1
|
Yu X, Song Y, Chen L, Xue L, Yang J, Huang C. Optimization of a thermochemical antibody stripping method for enhanced tyramide signal amplification-based opal multiplex immunohistochemistry in fragile tissues. BMC Res Notes 2025; 18:235. [PMID: 40426261 DOI: 10.1186/s13104-025-07301-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2024] [Accepted: 05/19/2025] [Indexed: 05/29/2025] Open
Abstract
OBJECTIVE Tyramide signal amplification (TSA)-induced Opal multiplex immunohistochemistry (mIHC) represents an advanced methodology for the in-situ detection of multiple target proteins. A critical aspect of this technique is the complete removal of primary and secondary antibodies to prevent signal cross-reaction. However, current antibody stripping methods exhibit several limitations, particularly when applied to tissues prone to delamination. Microwave treatment may compromise tissue integrity, additionally, the effectiveness of chemical reagents can be sensitive to variations in temperature, pH, and concentration. This study aims to optimize antibody stripping strategies specifically for use in Opal mIHC protocols, addressing limitations of current methods which particularly for tissues prone to delamination. RESULTS Evaluation of microwave oven-assisted antibody removal (MO-AR), chemical reagent-based antibody removal (CR-AR), and hybridization oven-based stripping at 50 °C (HO-AR-50) and 98 °C (HO-AR-98) revealed that MO-AR and HO-AR-98 most effectively removed primary and secondary antibodies. In five-color mIHC on mouse kidney sections, both methods yielded strong target-specific signals. However, in brain tissue sections prone to delamination, HO-AR-98 better preserved tissue integrity compared to MO-AR and supported effective multi-target staining. These findings establish a novel thermochemical stripping method compatible with TSA-based Opal mIHC, enhancing its utility in research and clinical diagnostics.
Collapse
Affiliation(s)
- Xiaotong Yu
- Center of Basic Medical Research, Peking University Third Hospital, 49 North Garden Road, Haidian District, Beijing, 100191, China
| | - Yan Song
- Center of Basic Medical Research, Peking University Third Hospital, 49 North Garden Road, Haidian District, Beijing, 100191, China
| | - Li Chen
- Center of Basic Medical Research, Peking University Third Hospital, 49 North Garden Road, Haidian District, Beijing, 100191, China
| | - Lixiang Xue
- Center of Basic Medical Research, Peking University Third Hospital, 49 North Garden Road, Haidian District, Beijing, 100191, China
| | - Jianling Yang
- Center of Basic Medical Research, Peking University Third Hospital, 49 North Garden Road, Haidian District, Beijing, 100191, China.
| | - Chen Huang
- Center of Basic Medical Research, Peking University Third Hospital, 49 North Garden Road, Haidian District, Beijing, 100191, China.
- Department of Ophthalmology, Peking University Third Hospital, Beijing, China.
- Beijing Key Laboratory of Restoration of Damaged Ocular Nerve, Peking University Third Hospital, Beijing, China.
| |
Collapse
|
2
|
Sherman MS, McMahon-Skates T, Gaston LS, Katzen SW, Majzoub JA, Goessling W. Harmonizing TUNEL with multiplexed iterative immunofluorescence enriches spatial contextualization of cell death. CELL REPORTS METHODS 2025; 5:101047. [PMID: 40359937 DOI: 10.1016/j.crmeth.2025.101047] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/04/2024] [Revised: 02/19/2025] [Accepted: 04/17/2025] [Indexed: 05/15/2025]
Abstract
Terminal deoxynucleotidyl transferase dUTP nick-end labeling (TUNEL) is an essential tool for detecting cell death in tissues, but its compatibility with spatial proteomic methods is unknown. We evaluated variations of the TUNEL protocol for compatibility with multiple iterative labeling by antibody neodeposition (MILAN) in acetaminophen-induced hepatocyte necrosis and dexamethasone-induced adrenocortical apoptosis. Using a commercial Click-iT-based assay as a standard, TUNEL signal could be reliably produced independent of the antigen retrieval method, with tissue-specific minor differences in signal to noise. In contrast, proteinase K treatment consistently reduced or even abrogated protein antigenicity, while pressure cooker treatment enhanced protein antigenicity for the targets tested. Antibody-based TUNEL with pressure cooker retrieval could be flexibly integrated into a MILAN staining series, and first-round TUNEL was also compatible with a second spatial proteomic method, cyclic immunofluorescence (CycIF). We anticipate that this harmonization of TUNEL with spatial proteomics will enhance the spatial contextualization of cell death in complex tissues.
Collapse
Affiliation(s)
- Marc S Sherman
- Division of Gastroenterology, Department of Medicine, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA; Division of Genetics, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA.
| | - Thomas McMahon-Skates
- Division of Genetics, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Lindsey S Gaston
- Division of Endocrinology, Department of Pediatrics, Boston Children's Hospital, Boston, MA, USA
| | - Sonya W Katzen
- Division of Gastroenterology, Department of Medicine, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - Joseph A Majzoub
- Division of Endocrinology, Department of Pediatrics, Boston Children's Hospital, Boston, MA, USA
| | - Wolfram Goessling
- Division of Gastroenterology, Department of Medicine, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA; Division of Genetics, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA; Broad Institute of MIT and Harvard, Cambridge, MA, USA; Harvard Stem Cell Institute, Cambridge, MA, USA; Harvard-MIT Division of Health Sciences and Technology, Cambridge, MA, USA.
| |
Collapse
|
3
|
von Coburg E, Wedler M, Muino JM, Wolff C, Körber N, Dunst S, Liu S. Cell Painting PLUS: expanding the multiplexing capacity of Cell Painting-based phenotypic profiling using iterative staining-elution cycles. Nat Commun 2025; 16:3857. [PMID: 40274798 PMCID: PMC12022024 DOI: 10.1038/s41467-025-58765-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2024] [Accepted: 04/02/2025] [Indexed: 04/26/2025] Open
Abstract
Phenotypic changes in the morphology and internal organization of cells can indicate perturbations in cell functions. Therefore, imaging-based high-throughput phenotypic profiling (HTPP) applications such as Cell Painting (CP) play an important role in basic and translational research, drug discovery, and regulatory toxicology. Here we present the Cell Painting PLUS (CPP) assay, an efficient, robust and broadly applicable approach that further expands the versatility of available HTPP methods and offers additional options for addressing mode-of-action specific research questions. An iterative staining-elution cycle allows multiplexing of at least seven fluorescent dyes that label nine different subcellular compartments and organelles including the plasma membrane, actin cytoskeleton, cytoplasmic RNA, nucleoli, lysosomes, nuclear DNA, endoplasmic reticulum, mitochondria, and Golgi apparatus. In this way, CPP significantly expands the flexibility, customizability, and multiplexing capacity of the original CP method and, importantly, also improves the organelle-specificity and diversity of the phenotypic profiles due to the separate imaging and analysis of single dyes in individual channels.
Collapse
Affiliation(s)
- Elena von Coburg
- German Centre for the Protection of Laboratory Animals (Bf3R), German Federal Institute for Risk Assessment (BfR), Berlin, Germany
- Department of Food Chemistry, University of Potsdam, Potsdam, Germany
| | - Marlene Wedler
- German Centre for the Protection of Laboratory Animals (Bf3R), German Federal Institute for Risk Assessment (BfR), Berlin, Germany
- Institute of Biology, Free University of Berlin, Berlin, Germany
| | - Jose M Muino
- German Centre for the Protection of Laboratory Animals (Bf3R), German Federal Institute for Risk Assessment (BfR), Berlin, Germany
- Institute of Clinical Pharmacology and Toxicology, Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany
| | - Christopher Wolff
- Screening Unit, Leibniz-Forschungsinstitut für Molekulare Pharmakologie (FMP), Berlin, Germany
| | - Nils Körber
- Centre for Artificial Intelligence in Public Health Research, Robert Koch Institute, Berlin, Germany
| | - Sebastian Dunst
- German Centre for the Protection of Laboratory Animals (Bf3R), German Federal Institute for Risk Assessment (BfR), Berlin, Germany.
| | - Shu Liu
- German Centre for the Protection of Laboratory Animals (Bf3R), German Federal Institute for Risk Assessment (BfR), Berlin, Germany.
| |
Collapse
|
4
|
Humenick A, Chen BN, Johnson ME, Yew WP, Wattchow DA, Sia TC, Defontgalland D, Spencer NJ, Dinning PG, Costa M, Brookes SJH. Extrinsic Innervation of Myenteric Plexus of Human Large Intestine Via Colonic Nerves. Cell Mol Gastroenterol Hepatol 2025; 19:101479. [PMID: 39978461 PMCID: PMC12009095 DOI: 10.1016/j.jcmgh.2025.101479] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/22/2024] [Revised: 02/08/2025] [Accepted: 02/11/2025] [Indexed: 02/22/2025]
Affiliation(s)
- Adam Humenick
- Human Physiology, Medical Bioscience, College of Medicine and Public Health, Flinders University, Bedford Park, SA, Australia
| | - Bao Nan Chen
- Human Physiology, Medical Bioscience, College of Medicine and Public Health, Flinders University, Bedford Park, SA, Australia
| | - Michaela E Johnson
- Human Physiology, Medical Bioscience, College of Medicine and Public Health, Flinders University, Bedford Park, SA, Australia
| | - Wai Ping Yew
- Human Physiology, Medical Bioscience, College of Medicine and Public Health, Flinders University, Bedford Park, SA, Australia
| | - David A Wattchow
- Department of Surgery, Flinders Medical Centre, Bedford Park, SA, Australia
| | - Tiong Cheng Sia
- Department of Surgery, Flinders Medical Centre, Bedford Park, SA, Australia
| | | | - Nick J Spencer
- Flinders Health & Medical Research Institute, Bedford Park, SA, Australia
| | - Phil G Dinning
- Department of Surgery, Flinders Medical Centre, Bedford Park, SA, Australia
| | - Marcello Costa
- Human Physiology, Medical Bioscience, College of Medicine and Public Health, Flinders University, Bedford Park, SA, Australia
| | - Simon J H Brookes
- Human Physiology, Medical Bioscience, College of Medicine and Public Health, Flinders University, Bedford Park, SA, Australia.
| |
Collapse
|
5
|
Semba T, Ishimoto T. Spatial analysis by current multiplexed imaging technologies for the molecular characterisation of cancer tissues. Br J Cancer 2024; 131:1737-1747. [PMID: 39438630 PMCID: PMC11589153 DOI: 10.1038/s41416-024-02882-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2024] [Revised: 10/09/2024] [Accepted: 10/11/2024] [Indexed: 10/25/2024] Open
Abstract
Tumours are composed of tumour cells and the surrounding tumour microenvironment (TME), and the molecular characterisation of the various elements of the TME and their interactions is essential for elucidating the mechanisms of tumour progression and developing better therapeutic strategies. Multiplex imaging is a technique that can quantify the expression of multiple protein markers on the same tissue section while maintaining spatial positioning, and this method has been rapidly developed in cancer research in recent years. Many multiplex imaging technologies and spatial analysis methods are emerging, and the elucidation of their principles and features is essential. In this review, we provide an overview of the latest multiplex imaging techniques by type of imaging and staining method and an introduction to image analysis methods, primarily focusing on spatial cellular properties, providing deeper insight into tumour organisation and spatial molecular biology in the TME.
Collapse
Affiliation(s)
- Takashi Semba
- Division of Carcinogenesis, The Cancer Institute, Japanese Foundation for Cancer Research, Tokyo, Japan
| | - Takatsugu Ishimoto
- Division of Carcinogenesis, The Cancer Institute, Japanese Foundation for Cancer Research, Tokyo, Japan.
| |
Collapse
|
6
|
Lorsuwannarat N, Kaewsanit A, Charoenpitakchai M, Ruangpratheep C, Arnutti P, Nimmanon T. Optimizing Re-staining Techniques for the Restoration of Faded Hematoxylin and Eosin-stained Histopathology Slides: A Comparative Study. J Histochem Cytochem 2024; 72:733-742. [PMID: 39563626 PMCID: PMC11577553 DOI: 10.1369/00221554241299861] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2024] [Accepted: 10/29/2024] [Indexed: 11/21/2024] Open
Abstract
Hematoxylin and eosin (H&E)-stained slides inevitably deteriorate over time, frequently becoming unreadable. Reutilizing these slides can reduce the need for additional serial sections, particularly when the target region is no longer available in the tissue block. This study aims to develop efficient protocols for recycling faded H&E-stained slides, providing benefits for future research on stored samples. Seventy-one faded slides, representing a variety of tissue types and pathologies, were randomly divided into two groups. Slides were de-stained and re-stained using the conventional procedure and a modified Tris and HCl procedure. Three observers independently assessed all slides based on predefined parameters. The stability of the re-stained slides was re-assessed in 6 months. The modified Tris and HCl method yielded significantly higher scores compared to the conventional method for crispness of staining, nuclear staining, cytoplasmic staining, and vibrancy of staining (p < 0.05), as well as greater durability, as evidenced by minimal score reduction 6 months after staining. Thus, incorporating a Tris and HCl step into the process effectively enhances and restores faded H&E slides, offering a valuable technique for revitalizing histology slides for future research and educational purposes.
Collapse
Affiliation(s)
| | - Apisit Kaewsanit
- Department of Anatomy, Phramongkutklao College of Medicine, Bangkok, Thailand
| | | | | | - Pasra Arnutti
- Department of Biochemistry , Phramongkutklao College of Medicine, Bangkok, Thailand
| | - Thirayost Nimmanon
- Department of Pathology, Phramongkutklao College of Medicine, Bangkok, Thailand
| |
Collapse
|
7
|
Wang D, Cheung A, Mawdsley GE, Liu K, Yerofeyeva Y, Thu KL, Yoon JY, Yaffe MJ. A Modified Bleaching Method for Multiplex Immunofluorescence Staining of FFPE Tissue Sections. Appl Immunohistochem Mol Morphol 2024; 32:447-452. [PMID: 39370592 DOI: 10.1097/pai.0000000000001228] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2023] [Accepted: 09/10/2024] [Indexed: 10/08/2024]
Abstract
Multiplex immunofluorescence (mIF) staining plays an important role in profiling biomarkers and allows investigation of co-relationships between multiple biomarkers in the same tissue section. The Cell DIVE mIF platform (Leica Microsystems) employs an alkaline solution of hydrogen peroxide as a fluorophore inactivation reagent in the sequential staining, imaging, and bleaching protocol for use on FFPE sections. Suboptimal bleaching efficiency, degradation of tissue structure, and loss of antigen immunogenicity occasionally are encountered with the standard bleaching process. To overcome these impediments, we adopted a modified photochemical bleaching method, which utilizes an intense LED light exposure concurrent with the application of hydrogen peroxide. Repeated stain/bleach rounds with different antibodies were performed on breast tissue and other tissue sections. Residual signal after conventional bleaching and the modified technique were compared and tissue integrity and antigen immunogenicity were assessed. The modified technique effectively eliminates fluorescence signal from previous staining rounds and produces consistent results for multiple rounds of staining and imaging. With the modified method, photochemical treatments did not destroy tissue sub-cellular contents, and the tissue antigenicity was well preserved during the entire mIF process. Overall processing time was reduced from 36 to 30 hours in an mIF procedure with 8 rounds. With the conventional method, tissue quality was highly degraded after 8 rounds. The new technique allows reduced turn-around time, provides reliable fluorophore removal in mIF with excellent maintenance of tissue integrity, facilitating studies of the co-localization of multiple biomarkers in tissues of interest.
Collapse
Affiliation(s)
- Dan Wang
- Biomarker Imaging Research Lab, Sunnybrook Research Institute
| | - Alison Cheung
- Biomarker Imaging Research Lab, Sunnybrook Research Institute
| | | | - Kela Liu
- Biomarker Imaging Research Lab, Sunnybrook Research Institute
| | | | - Kelsie L Thu
- Keenan Research Centre for Biomedical Science, Unity Health Toronto
- Department of Laboratory Medicine and Pathobiology
| | - Ju-Yoon Yoon
- Department of Laboratory Medicine and Pathobiology
- Department of Laboratory Medicine, St. Michael's Hospital, Unity Health Toronto, Toronto, ON, Canada
| | - Martin J Yaffe
- Biomarker Imaging Research Lab, Sunnybrook Research Institute
- Department of Medical Biophysics, Faculty of Medicine, University of Toronto
- Imaging Research Program, Ontario Institute for Cancer Research
| |
Collapse
|
8
|
Shanshin DV, Nesmeyanova VS, Protopopova EV, Shelemba AA, Loktev VB, Shcherbakov DN. Preparation and Construction of Chimeric Humanized Broadly Reactive Antibody 10H10 to Protein E of Tick-Borne Encephalitis Virus. Bull Exp Biol Med 2024; 177:770-773. [PMID: 39441444 DOI: 10.1007/s10517-024-06265-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2023] [Indexed: 10/25/2024]
Abstract
A full-length humanized chimeric antibody 10H10ch that specifically interacts with the surface glycoprotein E of flaviviruses was obtained. To construct it, we used variable fragments of the heavy and light chains of the monoclonal antibody 10H10 that form the active center of the antibody and a fragment of the constant part of the heavy chain of the human IgG1 antibody. The resulting full-length chimeric humanized antibody 10H10ch specifically interacted with the E protein of flaviviruses pathogenic to humans, such as tick-borne encephalitis, Zika, West Nile, and dengue viruses. An immunochemical assessment of the interaction constants of the 10H10ch antibody with a panel of native and recombinant flavivirus antigens by ELISA and biolayer interferometry showed that the dissociation constant (Kd) of the chimeric antibody is in the nanomolar region and is comparable to that of the high-affinity mouse monoclonal antibody 10H10. The possibility of using the resulting chimeric humanized antibody 10H10ch for the diagnosis, prevention, and treatment of various flavivirus infections is discussed.
Collapse
Affiliation(s)
- D V Shanshin
- State Research Center of Virology and Biotechnology "VECTOR", Federal Service for Surveillance on Consumer Rights Protection and Human Wellbeing, Koltsovo, Novosibirsk region, Russia.
| | - V S Nesmeyanova
- State Research Center of Virology and Biotechnology "VECTOR", Federal Service for Surveillance on Consumer Rights Protection and Human Wellbeing, Koltsovo, Novosibirsk region, Russia
| | - E V Protopopova
- State Research Center of Virology and Biotechnology "VECTOR", Federal Service for Surveillance on Consumer Rights Protection and Human Wellbeing, Koltsovo, Novosibirsk region, Russia
| | - A A Shelemba
- Federal Research Center for Fundamental and Translational Medicine, Novosibirsk, Russia
| | - V B Loktev
- State Research Center of Virology and Biotechnology "VECTOR", Federal Service for Surveillance on Consumer Rights Protection and Human Wellbeing, Koltsovo, Novosibirsk region, Russia
| | - D N Shcherbakov
- State Research Center of Virology and Biotechnology "VECTOR", Federal Service for Surveillance on Consumer Rights Protection and Human Wellbeing, Koltsovo, Novosibirsk region, Russia
| |
Collapse
|
9
|
Ifediba M, Baetz N, Lambert L, Benzon H, Page V, Anderson N, Roth S, Miess J, Nicolosi I, Beck S, Sopko N, Garrett C. Characterization of heterogeneous skin constructs for full thickness skin regeneration in murine wound models. Tissue Cell 2024; 88:102403. [PMID: 38728948 DOI: 10.1016/j.tice.2024.102403] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2024] [Revised: 04/30/2024] [Accepted: 05/03/2024] [Indexed: 05/12/2024]
Abstract
An autologous heterogeneous skin construct (AHSC) has been developed and used clinically as an alternative to traditional skin grafting techniques for treatment of cutaneous defects. AHSC is manufactured from a small piece of healthy skin in a manner that preserves endogenous regenerative cellular populations. To date however, specific cellular and non-cellular contributions of AHSC to the epidermal and dermal layers of closed wounds have not been well characterized given limited clinical opportunity for graft biopsy following wound closure. To address this limitation, a three-part mouse full-thickness excisional wound model was developed for histologic and macroscopic graft tracing. First, fluorescent mouse-derived AHSC (mHSC) was allografted onto non-fluorescent recipient mice to enable macroscopic and histologic time course evaluation of wound closure. Next, mHSC-derived from haired pigmented mice was allografted onto gender- and major histocompatibility complex (MHC)-mismatched athymic nude mouse recipients. Resulting grafts were distinguished from recipient murine skin via immunohistochemistry. Finally, human-derived AHSC (hHSC) was xenografted onto athymic nude mice to evaluate engraftment and hHSC contribution to wound closure. Experiments demonstrated that mHSC and hHSC facilitated wound closure through production of viable, proliferative cellular material and promoted full-thickness skin regeneration, including hair follicles and glands in dermal compartments. This combined macroscopic and histologic approach to tracing AHSC-treated wounds from engraftment to closure enabled robust profiling of regenerated architecture and further understanding of processes underlying AHSC mechanism of action. These models may be applied to a variety of wound care investigations, including those requiring longitudinal assessments of healing and targeted identification of donor and recipient tissue contributions.
Collapse
Affiliation(s)
- Marytheresa Ifediba
- Department of Research and Development, PolarityTE MD, Inc. Salt Lake City, UT 84104, USA
| | - Nicholas Baetz
- Department of Research and Development, PolarityTE MD, Inc. Salt Lake City, UT 84104, USA
| | - Lyssa Lambert
- Department of Research and Development, PolarityTE MD, Inc. Salt Lake City, UT 84104, USA
| | - Haley Benzon
- Department of Research and Development, PolarityTE MD, Inc. Salt Lake City, UT 84104, USA
| | - Vonda Page
- Department of Research and Development, PolarityTE MD, Inc. Salt Lake City, UT 84104, USA
| | - Nicole Anderson
- Department of Research and Development, PolarityTE MD, Inc. Salt Lake City, UT 84104, USA
| | - Stephanie Roth
- Department of Research and Development, PolarityTE MD, Inc. Salt Lake City, UT 84104, USA
| | - James Miess
- Department of Research and Development, PolarityTE MD, Inc. Salt Lake City, UT 84104, USA
| | - Ian Nicolosi
- Department of Research and Development, PolarityTE MD, Inc. Salt Lake City, UT 84104, USA
| | - Sarah Beck
- Department of Molecular and Comparative Pathobiology, Johns Hopkins University, Baltimore, MD 21205, USA
| | - Nikolai Sopko
- Department of Research and Development, PolarityTE MD, Inc. Salt Lake City, UT 84104, USA.
| | - Caroline Garrett
- Department of Research and Development, PolarityTE MD, Inc. Salt Lake City, UT 84104, USA
| |
Collapse
|
10
|
Watson SS, Duc B, Kang Z, de Tonnac A, Eling N, Font L, Whitmarsh T, Massara M, Bodenmiller B, Hausser J, Joyce JA. Microenvironmental reorganization in brain tumors following radiotherapy and recurrence revealed by hyperplexed immunofluorescence imaging. Nat Commun 2024; 15:3226. [PMID: 38622132 PMCID: PMC11018859 DOI: 10.1038/s41467-024-47185-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2023] [Accepted: 03/22/2024] [Indexed: 04/17/2024] Open
Abstract
The tumor microenvironment plays a crucial role in determining response to treatment. This involves a series of interconnected changes in the cellular landscape, spatial organization, and extracellular matrix composition. However, assessing these alterations simultaneously is challenging from a spatial perspective, due to the limitations of current high-dimensional imaging techniques and the extent of intratumoral heterogeneity over large lesion areas. In this study, we introduce a spatial proteomic workflow termed Hyperplexed Immunofluorescence Imaging (HIFI) that overcomes these limitations. HIFI allows for the simultaneous analysis of > 45 markers in fragile tissue sections at high magnification, using a cost-effective high-throughput workflow. We integrate HIFI with machine learning feature detection, graph-based network analysis, and cluster-based neighborhood analysis to analyze the microenvironment response to radiation therapy in a preclinical model of glioblastoma, and compare this response to a mouse model of breast-to-brain metastasis. Here we show that glioblastomas undergo extensive spatial reorganization of immune cell populations and structural architecture in response to treatment, while brain metastases show no comparable reorganization. Our integrated spatial analyses reveal highly divergent responses to radiation therapy between brain tumor models, despite equivalent radiotherapy benefit.
Collapse
Affiliation(s)
- Spencer S Watson
- Department of Oncology, University of Lausanne, Lausanne, Switzerland.
- Ludwig Institute for Cancer Research, University of Lausanne, Lausanne, Switzerland.
- Agora Cancer Research Center, Lausanne, 1011, Switzerland.
- L. Lundin and Family Brain Tumor Research Center, Departments of Oncology and Clinical Neurosciences, Centre Hospitalier Universitaire Vaudois, Lausanne, 1011, Switzerland.
| | - Benoit Duc
- Department of Oncology, University of Lausanne, Lausanne, Switzerland
- Ludwig Institute for Cancer Research, University of Lausanne, Lausanne, Switzerland
- Agora Cancer Research Center, Lausanne, 1011, Switzerland
- L. Lundin and Family Brain Tumor Research Center, Departments of Oncology and Clinical Neurosciences, Centre Hospitalier Universitaire Vaudois, Lausanne, 1011, Switzerland
| | - Ziqi Kang
- Department of Cellular and Molecular Biology, Karolinska Institutet and SciLifeLab, Stockholm, Sweden
| | - Axel de Tonnac
- Department of Cellular and Molecular Biology, Karolinska Institutet and SciLifeLab, Stockholm, Sweden
| | - Nils Eling
- Department of Quantitative Biomedicine, University of Zurich, Zurich, Switzerland
- Institute for Molecular Health Sciences, ETH Zurich, Zurich, Switzerland
| | - Laure Font
- Department of Oncology, University of Lausanne, Lausanne, Switzerland
- École Polytechnique Fédérale Lausanne, Lausanne, Switzerland
| | - Tristan Whitmarsh
- Machine Intelligence Laboratory, Department of Engineering, University of Cambridge, Cambridge, UK
| | - Matteo Massara
- Department of Oncology, University of Lausanne, Lausanne, Switzerland
- Ludwig Institute for Cancer Research, University of Lausanne, Lausanne, Switzerland
- Agora Cancer Research Center, Lausanne, 1011, Switzerland
- L. Lundin and Family Brain Tumor Research Center, Departments of Oncology and Clinical Neurosciences, Centre Hospitalier Universitaire Vaudois, Lausanne, 1011, Switzerland
| | - Bernd Bodenmiller
- Department of Quantitative Biomedicine, University of Zurich, Zurich, Switzerland
- Institute for Molecular Health Sciences, ETH Zurich, Zurich, Switzerland
| | - Jean Hausser
- Department of Cellular and Molecular Biology, Karolinska Institutet and SciLifeLab, Stockholm, Sweden
| | - Johanna A Joyce
- Department of Oncology, University of Lausanne, Lausanne, Switzerland.
- Ludwig Institute for Cancer Research, University of Lausanne, Lausanne, Switzerland.
- Agora Cancer Research Center, Lausanne, 1011, Switzerland.
- L. Lundin and Family Brain Tumor Research Center, Departments of Oncology and Clinical Neurosciences, Centre Hospitalier Universitaire Vaudois, Lausanne, 1011, Switzerland.
- Cancer Research UK, Cancer Grand Challenges iMAXT Consortium, University of Cambridge, Cambridge, UK.
| |
Collapse
|
11
|
Humenick A, Johnson M, Chen B, Wee M, Wattchow D, Costa M, Dinning P, Brookes S. Antibody elution with 2-me/SDS solution: Uses for multi-layer immunohistochemical analysis of wholemount preparations of human colonic myenteric plexus. Heliyon 2024; 10:e26522. [PMID: 38434276 PMCID: PMC10904250 DOI: 10.1016/j.heliyon.2024.e26522] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2023] [Revised: 01/18/2024] [Accepted: 02/14/2024] [Indexed: 03/05/2024] Open
Abstract
Indirect immunofluorescence is usually restricted to 3-5 markers per preparation, limiting analysis of coexistence. A solution containing 2-mercaptoethanol and sodium dodecyl sulfate (2-ME/SDS) can elute indirect immunofluorescence labelling (i.e. primary antisera followed by fluorophore-conjugated secondary antisera) and has been used for sequential staining of sections. The aim of this study was to test whether 2-ME/SDS is effective for eluting indirect immunofluorescent staining (with primary antisera visualised by fluorophore-coupled secondary antisera) in wholemount preparations. We also analysed how 2-ME/SDS may work and used this understanding to devise additional uses for immunofluorescence in the nervous system. 2-ME/SDS appears to denature unfixed proteins (including antisera used as reagents) but has much less effect on antigenicity of formaldehyde-fixed epitopes. Moieties linked by strong biotin-streptavidin bonds are highly resistant to elution by 2-ME/SDS. Two primary antisera raised in the same species can be applied without spurious cross-reactivity, if a specific order of labelling is followed. The first primary antiserum is followed by a biotinylated secondary, then a tertiary of fluorophore-conjugated streptavidin. The preparation is then exposed to 2-ME/SDS, which has minimal impact on labelling by the first primary/secondary/tertiary combination. However, when this is followed by a second primary antiserum (raised in the same species), followed by a fluorophore-conjugated secondary antiserum, the intervening 2-ME/SDS exposure prevents cross-reactivity between primary and secondary antisera of the two layers. A third property of 2-ME/SDS is that it reduces lipofuscin autofluorescence, although it also raises background fluorescence and strongly enhances autofluorescence of erythrocytes. In summary, 2-ME/SDS is easy to use, cost-effective and does not require modified primary antisera. It can be used as the basis of a multi-layer immunohistochemistry protocol and allows 2 primary antisera raised in the same species to be used together.
Collapse
Affiliation(s)
- Adam Humenick
- Human Physiology, College of Medicine and Public Health, Flinders University, Bedford Park, South Australia, 5042, Australia
| | - M.E. Johnson
- Human Physiology, College of Medicine and Public Health, Flinders University, Bedford Park, South Australia, 5042, Australia
| | - B.N. Chen
- Human Physiology, College of Medicine and Public Health, Flinders University, Bedford Park, South Australia, 5042, Australia
| | - M. Wee
- Department of Surgery, Flinders Medical Centre, Bedford Park, SA 5042, Australia
| | - D.A. Wattchow
- Department of Surgery, Flinders Medical Centre, Bedford Park, SA 5042, Australia
| | - M. Costa
- Human Physiology, College of Medicine and Public Health, Flinders University, Bedford Park, South Australia, 5042, Australia
| | - P.G. Dinning
- Department of Surgery, Flinders Medical Centre, Bedford Park, SA 5042, Australia
| | - S.J.H. Brookes
- Human Physiology, College of Medicine and Public Health, Flinders University, Bedford Park, South Australia, 5042, Australia
| |
Collapse
|
12
|
Chen BN, Humenick AG, Hibberd TJ, Yew WP, Wattchow DA, Dinning PG, Costa M, Spencer NJ, Brookes SJH. Characterization of viscerofugal neurons in human colon by retrograde tracing and multi-layer immunohistochemistry. Front Neurosci 2024; 17:1313057. [PMID: 38292899 PMCID: PMC10825022 DOI: 10.3389/fnins.2023.1313057] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2023] [Accepted: 12/15/2023] [Indexed: 02/01/2024] Open
Abstract
Background and Aims Viscerofugal neurons (VFNs) have cell bodies in the myenteric plexus and axons that project to sympathetic prevertebral ganglia. In animals they activate sympathetic motility reflexes and may modulate glucose metabolism and feeding. We used rapid retrograde tracing from colonic nerves to identify VFNs in human colon for the first time, using ex vivo preparations with multi-layer immunohistochemistry. Methods Colonic nerves were identified in isolated preparations of human colon and set up for axonal tracing with biotinamide. After fixation, labeled VFN cell bodies were subjected to multiplexed immunohistochemistry for 12 established nerve cell body markers. Results Biotinamide tracing filled 903 viscerofugal nerve cell bodies (n = 23), most of which (85%) had axons projecting orally before entering colonic nerves. Morphologically, 97% of VFNs were uni-axonal. Of 215 VFNs studied in detail, 89% expressed ChAT, 13% NOS, 13% calbindin, 9% enkephalin, 7% substance P and 0 of 123 VFNs expressed CART. Few VFNs contained calretinin, VIP, 5HT, CGRP, or NPY. VFNs were often surrounded by dense baskets of axonal varicosities, probably reflecting patterns of connectivity; VAChT+ (cholinergic), SP+ and ENK+ varicosities were most abundant around them. Human VFNs were diverse; showing 27 combinations of immunohistochemical markers, 4 morphological types and a wide range of cell body sizes. However, 69% showed chemical coding, axonal projections, soma-dendritic morphology and connectivity similar to enteric excitatory motor neurons. Conclusion Viscerofugal neurons are present in human colon and show very diverse combinations of features. High proportions express ChAT, consistent with cholinergic synaptic outputs onto postganglionic sympathetic neurons in prevertebral ganglia.
Collapse
Affiliation(s)
- Bao Nan Chen
- Human Physiology, Medical Bioscience, College of Medicine and Public Health, Flinders University, Adelaide, SA, Australia
| | - Adam G. Humenick
- Human Physiology, Medical Bioscience, College of Medicine and Public Health, Flinders University, Adelaide, SA, Australia
| | - Timothy James Hibberd
- Human Physiology, Medical Bioscience, College of Medicine and Public Health, Flinders University, Adelaide, SA, Australia
| | - Wai Ping Yew
- Human Physiology, Medical Bioscience, College of Medicine and Public Health, Flinders University, Adelaide, SA, Australia
| | - David A. Wattchow
- Department of Surgery, Flinders Medical Centre, Bedford Park, SA, Australia
| | - Phil G. Dinning
- Department of Surgery, Flinders Medical Centre, Bedford Park, SA, Australia
| | - Marcello Costa
- Human Physiology, Medical Bioscience, College of Medicine and Public Health, Flinders University, Adelaide, SA, Australia
| | - Nick J. Spencer
- Human Physiology, Medical Bioscience, College of Medicine and Public Health, Flinders University, Adelaide, SA, Australia
| | - Simon J. H. Brookes
- Human Physiology, Medical Bioscience, College of Medicine and Public Health, Flinders University, Adelaide, SA, Australia
| |
Collapse
|
13
|
Freeburne E, Teague S, Khan H, Li B, Ding S, Chen B, Helms A, Heemskerk I. Spatial Single Cell Analysis of Proteins in 2D Human Gastruloids Using Iterative Immunofluorescence. Curr Protoc 2023; 3:e915. [PMID: 37882990 PMCID: PMC11132115 DOI: 10.1002/cpz1.915] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2023]
Abstract
During development, cell signaling instructs tissue patterning, the process by which initially identical cells give rise to spatially organized structures consisting of different cell types. How multiple signals combinatorially instruct fate in space and time remains poorly understood. Simultaneous measurement of signaling activity through multiple signaling pathways and of the cell fates they control is critical to addressing this problem. Here we describe an iterative immunofluorescence protocol and computational pipeline to interrogate pattern formation in a 2D model of human gastrulation with far greater multiplexing than is possible with standard immunofluorescence techniques. This protocol and computational pipeline together enable imaging followed by spatial and co-localization analysis of over 27 proteins in the same gastruloids. We demonstrate this by clustering single cell protein expression, using techniques familiar from scRNA-seq, and linking this to spatial position to calculate spatial distributions and cell signaling activity of different cell types. These methods are not limited to patterning in 2D gastruloids and can be easily extended to other contexts. In addition to the iterative immunofluorescence protocol and analysis pipeline, Support Protocols for 2D gastruloid differentiation and producing micropatterned multi-well slides are included. © 2023 The Authors. Current Protocols published by Wiley Periodicals LLC. Basic Protocol 1: Iterative immunofluorescence Basic Protocol 2: Computational analysis pipeline Support Protocol 1: Generating micropatterned multi-well slides Support Protocol 2: Differentiation of 2D gastruloids.
Collapse
Affiliation(s)
- Emily Freeburne
- Department of Cell and Developmental Biology, University of Michigan Medical School, Ann Arbor, Michigan
| | - Seth Teague
- Department of Biomedical Engineering, University of Michigan, Ann Arbor, Michigan
- These authors contributed equally
| | - Hina Khan
- Department of Cell and Developmental Biology, University of Michigan Medical School, Ann Arbor, Michigan
- These authors contributed equally
| | - Bolin Li
- Department of Cell and Developmental Biology, University of Michigan Medical School, Ann Arbor, Michigan
- These authors contributed equally
| | - Siyuan Ding
- Department of Computational Medicine and Bioinformatics, University of Michigan Medical School, Ann Arbor, Michigan
| | - Bohan Chen
- Department of Computational Medicine and Bioinformatics, University of Michigan Medical School, Ann Arbor, Michigan
| | - Adam Helms
- Division of Cardiovascular Medicine, University of Michigan, Ann Arbor, Michigan
| | - Idse Heemskerk
- Department of Cell and Developmental Biology, University of Michigan Medical School, Ann Arbor, Michigan
- Department of Biomedical Engineering, University of Michigan, Ann Arbor, Michigan
- Department of Computational Medicine and Bioinformatics, University of Michigan Medical School, Ann Arbor, Michigan
- Center for Cell Plasticity and Organ Design, University of Michigan Medical School, Ann Arbor, Michigan
- Department of Physics, University of Michigan, Ann Arbor, Michigan
| |
Collapse
|
14
|
Chen BN, Humenick A, Yew WP, Peterson RA, Wiklendt L, Dinning PG, Spencer NJ, Wattchow DA, Costa M, Brookes SJH. Types of Neurons in the Human Colonic Myenteric Plexus Identified by Multilayer Immunohistochemical Coding. Cell Mol Gastroenterol Hepatol 2023; 16:573-605. [PMID: 37355216 PMCID: PMC10469081 DOI: 10.1016/j.jcmgh.2023.06.010] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/06/2022] [Revised: 06/14/2023] [Accepted: 06/15/2023] [Indexed: 06/26/2023]
Abstract
BACKGROUND AND AIMS Gut functions including motility, secretion, and blood flow are largely controlled by the enteric nervous system. Characterizing the different classes of enteric neurons in the human gut is an important step to understand how its circuitry is organized and how it is affected by disease. METHODS Using multiplexed immunohistochemistry, 12 discriminating antisera were applied to distinguish different classes of myenteric neurons in the human colon (2596 neurons, 12 patients) according to their chemical coding. All antisera were applied to every neuron, in multiple layers, separated by elutions. RESULTS A total of 164 combinations of immunohistochemical markers were present among the 2596 neurons, which could be divided into 20 classes, with statistical validation. Putative functions were ascribed for 4 classes of putative excitatory motor neurons (EMN1-4), 4 inhibitory motor neurons (IMN1-4), 3 ascending interneurons (AIN1-3), 6 descending interneurons (DIN1-6), 2 classes of multiaxonal sensory neurons (SN1-2), and a small, miscellaneous group (1.8% of total). Soma-dendritic morphology was analyzed, revealing 5 common shapes distributed differentially between the 20 classes. Distinctive baskets of axonal varicosities surrounded 45% of myenteric nerve cell bodies and were associated with close appositions, suggesting possible connectivity. Baskets of cholinergic terminals and several other types of baskets selectively targeted ascending interneurons and excitatory motor neurons but were significantly sparser around inhibitory motor neurons. CONCLUSIONS Using a simple immunohistochemical method, human myenteric neurons were shown to comprise multiple classes based on chemical coding and morphology and dense clusters of axonal varicosities were selectively associated with some classes.
Collapse
Affiliation(s)
- Bao Nan Chen
- Human Physiology, College of Medicine and Public Health, Flinders University, Adelaide, South Australia, Australia
| | - Adam Humenick
- Human Physiology, College of Medicine and Public Health, Flinders University, Adelaide, South Australia, Australia
| | - Wai Ping Yew
- Human Physiology, College of Medicine and Public Health, Flinders University, Adelaide, South Australia, Australia
| | - Rochelle A Peterson
- Human Physiology, College of Medicine and Public Health, Flinders University, Adelaide, South Australia, Australia
| | - Lukasz Wiklendt
- Human Physiology, College of Medicine and Public Health, Flinders University, Adelaide, South Australia, Australia
| | - Phil G Dinning
- Human Physiology, College of Medicine and Public Health, Flinders University, Adelaide, South Australia, Australia; Colorectal Surgical Unit, Division of Surgery, Flinders Medical Centre, Bedford Park, South Australia, Australia
| | - Nick J Spencer
- Human Physiology, College of Medicine and Public Health, Flinders University, Adelaide, South Australia, Australia
| | - David A Wattchow
- Colorectal Surgical Unit, Division of Surgery, Flinders Medical Centre, Bedford Park, South Australia, Australia
| | - Marcello Costa
- Human Physiology, College of Medicine and Public Health, Flinders University, Adelaide, South Australia, Australia
| | - Simon J H Brookes
- Human Physiology, College of Medicine and Public Health, Flinders University, Adelaide, South Australia, Australia.
| |
Collapse
|
15
|
Bolognesi MM, Antoranz A, Bosisio FM, Cattoretti G. Quantitative multiplex immunohistochemistry with colorimetric staining (QUIVER) may still benefit from MILAN. Acta Neuropathol Commun 2023; 11:91. [PMID: 37287032 DOI: 10.1186/s40478-023-01585-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2023] [Accepted: 05/18/2023] [Indexed: 06/09/2023] Open
Affiliation(s)
- Maddalena M Bolognesi
- Pathology, Department of Medicine and Surgery, Università di Milano-Bicocca, Via Cadore 48, Monza, MI, Italy
| | - Asier Antoranz
- Translational Cell and Tissue Research Unit, Department of Imaging and Pathology, KU Leuven, Leuven, Belgium
- The Laboratory for Precision Cancer Medicine, Translational Cell and Tissue Research Unit, Department of Imaging and Pathology, KU Leuven, Leuven, Belgium
| | - Francesca Maria Bosisio
- Translational Cell and Tissue Research Unit, Department of Imaging and Pathology, KU Leuven, Leuven, Belgium
| | - Giorgio Cattoretti
- Pathology, Department of Medicine and Surgery, Università di Milano-Bicocca, Via Cadore 48, Monza, MI, Italy.
| |
Collapse
|
16
|
Yew WP, Humenick A, Chen BN, Wattchow DA, Costa M, Dinning PG, Brookes SJH. Electrophysiological and morphological features of myenteric neurons of human colon revealed by intracellular recording and dye fills. Neurogastroenterol Motil 2023; 35:e14538. [PMID: 36740821 DOI: 10.1111/nmo.14538] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/10/2022] [Revised: 12/27/2022] [Accepted: 01/11/2023] [Indexed: 02/07/2023]
Abstract
BACKGROUND Ex vivo intracellular recordings and dye fills, combined with immunohistochemistry, are a powerful way to analyze the enteric nervous system of laboratory animals. METHODS Myenteric neurons were recorded in isolated specimens of human colon. A key determinant of successful recording was near-complete removal of circular muscle from the surface of ganglia. KEY RESULTS Treatment with a collagenase/neutral protease mix before dissection significantly improved recording success and reduced damage to the plexus. Carboxyfluorescein in microelectrodes allowed recorded neurons to be routinely labeled, analyzed, and subjected to multi-layer immunohistochemistry. Carboxyfluorescein revealed morphological details that were not detected by immunohistochemical methods. Of 54 dye-filled myenteric neurons (n = 22), 45 were uni-axonal and eight were multi-axonal. There was a significant bias toward recordings from large neural somata. The close association between morphology and electrophysiology (long after-hyperpolarizations and fast EPSPs) seen in mice and guinea pigs did not hold for human myenteric neuron recordings. No slow EPSPs were recorded; however, disruption to the myenteric plexus during dissection may have led the proportion of cells receiving synaptic potentials to be underestimated. Neurons immunoreactive for nitric oxide synthase were more excitable than non-immunoreactive neurons. Distinctive grooves were observed on the serosal and/or mucosal faces of myenteric neurons in 3D reconstructions. These had varicose axons running through them and may represent a preferential site of synaptic inputs. CONCLUSIONS Human enteric neurons share many features with laboratory animals, but the combinations of features in individual cells appear more variable.
Collapse
Affiliation(s)
- Wai Ping Yew
- Human Physiology, College of Medicine and Public Health, Flinders University, Bedford Park, South Australia, Australia
| | - Adam Humenick
- Human Physiology, College of Medicine and Public Health, Flinders University, Bedford Park, South Australia, Australia
| | - Bao Nan Chen
- Human Physiology, College of Medicine and Public Health, Flinders University, Bedford Park, South Australia, Australia
| | - David A Wattchow
- Department of Surgery, Flinders Medical Centre, Bedford Park, South Australia, Australia
| | - Marcello Costa
- Human Physiology, College of Medicine and Public Health, Flinders University, Bedford Park, South Australia, Australia
| | - Phil G Dinning
- Department of Surgery, Flinders Medical Centre, Bedford Park, South Australia, Australia
| | - Simon J H Brookes
- Human Physiology, College of Medicine and Public Health, Flinders University, Bedford Park, South Australia, Australia
| |
Collapse
|
17
|
Shahidehpour RK, Nelson AS, Sanders LG, Embry CR, Nelson PT, Bachstetter AD. The localization of molecularly distinct microglia populations to Alzheimer's disease pathologies using QUIVER. Acta Neuropathol Commun 2023; 11:45. [PMID: 36934255 PMCID: PMC10024857 DOI: 10.1186/s40478-023-01541-w] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2023] [Accepted: 03/03/2023] [Indexed: 03/20/2023] Open
Abstract
New histological techniques are needed to examine protein distribution in human tissues, which can reveal cell shape and disease pathology connections. Spatial proteomics has changed the study of tumor microenvironments by identifying spatial relationships of immunomodulatory cells and proteins and contributing to the discovery of new cancer immunotherapy biomarkers. However, the fast-expanding toolkit of spatial proteomic approaches has yet to be systematically applied to investigate pathological alterations in the aging human brain in health and disease states. Moreover, post-mortem human brain tissue presents distinct technical problems due to fixation procedures and autofluorescence, which limit fluorescence methodologies. This study sought to develop a multiplex immunohistochemistry approach (visualizing the immunostain with brightfield microscopy). Quantitative multiplex Immunohistochemistry with Visual colorimetric staining to Enhance Regional protein localization (QUIVER) was developed to address these technical challenges. Using QUIVER, a ten-channel pseudo-fluorescent image was generated using chromogen removal and digital microscopy to identify unique molecular microglia phenotypes. Next, the study asked if the tissue environment, specifically the amyloid plaques and neurofibrillary tangles characteristic of Alzheimer's disease, has any bearing on microglia's cellular and molecular phenotypes. QUIVER allowed the visualization of five molecular microglia/macrophage phenotypes using digital pathology tools. The recognizable reactive and homeostatic microglia/macrophage phenotypes demonstrated spatial polarization towards and away from amyloid plaques, respectively. Yet, microglia morphology appearance did not always correspond to molecular phenotype. This research not only sheds light on the biology of microglia but also offers QUIVER, a new tool for examining pathological alterations in the brains of the elderly.
Collapse
Affiliation(s)
- Ryan K Shahidehpour
- Spinal Cord and Brain Injury Research Center, University of Kentucky, 741 S. Limestone St., Lexington, KY, 40536, USA
- Department of Neuroscience, University of Kentucky, Lexington, KY, 40536, USA
| | - Abraham S Nelson
- Spinal Cord and Brain Injury Research Center, University of Kentucky, 741 S. Limestone St., Lexington, KY, 40536, USA
| | - Lydia G Sanders
- Spinal Cord and Brain Injury Research Center, University of Kentucky, 741 S. Limestone St., Lexington, KY, 40536, USA
| | - Chloe R Embry
- Spinal Cord and Brain Injury Research Center, University of Kentucky, 741 S. Limestone St., Lexington, KY, 40536, USA
| | - Peter T Nelson
- Department of Neuroscience, University of Kentucky, Lexington, KY, 40536, USA
- Sanders-Brown Center On Aging, University of Kentucky, Lexington, KY, 40536, USA
- Division of Neuropathology, Department of Pathology and Laboratory Medicine, University of Kentucky, Lexington, KY, 40536, USA
| | - Adam D Bachstetter
- Spinal Cord and Brain Injury Research Center, University of Kentucky, 741 S. Limestone St., Lexington, KY, 40536, USA.
- Department of Neuroscience, University of Kentucky, Lexington, KY, 40536, USA.
- Sanders-Brown Center On Aging, University of Kentucky, Lexington, KY, 40536, USA.
| |
Collapse
|
18
|
Guillot A, Kohlhepp MS, Tacke F. Multiplex Immunostaining to Spatially Resolve the Cellular Landscape in Human and Mouse Livers. Methods Mol Biol 2023; 2669:245-255. [PMID: 37247065 DOI: 10.1007/978-1-0716-3207-9_15] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/30/2023]
Abstract
Histological techniques based on tissue colorations (e.g., hematoxylin-eosin, Sirius red) and immunostaining remain gold standard methodologies for diagnostic or phenotyping purposes in liver disease research and clinical hepatology. With the development of -omics technologies, greater information can be extracted from tissue sections. We describe a sequential immunostaining protocol consisting of repetitive cycles of immunostaining and chemically induced antibody stripping that can be readily applied to various formalin-fixed tissues (liver or other organs, mouse or human) and does not require specific equipment or commercial kits. Importantly, the combination of antibodies can be adapted according to specific clinical or scientific needs.
Collapse
Affiliation(s)
- Adrien Guillot
- Charité Universitätsmedizin Berlin, Department of Hepatology & Gastroenterology, Berlin, Germany
| | - Marlene Sophia Kohlhepp
- Charité Universitätsmedizin Berlin, Department of Hepatology & Gastroenterology, Berlin, Germany
| | - Frank Tacke
- Charité Universitätsmedizin Berlin, Department of Hepatology & Gastroenterology, Berlin, Germany.
| |
Collapse
|
19
|
Johnson ME, Humenick A, Peterson RA, Costa M, Wattchow DA, Sia TC, Dinning PG, Brookes SJH. Characterisation of parasympathetic ascending nerves in human colon. Front Neurosci 2022; 16:1072002. [PMID: 36532291 PMCID: PMC9752816 DOI: 10.3389/fnins.2022.1072002] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2022] [Accepted: 11/11/2022] [Indexed: 11/19/2023] Open
Abstract
Background In the human large bowel, sacral parasympathetic nerves arise from S2 to S4, project to the pelvic plexus ("hypogastric plexus") and have post-ganglionic axons entering the large bowel near the rectosigmoid junction. They then run long distances orally or aborally within the bowel wall forming "ascending nerves" or "shunt fascicles" running in the plane of the myenteric plexus. They form bundles of nerve fibres that can be distinguished from the myenteric plexus by their straight orientation, tendency not to merge with myenteric ganglia and greater width. Aim To identify reliable marker(s) to distinguish these bundles of ascending nerves from other extrinsic and intrinsic nerves in human colon. Methods Human colonic segments were obtained with informed consent, from adult patients undergoing elective surgery (n = 21). Multi-layer immunohistochemical labelling with neurofilament-H (NF200), myelin basic protein (MBP), von Willebrand factor (vWF), and glucose transporter 1 (GLUT1), and rapid anterograde tracing with biotinamide, were used to compare ascending nerves and lumbar colonic nerves. Results The rectosigmoid and rectal specimens had 6-11 ascending nerves spaced around their circumference. Distal colon specimens typically had 1-3 ascending nerves, with one located near the mesenteric taenia coli. No ascending nerves were observed in ascending colon specimens. GLUT1 antisera labelled both sympathetic lumbar colonic nerves and ascending nerves in the gut wall. Lumbar colonic nerves joined the myenteric plexus and quickly lost GLUT1 labelling, whereas GLUT1 staining labelled parasympathetic ascending nerves over many centimetres. Conclusion Ascending nerves can be distinguished in the colorectum of humans using GLUT1 labelling combined with NF200.
Collapse
Affiliation(s)
- Michaela E. Johnson
- College of Medicine and Public Health, Flinders University, Adelaide, SA, Australia
| | - Adam Humenick
- College of Medicine and Public Health, Flinders University, Adelaide, SA, Australia
| | - Rochelle A. Peterson
- College of Medicine and Public Health, Flinders University, Adelaide, SA, Australia
| | - Marcello Costa
- College of Medicine and Public Health, Flinders University, Adelaide, SA, Australia
| | - David A. Wattchow
- College of Medicine and Public Health, Flinders University, Adelaide, SA, Australia
| | - Tiong Cheng Sia
- Colorectal Surgical Unit, Division of Surgery, Flinders Medical Centre, Bedford Park, SA, Australia
| | - Phil G. Dinning
- College of Medicine and Public Health, Flinders University, Adelaide, SA, Australia
- Department of Gastroenterology and Surgery, Flinders Medical Centre, Bedford Park, SA, Australia
| | - Simon J. H. Brookes
- College of Medicine and Public Health, Flinders University, Adelaide, SA, Australia
| |
Collapse
|
20
|
Chiriboga L, Callis GM, Wang Y, Chlipala E. Guide for collecting and reporting metadata on protocol variables and parameters from slide-based histotechnology assays to enhance reproducibility. J Histotechnol 2022; 45:132-147. [DOI: 10.1080/01478885.2022.2134022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Affiliation(s)
- Luis Chiriboga
- Department of Pathology, NYU Grossman School of Medicine, New York, NY, USA
- NYULH Center for Biospecimen Research and Development, New York, NY, USA
| | | | - Yongfu Wang
- Stowers Institute for Medical Research, Kansas, MO, USA
| | | |
Collapse
|
21
|
Parker DR, Wiklendt L, Humenick A, Chen BN, Sia TC, Wattchow DA, Dinning PG, Brookes SJH. Sympathetic Pathways Target Cholinergic Neurons in the Human Colonic Myenteric Plexus. Front Neurosci 2022; 16:863662. [PMID: 35368277 PMCID: PMC8970288 DOI: 10.3389/fnins.2022.863662] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2022] [Accepted: 02/21/2022] [Indexed: 01/01/2023] Open
Abstract
Background The sympathetic nervous system inhibits human colonic motility largely by effects on enteric neurons. Noradrenergic axons, which branch extensively in the myenteric plexus, are integral to this modulatory role, but whether they contact specific types of enteric neurons is unknown. The purpose of this study was to determine the association of noradrenergic varicosities with types of enteric neurons. Methods Human colonic tissue from seven patients was fixed and dissected prior to multi-layer immunohistochemistry for human RNA binding proteins C and D (HuC/D) (pan-neuronal cell body labelling), tyrosine hydroxylase (TH, catecholaminergic labelling), Enkephalin (ENK), choline acetyltransferase (ChAT, cholinergic labelling) and/or nitric oxide synthase (NOS, nitrergic labelling) and imaged using confocal microscopy. TH-immunoreactive varicose nerve endings and myenteric cell bodies were reconstructed as three dimensional digital images. Data was exported to a purpose-built software package which quantified the density of varicosities close to the surface of each myenteric cell body. Results TH-immunoreactive varicosities had a greater mean density within 1 μm of the surface of ChAT +/NOS− nerve cell bodies compared with ChAT−/NOS + cell bodies. Similarly, ENK-immunoreactive varicosities also had a greater mean density close to ChAT +/NOS− cell bodies compared with ChAT−/NOS + cells. Conclusion A method for quantifying close associations between varicosities and nerve cell bodies was developed. Sympathetic axons in the myenteric plexus preferentially target cholinergic excitatory cells compared to nitrergic neurons (which are largely inhibitory). This connectivity is likely to be involved in inhibitory modulation of human colonic motility by the sympathetic nervous system.
Collapse
Affiliation(s)
- Dominic R. Parker
- Laboratory of Neurogastroenterology, College of Medicine and Public Health, Flinders University, Adelaide, SA, Australia
- Colorectal Surgical Unit, Division of Surgery, Flinders Medical Centre, Bedford Park, SA, Australia
| | - Lukasz Wiklendt
- Laboratory of Neurogastroenterology, College of Medicine and Public Health, Flinders University, Adelaide, SA, Australia
| | - Adam Humenick
- Laboratory of Neurogastroenterology, College of Medicine and Public Health, Flinders University, Adelaide, SA, Australia
| | - Bao Nan Chen
- Laboratory of Neurogastroenterology, College of Medicine and Public Health, Flinders University, Adelaide, SA, Australia
| | - Tiong Cheng Sia
- Colorectal Surgical Unit, Division of Surgery, Flinders Medical Centre, Bedford Park, SA, Australia
| | - David A. Wattchow
- Laboratory of Neurogastroenterology, College of Medicine and Public Health, Flinders University, Adelaide, SA, Australia
- Colorectal Surgical Unit, Division of Surgery, Flinders Medical Centre, Bedford Park, SA, Australia
| | - Phil G. Dinning
- Laboratory of Neurogastroenterology, College of Medicine and Public Health, Flinders University, Adelaide, SA, Australia
| | - Simon J. H. Brookes
- Laboratory of Neurogastroenterology, College of Medicine and Public Health, Flinders University, Adelaide, SA, Australia
- *Correspondence: Simon J. H. Brookes,
| |
Collapse
|
22
|
Davis B, Shi P, Gaddes E, Lai J, Wang Y. Bidirectional Supramolecular Display and Signal Amplification on the Surface of Living Cells. Biomacromolecules 2022; 23:1403-1412. [PMID: 35189058 DOI: 10.1021/acs.biomac.1c01627] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The ability to display exogenous molecules or nanomaterials on the surface of cells holds great potential for biomedical applications such as cell imaging and delivery. Numerous methods have been well established to enhance the display of biomolecules and nanomaterials on the cell surface. However, it is challenging to remove these biomolecules or nanomaterials from the cell surface. The purpose of this study was to investigate the reversible display of supramolecular nanomaterials on the surface of living cells. The data show that DNA initiators could induce the self-assembly of DNA-alginate conjugates to form supramolecular nanomaterials and amplify the fluorescence signals on the cell surface. Complementary DNA (cDNA), DNase, and alginase could all trigger the reversal of the signals from the cell surface. However, these three molecules exhibited different triggering efficiencies in the order cDNA > alginase > DNase. The combination of cDNA and alginase led to the synergistic reversal of nanomaterials and fluorescent signals from the cell surface. Thus, this study has successfully demonstrated a method for the bidirectional display of supramolecular nanomaterials on the surface of living cells. This method may find its application in numerous fields such as intact cell imaging and separation.
Collapse
Affiliation(s)
- Brandon Davis
- Department of Biomedical Engineering, The Pennsylvania State University, University Park, Pennsylvania 16802, United States
| | - Peng Shi
- Department of Biomedical Engineering, The Pennsylvania State University, University Park, Pennsylvania 16802, United States
| | - Erin Gaddes
- Department of Biomedical Engineering, The Pennsylvania State University, University Park, Pennsylvania 16802, United States
| | - Jinping Lai
- Department of Biomedical Engineering, The Pennsylvania State University, University Park, Pennsylvania 16802, United States
| | - Yong Wang
- Department of Biomedical Engineering, The Pennsylvania State University, University Park, Pennsylvania 16802, United States
| |
Collapse
|
23
|
Lonardi S, Bugatti M, Valzelli A, Facchetti F. Immunohistochemical Detection of SARS-CoV-2 Antigens by Single and Multiple Immunohistochemistry. Methods Mol Biol 2022; 2452:291-303. [PMID: 35554913 DOI: 10.1007/978-1-0716-2111-0_17] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection can be demonstrated in tissue sections by immunohistochemistry (IHC), which has the power to localize in bright field specific antigens in cells and tissues. The use of double or triple immunostains is capable of highlighting which cells are infected and/or the relationship of infected cell with other cells and tissue structures. In addition, immunoenzymatic multi-staining permits the simultaneous identification, localization, and enumeration of different cellular epitopes. Moreover, this method improves analytical precision, decreasing the time required for morphometric quantification, maximizing the information obtained from a single slide of paraffin-embedded tissue.
Collapse
Affiliation(s)
- Silvia Lonardi
- Section of Pathology, Department of Molecular and Translational Medicine, University of Brescia, Spedali Civili di Brescia, Brescia, Italy
| | - Mattia Bugatti
- Section of Pathology, Department of Molecular and Translational Medicine, University of Brescia, Spedali Civili di Brescia, Brescia, Italy.
| | - Arianna Valzelli
- Section of Pathology, Department of Molecular and Translational Medicine, University of Brescia, Spedali Civili di Brescia, Brescia, Italy
| | - Fabio Facchetti
- Section of Pathology, Department of Molecular and Translational Medicine, University of Brescia, Spedali Civili di Brescia, Brescia, Italy.
| |
Collapse
|
24
|
de Jesus Santos AP, Oliveira-Giacomelli Á, de Sá VK, do Nascimento IC, de Simone Molina E, Ulrich H. Selection and Application of Aptamer Affinity for Protein Purification. Methods Mol Biol 2022; 2466:187-203. [PMID: 35585319 DOI: 10.1007/978-1-0716-2176-9_13] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Aptamers are affinity-based oligonucleotide ligands raised against a target molecule, which might be of proteic or other nature. Aptamers are developed by using a reiterative in vitro selection procedure, named SELEX, in which the target is exposed to a combinatorial oligonucleotide combinatorial library. Target bound oligonucleotides are eluted, and PCR amplified followed by the next SELEX round. The process is repeated until no further increase in target binding affinity and specificity is achieved. Selected aptamers are identified and immobilized for protein purification. In view of their stability against denaturation and capability of renaturation, low costs of production, easiness of modification and stabilization, oligonucleotide aptamers are excellent tools as high-affinity ligands for applications of protein purification.
Collapse
Affiliation(s)
| | | | - Vanessa Karen de Sá
- Departamento de Bioquímica, Instituto de Química, Universidade de São Paulo, São Paulo, Brazil
| | | | - Erika de Simone Molina
- Departamento de Bioquímica, Instituto de Química, Universidade de São Paulo, São Paulo, Brazil
| | - Henning Ulrich
- Departamento de Bioquímica, Instituto de Química, Universidade de São Paulo, São Paulo, Brazil.
| |
Collapse
|
25
|
Multiple Immunostainings with Different Epitope Retrievals—The FOLGAS Protocol. Int J Mol Sci 2021; 23:ijms23010223. [PMID: 35008649 PMCID: PMC8745613 DOI: 10.3390/ijms23010223] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2021] [Revised: 12/22/2021] [Accepted: 12/24/2021] [Indexed: 11/16/2022] Open
Abstract
We describe a sequential multistaining protocol for immunohistochemistry, immunofluorescence and CyTOF imaging for formalin-fixed, paraffin-embedded specimens (FFPE) in the formalin gas-phase (FOLGAS), enabling sequential multistaining, independent from the primary and secondary antibodies and retrieval. Histomorphologic details are preserved, and crossreactivity and loss of signal intensity are not detectable. Combined with a DAB-based hydrophobic masking of metal-labeled primary antibodies, FOLGAS allows the extended use of CyTOF imaging in FFPE sections.
Collapse
|
26
|
Multiplex gene analysis reveals T-cell and antibody-mediated rejection-specific upregulation of complement in renal transplants. Sci Rep 2021; 11:15464. [PMID: 34326417 PMCID: PMC8322413 DOI: 10.1038/s41598-021-94954-3] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2021] [Accepted: 07/13/2021] [Indexed: 01/03/2023] Open
Abstract
In renal transplantation, complement is involved in ischemia reperfusion injury, graft rejection and dysfunction. However, it is still unclear how induction of complement and its activation are initiated. Using allograft biopsies of a well-characterized cohort of 28 renal transplant patients with no rejection (Ctrl), delayed graft function (DGF), acute T-cell-mediated (TCMR) or antibody-mediated rejection (ABMR) we analyzed differences in complement reaction. For that mRNA was isolated from FFPE sections, quantified with a multiplex gene expression panel and correlated with transplant conditions and follow-up of patients. Additionally, inflammatory cells were quantified by multiplex immunohistochemistry. In allograft biopsies with TCMR and ABMR gene expression of C1QB was 2-4 fold elevated compared to Ctrl. In TCMR biopsies, mRNA counts of several complement-related genes including C1S, C3, CFB and complement regulators CFH, CR1 and SERPING1 were significantly increased compared to Ctrl. Interestingly, expression levels of about 75% of the analyzed complement related genes correlated with cold ischemia time (CIT) and markers of inflammation. In conclusion, this study suggest an important role of complement in transplant pathology which seems to be at least in part triggered by CIT. Multiplex mRNA analysis might be a useful method to refine diagnosis and explore new pathways involved in rejection.
Collapse
|
27
|
Abtahi S, Gliksman NR, Heneghan JF, Nilsen SP, Muhlich JL, Copeland J, Rozbicki E, Allan C, Dudeja PK, Turner JR. A Simple Method for Creating a High-Content Microscope for Imaging Multiplexed Tissue Microarrays. Curr Protoc 2021; 1:e68. [PMID: 33822482 DOI: 10.1002/cpz1.68] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
High-throughput, high-content imaging technologies and multiplex slide scanning have become widely used. Advantages of these approaches include the ability to archive digital copies of slides, review slides as teams using virtual microscopy software, and standardize analytical approaches. The cost and hardware and software inflexibility of dedicated slide scanning devices can, however, complicate implementation. Here, we describe a simple method that allows any microscope to be used for slide scanning. The only requirements are that the microscope be equipped with a motorized filter turret or wheels (for multi-channel fluorescence) and a motorized xyz stage. This example uses MetaMorph software, but the same principles can be used with any microscope control software that includes a few standard functions and allows programming of simple command routines, or journals. The series of journals that implement the method perform key functions, including assistance in defining an unlimited number of regions of interest (ROI) and imaging parameters. Fully automated acquisition is rapid, taking less than 3 hr to image fifty 2.5-mm ROIs in four channels. Following acquisition, images can be easily stitched and displayed using open-source or commercial image-processing and virtual microscope applications. © 2021 Wiley Periodicals LLC. Basic Protocol 1: Hardware and software configuration Basic Protocol 2: Create a preliminary scan Basic Protocol 3: Select, save, and position ROIs Basic Protocol 4: Determine and set autofocus parameters Basic Protocol 5: Acquire tiled images Basic Protocol 6: Review the scans Basic Protocol 7: Reimage ROIs as needed Basic Protocol 8: Stitch, stack, and assemble images Basic Protocol 9: Repeat scanning for multiplex immunostaining or background subtraction.
Collapse
Affiliation(s)
- Shabnam Abtahi
- Department of Pathology, Laboratory of Mucosal Barrier Pathobiology, Brigham and Women's Hospital and Harvard Medical School, Boston, Massachusetts
| | | | - John F Heneghan
- Department of Pathology, Laboratory of Mucosal Barrier Pathobiology, Brigham and Women's Hospital and Harvard Medical School, Boston, Massachusetts
| | - Steven P Nilsen
- Department of Pathology, Laboratory of Mucosal Barrier Pathobiology, Brigham and Women's Hospital and Harvard Medical School, Boston, Massachusetts
| | - Jeremy L Muhlich
- Laboratory of Systems Pharmacology, Harvard Medical School, Boston, Massachusetts
| | - Jay Copeland
- Harvard Medical School Information Technology Department, Research Computing, Harvard Medical School, Boston, Massachusetts
| | | | - Chris Allan
- Glencoe Software, Dundee, Scotland, United Kingdom
| | - Pradeep K Dudeja
- Department of Medicine, Division of Gastroenterology and Hepatology, University of Illinois at Chicago, Chicago, Illinois.,Jesse Brown Veterans Affairs Medical Center, Chicago, Illinois
| | - Jerrold R Turner
- Department of Pathology, Laboratory of Mucosal Barrier Pathobiology, Brigham and Women's Hospital and Harvard Medical School, Boston, Massachusetts
| |
Collapse
|
28
|
Willemsen M, Krebbers G, Bekkenk MW, Teunissen MB, Luiten RM. Improvement of Opal Multiplex Immunofluorescence Workflow for Human Tissue Sections. J Histochem Cytochem 2021; 69:339-346. [PMID: 33797290 PMCID: PMC8091416 DOI: 10.1369/00221554211007793] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2021] [Accepted: 03/17/2021] [Indexed: 01/27/2023] Open
Abstract
The Opal multiplex technique is an established methodology for the detection of multiple biomarkers in one section. The protocol encompasses iterative single stainings and heating-mediated removal of the primary and secondary antibodies after each staining round, leaving untouched the Opal fluorophores which are deposited onto the antigen of interest. According to our experience, repetitive heating of skin sections often results in tissue damage, indicating an urgent need for milder alternatives to strip immunoglobulins. In this study, we demonstrate that considerable heating-related damage was found not only in skin but also in tissues of different origin, mostly characterized by low cell density. Importantly, the morphology remained fully intact when sections were repetitively exposed to β-mercaptoethanol-containing stripping buffer instead of multiple heating cycles. However, target epitopes appeared sensitive at a differential degree to multiple treatments with stripping buffer, as shown by loss in staining intensity, but in all cases, the staining intensity could be restored by increment of the primary antibody concentrations. Application of β-mercaptoethanol-containing stripping buffer instead of heating for antibody removal markedly improved the quality of the Opal multiplex technique, as a substantial higher number of differently colored cells could be visualized within a well-conserved morphological context.
Collapse
Affiliation(s)
- Marcella Willemsen
- Department of Dermatology, Amsterdam University Medical Centers, location AMC, University of Amsterdam, Amsterdam, The Netherlands
- Netherlands Institute for Pigment Disorders, Amsterdam University Medical Centers, location AMC, University of Amsterdam, Amsterdam, The Netherlands
- Cancer Center Amsterdam, Amsterdam University Medical Centers, location AMC, University of Amsterdam, Amsterdam, The Netherlands
- Amsterdam Infection & Immunity Institute, Amsterdam University Medical Centers, location AMC, University of Amsterdam, Amsterdam, The Netherlands
| | - Gabrielle Krebbers
- Department of Dermatology, Amsterdam University Medical Centers, location AMC, University of Amsterdam, Amsterdam, The Netherlands
- Netherlands Institute for Pigment Disorders, Amsterdam University Medical Centers, location AMC, University of Amsterdam, Amsterdam, The Netherlands
- Cancer Center Amsterdam, Amsterdam University Medical Centers, location AMC, University of Amsterdam, Amsterdam, The Netherlands
- Amsterdam Infection & Immunity Institute, Amsterdam University Medical Centers, location AMC, University of Amsterdam, Amsterdam, The Netherlands
| | - Marcel W. Bekkenk
- Department of Dermatology, Amsterdam University Medical Centers, location AMC, University of Amsterdam, Amsterdam, The Netherlands
- Netherlands Institute for Pigment Disorders, Amsterdam University Medical Centers, location AMC, University of Amsterdam, Amsterdam, The Netherlands
- Cancer Center Amsterdam, Amsterdam University Medical Centers, location AMC, University of Amsterdam, Amsterdam, The Netherlands
- Amsterdam Infection & Immunity Institute, Amsterdam University Medical Centers, location AMC, University of Amsterdam, Amsterdam, The Netherlands
| | - Marcel B.M. Teunissen
- Department of Dermatology, Amsterdam University Medical Centers, location AMC, University of Amsterdam, Amsterdam, The Netherlands
| | - Rosalie M. Luiten
- Department of Dermatology, Amsterdam University Medical Centers, location AMC, University of Amsterdam, Amsterdam, The Netherlands
- Netherlands Institute for Pigment Disorders, Amsterdam University Medical Centers, location AMC, University of Amsterdam, Amsterdam, The Netherlands
- Cancer Center Amsterdam, Amsterdam University Medical Centers, location AMC, University of Amsterdam, Amsterdam, The Netherlands
- Amsterdam Infection & Immunity Institute, Amsterdam University Medical Centers, location AMC, University of Amsterdam, Amsterdam, The Netherlands
| |
Collapse
|
29
|
Fomchenko KM, Walsh EM, Yang X, Verma RX, Lin BL, Nieuwenhuis TO, Patil AH, Fox-Talbot K, McCall MN, Kass DA, Rosenberg AZ, Halushka MK. Spatial Proteomic Approach to Characterize Skeletal Muscle Myofibers. J Proteome Res 2021; 20:888-894. [PMID: 33251806 PMCID: PMC8826490 DOI: 10.1021/acs.jproteome.0c00673] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
Skeletal muscle myofibers have differential protein expression resulting in functionally distinct slow- and fast-twitch types. While certain protein classes are well-characterized, the depth of all proteins involved in this process is unknown. We utilized the Human Protein Atlas (HPA) and the HPASubC tool to classify mosaic expression patterns of staining across 49,600 unique tissue microarray (TMA) images using a visual proteomic approach. We identified 2164 proteins with potential mosaic expression, of which 1605 were categorized as "likely" or "real." This list included both well-known fiber-type-specific and novel proteins. A comparison of the 1605 mosaic proteins with a mass spectrometry (MS)-derived proteomic dataset of single human muscle fibers led to the assignment of 111 proteins to fiber types. We additionally used a multiplexed immunohistochemistry approach, a multiplexed RNA-ISH approach, and STRING v11 to further assign or suggest fiber types of newly characterized mosaic proteins. This visual proteomic analysis of mature skeletal muscle myofibers greatly expands the known repertoire of twitch-type-specific proteins.
Collapse
Affiliation(s)
- Katherine M Fomchenko
- Department of Pathology, Johns Hopkins University School of Medicine, Ross Bldg. Rm 632B, 720 Rutland Avenue, Baltimore, Maryland 21205, United States
| | - Elise M Walsh
- Department of Pathology, Johns Hopkins University School of Medicine, Ross Bldg. Rm 632B, 720 Rutland Avenue, Baltimore, Maryland 21205, United States
| | - Xiaoping Yang
- Department of Pathology, Johns Hopkins University School of Medicine, Ross Bldg. Rm 632B, 720 Rutland Avenue, Baltimore, Maryland 21205, United States
| | - Rohan X Verma
- Department of Pathology, Johns Hopkins University School of Medicine, Ross Bldg. Rm 632B, 720 Rutland Avenue, Baltimore, Maryland 21205, United States
| | - Brian L Lin
- Division of Cardiology, Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, Maryland 21205, United States
| | - Tim O Nieuwenhuis
- Department of Pathology, Johns Hopkins University School of Medicine, Ross Bldg. Rm 632B, 720 Rutland Avenue, Baltimore, Maryland 21205, United States
| | - Arun H Patil
- Department of Pathology, Johns Hopkins University School of Medicine, Ross Bldg. Rm 632B, 720 Rutland Avenue, Baltimore, Maryland 21205, United States
| | - Karen Fox-Talbot
- Department of Pathology, Johns Hopkins University School of Medicine, Ross Bldg. Rm 632B, 720 Rutland Avenue, Baltimore, Maryland 21205, United States
| | - Matthew N McCall
- Department of Biostatistics and Computational Biology, University of Rochester Medical Center, Rochester, New York 14642, United States
| | - David A Kass
- Division of Cardiology, Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, Maryland 21205, United States
| | - Avi Z Rosenberg
- Department of Pathology, Johns Hopkins University School of Medicine, Ross Bldg. Rm 632B, 720 Rutland Avenue, Baltimore, Maryland 21205, United States
| | - Marc K Halushka
- Department of Pathology, Johns Hopkins University School of Medicine, Ross Bldg. Rm 632B, 720 Rutland Avenue, Baltimore, Maryland 21205, United States
| |
Collapse
|
30
|
Bolognesi MM, Bosisio FM, Cattoretti G. Unidentified Variables May Account for Variability in Multiplexing Results. J Histochem Cytochem 2020; 68:351-353. [PMID: 32391736 DOI: 10.1369/0022155420911050] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Affiliation(s)
| | | | - Giorgio Cattoretti
- Pathology, Department of Medicine and Surgery, Università di Milano-Bicocca, Monza, Italy
| |
Collapse
|
31
|
Conlon TM, John-Schuster G, Heide D, Pfister D, Lehmann M, Hu Y, Ertüz Z, Lopez MA, Ansari M, Strunz M, Mayr C, Angelidis I, Ciminieri C, Costa R, Kohlhepp MS, Guillot A, Günes G, Jeridi A, Funk MC, Beroshvili G, Prokosch S, Hetzer J, Verleden SE, Alsafadi H, Lindner M, Burgstaller G, Becker L, Irmler M, Dudek M, Janzen J, Goffin E, Gosens R, Knolle P, Pirotte B, Stoeger T, Beckers J, Wagner D, Singh I, Theis FJ, de Angelis MH, O'Connor T, Tacke F, Boutros M, Dejardin E, Eickelberg O, Schiller HB, Königshoff M, Heikenwalder M, Yildirim AÖ. Inhibition of LTβR signalling activates WNT-induced regeneration in lung. Nature 2020; 588:151-156. [PMID: 33149305 PMCID: PMC7718297 DOI: 10.1038/s41586-020-2882-8] [Citation(s) in RCA: 99] [Impact Index Per Article: 19.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2019] [Accepted: 08/19/2020] [Indexed: 01/11/2023]
Abstract
Lymphotoxin β-receptor (LTβR) signalling promotes lymphoid neogenesis and the development of tertiary lymphoid structures1,2, which are associated with severe chronic inflammatory diseases that span several organ systems3-6. How LTβR signalling drives chronic tissue damage particularly in the lung, the mechanism(s) that regulate this process, and whether LTβR blockade might be of therapeutic value have remained unclear. Here we demonstrate increased expression of LTβR ligands in adaptive and innate immune cells, enhanced non-canonical NF-κB signalling, and enriched LTβR target gene expression in lung epithelial cells from patients with smoking-associated chronic obstructive pulmonary disease (COPD) and from mice chronically exposed to cigarette smoke. Therapeutic inhibition of LTβR signalling in young and aged mice disrupted smoking-related inducible bronchus-associated lymphoid tissue, induced regeneration of lung tissue, and reverted airway fibrosis and systemic muscle wasting. Mechanistically, blockade of LTβR signalling dampened epithelial non-canonical activation of NF-κB, reduced TGFβ signalling in airways, and induced regeneration by preventing epithelial cell death and activating WNT/β-catenin signalling in alveolar epithelial progenitor cells. These findings suggest that inhibition of LTβR signalling represents a viable therapeutic option that combines prevention of tertiary lymphoid structures1 and inhibition of apoptosis with tissue-regenerative strategies.
Collapse
Affiliation(s)
- Thomas M Conlon
- Comprehensive Pneumology Center (CPC), Institute of Lung Biology and Disease, Helmholtz Zentrum München, Member of the German Center for Lung Research (DZL), Neuherberg, Germany
| | - Gerrit John-Schuster
- Comprehensive Pneumology Center (CPC), Institute of Lung Biology and Disease, Helmholtz Zentrum München, Member of the German Center for Lung Research (DZL), Neuherberg, Germany
| | - Danijela Heide
- German Cancer Research Center (DKFZ), Division of Chronic Inflammation and Cancer, Heidelberg, Germany
| | - Dominik Pfister
- German Cancer Research Center (DKFZ), Division of Chronic Inflammation and Cancer, Heidelberg, Germany
| | - Mareike Lehmann
- Comprehensive Pneumology Center (CPC), Lung Repair and Regeneration Research Unit, Helmholtz Zentrum München, Member of the German Center for Lung Research (DZL), Munich, Germany
| | - Yan Hu
- Division of Pulmonary Sciences and Critical Care Medicine, University of Colorado, Denver, CO, USA
| | - Zeynep Ertüz
- Comprehensive Pneumology Center (CPC), Institute of Lung Biology and Disease, Helmholtz Zentrum München, Member of the German Center for Lung Research (DZL), Neuherberg, Germany
| | - Martin A Lopez
- Laboratory of Molecular Immunology and Signal Transduction, GIGA-Institute, University of Liège, Liège, Belgium
| | - Meshal Ansari
- Comprehensive Pneumology Center (CPC), Institute of Lung Biology and Disease, Helmholtz Zentrum München, Member of the German Center for Lung Research (DZL), Neuherberg, Germany
- Institute of Computional Biology (ICB), Helmholtz Zentrum München, Neuherberg, Germany
| | - Maximilian Strunz
- Comprehensive Pneumology Center (CPC), Institute of Lung Biology and Disease, Helmholtz Zentrum München, Member of the German Center for Lung Research (DZL), Neuherberg, Germany
| | - Christoph Mayr
- Comprehensive Pneumology Center (CPC), Institute of Lung Biology and Disease, Helmholtz Zentrum München, Member of the German Center for Lung Research (DZL), Neuherberg, Germany
| | - Ilias Angelidis
- Comprehensive Pneumology Center (CPC), Institute of Lung Biology and Disease, Helmholtz Zentrum München, Member of the German Center for Lung Research (DZL), Neuherberg, Germany
| | - Chiara Ciminieri
- Division of Pulmonary Sciences and Critical Care Medicine, University of Colorado, Denver, CO, USA
- Department of Molecular Pharmacology, Groningen Research Institute for Asthma and COPD (GRIAC), University of Groningen, Groningen, The Netherlands
| | - Rita Costa
- Comprehensive Pneumology Center (CPC), Lung Repair and Regeneration Research Unit, Helmholtz Zentrum München, Member of the German Center for Lung Research (DZL), Munich, Germany
| | - Marlene Sophia Kohlhepp
- Department of Hepatology & Gastroenterology, Charité University Medicine Berlin, Berlin, Germany
| | - Adrien Guillot
- Department of Hepatology & Gastroenterology, Charité University Medicine Berlin, Berlin, Germany
| | - Gizem Günes
- Comprehensive Pneumology Center (CPC), Institute of Lung Biology and Disease, Helmholtz Zentrum München, Member of the German Center for Lung Research (DZL), Neuherberg, Germany
| | - Aicha Jeridi
- Comprehensive Pneumology Center (CPC), Institute of Lung Biology and Disease, Helmholtz Zentrum München, Member of the German Center for Lung Research (DZL), Neuherberg, Germany
| | - Maja C Funk
- German Cancer Research Center (DKFZ), Division of Signaling and Functional Genomics, Heidelberg, Germany
| | - Giorgi Beroshvili
- Comprehensive Pneumology Center (CPC), Institute of Lung Biology and Disease, Helmholtz Zentrum München, Member of the German Center for Lung Research (DZL), Neuherberg, Germany
| | - Sandra Prokosch
- German Cancer Research Center (DKFZ), Division of Chronic Inflammation and Cancer, Heidelberg, Germany
| | - Jenny Hetzer
- German Cancer Research Center (DKFZ), Division of Chronic Inflammation and Cancer, Heidelberg, Germany
| | | | - Hani Alsafadi
- Comprehensive Pneumology Center (CPC), Lung Repair and Regeneration Research Unit, Helmholtz Zentrum München, Member of the German Center for Lung Research (DZL), Munich, Germany
- Lung Bioengineering and Regeneration, Department of Experimental Medical Sciences, Lund University, Lund, Sweden
| | - Michael Lindner
- Asklepios Fachkliniken Munich-Gauting, Member of the German Center for Lung Research (DZL), Munich, Germany
- Translational Lung Research and CPC-M bioArchive, Comprehensive Pneumology Center, Helmholtz Zentrum München, Member of the German Center for Lung Research (DZL), Munich, Germany
| | - Gerald Burgstaller
- Comprehensive Pneumology Center (CPC), Institute of Lung Biology and Disease, Helmholtz Zentrum München, Member of the German Center for Lung Research (DZL), Neuherberg, Germany
| | - Lore Becker
- Institute of Experimental Genetics, German Mouse Clinic, Helmholtz Zentrum München, Neuherberg, Germany
| | - Martin Irmler
- Institute of Experimental Genetics, German Mouse Clinic, Helmholtz Zentrum München, Neuherberg, Germany
| | - Michael Dudek
- Institute of Molecular Immunology & Experimental Oncology, Klinikum rechts der Isar, Technical University of Munich, Munich, Germany
| | - Jakob Janzen
- German Cancer Research Center (DKFZ), Division of Chronic Inflammation and Cancer, Heidelberg, Germany
- Emmy Noether Research Group Epigenetic Machineries and Cancer, Division of Chronic Inflammation and Cancer, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Eric Goffin
- Laboratory of Medicinal Chemistry, Center for Interdisciplinary Research on Medicines (CIRM), University of Liège, Liège, Belgium
| | - Reinoud Gosens
- Department of Molecular Pharmacology, Groningen Research Institute for Asthma and COPD (GRIAC), University of Groningen, Groningen, The Netherlands
| | - Percy Knolle
- Institute of Molecular Immunology & Experimental Oncology, Klinikum rechts der Isar, Technical University of Munich, Munich, Germany
| | - Bernard Pirotte
- Laboratory of Medicinal Chemistry, Center for Interdisciplinary Research on Medicines (CIRM), University of Liège, Liège, Belgium
| | - Tobias Stoeger
- Comprehensive Pneumology Center (CPC), Institute of Lung Biology and Disease, Helmholtz Zentrum München, Member of the German Center for Lung Research (DZL), Neuherberg, Germany
| | - Johannes Beckers
- Institute of Experimental Genetics, German Mouse Clinic, Helmholtz Zentrum München, Neuherberg, Germany
- Experimental Genetics, Technische Universität München, Freising, Germany
- German Center for Diabetes Research (DZD), Neuherberg, Germany
| | - Darcy Wagner
- Comprehensive Pneumology Center (CPC), Lung Repair and Regeneration Research Unit, Helmholtz Zentrum München, Member of the German Center for Lung Research (DZL), Munich, Germany
- Lung Bioengineering and Regeneration, Department of Experimental Medical Sciences, Lund University, Lund, Sweden
| | - Indrabahadur Singh
- Emmy Noether Research Group Epigenetic Machineries and Cancer, Division of Chronic Inflammation and Cancer, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Fabian J Theis
- Institute of Computional Biology (ICB), Helmholtz Zentrum München, Neuherberg, Germany
| | - Martin Hrabé de Angelis
- Institute of Experimental Genetics, German Mouse Clinic, Helmholtz Zentrum München, Neuherberg, Germany
- Laboratory of Medicinal Chemistry, Center for Interdisciplinary Research on Medicines (CIRM), University of Liège, Liège, Belgium
- Experimental Genetics, Technische Universität München, Freising, Germany
| | - Tracy O'Connor
- German Cancer Research Center (DKFZ), Division of Chronic Inflammation and Cancer, Heidelberg, Germany
| | - Frank Tacke
- Department of Hepatology & Gastroenterology, Charité University Medicine Berlin, Berlin, Germany
| | - Michael Boutros
- German Cancer Research Center (DKFZ), Division of Signaling and Functional Genomics, Heidelberg, Germany
- Medical Faculty Mannheim & BioQuant, Heidelberg University, Heidelberg, Germany
| | - Emmanuel Dejardin
- Laboratory of Molecular Immunology and Signal Transduction, GIGA-Institute, University of Liège, Liège, Belgium
| | - Oliver Eickelberg
- Division of Pulmonary Sciences and Critical Care Medicine, University of Colorado, Denver, CO, USA
| | - Herbert B Schiller
- Comprehensive Pneumology Center (CPC), Institute of Lung Biology and Disease, Helmholtz Zentrum München, Member of the German Center for Lung Research (DZL), Neuherberg, Germany
| | - Melanie Königshoff
- Comprehensive Pneumology Center (CPC), Lung Repair and Regeneration Research Unit, Helmholtz Zentrum München, Member of the German Center for Lung Research (DZL), Munich, Germany
- Division of Pulmonary Sciences and Critical Care Medicine, University of Colorado, Denver, CO, USA
| | - Mathias Heikenwalder
- German Cancer Research Center (DKFZ), Division of Chronic Inflammation and Cancer, Heidelberg, Germany.
| | - Ali Önder Yildirim
- Comprehensive Pneumology Center (CPC), Institute of Lung Biology and Disease, Helmholtz Zentrum München, Member of the German Center for Lung Research (DZL), Neuherberg, Germany.
| |
Collapse
|
32
|
Deciphering the Immune Microenvironment on A Single Archival Formalin-Fixed Paraffin-Embedded Tissue Section by An Immediately Implementable Multiplex Fluorescence Immunostaining Protocol. Cancers (Basel) 2020; 12:cancers12092449. [PMID: 32872334 PMCID: PMC7565194 DOI: 10.3390/cancers12092449] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2020] [Revised: 08/21/2020] [Accepted: 08/25/2020] [Indexed: 12/11/2022] Open
Abstract
Simple Summary Technological breakthroughs have fundamentally changed our understanding on the complexity of tissue organization, both in healthy and diseased conditions. Characterizing the immune cell composition in relation to spatial distribution and histological changes may provide important diagnostic and therapeutic information. Immunohistochemistry remains a method of choice for these purposes, with crucial implications in clinics or in medical research. Nowadays, the widespread use of fluorophore-conjugated antibodies enables simultaneous visualization of an increasing number of proteins on a single tissue slice, with unprecedented resolution. However, advanced methods usually require modern and specific equipment, a significant amount of time for assay optimization, and highly specialized skills. This work reports on the use of a multiplex immunostaining method based on sequential immunostaining and antibody stripping, combined with digital image processing and analysis. Our aim is to provide the medical and research communities with a simple, cost-effective workflow to encompass some current limitations of multiplex immunohistochemistry. Abstract Technological breakthroughs have fundamentally changed our understanding on the complexity of the tumor microenvironment at the single-cell level. Characterizing the immune cell composition in relation to spatial distribution and histological changes may provide important diagnostic and therapeutic information. Immunostaining on formalin-fixed paraffin-embedded (FFPE) tissue samples represents a widespread and simple procedure, allowing the visualization of cellular distribution and processes, on preserved tissue structure. Recent advances in microscopy and molecular biology have made multiplexing accessible, yet technically challenging. We herein describe a novel, simple and cost-effective method for a reproducible and highly flexible multiplex immunostaining on archived FFPE tissue samples, which we optimized for solid organs (e.g., liver, intestine, lung, kidney) from mice and humans. Our protocol requires limited specific equipment and reagents, making multiplexing (>12 antibodies) immediately implementable to any histology laboratory routinely performing immunostaining. Using this method on single sections and combining it with automated whole-slide image analysis, we characterize the hepatic immune microenvironment in preclinical mouse models of liver fibrosis, steatohepatitis and hepatocellular carcinoma (HCC) and on human-patient samples with chronic liver diseases. The data provide useful insights into tissue organization and immune–parenchymal cell-to-cell interactions. It also highlights the profound macrophage heterogeneity in liver across premalignant conditions and HCC.
Collapse
|
33
|
Ehrenberg AJ, Morales DO, Piergies AMH, Li SH, Tejedor JS, Mladinov M, Mulder J, Grinberg LT. A manual multiplex immunofluorescence method for investigating neurodegenerative diseases. J Neurosci Methods 2020; 339:108708. [PMID: 32243897 PMCID: PMC7269157 DOI: 10.1016/j.jneumeth.2020.108708] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2019] [Revised: 03/19/2020] [Accepted: 03/27/2020] [Indexed: 12/25/2022]
Abstract
BACKGROUND Neurodegenerative diseases feature stereotypical deposits of protein aggregates that selectively accumulate in vulnerable cells. The ability to simultaneously localize multiple targets in situ is critical to facilitate discovery and validation of pathogenic molecular pathways. Immunostaining methods enable in situ detection of specific targets. Effective stripping of antibodies, allowing successive rounds of staining while maintaining tissue adhesion and antigen integrity, is the main roadblock for enabling multiplex immunostaining in standard labs. Furthermore, stripping techniques require antibody-specific optimization, validation, and quality control steps. NEW METHOD Aiming to create protocols for multiplex localization of neurodegenerative-related processes, without the need for specialized equipment, we evaluated several antibody stripping techniques. We also recommend quality control steps to validate stripping efficacy and ameliorate concerns of cross-reactivity and false positives based on extensive testing. RESULTS A protocol using β-mercaptoethanol and SDS consistently enables reliable antibody stripping across multiple rounds of staining and minimizes the odds of cross-reactivity while preserving tissue adhesion and antigen integrity in human postmortem tissue. COMPARISON WITH EXISTING METHODS Our proposed method is optimal for standard lab settings and shows consistent efficacy despite the intricacies of suboptimal human postmortem tissue and the need to strip markers bound to highly aggregated proteins. Additionally, it incorporates quality control steps to validate antibody stripping. CONCLUSIONS Multiplex immunofluorescence methods for studying neurodegenerative diseases in human postmortem tissue are feasible even in standard laboratories. Nevertheless, evaluation of stripping parameters during optimization and validation phases of experiments is prudent.
Collapse
Affiliation(s)
- Alexander J Ehrenberg
- University of California, San Francisco, Memory and Aging Center, Weill Institute for Neurosciences; San Francisco, CA, USA; University of California, Berkeley, Helen Wills Neuroscience Institute; Berkeley, CA, USA; University of California, Berkeley, Dept. of Integrative Biology; Berkeley, CA, USA
| | - Dulce Ovando Morales
- University of California, San Francisco, Memory and Aging Center, Weill Institute for Neurosciences; San Francisco, CA, USA
| | - Antonia M H Piergies
- University of California, San Francisco, Memory and Aging Center, Weill Institute for Neurosciences; San Francisco, CA, USA
| | - Song Hua Li
- University of California, San Francisco, Memory and Aging Center, Weill Institute for Neurosciences; San Francisco, CA, USA
| | - Jorge Santos Tejedor
- University of California, San Francisco, Memory and Aging Center, Weill Institute for Neurosciences; San Francisco, CA, USA; Karolinska Instituet, Department of Neuroscience, Stockholm, Sweden
| | - Mihovil Mladinov
- University of California, San Francisco, Memory and Aging Center, Weill Institute for Neurosciences; San Francisco, CA, USA
| | - Jan Mulder
- Karolinska Instituet, Department of Neuroscience, Stockholm, Sweden
| | - Lea T Grinberg
- University of California, San Francisco, Memory and Aging Center, Weill Institute for Neurosciences; San Francisco, CA, USA; University of São Paulo School of Medicine, São Paulo, Brazil; University of California, San Francisco, Global Brain Health Institute; San Francisco, CA, USA.
| |
Collapse
|
34
|
Omotehara T, Wu X, Kuramasu M, Itoh M. Connection between seminiferous tubules and epididymal duct is originally induced before sex differentiation in a sex‐independent manner. Dev Dyn 2020; 249:754-764. [DOI: 10.1002/dvdy.155] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2019] [Revised: 01/03/2020] [Accepted: 01/07/2020] [Indexed: 12/31/2022] Open
Affiliation(s)
- Takuya Omotehara
- Department of AnatomyTokyo Medical University Shinjuku‐ku, Tokyo Japan
| | - Xi Wu
- Department of AnatomyTokyo Medical University Shinjuku‐ku, Tokyo Japan
| | - Miyuki Kuramasu
- Department of AnatomyTokyo Medical University Shinjuku‐ku, Tokyo Japan
| | - Masahiro Itoh
- Department of AnatomyTokyo Medical University Shinjuku‐ku, Tokyo Japan
| |
Collapse
|
35
|
Huh WJ, Roland JTE, Asai M, Kaji I. Distribution of duodenal tuft cells is altered in pediatric patients with acute and chronic enteropathy. Biomed Res 2020; 41:113-118. [PMID: 32307399 PMCID: PMC10037909 DOI: 10.2220/biomedres.41.113] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
Clinical interest into the function of tuft cells in human intestine has increased in recent years. However, no quantitative study has examined intestinal tuft cells in pathological specimens from patients. This study quantified tuft cell density by using a recently identified marker, specific for tyrosine phosphorylation (pY1798) of girdin (also known as CCDC88A or GIV) in the duodenum of pediatric patients. Deidentified sections with pathological diagnosis of acute duodenitis, ulcer, or celiac disease, and age-matched normal control were analyzed under double-blind conditions. Immunostaining for pY1798-girdin demonstrated the distinct shape of tuft cells with and filopodia-like basolateral membrane structure and a small apical area, which densely expressed gamma-actin. As compared to normal tissues, the specimens diagnosed as celiac disease and duodenal ulcer had significantly fewer tuft cell numbers. In contrast, acute duodenitis showed varied population of tuft cells. The mucosa with severe inflammation showed lower tuft cell numbers than the specimens with none to mild inflammation. These results suggest that loss of tuft cells may be involved in prolonged inflammation in the duodenal mucosa and disrupted mucosal integrity. pY1798-girdin and gamma-actin are useful markers for investigating the distribution and morphologies of human intestinal tuft cells under healthy and pathological conditions.
Collapse
Affiliation(s)
- Won Jae Huh
- Epithelial Biology Center, Vanderbilt University Medical Center, Nashville, TN, USA
- Department of Pathology, Microbiology, and Immunology, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Joseph TE Roland
- Epithelial Biology Center, Vanderbilt University Medical Center, Nashville, TN, USA
- Section of Surgical Sciences, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Masato Asai
- Institute for Developmental Research, Aichi Developmental Disability Center, Kasugai, Japan
| | - Izumi Kaji
- Epithelial Biology Center, Vanderbilt University Medical Center, Nashville, TN, USA
- Section of Surgical Sciences, Vanderbilt University Medical Center, Nashville, TN, USA
| |
Collapse
|
36
|
Walters DK, Jelinek DF. Multiplex Immunofluorescence of Bone Marrow Core Biopsies: Visualizing the Bone Marrow Immune Contexture. J Histochem Cytochem 2019; 68:99-112. [PMID: 31855110 DOI: 10.1369/0022155419896802] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
The ability to visualize and quantify the spatial arrangement and geographic proximity of immune cells with tumor cells provides valuable insight into the complex mechanisms underlying cancer biology and progression. Multiplexing, which involves immunofluorescence labeling and the visualization of multiple epitopes within formalin-fixed paraffin embedded tissue sections, is a methodology that is being increasingly employed. Despite the power of immunofluorescence multiplex analysis, application of this technology to bone marrow core biopsies has not yet been realized. Given our specific long term goal to identify immune cells in proximity to bone marrow malignant plasma cells in multiple myeloma patients, we describe in this study adaptation of multiplex immunofluorescence analysis to this tissue. We first identified a blocking strategy that quenched autofluorescence. We next employed a multiplex strategy that uses a simple stripping solution to remove primary and secondary antibodies prior to subsequent rounds of staining. This method was found to be highly efficient and did not significantly alter antigenicity or tissue integrity. Our studies illustrate for the first time that immunofluorescence multiplexing is achievable in bone marrow core biopsies and will provide a novel opportunity to analyze the role of the immune contexture in disease progression of the monoclonal gammopathies.
Collapse
Affiliation(s)
- Denise K Walters
- Department of Immunology, College of Medicine and Science, Mayo Clinic, Rochester, Minnesota and Scottsdale, Arizona
| | - Diane F Jelinek
- Department of Immunology, College of Medicine and Science, Mayo Clinic, Rochester, Minnesota and Scottsdale, Arizona
| |
Collapse
|
37
|
Hinton JP, Dvorak K, Roberts E, French WJ, Grubbs JC, Cress AE, Tiwari HA, Nagle RB. A Method to Reuse Archived H&E Stained Histology Slides for a Multiplex Protein Biomarker Analysis. Methods Protoc 2019; 2:mps2040086. [PMID: 31731599 PMCID: PMC6960855 DOI: 10.3390/mps2040086] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2019] [Revised: 11/07/2019] [Accepted: 11/08/2019] [Indexed: 12/13/2022] Open
Abstract
Archived Hematoxylin and Eosin (H&E) stained pathology slides are routinely stored to index formalin-fixed paraffin-embedded (FFPE) sample tissue blocks. FFPE blocks are clinically annotated human tumor specimens that can be valuable in studies decades after the tissue is collected. If stored properly, they have the potential to yield a valuable number of serial sectioned slides for diagnostic or research purposes. However, some retrospective studies are limited in scope because the tissue samples have been depleted or not enough material is available in stored blocks for serial sections. The goal of these studies was to determine if archived H&E-stained slides can be directly reutilized by optimizing methods to de-stain and then re-stain the H&E stained slides to allow the detection of several biomarkers of interest using a conjugated antibody with chromogen multiplex immunohistochemistry procedure. This simple but innovative procedure, combined with image analysis techniques, demonstrates the ability to perform precise detection of relevant markers correlated to disease progression in initially identified tumor regions in tissue. This may add clinical value in retaining H&E slides for further use.
Collapse
Affiliation(s)
- James P. Hinton
- Cancer Biology Graduate Interdisciplinary Program, University of Arizona Cancer Center, Tucson, AZ 85724, USA;
- Ventana/Roche Tissue Diagnostics, Tucson, AZ 85755, USA; (K.D.); (E.R.); (W.J.F.); (J.C.G.)
| | - Katerina Dvorak
- Ventana/Roche Tissue Diagnostics, Tucson, AZ 85755, USA; (K.D.); (E.R.); (W.J.F.); (J.C.G.)
| | - Esteban Roberts
- Ventana/Roche Tissue Diagnostics, Tucson, AZ 85755, USA; (K.D.); (E.R.); (W.J.F.); (J.C.G.)
| | - Wendy J. French
- Ventana/Roche Tissue Diagnostics, Tucson, AZ 85755, USA; (K.D.); (E.R.); (W.J.F.); (J.C.G.)
| | - Jon C. Grubbs
- Ventana/Roche Tissue Diagnostics, Tucson, AZ 85755, USA; (K.D.); (E.R.); (W.J.F.); (J.C.G.)
| | - Anne E. Cress
- Cancer Biology Graduate Interdisciplinary Program, University of Arizona Cancer Center, Tucson, AZ 85724, USA;
- Department of Cellular and Molecular Medicine, University of Arizona, Tucson, AZ 85724, USA
- Correspondence: ; Tel.: +1-520-626-7553
| | - Hina A. Tiwari
- Department of Medical Imaging, College of Medicine, University of Arizona, Tucson, AZ 85724, USA;
| | - Raymond B. Nagle
- Department of Pathology, College of Medicine, the University of Arizona, Tucson, AZ 85724, USA;
| |
Collapse
|
38
|
Migliozzi D, Pelz B, Dupouy DG, Leblond AL, Soltermann A, Gijs MAM. Microfluidics-assisted multiplexed biomarker detection for in situ mapping of immune cells in tumor sections. MICROSYSTEMS & NANOENGINEERING 2019; 5:59. [PMID: 31700674 PMCID: PMC6831597 DOI: 10.1038/s41378-019-0104-z] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/18/2019] [Revised: 08/19/2019] [Accepted: 08/24/2019] [Indexed: 06/10/2023]
Abstract
Because of the close interaction between tumors and the immune system, immunotherapies are nowadays considered as the most promising treatment against cancer. In order to define the diagnosis and the subsequent therapy, crucial information about the immune cells at the tumor site is needed. Indeed, different types or activation status of cells may be indicative for specific and personalized treatments. Here, we present a quantitative method to identify ten different immuno-markers in the same tumor cut section, thereby saving precious samples and enabling correlative analysis on several cell families and their activation status in a tumor microenvironment context. We designed and fabricated a microfluidic chip with optimal thermomechanical and optical properties for fast delivery of reagents on tissue slides and for fully automatic imaging by integration with an optical microscope. The multiplexing capability of the system is enabled by an optimized cyclic immunofluorescence protocol, with which we demonstrated quantitative sequential immunostaining of up to ten biomarkers on the same tissue section. Furthermore, we developed high-quality image-processing algorithms to map each cell in the entire tissue. As proof-of-concept analyses, we identified coexpression and colocalization patterns of biomarkers to classify the immune cells and their activation status. Thanks to the quantitativeness and the automation of both the experimental and analytical methods, we believe that this multiplexing approach will meet the increasing clinical need of personalized diagnostics and therapy in cancer pathology.
Collapse
Affiliation(s)
- Daniel Migliozzi
- Laboratory of Microsystems, École Polytechnique Fédérale de Lausanne, 1015 Lausanne, CH Switzerland
| | - Benjamin Pelz
- Laboratory of Microsystems, École Polytechnique Fédérale de Lausanne, 1015 Lausanne, CH Switzerland
- Lunaphore Technologies SA, EPFL Innovation Park, Building C, 1015 Lausanne, CH Switzerland
| | - Diego G. Dupouy
- Lunaphore Technologies SA, EPFL Innovation Park, Building C, 1015 Lausanne, CH Switzerland
| | - Anne-Laure Leblond
- Universitätsspital Zürich, Schmelzbergstrasse 12, 8091 Zürich, CH Switzerland
| | - Alex Soltermann
- Universitätsspital Zürich, Schmelzbergstrasse 12, 8091 Zürich, CH Switzerland
| | - Martin A. M. Gijs
- Laboratory of Microsystems, École Polytechnique Fédérale de Lausanne, 1015 Lausanne, CH Switzerland
| |
Collapse
|
39
|
Michael AV, Greenlee JJ, Harm TA, Moore SJ, Zhang M, Lind MS, Greenlee MHW, Smith JD. In Situ Temporospatial Characterization of the Glial Response to Prion Infection. Vet Pathol 2019; 57:90-107. [PMID: 31331254 DOI: 10.1177/0300985819861708] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
Mammalian transmissible spongiform encephalopathies (TSEs) display marked activation of astrocytes and microglia that precedes neuronal loss. Investigation of clinical parallels between TSEs and other neurodegenerative protein misfolding diseases, such as Alzheimer's disease, has revealed similar patterns of neuroinflammatory responses to the accumulation of self-propagating amyloids. The contribution of glial activation to the progression of protein misfolding diseases is incompletely understood, with evidence for mediation of both protective and deleterious effects. Glial populations are heterogeneously distributed throughout the brain and capable of dynamic transitions along a spectrum of functional activation states between pro- and antiinflammatory polarization extremes. Using a murine model of Rocky Mountain Laboratory scrapie, the neuroinflammatory response to prion infection was characterized by evaluating glial activation across 15 brain regions over time and correlating it to traditional markers of prion neuropathology, including vacuolation and PrPSc deposition. Quantitative immunohistochemistry was used to evaluate glial expression of iNOS and Arg1, markers of classical and alternative glial activation, respectively. The results indicate progressive upregulation of iNOS in microglia and a mixed astrocytic profile featuring iNOS expression in white matter tracts and detection of Arg1-positive populations throughout the brain. These data establish a temporospatial lesion profile for this prion infection model and demonstrate evidence of multiple glial activation states.
Collapse
Affiliation(s)
- Alyona V Michael
- Department of Veterinary Pathology, College of Veterinary Medicine, Iowa State University, Ames, IA, USA
| | - Justin J Greenlee
- US Department of Agriculture, Virus and Prion Research Unit, National Animal Disease Center, Agricultural Research Service, Ames, IA, USA
| | - Tyler A Harm
- Department of Veterinary Pathology, College of Veterinary Medicine, Iowa State University, Ames, IA, USA
| | - S Jo Moore
- US Department of Agriculture, Virus and Prion Research Unit, National Animal Disease Center, Agricultural Research Service, Ames, IA, USA
| | - Min Zhang
- Department of Statistics, College of Liberal Arts and Sciences, Iowa State University, Ames, IA, USA
| | - Melissa S Lind
- US Department of Agriculture, Virus and Prion Research Unit, National Animal Disease Center, Agricultural Research Service, Ames, IA, USA.,BluePearl Pet Hospital, Des Moines, IA, USA
| | - M Heather West Greenlee
- Department of Biomedical Sciences, College of Veterinary Medicine, Iowa State University, Ames, IA, USA
| | - Jodi D Smith
- Department of Veterinary Pathology, College of Veterinary Medicine, Iowa State University, Ames, IA, USA
| |
Collapse
|
40
|
A Simple and Label-Free Detection of As 3+ using 3-nitro-L-tyrosine as an As 3+-chelating Ligand. SENSORS 2019; 19:s19132857. [PMID: 31252602 PMCID: PMC6651597 DOI: 10.3390/s19132857] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/27/2019] [Revised: 06/23/2019] [Accepted: 06/24/2019] [Indexed: 11/17/2022]
Abstract
A simple and rapid As3+ detection method using 3-nitro-L-tyrosine (N-Tyr) is reported. We discovered the specific property of N-Tyr, which specifically chelates As3+. The reaction between As3+ and N-Tyr induces a prompt color change to vivid yellow, concomitantly increasing the absorbance at 430 nm. The selectivity for As3+ is confirmed by competitive binding experiments with various metal ions (Hg2+, Pb2+, Cd2+, Cr3+, Mg2+, Ni2+, Cu2+, Fe2+, Ca2+, Zn2+, and Mn2+). Also, the N-Tyr binding site, binding affinity, and As3+/N-Tyr reaction stoichiometry are investigated. The specific reaction is utilized to design a sensor that enables the quantitative detection of As3+ in the 0.1-100 μM range with good linearity (R2 = 0.995). Furthermore, the method's applicability for the analysis of real samples, e.g., tap and river water, is successfully confirmed, with good recoveries (94.32-109.15%) using As3+-spiked real water samples. We believe that our discovering and its application for As3+ analysis can be effectively utilized in environmental analyses such as those conducted in water management facilities, with simplicity, rapidity, and ease.
Collapse
|
41
|
Mayr U, Serra D, Liberali P. Exploring single cells in space and time during tissue development, homeostasis and regeneration. Development 2019; 146:146/12/dev176727. [DOI: 10.1242/dev.176727] [Citation(s) in RCA: 44] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
ABSTRACT
Complex 3D tissues arise during development following tightly organized events in space and time. In particular, gene regulatory networks and local interactions between single cells lead to emergent properties at the tissue and organism levels. To understand the design principles of tissue organization, we need to characterize individual cells at given times, but we also need to consider the collective behavior of multiple cells across different spatial and temporal scales. In recent years, powerful single cell methods have been developed to characterize cells in tissues and to address the challenging questions of how different tissues are formed throughout development, maintained in homeostasis, and repaired after injury and disease. These approaches have led to a massive increase in data pertaining to both mRNA and protein abundances in single cells. As we review here, these new technologies, in combination with in toto live imaging, now allow us to bridge spatial and temporal information quantitatively at the single cell level and generate a mechanistic understanding of tissue development.
Collapse
Affiliation(s)
- Urs Mayr
- Department of Quantitative Biology, Friedrich Miescher Institute for Biomedical Research (FMI), Maulbeerstrasse 66, 4058 Basel, Switzerland
- University of Basel, Petersplatz 1, 4001 Basel, Switzerland
| | - Denise Serra
- Department of Quantitative Biology, Friedrich Miescher Institute for Biomedical Research (FMI), Maulbeerstrasse 66, 4058 Basel, Switzerland
- University of Basel, Petersplatz 1, 4001 Basel, Switzerland
| | - Prisca Liberali
- Department of Quantitative Biology, Friedrich Miescher Institute for Biomedical Research (FMI), Maulbeerstrasse 66, 4058 Basel, Switzerland
- University of Basel, Petersplatz 1, 4001 Basel, Switzerland
| |
Collapse
|
42
|
Ultra-fast and automated immunohistofluorescent multistaining using a microfluidic tissue processor. Sci Rep 2019; 9:4489. [PMID: 30872751 PMCID: PMC6418167 DOI: 10.1038/s41598-019-41119-y] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2017] [Accepted: 02/28/2019] [Indexed: 12/04/2022] Open
Abstract
Multistaining of a tissue section targeting multiple markers allows to reveal complex interplays in a tumor environment. However, the resource-intensive and impractically long nature of iterative multiplexed immunostainings prohibits its practical implementation in daily routine, even when using work-flow automation systems. Here, we report a fully automated and ultra-fast multistaining using a microfluidic tissue processor (MTP) in as short as 20 minutes per marker, by immunofluorescent staining employing commercially available tyramide signal amplification polymer precipitation by horse-radish peroxidase (HRP) activation. The reported duration includes (i) 15 minutes for the entire fluidic exchange and reagent incubation necessary for the immunostaining and (ii) 5 minutes for the heat-induced removal of the applied antibodies. Using the automated MTP, we demonstrated a 4-plex automated multistaining with clinically relevant biomarkers within 84 minutes, showing perfect agreement with the state-of-the-art microwave treatment antibody removal. The presented HRP-based method is in principle extendable to multistaining by both tyramides accommodating higher number of fluorescent channels and multi-color chromogenic staining. We anticipate that our automated multi-staining with a turn-around time shorter than existing monoplex immunohistochemistry methods has the potential to enable multistaining in routine without disturbing the current laboratory workflow, opening perspectives for implementation of -omics approaches in tissue diagnostics.
Collapse
|
43
|
Hofman P, Badoual C, Henderson F, Berland L, Hamila M, Long-Mira E, Lassalle S, Roussel H, Hofman V, Tartour E, Ilié M. Multiplexed Immunohistochemistry for Molecular and Immune Profiling in Lung Cancer-Just About Ready for Prime-Time? Cancers (Basel) 2019; 11:cancers11030283. [PMID: 30818873 PMCID: PMC6468415 DOI: 10.3390/cancers11030283] [Citation(s) in RCA: 72] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2019] [Revised: 02/23/2019] [Accepted: 02/25/2019] [Indexed: 12/31/2022] Open
Abstract
As targeted molecular therapies and immuno-oncology have become pivotal in the management of patients with lung cancer, the essential requirement for high throughput analyses and clinical validation of biomarkers has become even more intense, with response rates maintained in the 20%–30% range. Moreover, the list of treatment alternatives, including combination therapies, is rapidly evolving. The molecular profiling and specific tumor-associated immune contexture may be predictive of response or resistance to these therapeutic strategies. Multiplexed immunohistochemistry is an effective and proficient approach to simultaneously identify specific proteins or molecular abnormalities, to determine the spatial distribution and activation state of immune cells, as well as the presence of immunoactive molecular expression. This method is highly advantageous for investigating immune evasion mechanisms and discovering potential biomarkers to assess mechanisms of action and to predict response to a given treatment. This review provides views on the current technological status and evidence for clinical applications of multiplexing and how it could be applied to optimize clinical management of patients with lung cancer.
Collapse
Affiliation(s)
- Paul Hofman
- Laboratory of Clinical and Experimental Pathology, Hospital-Integrated Biobank (BB-0033-00025), Nice Hospital University, FHU OncoAge, Université Côte d'Azur, Nice 06000, France.
- Team 4, Institute for Research on Cancer and Aging, Nice (IRCAN), INSERM U1081/UMR CNRS 7284, FHU OncoAge, Université Côte d'Azur, Nice 06107, France.
| | - Cécile Badoual
- Department of Pathology, Hôpital Européen Georges Pompidou, APHP, Paris 75015, France.
- INSERM U970, Université Paris Descartes Sorbonne Paris-Cité, Paris 75015, France.
| | - Fiona Henderson
- Department EMEA, Indica Labs, 2469 Corrales Rd Bldg. A-3 Corrales, NM 87048, USA.
| | - Léa Berland
- Laboratory of Clinical and Experimental Pathology, Hospital-Integrated Biobank (BB-0033-00025), Nice Hospital University, FHU OncoAge, Université Côte d'Azur, Nice 06000, France.
| | - Marame Hamila
- Laboratory of Clinical and Experimental Pathology, Hospital-Integrated Biobank (BB-0033-00025), Nice Hospital University, FHU OncoAge, Université Côte d'Azur, Nice 06000, France.
| | - Elodie Long-Mira
- Laboratory of Clinical and Experimental Pathology, Hospital-Integrated Biobank (BB-0033-00025), Nice Hospital University, FHU OncoAge, Université Côte d'Azur, Nice 06000, France.
- Team 4, Institute for Research on Cancer and Aging, Nice (IRCAN), INSERM U1081/UMR CNRS 7284, FHU OncoAge, Université Côte d'Azur, Nice 06107, France.
| | - Sandra Lassalle
- Laboratory of Clinical and Experimental Pathology, Hospital-Integrated Biobank (BB-0033-00025), Nice Hospital University, FHU OncoAge, Université Côte d'Azur, Nice 06000, France.
- Team 4, Institute for Research on Cancer and Aging, Nice (IRCAN), INSERM U1081/UMR CNRS 7284, FHU OncoAge, Université Côte d'Azur, Nice 06107, France.
| | - Hélène Roussel
- Department of Pathology, Hôpital Européen Georges Pompidou, APHP, Paris 75015, France.
- INSERM U970, Université Paris Descartes Sorbonne Paris-Cité, Paris 75015, France.
| | - Véronique Hofman
- Laboratory of Clinical and Experimental Pathology, Hospital-Integrated Biobank (BB-0033-00025), Nice Hospital University, FHU OncoAge, Université Côte d'Azur, Nice 06000, France.
- Team 4, Institute for Research on Cancer and Aging, Nice (IRCAN), INSERM U1081/UMR CNRS 7284, FHU OncoAge, Université Côte d'Azur, Nice 06107, France.
| | - Eric Tartour
- INSERM U970, Université Paris Descartes Sorbonne Paris-Cité, Paris 75015, France.
- Department of Immunology, Hôpital Européen Georges Pompidou, Paris 75015, France.
| | - Marius Ilié
- Laboratory of Clinical and Experimental Pathology, Hospital-Integrated Biobank (BB-0033-00025), Nice Hospital University, FHU OncoAge, Université Côte d'Azur, Nice 06000, France.
- Team 4, Institute for Research on Cancer and Aging, Nice (IRCAN), INSERM U1081/UMR CNRS 7284, FHU OncoAge, Université Côte d'Azur, Nice 06107, France.
| |
Collapse
|
44
|
Thomson MN, Schneider W, Mutig K, Ellison DH, Kettritz R, Bachmann S. Patients with hypokalemia develop WNK bodies in the distal convoluted tubule of the kidney. Am J Physiol Renal Physiol 2018; 316:F292-F300. [PMID: 30484345 DOI: 10.1152/ajprenal.00464.2018] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023] Open
Abstract
Hypokalemia contributes to the progression of chronic kidney disease, although a definitive pathophysiological theory to explain this remains to be established. K+ deficiency results in profound alterations in renal epithelial transport. These include an increase in salt reabsorption via the Na+-Cl- cotransporter (NCC) of the distal convoluted tubule (DCT), which minimizes electroneutral K+ loss in downstream nephron segments. In experimental conditions of dietary K+ depletion, punctate structures in the DCT containing crucial NCC-regulating kinases have been discovered in the murine DCT and termed "WNK bodies," referring to their component, with no K (lysine) kinases (WNKs). We hypothesized that in humans, WNK bodies occur in hypokalemia as well. Renal needle biopsies of patients with chronic hypokalemic nephropathy and appropriate controls were examined by histological stains and immunofluorescence. Segment- and organelle-specific marker proteins were used to characterize the intrarenal and subcellular distribution of established WNK body constituents, namely, WNKs and Ste20-related proline-alanine-rich kinase (SPAK). In both patients with hypokalemia, WNKs and SPAK concentrated in non-membrane-bound cytoplasmic regions in the DCT, consistent with prior descriptions of WNK bodies. The putative WNK bodies were located in the perinuclear region close to, but not within, the endoplasmic reticulum. They were closely adjacent to microtubules but not clustered in aggresomes. Notably, we provide the first report of WNK bodies, which are functionally challenging structures associated with K+ deficiency, in human patients.
Collapse
Affiliation(s)
- Martin N Thomson
- Department of Anatomy, Charité-Universitätsmedizin Berlin, Berlin , Germany
| | - Wolfgang Schneider
- Department of Pathology, Charité-Universitätsmedizin Berlin, Berlin , Germany
| | - Kerim Mutig
- Department of Anatomy, Charité-Universitätsmedizin Berlin, Berlin , Germany
| | - David H Ellison
- Division of Nephrology and Hypertension, Department of Medicine, Oregon Health & Science University , Portland, Oregon
| | - Ralph Kettritz
- Nephrology and Medical Intensive Care Medicine, Charité-Universitätsmedizin Berlin, Berlin , Germany.,Experimental and Clinical Research Center, Charité-Universitätsmedizin Berlin and Max Delbrück Center for Molecular Medicine , Berlin , Germany
| | - Sebastian Bachmann
- Department of Anatomy, Charité-Universitätsmedizin Berlin, Berlin , Germany
| |
Collapse
|
45
|
Competitive and noncompetitive immunoassays for the detection of benzothiostrobin using magnetic nanoparticles and fluorescein isothiocyanate-labeled peptides. Anal Bioanal Chem 2018; 411:527-535. [PMID: 30478514 DOI: 10.1007/s00216-018-1478-8] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2018] [Revised: 10/28/2018] [Accepted: 11/06/2018] [Indexed: 01/04/2023]
Abstract
Phage-displayed peptides have been proven to be powerful reagents for competitive and noncompetitive immunoassays. However, they are unconventional reagents, which greatly limit their analytical commercial applications and require additional reagents for detection. In this work, the peptides that specifically bind with anti-benzothiostrobin monoclonal antibody (mAb) or benzothiostrobin-mAb immunocomplex were synthesized and conjugated with fluorescein isothiocyanate (FITC) as substitutes of the phage-displayed peptides to avoid their shortcomings and extend their applications. Competitive and noncompetitive fluorescence immunoassays (FIAs) for benzothiostrobin were developed by mAb coupling with magnetic nanoparticles as concentration elements and peptides conjugated with FITC as tracers. Compared with enzyme-linked immunosorbent assays, the FIAs reduced the number of steps from 6 to 2 and analysis time from more than 5 to 1.2 h. The competitive FIA showed the half-maximal inhibition concentration (IC50) of 16.8 ng mL-1 and detection range (IC10-IC90) of 1.0-759.9 ng mL-1, while the concentration of analyte producing 50% saturation of the signal (SC50) and detection range (SC10-SC90) of noncompetitive FIA were 93.4 and 5.9-788.2 ng mL-1, respectively. The average spiked recoveries were 68.33-98.50% and 73.33-96.67% for competitive and noncompetitive FIAs, respectively. The FIAs showed good correlation with high-performance liquid chromatography for the detection of benzothiostrobin in authentic samples. Graphical abstract Development of competitive and noncompetitive fluorescence immunoassays for benzothiostrobin by using monoclonal antibody coupling with magnetic nanoparticles as concentration elements and peptides conjugated with fluorescein isothiocyanate as tracers.
Collapse
|
46
|
Gut G, Herrmann MD, Pelkmans L. Multiplexed protein maps link subcellular organization to cellular states. Science 2018; 361:361/6401/eaar7042. [PMID: 30072512 DOI: 10.1126/science.aar7042] [Citation(s) in RCA: 321] [Impact Index Per Article: 45.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2017] [Revised: 03/23/2018] [Accepted: 06/21/2018] [Indexed: 12/18/2022]
Abstract
Obtaining highly multiplexed protein measurements across multiple length scales has enormous potential for biomedicine. Here, we measured, by iterative indirect immunofluorescence imaging (4i), 40-plex protein readouts from biological samples at high-throughput from the millimeter to the nanometer scale. This approach simultaneously captures properties apparent at the population, cellular, and subcellular levels, including microenvironment, cell shape, and cell cycle state. It also captures the detailed morphology of organelles, cytoskeletal structures, nuclear subcompartments, and the fate of signaling receptors in thousands of single cells in situ. We used computer vision and systems biology approaches to achieve unsupervised comprehensive quantification of protein subcompartmentalization within various multicellular, cellular, and pharmacological contexts. Thus, highly multiplexed subcellular protein maps can be used to identify functionally relevant single-cell states.
Collapse
Affiliation(s)
- Gabriele Gut
- Institute of Molecular Life Sciences, University of Zurich, Zurich, Switzerland. .,Molecular Life Sciences PhD Program, Life Science Zurich Graduate School, University of Zurich, Zurich, Switzerland
| | - Markus D Herrmann
- Institute of Molecular Life Sciences, University of Zurich, Zurich, Switzerland.,MD-PhD and Systems Biology PhD Program, Life Science Zurich Graduate School, University of Zurich, Zurich, Switzerland
| | - Lucas Pelkmans
- Institute of Molecular Life Sciences, University of Zurich, Zurich, Switzerland.
| |
Collapse
|
47
|
Di Liberto G, Pantelyushin S, Kreutzfeldt M, Page N, Musardo S, Coras R, Steinbach K, Vincenti I, Klimek B, Lingner T, Salinas G, Lin-Marq N, Staszewski O, Costa Jordão MJ, Wagner I, Egervari K, Mack M, Bellone C, Blümcke I, Prinz M, Pinschewer DD, Merkler D. Neurons under T Cell Attack Coordinate Phagocyte-Mediated Synaptic Stripping. Cell 2018; 175:458-471.e19. [PMID: 30173917 DOI: 10.1016/j.cell.2018.07.049] [Citation(s) in RCA: 128] [Impact Index Per Article: 18.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2018] [Revised: 06/11/2018] [Accepted: 07/30/2018] [Indexed: 12/12/2022]
Abstract
Inflammatory disorders of the CNS are frequently accompanied by synaptic loss, which is thought to involve phagocytic microglia and complement components. However, the mechanisms accounting for aberrant synaptic connectivity in the context of CD8+ T cell-driven neuronal damage are poorly understood. Here, we profiled the neuronal translatome in a murine model of encephalitis caused by CD8+ T cells targeting antigenic neurons. Neuronal STAT1 signaling and downstream CCL2 expression were essential for apposition of phagocytes, ensuing synaptic loss and neurological disease. Analogous observations were made in the brains of Rasmussen's encephalitis patients. In this devastating CD8+ T cell-driven autoimmune disease, neuronal STAT1 phosphorylation and CCL2 expression co-clustered with infiltrating CD8+ T cells as well as phagocytes. Taken together, our findings uncover an active role of neurons in coordinating phagocyte-mediated synaptic loss and highlight neuronal STAT1 and CCL2 as critical steps in this process that are amenable to pharmacological interventions.
Collapse
Affiliation(s)
- Giovanni Di Liberto
- Department of Pathology and Immunology, University of Geneva, 1211 Geneva, Switzerland
| | | | - Mario Kreutzfeldt
- Department of Pathology and Immunology, University of Geneva, 1211 Geneva, Switzerland
| | - Nicolas Page
- Department of Pathology and Immunology, University of Geneva, 1211 Geneva, Switzerland
| | - Stefano Musardo
- Department of Basic Neuroscience, University of Geneva, 1205 Geneva, Switzerland
| | - Roland Coras
- Department of Neuropathology, University Hospital Erlangen, 91054 Erlangen, Germany
| | - Karin Steinbach
- Department of Pathology and Immunology, University of Geneva, 1211 Geneva, Switzerland
| | - Ilena Vincenti
- Department of Pathology and Immunology, University of Geneva, 1211 Geneva, Switzerland
| | - Bogna Klimek
- Department of Pathology and Immunology, University of Geneva, 1211 Geneva, Switzerland
| | - Thomas Lingner
- Microarray and Deep-Sequencing Core Facility, Institute for Developmental Biochemistry, University Medical Center Göttingen, Göttingen, Germany
| | - Gabriela Salinas
- Microarray and Deep-Sequencing Core Facility, Institute for Developmental Biochemistry, University Medical Center Göttingen, Göttingen, Germany
| | - Nathalie Lin-Marq
- Division of Clinical Pathology, Geneva University Hospital, 1211 Geneva, Switzerland
| | - Ori Staszewski
- Institute of Neuropathology, Medical Faculty, University of Freiburg, Freiburg, Germany
| | | | - Ingrid Wagner
- Department of Pathology and Immunology, University of Geneva, 1211 Geneva, Switzerland
| | - Kristof Egervari
- Department of Pathology and Immunology, University of Geneva, 1211 Geneva, Switzerland; Division of Clinical Pathology, Geneva University Hospital, 1211 Geneva, Switzerland
| | - Matthias Mack
- Department of Internal Medicine II - Nephrology, Regensburg Center for Interventional Immunology, Regensburg, Germany
| | - Camilla Bellone
- Department of Basic Neuroscience, University of Geneva, 1205 Geneva, Switzerland
| | - Ingmar Blümcke
- Department of Neuropathology, University Hospital Erlangen, 91054 Erlangen, Germany
| | - Marco Prinz
- Institute of Neuropathology, Medical Faculty, University of Freiburg, Freiburg, Germany; BIOSS Centre for Biological Signalling Studies, University of Freiburg, Freiburg, Germany
| | - Daniel D Pinschewer
- Department of Biomedicine - Haus Petersplatz, Division of Experimental Virology, University of Basel, Basel, Switzerland
| | - Doron Merkler
- Department of Pathology and Immunology, University of Geneva, 1211 Geneva, Switzerland; Division of Clinical Pathology, Geneva University Hospital, 1211 Geneva, Switzerland.
| |
Collapse
|
48
|
Bombelli S, Meregalli C, Scalia C, Bovo G, Torsello B, De Marco S, Cadamuro M, Viganò P, Strada G, Cattoretti G, Bianchi C, Perego RA. Nephrosphere-Derived Cells Are Induced to Multilineage Differentiation when Cultured on Human Decellularized Kidney Scaffolds. THE AMERICAN JOURNAL OF PATHOLOGY 2017; 188:184-195. [PMID: 29037855 DOI: 10.1016/j.ajpath.2017.09.012] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/21/2017] [Revised: 09/14/2017] [Accepted: 09/18/2017] [Indexed: 02/06/2023]
Abstract
In end-stage chronic kidney disease, the option of organ transplantation is limited because of the scarce availability of kidneys. The combination of stem cell research, regenerative medicine, and tissue engineering seems a promising approach to produce new transplantable kidneys. Currently, the possibility to repopulate naturally obtained scaffolds with cells of different sources is advancing. Our aim was to test, for the first time, whether the nephrosphere (NS) cells, composed by renal stem/progenitor-like cells, were able to repopulate different nephron portions of renal extracellular matrix scaffolds obtained after decellularization of human renal tissue slices. Our decellularization protocol enabled us to obtain a completely acellular renal scaffold while maintaining the extracellular matrix structure and composition in terms of collagen IV, laminin, and fibronectin. NS cells, cultured on decellularized renal scaffolds with basal medium, differentiated into proximal and distal tubules as well as endothelium, as highlighted by histology and by the specific expression of epithelial cytokeratin 8.18, proximal tubular CD10, distal tubular cytokeratin 7, and endothelial von Willebrand factor markers. Endothelial medium promoted the differentiation toward the endothelium, whereas epithelial medium promoted the differentiation toward the epithelium. NS cells seem to be a good tool for scaffold repopulation, paving the way for experimental investigations focused on whole-kidney reconstruction.
Collapse
Affiliation(s)
- Silvia Bombelli
- School of Medicine and Surgery, Milano-Bicocca University, Monza, Italy
| | - Chiara Meregalli
- School of Medicine and Surgery, Milano-Bicocca University, Monza, Italy
| | - Carla Scalia
- School of Medicine and Surgery, Milano-Bicocca University, Monza, Italy
| | - Giorgio Bovo
- Urology Unit, Bassini Hospital, Cinisello Balsamo, Italy
| | - Barbara Torsello
- School of Medicine and Surgery, Milano-Bicocca University, Monza, Italy
| | - Sofia De Marco
- School of Medicine and Surgery, Milano-Bicocca University, Monza, Italy
| | | | - Paolo Viganò
- Urology Unit, Bassini Hospital, Cinisello Balsamo, Italy
| | - Guido Strada
- Urology Unit, Bassini Hospital, Cinisello Balsamo, Italy
| | - Giorgio Cattoretti
- School of Medicine and Surgery, Milano-Bicocca University, Monza, Italy; Anatomo-Pathology Unit, San Gerardo Hospital, Monza, Italy
| | - Cristina Bianchi
- School of Medicine and Surgery, Milano-Bicocca University, Monza, Italy
| | - Roberto A Perego
- School of Medicine and Surgery, Milano-Bicocca University, Monza, Italy.
| |
Collapse
|
49
|
Bolognesi MM, Manzoni M, Scalia CR, Zannella S, Bosisio FM, Faretta M, Cattoretti G. Multiplex Staining by Sequential Immunostaining and Antibody Removal on Routine Tissue Sections. J Histochem Cytochem 2017; 65:431-444. [PMID: 28692376 PMCID: PMC5533273 DOI: 10.1369/0022155417719419] [Citation(s) in RCA: 110] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Multiplexing, labeling for multiple immunostains in the very same cell or tissue section in situ, has raised considerable interest. The methods proposed include the use of labeled primary antibodies, spectral separation of fluorochromes, bleaching of the fluorophores or chromogens, blocking of previous antibody layers, all in various combinations. The major obstacles to the diffusion of this technique are high costs in custom antibodies and instruments, low throughput, and scarcity of specialized skills or facilities. We have validated a method based on common primary and secondary antibodies and diffusely available fluorescent image scanners. It entails rounds of four-color indirect immunofluorescence, image acquisition, and removal (stripping) of the antibodies, before another stain is applied. The images are digitally registered and the autofluorescence is subtracted. Removal of antibodies is accomplished by disulfide cleavage and a detergent or by a chaotropic salt treatment, this latter followed by antigen refolding. More than 30 different antibody stains can be applied to one single section from routinely fixed and embedded tissue. This method requires a modest investment in hardware and materials and uses freeware image analysis software. Multiplexing on routine tissue sections is a high throughput tool for in situ characterization of neoplastic, reactive, inflammatory, and normal cells.
Collapse
Affiliation(s)
- Maddalena Maria Bolognesi
- Dipartimento di Medicina e Chirurgia, Universitá degli Studi di Milano-Bicocca, Monza, Italy (MMB, MM, CRS, SZ, FMB, GC)
| | - Marco Manzoni
- Dipartimento di Medicina e Chirurgia, Universitá degli Studi di Milano-Bicocca, Monza, Italy (MMB, MM, CRS, SZ, FMB, GC)
| | - Carla Rossana Scalia
- Dipartimento di Medicina e Chirurgia, Universitá degli Studi di Milano-Bicocca, Monza, Italy (MMB, MM, CRS, SZ, FMB, GC)
| | - Stefano Zannella
- Dipartimento di Medicina e Chirurgia, Universitá degli Studi di Milano-Bicocca, Monza, Italy (MMB, MM, CRS, SZ, FMB, GC)
| | - Francesca Maria Bosisio
- Dipartimento di Medicina e Chirurgia, Universitá degli Studi di Milano-Bicocca, Monza, Italy (MMB, MM, CRS, SZ, FMB, GC).,Laboratory of Translational Cell and Tissue Research, KU Leuven, Leuven, Belgium (FMB)
| | - Mario Faretta
- Department of Experimental Oncology, European Institute of Oncology, Milan, Italy (MF)
| | - Giorgio Cattoretti
- Dipartimento di Medicina e Chirurgia, Universitá degli Studi di Milano-Bicocca, Monza, Italy (MMB, MM, CRS, SZ, FMB, GC).,Department of Pathology, Azienda Socio-Sanitaria Territoriale Monza, Monza, Italy (GC)
| |
Collapse
|
50
|
Fully automated 5-plex fluorescent immunohistochemistry with tyramide signal amplification and same species antibodies. J Transl Med 2017; 97:873-885. [PMID: 28504684 DOI: 10.1038/labinvest.2017.37] [Citation(s) in RCA: 78] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2016] [Revised: 02/24/2017] [Accepted: 02/25/2017] [Indexed: 12/20/2022] Open
Abstract
The ability to simultaneously visualize the presence, abundance, location and functional state of many targets in cells and tissues has been described as a true next-generation approach in immunohistochemistry (IHC). A typical requirement for multiplex IHC (mIHC) is the use of different animal species for each primary (1°Ab) and secondary (2°Ab) antibody pair. Although 1°Abs from different species have been used with differently labeled species-specific 2°Abs, quite often the appropriate combination of antibodies is not available. More recently, sequential detection of multiple antigens using 1°Abs from the same species used a microwaving treatment between successive antigen detection cycles to elute previously bound 1°Ab/2°Ab complex and therefore to prevent the cross-reactivity of anti-species 2°Abs used in subsequent detection cycles. We present here a fully automated 1°Ab/2°Ab complex heat deactivation (HD) method on Ventana's BenchMark ULTRA slide stainer. This method is applied to detection using fluorophore-conjugated tyramide deposited on the tissue and takes advantage of the strong covalent bonding of the detection substrate to the tissue, preventing its elution in the HD process. The HD process was characterized for (1) effectiveness in preventing Ab cross-reactivity, (2) impact on the epitopes and (3) impact on the fluorophores. An automated 5-plex fluorescent IHC assay was further developed using the HD method and rabbit 1°Abs for CD3, CD8, CD20, CD68 and FoxP3 immune biomarkers in human tissue specimens. The fluorophores were carefully chosen and the narrow-band filters were designed to allow visualization of the staining under fluorescent microscope with minimal bleed through. The automated 5-plex fluorescent IHC assay achieved staining results comparable to the respective single-plex chromogenic IHC assays. This technology enables automated mIHC using unmodified 1°Abs from same species and the corresponding anti-species 2°Ab on a clinically established automated platform to ensure staining quality, reliability and reproducibility.
Collapse
|