1
|
Brunner E, Kunze L, Drexler W, Pollreisz A, Pircher M. Image Quality in Adaptive Optics Optical Coherence Tomography of Diabetic Patients. Diagnostics (Basel) 2025; 15:429. [PMID: 40002580 PMCID: PMC11854792 DOI: 10.3390/diagnostics15040429] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2024] [Revised: 01/17/2025] [Accepted: 01/30/2025] [Indexed: 02/27/2025] Open
Abstract
Background/Objectives: An assessment of the retinal image quality in adaptive optics optical coherence tomography (AO-OCT) is challenging. Many factors influence AO-OCT imaging performance, leading to greatly varying imaging results, even in the same subject. The aim of this study is to introduce quantitative means for an assessment of AO-OCT image quality and to compare these with parameters retrieved from the pyramid wavefront sensor of the system. Methods: We used a spectral domain AO-OCT instrument to repetitively image six patients suffering from diabetic retinopathy over a time span of one year. The data evaluation consists of two volume acquisitions with a focus on the photoreceptor layer, each at five different retinal locations per visit; 7-8 visits per patient are included in this data analysis, resulting in a total of ~420 volumes. Results: A large variability in AO-OCT image quality is observed between subjects and between visits of the same subject. On average, the image quality does not depend on the measurement location. The data show a moderate correlation between the axial position of the volume recording and image quality. The correlation between pupil size and AO-OCT image quality is not linear. A weak correlation is found between the signal-to-noise ratio of the wavefront sensor image and the image quality. Conclusions: The introduced AO-OCT image quality metric gives useful insights into the performance of such a system. A longitudinal assessment of this metric, together with wavefront sensor data, is essential to identify factors influencing image quality and, in the next step, to optimize the performance of AO-OCT systems.
Collapse
Affiliation(s)
- Elisabeth Brunner
- Center for Medical Physics and Biomedical Engineering, Medical University of Vienna, Waehringer Guertel 18-20, A-1090 Wien, Austria; (E.B.); (W.D.)
| | - Laura Kunze
- Department of Ophthalmology and Optometry, Medical University of Vienna, Waehringer Guertel 18-20, A-1090 Wien, Austria; (L.K.); (A.P.)
| | - Wolfgang Drexler
- Center for Medical Physics and Biomedical Engineering, Medical University of Vienna, Waehringer Guertel 18-20, A-1090 Wien, Austria; (E.B.); (W.D.)
| | - Andreas Pollreisz
- Department of Ophthalmology and Optometry, Medical University of Vienna, Waehringer Guertel 18-20, A-1090 Wien, Austria; (L.K.); (A.P.)
| | - Michael Pircher
- Center for Medical Physics and Biomedical Engineering, Medical University of Vienna, Waehringer Guertel 18-20, A-1090 Wien, Austria; (E.B.); (W.D.)
| |
Collapse
|
2
|
Wu M, Fletcher EL, Chinnery HR, Downie LE, Mueller SN. Redefining our vision: an updated guide to the ocular immune system. Nat Rev Immunol 2024; 24:896-911. [PMID: 39215057 DOI: 10.1038/s41577-024-01064-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/01/2024] [Indexed: 09/04/2024]
Abstract
Balanced immune responses in the eyes are crucial to preserve vision. The ocular immune system has long been considered distinct, owing to the so-called 'immune privilege' of its component tissues. More recently, intravital imaging and transcriptomic techniques have reshaped scientific understanding of the ocular immune landscape, such as revealing the specialization of immune cell populations in the various tissues of the eye. As knowledge of the phenotypes of corneal and retinal immune cells has evolved, links to both the systemic immune system, and the central and peripheral nervous systems, have been identified. Using intravital imaging, T cells have recently been found to reside in, and actively patrol, the healthy human cornea. Disease-associated retinal microglia with links to retinal degeneration have also been identified. This Review provides an updated guide to the ocular immune system, highlighting current knowledge of the immune cells that are present in steady-state and specific diseased ocular tissues, as well as evidence for their relationship to systemic disease. In addition, we discuss emerging intravital imaging techniques that can be used to visualize immune cell morphology and dynamics in living human eyes and how these could be applied to advance understanding of the human immune system.
Collapse
Affiliation(s)
- Mengliang Wu
- Department of Optometry and Vision Sciences, The University of Melbourne, Carlton, Victoria, Australia
- Department of Microbiology and Immunology, The University of Melbourne, at The Peter Doherty Institute for Infection and Immunity, Melbourne, Victoria, Australia
| | - Erica L Fletcher
- Department of Anatomy and Physiology, The University of Melbourne, Carlton, Victoria, Australia
| | - Holly R Chinnery
- Department of Optometry and Vision Sciences, The University of Melbourne, Carlton, Victoria, Australia.
- Lions Eye Institute, Nedlands, Western Australia, Australia.
- Optometry, The University of Western Australia, Crawley, Western Australia, Australia.
| | - Laura E Downie
- Department of Optometry and Vision Sciences, The University of Melbourne, Carlton, Victoria, Australia.
| | - Scott N Mueller
- Department of Microbiology and Immunology, The University of Melbourne, at The Peter Doherty Institute for Infection and Immunity, Melbourne, Victoria, Australia.
| |
Collapse
|
3
|
Soltanian-Zadeh S, Kovalick K, Aghayee S, Miller DT, Liu Z, Hammer DX, Farsiu S. Identifying retinal pigment epithelium cells in adaptive optics-optical coherence tomography images with partial annotations and superhuman accuracy. BIOMEDICAL OPTICS EXPRESS 2024; 15:6922-6939. [PMID: 39679394 PMCID: PMC11640571 DOI: 10.1364/boe.538473] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/23/2024] [Revised: 10/25/2024] [Accepted: 10/28/2024] [Indexed: 12/17/2024]
Abstract
Retinal pigment epithelium (RPE) cells are essential for normal retinal function. Morphological defects in these cells are associated with a number of retinal neurodegenerative diseases. Owing to the cellular resolution and depth-sectioning capabilities, individual RPE cells can be visualized in vivo with adaptive optics-optical coherence tomography (AO-OCT). Rapid, cost-efficient, and objective quantification of the RPE mosaic's structural properties necessitates the development of an automated cell segmentation algorithm. This paper presents a deep learning-based method with partial annotation training for detecting RPE cells in AO-OCT images with accuracy better than human performance. We have made the code, imaging datasets, and the manual expert labels available online.
Collapse
Affiliation(s)
- Somayyeh Soltanian-Zadeh
- Department of Biomedical Engineering, Duke University, Durham, NC 27708, USA
- Center for Devices and Radiological Health (CDRH), U.S. Food and Drug Administration, Silver Spring, MD 20993, USA
| | - Katherine Kovalick
- Center for Devices and Radiological Health (CDRH), U.S. Food and Drug Administration, Silver Spring, MD 20993, USA
| | - Samira Aghayee
- Center for Devices and Radiological Health (CDRH), U.S. Food and Drug Administration, Silver Spring, MD 20993, USA
| | - Donald T. Miller
- School of Optometry, Indiana University, Bloomington, IN 47405, USA
| | - Zhuolin Liu
- Center for Devices and Radiological Health (CDRH), U.S. Food and Drug Administration, Silver Spring, MD 20993, USA
| | - Daniel X. Hammer
- Center for Devices and Radiological Health (CDRH), U.S. Food and Drug Administration, Silver Spring, MD 20993, USA
| | - Sina Farsiu
- Department of Biomedical Engineering, Duke University, Durham, NC 27708, USA
- Department of Ophthalmology, Duke University Medical Center, Durham, NC 27710, USA
| |
Collapse
|
4
|
Liu Y, Crowell JA, Kurokawa K, Bernucci MT, Ji Q, Lassoued A, Jung HW, Keller MJ, Marte ME, Miller DT. Ultrafast adaptive optics for imaging the living human eye. Nat Commun 2024; 15:10409. [PMID: 39613735 PMCID: PMC11607088 DOI: 10.1038/s41467-024-54687-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2023] [Accepted: 11/19/2024] [Indexed: 12/01/2024] Open
Abstract
Adaptive optics (AO) is a powerful method for correcting dynamic aberrations in numerous applications. When applied to the eye, it enables cellular-resolution retinal imaging and enhanced visual performance and stimulation. Most ophthalmic AO systems correct dynamic aberrations up to 1-2 Hz, the commonly-known cutoff frequency for correcting ocular aberrations. However, this frequency may be grossly underestimated for more clinically relevant scenarios where the medical impact of AO will be greatest. Unfortunately, little is known about the aberration dynamics in these scenarios. A major bottleneck has been the lack of sufficiently fast AO systems to measure and correct them. We develop an ultrafast ophthalmic AO system that increases AO bandwidth by ~30× and improves aberration power rejection magnitude by 500×. We demonstrate that this much faster ophthalmic AO is possible without sacrificing other system performances. We find that the discontinuous-exposure AO-control scheme runs 32% slower yet achieves 53% larger AO bandwidth than the commonly used continuous-exposure scheme. Using the ultrafast system, we characterize ocular aberration dynamics in six clinically-relevant scenarios and find their power spectra to be 10-100× larger than normal. We show that ultrafast AO substantially improves aberration correction and retinal imaging performance in these scenarios compared with conventional AO.
Collapse
Affiliation(s)
- Yan Liu
- School of Optometry, Indiana University, Bloomington, IN, USA.
| | - James A Crowell
- School of Optometry, Indiana University, Bloomington, IN, USA
| | - Kazuhiro Kurokawa
- School of Optometry, Indiana University, Bloomington, IN, USA
- Discoveries in Sight Research Laboratories, Devers Eye Institute, Legacy Research Institute, Legacy Health, Portland, OR, USA
| | | | - Qiuzhi Ji
- School of Optometry, Indiana University, Bloomington, IN, USA
| | - Ayoub Lassoued
- School of Optometry, Indiana University, Bloomington, IN, USA
- Centre Hospitalier National d'Ophtalmologie des Quinze-Vingts Centre d'investigation clinique, Paris, Île-de-France, France; Institut de la vision, Paris, Île-de-France, Paris, France
| | - Hae Won Jung
- School of Optometry, Indiana University, Bloomington, IN, USA
- University of Houston, Houston, TX, USA
| | | | - Mary E Marte
- School of Optometry, Indiana University, Bloomington, IN, USA
- Richard L. Roudebush VAMC, Indianapolis, IN, USA
| | - Donald T Miller
- School of Optometry, Indiana University, Bloomington, IN, USA.
| |
Collapse
|
5
|
Pichi F, Neri P, Aljeneibi S, Hay S, Chaudhry H, Saturno MC, Carreno E. In Vivo Visualization of Macrophage-Like Cells in Patients with Uveitis by Use of En Face Swept Source Optical Coherence Tomography. Ocul Immunol Inflamm 2024; 32:1532-1538. [PMID: 37722841 DOI: 10.1080/09273948.2023.2254369] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2023] [Revised: 08/28/2023] [Accepted: 08/28/2023] [Indexed: 09/20/2023]
Abstract
AIMS To detect macrophage-like cells (MLCs) in uveitis patients and describe their characteristics compared to healthy subjects by using en face SS-OCTA. METHODS Fifteen consecutive patients with "active" uveitis and 11 healthy participants underwent 6 macular scans of 6×6mm using SS-OCTA. The 3μm en face OCT slabs on inner limiting membrane were used to visualize the MLCs. RESULTS In healthy subjects there was an average of 478.2±149.7 MLCs with a density of 13.28±4.16 cells/mm2. MLCs were larger in patients with "active" uveitis than in controls (891.18±69.46 µm2 vs.885±77.53 µm2). Patients with "active" anterior uveitis had a significantly reduced count and density of MLCs (172±14.68 and 4.77±0.4 cell/mm2) compared to controls, while patients with posterior uveitis had a statistically increased count (546.1±132.4) and area (909.23+/-54.97 µm2) of MLCs compared to controls. CONCLUSIONS MLCs detected with en face SS-OCTA are increased in number and size in active posterior uveitis eyes compared to controls.
Collapse
Affiliation(s)
- Francesco Pichi
- Eye Institute, Cleveland Clinic Abu Dhabi, Abu Dhabi, United Arab Emirates
- Cleveland Clinic Lerner College of Medicine, Case Western Reserve University, Cleveland, Ohio, USA
| | - Piergiorgio Neri
- Eye Institute, Cleveland Clinic Abu Dhabi, Abu Dhabi, United Arab Emirates
- Cleveland Clinic Lerner College of Medicine, Case Western Reserve University, Cleveland, Ohio, USA
| | - Shaikha Aljeneibi
- Eye Institute, Cleveland Clinic Abu Dhabi, Abu Dhabi, United Arab Emirates
| | - Steven Hay
- Eye Institute, Cleveland Clinic Abu Dhabi, Abu Dhabi, United Arab Emirates
| | - Hannah Chaudhry
- Eye Institute, Cleveland Clinic Abu Dhabi, Abu Dhabi, United Arab Emirates
| | | | - Ester Carreno
- Department of Ophthalmology, University Hospital Fundación Jiménez Díaz, Madrid, Spain
- Department of Ophthalmology, University Hospital Rey Juan Carlos, Madrid, Spain
- Instituto de Investigación Sanitaria Fundación Jiménez Díaz, Madrid, Spain
| |
Collapse
|
6
|
Węgrzyn P, Kulesza W, Wielgo M, Tomczewski S, Galińska A, Bałamut B, Kordecka K, Cetinkaya O, Foik A, Zawadzki RJ, Borycki D, Wojtkowski M, Curatolo A. In vivo volumetric analysis of retinal vascular hemodynamics in mice with spatio-temporal optical coherence tomography. NEUROPHOTONICS 2024; 11:0450031-4500322. [PMID: 39380716 PMCID: PMC11460669 DOI: 10.1117/1.nph.11.4.045003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/19/2024] [Revised: 08/23/2024] [Accepted: 09/09/2024] [Indexed: 10/10/2024]
Abstract
Significance Microcirculation and neurovascular coupling are important parameters to study in neurological and neuro-ophthalmic conditions. As the retina shares many similarities with the cerebral cortex and is optically accessible, a special focus is directed to assessing the chorioretinal structure, microvasculature, and hemodynamics of mice, a vital animal model for vision and neuroscience research. Aim We aim to introduce an optical imaging tool enabling in vivo volumetric mouse retinal monitoring of vascular hemodynamics with high temporal resolution. Approach We translated the spatio-temporal optical coherence tomography (STOC-T) technique into the field of small animal imaging by designing a new optical system that could compensate for the mouse eye refractive error. We also developed post-processing algorithms, notably for the assessment of (i) localized hemodynamics from the analysis of pulse wave-induced Doppler artifact modulation and (ii) retinal tissue displacement from phase-sensitive measurements. Results We acquired high-quality, in vivo volumetric mouse retina images at a rate of 113 Hz over a lateral field of view of ∼ 500 μ m . We presented high-resolution en face images of the retinal and choroidal structure and microvasculature from various layers, after digital aberration correction. We were able to measure the pulse wave velocity in capillaries of the outer plexiform layer with a mean speed of 0.35 mm/s and identified venous and arterial pulsation frequency and phase delay. We quantified the modulation amplitudes of tissue displacement near major vessels (with peaks of 150 nm), potentially carrying information about the biomechanical properties of the retinal layers involved. Last, we identified the delays between retinal displacements due to the passing of venous and arterial pulse waves. Conclusions The developed STOC-T system provides insights into the hemodynamics of the mouse retina and choroid that could be beneficial in the study of neurovascular coupling and vasculature and flow speed anomalies in neurological and neuro-ophthalmic conditions.
Collapse
Affiliation(s)
- Piotr Węgrzyn
- International Centre for Translational Eye Research, Warsaw, Poland
- Polish Academy of Sciences, Institute of Physical Chemistry, Warsaw, Poland
- University of Warsaw, Faculty of Physics, Warsaw, Poland
| | - Wiktor Kulesza
- International Centre for Translational Eye Research, Warsaw, Poland
- Polish Academy of Sciences, Institute of Physical Chemistry, Warsaw, Poland
| | - Maciej Wielgo
- International Centre for Translational Eye Research, Warsaw, Poland
- Polish Academy of Sciences, Institute of Physical Chemistry, Warsaw, Poland
| | - Sławomir Tomczewski
- International Centre for Translational Eye Research, Warsaw, Poland
- Polish Academy of Sciences, Institute of Physical Chemistry, Warsaw, Poland
| | - Anna Galińska
- International Centre for Translational Eye Research, Warsaw, Poland
- Polish Academy of Sciences, Institute of Physical Chemistry, Warsaw, Poland
| | - Bartłomiej Bałamut
- International Centre for Translational Eye Research, Warsaw, Poland
- Polish Academy of Sciences, Institute of Physical Chemistry, Warsaw, Poland
| | - Katarzyna Kordecka
- International Centre for Translational Eye Research, Warsaw, Poland
- Polish Academy of Sciences, Institute of Physical Chemistry, Warsaw, Poland
| | - Onur Cetinkaya
- International Centre for Translational Eye Research, Warsaw, Poland
- Polish Academy of Sciences, Institute of Physical Chemistry, Warsaw, Poland
| | - Andrzej Foik
- International Centre for Translational Eye Research, Warsaw, Poland
- Polish Academy of Sciences, Institute of Physical Chemistry, Warsaw, Poland
| | - Robert J. Zawadzki
- University of California Davis, Department of Ophthalmology and Vision Science, Sacramento, California, United States
| | - Dawid Borycki
- International Centre for Translational Eye Research, Warsaw, Poland
- Polish Academy of Sciences, Institute of Physical Chemistry, Warsaw, Poland
| | - Maciej Wojtkowski
- International Centre for Translational Eye Research, Warsaw, Poland
- Polish Academy of Sciences, Institute of Physical Chemistry, Warsaw, Poland
- Nicolaus Copernicus University, Faculty of Physics, Astronomy and Informatics, Toruń, Poland
| | - Andrea Curatolo
- International Centre for Translational Eye Research, Warsaw, Poland
- Polish Academy of Sciences, Institute of Physical Chemistry, Warsaw, Poland
- Politecnico di Milano, Department of Physics, Milan, Italy
| |
Collapse
|
7
|
Marte ME, Kurokawa K, Jung H, Liu Y, Bernucci MT, King BJ, Miller DT. Characterizing Presumed Displaced Retinal Ganglion Cells in the Living Human Retina of Healthy and Glaucomatous Eyes. Invest Ophthalmol Vis Sci 2024; 65:20. [PMID: 39259176 PMCID: PMC11401130 DOI: 10.1167/iovs.65.11.20] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/12/2024] Open
Abstract
Purpose The purpose of this study was to investigate the large somas presumed to be displaced retinal ganglion cells (dRGCs) located in the inner nuclear layer (INL) of the living human retina. Whereas dRGCs have previously been studied in mammals and human donor tissue, they have never been investigated in the living human retina. Methods Five young, healthy subjects and three subjects with varying types of glaucoma were imaged at multiple locations in the macula using adaptive optics optical coherence tomography. In the acquired volumes, bright large somas at the INL border with the inner plexiform layer were identified, and the morphometric biomarkers of soma density, en face diameter, and spatial distribution were measured at up to 13 degrees retinal eccentricity. Susceptibility to glaucoma was assessed. Results In the young, healthy individuals, mean density of the bright, large somas was greatest foveally (550 and 543 cells/mm2 at 2 degrees temporal and nasal, respectively) and decreased with increasing retinal eccentricity (38 cells/mm2 at 13 degrees temporal, the farthest we measured). Soma size distribution showed the opposite trend with diameters and size variation increasing with retinal eccentricity, from 12.7 ± 1.8 µm at 2 degrees to 15.7 ± 3.5 µm at 13 degrees temporal, and showed evidence of a bimodal distribution in more peripheral locations. Within and adjacent to the arcuate defects of the subjects with glaucoma, density of the bright large somas was significantly lower than found in the young, healthy individuals. Conclusions Our results suggest that the bright, large somas at the INL border are likely comprised of dRGCs but amacrine cells may contribute too. These somas appear highly susceptible to glaucomatous damage.
Collapse
Affiliation(s)
- Mary E Marte
- Indiana University School of Optometry, Bloomington, Indiana, United States
| | - Kazuhiro Kurokawa
- Indiana University School of Optometry, Bloomington, Indiana, United States
| | - HaeWon Jung
- Indiana University School of Optometry, Bloomington, Indiana, United States
| | - Yan Liu
- Indiana University School of Optometry, Bloomington, Indiana, United States
| | - Marcel T Bernucci
- Indiana University School of Optometry, Bloomington, Indiana, United States
| | - Brett J King
- Indiana University School of Optometry, Bloomington, Indiana, United States
| | - Donald T Miller
- Indiana University School of Optometry, Bloomington, Indiana, United States
| |
Collapse
|
8
|
Raghavendra AJ, Damani A, Oechsli S, Magder LS, Liu Z, Hammer DX, Saeedi OJ. Measurement of retinal blood flow precision in the human eye with multimodal adaptive optics imaging. BIOMEDICAL OPTICS EXPRESS 2024; 15:4625-4641. [PMID: 39346998 PMCID: PMC11427214 DOI: 10.1364/boe.524944] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/15/2024] [Revised: 06/08/2024] [Accepted: 06/30/2024] [Indexed: 10/01/2024]
Abstract
Impaired retinal blood flow (RBF) autoregulation plays a key role in the development and progression of several ocular diseases, including glaucoma and diabetic retinopathy. Clinically, reproducible RBF quantitation could significantly improve early diagnosis and disease management. Several non-invasive techniques have been developed but are limited for retinal microvasculature flow measurements due to their low signal-to-noise ratio and poor lateral resolution. In this study, we demonstrate reproducible vessel caliber and retinal blood flow velocity measurements in healthy human volunteers using a high-resolution (spatial and temporal) multimodal adaptive optics system with scanning laser ophthalmoscopy and optical coherence tomography.
Collapse
Affiliation(s)
- Achyut J Raghavendra
- Department of Ophthalmology and Visual Sciences, University of Maryland School of Medicine, Baltimore, Maryland 21201, USA
- Center for Devices and Radiological Health (CDRH), U. S. Food and Drug Administration (FDA), Silver Spring, Maryland 20993, USA
| | - Aashka Damani
- Department of Ophthalmology and Visual Sciences, University of Maryland School of Medicine, Baltimore, Maryland 21201, USA
| | - Saige Oechsli
- Department of Ophthalmology and Visual Sciences, University of Maryland School of Medicine, Baltimore, Maryland 21201, USA
| | - Laurence S Magder
- Department of Epidemiology and Public Health, University of Maryland School of Medicine, Baltimore, Maryland 21201, USA
| | - Zhuolin Liu
- Center for Devices and Radiological Health (CDRH), U. S. Food and Drug Administration (FDA), Silver Spring, Maryland 20993, USA
| | - Daniel X Hammer
- Center for Devices and Radiological Health (CDRH), U. S. Food and Drug Administration (FDA), Silver Spring, Maryland 20993, USA
| | - Osamah J Saeedi
- Department of Ophthalmology and Visual Sciences, University of Maryland School of Medicine, Baltimore, Maryland 21201, USA
| |
Collapse
|
9
|
Zhou M, Zhang Y, Karimi Monsefi A, Choi SS, Doble N, Parthasarathy S, Ramnath R. Reducing manual labeling requirements and improved retinal ganglion cell identification in 3D AO-OCT volumes using semi-supervised learning. BIOMEDICAL OPTICS EXPRESS 2024; 15:4540-4556. [PMID: 39346977 PMCID: PMC11427208 DOI: 10.1364/boe.526053] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/09/2024] [Revised: 06/24/2024] [Accepted: 06/25/2024] [Indexed: 10/01/2024]
Abstract
Adaptive optics-optical coherence tomography (AO-OCT) allows for the three-dimensional visualization of retinal ganglion cells (RGCs) in the living human eye. Quantitative analyses of RGCs have significant potential for improving the diagnosis and monitoring of diseases such as glaucoma. Recent advances in machine learning (ML) have made possible the automatic identification and analysis of RGCs within the complex three-dimensional retinal volumes obtained with such imaging. However, the current state-of-the-art ML approach relies on fully supervised training, which demands large amounts of training labels. Each volume requires many hours of expert manual annotation. Here, two semi-supervised training schemes are introduced, (i) cross-consistency training and (ii) cross pseudo supervision that utilize unlabeled AO-OCT volumes together with a minimal set of labels, vastly reducing the labeling demands. Moreover, these methods outperformed their fully supervised counterpart and achieved accuracy comparable to that of human experts.
Collapse
Affiliation(s)
- Mengxi Zhou
- The Ohio State University, Department of Computer Science and Engineering, 2015 Neil Ave., Columbus, OH 43210, USA
| | - Yue Zhang
- The Ohio State University, Department of Computer Science and Engineering, 2015 Neil Ave., Columbus, OH 43210, USA
| | - Amin Karimi Monsefi
- The Ohio State University, Department of Computer Science and Engineering, 2015 Neil Ave., Columbus, OH 43210, USA
| | - Stacey S. Choi
- The Ohio State University, College of Optometry, 338 W 10th Ave., Columbus, OH 43210, USA
- The Ohio State University, Department of Ophthalmology and Visual Science, Havener Eye Institute, 915 Olentangy River Road, Columbus, OH 43212, USA
| | - Nathan Doble
- The Ohio State University, College of Optometry, 338 W 10th Ave., Columbus, OH 43210, USA
- The Ohio State University, Department of Ophthalmology and Visual Science, Havener Eye Institute, 915 Olentangy River Road, Columbus, OH 43212, USA
| | - Srinivasan Parthasarathy
- The Ohio State University, Department of Computer Science and Engineering, 2015 Neil Ave., Columbus, OH 43210, USA
| | - Rajiv Ramnath
- The Ohio State University, Department of Computer Science and Engineering, 2015 Neil Ave., Columbus, OH 43210, USA
| |
Collapse
|
10
|
Zhang F, Kovalick K, Raghavendra A, Soltanian-Zadeh S, Farsiu S, Hammer DX, Liu Z. In vivo imaging of human retinal ganglion cells using optical coherence tomography without adaptive optics. BIOMEDICAL OPTICS EXPRESS 2024; 15:4675-4688. [PMID: 39346995 PMCID: PMC11427184 DOI: 10.1364/boe.533249] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/18/2024] [Revised: 06/21/2024] [Accepted: 06/25/2024] [Indexed: 10/01/2024]
Abstract
Retinal ganglion cells play an important role in human vision, and their degeneration results in glaucoma and other neurodegenerative diseases. Imaging these cells in the living human retina can greatly improve the diagnosis and treatment of glaucoma. However, owing to their translucent soma and tight packing arrangement within the ganglion cell layer (GCL), successful imaging has only been achieved with sophisticated research-grade adaptive optics (AO) systems. For the first time we demonstrate that GCL somas can be resolved and cell morphology can be quantified using non-AO optical coherence tomography (OCT) devices with optimal parameter configuration and post-processing.
Collapse
Affiliation(s)
- Furu Zhang
- Center for Devices and Radiological Health (CDRH), U.S. Food and Drug Administration, Silver Spring, MD 20993, USA
| | - Katherine Kovalick
- Center for Devices and Radiological Health (CDRH), U.S. Food and Drug Administration, Silver Spring, MD 20993, USA
| | - Achyut Raghavendra
- Center for Devices and Radiological Health (CDRH), U.S. Food and Drug Administration, Silver Spring, MD 20993, USA
| | | | - Sina Farsiu
- Department of Biomedical Engineering, Duke University, Durham, NC 27708, USA
| | - Daniel X. Hammer
- Center for Devices and Radiological Health (CDRH), U.S. Food and Drug Administration, Silver Spring, MD 20993, USA
| | - Zhuolin Liu
- Center for Devices and Radiological Health (CDRH), U.S. Food and Drug Administration, Silver Spring, MD 20993, USA
| |
Collapse
|
11
|
Raghavendra AJ, Elhusseiny AM, Agrawal A, Liu Z, Hammer DX, Saeedi OJ. Compact Linear Flow Phantom Model for Retinal Blood-Flow Evaluation. Diagnostics (Basel) 2024; 14:1615. [PMID: 39125491 PMCID: PMC11311845 DOI: 10.3390/diagnostics14151615] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2024] [Revised: 07/12/2024] [Accepted: 07/17/2024] [Indexed: 08/12/2024] Open
Abstract
Impaired retinal blood flow is associated with ocular diseases such as glaucoma, macular degeneration, and diabetic retinopathy. Among several ocular imaging techniques developed to measure retinal blood flow both invasively and non-invasively, adaptive optics (AO)-enabled scanning laser ophthalmoscopy (AO-SLO) resolves individual red blood cells and provides a high resolution with which to measure flow across retinal microvasculature. However, cross-validation of flow measures remains a challenge owing to instrument and patient-specific variability in each imaging technique. Hence, there is a critical need for a well-controlled clinical flow phantom for standardization and to establish blood-flow measures as clinical biomarkers for early diagnosis. Here, we present the design and validation of a simple, compact, portable, linear flow phantom based on a direct current motor and a conveyor-belt system that provides linear velocity tuning within the retinal microvasculature range (0.5-7 mm/s). The model was evaluated using a sensitive AO-SLO line-scan technique, which showed a <6% standard deviation from the true velocity. Further, a clinical SLO instrument showed a linear correlation with the phantom's true velocity (r2 > 0.997). This model has great potential to calibrate, evaluate, and improve the accuracy of existing clinical imaging systems for retinal blood flow and aid in the diagnosis of ocular diseases with abnormal blood flow.
Collapse
Affiliation(s)
- Achyut J. Raghavendra
- Department of Ophthalmology and Visual Sciences, University of Maryland School of Medicine, Baltimore, MD 21201, USA;
- Center for Devices and Radiological Health (CDRH), U.S. Food and Drug Administration (FDA), Silver Spring, MD 20993, USA; (A.A.)
| | - Abdelrahman M. Elhusseiny
- Department of Ophthalmology, Harvey and Bernice Jones Eye Institute, University of Arkansas for Medical Sciences, Little Rock, AR 72205, USA;
| | - Anant Agrawal
- Center for Devices and Radiological Health (CDRH), U.S. Food and Drug Administration (FDA), Silver Spring, MD 20993, USA; (A.A.)
| | - Zhuolin Liu
- Center for Devices and Radiological Health (CDRH), U.S. Food and Drug Administration (FDA), Silver Spring, MD 20993, USA; (A.A.)
| | - Daniel X. Hammer
- Center for Devices and Radiological Health (CDRH), U.S. Food and Drug Administration (FDA), Silver Spring, MD 20993, USA; (A.A.)
| | - Osamah J. Saeedi
- Department of Ophthalmology and Visual Sciences, University of Maryland School of Medicine, Baltimore, MD 21201, USA;
| |
Collapse
|
12
|
Graven-Nielsen M, Dubra A, Dodd RL, Hamann S, Moss HE. Application of novel non-invasive ophthalmic imaging to visualize peripapillary wrinkles, retinal folds and peripapillary hyperreflective ovoid mass-like structures associated with elevated intracranial pressure. Front Neurol 2024; 15:1383210. [PMID: 38957348 PMCID: PMC11217179 DOI: 10.3389/fneur.2024.1383210] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2024] [Accepted: 05/13/2024] [Indexed: 07/04/2024] Open
Abstract
Background Elevated intracranial pressure (ICP) is a serious and potentially life-threatening condition, for which clinically useful non-invasive measures have been elusive, in some cases due to their inadequate sensitivity and specificity. Our aim was to evaluate novel non-invasive ophthalmic imaging of selected pathological features seen in elevated ICP, namely peripapillary hyperreflective ovoid mass-like structures (PHOMS), peripapillary wrinkles (PPW) and retinal folds (RF) as potential biomarkers of elevated ICP. Methods This single-center pilot study included subjects with untreated or incompletely treated high ICP. The retinas of these subjects were evaluated with averaged en-face optical coherence tomography (OCT), OCT retinal cross-sections (OCT B-scans), adaptive optics scanning light ophthalmoscopy (AOSLO), and fundus photos. Results Seven subjects were included in the study. 6 subjects with high ICP (5 idiopathic intracranial hypertension, 1 medication induced, 30.8 ± 8.6 years, 75% female, 5 with papilledema) and 1 control (20-25 years) were included. PHOMS, PPW and RF were present in all subjects with papilledema, but neither in the high ICP subject without papilledema nor in the control subject. Averaged en-face OCT scans and AOSLO were more sensitive for PPW and RF than OCT B-scans and commercial fundus photos. Conclusion PPW, RF and PHOMS volume have potential as non-invasive biomarkers of ICP. Novel imaging modalities may improve sensitivity. However, lack of automated image acquisition and processing limits current widespread adoption in clinical settings. Further research is needed to validate these structures as biomarkers for elevated ICP and improve clinical utility.
Collapse
Affiliation(s)
- Michaela Graven-Nielsen
- Department of Ophthalmology, Stanford University, Palo Alto, CA, United States
- Department of Ophthalmology, Rigshospitalet, Glostrup, Denmark
| | - Alfredo Dubra
- Department of Ophthalmology, Stanford University, Palo Alto, CA, United States
| | - Robert L. Dodd
- Department of Neurosurgery, Stanford University, Palo Alto, CA, United States
| | - Steffen Hamann
- Department of Ophthalmology, Rigshospitalet, Glostrup, Denmark
- Department of Clinical Medicine, University of Copenhagen, Copenhagen, Denmark
| | - Heather E. Moss
- Department of Ophthalmology, Stanford University, Palo Alto, CA, United States
- Department of Neurology and Neurological Sciences, Stanford University, Palo Alto, CA, United States
| |
Collapse
|
13
|
Wang CY, Sadrieh FK, Shen YT, Chen SE, Kim S, Chen V, Raghavendra A, Wang D, Saeedi O, Tao Y. MEMO: dataset and methods for robust multimodal retinal image registration with large or small vessel density differences. BIOMEDICAL OPTICS EXPRESS 2024; 15:3457-3479. [PMID: 38855695 PMCID: PMC11161385 DOI: 10.1364/boe.516481] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/18/2024] [Revised: 03/20/2024] [Accepted: 04/18/2024] [Indexed: 06/11/2024]
Abstract
The measurement of retinal blood flow (RBF) in capillaries can provide a powerful biomarker for the early diagnosis and treatment of ocular diseases. However, no single modality can determine capillary flowrates with high precision. Combining erythrocyte-mediated angiography (EMA) with optical coherence tomography angiography (OCTA) has the potential to achieve this goal, as EMA can measure the absolute RBF of retinal microvasculature and OCTA can provide the structural images of capillaries. However, multimodal retinal image registration between these two modalities remains largely unexplored. To fill this gap, we establish MEMO, the first public multimodal EMA and OCTA retinal image dataset. A unique challenge in multimodal retinal image registration between these modalities is the relatively large difference in vessel density (VD). To address this challenge, we propose a segmentation-based deep-learning framework (VDD-Reg), which provides robust results despite differences in vessel density. VDD-Reg consists of a vessel segmentation module and a registration module. To train the vessel segmentation module, we further designed a two-stage semi-supervised learning framework (LVD-Seg) combining supervised and unsupervised losses. We demonstrate that VDD-Reg outperforms existing methods quantitatively and qualitatively for cases of both small VD differences (using the CF-FA dataset) and large VD differences (using our MEMO dataset). Moreover, VDD-Reg requires as few as three annotated vessel segmentation masks to maintain its accuracy, demonstrating its feasibility.
Collapse
Affiliation(s)
- Chiao-Yi Wang
- Department of Bioengineering, University of Maryland, College Park, MD 20742, USA
| | | | - Yi-Ting Shen
- Department of Electrical and Computer Engineering, University of Maryland, College Park, MD 20742, USA
| | - Shih-En Chen
- Department of Ophthalmology and Visual Sciences, University of Maryland School of Medicine, Baltimore, MD 21201, USA
| | - Sarah Kim
- Department of Ophthalmology and Visual Sciences, University of Maryland School of Medicine, Baltimore, MD 21201, USA
| | - Victoria Chen
- Department of Ophthalmology and Visual Sciences, University of Maryland School of Medicine, Baltimore, MD 21201, USA
| | - Achyut Raghavendra
- Department of Ophthalmology and Visual Sciences, University of Maryland School of Medicine, Baltimore, MD 21201, USA
| | - Dongyi Wang
- Department of Biological and Agricultural Engineering, University of Arkansas, Fayetteville, AR 72701, USA
| | - Osamah Saeedi
- Department of Ophthalmology and Visual Sciences, University of Maryland School of Medicine, Baltimore, MD 21201, USA
| | - Yang Tao
- Department of Bioengineering, University of Maryland, College Park, MD 20742, USA
| |
Collapse
|
14
|
Hammer DX, Kovalick K, Liu Z, Chen C, Saeedi OJ, Harrison DM. Cellular-Level Visualization of Retinal Pathology in Multiple Sclerosis With Adaptive Optics. Invest Ophthalmol Vis Sci 2023; 64:21. [PMID: 37971733 PMCID: PMC10664728 DOI: 10.1167/iovs.64.14.21] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2023] [Accepted: 10/09/2023] [Indexed: 11/19/2023] Open
Abstract
Purpose To apply adaptive optics-optical coherence tomography (AO-OCT) to quantify multiple sclerosis (MS)-induced changes in axonal bundles in the macular nerve fiber layer, ganglion cell somas, and macrophage-like cells at the vitreomacular interface. Methods We used AO-OCT imaging in a pilot study of MS participants (n = 10), including those without and with a history of optic neuritis (ON, n = 4), and healthy volunteers (HV, n = 9) to reveal pathologic changes to inner retinal cells and structures affected by MS. Results We found that nerve fiber layer axonal bundles had 38% lower volume in MS participants (1.5 × 10-3 mm3) compared to HVs (2.4 × 10-3 mm3; P < 0.001). Retinal ganglion cell (RGC) density was 51% lower in MS participants (12.3 cells/mm2 × 1000) compared to HVs (25.0 cells/mm2 × 1000; P < 0.001). Spatial differences across the macula were observed in RGC density. RGC diameter was 15% higher in MS participants (11.7 µm) compared to HVs (10.1 µm; P < 0.001). A nonsignificant trend of higher density of macrophage-like cells in MS eyes was also observed. For all AO-OCT measures, outcomes were worse for MS participants with a history of ON compared to MS participants without a history of ON. AO-OCT measures were associated with key visual and physical disabilities in the MS cohort. Conclusions Our findings demonstrate the utility of AO-OCT for highly sensitive and specific detection of neurodegenerative changes in MS. Moreover, the results shed light on the mechanisms that underpin specific neuronal pathology that occurs when MS attacks the retina. The new findings support the further development of AO-based biomarkers for MS.
Collapse
Affiliation(s)
- Daniel X. Hammer
- Division of Biomedical Physics, Office of Science and Engineering Laboratories, Center for Devices and Radiological Health, U.S. Food and Drug Administration, Silver Spring, Maryland, United States
| | - Katherine Kovalick
- Division of Biomedical Physics, Office of Science and Engineering Laboratories, Center for Devices and Radiological Health, U.S. Food and Drug Administration, Silver Spring, Maryland, United States
- Department of Neurology, University of Maryland School of Medicine, Baltimore, Maryland, United States
| | - Zhuolin Liu
- Division of Biomedical Physics, Office of Science and Engineering Laboratories, Center for Devices and Radiological Health, U.S. Food and Drug Administration, Silver Spring, Maryland, United States
| | - Chixiang Chen
- Division of Biostatistics and Bioinformatics, Department of Epidemiology and Public Health, University of Maryland School of Medicine, Baltimore, Maryland, United States
- Department of Neurology, University of Maryland School of Medicine, Baltimore, Maryland, United States
| | - Osamah J. Saeedi
- Department of Ophthalmology and Visual Sciences, University of Maryland School of Medicine, Baltimore, Maryland, United States
| | - Daniel M. Harrison
- Department of Neurology, University of Maryland School of Medicine, Baltimore, Maryland, United States
- Department of Neurology, Baltimore VA Medical Center, Baltimore, Maryland, United States
| |
Collapse
|
15
|
Abstract
The human retina is amenable to direct, noninvasive visualization using a wide array of imaging modalities. In the ∼140 years since the publication of the first image of the living human retina, there has been a continued evolution of retinal imaging technology. Advances in image acquisition and processing speed now allow real-time visualization of retinal structure, which has revolutionized the diagnosis and management of eye disease. Enormous advances have come in image resolution, with adaptive optics (AO)-based systems capable of imaging the retina with single-cell resolution. In addition, newer functional imaging techniques provide the ability to assess function with exquisite spatial and temporal resolution. These imaging advances have had an especially profound impact on the field of inherited retinal disease research. Here we will review some of the advances and applications of AO retinal imaging in patients with inherited retinal disease.
Collapse
Affiliation(s)
- Jacque L Duncan
- Department of Ophthalmology, University of California, San Francisco, California 94143-4081, USA
| | - Joseph Carroll
- Department of Ophthalmology & Visual Sciences, Medical College of Wisconsin Eye Institute, Milwaukee, Wisconsin 53226, USA
| |
Collapse
|
16
|
Ahsanuddin S, Rios HA, Glassberg JR, Chui TY, Sebag J, Rosen RB. 3-D OCT imaging of hyalocytes in partial posterior vitreous detachment and vaso-occlusive retinal disease. Am J Ophthalmol Case Rep 2023; 30:101836. [PMID: 37124154 PMCID: PMC10139967 DOI: 10.1016/j.ajoc.2023.101836] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2022] [Revised: 03/10/2023] [Accepted: 03/26/2023] [Indexed: 04/03/2023] Open
Abstract
Purpose To describe the spatial distribution and morphologic characteristics of macrophage-like cells called hyalocytes in the posterior vitreous cortex of a patient with unilateral partial posterior vitreous detachment (PVD) using coronal plane en face optical coherence tomography (OCT). Observations A 54-year-old male with sickle cell disease (HbSC genotype) presented with a partial PVD in one eye. Rendered volumes of a slab extending from 600 μm to 3 μm anterior to the inner limiting membrane (ILM) revealed hyperreflective foci in the detached posterior vitreous cortex suspended anterior to the macula, likely representing hyalocytes. In the fellow eye without PVD, hyperreflective foci were located 3 μm anterior to the ILM. The morphology of the cells in the eye with PVD varied between a ramified state with multiple elongated processes and a more activated state characterized by a plump cell body with fewer retracted processes. In the same anatomical location, the hyperreflective foci were 10-fold more numerous in the patient with vaso-occlusive disease than in an unaffected, age-matched control. Conclusions and Importance Direct, non-invasive, and label-free techniques of imaging cells at the vitreoretinal interface and within the vitreous body is an emerging field. The findings from this case report suggest that coronal plane en face OCT can be used to provide a detailed and quantitative characterization of cells at the human vitreo-retinal interface in vivo. Importantly, this case report demonstrates that 3D-OCT renderings can enhance visualization of these cells in relation to the ILM, which may provide clues concerning the identity and contribution of these cells to the pathogenesis of vitreo-retinal diseases.
Collapse
|
17
|
Soltanian-Zadeh S, Liu Z, Liu Y, Lassoued A, Cukras CA, Miller DT, Hammer DX, Farsiu S. Deep learning-enabled volumetric cone photoreceptor segmentation in adaptive optics optical coherence tomography images of normal and diseased eyes. BIOMEDICAL OPTICS EXPRESS 2023; 14:815-833. [PMID: 36874491 PMCID: PMC9979662 DOI: 10.1364/boe.478693] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/02/2022] [Revised: 01/11/2023] [Accepted: 01/12/2023] [Indexed: 06/11/2023]
Abstract
Objective quantification of photoreceptor cell morphology, such as cell diameter and outer segment length, is crucial for early, accurate, and sensitive diagnosis and prognosis of retinal neurodegenerative diseases. Adaptive optics optical coherence tomography (AO-OCT) provides three-dimensional (3-D) visualization of photoreceptor cells in the living human eye. The current gold standard for extracting cell morphology from AO-OCT images involves the tedious process of 2-D manual marking. To automate this process and extend to 3-D analysis of the volumetric data, we propose a comprehensive deep learning framework to segment individual cone cells in AO-OCT scans. Our automated method achieved human-level performance in assessing cone photoreceptors of healthy and diseased participants captured with three different AO-OCT systems representing two different types of point scanning OCT: spectral domain and swept source.
Collapse
Affiliation(s)
| | - Zhuolin Liu
- Center for Devices and Radiological Health (CDRH), U.S. Food and Drug Administration, Silver Spring, MD 20993, USA
| | - Yan Liu
- School of Optometry, Indiana University, Bloomington, IN 47405, USA
| | - Ayoub Lassoued
- School of Optometry, Indiana University, Bloomington, IN 47405, USA
| | - Catherine A. Cukras
- National Eye Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - Donald T. Miller
- School of Optometry, Indiana University, Bloomington, IN 47405, USA
| | - Daniel X. Hammer
- Center for Devices and Radiological Health (CDRH), U.S. Food and Drug Administration, Silver Spring, MD 20993, USA
| | - Sina Farsiu
- Department of Biomedical Engineering, Duke University, Durham, NC 27708, USA
- Department of Ophthalmology, Duke University Medical Center, Durham, NC 27710, USA
| |
Collapse
|
18
|
Zhang P, Wahl DJ, Mocci J, Miller EB, Bonora S, Sarunic MV, Zawadzki RJ. Adaptive optics scanning laser ophthalmoscopy and optical coherence tomography (AO-SLO-OCT) system for in vivo mouse retina imaging. BIOMEDICAL OPTICS EXPRESS 2023; 14:299-314. [PMID: 36698677 PMCID: PMC9841993 DOI: 10.1364/boe.473447] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/17/2022] [Revised: 11/22/2022] [Accepted: 11/22/2022] [Indexed: 05/02/2023]
Abstract
Optical coherence tomography (OCT) and scanning laser ophthalmoscopy (SLO) are imaging technologies invented in the 1980s that have revolutionized the field of in vivo retinal diagnostics and are now commonly used in ophthalmology clinics as well as in vision science research. Adaptive optics (AO) technology enables high-fidelity correction of ocular aberrations, resulting in improved resolution and sensitivity for both SLO and OCT systems. The potential of gathering multi-modal cellular-resolution information in a single instrument is of great interest to the ophthalmic imaging community. Although similar instruments have been developed for imaging the human retina, developing such a system for mice will benefit basic science research and should help with further dissemination of AO technology. Here, we present our work integrating OCT into an existing mouse retinal AO-SLO system, resulting in a multi-modal AO-enhanced imaging system of the living mouse eye. The new system allows either independent or simultaneous data acquisition of AO-SLO and AO-OCT, depending on the requirements of specific scientific experiments. The system allows a data acquisition speed of 200 kHz A-scans/pixel rate for OCT and SLO, respectively. It offers ∼6 µm axial resolution for AO-OCT and a ∼1 µm lateral resolution for AO-SLO-OCT imaging.
Collapse
Affiliation(s)
- Pengfei Zhang
- School of Optoelectronic Engineering and Instrumentation Science, Dalian University of Technology, Dalian, China
- UC Davis EyePod Small Animals Ocular Imaging Laboratory, Department of Cell Biology and Human Anatomy, University of California Davis, Davis, CA 95616, USA
| | - Daniel J. Wahl
- Engineering Science, Simon Fraser University, Burnaby BC, V5A 1S6, Canada
| | - Jacopo Mocci
- Dynamic Optics srl, Piazza Zanellato 5, 35131, Padova, Italy
| | - Eric B. Miller
- Center for Neuroscience, University of California, Davis, CA 95616, USA
| | - Stefano Bonora
- CNR-Institute for Photonics and Nanotechnology, Via Trasea 7, 35131, Padova, Italy
| | - Marinko V. Sarunic
- Engineering Science, Simon Fraser University, Burnaby BC, V5A 1S6, Canada
- Medical Physics and Biomedical Engineering, University College London, United Kingdom
- Institute of Ophthalmology, University College London, United Kingdom
| | - Robert J. Zawadzki
- UC Davis EyePod Small Animals Ocular Imaging Laboratory, Department of Cell Biology and Human Anatomy, University of California Davis, Davis, CA 95616, USA
- UC Davis Eye Center, Dept. of Ophthalmology & Vision Science, University of California Davis, 4860 Y Street, Suite 2400, Sacramento, California 95817, USA
| |
Collapse
|
19
|
Morgan JIW, Chui TYP, Grieve K. Twenty-five years of clinical applications using adaptive optics ophthalmoscopy [Invited]. BIOMEDICAL OPTICS EXPRESS 2023; 14:387-428. [PMID: 36698659 PMCID: PMC9841996 DOI: 10.1364/boe.472274] [Citation(s) in RCA: 28] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/02/2022] [Revised: 11/22/2022] [Accepted: 11/27/2022] [Indexed: 05/02/2023]
Abstract
Twenty-five years ago, adaptive optics (AO) was combined with fundus photography, thereby initiating a new era in the field of ophthalmic imaging. Since that time, clinical applications of AO ophthalmoscopy to investigate visual system structure and function in both health and disease abound. To date, AO ophthalmoscopy has enabled visualization of most cell types in the retina, offered insight into retinal and systemic disease pathogenesis, and been integrated into clinical trials. This article reviews clinical applications of AO ophthalmoscopy and addresses remaining challenges for AO ophthalmoscopy to become fully integrated into standard ophthalmic care.
Collapse
Affiliation(s)
- Jessica I. W. Morgan
- Scheie Eye Institute, Department of Ophthalmology, University of Pennsylvania, Philadelphia, PA 19104, USA
- Center for Advanced Retinal and Ocular Therapeutics, University of Pennsylvania, Philadelphia, PA 19104, USA
- Contributed equally
| | - Toco Y. P. Chui
- Department of Ophthalmology, The New York Eye and Ear Infirmary of Mount Sinai, New York, NY 10003, USA
- Contributed equally
| | - Kate Grieve
- Sorbonne Université, INSERM, CNRS, Institut de la Vision, 17 rue Moreau, and CHNO des Quinze-Vingts, INSERM-DGOS CIC 1423, 28 rue de Charenton, F-75012 Paris, France
- Contributed equally
| |
Collapse
|
20
|
Stapley V, Anderson RS, Saunders K, Mulholland PJ. Examining the concordance of retinal ganglion cell counts generated using measures of structure and function. Ophthalmic Physiol Opt 2022; 42:1338-1352. [PMID: 36065739 PMCID: PMC9826349 DOI: 10.1111/opo.13041] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2022] [Revised: 07/22/2022] [Accepted: 07/22/2022] [Indexed: 01/11/2023]
Abstract
PURPOSE There are several indirect methods used to estimate retinal ganglion cell (RGC) count in an individual eye, but there is limited information as to the agreement between these methods. In this work, RGC receptive field (RGC-RF) count underlying a spot stimulus (0.43°, Goldmann III) was calculated and compared using three different methods. METHODS RGC-RF count was calculated at a retinal eccentricity of 2.32 mm for 44 healthy adult participants (aged 18-58 years, refractive error -9.75 DS to +1.75 DS) using: (i) functional measures of achromatic peripheral grating resolution acuity (PGRA), (ii) structural measures of RGC-layer thickness (OCT-model, based on the method outlined by Raza and Hood) and (iii) scaling published histology density data to simulate a global expansion in myopia (Histology-Balloon). RESULTS Whilst average RGC-RF counts from the OCT-model (median 105.3, IQR 99.6-111.0) and the Histology-Balloon model (median 107.5, IQR 97.7-114.6) were similar, PGRA estimates were approximately 65% lower (median 37.7, IQR 33.8-46.0). However, there was poor agreement between all three methods (Bland-Altman 95% limits of agreement; PGRA/OCT: 55.4; PGRA/Histology-Balloon 59.3; OCT/Histology-Balloon: 52.4). High intersubject variability in RGC-RF count was evident using all three methods. CONCLUSIONS The lower PGRA RGC-RF counts may be the result of targeting only a specific subset of functional RGCs, as opposed to the coarser approach of the OCT-model and Histology-Balloon, which include all RGCs, and also likely displaced amacrine cells. In the absence of a 'ground truth', direct measure of RGC-RF count, it is not possible to determine which method is most accurate, and each has limitations. However, what is clear is the poor agreement found between the methods prevents direct comparison of RGC-RF counts between studies utilising different methodologies and highlights the need to utilise the same method in longitudinal work.
Collapse
Affiliation(s)
- Victoria Stapley
- Centre for Optometry & Vision Science, Biomedical Sciences Research InstituteUlster UniversityColeraineUK
| | - Roger S. Anderson
- Centre for Optometry & Vision Science, Biomedical Sciences Research InstituteUlster UniversityColeraineUK,National Institute for Health Research (NIHR)Biomedical Research Centre at Moorfields Eye Hospital NHS Foundation Trust and UCL Institute of OphthalmologyLondonUK
| | - Kathryn Saunders
- Centre for Optometry & Vision Science, Biomedical Sciences Research InstituteUlster UniversityColeraineUK
| | - Pádraig J. Mulholland
- Centre for Optometry & Vision Science, Biomedical Sciences Research InstituteUlster UniversityColeraineUK,National Institute for Health Research (NIHR)Biomedical Research Centre at Moorfields Eye Hospital NHS Foundation Trust and UCL Institute of OphthalmologyLondonUK
| |
Collapse
|
21
|
Liu Z, Zhang F, Zucca K, Agrawal A, Hammer DX. Ultrahigh-speed multimodal adaptive optics system for microscopic structural and functional imaging of the human retina. BIOMEDICAL OPTICS EXPRESS 2022; 13:5860-5878. [PMID: 36733751 PMCID: PMC9872887 DOI: 10.1364/boe.462594] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/28/2022] [Revised: 09/16/2022] [Accepted: 09/20/2022] [Indexed: 05/02/2023]
Abstract
We describe the design and performance of a multimodal and multifunctional adaptive optics (AO) system that combines scanning laser ophthalmoscopy (SLO) and optical coherence tomography (OCT) for simultaneous retinal imaging at 13.4 Hz. The high-speed AO-OCT channel uses a 3.4 MHz Fourier-domain mode-locked (FDML) swept source. The system achieves exquisite resolution and sensitivity for pan-macular and transretinal visualization of retinal cells and structures while providing a functional assessment of the cone photoreceptors. The ultra-high speed also enables wide-field scans for clinical usability and angiography for vascular visualization. The FDA FDML-AO system is a powerful platform for studying various retinal and neurological diseases for vision science research, retina physiology investigation, and biomarker development.
Collapse
Affiliation(s)
- Zhuolin Liu
- Center for Devices and Radiological Health
(CDRH), U. S. Food and Drug Administration (FDA), Silver Spring, Maryland 20993, USA
| | - Furu Zhang
- Center for Devices and Radiological Health
(CDRH), U. S. Food and Drug Administration (FDA), Silver Spring, Maryland 20993, USA
- Co-first author
| | - Kelvy Zucca
- Center for Devices and Radiological Health
(CDRH), U. S. Food and Drug Administration (FDA), Silver Spring, Maryland 20993, USA
| | - Anant Agrawal
- Center for Devices and Radiological Health
(CDRH), U. S. Food and Drug Administration (FDA), Silver Spring, Maryland 20993, USA
| | - Daniel X. Hammer
- Center for Devices and Radiological Health
(CDRH), U. S. Food and Drug Administration (FDA), Silver Spring, Maryland 20993, USA
| |
Collapse
|
22
|
Vienola KV, Zhang M, Snyder VC, Dansingani KK, Sahel JA, Rossi EA. Near infrared autofluorescence imaging of retinal pigmented epithelial cells using 663 nm excitation. Eye (Lond) 2022; 36:1878-1883. [PMID: 34462582 PMCID: PMC9499940 DOI: 10.1038/s41433-021-01754-0] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2020] [Revised: 08/03/2021] [Accepted: 08/18/2021] [Indexed: 11/09/2022] Open
Abstract
PURPOSE Fundus autofluorescence (AF) using adaptive optics scanning laser ophthalmoscopy (AOSLO) enables morphometric analysis of individual retinal pigmented epithelial (RPE) cells. However, only a few excitation wavelengths in the visible and near-infrared have been evaluated. Visible light excitation (<600 nm) presents additional safety hazards and is uncomfortable for patients. Near-infrared excitation (>700 nm) overcomes those problems but introduces others, including decreased AF signal and cone signatures that obscure RPE structure. Here we investigated the use of an intermediate wavelength, 663 nm, for excitation and compared it to 795 nm. METHODS Subjects were imaged using AOSLO equipped with a detection channel to collect AF emission between 814 and 850 nm. Two light sources (663 and 795 nm) were used to excite the retinal fluorophores. We recorded 90 s videos and registered them with custom software to integrate AF images for analysis. RESULTS We imaged healthy eyes and an eye with pattern dystrophy. Similar AF microstructures were detected with each excitation source, despite ~4 times lower excitation power with 663 nm. The signal-to-noise values showed no meaningful difference between 663 nm and 795 nm excitation and a similar trend was observed for image contrast between the two excitation wavelengths. CONCLUSIONS Lower light levels can be used with shorter wavelength excitation to achieve comparable images of the microstructure of the RPE as have been obtained using higher light levels at longer wavelengths. Further experiments are needed to fully characterize AF across spectrum and determine the optimal excitation and emission bandwidths that balance efficiency, patient comfort, and efficacy.
Collapse
Affiliation(s)
- Kari V Vienola
- Department of Ophthalmology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA.
- Department of Ophthalmology and Vision Science, University of California Davis, Sacramento, CA, USA.
| | - Min Zhang
- Department of Ophthalmology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Valerie C Snyder
- Department of Ophthalmology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Kunal K Dansingani
- Department of Ophthalmology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - José-Alain Sahel
- Department of Ophthalmology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Ethan A Rossi
- Department of Ophthalmology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
- Department of Bioengineering, University of Pittsburgh Swanson School of Engineering, Pittsburgh, PA, USA
- McGowan Institute for Regenerative Medicine, University of Pittsburgh, Pittsburgh, PA, USA
| |
Collapse
|
23
|
Alexopoulos P, Madu C, Wollstein G, Schuman JS. The Development and Clinical Application of Innovative Optical Ophthalmic Imaging Techniques. Front Med (Lausanne) 2022; 9:891369. [PMID: 35847772 PMCID: PMC9279625 DOI: 10.3389/fmed.2022.891369] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2022] [Accepted: 05/23/2022] [Indexed: 11/22/2022] Open
Abstract
The field of ophthalmic imaging has grown substantially over the last years. Massive improvements in image processing and computer hardware have allowed the emergence of multiple imaging techniques of the eye that can transform patient care. The purpose of this review is to describe the most recent advances in eye imaging and explain how new technologies and imaging methods can be utilized in a clinical setting. The introduction of optical coherence tomography (OCT) was a revolution in eye imaging and has since become the standard of care for a plethora of conditions. Its most recent iterations, OCT angiography, and visible light OCT, as well as imaging modalities, such as fluorescent lifetime imaging ophthalmoscopy, would allow a more thorough evaluation of patients and provide additional information on disease processes. Toward that goal, the application of adaptive optics (AO) and full-field scanning to a variety of eye imaging techniques has further allowed the histologic study of single cells in the retina and anterior segment. Toward the goal of remote eye care and more accessible eye imaging, methods such as handheld OCT devices and imaging through smartphones, have emerged. Finally, incorporating artificial intelligence (AI) in eye images has the potential to become a new milestone for eye imaging while also contributing in social aspects of eye care.
Collapse
Affiliation(s)
- Palaiologos Alexopoulos
- Department of Ophthalmology, NYU Langone Health, NYU Grossman School of Medicine, New York, NY, United States
| | - Chisom Madu
- Department of Ophthalmology, NYU Langone Health, NYU Grossman School of Medicine, New York, NY, United States
| | - Gadi Wollstein
- Department of Ophthalmology, NYU Langone Health, NYU Grossman School of Medicine, New York, NY, United States
- Department of Biomedical Engineering, NYU Tandon School of Engineering, Brooklyn, NY, United States
- Center for Neural Science, College of Arts & Science, New York University, New York, NY, United States
| | - Joel S. Schuman
- Department of Ophthalmology, NYU Langone Health, NYU Grossman School of Medicine, New York, NY, United States
- Department of Biomedical Engineering, NYU Tandon School of Engineering, Brooklyn, NY, United States
- Center for Neural Science, College of Arts & Science, New York University, New York, NY, United States
- Department of Electrical and Computer Engineering, NYU Tandon School of Engineering, Brooklyn, NY, United States
| |
Collapse
|
24
|
Shao W, Yi J. Non-interferometric volumetric imaging in living human retina by confocal oblique scanning laser ophthalmoscopy. BIOMEDICAL OPTICS EXPRESS 2022; 13:3576-3592. [PMID: 35781976 PMCID: PMC9208584 DOI: 10.1364/boe.457408] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/01/2022] [Revised: 05/06/2022] [Accepted: 05/12/2022] [Indexed: 06/15/2023]
Abstract
Three-dimensional (3D) imaging of the human retina is instrumental in vision science and ophthalmology. While interferometric retinal imaging is well established by optical coherence tomography (OCT), non-interferometric volumetric imaging in the human retina has been challenging up to date. Here, we report confocal oblique scanning laser ophthalmoscopy (CoSLO) to fill that void and harness non-interferometric optical contrast in 3D. CoSLO decouples the illumination and detection by utilizing oblique laser scanning and oblique imaging to achieve ∼4x better axial resolution than conventional SLO. By combining remote focusing, CoSLO permits the acquisition of depth signals in parallel and over a large field of view. Confocal gating is introduced by a linear sensor array to improve the contrast and resolution. For the first time, we reported non-interferometric 3D human retinal imaging with >20° viewing angle, and revealed detailed features in the inner, outer retina, and choroid. CoSLO shows potential to be another useful technique by offering 3D non-interferometric contrasts.
Collapse
Affiliation(s)
- Wenjun Shao
- Department of Biomedical Engineering, Johns Hopkins University, Baltimore, Maryland, 21231, USA
- Department of Ophthalmology, Johns Hopkins University, Baltimore, Maryland, 21231, USA
| | - Ji Yi
- Department of Biomedical Engineering, Johns Hopkins University, Baltimore, Maryland, 21231, USA
- Department of Ophthalmology, Johns Hopkins University, Baltimore, Maryland, 21231, USA
| |
Collapse
|
25
|
Abstract
The eye, the photoreceptive organ used to perceive the external environment, is of great importance to humans. It has been proven that some diseases in humans are accompanied by fundus changes; therefore, the health status of people may be interpreted from retinal images. However, the human eye is not a perfect refractive system for the existence of ocular aberrations. These aberrations not only affect the ability of human visual discrimination and recognition, but restrict the observation of the fine structures of human eye and reduce the possibility of exploring the mechanisms of eye disease. Adaptive optics (AO) is a technique that corrects optical wavefront aberrations. Once integrated into ophthalmoscopes, AO enables retinal imaging at the cellular level. This paper illustrates the principle of AO in correcting wavefront aberrations in human eyes, and then reviews the applications and advances of AO in ophthalmology, including the adaptive optics fundus camera (AO-FC), the adaptive optics scanning laser ophthalmoscope (AO-SLO), the adaptive optics optical coherence tomography (AO-OCT), and their combined multimodal imaging technologies. The future development trend of AO in ophthalmology is also prospected.
Collapse
|
26
|
Migacz JV, Otero-Marquez O, Zhou R, Rickford K, Murillo B, Zhou DB, Castanos MV, Sredar N, Dubra A, Rosen RB, Chui TYP. Imaging of vitreous cortex hyalocyte dynamics using non-confocal quadrant-detection adaptive optics scanning light ophthalmoscopy in human subjects. BIOMEDICAL OPTICS EXPRESS 2022; 13:1755-1773. [PMID: 35414987 PMCID: PMC8973177 DOI: 10.1364/boe.449417] [Citation(s) in RCA: 35] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/23/2021] [Revised: 02/20/2022] [Accepted: 02/20/2022] [Indexed: 05/06/2023]
Abstract
Vitreous cortex hyalocytes are resident macrophage cells that help maintain the transparency of the media, provide immunosurveillance, and respond to tissue injury and inflammation. In this study, we demonstrate the use of non-confocal quadrant-detection adaptive optics scanning light ophthalmoscopy (AOSLO) to non-invasively visualize the movement and morphological changes of the hyalocyte cell bodies and processes over 1-2 hour periods in the living human eye. The average velocity of the cells 0.52 ± 0.76 µm/min when sampled every 5 minutes and 0.23 ± 0.29 µm/min when sampled every 30 minutes, suggesting that the hyalocytes move in quick bursts. Understanding the behavior of these cells under normal physiological conditions may lead to their use as biomarkers or suitable targets for therapy in eye diseases such as diabetic retinopathy, preretinal fibrosis and glaucoma.
Collapse
Affiliation(s)
- Justin V. Migacz
- Department of Ophthalmology, The New York Eye and Ear Infirmary of Mount Sinai, New York, NY 10003, USA
| | - Oscar Otero-Marquez
- Department of Ophthalmology, The New York Eye and Ear Infirmary of Mount Sinai, New York, NY 10003, USA
| | - Rebecca Zhou
- Department of Ophthalmology, The New York Eye and Ear Infirmary of Mount Sinai, New York, NY 10003, USA
| | - Kara Rickford
- Department of Ophthalmology, The New York Eye and Ear Infirmary of Mount Sinai, New York, NY 10003, USA
| | - Brian Murillo
- Department of Ophthalmology, The New York Eye and Ear Infirmary of Mount Sinai, New York, NY 10003, USA
| | - Davis B. Zhou
- Department of Ophthalmology, The New York Eye and Ear Infirmary of Mount Sinai, New York, NY 10003, USA
| | - Maria V. Castanos
- Department of Ophthalmology, The New York Eye and Ear Infirmary of Mount Sinai, New York, NY 10003, USA
| | - Nripun Sredar
- Department of Ophthalmology, Stanford University, Palo Alto, CA 94303, USA
| | - Alfredo Dubra
- Department of Ophthalmology, Stanford University, Palo Alto, CA 94303, USA
| | - Richard B. Rosen
- Department of Ophthalmology, The New York Eye and Ear Infirmary of Mount Sinai, New York, NY 10003, USA
| | - Toco Y. P. Chui
- Department of Ophthalmology, The New York Eye and Ear Infirmary of Mount Sinai, New York, NY 10003, USA
| |
Collapse
|
27
|
Tamura M, Moriguchi Y, Yeh SY, Matsumoto A, Shibutani M, Asao T, Mino T, Nakanishi M, Kubota A, Akiba M. Sensorless astigmatism correction using a variable cross-cylinder for high lateral resolution optical coherence tomography in a human retina. APPLIED OPTICS 2021; 60:9553-9559. [PMID: 34807099 DOI: 10.1364/ao.441646] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/26/2021] [Accepted: 09/30/2021] [Indexed: 06/13/2023]
Abstract
High lateral resolution (∼5µm) optical coherence tomography (OCT) that employs a variable cross-cylinder (VCC) to compensate for astigmatism is presented for visualizing minute structures of the human retina. The VCC and its sensorless optimization process enable ocular astigmatism correction of up to -5.0 diopter within a few seconds. VCC correction has been proven to increase the signal-to-noise ratio and lateral resolution using a model eye. This process is also validated using the human eye by visualizing the capillary network and human cone mosaic. The proposed method is applicable to existing OCT, making high lateral resolution OCT practical in clinical settings.
Collapse
|
28
|
Villanueva R, Le C, Liu Z, Zhang F, Magder L, Hammer DX, Saeedi O. Cell - Vessel Mismatch in Glaucoma: Correlation of Ganglion Cell Layer Soma and Capillary Densities. Invest Ophthalmol Vis Sci 2021; 62:2. [PMID: 34605879 PMCID: PMC8496408 DOI: 10.1167/iovs.62.13.2] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2021] [Accepted: 08/27/2021] [Indexed: 11/24/2022] Open
Abstract
Purpose The purpose of this study was to characterize the relationship between retinal ganglion cell layer (GCL) soma density and capillary density in glaucomatous eyes. Methods Six glaucoma subjects with known hemifield defects and 6 age-matched controls were imaged with adaptive optics - optical coherence tomography (AO-OCT) at 6 locations: 3 degrees, 6 degrees, and 12 degrees temporal to the fovea above and below the midline. GCL soma density and capillary density were measured at each location. Coefficients of determination (pseudo R2) and slopes between GCL soma and capillary density were determined from mixed-effects regressions and were compared between glaucoma and control subjects, between more and less affected hemifield in subjects with glaucoma, and between subjects with early and moderate glaucoma, both in a local, bivariate model and then a global, multivariable model controlling for eccentricity and soma size. Results The global correlation between GCL soma and capillary density was stronger in control versus subjects with glaucoma (R2 = 0.59 vs. 0.22), less versus more affected hemifields (R2 = 0.55 vs. 0.01), and subjects with early versus moderate glaucoma subjects (R2 = 0.44 vs. 0.18). When controlling for eccentricity and soma size, we noted an inverse soma-capillary density local relationship in subjects with glaucoma (-388 ± 190 cells/mm2 per 1% change in capillary density, P = 0.046) and more affected hemifields (-602 ± 257 cells/mm2 per 1% change in capillary density, P = 0.03). Conclusions An inverted soma-capillary density local relationship in areas affected by glaucoma potentially explains weaker global correlations observed between GCL soma and capillary density, suggesting cell-vessel mismatch is associated with the disease.
Collapse
Affiliation(s)
- Ricardo Villanueva
- Department of Ophthalmology and Visual Sciences, University of Maryland School of Medicine, Baltimore, Maryland, United States
- Center for Devices and Radiological Health, US Food and Drug Administration, Silver Spring, Maryland, United States
| | - Christopher Le
- University of Maryland School of Medicine, Baltimore, Maryland, United States
| | - Zhuolin Liu
- Center for Devices and Radiological Health, US Food and Drug Administration, Silver Spring, Maryland, United States
| | - Furu Zhang
- Center for Devices and Radiological Health, US Food and Drug Administration, Silver Spring, Maryland, United States
| | - Laurence Magder
- Department of Epidemiology and Biostatistics, University of Maryland School of Medicine, Baltimore, Maryland, United States
| | - Daniel X Hammer
- Center for Devices and Radiological Health, US Food and Drug Administration, Silver Spring, Maryland, United States
| | - Osamah Saeedi
- Department of Ophthalmology and Visual Sciences, University of Maryland School of Medicine, Baltimore, Maryland, United States
| |
Collapse
|
29
|
Brunner E, Shatokhina J, Shirazi MF, Drexler W, Leitgeb R, Pollreisz A, Hitzenberger CK, Ramlau R, Pircher M. Retinal adaptive optics imaging with a pyramid wavefront sensor. BIOMEDICAL OPTICS EXPRESS 2021; 12:5969-5990. [PMID: 34745716 PMCID: PMC8548025 DOI: 10.1364/boe.438915] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/29/2021] [Accepted: 08/04/2021] [Indexed: 05/25/2023]
Abstract
The pyramid wavefront sensor (P-WFS) has replaced the Shack-Hartmann (SH-) WFS as the sensor of choice for high-performance adaptive optics (AO) systems in astronomy. Many advantages of the P-WFS, such as its adjustable pupil sampling and superior sensitivity, are potentially of great benefit for AO-supported imaging in ophthalmology as well. However, so far no high quality ophthalmic AO imaging was achieved using this novel sensor. Usually, a P-WFS requires modulation and high precision optics that lead to high complexity and costs of the sensor. These factors limit the competitiveness of the P-WFS with respect to other WFS devices for AO correction in visual science. Here, we present a cost-effective realization of AO correction with a non-modulated P-WFS based on standard components and apply this technique to human retinal in vivo imaging using optical coherence tomography (OCT). P-WFS based high quality AO imaging was successfully performed in 5 healthy subjects and smallest retinal cells such as central foveal cone photoreceptors are visualized. The robustness and versatility of the sensor is demonstrated in the model eye under various conditions and in vivo by high-resolution imaging of other structures in the retina using standard and extended fields of view. As a quality benchmark, the performance of conventional SH-WFS based AO was used and successfully met. This work may trigger a paradigm shift with respect to the wavefront sensor of choice for AO in ophthalmic imaging.
Collapse
Affiliation(s)
- Elisabeth Brunner
- Center for Medical Physics and Biomedical Engineering, Medical University of Vienna, Waehringer Guertel 18-20, A-1090 Vienna, Austria
| | - Julia Shatokhina
- Johann Radon Institute for Computational and Applied Mathematics, Altenbergerstrasse 69, A-4040 Linz, Austria
| | - Muhammad Faizan Shirazi
- Center for Medical Physics and Biomedical Engineering, Medical University of Vienna, Waehringer Guertel 18-20, A-1090 Vienna, Austria
| | - Wolfgang Drexler
- Center for Medical Physics and Biomedical Engineering, Medical University of Vienna, Waehringer Guertel 18-20, A-1090 Vienna, Austria
| | - Rainer Leitgeb
- Center for Medical Physics and Biomedical Engineering, Medical University of Vienna, Waehringer Guertel 18-20, A-1090 Vienna, Austria
| | - Andreas Pollreisz
- Department of Ophthalmology and Optometry, Medical University of Vienna, Waehringer Guertel 18-20, A-1090 Vienna, Austria
| | - Christoph K. Hitzenberger
- Center for Medical Physics and Biomedical Engineering, Medical University of Vienna, Waehringer Guertel 18-20, A-1090 Vienna, Austria
| | - Ronny Ramlau
- Johann Radon Institute for Computational and Applied Mathematics, Altenbergerstrasse 69, A-4040 Linz, Austria
- Johannes Kepler University Linz, Industrial Mathematics Institute, Altenbergerstrasse 69, A-4040 Linz, Austria
| | - Michael Pircher
- Center for Medical Physics and Biomedical Engineering, Medical University of Vienna, Waehringer Guertel 18-20, A-1090 Vienna, Austria
| |
Collapse
|
30
|
Joseph A, Power D, Schallek J. Imaging the dynamics of individual processes of microglia in the living retina in vivo. BIOMEDICAL OPTICS EXPRESS 2021; 12:6157-6183. [PMID: 34745728 PMCID: PMC8547988 DOI: 10.1364/boe.426157] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/29/2021] [Revised: 08/29/2021] [Accepted: 08/29/2021] [Indexed: 05/18/2023]
Abstract
Microglia are an essential population of resident immune cells in the central nervous system (CNS) and retina. These microscopic cells possess sub-cellular processes that make them challenging to image due to limited resolution and contrast. The baseline behavior of microglial processes in the living retina has been poorly characterized, and yet are essential to understanding how these cells respond under conditions of health, development, stress and disease. Here we use in vivo adaptive optics scanning light ophthalmoscopy combined with time-lapse imaging and quantification of process motility, to reveal the detailed behavior of microglial cells in a population of healthy mice. We find microglial processes to be dynamic at all branch-levels, from primary to end-protrusions. Cell-processes remodel at average speeds of 0.6 ± 0.4 µm/min with growth and deletion bursts of 0-7.6 µm/min. Longitudinal imaging in the same mice showed cell-somas to remain stable over seconds to minutes, but show migration over days to months. In addition to characterizing in vivo process motility and Sholl analysis using a microglial reporter mouse, we also demonstrate that microglia can be imaged without fluorescent labels at all. Phase-contrast imaging using safe levels of near-infrared light successfully imaged microglia soma and process remodeling with micron-level detail noninvasively, confirmed by simultaneous imaging of fluorescent microglial cells in transgenic mice. This label-free approach provides a new opportunity to investigate CNS immune system noninvasively without requiring transgenic or antibody labeling which could have off-target effects of changing normal microglial behavior. Additionally, CNS microglia study can now be conducted without the need for cranial window surgery which have the potential to change their behavior due to local or systemic inflammation.
Collapse
Affiliation(s)
- Aby Joseph
- The Institute of Optics, University of Rochester, Rochester, NY 14620, USA
- Center for Visual Science, University of Rochester, Rochester, NY 14627, USA
| | - Derek Power
- Center for Visual Science, University of Rochester, Rochester, NY 14627, USA
| | - Jesse Schallek
- Center for Visual Science, University of Rochester, Rochester, NY 14627, USA
- Flaum Eye Institute, University of Rochester, Rochester, NY 14642, USA
- Department of Neuroscience, University of Rochester, Rochester, NY 14642, USA
| |
Collapse
|
31
|
Heitkotter H, Salmon A, Linderman R, Porter J, Carroll J. Theoretical versus empirical measures of retinal magnification for scaling AOSLO images. JOURNAL OF THE OPTICAL SOCIETY OF AMERICA. A, OPTICS, IMAGE SCIENCE, AND VISION 2021; 38:1400-1408. [PMID: 34612970 PMCID: PMC8647682 DOI: 10.1364/josaa.435917] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/08/2023]
Abstract
The adaptive optics scanning light ophthalmoscope (AOSLO) allows cellular resolution imaging of the living retina. The accuracy of many quantitative measurements made from these images requires accurate estimates of the lateral scale of the images. Here, we used trial lenses, which are known to affect the relative magnification of the retinal image, to compare empirical measures of image scale with theoretical estimates from a four-surface optical model. The theoretical optical model overestimated the empirically determined change in image scale in 70% of the subjects examined, albeit to varying degrees. While the origin for the differences between subjects is not known, residual accommodation during imaging likely contributes to this variability in retinal magnification. These data provide an opportunity to derive improved lateral scaling error estimates for structural metrics extracted from AOSLO retinal images.
Collapse
Affiliation(s)
- H. Heitkotter
- Cell Biology, Neurobiology & Anatomy, Medical College of Wisconsin, 8701 W Watertown Plank Rd, Milwaukee, WI 53226, USA
| | - A.E. Salmon
- Cell Biology, Neurobiology & Anatomy, Medical College of Wisconsin, 8701 W Watertown Plank Rd, Milwaukee, WI 53226, USA
- Translational Imaging Innovations, Inc., 112 Mariners Point Ln. Hickory, NC 28601, USA
| | - R.E. Linderman
- Cell Biology, Neurobiology & Anatomy, Medical College of Wisconsin, 8701 W Watertown Plank Rd, Milwaukee, WI 53226, USA
| | - J. Porter
- College of Optometry, University of Houston, 4901 Calhoun Rd, Houston, TX 77204, USA
| | - J. Carroll
- Cell Biology, Neurobiology & Anatomy, Medical College of Wisconsin, 8701 W Watertown Plank Rd, Milwaukee, WI 53226, USA
- Ophthalmology & Visual Sciences, Medical College of Wisconsin, 925 N 87th St, Milwaukee, WI 53226, USA
| |
Collapse
|
32
|
Pandiyan VP, Jiang X, Kuchenbecker JA, Sabesan R. Reflective mirror-based line-scan adaptive optics OCT for imaging retinal structure and function. BIOMEDICAL OPTICS EXPRESS 2021; 12:5865-5880. [PMID: 34692221 PMCID: PMC8515964 DOI: 10.1364/boe.436337] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/08/2021] [Revised: 08/16/2021] [Accepted: 08/20/2021] [Indexed: 05/06/2023]
Abstract
Line-scan OCT incorporated with adaptive optics (AO) offers high resolution, speed, and sensitivity for imaging retinal structure and function in vivo. Here, we introduce its implementation with reflective mirror-based afocal telescopes, optimized for imaging light-induced retinal activity (optoretinography) and weak retinal reflections at the cellular scale. A non-planar optical design was followed based on previous recommendations with key differences specific to a line-scan geometry. The three beam paths fundamental to an OCT system -illumination/sample, detection, and reference- were modeled in Zemax optical design software to yield theoretically diffraction-limited performance over a 2.2 deg. field-of-view and 1.5 D vergence range at the eye's pupil. The performance for imaging retinal structure was exemplified by cellular-scale visualization of retinal ganglion cells, macrophages, foveal cones, and rods in human observers. The performance for functional imaging was exemplified by resolving the light-evoked optical changes in foveal cone photoreceptors where the spatial resolution was sufficient for cone spectral classification at an eccentricity 0.3 deg. from the foveal center. This enabled the first in vivo demonstration of reduced S-cone (short-wavelength cone) density in the human foveola, thus far observed only in ex vivo histological preparations. Together, the feasibility for high resolution imaging of retinal structure and function demonstrated here holds significant potential for basic science and translational applications.
Collapse
Affiliation(s)
- Vimal Prabhu Pandiyan
- Department of Ophthalmology, University of Washington School of Medicine, Seattle, WA 98109, USA
- Co-first authors with equal contribution
| | - Xiaoyun Jiang
- Department of Ophthalmology, University of Washington School of Medicine, Seattle, WA 98109, USA
- Co-first authors with equal contribution
| | - James A Kuchenbecker
- Department of Ophthalmology, University of Washington School of Medicine, Seattle, WA 98109, USA
| | - Ramkumar Sabesan
- Department of Ophthalmology, University of Washington School of Medicine, Seattle, WA 98109, USA
| |
Collapse
|
33
|
Wynne N, Carroll J, Duncan JL. Promises and pitfalls of evaluating photoreceptor-based retinal disease with adaptive optics scanning light ophthalmoscopy (AOSLO). Prog Retin Eye Res 2021; 83:100920. [PMID: 33161127 PMCID: PMC8639282 DOI: 10.1016/j.preteyeres.2020.100920] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2020] [Revised: 10/28/2020] [Accepted: 10/31/2020] [Indexed: 12/15/2022]
Abstract
Adaptive optics scanning light ophthalmoscopy (AOSLO) allows visualization of the living human retina with exquisite single-cell resolution. This technology has improved our understanding of normal retinal structure and revealed pathophysiological details of a number of retinal diseases. Despite the remarkable capabilities of AOSLO, it has not seen the widespread commercial adoption and mainstream clinical success of other modalities developed in a similar time frame. Nevertheless, continued advancements in AOSLO hardware and software have expanded use to a broader range of patients. Current devices enable imaging of a number of different retinal cell types, with recent improvements in stimulus and detection schemes enabling monitoring of retinal function, microscopic structural changes, and even subcellular activity. This has positioned AOSLO for use in clinical trials, primarily as exploratory outcome measures or biomarkers that can be used to monitor disease progression or therapeutic response. AOSLO metrics could facilitate patient selection for such trials, to refine inclusion criteria or to guide the choice of therapy, depending on the presence, absence, or functional viability of specific cell types. Here we explore the potential of AOSLO retinal imaging by reviewing clinical applications as well as some of the pitfalls and barriers to more widespread clinical adoption.
Collapse
Affiliation(s)
- Niamh Wynne
- Department of Ophthalmology and Visual Sciences, Medical College of Wisconsin, Milwaukee, WI, USA
| | - Joseph Carroll
- Department of Ophthalmology and Visual Sciences, Medical College of Wisconsin, Milwaukee, WI, USA; Department of Cell Biology, Neurobiology & Anatomy, Medical College of Wisconsin, Milwaukee, WI, USA; Department of Biomedical Engineering, Medical College of Wisconsin, Milwaukee, WI, USA
| | - Jacque L Duncan
- Department of Ophthalmology, University of California, San Francisco, CA, USA.
| |
Collapse
|
34
|
Choi S, Guo L, Cordeiro MF. Retinal and Brain Microglia in Multiple Sclerosis and Neurodegeneration. Cells 2021; 10:cells10061507. [PMID: 34203793 PMCID: PMC8232741 DOI: 10.3390/cells10061507] [Citation(s) in RCA: 38] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2021] [Revised: 05/28/2021] [Accepted: 06/11/2021] [Indexed: 12/24/2022] Open
Abstract
Microglia are the resident immune cells of the central nervous system (CNS), including the retina. Similar to brain microglia, retinal microglia are responsible for retinal surveillance, rapidly responding to changes in the environment by altering morphotype and function. Microglia become activated in inflammatory responses in neurodegenerative diseases, including multiple sclerosis (MS). When activated by stress stimuli, retinal microglia change their morphology and activity, with either beneficial or harmful consequences. In this review, we describe characteristics of CNS microglia, including those in the retina, with a focus on their morphology, activation states and function in health, ageing, MS and other neurodegenerative diseases such as Alzheimer's disease, Parkinson's disease, glaucoma and retinitis pigmentosa, to highlight their activity in disease. We also discuss contradictory findings in the literature and the potential ways of reducing inconsistencies in future by using standardised methodology, e.g., automated algorithms, to enable a more comprehensive understanding of this exciting area of research.
Collapse
Affiliation(s)
- Soyoung Choi
- UCL Institute of Ophthalmology, London EC1V 9EL, UK; (S.C.); (L.G.)
| | - Li Guo
- UCL Institute of Ophthalmology, London EC1V 9EL, UK; (S.C.); (L.G.)
| | - Maria Francesca Cordeiro
- UCL Institute of Ophthalmology, London EC1V 9EL, UK; (S.C.); (L.G.)
- ICORG, Imperial College London, London NW1 5QH, UK
- Correspondence:
| |
Collapse
|
35
|
Soltanian-Zadeh S, Kurokawa K, Liu Z, Zhang F, Saeedi O, Hammer DX, Miller DT, Farsiu S. Weakly supervised individual ganglion cell segmentation from adaptive optics OCT images for glaucomatous damage assessment. OPTICA 2021; 8:642-651. [PMID: 35174258 PMCID: PMC8846574 DOI: 10.1364/optica.418274] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/11/2023]
Abstract
Cell-level quantitative features of retinal ganglion cells (GCs) are potentially important biomarkers for improved diagnosis and treatment monitoring of neurodegenerative diseases such as glaucoma, Parkinson's disease, and Alzheimer's disease. Yet, due to limited resolution, individual GCs cannot be visualized by commonly used ophthalmic imaging systems, including optical coherence tomography (OCT), and assessment is limited to gross layer thickness analysis. Adaptive optics OCT (AO-OCT) enables in vivo imaging of individual retinal GCs. We present an automated segmentation of GC layer (GCL) somas from AO-OCT volumes based on weakly supervised deep learning (named WeakGCSeg), which effectively utilizes weak annotations in the training process. Experimental results show that WeakGCSeg is on par with or superior to human experts and is superior to other state-of-the-art networks. The automated quantitative features of individual GCLs show an increase in structure-function correlation in glaucoma subjects compared to using thickness measures from OCT images. Our results suggest that by automatic quantification of GC morphology, WeakGCSeg can potentially alleviate a major bottleneck in using AO-OCT for vision research.
Collapse
Affiliation(s)
| | - Kazuhiro Kurokawa
- School of Optometry, Indiana University, Bloomington, Indiana 47405, USA
| | - Zhuolin Liu
- Center for Devices and Radiological Health (CDRH), U.S. Food and Drug Administration, Silver Spring, Maryland 20993, USA
| | - Furu Zhang
- Center for Devices and Radiological Health (CDRH), U.S. Food and Drug Administration, Silver Spring, Maryland 20993, USA
| | - Osamah Saeedi
- Department of Ophthalmology and Visual Sciences, University of Maryland Medical Center, Baltimore, Maryland 21201, USA
| | - Daniel X. Hammer
- Center for Devices and Radiological Health (CDRH), U.S. Food and Drug Administration, Silver Spring, Maryland 20993, USA
| | - Donald T. Miller
- School of Optometry, Indiana University, Bloomington, Indiana 47405, USA
| | - Sina Farsiu
- Department of Biomedical Engineering, Duke University, Durham, North Carolina 27708, USA
- Department of Ophthalmology, Duke University Medical Center, Durham, North Carolina 27710, USA
- Corresponding author:
| |
Collapse
|
36
|
Bedggood P, Metha A. Adaptive optics imaging of the retinal microvasculature. Clin Exp Optom 2021; 103:112-122. [DOI: 10.1111/cxo.12988] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2019] [Revised: 09/17/2019] [Accepted: 09/20/2019] [Indexed: 12/31/2022] Open
Affiliation(s)
- Phillip Bedggood
- Department of Optometry and Vision Sciences, The University of Melbourne, Melbourne, Australia,
| | - Andrew Metha
- Department of Optometry and Vision Sciences, The University of Melbourne, Melbourne, Australia,
| |
Collapse
|
37
|
Ringel MJ, Tang EM, Tao YK. Advances in multimodal imaging in ophthalmology. Ther Adv Ophthalmol 2021; 13:25158414211002400. [PMID: 35187398 PMCID: PMC8855415 DOI: 10.1177/25158414211002400] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2021] [Accepted: 02/23/2021] [Indexed: 12/12/2022] Open
Abstract
Multimodality ophthalmic imaging systems aim to enhance the contrast, resolution, and functionality of existing technologies to improve disease diagnostics and therapeutic guidance. These systems include advanced acquisition and post-processing methods using optical coherence tomography (OCT), combined scanning laser ophthalmoscopy and OCT systems, adaptive optics, surgical guidance, and photoacoustic technologies. Here, we provide an overview of these ophthalmic imaging systems and their clinical and basic science applications.
Collapse
Affiliation(s)
- Morgan J. Ringel
- Department of Biomedical Engineering, Vanderbilt University, Nashville, TN, USA
| | - Eric M. Tang
- Department of Biomedical Engineering, Vanderbilt University, Nashville, TN, USA
| | - Yuankai K. Tao
- Department of Biomedical Engineering, Vanderbilt University, Nashville, TN 37235, USA
| |
Collapse
|
38
|
Li J, Liu T, Flynn OJ, Turriff A, Liu Z, Ullah E, Liu J, Dubra A, Johnson MA, Brooks BP, Hufnagel RB, Hammer DX, Huryn LA, Jeffrey BG, Tam J. Persistent Dark Cones in Oligocone Trichromacy Revealed by Multimodal Adaptive Optics Ophthalmoscopy. Front Aging Neurosci 2021; 13:629214. [PMID: 33767618 PMCID: PMC7985087 DOI: 10.3389/fnagi.2021.629214] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2020] [Accepted: 02/09/2021] [Indexed: 11/13/2022] Open
Abstract
Dark cone photoreceptors, defined as those with diminished or absent reflectivity when observed with adaptive optics (AO) ophthalmoscopy, are increasingly reported in retinal disorders. However, their structural and functional impact remain unclear. Here, we report a 3-year longitudinal study on a patient with oligocone trichromacy (OT) who presented with persistent, widespread dark cones within and near the macula. Diminished electroretinogram (ERG) cone but normal ERG rod responses together with normal color vision confirmed the OT diagnosis. In addition, the patient had normal to near normal visual acuity and retinal sensitivity. Occasional dark gaps in the photoreceptor layer were observed on optical coherence tomography, in agreement with reflectance AO scanning light ophthalmoscopy, which revealed that over 50% of the cones in the fovea were dark, increasing to 74% at 10° eccentricity. In addition, the cone density was 78% lower than normal histologic value at the fovea, and 20-40% lower at eccentricities of 5-15°. Interestingly, color vision testing was near normal at locations where cones were predominantly dark. These findings illustrate how a retina with predominant dark cones that persist over at least 3 years can support near normal central retinal function. Furthermore, this study adds to the growing evidence that cones can continue to survive under non-ideal conditions.
Collapse
Affiliation(s)
- Joanne Li
- National Eye Institute, National Institutes of Health, Bethesda, MD, United States
| | - Tao Liu
- National Eye Institute, National Institutes of Health, Bethesda, MD, United States
| | - Oliver J Flynn
- National Eye Institute, National Institutes of Health, Bethesda, MD, United States
| | - Amy Turriff
- National Eye Institute, National Institutes of Health, Bethesda, MD, United States
| | - Zhuolin Liu
- Center for Devices and Radiological Health, U.S. Food and Drug Administration, Silver Spring, MD, United States
| | - Ehsan Ullah
- National Eye Institute, National Institutes of Health, Bethesda, MD, United States
| | - Jianfei Liu
- National Eye Institute, National Institutes of Health, Bethesda, MD, United States
| | - Alfredo Dubra
- Department of Ophthalmology, Stanford University, Palo Alto, CA, Unites States
| | - Mary A Johnson
- Ophthalmology and Visual Sciences, University of Maryland School of Medicine, Baltimore, MD, United States
| | - Brian P Brooks
- National Eye Institute, National Institutes of Health, Bethesda, MD, United States
| | - Robert B Hufnagel
- National Eye Institute, National Institutes of Health, Bethesda, MD, United States
| | - Daniel X Hammer
- Center for Devices and Radiological Health, U.S. Food and Drug Administration, Silver Spring, MD, United States
| | - Laryssa A Huryn
- National Eye Institute, National Institutes of Health, Bethesda, MD, United States
| | - Brett G Jeffrey
- National Eye Institute, National Institutes of Health, Bethesda, MD, United States
| | - Johnny Tam
- National Eye Institute, National Institutes of Health, Bethesda, MD, United States
| |
Collapse
|
39
|
Liu Z, Saeedi O, Zhang F, Villanueva R, Asanad S, Agrawal A, Hammer DX. Quantification of Retinal Ganglion Cell Morphology in Human Glaucomatous Eyes. Invest Ophthalmol Vis Sci 2021; 62:34. [PMID: 33760041 PMCID: PMC7995922 DOI: 10.1167/iovs.62.3.34] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/02/2022] Open
Abstract
Purpose To characterize retinal ganglion cell morphological changes in patients with primary open-angle glaucoma associated with hemifield defect (HD) using adaptive optics–optical coherence tomography (AO-OCT). Methods Six patients with early to moderate primary open-angle glaucoma with an average age of 58 years associated with HD and six age-matched healthy controls with an average age of 61 years were included. All participants underwent in vivo retinal ganglion cell (RGC) imaging at six primary locations across the macula with AO-OCT. Ganglion cell layer (GCL) somas were manually counted, and morphological parameters of GCL soma density, size, and symmetry were calculated. RGC cellular characteristics were correlated with functional visual field measurements. Results GCL soma density was 12,799 ± 7747 cells/mm2, 9370 ± 5572 cells/mm2, and 2134 ± 1494 cells/mm2 at 3°, 6°, and 12°, respectively, in glaucoma patients compared with 25,058 ± 4649 cells/mm2, 15,551 ± 2301 cells/mm2, and 3891 ± 1105 cells/mm2 (P < 0.05 for all locations) at the corresponding retinal locations in healthy participants. Mean soma diameter was significantly larger in glaucoma patients (14.20 ± 2.30 µm) compared with the health controls (12.32 ± 1.94 µm, P < 0.05 for all locations); symmetry was 0.36 ± 0.32 and 0.86 ± 0.13 in glaucoma and control cohorts, respectively. Conclusions Glaucoma patients had lower GCL soma density and symmetry, greater soma size, and increased variation of GCL soma reflectance compared with age-matched control subjects. The morphological changes corresponded with HD, and the cellular level structural loss correlated with visual function loss in glaucoma. AO-based morphological parameters could be potential sensitive biomarkers for glaucoma.
Collapse
Affiliation(s)
- Zhuolin Liu
- Center for Devices and Radiological Health (CDRH), U.S. Food and Drug Administration, Silver Spring, Maryland, United States
| | - Osamah Saeedi
- Department of Ophthalmology and Visual Sciences, University of Maryland School of Medicine, Baltimore Maryland, United States
| | - Furu Zhang
- Center for Devices and Radiological Health (CDRH), U.S. Food and Drug Administration, Silver Spring, Maryland, United States
| | - Ricardo Villanueva
- Department of Ophthalmology and Visual Sciences, University of Maryland School of Medicine, Baltimore Maryland, United States
| | - Samuel Asanad
- Department of Ophthalmology and Visual Sciences, University of Maryland School of Medicine, Baltimore Maryland, United States
| | - Anant Agrawal
- Center for Devices and Radiological Health (CDRH), U.S. Food and Drug Administration, Silver Spring, Maryland, United States
| | - Daniel X Hammer
- Center for Devices and Radiological Health (CDRH), U.S. Food and Drug Administration, Silver Spring, Maryland, United States
| |
Collapse
|
40
|
Bower AJ, Liu T, Aguilera N, Li J, Liu J, Lu R, Giannini JP, Huryn LA, Dubra A, Liu Z, Hammer DX, Tam J. Integrating adaptive optics-SLO and OCT for multimodal visualization of the human retinal pigment epithelial mosaic. BIOMEDICAL OPTICS EXPRESS 2021; 12:1449-1466. [PMID: 33796365 PMCID: PMC7984802 DOI: 10.1364/boe.413438] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/17/2020] [Revised: 01/29/2021] [Accepted: 01/31/2021] [Indexed: 05/03/2023]
Abstract
In vivo imaging of human retinal pigment epithelial (RPE) cells has been demonstrated through multiple adaptive optics (AO)-based modalities. However, whether consistent and complete information regarding the cellular structure of the RPE mosaic is obtained across these modalities remains uncertain due to limited comparisons performed in the same eye. Here, an imaging platform combining multimodal AO-scanning light ophthalmoscopy (AO-SLO) with AO-optical coherence tomography (AO-OCT) is developed to make a side-by-side comparison of the same RPE cells imaged across four modalities: AO-darkfield, AO-enhanced indocyanine green (AO-ICG), AO-infrared autofluorescence (AO-IRAF), and AO-OCT. Co-registered images were acquired in five subjects, including one patient with choroideremia. Multimodal imaging provided multiple perspectives of the RPE mosaic that were used to explore variations in RPE cell contrast in a subject-, location-, and even cell-dependent manner. Estimated cell-to-cell spacing and density were found to be consistent both across modalities and with normative data. Multimodal images from a patient with choroideremia illustrate the benefit of using multiple modalities to infer the cellular structure of the RPE mosaic in an affected eye, in which disruptions to the RPE mosaic may locally alter the signal strength, visibility of individual RPE cells, or even source of contrast in unpredictable ways.
Collapse
Affiliation(s)
- Andrew J. Bower
- National Eye Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - Tao Liu
- National Eye Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - Nancy Aguilera
- National Eye Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - Joanne Li
- National Eye Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - Jianfei Liu
- National Eye Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - Rongwen Lu
- National Eye Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - John P. Giannini
- National Eye Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - Laryssa A. Huryn
- National Eye Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - Alfredo Dubra
- Department of Ophthalmology, Stanford University, Palo Alto, CA 94303, USA
| | - Zhuolin Liu
- Center for Devices and Radiological Health (CDRH), U.S. Food and Drug Administration, 10903 New Hampshire Ave, Silver Spring, MD 20993, USA
| | - Daniel X. Hammer
- Center for Devices and Radiological Health (CDRH), U.S. Food and Drug Administration, 10903 New Hampshire Ave, Silver Spring, MD 20993, USA
| | - Johnny Tam
- National Eye Institute, National Institutes of Health, Bethesda, MD 20892, USA
| |
Collapse
|
41
|
An D, Pulford R, Morgan WH, Yu DY, Balaratnasingam C. Associations Between Capillary Diameter, Capillary Density, and Microaneurysms in Diabetic Retinopathy: A High-Resolution Confocal Microscopy Study. Transl Vis Sci Technol 2021; 10:6. [PMID: 34003893 PMCID: PMC7873504 DOI: 10.1167/tvst.10.2.6] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2020] [Accepted: 10/11/2020] [Indexed: 12/29/2022] Open
Abstract
Purpose To use high-resolution histology to define the associations between microaneurysms, capillary diameter and capillary density alterations in diabetic retinopathy (DR). Methods Quantitative comparisons of microaneurysm number, capillary density and capillary diameter were performed between eight human donor eyes with nonproliferative DR and six age- and eccentricity-matched normal donor eyes after retinal vascular perfusion labelling. The parafovea, 3-mm, 6-mm, and 9-mm retinal eccentricities were analyzed and associations between microvascular alterations defined. Results Mean capillary density was reduced in all retina regions in the DR group (P = 0.013). Microaneurysms occurred in all retina regions in the DR group, but the association between decreased capillary density and microaneurysm number was only significant in the 3-mm (P = 0.040) and 6-mm (P = 0.007) eccentricities. The mean capillary diameter of the DR group (8.9 ± 0.53 µm) was greater than the control group (7.60 ± 0.40 µm; P = 0.033). There was no association between capillary diameter increase and capillary density decrease (P = 0.257) and capillary diameter increase and microaneurysm number (P = 0.147) in the DR group. Within the parafovea of the DR group, capillary density was significantly reduced, and capillary diameter was significantly increased in the deep capillary plexus compared with the superficial and intermediate plexuses (all P < 0.05). Conclusions In DR, capillary density reduction occurs across multiple retina eccentricities with a predilection for the deep capillary plexus. The association between microaneurysm number and capillary density is specific to retina eccentricity. Capillary diameter increase may be an early biomarker of DR. These findings may refine the application of optical coherence tomography angiography techniques for the management of DR.
Collapse
Affiliation(s)
- Dong An
- Centre for Ophthalmology and Visual Science, University of Western Australia, Perth, Australia
- Lions Eye Institute, Nedlands, Western Australia, Australia
| | - Riley Pulford
- Centre for Ophthalmology and Visual Science, University of Western Australia, Perth, Australia
- Lions Eye Institute, Nedlands, Western Australia, Australia
| | - William H. Morgan
- Centre for Ophthalmology and Visual Science, University of Western Australia, Perth, Australia
- Lions Eye Institute, Nedlands, Western Australia, Australia
| | - Dao-Yi Yu
- Centre for Ophthalmology and Visual Science, University of Western Australia, Perth, Australia
- Lions Eye Institute, Nedlands, Western Australia, Australia
| | - Chandrakumar Balaratnasingam
- Centre for Ophthalmology and Visual Science, University of Western Australia, Perth, Australia
- Lions Eye Institute, Nedlands, Western Australia, Australia
- Department of Ophthalmology, Sir Charles Gairdner Hospital, Western Australia, Australia
| |
Collapse
|
42
|
Castanos MV, Zhou DB, Linderman RE, Allison R, Milman T, Carroll J, Migacz J, Rosen RB, Chui TYP. Imaging of Macrophage-Like Cells in Living Human Retina Using Clinical OCT. Invest Ophthalmol Vis Sci 2021; 61:48. [PMID: 32574351 PMCID: PMC7416910 DOI: 10.1167/iovs.61.6.48] [Citation(s) in RCA: 55] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
Purpose To image retinal macrophages at the vitreoretinal interface in the living human retina using a clinical optical coherence tomography (OCT) device. Methods Eighteen healthy controls and three patients with retinopathies were imaged using a clinical spectral-domain OCT. In controls, 10 sequential scans were collected at three different locations: (1) ∼9 degrees temporal to the fovea, (2) the macula, and (3) the optic nerve head (ONH). Intervisit repeatability was evaluated by imaging the temporal retina twice on the same day and 3 days later. Only 10 scans at the temporal retina were obtained from each patient. A 3-µm OCT reflectance (OCT-R) slab located above the inner limiting membrane (ILM) surface was averaged. Results In controls, ramified macrophage-like cells with regular spatial separation were visualized in the temporal and ONH OCT-R images; however, cell structures were not resolvable at the macula. Interim changes in cell position suggestive of cell translocation were observed between images collected on the same day and those collected 3 days later. There was considerable variation in cell density and nearest-neighbor distance (NND) across controls. Mean ± SD cell densities measured at the temporal and ONH were 78 ± 23 cells/mm2 and 57 ± 16 cells/mm2, respectively. Similarly, mean ± SD NNDs measured at the temporal and ONH were 74.3 ± 13.3 µm and 93.3 ± 20.0 µm, respectively. Nonuniform spatial distribution and altered morphology of the cells were identified in patients with retinopathies. Conclusions Our findings showed regular spatial separation and ramified morphology of macrophage-like cells on the ILM surface with cell translocation over time in controls. Their distribution and morphology suggest an origin of macrophage-like cells such as microglia or hyalocytes.
Collapse
|
43
|
Li Z, Pandiyan VP, Maloney-Bertelli A, Jiang X, Li X, Sabesan R. Correcting intra-volume distortion for AO-OCT using 3D correlation based registration. OPTICS EXPRESS 2020; 28:38390-38409. [PMID: 33379652 PMCID: PMC7771894 DOI: 10.1364/oe.410374] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/17/2020] [Revised: 11/15/2020] [Accepted: 11/19/2020] [Indexed: 05/18/2023]
Abstract
Adaptive optics (AO) based ophthalmic imagers, such as scanning laser ophthalmoscopes (SLO) and optical coherence tomography (OCT), are used to evaluate the structure and function of the retina with high contrast and resolution. Fixational eye movements during a raster-scanned image acquisition lead to intra-frame and intra-volume distortion, resulting in an inaccurate reproduction of the underlying retinal structure. For three-dimensional (3D) AO-OCT, segmentation-based and 3D correlation based registration methods have been applied to correct eye motion and achieve a high signal-to-noise ratio registered volume. This involves first selecting a reference volume, either manually or automatically, and registering the image/volume stream against the reference using correlation methods. However, even within the chosen reference volume, involuntary eye motion persists and affects the accuracy with which the 3D retinal structure is finally rendered. In this article, we introduced reference volume distortion correction for AO-OCT using 3D correlation based registration and demonstrate a significant improvement in registration performance via a few metrics. Conceptually, the general paradigm follows that developed previously for intra-frame distortion correction for 2D raster-scanned images, as in an AOSLO, but extended here across all three spatial dimensions via 3D correlation analyses. We performed a frequency analysis of eye motion traces before and after intra-volume correction and revealed how periodic artifacts in eye motion estimates are effectively reduced upon correction. Further, we quantified how the intra-volume distortions and periodic artifacts in the eye motion traces, in general, decrease with increasing AO-OCT acquisition speed. Overall, 3D correlation based registration with intra-volume correction significantly improved the visualization of retinal structure and estimation of fixational eye movements.
Collapse
Affiliation(s)
- Zhenghan Li
- Key Laboratory on Adaptive Optics, Chinese Academy of Sciences, Chengdu, Sichuan 610209, China
- Institute of Optics and Electronics, Chinese Academy of Sciences, Chengdu, Sichuan 610209, China
- University of Chinese Academy of Sciences, Beijing 100049, China
- Department of Ophthalmology, University of Washington, Seattle, Washington 98109, USA
- These authors contributed equally to this work
| | - Vimal Prabhu Pandiyan
- Department of Ophthalmology, University of Washington, Seattle, Washington 98109, USA
- These authors contributed equally to this work
| | | | - Xiaoyun Jiang
- Department of Ophthalmology, University of Washington, Seattle, Washington 98109, USA
| | - Xinyang Li
- Key Laboratory on Adaptive Optics, Chinese Academy of Sciences, Chengdu, Sichuan 610209, China
- Institute of Optics and Electronics, Chinese Academy of Sciences, Chengdu, Sichuan 610209, China
| | - Ramkumar Sabesan
- Department of Ophthalmology, University of Washington, Seattle, Washington 98109, USA
| |
Collapse
|
44
|
Label-free adaptive optics imaging of human retinal macrophage distribution and dynamics. Proc Natl Acad Sci U S A 2020; 117:30661-30669. [PMID: 33168747 PMCID: PMC7720180 DOI: 10.1073/pnas.2010943117] [Citation(s) in RCA: 66] [Impact Index Per Article: 13.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Microglia, a type of macrophage, were discovered a little more than a century ago by Pío del Río-Hortega. Since that time, we have gained an immense amount of knowledge on their origin and multifaceted function with the aid of labeling techniques and animal models, among other tools. Only recently have macrophage cells been imaged in living humans. Here we characterize macrophage spatial distribution and temporal dynamics in live human eyes using a label-free adaptive optics imaging approach. This investigation lays a foundation to better understand the body’s immune response not only to ocular diseases like glaucoma, but also to a vast array of neurological diseases with ocular manifestations, including Alzheimer’s disease, Parkinson’s disease, and multiple sclerosis. Microglia are resident central nervous system macrophages and the first responders to neural injury. Until recently, microglia have been studied only in animal models with exogenous or transgenic labeling. While these studies provided a wealth of information on the delicate balance between neuroprotection and neurotoxicity within which these cells operate, extrapolation to human immune function has remained an open question. Here we examine key characteristics of retinal macrophage cells in live human eyes, both healthy and diseased, with the unique capabilities of our adaptive optics–optical coherence tomography approach and owing to their propitious location above the inner limiting membrane (ILM), allowing direct visualization of cells. Our findings indicate that human ILM macrophage cells may be distributed distinctly, age differently, and have different dynamic characteristics than microglia in other animals. For example, we observed a macular pattern that was sparse centrally and peaked peripherally in healthy human eyes. Moreover, human ILM macrophage density decreased with age (∼2% of cells per year). Our results in glaucomatous eyes also indicate that ILM macrophage cells appear to play an early and regionally specific role of nerve fiber layer phagocytosis in areas of active disease. While we investigate ILM macrophage cells distinct from the larger sample of overall retinal microglia, the ability to visualize macrophage cells without fluorescent labeling in the live human eye represents an important advance for both ophthalmology and neuroscience, which may lead to novel disease biomarkers and new avenues of exploration in disease progression.
Collapse
|
45
|
Miller DT, Kurokawa K. Cellular-Scale Imaging of Transparent Retinal Structures and Processes Using Adaptive Optics Optical Coherence Tomography. Annu Rev Vis Sci 2020; 6:115-148. [PMID: 32609578 PMCID: PMC7864592 DOI: 10.1146/annurev-vision-030320-041255] [Citation(s) in RCA: 47] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
High-resolution retinal imaging is revolutionizing how scientists and clinicians study the retina on the cellular scale. Its exquisite sensitivity enables time-lapse optical biopsies that capture minute changes in the structure and physiological processes of cells in the living eye. This information is increasingly used to detect disease onset and monitor disease progression during early stages, raising the possibility of personalized eye care. Powerful high-resolution imaging tools have been in development for more than two decades; one that has garnered considerable interest in recent years is optical coherence tomography enhanced with adaptive optics. State-of-the-art adaptive optics optical coherence tomography (AO-OCT) makes it possible to visualize even highly transparent cells and measure some of their internal processes at all depths within the retina, permitting reconstruction of a 3D view of the living microscopic retina. In this review, we report current AO-OCT performance and its success in visualizing and quantifying these once-invisible cells in human eyes.
Collapse
Affiliation(s)
- Donald T Miller
- School of Optometry, Indiana University, Bloomington, Indiana 47405, USA; ,
| | - Kazuhiro Kurokawa
- School of Optometry, Indiana University, Bloomington, Indiana 47405, USA; ,
| |
Collapse
|
46
|
Janpongsri W, Huang J, Ng R, Wahl DJ, Sarunic MV, Jian Y. Pseudo-real-time retinal layer segmentation for high-resolution adaptive optics optical coherence tomography. JOURNAL OF BIOPHOTONICS 2020; 13:e202000042. [PMID: 32421890 DOI: 10.1002/jbio.202000042] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/13/2020] [Revised: 04/04/2020] [Accepted: 04/28/2020] [Indexed: 06/11/2023]
Abstract
We present a pseudo-real-time retinal layer segmentation for high-resolution Sensorless Adaptive Optics-Optical Coherence Tomography (SAO-OCT). Our pseudo-real-time segmentation method is based on Dijkstra's algorithm that uses the intensity of pixels and the vertical gradient of the image to find the minimum cost in a geometric graph formulation within a limited search region. It segments six retinal layer boundaries in an iterative process according to their order of prominence. The segmentation time is strongly correlated to the number of retinal layers to be segmented. Our program permits en face images to be extracted during data acquisition to guide the depth specific focus control and depth dependent aberration correction for high-resolution SAO-OCT systems. The average processing times for our entire pipeline for segmenting six layers in a retinal B-scan of 496 × 400 and 240 × 400 pixels are around 25.60 and 13.76 ms, respectively. When reducing the number of layers segmented to only two layers, the time required for a 240 × 400 pixel image is 8.26 ms.
Collapse
Affiliation(s)
- Worawee Janpongsri
- Biomedical Optics Research Group, School of Engineering Science, Simon Fraser University, Burnaby, British Columbia, Canada
| | - Joey Huang
- Biomedical Optics Research Group, School of Engineering Science, Simon Fraser University, Burnaby, British Columbia, Canada
| | - Ringo Ng
- Biomedical Optics Research Group, School of Engineering Science, Simon Fraser University, Burnaby, British Columbia, Canada
| | - Daniel J Wahl
- Biomedical Optics Research Group, School of Engineering Science, Simon Fraser University, Burnaby, British Columbia, Canada
| | - Marinko V Sarunic
- Biomedical Optics Research Group, School of Engineering Science, Simon Fraser University, Burnaby, British Columbia, Canada
| | - Yifan Jian
- Casey Eye Institute, Oregon Health & Science University, Portland, OR, USA
- Department of Biomedical Engineering, Oregon Health & Science University, Portland, Oregon, USA
| |
Collapse
|
47
|
Shirazi MF, Brunner E, Laslandes M, Pollreisz A, Hitzenberger CK, Pircher M. Visualizing human photoreceptor and retinal pigment epithelium cell mosaics in a single volume scan over an extended field of view with adaptive optics optical coherence tomography. BIOMEDICAL OPTICS EXPRESS 2020; 11:4520-4535. [PMID: 32923061 PMCID: PMC7449740 DOI: 10.1364/boe.393906] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/27/2020] [Revised: 07/13/2020] [Accepted: 07/17/2020] [Indexed: 05/18/2023]
Abstract
Using adaptive optics optical coherence tomography, human photoreceptors and retinal pigment epithelium (RPE) cells are typically visualized on a small field of view of ∼1° to 2°. In addition, volume averaging is required for visualizing the RPE cell mosaic. To increase the imaging area, we introduce a lens based spectral domain AO-OCT system that shows low aberrations within an extended imaging area of 4°×4° while maintaining a high (theoretical) transverse resolution (at >7 mm pupil diameter) in the order of 2 µm. A new concept for wavefront sensing is introduced that uses light mainly originating from the RPE layer and yields images of the RPE cell mosaic in a single volume acquisition. The capability of the instrument for in vivo imaging is demonstrated by visualizing various cell structures within the posterior retinal layers over an extended field of view.
Collapse
Affiliation(s)
- Muhammad Faizan Shirazi
- Center for Medical Physics and Biomedical
Engineering, Medical University of Vienna, Waehringer Guertel 18-20,
A-1090 Vienna, Austria
| | - Elisabeth Brunner
- Center for Medical Physics and Biomedical
Engineering, Medical University of Vienna, Waehringer Guertel 18-20,
A-1090 Vienna, Austria
| | - Marie Laslandes
- ALPAO 727 rue Aristide Bergès 38330
Montbonnot-Saint-Martin, France
| | - Andreas Pollreisz
- Department of Ophthalmology and Optometry,
Medical University of Vienna, Vienna, Waehringer Guertel 18-20, A-1090
Vienna, Austria
| | - Christoph K. Hitzenberger
- Center for Medical Physics and Biomedical
Engineering, Medical University of Vienna, Waehringer Guertel 18-20,
A-1090 Vienna, Austria
| | - Michael Pircher
- Center for Medical Physics and Biomedical
Engineering, Medical University of Vienna, Waehringer Guertel 18-20,
A-1090 Vienna, Austria
| |
Collapse
|
48
|
Beykin G, Norcia AM, Srinivasan VJ, Dubra A, Goldberg JL. Discovery and clinical translation of novel glaucoma biomarkers. Prog Retin Eye Res 2020; 80:100875. [PMID: 32659431 DOI: 10.1016/j.preteyeres.2020.100875] [Citation(s) in RCA: 51] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2020] [Revised: 06/01/2020] [Accepted: 06/04/2020] [Indexed: 12/16/2022]
Abstract
Glaucoma and other optic neuropathies are characterized by progressive dysfunction and loss of retinal ganglion cells and their axons. Given the high prevalence of glaucoma-related blindness and the availability of treatment options, improving the diagnosis and precise monitoring of progression in these conditions is paramount. Here we review recent progress in the development of novel biomarkers for glaucoma in the context of disease pathophysiology and we propose future steps for the field, including integration of exploratory biomarker outcomes into prospective therapeutic trials. We anticipate that, when validated, some of the novel glaucoma biomarkers discussed here will prove useful for clinical diagnosis and prediction of progression, as well as monitoring of clinical responses to standard and investigational therapies.
Collapse
Affiliation(s)
- Gala Beykin
- Spencer Center for Vision Research at Stanford University, 2370 Watson Ct, Palo Alto, CA, 94303, USA.
| | - Anthony M Norcia
- Department of Psychology, Stanford University, 290 Jane Stanford Way, Stanford, CA, 94305, USA.
| | - Vivek J Srinivasan
- Department of Biomedical Engineering, University of California, Davis, One Shields Ave, Davis, CA, 95616, USA; Department of Ophthalmology and Vision Science, University of California Davis School of Medicine, 4610 X St, Sacramento, CA, 96817, USA.
| | - Alfredo Dubra
- Spencer Center for Vision Research at Stanford University, 2370 Watson Ct, Palo Alto, CA, 94303, USA.
| | - Jeffrey L Goldberg
- Spencer Center for Vision Research at Stanford University, 2370 Watson Ct, Palo Alto, CA, 94303, USA.
| |
Collapse
|
49
|
Zhang Y, Zhang S, Xia Y, Ji Y, Jiang W, Li M, Huang H, Xu M, Sun J, Ye Q, Hu Y, Wu W. In vivo evaluation of retinal ganglion cells and optic nerve's integrity in large animals by multi-modality analysis. Exp Eye Res 2020; 197:108117. [PMID: 32598972 DOI: 10.1016/j.exer.2020.108117] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2020] [Revised: 05/26/2020] [Accepted: 06/14/2020] [Indexed: 12/14/2022]
Abstract
Large animal models of optic nerve injury are essential for translating novel findings into effective therapies due to their similarity to humans in many respects. However, most current tests evaluating the integrity of retinal ganglion cells (RGCs) and optic nerve (ON) are based on rodent animal models. We aimed to evaluate and optimize the in vivo methods to assess RGCs and ON's function and structure in large animals in terms of reproducibility, simplicity and sensitivity. Both goats and rhesus macaques were employed in this study. By using goats, we found anesthesia with isoflurane or xylazine resulted in different effects on reproducibility of flash visual evoked potential (FVEP) and pattern electroretinogram (PERG). FVEP with the large-Ganzfeld stimulator was significantly more stable than that with mini-Ganzfeld stimulator. PERG with simultaneous binocular stimulation, with superior simplicity over separate monocular stimulation, was appliable in goats due to undetectable interocular crosstalk of PERG signals. After ON crush in goats, some FVEP components, PERG, OCT and PLR demonstrated significant changes, in line with the histological study. By using rhesus macaque, we found the implicit time of PVEP, FVEP and PERG were significantly more reproducible than amplitudes, and OCT and PLR demonstrated small intersession variation. In summary, we established an optimized system to evaluate integrity of RGCs and ON in large animals in vivo, facilitating usage of large animal models of optic nerve diseases.
Collapse
Affiliation(s)
- Yikui Zhang
- The Eye Hospital, School of Ophthalmology & Optometry, Wenzhou Medical University, Wenzhou, 325027, China.
| | - Si Zhang
- The Eye Hospital, School of Ophthalmology & Optometry, Wenzhou Medical University, Wenzhou, 325027, China
| | - Yu Xia
- The Eye Hospital, School of Ophthalmology & Optometry, Wenzhou Medical University, Wenzhou, 325027, China
| | - Yuanfei Ji
- The Eye Hospital, School of Ophthalmology & Optometry, Wenzhou Medical University, Wenzhou, 325027, China
| | - Wenhao Jiang
- The Eye Hospital, School of Ophthalmology & Optometry, Wenzhou Medical University, Wenzhou, 325027, China
| | - Mengyun Li
- The Eye Hospital, School of Ophthalmology & Optometry, Wenzhou Medical University, Wenzhou, 325027, China
| | - Haoliang Huang
- Department of Ophthalmology, Stanford University School of Medicine, Palo Alto, United States
| | - Mingna Xu
- The Eye Hospital, School of Ophthalmology & Optometry, Wenzhou Medical University, Wenzhou, 325027, China
| | - Jiaying Sun
- The Eye Hospital, School of Ophthalmology & Optometry, Wenzhou Medical University, Wenzhou, 325027, China
| | - Qian Ye
- The Eye Hospital, School of Ophthalmology & Optometry, Wenzhou Medical University, Wenzhou, 325027, China
| | - Yang Hu
- Department of Ophthalmology, Stanford University School of Medicine, Palo Alto, United States.
| | - Wencan Wu
- The Eye Hospital, School of Ophthalmology & Optometry, Wenzhou Medical University, Wenzhou, 325027, China.
| |
Collapse
|
50
|
Hammer DX, Liu Z, Cava JA, Carroll J, Saeedi O. On the axial location of Gunn's dots. Am J Ophthalmol Case Rep 2020; 19:100757. [PMID: 32551400 PMCID: PMC7287238 DOI: 10.1016/j.ajoc.2020.100757] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2019] [Revised: 05/13/2020] [Accepted: 05/24/2020] [Indexed: 11/28/2022] Open
Abstract
Purpose To determine the axial location of Gunn's dots in the retina. Methods Adaptive optics scanning laser ophthalmoscopy (AOSLO) images and adaptive optics - optical coherence tomography (AO-OCT) volumes were collected from a region where Gunn's dots were found inferior to the optic disc from a subject determined by clinical examination to be a glaucoma suspect. AO-OCT volumes were also collected along the horizontal and vertical meridians from six healthy subjects and one glaucoma subject to identify and document other occurrences of Gunn's dots. AO-OCT volumes were registered in three-dimensions and averaged. Gunn's dots were segmented, and their volume, area, and diameter were measured. Results All Gunn's dots imaged in this study from all subjects were confined to the inner limiting membrane, neither extending into the vitreous nor into the nerve fiber layer. The size of the dots was highly variable. The measured volume, area, and diameter (mean ± standard deviation) were 1119.9 ± 590.9 μm3, 220.2 ± 105.5 μm2, and 14.3 ± 3.1 μm, the latter within the range as previously published reports. Conclusions Based upon evidence from this study and others, Gunn's dots are not thought to be Müller cell end-feet or hyalocytes. We hypothesize that they are related to microglia, either as the by-product of their phagocytosis function, or are actual dead ameboid-shaped microglia who have fulfilled their scavenger role in retinal pathology. Further studies are needed in diseased eyes to determine if they have predictive value.
Collapse
Affiliation(s)
- Daniel X Hammer
- Division of Biomedical Physics, Office of Science and Engineering Laboratories, Center for Devices and Radiological Health, Food and Drug Administration, 10903 New Hampshire Avenue, Silver Spring, MD, 20993, USA
| | - Zhuolin Liu
- Division of Biomedical Physics, Office of Science and Engineering Laboratories, Center for Devices and Radiological Health, Food and Drug Administration, 10903 New Hampshire Avenue, Silver Spring, MD, 20993, USA
| | - Jenna A Cava
- Department of Ophthalmology and Visual Sciences, Medical College of Wisconsin, 925 N. 87th Street, Milwaukee, WI, 53226, USA
| | - Joseph Carroll
- Department of Ophthalmology and Visual Sciences, Medical College of Wisconsin, 925 N. 87th Street, Milwaukee, WI, 53226, USA
| | - Osamah Saeedi
- Department of Ophthalmology and Visual Sciences, University of Maryland School of Medicine, 419 W. Redwood Street, Baltimore, MD, 21201, USA
| |
Collapse
|