1
|
Bystrov DA, Volegova DD, Korsakova SA, Salmina AB, Yurchenko SO. Electric Field-Induced Effects in Eukaryotic Cells: Current Progress and Limitations. TISSUE ENGINEERING. PART B, REVIEWS 2025. [PMID: 40279199 DOI: 10.1089/ten.teb.2025.0022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/27/2025]
Abstract
Electric fields (EFs) offer a powerful tool for manipulating cells and modulating their behavior, holding significant promise for regenerative medicine and cell biology. We provide a comprehensive overview of the effects of different types of EF on eukaryotic cells with the special focus on physical mechanisms and signaling pathways involved. Direct current EF induces electrophoresis and electroosmosis, influencing cell migration, proliferation, and differentiation. Alternating current EF, through dielectric polarization and dielectrophoresis, enables cell manipulation, trapping, and sorting. Pulsed EF, particularly high-intensity, short-duration pulses, induces reversible and irreversible electroporation, facilitating drug and gene delivery. The review covers some technological aspects of EF generation, emphasizing the importance of experimental setups, and integration with microfluidic platforms for high-throughput analysis and precise manipulations. Furthermore, the synergistic potential of combining EFs with optical tweezers is highlighted, enabling fine-tuned control of cell positioning, intercellular interactions, and measurement of biophysical properties. Finally, the review addresses limitations of EF application, such as field heterogeneity and potential side effects, and outlines the directions for future studies, including developing the minimally invasive delivery methods.
Collapse
Affiliation(s)
- Daniil A Bystrov
- Center "Soft Matter and Physics of Fluids," Bauman Moscow State Technical University, Moscow, Russia
| | - Daria D Volegova
- Center "Soft Matter and Physics of Fluids," Bauman Moscow State Technical University, Moscow, Russia
| | - Sofia A Korsakova
- Center "Soft Matter and Physics of Fluids," Bauman Moscow State Technical University, Moscow, Russia
| | - Alla B Salmina
- Center "Soft Matter and Physics of Fluids," Bauman Moscow State Technical University, Moscow, Russia
- Brain Science Institute, Research Center of Neurology, Moscow, Russia
| | - Stanislav O Yurchenko
- Center "Soft Matter and Physics of Fluids," Bauman Moscow State Technical University, Moscow, Russia
| |
Collapse
|
2
|
Mehanna LE, Boyd JD, Remus-Williams S, Racca NM, Spraggins DP, Grady ME, Berron BJ. Improvement of cellular pattern organization and clarity through centrifugal force. Biomed Mater 2025; 20:025025. [PMID: 39746325 PMCID: PMC11823422 DOI: 10.1088/1748-605x/ada508] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2024] [Revised: 12/11/2024] [Accepted: 01/02/2025] [Indexed: 01/04/2025]
Abstract
Rapid and strategic cell placement is necessary for high throughput tissue fabrication. Current adhesive cell patterning systems rely on fluidic shear flow to remove cells outside of the patterned regions, but limitations in washing complexity and uniformity prevent adhesive patterns from being widely applied. Centrifugation is commonly used to study the adhesive strength of cells to various substrates; however, the approach has not been applied to selective cell adhesion systems to create highly organized cell patterns. This study shows centrifugation as a promising method to wash cellular patterns after selective binding of cells to the surface has taken place. After patterning H9C2 cells using biotin-streptavidin as a model adhesive patterning system and washing with centrifugation, there is a significant number of cells removed outside of the patterned areas of the substrate compared to the initial seeding, while there is not a significant number removed from the desired patterned areas. This method is effective in patterning multiple size and linear structures from line widths of 50-200 μm without compromising immediate cell viability below 80%. We also test this procedure on a variety of tube-forming cell lines (MPCs, HUVECs) on various tissue-like surface materials (collagen 1 and Matrigel) with no significant differences in their respective tube formation metrics when the cells were seeded directly on their unconjugated surface versus patterned and washed through centrifugation. This result demonstrates that our patterning and centrifugation system can be adapted to a variety of cell types and substrates to create patterns tailored to many biological applications.
Collapse
Affiliation(s)
- Lauren E Mehanna
- Department of Chemical and Materials Engineering, University of Kentucky, Lexington, KY, United States of America
| | - James D Boyd
- Department of Mechanical Engineering, University of Kentucky, Lexington, KY, United States of America
| | - Shelley Remus-Williams
- Department of Mechanical Engineering, University of Kentucky, Lexington, KY, United States of America
| | - Nicole M Racca
- Department of Biomedical Engineering, University of Michigan, Ann Arbor, MI, United States of America
| | - Dawson P Spraggins
- Department of Chemical and Materials Engineering, University of Kentucky, Lexington, KY, United States of America
| | - Martha E Grady
- Department of Mechanical Engineering, University of Kentucky, Lexington, KY, United States of America
| | - Brad J Berron
- Department of Chemical and Materials Engineering, University of Kentucky, Lexington, KY, United States of America
| |
Collapse
|
3
|
Huang Z, Zhou Y, Liu Y, Quan Y, Yin Q, Luo Y, Su Y, Zhou B, Zhang W, Zhu B, Ma Z. Advancing cellular transfer printing: achieving bioadhesion-free deposition via vibration microstreaming. LAB ON A CHIP 2025; 25:296-307. [PMID: 39655389 DOI: 10.1039/d4lc00601a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/29/2025]
Abstract
Cell transfer printing plays an essential role in biomedical research and clinical diagnostics. Traditional bioadhesion-based methods often necessitate complex surface modifications and offer limited control over the quantity of transferred cells. There is a critical need for a modification-free, non-labeling, and high-throughput cell transfer printing technique. In this study, an adhesion-free cellular transfer printing method based on vibration-induced microstreaming is introduced. By adjusting the volume of the microcavity, the number of cells transferred per microtiter well can be realized to the level of a single cell. Additionally, it allows for precise control of large-scale cellular spatial distribution, leading to the formation of biomimetic patterns. Moreover, the demonstrated biocompatibility and high throughput of this cell transfer printing method highlight its potential utility. The correspondence of the transferred cell amount to the vibration and frequencies allows the system to exhibit excellent tunability of the transferred cell amount and pattern. This bioadhesion-free cell transfer printing method holds promise for advancing cell manipulation in biomedical research and analysis.
Collapse
Affiliation(s)
- Ziyu Huang
- Joint Key Laboratory of the Ministry of Education, Institute of Applied Physics and Materials Engineering, University of Macau, Avenida da Universidade, Taipa, Macau 999078, China.
| | - Yinning Zhou
- Joint Key Laboratory of the Ministry of Education, Institute of Applied Physics and Materials Engineering, University of Macau, Avenida da Universidade, Taipa, Macau 999078, China.
| | - Yu Liu
- Joint Key Laboratory of the Ministry of Education, Institute of Applied Physics and Materials Engineering, University of Macau, Avenida da Universidade, Taipa, Macau 999078, China.
| | - Yue Quan
- Joint Key Laboratory of the Ministry of Education, Institute of Applied Physics and Materials Engineering, University of Macau, Avenida da Universidade, Taipa, Macau 999078, China.
| | - Qiu Yin
- Institute of Medical Robotics, School of Biomedical Engineering, Shanghai Jiao Tong University, No.800 Dongchuan Road, Shanghai 200240, China.
- State Key Laboratory of Mechanical System and Vibration, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Yucheng Luo
- Institute of Medical Robotics, School of Biomedical Engineering, Shanghai Jiao Tong University, No.800 Dongchuan Road, Shanghai 200240, China.
| | - Yimeng Su
- Institute of Medical Robotics, School of Biomedical Engineering, Shanghai Jiao Tong University, No.800 Dongchuan Road, Shanghai 200240, China.
| | - Bingpu Zhou
- Joint Key Laboratory of the Ministry of Education, Institute of Applied Physics and Materials Engineering, University of Macau, Avenida da Universidade, Taipa, Macau 999078, China.
| | - Wenming Zhang
- State Key Laboratory of Mechanical System and Vibration, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Benpeng Zhu
- School of Integrated Circuit, Wuhan National Laboratory for Optoelectronics, Huazhong University of Science and Technology, Wuhan 430074, China
| | - Zhichao Ma
- Institute of Medical Robotics, School of Biomedical Engineering, Shanghai Jiao Tong University, No.800 Dongchuan Road, Shanghai 200240, China.
| |
Collapse
|
4
|
Yuan S, Zhang P, Zhang F, Yan S, Dong R, Wu C, Deng J. Profiling signaling mediators for cell-cell interactions and communications with microfluidics-based single-cell analysis tools. iScience 2025; 28:111663. [PMID: 39868039 PMCID: PMC11763584 DOI: 10.1016/j.isci.2024.111663] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2025] Open
Abstract
Cell-cell interactions and communication represent the fundamental cornerstone of cells' collaborative efforts in executing diverse biological processes. A profound understanding of how cells interface through various mediators is pivotal across a spectrum of biological systems. Recent strides in microfluidic technologies have significantly bolstered the precision and prowess in capturing and manipulating cells with exceptional spatial and temporal resolution. These advanced methodologies converge with multi-signal mediator detection systems, furnishing potent, high-throughput platforms for dissecting cell-cell interactions at the single-cell level. This approach empowers researchers to delve into intricate cellular dynamics with unprecedented accuracy and efficiency. Here, we present a critical evaluation of the latest advancements in microfluidics-driven techniques for detecting signal mediators involved in cell-cell interactions and communication at the single-cell level. We underscore notable biological applications that have benefited from these technologies and identify pressing challenges that must be addressed in future endeavors leveraging microfluidic tools for single-cell interaction studies.
Collapse
Affiliation(s)
- Shuai Yuan
- School of Health and Life Sciences, University of Health and Rehabilitation Sciences, Qingdao 266113, China
| | - Peng Zhang
- Biological and Environmental Science and Engineering Division, King Abdullah University of Science and Technology, Thuwal 23955-6900, Saudi Arabia
| | - Feng Zhang
- Department of Cardiology, The First Affiliated Hospital of Nanjing Medical University, Nanjing 210000, China
| | - Shiqiang Yan
- Center of Cancer Immunology, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China
| | - Ruihua Dong
- School of Health and Life Sciences, University of Health and Rehabilitation Sciences, Qingdao 266113, China
| | - Chengjun Wu
- School of Health and Life Sciences, University of Health and Rehabilitation Sciences, Qingdao 266113, China
| | - Jiu Deng
- School of Health and Life Sciences, University of Health and Rehabilitation Sciences, Qingdao 266113, China
| |
Collapse
|
5
|
Yadav DS, Savopol T. Optical tweezers in biomedical research - progress and techniques. J Med Life 2024; 17:978-993. [PMID: 39781305 PMCID: PMC11705474 DOI: 10.25122/jml-2024-0316] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2024] [Accepted: 10/04/2024] [Indexed: 01/12/2025] Open
Abstract
Optical tweezers, which leverage the forces exerted by radiation pressure, have emerged as a pivotal technique for precisely manipulating and analyzing microscopic particles. Since Arthur Ashkin's ground-breaking work in the 1970s and the subsequent development of the single-beam optical trap in 1986, the capabilities of optical tweezers have expanded significantly, enabling the intricate manipulation of biological specimens at the micro- and nanoscale. This review elucidates the foundational principles of optical trapping and their extensive applications in the biomedical sciences. The applications of optical tweezers in biomedicine are vast, ranging from the investigation of cellular mechanical properties, such as cell stretching, membrane elasticity, and stiffness, to single-molecule studies encompassing DNA and protein mechanics, protein-DNA interactions, molecular motor functions, and pathogen-host interactions. Advancement of optical tweezers in this field includes their integration with holography, fluorescence microscopy, microfluidics, and enhancements in force sensitivity and positional accuracy. These tools have profoundly impacted the study of cellular mechanics, drug discovery processes, and disease diagnostics, providing unparalleled insights into the biophysical mechanisms underlying health and pathology.
Collapse
Key Words
- AFM, Atomic Force Microscopy
- CCD, Charge-Coupled Device
- DNA stretching
- E. Coli, Escherichia coli
- HOT, Holographic Optical Tweezers
- IVF, In-Vitro Fertilization
- ODS, Optical DNA Supercoiling
- RBC, Red Blood Cells
- RNAP, RNA Polymerase
- SLM, Spatial Light Modulator
- cell manipulation
- cell stretching
- dsDNA, Double-Stranded DNA
- elastic properties of cells
- membrane tethering
- optical tweezers
- single molecule studies
Collapse
Affiliation(s)
- Dharm Singh Yadav
- Biophysics and Cellular Biotechnology Department, Carol Davila University of Medicine and Pharmacy, Bucharest, Romania
| | - Tudor Savopol
- Biophysics and Cellular Biotechnology Department, Carol Davila University of Medicine and Pharmacy, Bucharest, Romania
| |
Collapse
|
6
|
Zhou J, Zhang Y, Fu Y, Li Q, Zhang J, Liu X, Gu Z. Visualizing and quantifying dynamic cellular forces with photonic crystal hydrogels. NANOSCALE 2024; 16:19074-19085. [PMID: 39319561 DOI: 10.1039/d4nr02834a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/26/2024]
Abstract
Cellular forces play a crucial role in numerous biological processes, including tissue development, morphogenesis, and disease progression. However, existing methods for detecting cellular forces, such as traction force microscopy and atomic force microscopy, often face limitations in terms of high throughput, real-time monitoring, and applicability to complex biological systems. In this study, we utilized a novel Photonic Crystal Cellular Force Microscopy (PCCFM) system to visualize and quantify dynamic cellular forces. This system consists of a conventional optical microscope and a photonic crystal substrate formed by the periodic arrangement of silica nanoparticles within polyacrylamide hydrogels. Taking MDCK cells and BMSCs as examples, we found that PCCFM can capture dynamic cellular forces with high spatial and temporal resolution during the cell adhesion, spread, proliferation, and osteogenic differentiation. The application of this technique revealed distinct force patterns in different cellular stages, offering insights into the interplay between cellular forces and morphological changes. By investigating the migration of cells from MDCK cyst fragments, we could gain significant insights into tumour cell migration behaviours. The real-time, high-throughput analysis of cellular biomechanics from the PCCFM system offers valuable information on the mechanisms of tumour metastasis, potentially guiding therapeutic development and improving disease treatment strategies.
Collapse
Affiliation(s)
- Jiankang Zhou
- State Key Laboratory of Digital Medical Engineering, School of Biological Science and Medical Engineering, Southeast University, Nanjing, 210096, China.
| | - Ying Zhang
- State Key Laboratory of Digital Medical Engineering, School of Biological Science and Medical Engineering, Southeast University, Nanjing, 210096, China.
| | - Yifu Fu
- State Key Laboratory of Digital Medical Engineering, School of Biological Science and Medical Engineering, Southeast University, Nanjing, 210096, China.
| | - Qiwei Li
- State Key Laboratory of Digital Medical Engineering, School of Biological Science and Medical Engineering, Southeast University, Nanjing, 210096, China.
| | - Jiajia Zhang
- State Key Laboratory of Digital Medical Engineering, School of Biological Science and Medical Engineering, Southeast University, Nanjing, 210096, China.
| | - Xiaojiang Liu
- State Key Laboratory of Digital Medical Engineering, School of Biological Science and Medical Engineering, Southeast University, Nanjing, 210096, China.
| | - Zhongze Gu
- State Key Laboratory of Digital Medical Engineering, School of Biological Science and Medical Engineering, Southeast University, Nanjing, 210096, China.
| |
Collapse
|
7
|
Iványi GT, Nemes B, Gróf I, Fekete T, Kubacková J, Tomori Z, Bánó G, Vizsnyiczai G, Kelemen L. Optically Actuated Soft Microrobot Family for Single-Cell Manipulation. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2401115. [PMID: 38814436 DOI: 10.1002/adma.202401115] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/22/2024] [Revised: 05/17/2024] [Indexed: 05/31/2024]
Abstract
Precisely controlled manipulation of nonadherent single cells is often a pre-requisite for their detailed investigation. Optical trapping provides a versatile means for positioning cells with submicrometer precision or measuring forces with femto-Newton resolution. A variant of the technique, called indirect optical trapping, enables single-cell manipulation with no photodamage and superior spatial control and stability by relying on optically trapped microtools biochemically bound to the cell. High-resolution 3D lithography enables to prepare such cell manipulators with any predefined shape, greatly extending the number of achievable manipulation tasks. Here, it is presented for the first time a novel family of cell manipulators that are deformable by optical tweezers and rely on their elasticity to hold cells. This provides a more straightforward approach to indirect optical trapping by avoiding biochemical functionalization for cell attachment, and consequently by enabling the manipulated cells to be released at any time. Using the photoresist Ormocomp, the deformations achievable with optical forces in the tens of pN range and present three modes of single-cell manipulation as examples to showcase the possible applications such soft microrobotic tools can offer are characterized. The applications describe here include cell collection, 3D cell imaging, and spatially and temporally controlled cell-cell interaction.
Collapse
Affiliation(s)
- Gergely T Iványi
- HUN-REN Biological Research Centre, Szeged Institute of Biophysics, Temesvári krt. 62, Szeged, 6726, Hungary
- Doctoral School of Multidisciplinary Medical Sciences, University of Szeged, Szeged, 6720, Hungary
| | - Botond Nemes
- HUN-REN Biological Research Centre, Szeged Institute of Biophysics, Temesvári krt. 62, Szeged, 6726, Hungary
| | - Ilona Gróf
- HUN-REN Biological Research Centre, Szeged Institute of Biophysics, Temesvári krt. 62, Szeged, 6726, Hungary
| | - Tamás Fekete
- HUN-REN Biological Research Centre, Szeged Institute of Biophysics, Temesvári krt. 62, Szeged, 6726, Hungary
| | - Jana Kubacková
- Department of Biophysics, Institute of Experimental Physics SAS, Watsonova 47, Košice, 04001, Slovakia
| | - Zoltán Tomori
- Department of Biophysics, Institute of Experimental Physics SAS, Watsonova 47, Košice, 04001, Slovakia
| | - Gregor Bánó
- Department of Biophysics, Faculty of Science, P. J. Šafárik University in Košice, Jesenná 5, Košice, 04154, Slovakia
| | - Gaszton Vizsnyiczai
- HUN-REN Biological Research Centre, Szeged Institute of Biophysics, Temesvári krt. 62, Szeged, 6726, Hungary
- Department of Biotechnology, University of Szeged, Szeged, 6720, Hungary
| | - Lóránd Kelemen
- HUN-REN Biological Research Centre, Szeged Institute of Biophysics, Temesvári krt. 62, Szeged, 6726, Hungary
| |
Collapse
|
8
|
Sullivan MR, Finocchiaro M, Yang Y, Thomas J, Ali A, Kaplan I, Abdulhamid Y, Bobilev E, Sheffer M, Romee R, Konry T. An innovative single-cell approach for phenotyping and functional genotyping of CAR NK cells. J Immunother Cancer 2024; 12:e008912. [PMID: 38821719 PMCID: PMC11149162 DOI: 10.1136/jitc-2024-008912] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/03/2024] [Indexed: 06/02/2024] Open
Abstract
BACKGROUND To accelerate the translation of novel immunotherapeutic treatment approaches, the development of analytic methods to assess their efficacy at early in vitro stages is necessary. Using a droplet-based microfluidic platform, we have established a method for multiparameter quantifiable phenotypic and genomic observations of immunotherapies. Chimeric antigen receptor (CAR) natural killer (NK) cells are of increased interest in the current immunotherapy landscape and thus provide an optimal model for evaluating our novel methodology. METHODS For this approach, NK cells transduced with a CD19 CAR were compared with non-transduced NK cells in their ability to kill a lymphoma cell line. Using our microfluidic platform, we were able to quantify the increase in cytotoxicity and synaptic contact formation of CAR NK cells over non-transduced NK cells. We then optimized our droplet sorter and successfully used it to separate NK cells based on target cell killing to perform transcriptomic analyses. RESULTS Our data revealed expected improvement in cytotoxicity with the CD19 CAR but more importantly, provided unique insights into the factors involved in the cytotoxic mechanisms of CAR NK cells. This demonstrates a novel, improved system for accelerating the pre-clinical screening of future immunotherapy treatments. CONCLUSIONS This study provides a new potential approach for enhanced early screening of immunotherapies to improve their development, with a highly relevant cell model to demonstrate. Additionally, our validation studies provided some potential insights into transcriptomic determinants influencing CAR NK cytotoxicity.
Collapse
Affiliation(s)
- Matthew Ryan Sullivan
- Department of Pharmaceutical Sciences, Northeastern University, Boston, Massachusetts, USA
| | - Michael Finocchiaro
- Department of Pharmaceutical Sciences, Northeastern University, Boston, Massachusetts, USA
| | - Yichao Yang
- Department of Pharmaceutical Sciences, Northeastern University, Boston, Massachusetts, USA
| | - Judene Thomas
- Department of Pharmaceutical Sciences, Northeastern University, Boston, Massachusetts, USA
| | - Alaa Ali
- Dana Farber Cancer Institute, Harvard Medical School, Boston, Massachusetts, USA
| | - Isabel Kaplan
- Dana Farber Cancer Institute, Harvard Medical School, Boston, Massachusetts, USA
| | - Yasmin Abdulhamid
- Dana Farber Cancer Institute, Harvard Medical School, Boston, Massachusetts, USA
| | - Eden Bobilev
- Dana Farber Cancer Institute, Harvard Medical School, Boston, Massachusetts, USA
| | - Michal Sheffer
- Dana Farber Cancer Institute, Harvard Medical School, Boston, Massachusetts, USA
| | - Rizwan Romee
- Dana Farber Cancer Institute, Harvard Medical School, Boston, Massachusetts, USA
| | - Tania Konry
- Department of Pharmaceutical Sciences, Northeastern University, Boston, Massachusetts, USA
| |
Collapse
|
9
|
Zhu L, Tang Q, Mao Z, Chen H, Wu L, Qin Y. Microfluidic-based platforms for cell-to-cell communication studies. Biofabrication 2023; 16:012005. [PMID: 38035370 DOI: 10.1088/1758-5090/ad1116] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2023] [Accepted: 11/30/2023] [Indexed: 12/02/2023]
Abstract
Intercellular communication is critical to the understanding of human health and disease progression. However, compared to traditional methods with inefficient analysis, microfluidic co-culture technologies developed for cell-cell communication research can reliably analyze crucial biological processes, such as cell signaling, and monitor dynamic intercellular interactions under reproducible physiological cell co-culture conditions. Moreover, microfluidic-based technologies can achieve precise spatial control of two cell types at the single-cell level with high throughput. Herein, this review focuses on recent advances in microfluidic-based 2D and 3D devices developed to confine two or more heterogeneous cells in the study of intercellular communication and decipher the advantages and limitations of these models in specific cellular research scenarios. This review will stimulate the development of more functionalized microfluidic platforms for biomedical research, inspiring broader interests across various disciplines to better comprehend cell-cell communication and other fields, such as tumor heterogeneity and drug screening.
Collapse
Affiliation(s)
- Lvyang Zhu
- Nantong Key Laboratory of Public Health and Medical Analysis, School of Public Health, Nantong University, No. 9, Seyuan Road, Nantong 226019, Jiangsu, People's Republic of China
| | - Qu Tang
- Nantong Key Laboratory of Public Health and Medical Analysis, School of Public Health, Nantong University, No. 9, Seyuan Road, Nantong 226019, Jiangsu, People's Republic of China
| | - Zhenzhen Mao
- Nantong Key Laboratory of Public Health and Medical Analysis, School of Public Health, Nantong University, No. 9, Seyuan Road, Nantong 226019, Jiangsu, People's Republic of China
| | - Huanhuan Chen
- Nantong Key Laboratory of Public Health and Medical Analysis, School of Public Health, Nantong University, No. 9, Seyuan Road, Nantong 226019, Jiangsu, People's Republic of China
| | - Li Wu
- Nantong Key Laboratory of Public Health and Medical Analysis, School of Public Health, Nantong University, No. 9, Seyuan Road, Nantong 226019, Jiangsu, People's Republic of China
| | - Yuling Qin
- Nantong Key Laboratory of Public Health and Medical Analysis, School of Public Health, Nantong University, No. 9, Seyuan Road, Nantong 226019, Jiangsu, People's Republic of China
| |
Collapse
|
10
|
Zhang B, Zhang XF, Shao M, Meng C, Ji F, Zhong MC. An opto-thermal approach for assembling yeast cells by laser heating of a trapped light absorbing particle. THE REVIEW OF SCIENTIFIC INSTRUMENTS 2023; 94:034105. [PMID: 37012788 DOI: 10.1063/5.0138812] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/14/2022] [Accepted: 03/05/2023] [Indexed: 06/19/2023]
Abstract
Cell assembly has important applications in biomedical research, which can be achieved with laser-heating induced thermal convective flow. In this paper, an opto-thermal approach is developed to assemble the yeast cells dispersed in solution. At first, polystyrene (PS) microbeads are used instead of cells to explore the method of microparticle assembly. The PS microbeads and light absorbing particles (APs) are dispersed in solution and form a binary mixture system. Optical tweezers are used to trap an AP at the substrate glass of the sample cell. Due to the optothermal effect, the trapped AP is heated and a thermal gradient is generated, which induces a thermal convective flow. The convective flow drives the microbeads moving toward and assembling around the trapped AP. Then, the method is used to assemble the yeast cells. The results show that the initial concentration ratio of yeast cells to APs affects the eventual assembly pattern. The binary microparticles with different initial concentration ratios assemble into aggregates with different area ratios. The experiment and simulation results show that the dominant factor in the area ratio of yeast cells in the binary aggregate is the velocity ratio of the yeast cells to the APs. Our work provides an approach to assemble the cells, which has a potential application in the analysis of microbes.
Collapse
Affiliation(s)
- Bu Zhang
- Anhui Province Key Laboratory of Measuring Theory and Precision Instrument, School of Instrument Science and Optoelectronics Engineering, Hefei University of Technology, Hefei 230009, Anhui, China
| | - Xian-Feng Zhang
- Anhui Province Key Laboratory of Measuring Theory and Precision Instrument, School of Instrument Science and Optoelectronics Engineering, Hefei University of Technology, Hefei 230009, Anhui, China
| | - Meng Shao
- Anhui Province Key Laboratory of Measuring Theory and Precision Instrument, School of Instrument Science and Optoelectronics Engineering, Hefei University of Technology, Hefei 230009, Anhui, China
| | - Chun Meng
- Anhui Province Key Laboratory of Measuring Theory and Precision Instrument, School of Instrument Science and Optoelectronics Engineering, Hefei University of Technology, Hefei 230009, Anhui, China
| | - Feng Ji
- Anhui Province Key Laboratory of Measuring Theory and Precision Instrument, School of Instrument Science and Optoelectronics Engineering, Hefei University of Technology, Hefei 230009, Anhui, China
| | - Min-Cheng Zhong
- Anhui Province Key Laboratory of Measuring Theory and Precision Instrument, School of Instrument Science and Optoelectronics Engineering, Hefei University of Technology, Hefei 230009, Anhui, China
| |
Collapse
|
11
|
Lee M, Hugonnet H, Lee MJ, Cho Y, Park Y. Optical trapping with holographically structured light for single-cell studies. BIOPHYSICS REVIEWS 2023; 4:011302. [PMID: 38505814 PMCID: PMC10903426 DOI: 10.1063/5.0111104] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/18/2022] [Accepted: 11/25/2022] [Indexed: 03/21/2024]
Abstract
A groundbreaking work in 1970 by Arthur Ashkin paved the way for developing various optical trapping techniques. Optical tweezers have become an established method for the manipulation of biological objects, due to their noninvasiveness and precise controllability. Recent innovations are accelerating and now enable single-cell manipulation through holographic light structuring. In this review, we provide an overview of recent advances in optical tweezer techniques for studies at the individual cell level. Our review focuses on holographic optical tweezers that utilize active spatial light modulators to noninvasively manipulate live cells. The versatility of the technology has led to valuable integrations with microscopy, microfluidics, and biotechnological techniques for various single-cell studies. We aim to recapitulate the basic principles of holographic optical tweezers, highlight trends in their biophysical applications, and discuss challenges and future prospects.
Collapse
|
12
|
Favre-Bulle IA, Scott EK. Optical tweezers across scales in cell biology. Trends Cell Biol 2022; 32:932-946. [PMID: 35672197 PMCID: PMC9588623 DOI: 10.1016/j.tcb.2022.05.001] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2022] [Revised: 05/02/2022] [Accepted: 05/04/2022] [Indexed: 01/21/2023]
Abstract
Optical tweezers (OT) provide a noninvasive approach for delivering minute physical forces to targeted objects. Controlling such forces in living cells or in vitro preparations allows for the measurement and manipulation of numerous processes relevant to the form and function of cells. As such, OT have made important contributions to our understanding of the structures of proteins and nucleic acids, the interactions that occur between microscopic structures within cells, the choreography of complex processes such as mitosis, and the ways in which cells interact with each other. In this review, we highlight recent contributions made to the field of cell biology using OT and provide basic descriptions of the physics, the methods, and the equipment that made these studies possible.
Collapse
Affiliation(s)
- Itia A Favre-Bulle
- Queensland Brain Institute, The University of Queensland, 4067, Brisbane, Australia; School of Mathematics and Physics, The University of Queensland, 4067, Brisbane, Australia.
| | - Ethan K Scott
- Queensland Brain Institute, The University of Queensland, 4067, Brisbane, Australia; Department of Anatomy and Physiology, School of Biomedical Sciences, The University of Melbourne, Parkville, VIC 3010, Australia.
| |
Collapse
|
13
|
Lin CL, Wang SG, Tien MT, Chiang CH, Lee YC, Baldeck PL, Shin CS. A Novel Methodology for Detecting Variations in Cell Surface Antigens Using Cell-Tearing by Optical Tweezers. BIOSENSORS 2022; 12:656. [PMID: 36005053 PMCID: PMC9405593 DOI: 10.3390/bios12080656] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/11/2022] [Revised: 08/04/2022] [Accepted: 08/17/2022] [Indexed: 06/15/2023]
Abstract
The quantitative analysis of cell surface antigens has attracted increasing attention due to the antigenic variation recognition that can facilitate early diagnoses. This paper presents a novel methodology based on the optical "cell-tearing" and the especially proposed "dilution regulations" to detect variations in cell surface antigens. The cell attaches to the corresponding antibody-coated slide surface. Then, the cell-binding firmness between a single cell and the functionalized surface is assayed by optically tearing using gradually reduced laser powers incorporated with serial antibody dilutions. Groups B and B3 of red blood cells (RBCs) were selected as the experiment subject. The results indicate that a higher dilution called for lower power to tear off the cell binding. According to the proposed relative-quantitative analysis theory, antigenic variation can be intuitively estimated by comparing the maximum allowable dilution folds. The estimation result shows good consistency with the finding in the literature. This study suggests a novel methodology for examining the variation in cell surface antigens, expected to be widely capable with potential sensor applications not only in biochemistry and biophysics, but also in the micro-/nano- engineering field.
Collapse
Affiliation(s)
- Chih-Lang Lin
- Graduate Institute of Biotechnology and Biomedical Engineering, Central Taiwan University of Science and Technology, Taichung City 40601, Taiwan
- Department of Automatic Control Engineering, Feng Chia University, Taichung City 407802, Taiwan
| | - Shyang-Guang Wang
- Department of Medical Laboratory Science and Biotechnology, Central Taiwan University of Science and Technology, Taichung City 40601, Taiwan
| | - Meng-Tsung Tien
- General Education Center, Feng Chia University, Taichung City 407802, Taiwan
| | - Chung-Han Chiang
- Graduate Institute of Biotechnology and Biomedical Engineering, Central Taiwan University of Science and Technology, Taichung City 40601, Taiwan
| | - Yi-Chieh Lee
- Department of Medical Laboratory Science and Biotechnology, Central Taiwan University of Science and Technology, Taichung City 40601, Taiwan
| | - Patrice L. Baldeck
- ENSL, CNRS, Laboratoire de Chimie UMR 5182, 46 allée d’Italie, 69364 Lyon, France
| | - Chow-Shing Shin
- Department of Mechanical Engineering, National Taiwan University, Taipei City 10617, Taiwan
| |
Collapse
|
14
|
Martinez Villegas K, Rasouli R, Tabrizian M. Enhancing metabolic activity and differentiation potential in adipose mesenchymal stem cells via high-resolution surface-acoustic-wave contactless patterning. MICROSYSTEMS & NANOENGINEERING 2022; 8:79. [PMID: 35846175 PMCID: PMC9276743 DOI: 10.1038/s41378-022-00415-w] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/16/2022] [Revised: 05/20/2022] [Accepted: 06/08/2022] [Indexed: 06/05/2023]
Abstract
Acoustofluidics has shown great potential for label-free bioparticle patterning with excellent biocompatibility. Acoustofluidic patterning enables the induction of cell-cell interactions, which play fundamental roles in organogenesis and tissue development. One of the current challenges in tissue engineering is not only the control of the spatial arrangement of cells but also the preservation of cell patterns over time. In this work, we developed a standing surface acoustic wave-based platform and demonstrated its capability for the well-controlled and rapid cell patterning of adipose-derived mesenchymal stem cells in a high-density homogenous collagen hydrogel. This biocompatible hydrogel is easily UV crosslinked and can be retrieved within 3 min. Acoustic waves successfully guided the cells toward pressure nodal lines, creating a contactless alignment of cells in <5 s in culture media and <1 min in the hydrogel. The acoustically patterned cells in the hydrogel did not show a decrease in cell viability (>90%) 48 h after acoustic induction. Moreover, 45.53% and 30.85% increases in metabolic activity were observed in growth and differentiation media, respectively, on Day 7. On Day 14, a 32.03% change in metabolic activity was observed using growth media, and no significant difference was observed using differentiation media. The alkaline phosphatase activity showed an increase of 80.89% and 24.90% on Days 7 and 14, respectively, for the acoustically patterned cells in the hydrogel. These results confirm the preservation of cellular viability and improved cellular functionality using the proposed high-resolution acoustic patterning technique and introduce unique opportunities for the application of stem cell regenerative patches for the emerging field of tissue engineering.
Collapse
Affiliation(s)
| | - Reza Rasouli
- Department of Biological and Biomedical Engineering, McGill University, Montreal, QC Canada
| | - Maryam Tabrizian
- Department of Biological and Biomedical Engineering, McGill University, Montreal, QC Canada
- Faculty of Dental Medicine and Oral Health Sciences, McGill University, Montreal, QC Canada
| |
Collapse
|
15
|
Uhrig M, Ezquer F, Ezquer M. Improving Cell Recovery: Freezing and Thawing Optimization of Induced Pluripotent Stem Cells. Cells 2022; 11:799. [PMID: 35269421 PMCID: PMC8909336 DOI: 10.3390/cells11050799] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2021] [Revised: 02/11/2022] [Accepted: 02/16/2022] [Indexed: 02/04/2023] Open
Abstract
Achieving good cell recovery after cryopreservation is an essential process when working with induced pluripotent stem cells (iPSC). Optimized freezing and thawing methods are required for good cell attachment and survival. In this review, we concentrate on these two aspects, freezing and thawing, but also discuss further factors influencing cell recovery such as cell storage and transport. Whenever a problem occurs during the thawing process of iPSC, it is initially not clear what it is caused by, because there are many factors involved that can contribute to insufficient cell recovery. Thawing problems can usually be solved more quickly when a certain order of steps to be taken is followed. Under optimized conditions, iPSC should be ready for further experiments approximately 4-7 days after thawing and seeding. However, if the freezing and thawing protocols are not optimized, this time can increase up to 2-3 weeks, complicating any further experiments. Here, we suggest optimization steps and troubleshooting options for the freezing, thawing, and seeding of iPSC on feeder-free, Matrigel™-coated, cell culture plates whenever iPSC cannot be recovered in sufficient quality. This review applies to two-dimensional (2D) monolayer cell culture and to iPSC, passaged, frozen, and thawed as cell aggregates (clumps). Furthermore, we discuss usually less well-described factors such as the cell growth phase before freezing and the prevention of osmotic shock during thawing.
Collapse
Affiliation(s)
- Markus Uhrig
- Center for Regenerative Medicine, School of Medicine, Clínica Alemana-Universidad del Desarrollo, Santiago 7610658, Chile;
| | | | - Marcelo Ezquer
- Center for Regenerative Medicine, School of Medicine, Clínica Alemana-Universidad del Desarrollo, Santiago 7610658, Chile;
| |
Collapse
|
16
|
Engineering Biological Tissues from the Bottom-Up: Recent Advances and Future Prospects. MICROMACHINES 2021; 13:mi13010075. [PMID: 35056239 PMCID: PMC8780533 DOI: 10.3390/mi13010075] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/13/2021] [Revised: 12/24/2021] [Accepted: 12/28/2021] [Indexed: 02/06/2023]
Abstract
Tissue engineering provides a powerful solution for current organ shortages, and researchers have cultured blood vessels, heart tissues, and bone tissues in vitro. However, traditional top-down tissue engineering has suffered two challenges: vascularization and reconfigurability of functional units. With the continuous development of micro-nano technology and biomaterial technology, bottom-up tissue engineering as a promising approach for organ and tissue modular reconstruction has gradually developed. In this article, relevant advances in living blocks fabrication and assembly techniques for creation of higher-order bioarchitectures are described. After a critical overview of this technology, a discussion of practical challenges is provided, and future development prospects are proposed.
Collapse
|
17
|
Pang L, Ding J, Liu XX, Kou Z, Guo L, Xu X, Fan SK. Microfluidics-Based Single-Cell Research for Intercellular Interaction. Front Cell Dev Biol 2021; 9:680307. [PMID: 34458252 PMCID: PMC8397490 DOI: 10.3389/fcell.2021.680307] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2021] [Accepted: 07/20/2021] [Indexed: 12/21/2022] Open
Abstract
Intercellular interaction between cell-cell and cell-ECM is critical to numerous biology and medical studies, such as stem cell differentiation, immunotherapy and tissue engineering. Traditional methods employed for delving into intercellular interaction are limited by expensive equipment and sophisticated procedures. Microfluidics technique is considered as one of the powerful measures capable of precisely capturing and manipulating cells and achieving low reagent consumption and high throughput with decidedly integrated functional components. Over the past few years, microfluidics-based systems for intercellular interaction study at a single-cell level have become frequently adopted. This review focuses on microfluidic single-cell studies for intercellular interaction in a 2D or 3D environment with a variety of cell manipulating techniques and applications. The challenges to be overcome are highlighted.
Collapse
Affiliation(s)
- Long Pang
- School of Basic Medical Science, The Shaanxi Key Laboratory of Brain Disorders, Xi’an Medical University, Xi’an, China
- Xi’an Key Laboratory of Pathogenic Microorganism and Tumor Immunity, Xi’an Medical University, Xi’an, China
| | - Jing Ding
- Department of Mechanical and Nuclear Engineering, Kansas State University, Manhattan, KS, United States
| | - Xi-Xian Liu
- Key Laboratory of Thermo-Fluid Science and Engineering of MOE, School of Energy and Power Engineering, Xi’an Jiaotong University, Xi’an, China
| | - Zhixuan Kou
- School of Basic Medical Science, The Shaanxi Key Laboratory of Brain Disorders, Xi’an Medical University, Xi’an, China
- Xi’an Key Laboratory of Pathogenic Microorganism and Tumor Immunity, Xi’an Medical University, Xi’an, China
| | - Lulu Guo
- School of Basic Medical Science, The Shaanxi Key Laboratory of Brain Disorders, Xi’an Medical University, Xi’an, China
- Xi’an Key Laboratory of Pathogenic Microorganism and Tumor Immunity, Xi’an Medical University, Xi’an, China
| | - Xi Xu
- School of Basic Medical Science, The Shaanxi Key Laboratory of Brain Disorders, Xi’an Medical University, Xi’an, China
- Xi’an Key Laboratory of Pathogenic Microorganism and Tumor Immunity, Xi’an Medical University, Xi’an, China
| | - Shih-Kang Fan
- Department of Mechanical and Nuclear Engineering, Kansas State University, Manhattan, KS, United States
| |
Collapse
|
18
|
Guo S, Huang H, Zeng W, Jiang Z, Wang X, Huang W, Wang X. Facile cell patterning induced by combined surface topography and chemistry on polydopamine-defined nanosubstrates. NANOTECHNOLOGY 2021; 32:145303. [PMID: 33361576 DOI: 10.1088/1361-6528/abd6d2] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Cell patterning holds significant implications for cell-based analysis and high-throughput screening. The challenge and key factor for formation of cell patterns is to precisely modulate the interaction between cells and substrate surfaces. Many nanosubstrates have been developed to control cell adhesion and patterning, however, requirements of complicated fabrication procedures, harsh reaction conditions, and delicate manipulation are not routinely feasible. Here, we developed a hierarchical polydimethylsiloxane nanosubstrate (HPNS) coated with mussel-inspired polydopamine (PDA) micropatterns for effective cell patterning, depending on both surface topography and chemistry. HPNSs obtained by facile template-assisted replication brought enhanced topographic interaction between cells and substrates, but they were innately hydrophobic and cell-repellent. The hydrophobic nanosubstrates were converted to be hydrophilic after PDA coatings formed via spontaneous self-polymerization, which greatly facilitated cell adhesion. As such, without resorting to any external forces or physical constraints, cells selectively adhered and spread on spatially defined PDA regions with high efficiency, and well-defined cell microarrays could be formed within 20 min. Therefore, this easy-to-fabricate nanosubstrate with no complex chemical modification will afford a facile yet effective platform for rapid cell patterning.
Collapse
Affiliation(s)
- Shan Guo
- Department of Biological Repositories, Zhongnan Hospital of Wuhan University, Wuhan, 430071, People's Republic of China
| | - Haiyan Huang
- College of Chemistry and Molecular Sciences, Wuhan University, Wuhan, 430072, People's Republic of China
| | - Weiwu Zeng
- College of Chemistry and Molecular Sciences, Wuhan University, Wuhan, 430072, People's Republic of China
| | - Zhuoran Jiang
- College of Chemistry and Molecular Sciences, Wuhan University, Wuhan, 430072, People's Republic of China
| | - Xin Wang
- Department of Biological Repositories, Zhongnan Hospital of Wuhan University, Wuhan, 430071, People's Republic of China
| | - Weihua Huang
- Key Laboratory of Analytical Chemistry for Biology and Medicine (Ministry of Education), College of Chemistry and Molecular Sciences, Wuhan University, Wuhan, 430072, People's Republic of China
| | - Xinghuan Wang
- Department of Biological Repositories, Zhongnan Hospital of Wuhan University, Wuhan, 430071, People's Republic of China
| |
Collapse
|
19
|
Methods for Studying Endometrial Pathology and the Potential of Atomic Force Microscopy in the Research of Endometrium. Cells 2021; 10:cells10020219. [PMID: 33499261 PMCID: PMC7911798 DOI: 10.3390/cells10020219] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2020] [Revised: 01/12/2021] [Accepted: 01/14/2021] [Indexed: 01/21/2023] Open
Abstract
The endometrium lines the uterine cavity, enables implantation of the embryo, and provides an environment for its development and growth. Numerous methods, including microscopic and immunoenzymatic techniques, have been used to study the properties of the cells and tissue of the endometrium to understand changes during, e.g., the menstrual cycle or implantation. Taking into account the existing state of knowledge on the endometrium and the research carried out using other tissues, it can be concluded that the mechanical properties of the tissue and its cells are crucial for their proper functioning. This review intends to emphasize the potential of atomic force microscopy (AFM) in the research of endometrium properties. AFM enables imaging of tissues or single cells, roughness analysis, and determination of the mechanical properties (Young’s modulus) of single cells or tissues, or their adhesion. AFM has been previously shown to be useful to derive force maps. Combining the information regarding cell mechanics with the alternations of cell morphology or gene/protein expression provides deeper insight into the uterine pathology. The determination of the elastic modulus of cells in pathological states, such as cancer, has been proved to be useful in diagnostics.
Collapse
|
20
|
Ort C, Lee W, Kalashnikov N, Moraes C. Disentangling the fibrous microenvironment: designer culture models for improved drug discovery. Expert Opin Drug Discov 2020; 16:159-171. [PMID: 32988224 DOI: 10.1080/17460441.2020.1822815] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
INTRODUCTION Standard high-throughput screening (HTS) assays rarely identify clinically viable 'hits', likely because cells do not experience physiologically realistic culture conditions. The biophysical nature of the extracellular matrix has emerged as a critical driver of cell function and response and recreating these factors could be critically important in streamlining the drug discovery pipeline. AREAS COVERED The authors review recent design strategies to understand and manipulate biophysical features of three-dimensional fibrous tissues. The effects of architectural parameters of the extracellular matrix and their resulting mechanical behaviors are deconstructed; and their individual and combined impact on cell behavior is examined. The authors then illustrate the potential impact of these physical features on designing next-generation platforms to identify drugs effective against breast cancer. EXPERT OPINION Progression toward increased culture complexity must be balanced against the demanding technical requirements for high-throughput screening; and strategies to identify the minimal set of microenvironmental parameters needed to recreate disease-relevant responses must be specifically tailored to the disease stage and organ system being studied. Although challenging, this can be achieved through integrative and multidisciplinary technologies that span microfabrication, cell biology, and tissue engineering.
Collapse
Affiliation(s)
- Carley Ort
- Department of Chemical Engineering, McGill University , Montreal, Canada
| | - Wontae Lee
- Department of Chemical Engineering, McGill University , Montreal, Canada
| | - Nikita Kalashnikov
- Department of Chemical Engineering, McGill University , Montreal, Canada
| | - Christopher Moraes
- Department of Chemical Engineering, McGill University , Montreal, Canada.,Department of Biomedical Engineering, McGill University , Montreal, Canada.,Rosalind & Morris Goodman Cancer Research Center, McGill University , Montreal, Canada
| |
Collapse
|
21
|
Baudoin M, Thomas JL, Sahely RA, Gerbedoen JC, Gong Z, Sivery A, Matar OB, Smagin N, Favreau P, Vlandas A. Spatially selective manipulation of cells with single-beam acoustical tweezers. Nat Commun 2020; 11:4244. [PMID: 32843650 PMCID: PMC7447757 DOI: 10.1038/s41467-020-18000-y] [Citation(s) in RCA: 76] [Impact Index Per Article: 15.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2020] [Accepted: 07/24/2020] [Indexed: 11/09/2022] Open
Abstract
Acoustical tweezers open major prospects in microbiology for cells and microorganisms contactless manipulation, organization and mechanical properties testing since they are biocompatible, label-free and have the potential to exert forces several orders of magnitude larger than their optical counterpart at equivalent power. Yet, these perspectives have so far been hindered by the absence of spatial selectivity of existing acoustical tweezers - i.e., the ability to select and move objects individually - and/or their limited resolution restricting their use to large particle manipulation only and/or finally the limited forces that they could apply. Here, we report precise selective manipulation and positioning of individual human cells in a standard microscopy environment with trapping forces up to ~200 pN without altering their viability. These results are obtained with miniaturized acoustical tweezers combining holography with active materials to synthesize specific wavefields called focused acoustical vortices designed to produce stiff localized traps with reduced acoustic power.
Collapse
Affiliation(s)
- Michael Baudoin
- Univ. Lille, CNRS, Centrale Lille, Yncréa ISEN, Univ. Polytechnique Hauts-de-France, UMR 8520-IEMN, SATT NORD, 59000, Lille, France.
- Institut Universitaire de France, 1 rue Descartes, 75005, Paris, France.
| | - Jean-Louis Thomas
- Sorbonne Université, CNRS, Institut des NanoSciences de Paris, INSP, 75005, Paris, France
| | - Roudy Al Sahely
- Univ. Lille, CNRS, Centrale Lille, Yncréa ISEN, Univ. Polytechnique Hauts-de-France, UMR 8520-IEMN, SATT NORD, 59000, Lille, France
| | - Jean-Claude Gerbedoen
- Univ. Lille, CNRS, Centrale Lille, Yncréa ISEN, Univ. Polytechnique Hauts-de-France, UMR 8520-IEMN, SATT NORD, 59000, Lille, France
| | - Zhixiong Gong
- Univ. Lille, CNRS, Centrale Lille, Yncréa ISEN, Univ. Polytechnique Hauts-de-France, UMR 8520-IEMN, SATT NORD, 59000, Lille, France
| | - Aude Sivery
- Univ. Lille, CNRS, Centrale Lille, Yncréa ISEN, Univ. Polytechnique Hauts-de-France, UMR 8520-IEMN, SATT NORD, 59000, Lille, France
| | - Olivier Bou Matar
- Univ. Lille, CNRS, Centrale Lille, Yncréa ISEN, Univ. Polytechnique Hauts-de-France, UMR 8520-IEMN, SATT NORD, 59000, Lille, France
| | - Nikolay Smagin
- Univ. Lille, CNRS, Centrale Lille, Yncréa ISEN, Univ. Polytechnique Hauts-de-France, UMR 8520-IEMN, SATT NORD, 59000, Lille, France
| | - Peter Favreau
- Univ. Lille, CNRS, Centrale Lille, Yncréa ISEN, Univ. Polytechnique Hauts-de-France, UMR 8520-IEMN, SATT NORD, 59000, Lille, France
| | - Alexis Vlandas
- Univ. Lille, CNRS, Centrale Lille, Yncréa ISEN, Univ. Polytechnique Hauts-de-France, UMR 8520-IEMN, SATT NORD, 59000, Lille, France.
| |
Collapse
|
22
|
Wang Z, Lang B, Qu Y, Li L, Song Z, Wang Z. Single-cell patterning technology for biological applications. BIOMICROFLUIDICS 2019; 13:061502. [PMID: 31737153 PMCID: PMC6847985 DOI: 10.1063/1.5123518] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/10/2019] [Accepted: 10/15/2019] [Indexed: 06/01/2023]
Abstract
Single-cell patterning technology has revealed significant contributions of single cells to conduct basic and applied biological studies in vitro such as the understanding of basic cell functions, neuronal network formation, and drug screening. Unlike traditional population-based cell patterning approaches, single-cell patterning is an effective technology of fully understanding cell heterogeneity by precisely controlling the positions of individual cells. Therefore, much attention is currently being paid to this technology, leading to the development of various micro-nanofabrication methodologies that have been applied to locate cells at the single-cell level. In recent years, various methods have been continuously improved and innovated on the basis of existing ones, overcoming the deficiencies and promoting the progress in biomedicine. In particular, microfluidics with the advantages of high throughput, small sample volume, and the ability to combine with other technologies has a wide range of applications in single-cell analysis. Here, we present an overview of the recent advances in single-cell patterning technology, with a special focus on current physical and physicochemical methods including stencil patterning, trap- and droplet-based microfluidics, and chemical modification on surfaces via photolithography, microcontact printing, and scanning probe lithography. Meanwhile, the methods applied to biological studies and the development trends of single-cell patterning technology in biological applications are also described.
Collapse
Affiliation(s)
| | - Baihe Lang
- International Research Centre for Nano Handling and Manufacturing of China, Changchun University of Science and Technology, Changchun 130022, China
| | | | | | | | - Zuobin Wang
- Author to whom correspondence should be addressed:
| |
Collapse
|
23
|
Tomov ML, Gil CJ, Cetnar A, Theus AS, Lima BJ, Nish JE, Bauser-Heaton HD, Serpooshan V. Engineering Functional Cardiac Tissues for Regenerative Medicine Applications. Curr Cardiol Rep 2019; 21:105. [PMID: 31367922 PMCID: PMC7153535 DOI: 10.1007/s11886-019-1178-9] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
PURPOSE OF REVIEW Tissue engineering has expanded into a highly versatile manufacturing landscape that holds great promise for advancing cardiovascular regenerative medicine. In this review, we provide a summary of the current state-of-the-art bioengineering technologies used to create functional cardiac tissues for a variety of applications in vitro and in vivo. RECENT FINDINGS Studies over the past few years have made a strong case that tissue engineering is one of the major driving forces behind the accelerating fields of patient-specific regenerative medicine, precision medicine, compound screening, and disease modeling. To date, a variety of approaches have been used to bioengineer functional cardiac constructs, including biomaterial-based, cell-based, and hybrid (using cells and biomaterials) approaches. While some major progress has been made using cellular approaches, with multiple ongoing clinical trials, cell-free cardiac tissue engineering approaches have also accomplished multiple breakthroughs, although drawbacks remain. This review summarizes the most promising methods that have been employed to generate cardiovascular tissue constructs for basic science or clinical applications. Further, we outline the strengths and challenges that are inherent to this field as a whole and for each highlighted technology.
Collapse
Affiliation(s)
- Martin L Tomov
- Wallace H. Coulter Department of Biomedical Engineering, Emory University School of Medicine and Georgia Institute of Technology, 1760 Haygood Dr. NE, HSRB Bldg., Suite E480, Atlanta, GA, 30322, USA
| | - Carmen J Gil
- Wallace H. Coulter Department of Biomedical Engineering, Emory University School of Medicine and Georgia Institute of Technology, 1760 Haygood Dr. NE, HSRB Bldg., Suite E480, Atlanta, GA, 30322, USA
| | - Alexander Cetnar
- Wallace H. Coulter Department of Biomedical Engineering, Emory University School of Medicine and Georgia Institute of Technology, 1760 Haygood Dr. NE, HSRB Bldg., Suite E480, Atlanta, GA, 30322, USA
| | - Andrea S Theus
- Wallace H. Coulter Department of Biomedical Engineering, Emory University School of Medicine and Georgia Institute of Technology, 1760 Haygood Dr. NE, HSRB Bldg., Suite E480, Atlanta, GA, 30322, USA
| | - Bryanna J Lima
- Wallace H. Coulter Department of Biomedical Engineering, Emory University School of Medicine and Georgia Institute of Technology, 1760 Haygood Dr. NE, HSRB Bldg., Suite E480, Atlanta, GA, 30322, USA
| | - Joy E Nish
- Wallace H. Coulter Department of Biomedical Engineering, Emory University School of Medicine and Georgia Institute of Technology, 1760 Haygood Dr. NE, HSRB Bldg., Suite E480, Atlanta, GA, 30322, USA
| | - Holly D Bauser-Heaton
- Division of Pediatric Cardiology, Children's Healthcare of Atlanta Sibley Heart Center, Atlanta, GA, 30322, USA
| | - Vahid Serpooshan
- Wallace H. Coulter Department of Biomedical Engineering, Emory University School of Medicine and Georgia Institute of Technology, 1760 Haygood Dr. NE, HSRB Bldg., Suite E480, Atlanta, GA, 30322, USA.
- Department of Pediatrics, Emory University School of Medicine, Atlanta, GA, 30309, USA.
- Children's Healthcare of Atlanta, Atlanta, GA, 30322, USA.
| |
Collapse
|
24
|
Blázquez-Castro A. Optical Tweezers: Phototoxicity and Thermal Stress in Cells and Biomolecules. MICROMACHINES 2019; 10:E507. [PMID: 31370251 PMCID: PMC6722566 DOI: 10.3390/mi10080507] [Citation(s) in RCA: 61] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/09/2019] [Revised: 07/29/2019] [Accepted: 07/30/2019] [Indexed: 12/12/2022]
Abstract
For several decades optical tweezers have proven to be an invaluable tool in the study and analysis of myriad biological responses and applications. However, as with every tool, they can have undesirable or damaging effects upon the very sample they are helping to study. In this review the main negative effects of optical tweezers upon biostructures and living systems will be presented. There are three main areas on which the review will focus: linear optical excitation within the tweezers, non-linear photonic effects, and thermal load upon the sampled volume. Additional information is provided on negative mechanical effects of optical traps on biological structures. Strategies to avoid or, at least, minimize these negative effects will be introduced. Finally, all these effects, undesirable for the most, can have positive applications under the right conditions. Some hints in this direction will also be discussed.
Collapse
Affiliation(s)
- Alfonso Blázquez-Castro
- Department of Physics of Materials, Faculty of Sciences, Autonomous University of Madrid, 28049 Madrid, Spain.
| |
Collapse
|