1
|
Nair A, Singh M, Aglyamov SR, Larin KV. Convolutional Neural Networks Enable Direct Strain Estimation in Quasistatic Optical Coherence Elastography. JOURNAL OF BIOPHOTONICS 2025:e202400386. [PMID: 40364546 DOI: 10.1002/jbio.202400386] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/27/2024] [Revised: 04/16/2025] [Accepted: 04/16/2025] [Indexed: 05/15/2025]
Abstract
Assessing the biomechanical properties of tissues can provide important information for disease diagnosis and therapeutic monitoring. Optical coherence elastography (OCE) is an emerging technology for measuring the biomechanical properties of tissues. Clinical translation of this technology is underway, and steps are being implemented to streamline data collection and processing. OCE data can be noisy, data processing can require significant manual tuning, and a single acquisition may contain gigabytes of data. In this work, we introduce a convolutional neural network-based method to translate raw OCE phase data to strain for quasistatic OCE that is ~40X faster than the conventional least squares approach by bypassing many intermediate data processing steps. The results suggest that a machine learning approach may be a valuable tool for fast, efficient, and accurate extraction of biomechanical information from raw OCE data.
Collapse
Affiliation(s)
- Achuth Nair
- Department of Biomedical Engineering, University of Houston, Houston, Texas, USA
| | - Manmohan Singh
- Department of Biomedical Engineering, University of Houston, Houston, Texas, USA
| | - Salavat R Aglyamov
- Department of Mechanical Engineering, University of Houston, Houston, Texas, USA
| | - Kirill V Larin
- Department of Biomedical Engineering, University of Houston, Houston, Texas, USA
| |
Collapse
|
2
|
Iriarte‐Valdez CA, Wenzel J, Baron E, Claus AY, Kalies S, Sperlich K, Stachs O, Torres‐Mapa ML, Heisterkamp A. Assessing UVA and Laser-Induced Crosslinking via Brillouin Microscopy. JOURNAL OF BIOPHOTONICS 2025; 18:e202400401. [PMID: 39956631 PMCID: PMC12022390 DOI: 10.1002/jbio.202400401] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/09/2024] [Revised: 01/27/2025] [Accepted: 01/28/2025] [Indexed: 02/18/2025]
Abstract
Keratoconus and other corneal ectatic disorders involve the degradation of collagen fibers, which compromises the corneal biomechanical properties. Ultraviolet-A (UVA) crosslinking has emerged as the primary treatment to slow down collagen degradation. This treatment is limited in both penetration depth and spatial precision, potentially leading to unwanted side effects. This study compares the changes in biomechanical properties of corneas crosslinked with UVA irradiation and a near-infrared femtosecond laser, using Brillouin microscopy. The biomechanical properties of the crosslinked regions were mapped in terms of Brillouin frequency shift in three dimensions. UVA crosslinking showed an average increase in Brillouin frequency shift of ~100 MHz. We demonstrate targeted spatial and axial corneal femtosecond crosslinking, with similar Brillouin frequency shift values to UVA in crosslinked regions.
Collapse
Affiliation(s)
- Christian A. Iriarte‐Valdez
- Institute of Quantum OpticsLeibniz University HannoverHannoverGermany
- Lower Saxony Center for Biomedical EngineeringImplant Research and Development (NIFE)HannoverGermany
| | - Johannes Wenzel
- Institute of Quantum OpticsLeibniz University HannoverHannoverGermany
- Lower Saxony Center for Biomedical EngineeringImplant Research and Development (NIFE)HannoverGermany
| | - Emilie Baron
- Institute of Quantum OpticsLeibniz University HannoverHannoverGermany
- Lower Saxony Center for Biomedical EngineeringImplant Research and Development (NIFE)HannoverGermany
| | - Alexandra Y. Claus
- Institute of Quantum OpticsLeibniz University HannoverHannoverGermany
- Lower Saxony Center for Biomedical EngineeringImplant Research and Development (NIFE)HannoverGermany
| | - Stefan Kalies
- Institute of Quantum OpticsLeibniz University HannoverHannoverGermany
- Lower Saxony Center for Biomedical EngineeringImplant Research and Development (NIFE)HannoverGermany
| | - Karsten Sperlich
- Department of OphthalmologyRostock University Medical CenterRostockGermany
- Department of Life, Light & MatterUniversity of RostockRostockGermany
| | - Oliver Stachs
- Department of OphthalmologyRostock University Medical CenterRostockGermany
- Department of Life, Light & MatterUniversity of RostockRostockGermany
| | - Maria Leilani Torres‐Mapa
- Institute of Quantum OpticsLeibniz University HannoverHannoverGermany
- Lower Saxony Center for Biomedical EngineeringImplant Research and Development (NIFE)HannoverGermany
| | - Alexander Heisterkamp
- Institute of Quantum OpticsLeibniz University HannoverHannoverGermany
- Lower Saxony Center for Biomedical EngineeringImplant Research and Development (NIFE)HannoverGermany
| |
Collapse
|
3
|
Chawla HS, Chen Y, Wu M, Nikitin P, Gutierrez J, Mohan C, Singh M, Aglyamov SR, Assassi S, Larin KV. Assessment of skin fibrosis in a murine model of systemic sclerosis with multifunctional optical coherence tomography. JOURNAL OF BIOMEDICAL OPTICS 2025; 30:036007. [PMID: 40151216 PMCID: PMC11949416 DOI: 10.1117/1.jbo.30.3.036007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/23/2024] [Revised: 03/09/2025] [Accepted: 03/10/2025] [Indexed: 03/29/2025]
Abstract
Significance Systemic sclerosis (SSc) is a chronic idiopathic disease that causes immune dysregulation, vasculopathy, and organ fibrosis that affects more than 3 million people in the US alone. The modified Rodnan skin score (mRSS) is the current gold standard for diagnosing and staging skin fibrosis in SSc. However, mRSS is subjective, requires extensive training, and has high observer variability. Aim We aim to provide a quantitative method for the assessment of fibrosis. Approach We utilized optical coherence tomography (OCT), its extensions, optical coherence elastography (OCE), and OCT angiography (OCTA) to evaluate SSc-like fibrosis and therapy response in a mouse model. Results We showed stiffness differences between fibrotic and normal mouse skin by week 4 ( p = 0.02 ) during the longitudinal study. In the treatment response study, OCE recorded higher elastic wave velocity in untreated fibrotic skin ( p = 0.04 ). Treated fibrotic skin stiffness was between normal and fibrotic levels. OCTA indicated significantly dilated microvasculature in fibrotic skin versus control ( p ≪ 0.01 ), with more dilation in the treatment group ( p ≪ 0.01 ) than in normal skin. Conclusions Our results indicate that OCT and its extensions effectively analyze dermal fibrosis. OCE revealed increased stiffness in fibrotic skin, OCTA showed vessel dilation, and OCT noted morphological changes in fibrosis tissue.
Collapse
Affiliation(s)
| | - Yanping Chen
- University of Houston, Biomedical Engineering, Houston, Texas, United States
| | - Minghua Wu
- University of Texas Health Science Center at Houston (UTHealth Houston), Division of Rheumatology, Department of Medicine, Houston, Texas, United States
| | - Pavel Nikitin
- University of Houston, Biomedical Engineering, Houston, Texas, United States
| | - Jessica Gutierrez
- University of Houston, Biomedical Engineering, Houston, Texas, United States
| | - Chandra Mohan
- University of Houston, Biomedical Engineering, Houston, Texas, United States
| | - Manmohan Singh
- University of Houston, Biomedical Engineering, Houston, Texas, United States
| | - Salavat R. Aglyamov
- University of Houston, Mechanical and Aerospace Engineering, Houston, Texas, United States
| | - Shervin Assassi
- University of Houston, Mechanical and Aerospace Engineering, Houston, Texas, United States
| | - Kirill V. Larin
- University of Texas Health Science Center at Houston (UTHealth Houston), Division of Rheumatology, Department of Medicine, Houston, Texas, United States
- Baylor College of Medicine, Integrative Physiology, Houston, Texas, United States
| |
Collapse
|
4
|
Chavez L, Gao S, Pandey V, Yuan N, Ragab S, Li J, Hepburn MS, Smith P, Edelheit C, Corr DT, Kennedy BF, Intes X. Design and characterization of an optical phantom for mesoscopic multimodal fluorescence lifetime imaging and optical coherence elastography. BIOMEDICAL OPTICS EXPRESS 2025; 16:1006-1024. [PMID: 40109538 PMCID: PMC11919344 DOI: 10.1364/boe.549695] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/21/2024] [Revised: 01/10/2025] [Accepted: 01/22/2025] [Indexed: 03/22/2025]
Abstract
We developed a novel methodology for manufacturing multimodal, tissue-mimicking phantoms that exhibit both molecular and biomechanical contrast. This methodology leverages the immiscibility of silicone and hydrogels to create solid mesoscale phantoms with localized regions of precisely controlled fluorescence, including fluorescence lifetime properties, and adjustable stiffness, without requiring physical barriers. Mechanical, fluorescent, and optical characterization confirmed the tunability of the phantoms across a range of values relevant to biomedical applications. A macroscale 3D phantom was fabricated, and its properties were validated through fluorescence lifetime imaging (FLI) and optical coherence elastography (OCE). Validation demonstrated the successful tuning of both mechanical and fluorescence lifetime contrasts within a 3D structure, highlighting the feasibility of multimodal FLI-OCE. This new phantom manufacturing process is expected to support the development and validation of new multimodal imaging approaches to study molecular and biomechanical properties of the tumor microenvironment (TME), as well as their impact on therapeutic efficacy, and to enhance targeted therapies.
Collapse
Affiliation(s)
- Luis Chavez
- Center for Modeling, Simulation and Imaging for Medicine, Rensselaer Polytechnic Institute, Troy, New York 12180, USA
| | - Shan Gao
- Center for Modeling, Simulation and Imaging for Medicine, Rensselaer Polytechnic Institute, Troy, New York 12180, USA
| | - Vikas Pandey
- Center for Modeling, Simulation and Imaging for Medicine, Rensselaer Polytechnic Institute, Troy, New York 12180, USA
| | - Nanxue Yuan
- Center for Modeling, Simulation and Imaging for Medicine, Rensselaer Polytechnic Institute, Troy, New York 12180, USA
| | - Saif Ragab
- Center for Modeling, Simulation and Imaging for Medicine, Rensselaer Polytechnic Institute, Troy, New York 12180, USA
| | - Jiayue Li
- BRITElab, Harry Perkins Institute of Medical Research, QEII Medical Centre, Nedlands and Centre for Medical Research, The University of Western Australia, Perth, WA 6009, Australia
- Department of Electrical, Electronic and Computer Engineering, School of Engineering, The University of Western Australia, Perth, WA 6009, Australia
| | - Matt S Hepburn
- BRITElab, Harry Perkins Institute of Medical Research, QEII Medical Centre, Nedlands and Centre for Medical Research, The University of Western Australia, Perth, WA 6009, Australia
- Department of Electrical, Electronic and Computer Engineering, School of Engineering, The University of Western Australia, Perth, WA 6009, Australia
| | - Percy Smith
- Center for Modeling, Simulation and Imaging for Medicine, Rensselaer Polytechnic Institute, Troy, New York 12180, USA
| | - Caroline Edelheit
- Center for Modeling, Simulation and Imaging for Medicine, Rensselaer Polytechnic Institute, Troy, New York 12180, USA
| | - David T Corr
- Center for Modeling, Simulation and Imaging for Medicine, Rensselaer Polytechnic Institute, Troy, New York 12180, USA
| | - Brendan F Kennedy
- BRITElab, Harry Perkins Institute of Medical Research, QEII Medical Centre, Nedlands and Centre for Medical Research, The University of Western Australia, Perth, WA 6009, Australia
- Department of Electrical, Electronic and Computer Engineering, School of Engineering, The University of Western Australia, Perth, WA 6009, Australia
- Institute of Physics, Faculty of Physics, Astronomy and Informatics, Nicolaus Copernicus University in Toruń, 5 Grudziądzka St., 87-100 Toruń, Poland
| | - Xavier Intes
- Center for Modeling, Simulation and Imaging for Medicine, Rensselaer Polytechnic Institute, Troy, New York 12180, USA
| |
Collapse
|
5
|
Liu X, Cui M, Feng C, Jin S, Han X, Wu Y, Meng D, Zuo S, Xu Q, Tai Y, Liang F. Clinical evaluation of breast cancer tissue with optical coherence tomography: key findings from a large-scale study. J Cancer Res Clin Oncol 2025; 151:83. [PMID: 39948165 PMCID: PMC11825538 DOI: 10.1007/s00432-025-06125-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2024] [Accepted: 01/26/2025] [Indexed: 02/16/2025]
Abstract
PURPOSE Breast cancer patients undergoing breast-conserving surgery may require a second operation if positive margins persist but current intraoperative methodologies often lack real-time and comprehensive assessments of tissue margins. This study addresses this critical gap by introducing a novel approach to enhance margin assessment in breast surgery. METHODS A total of 252 fresh tissue blocks from 199 patients with different types of breast lesions were scanned with a customized swept-source optical coherence tomography (SS-OCT) system, and the OCT features of normal, benign, and malignant breast tissues, were systematically analyzed. RESULTS The qualitative analysis results revealed that adipose tissue has high penetration depth and a typical honeycomb pattern, whereas fibrous tissue has the brightest grayscale values and a bundle-like structure. The lobular area appears as a dark region, and dilated ducts present a distinct tubular structure on B-scan images. Adenosis results in bright areas, fibroadenoma results in typical contour structures, phyllodes tumors present lobular structures, invasive carcinomas present a stellate pattern and low penetration depth, and mucinous carcinoma cancer cells are clearly visible within the low-scattering mucin. CONCLUSIONS Importantly, we provide comparative OCT and hematoxylin and eosin (H&E) histology images for less common conditions, such as phyllodes tumors, intraductal papillomas, and mucinous carcinoma. For the first time, we established an 3D OCT-histopathology library with a large field of view and systematically analyzed the multidimensional features. This work strongly supports the feasibility of using OCT technology intraoperatively in surgery. Additionally, the OCT-histopathology library can help pathologists better understand and identify tissue features, thereby enhancing diagnostic efficiency.
Collapse
Affiliation(s)
- Xiaojing Liu
- Senior Department of General Surgery, The First Medical Center of Chinese, PLA General Hospital, Fuxing Road, No. 28, Haidian District, Beijing, 100853, China
| | - Miao Cui
- Department of Pathology, Fifth Medical Center of Chinese, PLA General Hospital, Beijing, China
| | - Cuixia Feng
- BeiJing HealthOLight Technology Co., Ltd, Beijing, China
| | - Shujuan Jin
- Senior Department of General Surgery, The First Medical Center of Chinese, PLA General Hospital, Fuxing Road, No. 28, Haidian District, Beijing, 100853, China
| | - Xiaowei Han
- Senior Department of General Surgery, The First Medical Center of Chinese, PLA General Hospital, Fuxing Road, No. 28, Haidian District, Beijing, 100853, China
| | - Yongfang Wu
- Department of Pathology, Fifth Medical Center of Chinese, PLA General Hospital, Beijing, China
| | - Di Meng
- Senior Department of General Surgery, The First Medical Center of Chinese, PLA General Hospital, Fuxing Road, No. 28, Haidian District, Beijing, 100853, China
| | - Si Zuo
- Senior Department of General Surgery, The First Medical Center of Chinese, PLA General Hospital, Fuxing Road, No. 28, Haidian District, Beijing, 100853, China
| | - Qing Xu
- BeiJing HealthOLight Technology Co., Ltd, Beijing, China
| | - YanHong Tai
- Department of Pathology, Fifth Medical Center of Chinese, PLA General Hospital, Beijing, China.
| | - Feng Liang
- Senior Department of General Surgery, The First Medical Center of Chinese, PLA General Hospital, Fuxing Road, No. 28, Haidian District, Beijing, 100853, China.
| |
Collapse
|
6
|
Ravichandran A, Mahajan V, van de Kemp T, Taubenberger A, Bray LJ. Phenotypic analysis of complex bioengineered 3D models. Trends Cell Biol 2025:S0962-8924(24)00257-5. [PMID: 39794253 DOI: 10.1016/j.tcb.2024.12.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2024] [Revised: 12/09/2024] [Accepted: 12/10/2024] [Indexed: 01/13/2025]
Abstract
With advances in underlying technologies such as complex multicellular systems, synthetic materials, and bioengineering techniques, we can now generate in vitro miniaturized human tissues that recapitulate the organotypic features of normal or diseased tissues. Importantly, these 3D culture models have increasingly provided experimental access to diverse and complex tissues architectures and their morphogenic assembly in vitro. This review presents an analytical toolbox for biological researchers using 3D modeling technologies through which they can find a collation of currently available methods to phenotypically assess their 3D models in their normal state as well as their response to therapeutic or pathological agents.
Collapse
Affiliation(s)
- Akhilandeshwari Ravichandran
- Centre for Biomedical Technologies, Queensland University of Technology (QUT), Brisbane, QLD 4059, Australia; School of Mechanical, Medical, and Process Engineering, Queensland University of Technology (QUT), Brisbane, QLD 4059, Australia
| | - Vaibhav Mahajan
- Biotechnology Center, Center for Molecular and Cellular Bioengineering (CMCB), Technische Universität Dresden, 01307 Dresden, Germany
| | - Tom van de Kemp
- Centre for Biomedical Technologies, Queensland University of Technology (QUT), Brisbane, QLD 4059, Australia; School of Mechanical, Medical, and Process Engineering, Queensland University of Technology (QUT), Brisbane, QLD 4059, Australia
| | - Anna Taubenberger
- Biotechnology Center, Center for Molecular and Cellular Bioengineering (CMCB), Technische Universität Dresden, 01307 Dresden, Germany
| | - Laura J Bray
- Centre for Biomedical Technologies, Queensland University of Technology (QUT), Brisbane, QLD 4059, Australia; School of Mechanical, Medical, and Process Engineering, Queensland University of Technology (QUT), Brisbane, QLD 4059, Australia; Australian Research Council (ARC) Training Centre for Cell and Tissue Engineering Technologies, Queensland University of Technology (QUT), Brisbane, QLD 4059, Australia.
| |
Collapse
|
7
|
Duvvuri C, Singh M, Lan G, Aglyamov SR, Larin KV, Twa MD. Determinants of Human Corneal Mechanical Wave Dispersion for In Vivo Optical Coherence Elastography. Transl Vis Sci Technol 2025; 14:26. [PMID: 39854195 PMCID: PMC11760281 DOI: 10.1167/tvst.14.1.26] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2024] [Accepted: 12/10/2024] [Indexed: 01/26/2025] Open
Abstract
Purpose To characterize frequency-dependent wave speed dispersion in the human cornea using microliter air-pulse optical coherence elastography (OCE), and to evaluate the applicability of Lamb wave theory for determining corneal elastic modulus using high-frequency symmetric (S0) and anti-symmetric (A0) guided waves in cornea. Methods Wave speed dispersion analysis for transient (0.5 ms) microliter air-pulse stimulation was performed in four rabbit eyes ex vivo and compared to air-coupled ultrasound excitation. The effects of stimulation angle and sample geometry on the dispersion were evaluated in corneal phantoms. Corneal wave speed dispersion was measured in 36 healthy human eyes in vivo. Results Air-pulse-induced dispersion was comparable to ultrasound-induced dispersion between 0.7 and 5 kHz (mean-difference ± 1.96 × SD: 0.006 ± 0.5 m/s) in ex vivo rabbit corneas. Stimulation 0° relative to the surface normal generated A0 Lamb waves in corneal tissue phantoms, while oblique stimulation (35° and 65°) generated S0 waves. Stimulating normal to the human corneal apex in vivo (0°) induced A0 waves, plateauing at 10.87 to 13.63 m/s at 4 kHz, and when obliquely stimulated at the periphery (65°), produced S0 waves, plateauing at 13.10 to 15.98 m/s at 4 kHz. Conclusions Air-pulse OCE can be used to measure human corneal Lamb wave dispersion of A0 and S0 propagation modes in vivo. These modes are selectively excited by changing the stimulation angle. Accounting for wave speed dispersion enables reliable estimation of corneal elastic modulus in vivo. Translational Relevance This work demonstrates the feasibility of air-pulse stimulation for robust OCE measurements of corneal stiffness in vivo for disease detection and therapy evaluation.
Collapse
Affiliation(s)
| | - Manmohan Singh
- Department of Biomedical Engineering, University of Houston, Houston, TX, USA
| | - Gongpu Lan
- School of Physics and Optoelectronic Engineering, Foshan University, Foshan, Guangdong, China
| | - Salavat R. Aglyamov
- Department of Mechanical Engineering, University of Houston, Houston, TX, USA
| | - Kirill V. Larin
- Department of Biomedical Engineering, University of Houston, Houston, TX, USA
| | - Michael D. Twa
- College of Optometry, University of Houston, Houston, TX, USA
| |
Collapse
|
8
|
Doug Deen A, López-Marín A, Riksen JJM, van der Steen AFW, van Soest G. Photothermal optical coherence microscopy for studying lipid architecture in human carotid arteries. BIOMEDICAL OPTICS EXPRESS 2024; 15:6654-6669. [PMID: 39679395 PMCID: PMC11640572 DOI: 10.1364/boe.534800] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/08/2024] [Revised: 08/27/2024] [Accepted: 08/27/2024] [Indexed: 12/17/2024]
Abstract
Photothermal optical coherence microscopy (PT-OCM) combines the high-resolution, label-free morphological imaging of OCM with the ability to discriminate tissue composition through phase-sensitive photothermal imaging. In this study, we perform 2D imaging of human carotid endarterectomies to spectrally determine lipid distribution, with verification via histologically stained samples. The structural information from OCM is combined with the spectral information gained from measuring the resulting sample surface displacement from thermoelastic expansion, following light irradiation. PT-OCM is thus demonstrated as a potential tool in the investigation of atherosclerotic plaque lipids, contributing towards the understanding of plaque instability.
Collapse
Affiliation(s)
- Aaron Doug Deen
- Department of Cardiology, Cardiovascular Institute, Thorax Center, Erasmus MC, The Netherlands
| | - Antonio López-Marín
- Department of Cardiology, Cardiovascular Institute, Thorax Center, Erasmus MC, The Netherlands
| | - Jonas J. M. Riksen
- Department of Cardiology, Cardiovascular Institute, Thorax Center, Erasmus MC, The Netherlands
| | - Antonius F. W. van der Steen
- Department of Cardiology, Cardiovascular Institute, Thorax Center, Erasmus MC, The Netherlands
- Department of Imaging Science and Technology, Delft University of Technology, The Netherlands
- Department of Precision and Microsystems Engineering, Delft University of Technology, The Netherlands
| | - Gijs van Soest
- Department of Cardiology, Cardiovascular Institute, Thorax Center, Erasmus MC, The Netherlands
- Department of Precision and Microsystems Engineering, Delft University of Technology, The Netherlands
- Wellman Center for Photomedicine, Massachusetts General Hospital, Boston, USA
| |
Collapse
|
9
|
Zaitsev VY, Matveev LA, Matveyev AL, Plekhanov AA, Gubarkova EV, Kiseleva EB, Sovetsky AA. Geophysics-Inspired Nonlinear Stress-Strain Law for Biological Tissues and Its Applications in Compression Optical Coherence Elastography. MATERIALS (BASEL, SWITZERLAND) 2024; 17:5023. [PMID: 39459728 PMCID: PMC11509212 DOI: 10.3390/ma17205023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/21/2024] [Revised: 09/19/2024] [Accepted: 09/26/2024] [Indexed: 10/28/2024]
Abstract
We propose a nonlinear stress-strain law to describe nonlinear elastic properties of biological tissues using an analogy with the derivation of nonlinear constitutive laws for cracked rocks. The derivation of such a constitutive equation has been stimulated by the recently developed experimental technique-quasistatic Compression Optical Coherence Elastography (C-OCE). C-OCE enables obtaining nonlinear stress-strain dependences relating the applied uniaxial compressive stress and the axial component of the resultant strain in the tissue. To adequately describe nonlinear stress-strain dependences obtained with C-OCE for various tissues, the central idea is that, by analogy with geophysics, nonlinear elastic response of tissues is mostly determined by the histologically confirmed presence of interstitial gaps/pores resembling cracks in rocks. For the latter, the nonlinear elastic response is mostly determined by elastic properties of narrow cracks that are highly compliant and can easily be closed by applied compressing stress. The smaller the aspect ratio of such a gap/crack, the smaller the stress required to close it. Upon reaching sufficiently high compressive stress, almost all such gaps become closed, so that with further increase in the compressive stress, the elastic response of the tissue becomes nearly linear and is determined by the Young's modulus of the host tissue. The form of such a nonlinear dependence is determined by the distribution of the cracks/gaps over closing pressures; for describing this process, an analogy with geophysics is also used. After presenting the derivation of the proposed nonlinear law, we demonstrate that it enables surprisingly good fitting of experimental stress-strain curves obtained with C-OCE for a broad range of various tissues. Unlike empirical fitting, each of the fitting parameters in the proposed law has a clear physical meaning. The linear and nonlinear elastic parameters extracted using this law have already demonstrated high diagnostic value, e.g., for differentiating various types of cancerous and noncancerous tissues.
Collapse
Affiliation(s)
- Vladimir Y. Zaitsev
- A.V. Gaponov-Grekhov Institute of Applied Physics of the Russian Academy of Sciences, Uljanova St., 46, Nizhny Novgorod 603950, Russia; (L.A.M.); (A.L.M.); (A.A.S.)
| | - Lev A. Matveev
- A.V. Gaponov-Grekhov Institute of Applied Physics of the Russian Academy of Sciences, Uljanova St., 46, Nizhny Novgorod 603950, Russia; (L.A.M.); (A.L.M.); (A.A.S.)
| | - Alexander L. Matveyev
- A.V. Gaponov-Grekhov Institute of Applied Physics of the Russian Academy of Sciences, Uljanova St., 46, Nizhny Novgorod 603950, Russia; (L.A.M.); (A.L.M.); (A.A.S.)
| | - Anton A. Plekhanov
- Privolzhsky Research Medical University, 10/1 Minin and Pozharsky Sq., Nizhny Novgorod 603005, Russia; (A.A.P.); (E.V.G.); (E.B.K.)
| | - Ekaterina V. Gubarkova
- Privolzhsky Research Medical University, 10/1 Minin and Pozharsky Sq., Nizhny Novgorod 603005, Russia; (A.A.P.); (E.V.G.); (E.B.K.)
| | - Elena B. Kiseleva
- Privolzhsky Research Medical University, 10/1 Minin and Pozharsky Sq., Nizhny Novgorod 603005, Russia; (A.A.P.); (E.V.G.); (E.B.K.)
| | - Alexander A. Sovetsky
- A.V. Gaponov-Grekhov Institute of Applied Physics of the Russian Academy of Sciences, Uljanova St., 46, Nizhny Novgorod 603950, Russia; (L.A.M.); (A.L.M.); (A.A.S.)
| |
Collapse
|
10
|
Schmidt G, Bouma BE, Uribe-Patarroyo N. Asynchronous, semi-reverberant elastography. OPTICA 2024; 11:1285-1294. [PMID: 40109673 PMCID: PMC11922557 DOI: 10.1364/optica.528507] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/01/2024] [Accepted: 08/12/2024] [Indexed: 03/22/2025]
Abstract
Optical coherence elastography measures elasticity-a property correlated with pathologies such as tumors due to fibrosis, atherosclerosis due to heterogeneous plaque composition, and ocular diseases such as keratoconus and glaucoma. Wave-based elastography, including reverberant elastography, leverages the properties of shear waves traveling through tissue primarily to infer shear modulus. These methods have already seen significant development over the past decade. However, existing implementations in OCT require robust synchronization of shear wave excitation with imaging, complicating widespread clinical adoption. We present a method for complete recovery of the harmonic shear wave field in an asynchronous, conventional frame-rate, raster-scanning OCT system by modeling raster-scanning as an amplitude modulation of the displacement field. This technique recovers the entire spatially and temporally coherent complex valued shear wave field from just two B-scans, while reducing the time scale for sensitivity to motion from minutes to tens of milliseconds. To the best of our knowledge, this work represents the first successful demonstration of reverberant elastography on a human subject in vivo with a conventional frame-rate, raster-scanning OCT system, greatly expanding opportunity for widespread translation.
Collapse
Affiliation(s)
- Ginger Schmidt
- Wellman Center for Photomedicine, Harvard Medical School and Massachusetts General Hospital, 40 Blossom Street, Boston, Massachusetts 02114, USA
- Institute for Medical Engineering and Science, Massachusetts Institute of Technology, Cambridge, 77 Massachusetts Avenue, Massachusetts 02139, USA
| | - Brett E Bouma
- Wellman Center for Photomedicine, Harvard Medical School and Massachusetts General Hospital, 40 Blossom Street, Boston, Massachusetts 02114, USA
- Institute for Medical Engineering and Science, Massachusetts Institute of Technology, Cambridge, 77 Massachusetts Avenue, Massachusetts 02139, USA
| | - Néstor Uribe-Patarroyo
- Wellman Center for Photomedicine, Harvard Medical School and Massachusetts General Hospital, 40 Blossom Street, Boston, Massachusetts 02114, USA
| |
Collapse
|
11
|
Mekonnen TT, Ambekar YS, Zevallos-Delgado C, Nair A, Zvietcovich F, Zarkoob H, Singh M, Lim YW, Ferrer M, Aglyamov SR, Scarcelli G, Song MJ, Larin KV. Dual optical elastography detects TGF - β -induced alterations in the biomechanical properties of skin scaffolds. JOURNAL OF BIOMEDICAL OPTICS 2024; 29:095002. [PMID: 39295639 PMCID: PMC11409821 DOI: 10.1117/1.jbo.29.9.095002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/11/2024] [Revised: 08/27/2024] [Accepted: 09/03/2024] [Indexed: 09/21/2024]
Abstract
Significance The skin's mechanical properties are tightly regulated. Various pathologies can affect skin stiffness, and understanding these changes is a focus in tissue engineering. Ex vivo skin scaffolds are a robust platform for evaluating the effects of various genetic and molecular interactions on the skin. Transforming growth factor-beta ( TGF - β ) is a critical signaling molecule in the skin that can regulate the amount of collagen and elastin in the skin and, consequently, its mechanical properties. Aim This study investigates the biomechanical properties of bio-engineered skin scaffolds, focusing on the influence of TGF - β , a signaling molecule with diverse cellular functions. Approach The TGF - β receptor I inhibitor, galunisertib, was employed to assess the mechanical changes resulting from dysregulation of TGF - β . Skin scaffold samples, grouped into three categories (control, TGF - β -treated, and TGF - β + galunisertib-treated), were prepared in two distinct culture media-one with aprotinin (AP) and another without. Two optical elastography techniques, namely wave-based optical coherence elastography (OCE) and Brillouin microscopy, were utilized to quantify the biomechanical properties of the tissues. Results Results showed significantly higher wave speed (with AP, p < 0.001 ; without AP, p < 0.001 ) and Brillouin frequency shift (with AP, p < 0.001 ; without AP, p = 0.01 ) in TGF - β -treated group compared with the control group. The difference in wave speed between the control and TGF - β + galunisertib with ( p = 0.10 ) and without AP ( p = 0.36 ) was not significant. Moreover, the TGF - β + galunisertib-treated group exhibited lower wave speed without and with AP and reduced Brillouin frequency shift than the TGF - β -treated group without AP, further strengthening the potential role of TGF - β in regulating the mechanical properties of the samples. Conclusions These findings offer valuable insights into TGF - β -induced biomechanical alterations in bio-engineered skin scaffolds, highlighting the potential of OCE and Brillouin microscopy in the development of targeted therapies in conditions involving abnormal tissue remodeling and fibrosis.
Collapse
Affiliation(s)
- Taye T. Mekonnen
- University of Houston, Department of Biomedical Engineering, Houston, Texas, United States
- University of Sydney, Department of Mechanical Engineering, Sydney, New South Wales, Australia
| | - Yogeshwari S. Ambekar
- University of Houston, Department of Biomedical Engineering, Houston, Texas, United States
- University of Maryland, Fischell Department of Bioengineering, College Park, Maryland, United States
| | | | - Achuth Nair
- University of Houston, Department of Biomedical Engineering, Houston, Texas, United States
| | - Fernando Zvietcovich
- University of Houston, Department of Biomedical Engineering, Houston, Texas, United States
- Pontificia Universidad Catolica del Peru, Department of Engineering, Lima, Peru
| | - Hoda Zarkoob
- National Institutes of Health, National Center for Advancing Translational Sciences, Rockville, Maryland, United States
| | - Manmohan Singh
- University of Houston, Department of Biomedical Engineering, Houston, Texas, United States
| | - Yi Wei Lim
- National Institutes of Health, National Center for Advancing Translational Sciences, Rockville, Maryland, United States
| | - Marc Ferrer
- National Institutes of Health, National Center for Advancing Translational Sciences, Rockville, Maryland, United States
| | - Salavat R. Aglyamov
- University of Houston, Department of Mechanical Engineering, Houston, Texas, United States
| | - Giuliano Scarcelli
- University of Maryland, Fischell Department of Bioengineering, College Park, Maryland, United States
| | - Min Jae Song
- National Institutes of Health, National Center for Advancing Translational Sciences, Rockville, Maryland, United States
| | - Kirill V. Larin
- University of Houston, Department of Biomedical Engineering, Houston, Texas, United States
| |
Collapse
|
12
|
Zheng Z, Meng Sua Y, Zhu S, Rehain P, Huang YP. Non-contact elasticity contrast imaging using photon counting. JOURNAL OF BIOMEDICAL OPTICS 2024; 29:076003. [PMID: 38989529 PMCID: PMC11234449 DOI: 10.1117/1.jbo.29.7.076003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/23/2024] [Revised: 05/17/2024] [Accepted: 05/17/2024] [Indexed: 07/12/2024]
Abstract
Significance Tissues' biomechanical properties, such as elasticity, are related to tissue health. Optical coherence elastography produces images of tissues based on their elasticity, but its performance is constrained by the laser power used, working distance, and excitation methods. Aim We develop a new method to reconstruct the elasticity contrast image over a long working distance, with only low-intensity illumination, and by non-contact acoustic wave excitation. Approach We combine single-photon vibrometry and quantum parametric mode sorting (QPMS) to measure the oscillating backscattered signals at a single-photon level and derive the phantoms' relative elasticity. Results We test our system on tissue-mimicking phantoms consisting of contrast sections with different concentrations and thus stiffness. Our results show that as the driving acoustic frequency is swept, the phantoms' vibrational responses are mapped onto the photon-counting histograms from which their mechanical properties-including elasticity-can be derived. Through lateral and longitudinal laser scanning at a fixed frequency, a contrast image based on samples' elasticity can be reliably reconstructed upon photon level signals. Conclusions We demonstrated the reliability of QPMS-based elasticity contrast imaging of agar phantoms in a long working distance, low-intensity environment. This technique has the potential for in-depth images of real biological tissue and provides a new approach to elastography research and applications.
Collapse
Affiliation(s)
- Zipei Zheng
- Stevens Institute of Technology, Center for Quantum Science and Engineering, Department of Physics, Hoboken, New Jersey, United States
| | - Yong Meng Sua
- Stevens Institute of Technology, Center for Quantum Science and Engineering, Department of Physics, Hoboken, New Jersey, United States
| | - Shenyu Zhu
- Stevens Institute of Technology, Center for Quantum Science and Engineering, Department of Physics, Hoboken, New Jersey, United States
| | - Patrick Rehain
- Stevens Institute of Technology, Center for Quantum Science and Engineering, Department of Physics, Hoboken, New Jersey, United States
| | - Yu-Ping Huang
- Stevens Institute of Technology, Center for Quantum Science and Engineering, Department of Physics, Hoboken, New Jersey, United States
| |
Collapse
|
13
|
Burhan S, Detrez N, Rewerts K, Strenge P, Buschschlüter S, Kren J, Hagel C, Bonsanto MM, Brinkmann R, Huber R. Phase unwrapping for MHz optical coherence elastography and application to brain tumor tissue. BIOMEDICAL OPTICS EXPRESS 2024; 15:1038-1058. [PMID: 38404346 PMCID: PMC10890849 DOI: 10.1364/boe.510020] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/24/2023] [Revised: 12/15/2023] [Accepted: 12/17/2023] [Indexed: 02/27/2024]
Abstract
During neuro-oncologic surgery, phase-sensitive optical coherence elastography (OCE) can be valuable for distinguishing between healthy and diseased tissue. However, the phase unwrapping process required to retrieve the original phase signal is a challenging and critical task. To address this issue, we demonstrate a one-dimensional unwrapping algorithm that recovers the phase signal from a 3.2 MHz OCE system. With a processing time of approximately 0.11 s per frame on the GPU, multiple 2π wraps are detected and corrected. By utilizing this approach, exact and reproducible information on tissue deformation can be obtained with pixel accuracy over the entire acquisition time. Measurements of brain tumor-mimicking phantoms and human ex vivo brain tumor samples verified the algorithm's reliability. The tissue samples were subjected to a 200 ms short air pulse. A correlation with histological findings confirmed the algorithm's dependability.
Collapse
Affiliation(s)
- Sazgar Burhan
- Institut für Biomedizinische Optik, Universität zu Lübeck, Peter-Monnik-Weg 4, 23562 Lübeck, Germany
| | - Nicolas Detrez
- Medizinisches Laserzentrum Lübeck GmbH, Peter-Monnik-Weg 4, 23562 Lübeck, Germany
| | - Katharina Rewerts
- Institut für Biomedizinische Optik, Universität zu Lübeck, Peter-Monnik-Weg 4, 23562 Lübeck, Germany
| | - Paul Strenge
- Medizinisches Laserzentrum Lübeck GmbH, Peter-Monnik-Weg 4, 23562 Lübeck, Germany
| | | | - Jessica Kren
- Klinik für Neurochirurgie, Universitätsklinikum Schleswig-Holstein, Campus Lübeck, Ratzeburger Allee 160, 23562 Lübeck, Germany
| | - Christian Hagel
- Institut für Neuropathologie, Universitätsklinikum Hamburg-Eppendorf, Martinistrasse 52, 20251 Hamburg, Germany
| | - Matteo Mario Bonsanto
- Institut für Neuropathologie, Universitätsklinikum Hamburg-Eppendorf, Martinistrasse 52, 20251 Hamburg, Germany
| | - Ralf Brinkmann
- Institut für Biomedizinische Optik, Universität zu Lübeck, Peter-Monnik-Weg 4, 23562 Lübeck, Germany
- Medizinisches Laserzentrum Lübeck GmbH, Peter-Monnik-Weg 4, 23562 Lübeck, Germany
| | - Robert Huber
- Institut für Biomedizinische Optik, Universität zu Lübeck, Peter-Monnik-Weg 4, 23562 Lübeck, Germany
- Medizinisches Laserzentrum Lübeck GmbH, Peter-Monnik-Weg 4, 23562 Lübeck, Germany
| |
Collapse
|
14
|
Salimi M, Roshanfar M, Tabatabaei N, Mosadegh B. Machine Learning-Assisted Short-Wave InfraRed (SWIR) Techniques for Biomedical Applications: Towards Personalized Medicine. J Pers Med 2023; 14:33. [PMID: 38248734 PMCID: PMC10817559 DOI: 10.3390/jpm14010033] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2023] [Revised: 12/08/2023] [Accepted: 12/20/2023] [Indexed: 01/23/2024] Open
Abstract
Personalized medicine transforms healthcare by adapting interventions to individuals' unique genetic, molecular, and clinical profiles. To maximize diagnostic and/or therapeutic efficacy, personalized medicine requires advanced imaging devices and sensors for accurate assessment and monitoring of individual patient conditions or responses to therapeutics. In the field of biomedical optics, short-wave infrared (SWIR) techniques offer an array of capabilities that hold promise to significantly enhance diagnostics, imaging, and therapeutic interventions. SWIR techniques provide in vivo information, which was previously inaccessible, by making use of its capacity to penetrate biological tissues with reduced attenuation and enable researchers and clinicians to delve deeper into anatomical structures, physiological processes, and molecular interactions. Combining SWIR techniques with machine learning (ML), which is a powerful tool for analyzing information, holds the potential to provide unprecedented accuracy for disease detection, precision in treatment guidance, and correlations of complex biological features, opening the way for the data-driven personalized medicine field. Despite numerous biomedical demonstrations that utilize cutting-edge SWIR techniques, the clinical potential of this approach has remained significantly underexplored. This paper demonstrates how the synergy between SWIR imaging and ML is reshaping biomedical research and clinical applications. As the paper showcases the growing significance of SWIR imaging techniques that are empowered by ML, it calls for continued collaboration between researchers, engineers, and clinicians to boost the translation of this technology into clinics, ultimately bridging the gap between cutting-edge technology and its potential for personalized medicine.
Collapse
Affiliation(s)
| | - Majid Roshanfar
- Department of Mechanical Engineering, Concordia University, Montreal, QC H3G 1M8, Canada;
| | - Nima Tabatabaei
- Department of Mechanical Engineering, York University, Toronto, ON M3J 1P3, Canada;
| | - Bobak Mosadegh
- Dalio Institute of Cardiovascular Imaging, Department of Radiology, Weill Cornell Medicine, New York, NY 10021, USA
| |
Collapse
|
15
|
Desai R, Chawla H, Larin K, Assassi S. Methods for objective assessment of skin involvement in systemic sclerosis. Curr Opin Rheumatol 2023; 35:301-308. [PMID: 37605869 PMCID: PMC11015902 DOI: 10.1097/bor.0000000000000968] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/23/2023]
Abstract
PURPOSE OF REVIEW Skin fibrosis is the most prominent disease manifestation of systemic sclerosis (SSc). Although the treatment for other SSc manifestations has expanded over the years, there is limited progress in identifying effective treatment options for SSc skin involvement. This is in part due to limitations in the utilized outcome measures for assessment of skin fibrosis. This review focuses on different emerging assessment tools for SSc skin involvement and their potential use for clinical care and multicenter trials. RECENT FINDINGS Durometer and other device-based methodologies requiring application of direct pressure to the affected skin have been studied in SSc. However, there are concerns that the required application of pressure might be a source of variability. Ultrasound-based methods have been compared with modified Rodnan Skin Score in several studies, indicating acceptable construct validity. However, few studies have examined their criterion validity by providing comparisons to skin histology. Optical coherence-based methods show promising preliminary results for simultaneous assessment of skin fibrosis and vasculopathy. Further standardization and validation (including comparison to skin histology) of these promising novel assessment tools in large, longitudinal SSc cohort studies are needed to establish them as clinically useful outcome measures with acceptable sensitivity to change. SUMMARY Recent advances in imaging techniques provide a promising opportunity for development of a valid and reliable assessment tool for quantification of SSc skin fibrosis, which can pave the way for approval of effective treatment options for this high burden disease manifestation.
Collapse
Affiliation(s)
- Ruhani Desai
- Division of Rheumatology, The University of Texas Health Science Center at Houston, TX, USA
| | - Harshdeep Chawla
- Department of Biomedical Engineering, University of Houston, Houston, TX, USA
| | - Kirill Larin
- Department of Biomedical Engineering, University of Houston, Houston, TX, USA
| | - Shervin Assassi
- Division of Rheumatology, The University of Texas Health Science Center at Houston, TX, USA
| |
Collapse
|
16
|
Hatami M, Nevozhay D, Singh M, Schill A, Boerner P, Aglyamov S, Sokolov K, Larin KV. Nanobomb optical coherence elastography in multilayered phantoms. BIOMEDICAL OPTICS EXPRESS 2023; 14:5670-5681. [PMID: 38021113 PMCID: PMC10659790 DOI: 10.1364/boe.502576] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/04/2023] [Revised: 09/23/2023] [Accepted: 10/03/2023] [Indexed: 12/01/2023]
Abstract
Many tissues are composed of layered structures, and a better understanding of the changes in the layered tissue biomechanics can enable advanced guidance and monitoring of therapy. The advent of elastography using longitudinally propagating shear waves (LSWs) has created the prospect of a high-resolution assessment of depth-dependent tissue elasticity. Laser activation of liquid-to-gas phase transition of dye-loaded perfluorocarbon (PFC) nanodroplets (a.k.a., nanobombs) can produce highly localized LSWs. This study aims to leverage the potential of photoactivation of nanobombs to incudce LSWs with very high-frequency content in wave-based optical coherence elastography (OCE) to estimate the elasticity gradient with high resolution. In this work, we used multilayered tissue-mimicking phantoms to demonstrate that highly localized nanobomb (NB)-induced LSWs can discriminate depth-wise tissue elasticity gradients. The results show that the NB-induced LSWs rapidly change speed when transitioning between layers with different mechanical properties, resulting in an elasticity resolution of ∼65 µm. These results show promise for characterizing the elasticity of multilayer tissue with a fine resolution.
Collapse
Affiliation(s)
- Maryam Hatami
- Department of Biomedical Engineering, University of Houston, Houston, Texas 77204, USA
| | - Dmitry Nevozhay
- Department of Imaging Physics, University of Texas MD Anderson Cancer Center, Houston, Texas 77030, USA
| | - Manmohan Singh
- Department of Biomedical Engineering, University of Houston, Houston, Texas 77204, USA
| | - Alexander Schill
- Department of Biomedical Engineering, University of Houston, Houston, Texas 77204, USA
| | - Paul Boerner
- Department of Biomedical Engineering, University of Houston, Houston, Texas 77204, USA
| | - Salavat Aglyamov
- Department of Mechanical Engineering, University of Houston, Houston, Texas 77204, USA
| | - Konstantin Sokolov
- Department of Imaging Physics, University of Texas MD Anderson Cancer Center, Houston, Texas 77030, USA
- Department of Bioengineering, Rice University, Houston, Texas 77030, USA
| | - Kirill V Larin
- Department of Biomedical Engineering, University of Houston, Houston, Texas 77204, USA
| |
Collapse
|
17
|
Mekonnen T, Schill AW, Zevallos-Delgado C, Singh M, Aglyamov SR, Larin KV. Reverberant optical coherence elastography using multifocal acoustic radiation force. OPTICS LETTERS 2023; 48:2773-2776. [PMID: 37262207 DOI: 10.1364/ol.482201] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/28/2022] [Accepted: 04/15/2023] [Indexed: 06/03/2023]
Abstract
In this study, we introduce a multifocal acoustic radiation force source that combines an ultrasound transducer and a 3D-printed acoustic lens for application in reverberant optical coherence elastography (Rev-OCE). An array of plano-concave acoustic lenses, each with an 11.8 mm aperture diameter, were used to spatially distribute the acoustic energy generated by a 1 MHz planar ultrasound transducer, producing multiple focal spots on a target plane. These focal spots generate reverberant shear wave fields detected by the optical coherence tomography (OCT) system. The effectiveness of the multifocal Rev-OCE system in probing mechanical properties with high resolution is demonstrated in layered gelatin phantoms.
Collapse
|
18
|
Mekonnen T, Zevallos-Delgado C, Zhang H, Singh M, Aglyamov SR, Larin KV. The lens capsule significantly affects the viscoelastic properties of the lens as quantified by optical coherence elastography. Front Bioeng Biotechnol 2023; 11:1134086. [PMID: 36970614 PMCID: PMC10034121 DOI: 10.3389/fbioe.2023.1134086] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2022] [Accepted: 02/21/2023] [Indexed: 03/11/2023] Open
Abstract
The crystalline lens is a transparent, biconvex structure that has its curvature and refractive power modulated to focus light onto the retina. This intrinsic morphological adjustment of the lens to fulfill changing visual demands is achieved by the coordinated interaction between the lens and its suspension system, which includes the lens capsule. Thus, characterizing the influence of the lens capsule on the whole lens’s biomechanical properties is important for understanding the physiological process of accommodation and early diagnosis and treatment of lenticular diseases. In this study, we assessed the viscoelastic properties of the lens using phase-sensitive optical coherence elastography (PhS-OCE) coupled with acoustic radiation force (ARF) excitation. The elastic wave propagation induced by ARF excitation, which was focused on the surface of the lens, was tracked with phase-sensitive optical coherence tomography. Experiments were conducted on eight freshly excised porcine lenses before and after the capsular bag was dissected away. Results showed that the group velocity of the surface elastic wave, V, in the lens with the capsule intact (V=2.55±0.23 m/s) was significantly higher (p < 0.001) than after the capsule was removed (V=1.19±0.25 m/s). Similarly, the viscoelastic assessment using a model that utilizes the dispersion of a surface wave showed that both Young’s modulus, E, and shear viscosity coefficient, η, of the encapsulated lens (E=8.14±1.10 kPa,η=0.89±0.093 Pa∙s) were significantly higher than that of the decapsulated lens (E=3.10±0.43 kPa,η=0.28±0.021 Pa∙s). These findings, together with the geometrical change upon removal of the capsule, indicate that the capsule plays a critical role in determining the viscoelastic properties of the crystalline lens.
Collapse
Affiliation(s)
- Taye Mekonnen
- Department of Biomedical Engineering, University of Houston, Houston, TX, United States
| | | | - Hongqiu Zhang
- Department of Biomedical Engineering, University of Houston, Houston, TX, United States
| | - Manmohan Singh
- Department of Biomedical Engineering, University of Houston, Houston, TX, United States
| | - Salavat R. Aglyamov
- Department of Mechanical Engineering, University of Houston, Houston, TX, United States
| | - Kirill V. Larin
- Department of Biomedical Engineering, University of Houston, Houston, TX, United States
- *Correspondence: Kirill V. Larin,
| |
Collapse
|
19
|
Zaitsev VY, Sovetsky AA, Matveyev AL, Matveev LA, Shabanov D, Salamatova VY, Karavaikin PA, Vassilevski YV. Application of compression optical coherence elastography for characterization of human pericardium: A pilot study. JOURNAL OF BIOPHOTONICS 2023; 16:e202200253. [PMID: 36397665 DOI: 10.1002/jbio.202200253] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/09/2022] [Revised: 10/23/2022] [Accepted: 11/16/2022] [Indexed: 06/16/2023]
Abstract
The recent impressive progress in Compression Optical Coherence Elastography (C-OCE) demonstrated diverse biomedical applications, comprising ophthalmology, oncology, etc. High resolution of C-OCE enables spatially resolved characterization of elasticity of rather thin (thickness < 1 mm) samples, which previously was impossible. Besides Young's modulus, C-OCE enables obtaining of nonlinear stress-strain dependences for various tissues. Here, we report the first application of C-OCE to nondestructively characterize biomechanics of human pericardium, for which data of conventional tensile tests are very limited and controversial. C-OCE revealed pronounced differences among differently prepared pericardium samples. Ample understanding of the influence of chemo-mechanical treatment on pericardium biomechanics is very important because of rapidly growing usage of own patients' pericardium for replacement of aortic valve leaflets in cardio-surgery. The figure demonstrates differences in the tangent Young's modulus after glutaraldehyde-induced cross-linking for two pericardium samples. One sample was over-stretched during the preparation, which caused some damage to the tissue.
Collapse
Affiliation(s)
- Vladimir Y Zaitsev
- Institute of Applied Physics, Russian Academy of Sciences, Nizhny Novgorod, Russia
| | - Alexander A Sovetsky
- Institute of Applied Physics, Russian Academy of Sciences, Nizhny Novgorod, Russia
| | - Alexander L Matveyev
- Institute of Applied Physics, Russian Academy of Sciences, Nizhny Novgorod, Russia
| | - Lev A Matveev
- Institute of Applied Physics, Russian Academy of Sciences, Nizhny Novgorod, Russia
| | - Dmitry Shabanov
- Institute of Applied Physics, Russian Academy of Sciences, Nizhny Novgorod, Russia
| | - Victoria Y Salamatova
- Sechenov University, Moscow, Russia
- Sirius University of Science and Technology, Sochi, Russia
| | | | - Yuri V Vassilevski
- Sechenov University, Moscow, Russia
- Sirius University of Science and Technology, Sochi, Russia
- Marchuk Institute of Numerical Mathematics, Russian Academy of Sciences, Moscow, Russia
| |
Collapse
|
20
|
Lin X, Mekonnen T, Verma S, Zevallos-Delgado C, Singh M, Aglyamov SR, Gesteira TF, Larin KV, Coulson-Thomas VJ. Hyaluronan Modulates the Biomechanical Properties of the Cornea. Invest Ophthalmol Vis Sci 2022; 63:6. [PMID: 36478198 PMCID: PMC9733656 DOI: 10.1167/iovs.63.13.6] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Purpose Hyaluronan (HA) is a major constituent of the extracellular matrix (ECM) that has high viscosity and is essential for maintaining tissue hydration. In the cornea, HA is enriched in the limbal region and is a key component of the limbal epithelial stem cell niche. HA is upregulated after injury participating in the formation of the provisional matrix, and has a key role in regulating the wound healing process. This study investigated whether changes in the distribution of HA before and after injury affects the biomechanical properties of the cornea in vivo. Methods Corneas of wild-type (wt) mice and mice lacking enzymes involved in the biosynthesis of HA were analyzed before, immediately after, and 7 and 14 days after a corneal alkali burn (AB). The corneas were evaluated using both a ring light and fluorescein stain by in vivo confocal microscopy, optical coherence elastography (OCE), and immunostaining of corneal whole mounts. Results Our results show that wt mice and mice lacking HA synthase (Has)1 and 3 present an increase in corneal stiffness 7 and 14 days after AB without a significant increase in HA expression and absence of scarring at 14 days after AB. In contrast, mice lacking Has2 present a significant decrease in corneal stiffness, with a significant increase in HA expression and scarring at 14 days after AB. Conclusions Our findings show that the mechanical properties of the cornea are significantly modulated by changes in HA distribution following alkali burn.
Collapse
Affiliation(s)
- Xiao Lin
- College of Optometry, University of Houston, Houston, Texas, United States
| | - Taye Mekonnen
- Department of Biomedical Engineering, University of Houston, Houston, Texas, United States
| | - Sudhir Verma
- College of Optometry, University of Houston, Houston, Texas, United States,Department of Zoology, Deen Dayal Upadhyaya College, University of Delhi, Delhi, India
| | | | - Manmohan Singh
- Department of Biomedical Engineering, University of Houston, Houston, Texas, United States
| | - Salavat R. Aglyamov
- Department of Mechanical Engineering, University of Houston, Houston, Texas, United States
| | - Tarsis F. Gesteira
- College of Optometry, University of Houston, Houston, Texas, United States
| | - Kirill V. Larin
- Department of Biomedical Engineering, University of Houston, Houston, Texas, United States
| | | |
Collapse
|
21
|
Nair A, Ambekar YS, Zevallos-Delgado C, Mekonnen T, Sun M, Zvietcovich F, Singh M, Aglyamov S, Koch M, Scarcelli G, Espana EM, Larin KV. Multiple Optical Elastography Techniques Reveal the Regulation of Corneal Stiffness by Collagen XII. Invest Ophthalmol Vis Sci 2022; 63:24. [PMID: 36383352 PMCID: PMC9680591 DOI: 10.1167/iovs.63.12.24] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2022] [Accepted: 10/19/2022] [Indexed: 11/17/2022] Open
Abstract
Purpose Collagen XII plays a role in regulating the structure and mechanical properties of the cornea. In this work, several optical elastography techniques were used to investigate the effect of collagen XII deficiency on the stiffness of the murine cornea. Methods A three-prong optical elastography approach was used to investigate the mechanical properties of the cornea. Brillouin microscopy, air-coupled ultrasonic optical coherence elastography (OCE) and heartbeat OCE were used to assess the mechanical properties of wild type (WT) and collagen XII-deficient (Col12a1-/-) murine corneas. The Brillouin frequency shift, elastic wave speed, and compressive strain were all measured as a function of intraocular pressure (IOP). Results All three optical elastography modalities measured a significantly decreased stiffness in the Col12a1-/- compared to the WT (P < 0.01 for all three modalities). The optical coherence elastography techniques showed that mean stiffness increased as a function of IOP; however, Brillouin microscopy showed no discernable trend in Brillouin frequency shift as a function of IOP. Conclusions Our approach suggests that the absence of collagen XII significantly softens the cornea. Although both optical coherence elastography techniques showed an expected increase in corneal stiffness as a function of IOP, Brillouin microscopy did not show such a relationship, suggesting that the Brillouin longitudinal modulus may not be affected by changes in IOP. Future work will focus on multimodal biomechanical models, evaluating the effects of other collagen types on corneal stiffness, and in vivo measurements.
Collapse
Affiliation(s)
- Achuth Nair
- Department of Biomedical Engineering, University of Houston, Houston, TX, United States
| | - Yogeshwari S. Ambekar
- Department of Biomedical Engineering, University of Houston, Houston, TX, United States
| | | | - Taye Mekonnen
- Department of Biomedical Engineering, University of Houston, Houston, TX, United States
| | - Mei Sun
- Cornea and External Disease, Department of Ophthalmology, Morsani College of Medicine, University of South Florida, Tampa, Florida, United States
| | - Fernando Zvietcovich
- Department of Engineering, Pontificia Universidad Catolica del Peru, San Miguel, Lima, Peru
| | - Manmohan Singh
- Department of Biomedical Engineering, University of Houston, Houston, TX, United States
| | - Salavat Aglyamov
- Department of Mechanical Engineering, University of Houston, Houston, TX, United States
| | - Manuel Koch
- Institute for Dental Research and Oral Musculoskeletal Biology, Center for Molecular Medicine Cologne, and Center for Biochemistry, Medical Faculty, University of Cologne, Cologne, Germany
| | - Giuliano Scarcelli
- Fischell Department of Bioengineering, University of Maryland, College Park, MD, United States
| | - Edgar M. Espana
- Cornea and External Disease, Department of Ophthalmology, Morsani College of Medicine, University of South Florida, Tampa, Florida, United States
- Department of Molecular Pharmacology & Physiology, Morsani College of Medicine, University of South Florida, Tampa, Florida, United States
| | - Kirill V. Larin
- Department of Biomedical Engineering, University of Houston, Houston, TX, United States
- Department of Molecular Physiology and Biophysics, Baylor College of Medicine, Houston, Texas, United States
| |
Collapse
|