner
- Max-Delbrück-Center for Molecular Medicine in the Helmholtz Association (MDC), Berlin, Germany
| | - Lowell T. Edgar
- Centre for Medical Informatics, Usher Institute, The University of Edinburgh, Edinburgh, UK
| | - Peter R. Hoskins
- Centre for Cardiovascular Science, The University of Edinburgh, Edinburgh, UK
- Biomedical Engineering, University of Dundee, Dundee, UK
| | - Holger Gerhardt
- Max-Delbrück-Center for Molecular Medicine in the Helmholtz Association (MDC), Berlin, Germany
- Vascular Patterning Laboratory, Department of Oncology and Leuven Cancer Institute (LKI), KU Leuven, Belgium
- DZHK (German Center for Cardiovascular Research), Germany
- Berlin Institute of Health, Germany
| | - Timm Krüger
- School of Engineering, Institute for Multiscale Thermofluids, The University of Edinburgh, Edinburgh, UK
| | - Miguel O. Bernabeu
- Centre for Medical Informatics, Usher Institute, The University of Edinburgh, Edinburgh, UK
- The Bayes Centre, The University of Edinburgh, Edinburgh, UK
| |
Collapse
|
26
|
Bedggood P, Metha A. Adaptive optics imaging of the retinal microvasculature. Clin Exp Optom 2021; 103:112-122. [DOI: 10.1111/cxo.12988] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2019] [Revised: 09/17/2019] [Accepted: 09/20/2019] [Indexed: 12/31/2022] Open
Affiliation(s)
- Phillip Bedggood
- Department of Optometry and Vision Sciences, The University of Melbourne, Melbourne, Australia,
| | - Andrew Metha
- Department of Optometry and Vision Sciences, The University of Melbourne, Melbourne, Australia,
| |
Collapse
|
27
|
Abstract
Adaptive optics (AO) is a technique that corrects for optical aberrations. It was originally proposed to correct for the blurring effect of atmospheric turbulence on images in ground-based telescopes and was instrumental in the work that resulted in the Nobel prize-winning discovery of a supermassive compact object at the centre of our galaxy. When AO is used to correct for the eye's imperfect optics, retinal changes at the cellular level can be detected, allowing us to study the operation of the visual system and to assess ocular health in the microscopic domain. By correcting for sample-induced blur in microscopy, AO has pushed the boundaries of imaging in thick tissue specimens, such as when observing neuronal processes in the brain. In this primer, we focus on the application of AO for high-resolution imaging in astronomy, vision science and microscopy. We begin with an overview of the general principles of AO and its main components, which include methods to measure the aberrations, devices for aberration correction, and how these components are linked in operation. We present results and applications from each field along with reproducibility considerations and limitations. Finally, we discuss future directions.
Collapse
|
28
|
Joseph A, Chu CJ, Feng G, Dholakia K, Schallek J. Label-free imaging of immune cell dynamics in the living retina using adaptive optics. eLife 2020; 9:e60547. [PMID: 33052099 PMCID: PMC7556865 DOI: 10.7554/elife.60547] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2020] [Accepted: 09/15/2020] [Indexed: 11/25/2022] Open
Abstract
Our recent work characterized the movement of single blood cells within the retinal vasculature (Joseph et al. 2019) using adaptive optics ophthalmoscopy. Here, we apply this technique to the context of acute inflammation and discover both infiltrating and tissue-resident immune cells to be visible without any labeling in the living mouse retina using near-infrared light alone. Intravital imaging of immune cells can be negatively impacted by surgical manipulation, exogenous dyes, transgenic manipulation and phototoxicity. These confounds are now overcome, using phase contrast and time-lapse videography to reveal the dynamic behavior of myeloid cells as they interact, extravasate and survey the mouse retina. Cellular motility and differential vascular responses were measured noninvasively and in vivo across hours to months at the same retinal location, from initiation to the resolution of inflammation. As comparable systems are already available for clinical research, this approach could be readily translated to human application.
Collapse
Affiliation(s)
- Aby Joseph
- The Institute of Optics, University of RochesterRochesterUnited States
| | - Colin J Chu
- Translational Health Sciences, University of BristolBristolUnited Kingdom
| | - Guanping Feng
- Department of Biomedical Engineering, University of RochesterRochesterUnited States
| | - Kosha Dholakia
- Flaum Eye Institute, University of RochesterRochesterUnited States
| | - Jesse Schallek
- Flaum Eye Institute, University of RochesterRochesterUnited States
- Department of Neuroscience and the Del Monte Institute for Neuroscience, University of RochesterRochesterUnited States
- Center for Visual Science, University of RochesterRochesterUnited States
| |
Collapse
|
29
|
Structural imaging of the retina in psychosis spectrum disorders: current status and perspectives. Curr Opin Psychiatry 2020; 33:476-483. [PMID: 32639357 DOI: 10.1097/yco.0000000000000624] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
PURPOSE OF REVIEW Structural changes of the retina in schizophrenia and other psychotic disorders seem plausible as these conditions are accompanied by widespread morphological abnormalities of the brain. Advances in structural retinal imaging have led to the possibility of precise quantification of individual retinal layers, using optical coherence tomography (OCT) scanners. RECENT FINDINGS The aggregation of information related to OCT findings in schizophrenia has resulted in three metaanalyses, which are currently described. Areas where retinal changes were reported include retinal nerve fiber layer (RNFL), ganglion cell layer complex (GCC), macular volume, and macular thickness, but findings on affected retinal segments vary to some extent across studies. Discrepancies in individual studies could be because of small samples, heterogeneity within schizophrenia (phase of the illness, illness duration, predominant symptomatology), inconsistent reporting of antipsychotic therapy, insufficient control of confounding variables (somatic comorbidities, smoking, and so on), and use of the different types of OCT scanners. SUMMARY Exploration of potential disturbances in retinal architecture could provide new insights into neuronal changes associated with psychosis spectrum disorders, with potential to elucidate the nature and timing of developmental, progressive, inflammatory, and degenerative aspects of neuropathology and pathophysiology, and to assist with characterizing heterogeneity and facilitating personalized treatment approaches.
Collapse
|
30
|
Regeneration of the neurogliovascular unit visualized in vivo by transcranial live-cell imaging. J Neurosci Methods 2020; 343:108808. [DOI: 10.1016/j.jneumeth.2020.108808] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2020] [Revised: 06/02/2020] [Accepted: 06/11/2020] [Indexed: 12/15/2022]
|
31
|
Bedggood P, Metha A. Recovering the appearance of the capillary blood column from under-sampled flow data. OPTICS LETTERS 2020; 45:4320-4323. [PMID: 32735288 DOI: 10.1364/ol.398168] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/20/2020] [Accepted: 06/23/2020] [Indexed: 06/11/2023]
Abstract
The regular spacing of cells in capillary flow results in spurious cell trajectories if the sampling rate is too low. This makes it difficult to identify cells, even if the velocity is known. Here, we demonstrate a software method to overcome this problem and validate it using high frame rate data with known velocity, which is downsampled to produce aliasing. The method assumes high spatial sampling, constant velocity over short epochs, and an incompressible blood column. Data in successive frames are shifted along the capillary tube axis according to the flow velocity, faithfully rendering cells and plasma. The velocity estimate, required as input to this procedure, can be obtained from either a) the blind optimization of a simple heuristic, or b) a recently proposed velocimetry algorithm, which appears to extend the aliasing limit.
Collapse
|
32
|
Silverstein SM, Demmin DL, Schallek JB, Fradkin SI. Measures of Retinal Structure and Function as Biomarkers in Neurology and Psychiatry. Biomark Neuropsychiatry 2020. [DOI: 10.1016/j.bionps.2020.100018] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
|
33
|
Guevara-Torres A, Williams DR, Schallek J. Origin of cell contrast in offset aperture adaptive optics ophthalmoscopy. OPTICS LETTERS 2020; 45:840-843. [PMID: 32058484 PMCID: PMC7337096 DOI: 10.1364/ol.382589] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/11/2019] [Accepted: 12/18/2019] [Indexed: 05/18/2023]
Abstract
Offset aperture and split detector imaging are variants of adaptive optics scanning ophthalmoscopy recently introduced to improve the image contrast of retinal cells. Unlike conventional confocal scanning ophthalmoscopy, these approaches collect light laterally decentered from the optical axis. A complete explanation of how these methods enhance contrast has not been described. Here, we provide an optical model with supporting in vivo data that show contrast is generated from spatial variations in the refractive index as it is in phase contrast microscopy. A prediction of this model is supported by experimental data that show contrast is optimized when the detector is placed conjugate with a deeper backscattering screen such as the retinal pigment epithelium and choroid, rather than with the layer being imaged as in conventional confocal imaging. This detection strategy provides a substantial improvement in the contrast these new methods can produce.
Collapse
Affiliation(s)
- A. Guevara-Torres
- Center for Visual Science, University of Rochester, Rochester, NY, 14642, USA
- The Institute of Optics, University of Rochester, Rochester, NY, 14620, USA
- Corresponding author:
| | - D. R. Williams
- Center for Visual Science, University of Rochester, Rochester, NY, 14642, USA
- The Institute of Optics, University of Rochester, Rochester, NY, 14620, USA
| | - J.B. Schallek
- Center for Visual Science, University of Rochester, Rochester, NY, 14642, USA
- Flaum Eye Institute, University of Rochester, Rochester, NY, 14642, USA
- Department of Neuroscience, University of Rochester, Rochester, NY, 14620, USA
| |
Collapse
|
34
|
Canavesi C, Cogliati A, Mietus A, Qi Y, Schallek J, Rolland JP, Hindman HB. In vivo imaging of corneal nerves and cellular structures in mice with Gabor-domain optical coherence microscopy. BIOMEDICAL OPTICS EXPRESS 2020; 11:711-724. [PMID: 32133220 PMCID: PMC7041447 DOI: 10.1364/boe.379809] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/16/2019] [Revised: 12/13/2019] [Accepted: 12/22/2019] [Indexed: 05/07/2023]
Abstract
Gabor-domain optical coherence microscopy (GDOCM) demonstrated in vivo corneal imaging with cellular resolution and differentiation in mice over a field of view of 1 mm2. Contact and non-contact imaging was conducted on six healthy and six hyperglycemic C57BL/6J mice. Cellular resolution in the 3D GDOCM images was achieved after motion correction. Corneal nerve fibers were traced and their lengths and branches calculated. Noncontact, label-free imaging of corneal nerves has clinical utility in health and disease, and in transplant evaluation. To the authors' knowledge, this is the first report of in vivo 3D corneal imaging in mice with the capability to resolve nerve fibers using a non-contact imaging modality.
Collapse
Affiliation(s)
- Cristina Canavesi
- LighTopTech Corp., 150 Lucius Gordon Dr Ste 201 West Henrietta, NY 14586-9687, USA
| | - Andrea Cogliati
- LighTopTech Corp., 150 Lucius Gordon Dr Ste 201 West Henrietta, NY 14586-9687, USA
| | - Amanda Mietus
- University of Rochester, The Institute of Optics, 275 Hutchison Road, Rochester, NY 14627, USA
| | - Yue Qi
- University of Rochester, Department of Biomedical Engineering, 275 Hutchison Road, Rochester, NY 14627, USA
| | - Jesse Schallek
- University of Rochester Medical Center, Department of Ophthalmology, 601 Elmwood Ave, Rochester, NY 14642, USA
- University of Rochester, Center for Visual Science, 601 Elmwood Ave, Rochester, NY 14642, USA
- University of Rochester Medical Center, Department of Neuroscience, 601 Elmwood Avenue - Box 603, Rochester, New York 14642, USA
| | - Jannick P. Rolland
- LighTopTech Corp., 150 Lucius Gordon Dr Ste 201 West Henrietta, NY 14586-9687, USA
- University of Rochester, The Institute of Optics, 275 Hutchison Road, Rochester, NY 14627, USA
| | | |
Collapse
|
35
|
Bedggood P, Metha A. Imaging relative stasis of the blood column in human retinal capillaries. BIOMEDICAL OPTICS EXPRESS 2019; 10:6009-6028. [PMID: 31799061 PMCID: PMC6865114 DOI: 10.1364/boe.10.006009] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/11/2019] [Revised: 10/21/2019] [Accepted: 10/22/2019] [Indexed: 05/31/2023]
Abstract
Capillary flow largely consists of alternating red cells and plasma whose speed oscillates predictably with the cardiac cycle. Superimposed on this regular background are sporadic events potentially disruptive to capillary exchange: the passage of white cells, aggregates of red cells, epochs of sparse haematocrit, or unusually slow flow. Such events are not readily differentiated with velocimetry or perfusion mapping. Here we propose a method to identify these phenomena in retinal capillaries imaged with high frame-rate adaptive optics, by calculating and representing pictorially the autocorrelation of intensity through time at each pixel during short epochs. The phenomena described above manifest as bright regions which transiently appear and propagate across an otherwise dark image. Drawing data from normal subjects and those with Type I diabetes, we demonstrate proof of concept and high sensitivity and specificity of this metric to variations in capillary contents and rate of flow in health and disease. The proposed metric offers a useful adjunct to velocimetry and perfusion mapping in the study of normal and abnormal capillary blood flow.
Collapse
Affiliation(s)
- Phillip Bedggood
- Department of Optometry and Vision Sciences, The University of Melbourne, 3010, Australia
| | - Andrew Metha
- Department of Optometry and Vision Sciences, The University of Melbourne, 3010, Australia
| |
Collapse
|
36
|
Abstract
Retinal function has long been studied with psychophysical methods in humans, whereas detailed functional studies of vision have been conducted mostly in animals owing to the invasive nature of physiological approaches. There are exceptions to this generalization, for example, the electroretinogram. This review examines exciting recent advances using in vivo retinal imaging to understand the function of retinal neurons. In some cases, the methods have existed for years and are still being optimized. In others, new methods such as optophysiology are revealing novel patterns of retinal function in animal models that have the potential to change our understanding of the functional capacity of the retina. Together, the advances in retinal imaging mark an important milestone that shifts attention away from anatomy alone and begins to probe the function of healthy and diseased eyes.
Collapse
Affiliation(s)
- Jennifer J Hunter
- Flaum Eye Institute and Center for Visual Science, University of Rochester, Rochester, New York 14604, USA; , ,
- The Institute of Optics and Department of Biomedical Engineering, University of Rochester, Rochester, New York 14604, USA
| | - William H Merigan
- Flaum Eye Institute and Center for Visual Science, University of Rochester, Rochester, New York 14604, USA; , ,
| | - Jesse B Schallek
- Flaum Eye Institute and Center for Visual Science, University of Rochester, Rochester, New York 14604, USA; , ,
- Department of Neuroscience, University of Rochester, Rochester, New York 14604, USA
| |
Collapse
|
37
|
Song W, Zhou L, Yi J. Volumetric fluorescein angiography (vFA) by oblique scanning laser ophthalmoscopy in mouse retina at 200 B-scans per second. BIOMEDICAL OPTICS EXPRESS 2019; 10:4907-4918. [PMID: 31565534 PMCID: PMC6757486 DOI: 10.1364/boe.10.004907] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/01/2019] [Revised: 08/26/2019] [Accepted: 08/26/2019] [Indexed: 05/25/2023]
Abstract
Oblique scanning laser ophthalmoscopy (oSLO) is a recently developed technique to provide three-dimensional volumetric fluorescence imaging in retinas over a large field of view, without the need for depth sectioning. In this study, we present volumetric fluorescein angiography (vFA) at 200 B-scans per second in mouse retina in vivo by oSLO. By using a low-cost industrial CMOS camera, imaging speed was improved to 2 volumes per second, ∼10 times more than our previous results. Enabled by the volumetric imaging, we visualized hemodynamics at single capillary level in a depth-dependent manner, and provided methods to quantify capillary hematocrit, absolute capillary blood flow speed, and detection of capillary flow stagnancy and stalling at different vascular layers. The quantitative metrics for capillary hemodynamics enhanced by volumetric imaging can offer valuable insight into vision science and retinal pathologies.
Collapse
Affiliation(s)
- Weiye Song
- Department of Medicine, Boston University School of Medicine, Boston Medical Center, Boston MA 02118, USA
| | - Libo Zhou
- Department of Medicine, Boston University School of Medicine, Boston Medical Center, Boston MA 02118, USA
| | - Ji Yi
- Department of Medicine, Boston University School of Medicine, Boston Medical Center, Boston MA 02118, USA
- Department of Biomedical Engineering, Boston University, Boston MA 02118, USA
| |
Collapse
|
38
|
Mapping flow velocity in the human retinal capillary network with pixel intensity cross correlation. PLoS One 2019; 14:e0218918. [PMID: 31237930 PMCID: PMC6592569 DOI: 10.1371/journal.pone.0218918] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2019] [Accepted: 06/13/2019] [Indexed: 01/01/2023] Open
Abstract
We present a new method for determining cellular velocity in the smallest retinal vascular networks as visualized with adaptive optics. The method operates by comparing the intensity profile of each movie pixel with that of every other pixel, after shifting in time by one frame. The time-shifted pixel which most resembles the reference pixel is deemed to be a 'source' or 'destination' of flow information for that pixel. Velocity in the transverse direction is then calculated by dividing the spatial displacement between the two pixels by the inter-frame period. We call this method pixel intensity cross-correlation, or "PIX". Here we compare measurements derived from PIX to two other state-of-the-art algorithms (particle image velocimetry and the spatiotemporal kymograph), as well as to manually tracked cell data. The examples chosen highlight the potential of the new algorithm to substantially improve spatial and temporal resolution, resilience to noise and aliasing, and assessment of network flow properties compared with existing methods.
Collapse
|
39
|
Cellular Control of Brain Capillary Blood Flow: In Vivo Imaging Veritas. Trends Neurosci 2019; 42:528-536. [PMID: 31255380 DOI: 10.1016/j.tins.2019.05.009] [Citation(s) in RCA: 46] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2019] [Revised: 05/19/2019] [Accepted: 05/28/2019] [Indexed: 01/01/2023]
Abstract
The precise modulation of regional cerebral blood flow during neural activation is important for matching local energetic demand and supply and clearing brain metabolites. Here we discuss advances facilitated by high-resolution optical in vivo imaging techniques that for the first time have provided direct visualization of capillary blood flow and its modulation by neural activity. We focus primarily on studies of microvascular flow, mural cell control of vessel diameter, and oxygen level-dependent changes in red blood cell deformability. We also suggest methodological standards for best practices when studying microvascular perfusion, partly motivated by recent controversies about the precise location within the microvascular tree where neurovascular coupling is initiated, and the role of mural cells in the control of vasomotility.
Collapse
|
40
|
Gofas-Salas E, Mecê P, Mugnier L, Bonnefois AM, Petit C, Grieve K, Sahel J, Paques M, Meimon S. Near infrared adaptive optics flood illumination retinal angiography. BIOMEDICAL OPTICS EXPRESS 2019; 10:2730-2743. [PMID: 31259047 PMCID: PMC6583347 DOI: 10.1364/boe.10.002730] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/14/2018] [Revised: 12/06/2018] [Accepted: 12/22/2018] [Indexed: 05/06/2023]
Abstract
Image-based angiography is a well-adapted technique to characterize vasculature, and has been used in retinal neurovascular studies. Because the microvasculature is of particular interest, being the site of exchange between blood and tissue, a high spatio-temporal resolution is required, implying the use of adaptive optics ophthalmoscopes with a high frame rate. Creating the opportunity for decoupled stimulation and imaging of the retina makes the use of near infrared (NIR) imaging light desirable, while the need for a large field of view and a lack of distortion implies the use of a flood illumination-based setup. However, flood-illumination NIR video sequences of erythrocytes, or red blood cells (RBC), have a limited contrast compared to scanning systems and visible light. As a result, they cannot be processed via existing image-based angiography methods. We have therefore developed a new computational method relying on a spatio-temporal filtering of the sequence to isolate blood flow from noise in low-contrast sequences. Applying this computational approach enabled us to perform angiography with an adaptive optics flood illumination ophthalmoscope (AO-FIO) using NIR light, both in bright-field and dark-field modalities. Finally, we demonstrate the capabilities of our system to differentiate blood flow velocity on a retinal capillary network in vivo.
Collapse
Affiliation(s)
- Elena Gofas-Salas
- DOTA, ONERA, Université Paris Saclay, F-91123 Palaiseau,
France
- Institut de la Vision, 17 rue Moreau, Sorbonne Universités, UPMC Univ Paris 06, INSERM, CNRS, 75012 Paris,
France
- PARIS Group - Paris Adaptive-Optics for Retinal Imaging and Surgery, Paris,
France
| | - Pedro Mecê
- DOTA, ONERA, Université Paris Saclay, F-91123 Palaiseau,
France
- PARIS Group - Paris Adaptive-Optics for Retinal Imaging and Surgery, Paris,
France
- Quantel Medical, Cournon d’Auvergne,
France
| | - Laurent Mugnier
- DOTA, ONERA, Université Paris Saclay, F-91123 Palaiseau,
France
| | | | - Cyril Petit
- DOTA, ONERA, Université Paris Saclay, F-91123 Palaiseau,
France
- PARIS Group - Paris Adaptive-Optics for Retinal Imaging and Surgery, Paris,
France
| | - Kate Grieve
- Institut de la Vision, 17 rue Moreau, Sorbonne Universités, UPMC Univ Paris 06, INSERM, CNRS, 75012 Paris,
France
- PARIS Group - Paris Adaptive-Optics for Retinal Imaging and Surgery, Paris,
France
- CIC 1423, INSERM, Quinze-Vingts Hospital, Paris,
France
| | - José Sahel
- Institut de la Vision, 17 rue Moreau, Sorbonne Universités, UPMC Univ Paris 06, INSERM, CNRS, 75012 Paris,
France
- Quantel Medical, Cournon d’Auvergne,
France
- CIC 1423, INSERM, Quinze-Vingts Hospital, Paris,
France
- Department of Ophthalmology, The University of Pittsburgh School of Medicine, Pittsburgh, PA,
USA
| | - Michel Paques
- Institut de la Vision, 17 rue Moreau, Sorbonne Universités, UPMC Univ Paris 06, INSERM, CNRS, 75012 Paris,
France
- PARIS Group - Paris Adaptive-Optics for Retinal Imaging and Surgery, Paris,
France
- CIC 1423, INSERM, Quinze-Vingts Hospital, Paris,
France
| | - Serge Meimon
- DOTA, ONERA, Université Paris Saclay, F-91123 Palaiseau,
France
- PARIS Group - Paris Adaptive-Optics for Retinal Imaging and Surgery, Paris,
France
| |
Collapse
|
41
|
Joseph A, Guevara-Torres A, Schallek J. Imaging single-cell blood flow in the smallest to largest vessels in the living retina. eLife 2019; 8:e45077. [PMID: 31084705 PMCID: PMC6516827 DOI: 10.7554/elife.45077] [Citation(s) in RCA: 57] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2019] [Accepted: 04/15/2019] [Indexed: 01/15/2023] Open
Abstract
Tissue light scatter limits the visualization of the microvascular network deep inside the living mammal. The transparency of the mammalian eye provides a noninvasive view of the microvessels of the retina, a part of the central nervous system. Despite its clarity, imperfections in the optics of the eye blur microscopic retinal capillaries, and single blood cells flowing within. This limits early evaluation of microvascular diseases that originate in capillaries. To break this barrier, we use 15 kHz adaptive optics imaging to noninvasively measure single-cell blood flow, in one of the most widely used research animals: the C57BL/6J mouse. Measured flow ranged four orders of magnitude (0.0002-1.55 µL min-1) across the full spectrum of retinal vessel diameters (3.2-45.8 µm), without requiring surgery or contrast dye. Here, we describe the ultrafast imaging, analysis pipeline and automated measurement of millions of blood cell speeds.
Collapse
Affiliation(s)
- Aby Joseph
- Institute of OpticsUniversity of RochesterNew YorkUnited States
- Center for Visual ScienceUniversity of RochesterNew YorkUnited States
| | - Andres Guevara-Torres
- Institute of OpticsUniversity of RochesterNew YorkUnited States
- Center for Visual ScienceUniversity of RochesterNew YorkUnited States
| | - Jesse Schallek
- Center for Visual ScienceUniversity of RochesterNew YorkUnited States
- Flaum Eye InstituteUniversity of RochesterNew YorkUnited States
- Department of NeuroscienceUniversity of RochesterNew YorkUnited States
| |
Collapse
|
42
|
Erdener ŞE, Tang J, Sajjadi A, Kılıç K, Kura S, Schaffer CB, Boas DA. Spatio-temporal dynamics of cerebral capillary segments with stalling red blood cells. J Cereb Blood Flow Metab 2019; 39:886-900. [PMID: 29168661 PMCID: PMC6501506 DOI: 10.1177/0271678x17743877] [Citation(s) in RCA: 53] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Optical coherence tomography (OCT) allows label-free imaging of red blood cell (RBC) flux within capillaries with high spatio-temporal resolution. In this study, we utilized time-series OCT-angiography to demonstrate interruptions in capillary RBC flux in mouse brain in vivo. We noticed ∼7.5% of ∼200 capillaries had at least one stall in awake mice with chronic windows during a 9-min recording. At any instant, ∼0.45% of capillaries were stalled. Average stall duration was ∼15 s but could last over 1 min. Stalls were more frequent and longer lasting in acute window preparations. Further, isoflurane anesthesia in chronic preparations caused an increase in the number of stalls. In repeated imaging, the same segments had a tendency to stall again over a period of one month. In awake animals, functional stimulation decreased the observance of stalling events. Stalling segments were located distally, away from the first couple of arteriolar-side capillary branches and their average RBC and plasma velocities were lower than nonstalling capillaries within the same region. This first systematic analysis of capillary RBC stalls in the brain, enabled by rapid and continuous volumetric imaging of capillaries with OCT-angiography, will lead to future investigations of the potential role of stalling events in cerebral pathologies.
Collapse
Affiliation(s)
- Şefik Evren Erdener
- 1 Optics Division, Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Harvard Medical School, Charlestown, MA, USA
| | - Jianbo Tang
- 1 Optics Division, Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Harvard Medical School, Charlestown, MA, USA
| | - Amir Sajjadi
- 1 Optics Division, Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Harvard Medical School, Charlestown, MA, USA
| | - Kıvılcım Kılıç
- 2 Neurophotonics Center, Department of Biomedical Engineering, Boston University, Boston, MA, USA
| | - Sreekanth Kura
- 1 Optics Division, Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Harvard Medical School, Charlestown, MA, USA
| | - Chris B Schaffer
- 3 Meinig School of Biomedical Engineering, Cornell University, Ithaca, NY, USA
| | - David A Boas
- 1 Optics Division, Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Harvard Medical School, Charlestown, MA, USA.,2 Neurophotonics Center, Department of Biomedical Engineering, Boston University, Boston, MA, USA
| |
Collapse
|
43
|
Mozaffari S, Jaedicke V, LaRocca F, Tiruveedhula P, Roorda A. Versatile multi-detector scheme for adaptive optics scanning laser ophthalmoscopy. BIOMEDICAL OPTICS EXPRESS 2018; 9:5477-5488. [PMID: 30460141 PMCID: PMC6238903 DOI: 10.1364/boe.9.005477] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/13/2018] [Revised: 09/25/2018] [Accepted: 09/28/2018] [Indexed: 05/18/2023]
Abstract
Adaptive optics scanning laser ophthalmoscopy (AOSLO) is a powerful tool for imaging the retina at high spatial and temporal resolution. In this paper, we present a multi-detector scheme for AOSLO which has two main configurations: pixel reassignment and offset aperture imaging. In this detection scheme, the single element detector of the standard AOSLO is replaced by a fiber bundle which couples the detected light into multiple detectors. The pixel reassignment configuration enables high resolution imaging with an increased light collection. The increase in signal-to-noise ratio (SNR) from this configuration can improve the accuracy of motion registration techniques. The offset aperture imaging configuration enhances the detection of multiply scattered light, which improves the contrast of retinal vasculature and inner retinal layers similar to methods such as nonconfocal split-detector imaging and multi-offset aperture imaging.
Collapse
Affiliation(s)
- Sanam Mozaffari
- School of Optometry and Vision Science Graduate Group, University of California Berkeley, Berkeley, CA,
USA
- Contributed equally to this work
| | - Volker Jaedicke
- School of Optometry and Vision Science Graduate Group, University of California Berkeley, Berkeley, CA,
USA
- Contributed equally to this work
| | - Francesco LaRocca
- School of Optometry and Vision Science Graduate Group, University of California Berkeley, Berkeley, CA,
USA
| | - Pavan Tiruveedhula
- School of Optometry and Vision Science Graduate Group, University of California Berkeley, Berkeley, CA,
USA
| | - Austin Roorda
- School of Optometry and Vision Science Graduate Group, University of California Berkeley, Berkeley, CA,
USA
| |
Collapse
|
44
|
Gu B, Wang X, Twa MD, Tam J, Girkin CA, Zhang Y. Noninvasive in vivo characterization of erythrocyte motion in human retinal capillaries using high-speed adaptive optics near-confocal imaging. BIOMEDICAL OPTICS EXPRESS 2018; 9:3653-3677. [PMID: 30338146 PMCID: PMC6191635 DOI: 10.1364/boe.9.003653] [Citation(s) in RCA: 48] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/15/2018] [Revised: 07/02/2018] [Accepted: 07/02/2018] [Indexed: 05/18/2023]
Abstract
The flow of erythrocytes in parafoveal capillaries was imaged in the living human eye with an adaptive optics near-confocal ophthalmoscope at a frame rate of 800 Hz with a low coherence near-infrared (NIR) light source. Spatiotemporal traces of the erythrocyte movement were extracted from consecutive images. Erythrocyte velocity was measured using custom software based on the Radon transform. The impact of imaging speed on velocity measurement was estimated using images of frame rates of 200, 400, and 800 Hz. The NIR light allowed for long imaging periods without visually stimulating the retina and disturbing the natural rheological state. High speed near-confocal imaging enabled direct and accurate measurement of erythrocyte velocity, and revealed a distinctively cardiac-dependent pulsatile velocity waveform of the erythrocyte flow in retinal capillaries, disclosed the impact of the leukocytes on erythrocyte motion, and provided new metrics for precise assessment of erythrocyte movement. The approach may facilitate new investigations on the pathophysiology of retinal microcirculation with applications for ocular and systemic diseases.
Collapse
Affiliation(s)
- Boyu Gu
- Department of Ophthalmology and Visual Sciences, School of Medicine, University of Alabama at Birmingham, 1670 University Boulevard, Birmingham, AL 35294, USA
| | - Xiaolin Wang
- Department of Ophthalmology and Visual Sciences, School of Medicine, University of Alabama at Birmingham, 1670 University Boulevard, Birmingham, AL 35294, USA
| | - Michael D. Twa
- Department of Optometry and Vision Science, School of Optometry, University of Alabama at Birmingham, 1716 University Boulevard, Birmingham, AL 35294, USA
| | - Johnny Tam
- National Eye Institute, National Institutes of Health, 10 Center Drive, Bethesda, MD 20892, USA
| | - Christopher A. Girkin
- Department of Ophthalmology and Visual Sciences, School of Medicine, University of Alabama at Birmingham, 1670 University Boulevard, Birmingham, AL 35294, USA
| | - Yuhua Zhang
- Department of Ophthalmology and Visual Sciences, School of Medicine, University of Alabama at Birmingham, 1670 University Boulevard, Birmingham, AL 35294, USA
| |
Collapse
|
45
|
Gericke A, Goloborodko E, Pfeiffer N, Manicam C. Preparation Steps for Measurement of Reactivity in Mouse Retinal Arterioles Ex Vivo. J Vis Exp 2018. [PMID: 29806833 DOI: 10.3791/56199] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/31/2022] Open
Abstract
Vascular insufficiency and alterations in normal retinal perfusion are among the major factors for the pathogenesis of various sight-threatening ocular diseases, such as diabetic retinopathy, hypertensive retinopathy, and possibly glaucoma. Therefore, retinal microvascular preparations are pivotal tools for physiological and pharmacological studies to delineate the underlying pathophysiological mechanisms and to design therapies for the diseases. Despite the wide use of mouse models in ophthalmic research, studies on retinal vascular reactivity are scarce in this species. A major reason for this discrepancy is the challenging isolation procedures owing to the small size of these retinal blood vessels, which is ~ ≤ 30 µm in luminal diameter. To circumvent the problem of direct isolation of these retinal microvessels for functional studies, we established an isolation and preparation technique that enables ex vivo studies of mouse retinal vasoactivity under near-physiological conditions. Although the present experimental preparations will specifically refer to the mouse retinal arterioles, this methodology can readily be employed to microvessels from rats.
Collapse
Affiliation(s)
- Adrian Gericke
- Department of Ophthalmology, University Medical Center of the Johannes Gutenberg University Mainz;
| | - Evgeny Goloborodko
- Department of Ophthalmology, University Medical Center of the Johannes Gutenberg University Mainz
| | - Norbert Pfeiffer
- Department of Ophthalmology, University Medical Center of the Johannes Gutenberg University Mainz
| | - Caroline Manicam
- Department of Ophthalmology, University Medical Center of the Johannes Gutenberg University Mainz
| |
Collapse
|
46
|
Wu N, Wang L, Zhu B, Guan C, Wang M, Han D, Tan H, Zeng Y. Wide-field absolute transverse blood flow velocity mapping in vessel centerline. JOURNAL OF BIOMEDICAL OPTICS 2018; 23:1-7. [PMID: 29488364 DOI: 10.1117/1.jbo.23.2.026008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/29/2017] [Accepted: 02/05/2018] [Indexed: 06/08/2023]
Abstract
We propose a wide-field absolute transverse blood flow velocity measurement method in vessel centerline based on absorption intensity fluctuation modulation effect. The difference between the light absorption capacities of red blood cells and background tissue under low-coherence illumination is utilized to realize the instantaneous and average wide-field optical angiography images. The absolute fuzzy connection algorithm is used for vessel centerline extraction from the average wide-field optical angiography. The absolute transverse velocity in the vessel centerline is then measured by a cross-correlation analysis according to instantaneous modulation depth signal. The proposed method promises to contribute to the treatment of diseases, such as those related to anemia or thrombosis.
Collapse
Affiliation(s)
- Nanshou Wu
- Foshan University, Department of Physics and Optoelectronic Engineering, Guangdong, China
| | - Lei Wang
- Foshan University, Department of Physics and Optoelectronic Engineering, Guangdong, China
| | - Bifeng Zhu
- Foshan University, Department of Physics and Optoelectronic Engineering, Guangdong, China
| | - Caizhong Guan
- Foshan University, Department of Physics and Optoelectronic Engineering, Guangdong, China
| | - Mingyi Wang
- Foshan University, Department of Physics and Optoelectronic Engineering, Guangdong, China
| | - Dingan Han
- Foshan University, Department of Physics and Optoelectronic Engineering, Guangdong, China
| | - Haishu Tan
- Foshan University, Department of Physics and Optoelectronic Engineering, Guangdong, China
| | - Yaguang Zeng
- Foshan University, Department of Physics and Optoelectronic Engineering, Guangdong, China
| |
Collapse
|
47
|
Tang J, Erdener SE, Fu B, Boas DA. Capillary red blood cell velocimetry by phase-resolved optical coherence tomography. OPTICS LETTERS 2017; 42:3976-3979. [PMID: 28957175 PMCID: PMC5972360 DOI: 10.1364/ol.42.003976] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/28/2017] [Accepted: 09/05/2017] [Indexed: 05/05/2023]
Abstract
We present a phase-resolved optical coherence tomography (OCT) method to extend Doppler OCT for the accurate measurement of the red blood cell (RBC) velocity in cerebral capillaries. OCT data were acquired with an M-mode scanning strategy (repeated A-scans) to account for the single-file passage of RBCs in a capillary, which were then high-pass filtered to remove the stationary component of the signal to ensure an accurate measurement of phase shift of flowing RBCs. The angular frequency of the signal from flowing RBCs was then quantified from the dynamic component of the signal and used to calculate the axial speed of flowing RBCs in capillaries. We validated our measurement by RBC passage velocimetry using the signal magnitude of the same OCT time series data.
Collapse
Affiliation(s)
- Jianbo Tang
- Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Harvard Medical School, Charlestown, Massachusetts 02129, USA
| | - Sefik Evren Erdener
- Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Harvard Medical School, Charlestown, Massachusetts 02129, USA
| | - Buyin Fu
- Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Harvard Medical School, Charlestown, Massachusetts 02129, USA
| | - David A. Boas
- Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Harvard Medical School, Charlestown, Massachusetts 02129, USA
- Neurophotonics Center, Department of Biomedical Engineering, Boston University, Boston, Massachusetts 02215, USA
| |
Collapse
|
48
|
Leinonen H, Tanila H. Vision in laboratory rodents-Tools to measure it and implications for behavioral research. Behav Brain Res 2017; 352:172-182. [PMID: 28760697 DOI: 10.1016/j.bbr.2017.07.040] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2017] [Revised: 07/17/2017] [Accepted: 07/27/2017] [Indexed: 02/09/2023]
Abstract
Mice and rats are nocturnal mammals and their vision is specialized for detection of motion and contrast in dim light conditions. These species possess a large proportion of UV-sensitive cones in their retinas and the majority of their optic nerve axons target superior colliculus rather than visual cortex. Therefore, it was a widely held belief that laboratory rodents hardly utilize vision during day-time behavior. This dogma is being questioned as accumulating evidence suggests that laboratory rodents are able to perform complex visual functions, such as perceiving subjective contours, and that declined vision may affect their performance in many behavioral tasks. For instance, genetic engineering may have unexpected consequences on vision as mouse models of Alzheimer's and Huntington's diseases have declined visual function. Rodent vision can be tested in numerous ways using operant training or reflex-based behavioral tasks, or alternatively using electrophysiological recordings. In this article, we will first provide a summary of visual system and explain its characteristics unique to rodents. Then, we present well-established techniques to test rodent vision, with an emphasis on pattern vision: visual water test, optomotor reflex test, pattern electroretinography and pattern visual evoked potentials. Finally, we highlight the importance of visual phenotyping in rodents. As the number of genetically engineered rodent models and volume of behavioral testing increase simultaneously, the possibility of visual dysfunctions needs to be addressed. Neglect in this matter potentially leads to crude biases in the field of neuroscience and beyond.
Collapse
Affiliation(s)
- Henri Leinonen
- A.I. Virtanen Institute for Molecular Sciences, University of Eastern Finland, P.O. Box 1627, Neulaniementie 2, 70211 Kuopio, Finland.
| | - Heikki Tanila
- A.I. Virtanen Institute for Molecular Sciences, University of Eastern Finland, P.O. Box 1627, Neulaniementie 2, 70211 Kuopio, Finland
| |
Collapse
|
49
|
Lu J, Gu B, Wang X, Zhang Y. High-speed adaptive optics line scan confocal retinal imaging for human eye. PLoS One 2017; 12:e0169358. [PMID: 28257458 PMCID: PMC5336222 DOI: 10.1371/journal.pone.0169358] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2016] [Accepted: 12/15/2016] [Indexed: 01/03/2023] Open
Abstract
Purpose Continuous and rapid eye movement causes significant intraframe distortion in adaptive optics high resolution retinal imaging. To minimize this artifact, we developed a high speed adaptive optics line scan confocal retinal imaging system. Methods A high speed line camera was employed to acquire retinal image and custom adaptive optics was developed to compensate the wave aberration of the human eye’s optics. The spatial resolution and signal to noise ratio were assessed in model eye and in living human eye. The improvement of imaging fidelity was estimated by reduction of intra-frame distortion of retinal images acquired in the living human eyes with frame rates at 30 frames/second (FPS), 100 FPS, and 200 FPS. Results The device produced retinal image with cellular level resolution at 200 FPS with a digitization of 512×512 pixels/frame in the living human eye. Cone photoreceptors in the central fovea and rod photoreceptors near the fovea were resolved in three human subjects in normal chorioretinal health. Compared with retinal images acquired at 30 FPS, the intra-frame distortion in images taken at 200 FPS was reduced by 50.9% to 79.7%. Conclusions We demonstrated the feasibility of acquiring high resolution retinal images in the living human eye at a speed that minimizes retinal motion artifact. This device may facilitate research involving subjects with nystagmus or unsteady fixation due to central vision loss.
Collapse
Affiliation(s)
- Jing Lu
- Department of Ophthalmology, School of Medicine, University of Alabama at Birmingham, Birmingham, Alabama, United States of America
| | - Boyu Gu
- Department of Ophthalmology, School of Medicine, University of Alabama at Birmingham, Birmingham, Alabama, United States of America
| | - Xiaolin Wang
- Department of Ophthalmology, School of Medicine, University of Alabama at Birmingham, Birmingham, Alabama, United States of America
| | - Yuhua Zhang
- Department of Ophthalmology, School of Medicine, University of Alabama at Birmingham, Birmingham, Alabama, United States of America
- * E-mail:
| |
Collapse
|