1
|
Mattijssen S, Kerkhofs K, Stephen J, Yang A, Han CG, Tadafumi Y, Iben JR, Mishra S, Sakhawala RM, Ranjan A, Gowda M, Gahl WA, Gu S, Malicdan MC, Maraia RJ. A POLR3B-variant reveals a Pol III transcriptome response dependent on La protein/SSB. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.02.05.577363. [PMID: 38410490 PMCID: PMC10896340 DOI: 10.1101/2024.02.05.577363] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/28/2024]
Abstract
RNA polymerase III (Pol III, POLR3) synthesizes tRNAs and other small non-coding RNAs. Human POLR3 pathogenic variants cause a range of developmental disorders, recapitulated in part by mouse models, yet some aspects of POLR3 deficiency have not been explored. We characterized a human POLR3B:c.1625A>G;p.(Asn542Ser) disease variant that was found to cause mis-splicing of POLR3B. Genome-edited POLR3B1625A>G HEK293 cells acquired the mis-splicing with decreases in multiple POLR3 subunits and TFIIIB, although display auto-upregulation of the Pol III termination-reinitiation subunit POLR3E. La protein was increased relative to its abundant pre-tRNA ligands which bind via their U(n)U-3'-termini. Assays for cellular transcription revealed greater deficiencies for tRNA genes bearing terminators comprised of 4Ts than of ≥5Ts. La-knockdown decreased Pol III ncRNA expression unlinked to RNA stability. Consistent with these effects, small-RNAseq showed that POLR3B1625A>G and patient fibroblasts express more tRNA fragments (tRFs) derived from pre-tRNA 3'-trailers (tRF-1) than from mature-tRFs, and higher levels of multiple miRNAs, relative to control cells. The data indicate that decreased levels of Pol III transcripts can lead to functional excess of La protein which reshapes small ncRNA profiles revealing new depth in the Pol III system. Finally, patient cell RNA analysis uncovered a strategy for tRF-1/tRF-3 as POLR3-deficiency biomarkers.
Collapse
Affiliation(s)
- Sandy Mattijssen
- Section on Molecular and Cell Biology, Eunice Kennedy Shriver National Institute of Child Health and Human Development (NICHD), National Institutes of Health (NIH), Bethesda, MD 20892, USA
| | - Kyra Kerkhofs
- Section on Molecular and Cell Biology, Eunice Kennedy Shriver National Institute of Child Health and Human Development (NICHD), National Institutes of Health (NIH), Bethesda, MD 20892, USA
| | - Joshi Stephen
- Section of Human Biochemical Genetics, Medical Genetics Branch, National Human Genome Research Institute, NIH, Bethesda, MD 20892, USA
| | - Acong Yang
- RNA Biology Laboratory, National Cancer Institute, Frederick, MD, 21702 USA
| | - Chen G. Han
- Section of Human Biochemical Genetics, Medical Genetics Branch, National Human Genome Research Institute, NIH, Bethesda, MD 20892, USA
| | - Yokoyama Tadafumi
- Section of Human Biochemical Genetics, Medical Genetics Branch, National Human Genome Research Institute, NIH, Bethesda, MD 20892, USA
| | - James R. Iben
- Molecular Genetics Core, NICHD, NIH, Bethesda, MD 20892, USA
| | - Saurabh Mishra
- Section on Molecular and Cell Biology, Eunice Kennedy Shriver National Institute of Child Health and Human Development (NICHD), National Institutes of Health (NIH), Bethesda, MD 20892, USA
| | - Rima M. Sakhawala
- Section on Molecular and Cell Biology, Eunice Kennedy Shriver National Institute of Child Health and Human Development (NICHD), National Institutes of Health (NIH), Bethesda, MD 20892, USA
| | - Amitabh Ranjan
- Section on Molecular and Cell Biology, Eunice Kennedy Shriver National Institute of Child Health and Human Development (NICHD), National Institutes of Health (NIH), Bethesda, MD 20892, USA
| | - Mamatha Gowda
- Department of Obstetrics & Gynaecology, Jawaharlal Institute of Post-Graduate Medical Education and Research, Puducherry, India
| | - William A. Gahl
- Section of Human Biochemical Genetics, Medical Genetics Branch, National Human Genome Research Institute, NIH, Bethesda, MD 20892, USA
- NIH Undiagnosed Diseases Program, NIH, Bethesda, MD 20892, USA
| | - Shuo Gu
- RNA Biology Laboratory, National Cancer Institute, Frederick, MD, 21702 USA
| | - May C. Malicdan
- Section of Human Biochemical Genetics, Medical Genetics Branch, National Human Genome Research Institute, NIH, Bethesda, MD 20892, USA
- NIH Undiagnosed Diseases Program, NIH, Bethesda, MD 20892, USA
| | - Richard J. Maraia
- Section on Molecular and Cell Biology, Eunice Kennedy Shriver National Institute of Child Health and Human Development (NICHD), National Institutes of Health (NIH), Bethesda, MD 20892, USA
| |
Collapse
|
2
|
Sun X, Lu L, Wang K, Song L, Jiao J, Wu Y, Wang X, Song Y, Zhan L. Scribble deficiency mediates colon inflammation by inhibiting autophagy-dependent oxidative stress elimination. Sci Rep 2023; 13:18327. [PMID: 37884590 PMCID: PMC10603050 DOI: 10.1038/s41598-023-45176-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2023] [Accepted: 10/17/2023] [Indexed: 10/28/2023] Open
Abstract
Scribble is a master scaffold protein in apical-basal polarity. Current knowledge about the biological function of Scribble in colonic epithelial plasticity/regeneration during intestinal inflammation is limited. Here, we showed that the level of Scribble is decreased in inflammatory bowel disease (IBD) patients and mice with DSS-induced colitis. ScribΔIEC mice develops severe acute colitis with disrupted epithelial barrier integrity and impaired crypt stem cell's function. Mechanistically, Scribble suppressed the process of autophagy by modulating the stability of caspase-dependent degradation of Atg16L1 by directly interacting with Atg16L1 in a LRR domain-dependent manner in IECs and led to an accumulation of ROS both in intestinal stem cells and epithelial cells. In addition, further study indicates that dietary sphingomyelin alleviates DSS-induced colitis by increase the expression of Scribble, which suggests that Scribble may be the critical marker of IBD. Our study shows that Scribble deficiency is associated with the dysregulated autophagy and impaired maintenance of colonic stemness, and it may be a target for diagnosis and treatment of IBD.
Collapse
Affiliation(s)
- Xia Sun
- CAS Key Laboratory of Nutrition, Metabolism and Food Safety, Shanghai Institute of Nutrition and Health, Shanghai Institutes for Biological Sciences, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, China
| | - Liying Lu
- CAS Key Laboratory of Nutrition, Metabolism and Food Safety, Shanghai Institute of Nutrition and Health, Shanghai Institutes for Biological Sciences, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, China
| | - Kai Wang
- Key Laboratory of Integrated Oncology and Intelligent Medicine of Zhejiang Province, Department of Hepatobiliary and Pancreatic Surgery, Affiliated Hangzhou First People's Hospital, Zhejiang University School of Medicine, Hangzhou, 310006, China
| | - Lele Song
- CAS Key Laboratory of Nutrition, Metabolism and Food Safety, Shanghai Institute of Nutrition and Health, Shanghai Institutes for Biological Sciences, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, China
| | | | - Yanjun Wu
- CAS Key Laboratory of Nutrition, Metabolism and Food Safety, Shanghai Institute of Nutrition and Health, Shanghai Institutes for Biological Sciences, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, China
| | - Xinyu Wang
- CAS Key Laboratory of Nutrition, Metabolism and Food Safety, Shanghai Institute of Nutrition and Health, Shanghai Institutes for Biological Sciences, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, China
| | - Yanan Song
- CAS Key Laboratory of Nutrition, Metabolism and Food Safety, Shanghai Institute of Nutrition and Health, Shanghai Institutes for Biological Sciences, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, China
| | - Lixing Zhan
- CAS Key Laboratory of Nutrition, Metabolism and Food Safety, Shanghai Institute of Nutrition and Health, Shanghai Institutes for Biological Sciences, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, China.
| |
Collapse
|
3
|
Wang W, Wang Z, Cao J, Dong Y, Chen Y. Roles of Rac1-Dependent Intrinsic Forgetting in Memory-Related Brain Disorders: Demon or Angel. Int J Mol Sci 2023; 24:10736. [PMID: 37445914 DOI: 10.3390/ijms241310736] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2023] [Revised: 06/14/2023] [Accepted: 06/21/2023] [Indexed: 07/15/2023] Open
Abstract
Animals are required to handle daily massive amounts of information in an ever-changing environment, and the resulting memories and experiences determine their survival and development, which is critical for adaptive evolution. However, intrinsic forgetting, which actively deletes irrelevant information, is equally important for memory acquisition and consolidation. Recently, it has been shown that Rac1 activity plays a key role in intrinsic forgetting, maintaining the balance of the brain's memory management system in a controlled manner. In addition, dysfunctions of Rac1-dependent intrinsic forgetting may contribute to memory deficits in neurological and neurodegenerative diseases. Here, these new findings will provide insights into the neurobiology of memory and forgetting, pathological mechanisms and potential therapies for brain disorders that alter intrinsic forgetting mechanisms.
Collapse
Affiliation(s)
- Wei Wang
- Neurobiology Laboratory, College of Veterinary Medicine, China Agricultural University, Beijing 100193, China
| | - Zixu Wang
- Neurobiology Laboratory, College of Veterinary Medicine, China Agricultural University, Beijing 100193, China
| | - Jing Cao
- Neurobiology Laboratory, College of Veterinary Medicine, China Agricultural University, Beijing 100193, China
| | - Yulan Dong
- Neurobiology Laboratory, College of Veterinary Medicine, China Agricultural University, Beijing 100193, China
| | - Yaoxing Chen
- Neurobiology Laboratory, College of Veterinary Medicine, China Agricultural University, Beijing 100193, China
- Key Laboratory of Precision Nutrition and Food Quality, Key Laboratory of Functional Dairy, Ministry of Education, Beijing Laboratory of Food Quality and Safety, Department of Nutrition and Health, China Agricultural University, Beijing 100083, China
| |
Collapse
|
4
|
LRP2 contributes to planar cell polarity-dependent coordination of motile cilia function. Cell Tissue Res 2023; 392:535-551. [PMID: 36764939 PMCID: PMC10172251 DOI: 10.1007/s00441-023-03757-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2022] [Accepted: 11/04/2022] [Indexed: 02/12/2023]
Abstract
Motile cilia are protruding organelles on specialized epithelia that beat in a synchronous fashion to propel extracellular fluids. Coordination and orientation of cilia beating on individual cells and across tissues is a complex process dependent on planar cell polarity (PCP) signaling. Asymmetric sorting of PCP pathway components, essential to establish planar polarity, involves trafficking along the endocytic path, but the underlying regulatory processes remain incompletely understood. Here, we identified the endocytic receptor LRP2 as regulator of PCP component trafficking in ependyma, a multi-ciliated cell type that is involved in facilitating flow of the cerebrospinal fluid in the brain ventricular system. Lack of receptor expression in gene-targeted mice results in a failure to sort PCP core proteins to the anterior or posterior cell side and, consequently, in the inability to coordinate cilia arrangement and to aligned beating (loss of rotational and translational polarity). LRP2 deficiency coincides with a failure to sort NHERF1, a cytoplasmic LRP2 adaptor to the anterior cell side. As NHERF1 is essential to translocate PCP core protein Vangl2 to the plasma membrane, these data suggest a molecular mechanism whereby LRP2 interacts with PCP components through NHERF1 to control their asymmetric sorting along the endocytic path. Taken together, our findings identified the endocytic receptor LRP2 as a novel regulator of endosomal trafficking of PCP proteins, ensuring their asymmetric partition and establishment of translational and rotational planar cell polarity in the ependyma.
Collapse
|
5
|
Shi DL. Wnt/planar cell polarity signaling controls morphogenetic movements of gastrulation and neural tube closure. Cell Mol Life Sci 2022; 79:586. [PMID: 36369349 PMCID: PMC11803072 DOI: 10.1007/s00018-022-04620-8] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2022] [Revised: 10/25/2022] [Accepted: 10/31/2022] [Indexed: 11/13/2022]
Abstract
Gastrulation and neurulation are successive morphogenetic processes that play key roles in shaping the basic embryonic body plan. Importantly, they operate through common cellular and molecular mechanisms to set up the three spatially organized germ layers and to close the neural tube. During gastrulation and neurulation, convergent extension movements driven by cell intercalation and oriented cell division generate major forces to narrow the germ layers along the mediolateral axis and elongate the embryo in the anteroposterior direction. Apical constriction also makes an important contribution to promote the formation of the blastopore and the bending of the neural plate. Planar cell polarity proteins are major regulators of asymmetric cell behaviors and critically involved in a wide variety of developmental processes, from gastrulation and neurulation to organogenesis. Mutations of planar cell polarity genes can lead to general defects in the morphogenesis of different organs and the co-existence of distinct congenital diseases, such as spina bifida, hearing deficits, kidney diseases, and limb elongation defects. This review outlines our current understanding of non-canonical Wnt signaling, commonly known as Wnt/planar cell polarity signaling, in regulating morphogenetic movements of gastrulation and neural tube closure during development and disease. It also attempts to identify unanswered questions that deserve further investigations.
Collapse
Affiliation(s)
- De-Li Shi
- Institute of Medical Research, Affiliated Hospital of Guangdong Medical University, Zhanjiang, China.
- Laboratory of Developmental Biology, CNRS-UMR7622, Institut de Biologie Paris-Seine (IBPS), Sorbonne University, Paris, France.
| |
Collapse
|
6
|
Mecklenburg N, Kowalczyk I, Witte F, Görne J, Laier A, Mamo TM, Gonschior H, Lehmann M, Richter M, Sporbert A, Purfürst B, Hübner N, Hammes A. Identification of disease-relevant modulators of the SHH pathway in the developing brain. Development 2021; 148:272000. [PMID: 34463328 DOI: 10.1242/dev.199307] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2020] [Accepted: 07/19/2021] [Indexed: 12/13/2022]
Abstract
Pathogenic gene variants in humans that affect the sonic hedgehog (SHH) pathway lead to severe brain malformations with variable penetrance due to unknown modifier genes. To identify such modifiers, we established novel congenic mouse models. LRP2-deficient C57BL/6N mice suffer from heart outflow tract defects and holoprosencephaly caused by impaired SHH activity. These defects are fully rescued on a FVB/N background, indicating a strong influence of modifier genes. Applying comparative transcriptomics, we identified Pttg1 and Ulk4 as candidate modifiers upregulated in the rescue strain. Functional analyses showed that ULK4 and PTTG1, both microtubule-associated proteins, are positive regulators of SHH signaling, rendering the pathway more resilient to disturbances. In addition, we characterized ULK4 and PTTG1 as previously unidentified components of primary cilia in the neuroepithelium. The identification of genes that powerfully modulate the penetrance of genetic disturbances affecting the brain and heart is likely relevant to understanding the variability in human congenital disorders.
Collapse
Affiliation(s)
- Nora Mecklenburg
- Disorders of the Nervous System, Max-Delbrück-Center for Molecular Medicine in the Helmholtz Association (MDC), 13125 Berlin, Germany
| | - Izabela Kowalczyk
- Disorders of the Nervous System, Max-Delbrück-Center for Molecular Medicine in the Helmholtz Association (MDC), 13125 Berlin, Germany
| | - Franziska Witte
- Cardiovascular and Metabolic Sciences, Max Delbrück Center for Molecular Medicine in the Helmholtz Association (MDC), 13125 Berlin, Germany
| | - Jessica Görne
- Disorders of the Nervous System, Max-Delbrück-Center for Molecular Medicine in the Helmholtz Association (MDC), 13125 Berlin, Germany
| | - Alena Laier
- Disorders of the Nervous System, Max-Delbrück-Center for Molecular Medicine in the Helmholtz Association (MDC), 13125 Berlin, Germany
| | - Tamrat M Mamo
- Disorders of the Nervous System, Max-Delbrück-Center for Molecular Medicine in the Helmholtz Association (MDC), 13125 Berlin, Germany
| | - Hannes Gonschior
- Cellular Imaging, Light Microscopy, Leibniz-Research Institute for Molecular Pharmacology (FMP), 13125 Berlin, Germany
| | - Martin Lehmann
- Cellular Imaging, Light Microscopy, Leibniz-Research Institute for Molecular Pharmacology (FMP), 13125 Berlin, Germany
| | - Matthias Richter
- Advanced Light Microscopy Technology Platform, Max-Delbrück-Center for Molecular Medicine in the Helmholtz Association (MDC), 13125 Berlin, Germany
| | - Anje Sporbert
- Advanced Light Microscopy Technology Platform, Max-Delbrück-Center for Molecular Medicine in the Helmholtz Association (MDC), 13125 Berlin, Germany
| | - Bettina Purfürst
- Electron microscopy technology platform, Max-Delbrück-Center for Molecular Medicine in the Helmholtz Association (MDC), 13125 Berlin, Germany
| | - Norbert Hübner
- Cardiovascular and Metabolic Sciences, Max Delbrück Center for Molecular Medicine in the Helmholtz Association (MDC), 13125 Berlin, Germany.,German Center for Cardiovascular Research (DZHK), Partner Site Berlin, 10785 Berlin, Germany.,Charité-Universitätsmedizin Berlin, 10117 Berlin, Germany.,Berlin Institute of Health (BIH), 10178 Berlin, Germany
| | - Annette Hammes
- Disorders of the Nervous System, Max-Delbrück-Center for Molecular Medicine in the Helmholtz Association (MDC), 13125 Berlin, Germany
| |
Collapse
|
7
|
Lesko AC, Keller R, Chen P, Sutherland A. Scribble mutation disrupts convergent extension and apical constriction during mammalian neural tube closure. Dev Biol 2021; 478:59-75. [PMID: 34029538 DOI: 10.1016/j.ydbio.2021.05.013] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2021] [Revised: 05/15/2021] [Accepted: 05/16/2021] [Indexed: 10/24/2022]
Abstract
Morphogenesis of the vertebrate neural tube occurs by elongation and bending of the neural plate, tissue shape changes that are driven at the cellular level by polarized cell intercalation and cell shape changes, notably apical constriction and cell wedging. Coordinated cell intercalation, apical constriction, and wedging undoubtedly require complex underlying cytoskeletal dynamics and remodeling of adhesions. Mutations of the gene encoding Scribble result in neural tube defects in mice, however the cellular and molecular mechanisms by which Scrib regulates neural cell behavior remain unknown. Analysis of Scribble mutants revealed defects in neural tissue shape changes, and live cell imaging of mouse embryos showed that the Scrib mutation results in defects in polarized cell intercalation, particularly in rosette resolution, and failure of both cell apical constriction and cell wedging. Scrib mutant embryos displayed aberrant expression of the junctional proteins ZO-1, Par3, Par6, E- and N-cadherins, and the cytoskeletal proteins actin and myosin. These findings show that Scribble has a central role in organizing the molecular complexes regulating the morphomechanical neural cell behaviors underlying vertebrate neurulation, and they advance our understanding of the molecular mechanisms involved in mammalian neural tube closure.
Collapse
Affiliation(s)
- Alyssa C Lesko
- Department of Cell Biology, University of Virginia Health System, Charlottesville, VA, 22908, USA.
| | - Raymond Keller
- Department of Biology, University of Virginia, Charlottesville, VA, 22903, USA
| | - Ping Chen
- Otogenetics Corporation, Atlanta, GA, 30360, USA
| | - Ann Sutherland
- Department of Cell Biology, University of Virginia Health System, Charlottesville, VA, 22908, USA
| |
Collapse
|
8
|
García-García MJ. A History of Mouse Genetics: From Fancy Mice to Mutations in Every Gene. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2020; 1236:1-38. [PMID: 32304067 DOI: 10.1007/978-981-15-2389-2_1] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
The laboratory mouse has become the model organism of choice in numerous areas of biological and biomedical research, including the study of congenital birth defects. The appeal of mice for these experimental studies stems from the similarities between the physiology, anatomy, and reproduction of these small mammals with our own, but it is also based on a number of practical reasons: mice are easy to maintain in a laboratory environment, are incredibly prolific, and have a relatively short reproductive cycle. Another compelling reason for choosing mice as research subjects is the number of tools and resources that have been developed after more than a century of working with these small rodents in laboratory environments. As will become obvious from the reading of the different chapters in this book, research in mice has already helped uncover many of the genes and processes responsible for congenital birth malformations and human diseases. In this chapter, we will provide an overview of the methods, scientific advances, and serendipitous circumstances that have made these discoveries possible, with a special emphasis on how the use of genetics has propelled scientific progress in mouse research and paved the way for future discoveries.
Collapse
|
9
|
Single-Cell Transcriptomics Characterizes Cell Types in the Subventricular Zone and Uncovers Molecular Defects Impairing Adult Neurogenesis. Cell Rep 2019; 25:2457-2469.e8. [PMID: 30485812 DOI: 10.1016/j.celrep.2018.11.003] [Citation(s) in RCA: 133] [Impact Index Per Article: 22.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2018] [Revised: 09/13/2018] [Accepted: 10/31/2018] [Indexed: 12/26/2022] Open
Abstract
Neural stem cells (NSCs) contribute to plasticity and repair of the adult brain. Niches harboring NSCs regulate stem cell self-renewal and differentiation. We used comprehensive and untargeted single-cell RNA profiling to generate a molecular cell atlas of the largest germinal region of the adult mouse brain, the subventricular zone (SVZ). We characterized >20 neural and non-neural cell types and gained insights into the dynamics of neurogenesis by predicting future cell states based on computational analysis of RNA kinetics. Furthermore, we applied our single-cell approach to document decreased numbers of NSCs, reduced proliferation activity of progenitors, and perturbations in Wnt and BMP signaling pathways in mice lacking LRP2, an endocytic receptor required for SVZ maintenance. Our data provide a valuable resource to study adult neurogenesis and a proof of principle for the power of single-cell RNA sequencing to elucidate neural cell-type-specific alterations in loss-of-function models.
Collapse
|
10
|
Bonello TT, Choi W, Peifer M. Scribble and Discs-large direct initial assembly and positioning of adherens junctions during the establishment of apical-basal polarity. Development 2019; 146:dev.180976. [PMID: 31628110 DOI: 10.1242/dev.180976] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2019] [Accepted: 10/14/2019] [Indexed: 01/05/2023]
Abstract
Apical-basal polarity is a fundamental property of animal tissues. Drosophila embryos provide an outstanding model for defining mechanisms that initiate and maintain polarity. Polarity is initiated during cellularization, when cell-cell adherens junctions are positioned at the future boundary of apical and basolateral domains. Polarity maintenance then involves complementary and antagonistic interplay between apical and basal polarity complexes. The Scribble/Dlg module is well-known for promoting basolateral identity during polarity maintenance. Here, we report a surprising role for Scribble/Dlg in polarity initiation, placing it near the top of the network-positioning adherens junctions. Scribble and Dlg are enriched in nascent adherens junctions, are essential for adherens junction positioning and supermolecular assembly, and also play a role in basal junction assembly. We test the hypotheses for the underlying mechanisms, exploring potential effects on protein trafficking, cytoskeletal polarity or Par-1 localization/function. Our data suggest that the Scribble/Dlg module plays multiple roles in polarity initiation. Different domains of Scribble contribute to these distinct roles. Together, these data reveal novel roles for Scribble/Dlg as master scaffolds regulating assembly of distinct junctional complexes at different times and places.
Collapse
Affiliation(s)
- Teresa T Bonello
- Department of Biology, University of North Carolina at Chapel Hill, CB#3280, Chapel Hill, NC 27599-3280, USA
| | - Wangsun Choi
- Department of Pathology, Brigham and Women's Hospital and Harvard Medical School, Boston, MA 02115, USA
| | - Mark Peifer
- Department of Biology, University of North Carolina at Chapel Hill, CB#3280, Chapel Hill, NC 27599-3280, USA .,Curriculum in Genetics and Molecular Biology, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA.,Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| |
Collapse
|
11
|
Collery RF, Link BA. Precise Short Sequence Insertion in Zebrafish Using a CRISPR/Cas9 Approach to Generate a Constitutively Soluble Lrp2 Protein. Front Cell Dev Biol 2019; 7:167. [PMID: 31457013 PMCID: PMC6700241 DOI: 10.3389/fcell.2019.00167] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2018] [Accepted: 07/31/2019] [Indexed: 11/13/2022] Open
Abstract
LRP2 is a large transmembrane receptor expressed on absorptive epithelia where it binds many extracellular ligands to control several signaling pathways. Mutations in LRP2 are associated with buphthalmic eye enlargement, myopia and other non-ocular symptoms. Though studies have clearly shown that absence of LRP2 causes these phenotypes, and that overexpression of individual LRP2 domains can exacerbate eye enlargement caused by the absence of Lrp2, the relationship between soluble LRP2 fragments and full-length membrane-bound LRP2 is not completely understood. Here we use a CRISPR/Cas9 approach to insert a stop codon cassette into zebrafish lrp2 to prematurely truncate the protein before its transmembrane domain while leaving the entire extracellular domain intact. The resulting mutant line will be a useful tool for examining Lrp2 function in the eye, and testing hypotheses regarding its extracellular processing.
Collapse
Affiliation(s)
- Ross F Collery
- Department of Cell Biology, Neurobiology and Anatomy, Medical College of Wisconsin, Milwaukee, WI, United States.,Department of Ophthalmology and Visual Sciences, Medical College of Wisconsin Eye Institute, Milwaukee, WI, United States
| | - Brian A Link
- Department of Cell Biology, Neurobiology and Anatomy, Medical College of Wisconsin, Milwaukee, WI, United States
| |
Collapse
|
12
|
Hill JT. Identifying Toxicant-Interacting Genes Using Forward Genetic Screening in Zebrafish. Methods Mol Biol 2019; 1965:251-259. [PMID: 31069680 DOI: 10.1007/978-1-4939-9182-2_17] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
Forward genetic screening is an extremely powerful method for identifying novel genes driving a broad range of phenotypes. This protocol describes the complete process for conducting a forward genetic screen in zebrafish, including mutagenesis with N-ethyl-N-nitrosourea (ENU), mating, phenotypic screening, and genetic mapping.
Collapse
Affiliation(s)
- Jonathon T Hill
- Department of Physiology and Developmental Biology, College of Life Sciences, Brigham Young University, Provo, UT, USA.
| |
Collapse
|
13
|
Bonello TT, Peifer M. Scribble: A master scaffold in polarity, adhesion, synaptogenesis, and proliferation. J Cell Biol 2018; 218:742-756. [PMID: 30598480 PMCID: PMC6400555 DOI: 10.1083/jcb.201810103] [Citation(s) in RCA: 90] [Impact Index Per Article: 12.9] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2018] [Revised: 11/26/2018] [Accepted: 12/14/2018] [Indexed: 02/08/2023] Open
Abstract
Key events ranging from cell polarity to proliferation regulation to neuronal signaling rely on the assembly of multiprotein adhesion or signaling complexes at particular subcellular sites. Multidomain scaffolding proteins nucleate assembly and direct localization of these complexes, and the protein Scribble and its relatives in the LAP protein family provide a paradigm for this. Scribble was originally identified because of its role in apical-basal polarity and epithelial integrity in Drosophila melanogaster It is now clear that Scribble acts to assemble and position diverse multiprotein complexes in processes ranging from planar polarity to adhesion to oriented cell division to synaptogenesis. Here, we explore what we have learned about the mechanisms of action of Scribble in the context of its multiple known interacting partners and discuss how this knowledge opens new questions about the full range of Scribble protein partners and their structural and signaling roles.
Collapse
Affiliation(s)
- Teresa T Bonello
- Department of Biology, University of North Carolina at Chapel Hill, Chapel Hill, NC
| | - Mark Peifer
- Department of Biology, University of North Carolina at Chapel Hill, Chapel Hill, NC .,Curriculum in Genetics and Molecular Biology, University of North Carolina at Chapel Hill, Chapel Hill, NC.,Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, NC
| |
Collapse
|
14
|
Abdin D, Rump A, Tzschach A, Sarnow K, Schröck E, Hackmann K, Di Donato N. PUF60-SCRIB fusion transcript in a patient with 8q24.3 microdeletion and atypical Verheij syndrome. Eur J Med Genet 2018; 62:103587. [PMID: 30472487 DOI: 10.1016/j.ejmg.2018.11.021] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2018] [Revised: 10/04/2018] [Accepted: 11/22/2018] [Indexed: 10/27/2022]
Abstract
Expression of the fusion genes is considered to be an important mechanism of tumorigenesis. However it is hardly ever discussed in relation to the neurodevelopmental disorders. Here we report on an 18-years-old female patient with 13.1 kb deletion of 8q24.3 fusing the 5'-portion of SCRIB with the 3'-portion of PUF60 and presenting with borderline intellectual disability, eye coloboma, short stature, scoliosis, heart defects and interestingly postnatal megalencephaly, in contrast to microcephaly, which is usually associated with 8q24.3 deletion (Verheij syndrome). Using next generation sequencing we mapped the breakpoints at nucleotide resolution and showed that the deletion preserved the reading frame. In contrast to the laborious techniques previously used for the precise mapping of deletion breakpoints, our approach identified an accurate interval very rapidly. We demonstrated the expression of the PUF60-SCRIB fusion gene in patient's cells and suggest that the fusion transcript might be a cause of the atypical clinical presentation.
Collapse
Affiliation(s)
- D Abdin
- Institute for Clinical Genetics, Faculty of Medicine Carl Gustav Carus, TU Dresden, Germany; Human Cytogenetics Department, National Research Centre, Cairo, Egypt.
| | - A Rump
- Institute for Clinical Genetics, Faculty of Medicine Carl Gustav Carus, TU Dresden, Germany
| | - A Tzschach
- Institute for Clinical Genetics, Faculty of Medicine Carl Gustav Carus, TU Dresden, Germany
| | - K Sarnow
- Institute for Clinical Genetics, Faculty of Medicine Carl Gustav Carus, TU Dresden, Germany
| | - E Schröck
- Institute for Clinical Genetics, Faculty of Medicine Carl Gustav Carus, TU Dresden, Germany
| | - K Hackmann
- Institute for Clinical Genetics, Faculty of Medicine Carl Gustav Carus, TU Dresden, Germany
| | - N Di Donato
- Institute for Clinical Genetics, Faculty of Medicine Carl Gustav Carus, TU Dresden, Germany.
| |
Collapse
|
15
|
Beyond autophagy: a novel role for autism-linked Wdfy3 in brain mitophagy. Sci Rep 2018; 8:11348. [PMID: 30054502 PMCID: PMC6063930 DOI: 10.1038/s41598-018-29421-7] [Citation(s) in RCA: 43] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2018] [Accepted: 07/05/2018] [Indexed: 01/12/2023] Open
Abstract
WD repeat and FYVE domain-containing 3 (WDFY3; also known as Autophagy-Linked FYVE or Alfy) is an identified intellectual disability, developmental delay and autism risk gene. This gene encodes for a scaffolding protein that is expressed in both the developing and adult central nervous system and required for autophagy and aggrephagy with yet unexplored roles in mitophagy. Given that mitochondrial trafficking, dynamics and remodeling have key roles in synaptic plasticity, we tested the role of Wdfy3 on brain bioenergetics by using Wdfy3+/lacZ mice, the only known Wdfy3 mutant animal model with overt neurodevelopmental anomalies that survive to adulthood. We found that Wdfy3 is required for sustaining brain bioenergetics and morphology via mitophagy. Decreased mitochondrial quality control by conventional mitophagy was partly compensated for by the increased formation of mitochondria-derived vesicles (MDV) targeted to lysosomal degradation (micromitophagy). These observations, extended through proteomic analysis of mitochondria-enriched cortical fractions, showed significant enrichment for pathways associated with mitophagy, mitochondrial transport and axon guidance via semaphorin, Robo, L1cam and Eph-ephrin signaling. Collectively, our findings support a critical role for Wdfy3 in mitochondrial homeostasis with implications for neuron differentiation, neurodevelopment and age-dependent neurodegeneration.
Collapse
|
16
|
Wang L, Xiao Y, Tian T, Jin L, Lei Y, Finnell RH, Ren A. Digenic variants of planar cell polarity genes in human neural tube defect patients. Mol Genet Metab 2018; 124:94-100. [PMID: 29573971 PMCID: PMC5966321 DOI: 10.1016/j.ymgme.2018.03.005] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/08/2018] [Revised: 03/15/2018] [Accepted: 03/15/2018] [Indexed: 02/07/2023]
Abstract
Neural tube defects (NTDs) are considered to be a complex genetic disorder, although the identity of the genetic factors remains largely unknown. Mouse model studies suggest a multifactorial oligogenic pattern of inheritance for NTDs, yet evidence from published human studies is surprisingly absent. In the present study, targeted next-generation sequencing was performed to screen for DNA variants in the entire coding regions and intron-exon boundaries of targeted genes using DNA samples from 510 NTD cases. These candidate genes were PCP genes, including VANGL1, VANGL2, CELSR1, SCRIB, DVL2, DVL3 and PTK7. Candidate variants were validated using Sanger sequencing. A total of 397 single nucleotide variants(SNVs) were identified with a mean depth of approximately 570×. Of these identified SNVs, 74 were predicted to affect protein function and had a minor allele frequency of <0.01 or unknown. Among these 74 missense SNVs, 10 were identified from six NTD cases that carried two mutated genes. Of the six NTD cases, three spina bifida cases and one anencephaly case carried digenic variants in the CELSR1 and SCRIB gene; one anencephaly case carried variants in the CELSR1 and DVL3 gene; and one spina bifida case carried variants in the PTK7 and SCRIB genes. Three cases that parental samples were available were confirmed to be compound heterozygous. None of the digenic variants were found in the 1000 genome database. The findings imply that genetic variation might interact in a digenic fashion to generate the visible NTD phenotypes and emphasize the importance of these genetic interactions in the development of NTDs in humans.
Collapse
Affiliation(s)
- Linlin Wang
- Institute of Reproductive and Child Health, Ministry of Health Key Laboratory of Reproductive Health, Department of Epidemiology and Biostatistics, School of Public Health, Peking University Health Science Center, Beijing, China
| | - Yanhui Xiao
- Institute of Reproductive and Child Health, Ministry of Health Key Laboratory of Reproductive Health, Department of Epidemiology and Biostatistics, School of Public Health, Peking University Health Science Center, Beijing, China
| | - Tian Tian
- Institute of Reproductive and Child Health, Ministry of Health Key Laboratory of Reproductive Health, Department of Epidemiology and Biostatistics, School of Public Health, Peking University Health Science Center, Beijing, China
| | - Lei Jin
- Institute of Reproductive and Child Health, Ministry of Health Key Laboratory of Reproductive Health, Department of Epidemiology and Biostatistics, School of Public Health, Peking University Health Science Center, Beijing, China
| | - Yunping Lei
- Departments of Molecular and Cellular Biology and Medicine, Baylor College of Medicine, Houston, TX 77030, USA.
| | - Richard H Finnell
- Departments of Molecular and Cellular Biology and Medicine, Baylor College of Medicine, Houston, TX 77030, USA
| | - Aiguo Ren
- Institute of Reproductive and Child Health, Ministry of Health Key Laboratory of Reproductive Health, Department of Epidemiology and Biostatistics, School of Public Health, Peking University Health Science Center, Beijing, China.
| |
Collapse
|
17
|
Matías-Guíu J, Oreja-Guevara C, Matias-Guiu J, Gomez-Pinedo U. Vitamin D and remyelination in multiple sclerosis. NEUROLOGÍA (ENGLISH EDITION) 2018. [DOI: 10.1016/j.nrleng.2016.05.010] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
|
18
|
Milgrom-Hoffman M, Humbert PO. Regulation of cellular and PCP signalling by the Scribble polarity module. Semin Cell Dev Biol 2017; 81:33-45. [PMID: 29154823 DOI: 10.1016/j.semcdb.2017.11.021] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2017] [Revised: 11/11/2017] [Accepted: 11/13/2017] [Indexed: 10/18/2022]
Abstract
Since the first identification of the Scribble polarity module proteins as a new class of tumour suppressors that regulate both cell polarity and proliferation, an increasing amount of evidence has uncovered a broader role for Scribble, Dlg and Lgl in the control of fundamental cellular functions and their signalling pathways. Here, we review these findings as well as discuss more specifically the role of the Scribble module in PCP signalling.
Collapse
Affiliation(s)
- Michal Milgrom-Hoffman
- Department of Biochemistry & Genetics, La Trobe Institute for Molecular Science, La Trobe University, Melbourne, Victoria 3086, Australia
| | - Patrick O Humbert
- Department of Biochemistry & Genetics, La Trobe Institute for Molecular Science, La Trobe University, Melbourne, Victoria 3086, Australia; Department of Biochemistry & Molecular Biology, University of Melbourne, Melbourne, Victoria 3010, Australia; Department of Pathology, University of Melbourne, Melbourne, Victoria 3010, Australia.
| |
Collapse
|
19
|
Endocytic receptor LRP2/megalin—of holoprosencephaly and renal Fanconi syndrome. Pflugers Arch 2017; 469:907-916. [DOI: 10.1007/s00424-017-1992-0] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2017] [Revised: 05/02/2017] [Accepted: 05/03/2017] [Indexed: 12/31/2022]
|
20
|
Kharfallah F, Guyot MC, El Hassan AR, Allache R, Merello E, De Marco P, Di Cristo G, Capra V, Kibar Z. Scribble1 plays an important role in the pathogenesis of neural tube defects through its mediating effect of Par-3 and Vangl1/2 localization. Hum Mol Genet 2017; 26:2307-2320. [DOI: 10.1093/hmg/ddx122] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2017] [Accepted: 03/24/2017] [Indexed: 01/12/2023] Open
|
21
|
Wölwer CB, Gödde N, Pase LB, Elsum IA, Lim KYB, Sacirbegovic F, Walkley CR, Ellis S, Ohno S, Matsuzaki F, Russell SM, Humbert PO. The Asymmetric Cell Division Regulators Par3, Scribble and Pins/Gpsm2 Are Not Essential for Erythroid Development or Enucleation. PLoS One 2017; 12:e0170295. [PMID: 28095473 PMCID: PMC5240992 DOI: 10.1371/journal.pone.0170295] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2016] [Accepted: 01/03/2017] [Indexed: 12/30/2022] Open
Abstract
Erythroid enucleation is the process by which the future red blood cell disposes of its nucleus prior to entering the blood stream. This key event during red blood cell development has been likened to an asymmetric cell division (ACD), by which the enucleating erythroblast divides into two very different daughter cells of alternate molecular composition, a nucleated cell that will be removed by associated macrophages, and the reticulocyte that will mature to the definitive erythrocyte. Here we investigated gene expression of members of the Par, Scribble and Pins/Gpsm2 asymmetric cell division complexes in erythroid cells, and functionally tested their role in erythroid enucleation in vivo and ex vivo. Despite their roles in regulating ACD in other contexts, we found that these polarity regulators are not essential for erythroid enucleation, nor for erythroid development in vivo. Together our results put into question a role for cell polarity and asymmetric cell division in erythroid enucleation.
Collapse
Affiliation(s)
- Christina B. Wölwer
- Cell Cycle and Cancer Genetics, Peter MacCallum Cancer Centre, East Melbourne, Australia
- La Trobe Institute for Molecular Science, Department of Biochemistry and Genetics, La Trobe University, Melbourne, Australia
| | - Nathan Gödde
- Cell Cycle and Cancer Genetics, Peter MacCallum Cancer Centre, East Melbourne, Australia
- La Trobe Institute for Molecular Science, Department of Biochemistry and Genetics, La Trobe University, Melbourne, Australia
| | - Luke B. Pase
- Cell Cycle and Cancer Genetics, Peter MacCallum Cancer Centre, East Melbourne, Australia
| | - Imogen A. Elsum
- Cell Cycle and Cancer Genetics, Peter MacCallum Cancer Centre, East Melbourne, Australia
| | - Krystle Y. B. Lim
- La Trobe Institute for Molecular Science, Department of Biochemistry and Genetics, La Trobe University, Melbourne, Australia
| | - Faruk Sacirbegovic
- Immune Signaling Laboratory, Peter MacCallum Cancer Centre, East Melbourne, Australia
- Department of Pathology, University of Melbourne, Parkville, Victoria, Australia
| | - Carl R. Walkley
- St. Vincent’s Institute of Medical Research, Fitzroy, Victoria, Australia
- Department of Medicine, St. Vincent’s Hospital, The University of Melbourne, Fitzroy, Victoria
| | - Sarah Ellis
- Immune Signaling Laboratory, Peter MacCallum Cancer Centre, East Melbourne, Australia
- Department of Pathology, University of Melbourne, Parkville, Victoria, Australia
| | - Shigeo Ohno
- Department of Molecular Biology, Yokohama City University Graduate School of Medical Science, Yokohama, Japan
| | - Fumio Matsuzaki
- Laboratory for Cell Asymmetry, RIKEN Center for Developmental Biology, Kobe, Japan
| | - Sarah M. Russell
- Department of Pathology, University of Melbourne, Parkville, Victoria, Australia
- Sir Peter MacCallum Department of Oncology, University of Melbourne, Melbourne, Australia
- Centre for Micro-Photonics, Faculty of Engineering and Industrial Sciences, Swinburne University of Technology, Hawthorn, Australia
| | - Patrick O. Humbert
- Cell Cycle and Cancer Genetics, Peter MacCallum Cancer Centre, East Melbourne, Australia
- La Trobe Institute for Molecular Science, Department of Biochemistry and Genetics, La Trobe University, Melbourne, Australia
- Department of Pathology, University of Melbourne, Parkville, Victoria, Australia
- Sir Peter MacCallum Department of Oncology, University of Melbourne, Melbourne, Australia
- Department of Biochemistry and Molecular Biology, University of Melbourne, Parkville, Victoria, Australia
- * E-mail:
| |
Collapse
|
22
|
Matías-Guíu J, Oreja-Guevara C, Matias-Guiu JA, Gomez-Pinedo U. Vitamin D and remyelination in multiple sclerosis. Neurologia 2016; 33:177-186. [PMID: 27321170 DOI: 10.1016/j.nrl.2016.05.001] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2016] [Accepted: 05/12/2016] [Indexed: 12/01/2022] Open
Abstract
INTRODUCTION Several studies have found an association between multiple sclerosis and vitamin D (VD) deficiency, which suggests that VD may play a role in the immune response. However, few studies have addressed its role in remyelination. DEVELOPMENT The VD receptor and the enzymes transforming VD into metabolites which activate the VD receptor are expressed in central nervous system (CNS) cells, which suggests a potential effect of VD on the CNS. Both in vitro and animal model studies have shown that VD may play a role in myelination by acting on factors that influence the microenvironment which promotes both proliferation and differentiation of neural stem cells into oligodendrocyte progenitor cells and oligodendrocytes. It remains unknown whether the mechanisms of internalisation of VD in the CNS are synergistic with or antagonistic to the mechanisms that facilitate the entry of VD metabolites into immune cells. CONCLUSIONS VD seems to play a role in the CNS and our hypothesis is that VD is involved in remyelination. Understanding the basic mechanisms of VD in myelination is necessary to manage multiple sclerosis patients with VD deficiency.
Collapse
Affiliation(s)
- J Matías-Guíu
- Servicio de Neurología, Hospital Clínico San Carlos, Facultad de Medicina, Universidad Complutense, IdiSSC, Madrid, España.
| | - C Oreja-Guevara
- Servicio de Neurología, Hospital Clínico San Carlos, Facultad de Medicina, Universidad Complutense, IdiSSC, Madrid, España
| | - J A Matias-Guiu
- Servicio de Neurología, Hospital Clínico San Carlos, Facultad de Medicina, Universidad Complutense, IdiSSC, Madrid, España
| | - U Gomez-Pinedo
- Servicio de Neurología, Hospital Clínico San Carlos, Facultad de Medicina, Universidad Complutense, IdiSSC, Madrid, España
| |
Collapse
|
23
|
Frizzled7: A Promising Achilles' Heel for Targeting the Wnt Receptor Complex to Treat Cancer. Cancers (Basel) 2016; 8:cancers8050050. [PMID: 27196929 PMCID: PMC4880867 DOI: 10.3390/cancers8050050] [Citation(s) in RCA: 71] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2016] [Revised: 05/03/2016] [Accepted: 05/09/2016] [Indexed: 02/07/2023] Open
Abstract
Frizzled7 is arguably the most studied member of the Frizzled family, which are the cognate Wnt receptors. Frizzled7 is highly conserved through evolution, from Hydra through to humans, and is expressed in diverse organisms, tissues and human disease contexts. Frizzled receptors can homo- or hetero-polymerise and associate with several co-receptors to transmit Wnt signalling. Notably, Frizzled7 can transmit signalling via multiple Wnt transduction pathways and bind to several different Wnt ligands, Frizzled receptors and co-receptors. These promiscuous binding and functional properties are thought to underlie the pivotal role Frizzled7 plays in embryonic developmental and stem cell function. Recent studies have identified that Frizzled7 is upregulated in diverse human cancers, and promotes proliferation, progression and invasion, and orchestrates cellular transitions that underscore cancer metastasis. Importantly, Frizzled7 is able to regulate Wnt signalling activity even in cancer cells which have mutations to down-stream signal transducers. In this review we discuss the various aspects of Frizzled7 signalling and function, and the implications these have for therapeutic targeting of Frizzled7 in cancer.
Collapse
|
24
|
Christ A, Herzog K, Willnow TE. LRP2, an auxiliary receptor that controls sonic hedgehog signaling in development and disease. Dev Dyn 2016; 245:569-79. [PMID: 26872844 DOI: 10.1002/dvdy.24394] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2015] [Revised: 02/03/2016] [Accepted: 02/07/2016] [Indexed: 12/31/2022] Open
Abstract
To fulfill their multiple roles in organ development and adult tissue homeostasis, hedgehog (HH) morphogens act through their receptor Patched (PTCH) on target cells. However, HH actions also require HH binding proteins, auxiliary cell surface receptors that agonize or antagonize morphogen signaling in a context-dependent manner. Here, we discuss recent findings on the LDL receptor-related protein 2 (LRP2), an exemplary HH binding protein that modulates sonic hedgehog activities in stem and progenitor cell niches in embryonic and adult tissues. LRP2 functions are crucial for developmental processes in a number of tissues, including the brain, the eye, and the heart, and defects in this receptor pathway are the cause of devastating congenital diseases in humans. Developmental Dynamics 245:569-579, 2016. © 2016 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Annabel Christ
- Max-Delbrueck-Center for Molecular Medicine, 13125, Berlin, Germany
| | - Katja Herzog
- Max-Delbrueck-Center for Molecular Medicine, 13125, Berlin, Germany
| | - Thomas E Willnow
- Max-Delbrueck-Center for Molecular Medicine, 13125, Berlin, Germany
| |
Collapse
|
25
|
Low Density Lipoprotein Receptor Related Proteins as Regulators of Neural Stem and Progenitor Cell Function. Stem Cells Int 2016; 2016:2108495. [PMID: 26949399 PMCID: PMC4754494 DOI: 10.1155/2016/2108495] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2015] [Revised: 11/24/2015] [Accepted: 01/06/2016] [Indexed: 12/20/2022] Open
Abstract
The central nervous system (CNS) is a highly organised structure. Many signalling systems work in concert to ensure that neural stem cells are appropriately directed to generate progenitor cells, which in turn mature into functional cell types including projection neurons, interneurons, astrocytes, and oligodendrocytes. Herein we explore the role of the low density lipoprotein (LDL) receptor family, in particular family members LRP1 and LRP2, in regulating the behaviour of neural stem and progenitor cells during development and adulthood. The ability of LRP1 and LRP2 to bind a diverse and extensive range of ligands, regulate ligand endocytosis, recruit nonreceptor tyrosine kinases for direct signal transduction and signal in conjunction with other receptors, enables them to modulate many crucial neural cell functions.
Collapse
|
26
|
Mruk DD, Cheng CY. The Mammalian Blood-Testis Barrier: Its Biology and Regulation. Endocr Rev 2015; 36:564-91. [PMID: 26357922 PMCID: PMC4591527 DOI: 10.1210/er.2014-1101] [Citation(s) in RCA: 442] [Impact Index Per Article: 44.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/09/2014] [Accepted: 09/03/2015] [Indexed: 12/31/2022]
Abstract
Spermatogenesis is the cellular process by which spermatogonia develop into mature spermatids within seminiferous tubules, the functional unit of the mammalian testis, under the structural and nutritional support of Sertoli cells and the precise regulation of endocrine factors. As germ cells develop, they traverse the seminiferous epithelium, a process that involves restructuring of Sertoli-germ cell junctions, as well as Sertoli-Sertoli cell junctions at the blood-testis barrier. The blood-testis barrier, one of the tightest tissue barriers in the mammalian body, divides the seminiferous epithelium into 2 compartments, basal and adluminal. The blood-testis barrier is different from most other tissue barriers in that it is not only comprised of tight junctions. Instead, tight junctions coexist and cofunction with ectoplasmic specializations, desmosomes, and gap junctions to create a unique microenvironment for the completion of meiosis and the subsequent development of spermatids into spermatozoa via spermiogenesis. Studies from the past decade or so have identified the key structural, scaffolding, and signaling proteins of the blood-testis barrier. More recent studies have defined the regulatory mechanisms that underlie blood-testis barrier function. We review here the biology and regulation of the mammalian blood-testis barrier and highlight research areas that should be expanded in future studies.
Collapse
Affiliation(s)
- Dolores D Mruk
- Center for Biomedical Research, Population Council, New York, New York 10065
| | - C Yan Cheng
- Center for Biomedical Research, Population Council, New York, New York 10065
| |
Collapse
|
27
|
Christ A, Christa A, Klippert J, Eule JC, Bachmann S, Wallace VA, Hammes A, Willnow TE. LRP2 Acts as SHH Clearance Receptor to Protect the Retinal Margin from Mitogenic Stimuli. Dev Cell 2015; 35:36-48. [PMID: 26439398 DOI: 10.1016/j.devcel.2015.09.001] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2014] [Revised: 08/21/2015] [Accepted: 09/07/2015] [Indexed: 01/17/2023]
Abstract
During forebrain development, LRP2 promotes morphogen signaling as an auxiliary SHH receptor. However, in the developing retina, LRP2 assumes the opposing function, mediating endocytic clearance of SHH and antagonizing morphogen action. LRP2-mediated clearance prevents spread of SHH activity from the central retina into the retinal margin to protect quiescent progenitor cells in this niche from mitogenic stimuli. Loss of LRP2 in mice increases the sensitivity of the retinal margin for SHH, causing expansion of the retinal progenitor cell pool and hyperproliferation of this tissue. Our findings document the ability of LRP2 to act, in a context-dependent manner, as activator or inhibitor of the SHH pathway. Our current findings uncovered LRP2 activity as the molecular mechanism imposing quiescence of the retinal margin in the mammalian eye and suggest SHH-induced proliferation of the retinal margin as cause of the large eye phenotype observed in mouse models and patients with LRP2 defects.
Collapse
Affiliation(s)
- Annabel Christ
- Max-Delbrueck-Center for Molecular Medicine, 13125 Berlin, Germany.
| | - Anna Christa
- Max-Delbrueck-Center for Molecular Medicine, 13125 Berlin, Germany
| | - Julia Klippert
- Max-Delbrueck-Center for Molecular Medicine, 13125 Berlin, Germany
| | - J Corinna Eule
- Small Animal Clinic, Free University Berlin, 14163 Berlin, Germany
| | - Sebastian Bachmann
- Institute for Vegetative Anatomy, Charité University Medicine Berlin, 10117 Berlin, Germany
| | - Valerie A Wallace
- Toronto Western Research Institute, University Health Network, Toronto, ON M5T 2S8, Canada
| | - Annette Hammes
- Max-Delbrueck-Center for Molecular Medicine, 13125 Berlin, Germany
| | - Thomas E Willnow
- Max-Delbrueck-Center for Molecular Medicine, 13125 Berlin, Germany.
| |
Collapse
|
28
|
Pearson HB, McGlinn E, Phesse TJ, Schlüter H, Srikumar A, Gödde NJ, Woelwer CB, Ryan A, Phillips WA, Ernst M, Kaur P, Humbert P. The polarity protein Scrib mediates epidermal development and exerts a tumor suppressive function during skin carcinogenesis. Mol Cancer 2015; 14:169. [PMID: 26376988 PMCID: PMC4574215 DOI: 10.1186/s12943-015-0440-z] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2015] [Accepted: 08/31/2015] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND The establishment and maintenance of polarity is vital for embryonic development and loss of polarity is a frequent characteristic of epithelial cancers, however the underlying molecular mechanisms remain unclear. Here, we identify a novel role for the polarity protein Scrib as a mediator of epidermal permeability barrier acquisition, skeletal morphogenesis, and as a potent tumor suppressor in cutaneous carcinogenesis. METHODS To explore the role of Scrib during epidermal development, we compared the permeability of toluidine blue dye in wild-type, Scrib heterozygous and Scrib KO embryonic epidermis at E16.5, E17.5 and E18.5. Mouse embryos were stained with alcian blue and alizarin red for skeletal analysis. To establish whether Scrib plays a tumor suppressive role during skin tumorigenesis and/or progression, we evaluated an autochthonous mouse model of skin carcinogenesis in the context of Scrib loss. We utilised Cre-LoxP technology to conditionally deplete Scrib in adult epidermis, since Scrib KO embryos are neonatal lethal. RESULTS We establish that Scrib perturbs keratinocyte maturation during embryonic development, causing impaired epidermal barrier formation, and that Scrib is required for skeletal morphogenesis in mice. Analysis of conditional transgenic mice deficient for Scrib specifically within the epidermis revealed no skin pathologies, indicating that Scrib is dispensable for normal adult epidermal homeostasis. Nevertheless, bi-allelic loss of Scrib significantly enhanced tumor multiplicity and progression in an autochthonous model of epidermal carcinogenesis in vivo, demonstrating Scrib is an epidermal tumor suppressor. Mechanistically, we show that apoptosis is the critical effector of Scrib tumor suppressor activity during skin carcinogenesis and provide new insight into the function of polarity proteins during DNA damage repair. CONCLUSIONS For the first time, we provide genetic evidence of a unique link between skin carcinogenesis and loss of the epithelial polarity regulator Scrib, emphasizing that Scrib exerts a wide-spread tumor suppressive function in epithelia.
Collapse
Affiliation(s)
- Helen B Pearson
- Peter MacCallum Cancer Centre, St Andrew's Place, East Melbourne, VIC, 3002, Australia. .,Sir Peter MacCallum Department of Oncology, The University of Melbourne, Parkville, VIC, 3010, Australia.
| | - Edwina McGlinn
- EMBL Australia, Australian Regenerative Medicine Institute, Monash University, Clayton, VIC, 3800, Australia
| | - Toby J Phesse
- Walter and Eliza Hall Institute of Medical Research, Melbourne, VIC, 3052, Australia.,Present address: Olivia Newton-John Cancer Research Institute and School of Cancer Medicine at La Trobe University, Heidelberg, VIC, 3084, Australia
| | - Holger Schlüter
- Peter MacCallum Cancer Centre, St Andrew's Place, East Melbourne, VIC, 3002, Australia.,Present address: National Center for Tumor Diseases Heidelberg (NCT), German Cancer Research Centre (DKFZ), 69120, Heidelberg, Germany
| | - Anuratha Srikumar
- Peter MacCallum Cancer Centre, St Andrew's Place, East Melbourne, VIC, 3002, Australia
| | - Nathan J Gödde
- Peter MacCallum Cancer Centre, St Andrew's Place, East Melbourne, VIC, 3002, Australia
| | - Christina B Woelwer
- Peter MacCallum Cancer Centre, St Andrew's Place, East Melbourne, VIC, 3002, Australia
| | - Andrew Ryan
- TissuPath Laboratories, Mount Waverley, VIC, 3149, Australia
| | - Wayne A Phillips
- Peter MacCallum Cancer Centre, St Andrew's Place, East Melbourne, VIC, 3002, Australia.,Sir Peter MacCallum Department of Oncology, The University of Melbourne, Parkville, VIC, 3010, Australia.,Department of Surgery (St. Vincent's Hospital), The University of Melbourne, Parkville, VIC, 3010, Australia
| | - Matthias Ernst
- Walter and Eliza Hall Institute of Medical Research, Melbourne, VIC, 3052, Australia.,Present address: Olivia Newton-John Cancer Research Institute and School of Cancer Medicine at La Trobe University, Heidelberg, VIC, 3084, Australia
| | - Pritinder Kaur
- Peter MacCallum Cancer Centre, St Andrew's Place, East Melbourne, VIC, 3002, Australia.,Sir Peter MacCallum Department of Oncology, The University of Melbourne, Parkville, VIC, 3010, Australia
| | - Patrick Humbert
- Peter MacCallum Cancer Centre, St Andrew's Place, East Melbourne, VIC, 3002, Australia.,Sir Peter MacCallum Department of Oncology, The University of Melbourne, Parkville, VIC, 3010, Australia.,Department of Pathology, The University of Melbourne, Parkville, VIC, 3010, Australia.,Department of Biochemistry and Molecular Biology, The University of Melbourne, Parkville, VIC, 3010, Australia
| |
Collapse
|
29
|
Kistler WS, Baas D, Lemeille S, Paschaki M, Seguin-Estevez Q, Barras E, Ma W, Duteyrat JL, Morlé L, Durand B, Reith W. RFX2 Is a Major Transcriptional Regulator of Spermiogenesis. PLoS Genet 2015; 11:e1005368. [PMID: 26162102 PMCID: PMC4498915 DOI: 10.1371/journal.pgen.1005368] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2014] [Accepted: 06/17/2015] [Indexed: 11/21/2022] Open
Abstract
Spermatogenesis consists broadly of three phases: proliferation of diploid germ cells, meiosis, and finally extensive differentiation of the haploid cells into effective delivery vehicles for the paternal genome. Despite detailed characterization of many haploid developmental steps leading to sperm, only fragmentary information exists on the control of gene expression underlying these processes. Here we report that the RFX2 transcription factor is a master regulator of genes required for the haploid phase. A targeted mutation of Rfx2 was created in mice. Rfx2-/- mice are perfectly viable but show complete male sterility. Spermatogenesis appears to progress unperturbed through meiosis. However, haploid cells undergo a complete arrest in spermatid development just prior to spermatid elongation. Arrested cells show altered Golgi apparatus organization, leading to a deficit in the generation of a spreading acrosomal cap from proacrosomal vesicles. Arrested cells ultimately merge to form giant multinucleated cells released to the epididymis. Spermatids also completely fail to form the flagellar axoneme. RNA-Seq analysis and ChIP-Seq analysis identified 139 genes directly controlled by RFX2 during spermiogenesis. Gene ontology analysis revealed that genes required for cilium function are specifically enriched in down- and upregulated genes showing that RFX2 allows precise temporal expression of ciliary genes. Several genes required for cell adhesion and cytoskeleton remodeling are also downregulated. Comparison of RFX2-regulated genes with those controlled by other major transcriptional regulators of spermiogenesis showed that each controls independent gene sets. Altogether, these observations show that RFX2 plays a major and specific function in spermiogenesis. Failure of spermatogenesis, which is presumed to often result from genetic defects, is a common cause of male sterility. Although numerous genes associated with defects in male spermatogenesis have been identified, numerous cases of genetic male infertility remain unelucidated. We report here that the transcription factor RFX2 is a master regulator of gene expression programs required for progression through the haploid phase of spermatogenesis. Male RFX2-deficient mice are completely sterile. Spermatogenesis progresses through meiosis, but haploid cells undergo a complete block in development just prior to spermatid elongation. Gene expression profiling and ChIP-Seq analysis revealed that RFX2 controls key pathways implicated in cilium/flagellum formation, as well as genes implicated in microtubule and vesicle associated transport. The set of genes activated by RFX2 in spermatids exhibits virtually no overlap with those controlled by other known transcriptional regulators of spermiogenesis, establishing RFX2 as an essential new player in this developmental process. RFX2-deficient mice should therefore represent a valuable new model for deciphering the regulatory networks that direct sperm formation, and thereby contribute to the identification of causes of human male infertility.
Collapse
Affiliation(s)
- W. Stephen Kistler
- Department of Chemistry and Biochemistry, University of South Carolina, Columbia, South Carolina, United States of America
- * E-mail: (WSK); (BD)
| | - Dominique Baas
- Centre de Génétique et de Physiologie Moléculaire et Cellulaire, CNRS UMR 5534, Université Claude Bernard Lyon-1, Villeurbanne, Lyon, France
| | - Sylvain Lemeille
- Department of Pathology and Immunology, University of Geneva Medical School, CMU, Geneva, Switzerland
| | - Marie Paschaki
- Centre de Génétique et de Physiologie Moléculaire et Cellulaire, CNRS UMR 5534, Université Claude Bernard Lyon-1, Villeurbanne, Lyon, France
| | - Queralt Seguin-Estevez
- Department of Pathology and Immunology, University of Geneva Medical School, CMU, Geneva, Switzerland
| | - Emmanuèle Barras
- Department of Pathology and Immunology, University of Geneva Medical School, CMU, Geneva, Switzerland
| | - Wenli Ma
- Department of Chemistry and Biochemistry, University of South Carolina, Columbia, South Carolina, United States of America
| | - Jean-Luc Duteyrat
- Centre de Génétique et de Physiologie Moléculaire et Cellulaire, CNRS UMR 5534, Université Claude Bernard Lyon-1, Villeurbanne, Lyon, France
| | - Laurette Morlé
- Centre de Génétique et de Physiologie Moléculaire et Cellulaire, CNRS UMR 5534, Université Claude Bernard Lyon-1, Villeurbanne, Lyon, France
| | - Bénédicte Durand
- Centre de Génétique et de Physiologie Moléculaire et Cellulaire, CNRS UMR 5534, Université Claude Bernard Lyon-1, Villeurbanne, Lyon, France
- * E-mail: (WSK); (BD)
| | - Walter Reith
- Department of Pathology and Immunology, University of Geneva Medical School, CMU, Geneva, Switzerland
| |
Collapse
|
30
|
Scribble acts as an oncogene in Eμ-myc-driven lymphoma. Oncogene 2015; 35:1193-7. [PMID: 25982280 DOI: 10.1038/onc.2015.167] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2014] [Revised: 02/08/2015] [Accepted: 03/03/2015] [Indexed: 11/08/2022]
Abstract
Scribble complex proteins maintain apicobasal polarity, regulate cell fate determination and function as tumour suppressors in epithelial tissue. Despite evidence that the function of Scribble is maintained in the lymphocyte lineage, we still understand little about its role as a tumour suppressor in haematological malignancies. Using the Eμ-myc model of Burkitt's lymphoma we investigated the role of Scribble in lymphomagenesis. We found that contrary to its well-documented tumour suppressor role in epithelial tissue, loss of Scribble expression delayed the expansion of peripheral B cells and delayed the onset of Eμ-myc-driven lymphoma. This was despite upregulated ERK phosphorylation levels in Scribble-deficient tumours, which are associated with loss of Scribble expression and the development of more aggressive Burkitt's lymphoma. Interestingly, the developmental stage of lymphoma was unaffected by Scribble expression challenging any role for Scribble in fate determination in the haematopoetic lineage. These data provide evidence for oncogenic properties of Scribble in Myc-driven B-cell lymphomagenesis, reinforcing recent findings that overexpression of a mutant form of Scribble can act as an oncogene in epithelial cells. Our results support the growing appreciation that the tumour regulatory functions of Scribble, and other polarity protein family members, are context dependent.
Collapse
|
31
|
Boëda B, Etienne-Manneville S. Spectrin binding motifs regulate Scribble cortical dynamics and polarity function. eLife 2015; 4. [PMID: 25664942 PMCID: PMC4350421 DOI: 10.7554/elife.04726] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2014] [Accepted: 02/08/2015] [Indexed: 12/18/2022] Open
Abstract
The tumor suppressor protein Scribble (SCRIB) plays an evolutionary conserved role in cell polarity. Despite being central for its function, the molecular basis of SCRIB recruitment and stabilization at the cell cortex is poorly understood. Here we show that SCRIB binds directly to the CH1 domain of β spectrins, a molecular scaffold that contributes to the cortical actin cytoskeleton and connects it to the plasma membrane. We have identified a short evolutionary conserved peptide motif named SADH motif (SCRIB ABLIMs DMTN Homology) which is necessary and sufficient to mediate protein interaction with β spectrins. The SADH domains contribute to SCRIB dynamics at the cell cortex and SCRIB polarity function. Furthermore, mutations in SCRIB SADH domains associated with spina bifida and cancer impact the stability of SCRIB at the plasma membrane, suggesting that SADH domain alterations may participate in human pathology. DOI:http://dx.doi.org/10.7554/eLife.04726.001 Proteins found in cells often have more than one role. Scribble is one such multi-tasking protein that is found in a diverse range of species, including fruit flies and humans. Although Scribble commonly helps to ensure that the components of a cell are in their correct locations, its exact roles vary between species. To perform its role well, Scribble itself must localize to the cell cortex—the inside surface of the cell membrane—at the regions where cells connect to one another. How this localization occurs is not fully understood; and defects in the human form of Scribble have been linked to diseases including spina bifida and cancer. Much of the Scribble protein is very similar across different species, but the fruit fly and human version of the protein have large differences in their ‘C-terminal region’ that makes up one end of each protein. Boëda and Etienne-Manneville now show that in humans and other animals with backbones—but not in fruit flies—the C-terminal region of Scribble contains three repeats of a sequence called the SADH motif. These motifs can bind to proteins called beta spectrins, which connect the cell's outer membrane to the scaffolding-like structure inside the cell that provides support. Mutations that alter the SADH motif interfere with Scribble's ability to bind to the scaffolding, and alters Scribble localization at cell–cell contacts or the cell cortex. Boëda and Etienne-Manneville also found that some mutations linked to spina bifida and cancer affect the SADH motif, suggesting that this motif has a wider role in disease. While the abnormal localization of Scribble inside cells is frequently observed in particularly difficult to survive cancers, the molecular mechanism that causes Scribble to fail to localize to the cell periphery is still poorly understood. Boëda and Etienne-Manneville's work establishes the beta spectrin family of proteins as regulators that stabilize Scribble at the cell cortex and suggests that Scribble-associated diseases might depend on the integrity of the spectrin network. DOI:http://dx.doi.org/10.7554/eLife.04726.002
Collapse
Affiliation(s)
- Batiste Boëda
- Cell Polarity, Migration and Cancer Unit, Institut Pasteur - CNRS UMR 3691, Paris, France
| | | |
Collapse
|
32
|
Dissecting neural differentiation regulatory networks through epigenetic footprinting. Nature 2014; 518:355-359. [PMID: 25533951 PMCID: PMC4336237 DOI: 10.1038/nature13990] [Citation(s) in RCA: 144] [Impact Index Per Article: 13.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2013] [Accepted: 10/21/2014] [Indexed: 12/16/2022]
Abstract
Models derived from human pluripotent stem cells that accurately recapitulate neural development in vitro and allow for the generation of specific neuronal subtypes are of major interest to the stem cell and biomedical community. Notch signalling, particularly through the Notch effector HES5, is a major pathway critical for the onset and maintenance of neural progenitor cells in the embryonic and adult nervous system. Here we report the transcriptional and epigenomic analysis of six consecutive neural progenitor cell stages derived from a HES5::eGFP reporter human embryonic stem cell line. Using this system, we aimed to model cell-fate decisions including specification, expansion and patterning during the ontogeny of cortical neural stem and progenitor cells. In order to dissect regulatory mechanisms that orchestrate the stage-specific differentiation process, we developed a computational framework to infer key regulators of each cell-state transition based on the progressive remodelling of the epigenetic landscape and then validated these through a pooled short hairpin RNA screen. We were also able to refine our previous observations on epigenetic priming at transcription factor binding sites and suggest here that they are mediated by combinations of core and stage-specific factors. Taken together, we demonstrate the utility of our system and outline a general framework, not limited to the context of the neural lineage, to dissect regulatory circuits of differentiation.
Collapse
|
33
|
Orosco LA, Ross AP, Cates SL, Scott SE, Wu D, Sohn J, Pleasure D, Pleasure SJ, Adamopoulos IE, Zarbalis KS. Loss of Wdfy3 in mice alters cerebral cortical neurogenesis reflecting aspects of the autism pathology. Nat Commun 2014; 5:4692. [PMID: 25198012 PMCID: PMC4159772 DOI: 10.1038/ncomms5692] [Citation(s) in RCA: 64] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2014] [Accepted: 07/15/2014] [Indexed: 01/07/2023] Open
Abstract
Autism spectrum disorders (ASDs) are complex and heterogeneous developmental disabilities affecting an ever-increasing number of children worldwide. The diverse manifestations and complex, largely genetic aetiology of ASDs pose a major challenge to the identification of unifying neuropathological features. Here we describe the neurodevelopmental defects in mice that carry deleterious alleles of the Wdfy3 gene, recently recognized as causative in ASDs. Loss of Wdfy3 leads to a regionally enlarged cerebral cortex resembling early brain overgrowth described in many children on the autism spectrum. In addition, affected mouse mutants display migration defects of cortical projection neurons, a recognized cause of epilepsy, which is significantly comorbid with autism. Our analysis of affected mouse mutants defines an important role for Wdfy3 in regulating neural progenitor divisions and neural migration in the developing brain. Furthermore, Wdfy3 is essential for cerebral expansion and functional organization while its loss-of-function results in pathological changes characteristic of ASDs.
Collapse
Affiliation(s)
- Lori A Orosco
- 1] Department of Pathology and Laboratory Medicine, University of California at Davis, Sacramento, California 95817, USA [2] Institute for Pediatric Regenerative Medicine, Shriners Hospitals for Children, Northern California, 2425 Stockton Boulevard, Sacramento, California 95817, USA
| | - Adam P Ross
- 1] Department of Pathology and Laboratory Medicine, University of California at Davis, Sacramento, California 95817, USA [2] Institute for Pediatric Regenerative Medicine, Shriners Hospitals for Children, Northern California, 2425 Stockton Boulevard, Sacramento, California 95817, USA
| | - Staci L Cates
- 1] Department of Pathology and Laboratory Medicine, University of California at Davis, Sacramento, California 95817, USA [2] Institute for Pediatric Regenerative Medicine, Shriners Hospitals for Children, Northern California, 2425 Stockton Boulevard, Sacramento, California 95817, USA
| | - Sean E Scott
- 1] Department of Pathology and Laboratory Medicine, University of California at Davis, Sacramento, California 95817, USA [2] Institute for Pediatric Regenerative Medicine, Shriners Hospitals for Children, Northern California, 2425 Stockton Boulevard, Sacramento, California 95817, USA
| | - Dennis Wu
- 1] Institute for Pediatric Regenerative Medicine, Shriners Hospitals for Children, Northern California, 2425 Stockton Boulevard, Sacramento, California 95817, USA [2] Department of Internal Medicine, Division of Rheumatology, Allergy and Clinical Immunology, University of California, Davis, California 95616, USA
| | - Jiho Sohn
- Institute for Pediatric Regenerative Medicine, Shriners Hospitals for Children, Northern California, 2425 Stockton Boulevard, Sacramento, California 95817, USA
| | - David Pleasure
- 1] Institute for Pediatric Regenerative Medicine, Shriners Hospitals for Children, Northern California, 2425 Stockton Boulevard, Sacramento, California 95817, USA [2] Departments of Neurology and Pediatrics, University of California at Davis, Sacramento, California 95817, USA
| | - Samuel J Pleasure
- Department of Neurology, Programs in Neuroscience, Developmental and Stem Cell Biology, UCSF Institute for Regeneration Medicine, University of California at San Francisco, Sandler Neurosciences Center, Box 3206, 675 Nelson Rising Lane, Room 214, San Francisco, California 94158, USA
| | - Iannis E Adamopoulos
- 1] Institute for Pediatric Regenerative Medicine, Shriners Hospitals for Children, Northern California, 2425 Stockton Boulevard, Sacramento, California 95817, USA [2] Department of Internal Medicine, Division of Rheumatology, Allergy and Clinical Immunology, University of California, Davis, California 95616, USA
| | - Konstantinos S Zarbalis
- 1] Department of Pathology and Laboratory Medicine, University of California at Davis, Sacramento, California 95817, USA [2] Institute for Pediatric Regenerative Medicine, Shriners Hospitals for Children, Northern California, 2425 Stockton Boulevard, Sacramento, California 95817, USA
| |
Collapse
|
34
|
Stottmann R, Beier DR. ENU Mutagenesis in the Mouse. CURRENT PROTOCOLS IN HUMAN GENETICS 2014; 82:15.4.1-15.4.10. [PMID: 25042716 PMCID: PMC4113905 DOI: 10.1002/0471142905.hg1504s82] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
This unit describes the treatment of laboratory mice with the mutagen N-ethyl-N-nitrosourea (ENU) to induce very highly increased rates of mutation throughout the genome. Further, it describes several popular mating schemes designed to produce animals displaying phenotypes associated with the induced mutations.
Collapse
Affiliation(s)
- Rolf Stottmann
- Cincinnati Children’s Hospital Medical Center, Cincinnati, OH
| | - David R. Beier
- Center for Developmental Biology and Regenerative Medicine, Seattle Children’s Research Institute
| |
Collapse
|
35
|
Abstract
This article describes the treatment of laboratory mice with the mutagen N-ethyl-N-nitrosourea (ENU) to induce very highly increased rates of mutation throughout the genome. Further, it describes several popular mating schemes designed to produce animals displaying phenotypes associated with the induced mutations.
Collapse
Affiliation(s)
- Rolf Stottmann
- Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio
| | | |
Collapse
|
36
|
Amendola E, Zhan Y, Mattucci C, Castroflorio E, Calcagno E, Fuchs C, Lonetti G, Silingardi D, Vyssotski AL, Farley D, Ciani E, Pizzorusso T, Giustetto M, Gross CT. Mapping pathological phenotypes in a mouse model of CDKL5 disorder. PLoS One 2014; 9:e91613. [PMID: 24838000 PMCID: PMC4023934 DOI: 10.1371/journal.pone.0091613] [Citation(s) in RCA: 140] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2013] [Accepted: 02/11/2014] [Indexed: 01/20/2023] Open
Abstract
Mutations in cyclin-dependent kinase-like 5 (CDKL5) cause early-onset epileptic encephalopathy, a neurodevelopmental disorder with similarities to Rett Syndrome. Here we describe the physiological, molecular, and behavioral phenotyping of a Cdkl5 conditional knockout mouse model of CDKL5 disorder. Behavioral analysis of constitutive Cdkl5 knockout mice revealed key features of the human disorder, including limb clasping, hypoactivity, and abnormal eye tracking. Anatomical, physiological, and molecular analysis of the knockout uncovered potential pathological substrates of the disorder, including reduced dendritic arborization of cortical neurons, abnormal electroencephalograph (EEG) responses to convulsant treatment, decreased visual evoked responses (VEPs), and alterations in the Akt/rpS6 signaling pathway. Selective knockout of Cdkl5 in excitatory and inhibitory forebrain neurons allowed us to map the behavioral features of the disorder to separable cell-types. These findings identify physiological and molecular deficits in specific forebrain neuron populations as possible pathological substrates in CDKL5 disorder.
Collapse
Affiliation(s)
- Elena Amendola
- Mouse Biology Unit, European Molecular Biology Laboratory (EMBL), Monterotondo, Italy
| | - Yang Zhan
- Mouse Biology Unit, European Molecular Biology Laboratory (EMBL), Monterotondo, Italy
| | - Camilla Mattucci
- Mouse Biology Unit, European Molecular Biology Laboratory (EMBL), Monterotondo, Italy
| | - Enrico Castroflorio
- Department of Neuroscience and National Institute of Neuroscience, University of Turin, Turin, Italy
| | - Eleonora Calcagno
- Department of Neuroscience and National Institute of Neuroscience, University of Turin, Turin, Italy
| | - Claudia Fuchs
- Department of Biomedical and Neuromotor Sciences, University of Bologna, Bologna, Italy
| | - Giuseppina Lonetti
- Institute of Neuroscience, National Research Council (CNR), Pisa, Italy
- Department of Neuroscience, Psychology, Drug Research and Child Health NEUROFARBA University of Florence, Florence, Italy
| | - Davide Silingardi
- Institute of Neuroscience, National Research Council (CNR), Pisa, Italy
| | - Alexei L. Vyssotski
- Institute of Neuroinformatics, University of Zürich and Swiss Federal Institute of Technology (ETH), Zurich, Switzerland
| | - Dominika Farley
- Mouse Biology Unit, European Molecular Biology Laboratory (EMBL), Monterotondo, Italy
| | - Elisabetta Ciani
- Department of Biomedical and Neuromotor Sciences, University of Bologna, Bologna, Italy
| | - Tommaso Pizzorusso
- Institute of Neuroscience, National Research Council (CNR), Pisa, Italy
- Department of Neuroscience, Psychology, Drug Research and Child Health NEUROFARBA University of Florence, Florence, Italy
| | - Maurizio Giustetto
- Department of Neuroscience and National Institute of Neuroscience, University of Turin, Turin, Italy
| | - Cornelius T. Gross
- Mouse Biology Unit, European Molecular Biology Laboratory (EMBL), Monterotondo, Italy
- * E-mail:
| |
Collapse
|
37
|
Feigin ME, Akshinthala SD, Araki K, Rosenberg AZ, Muthuswamy LB, Martin B, Lehmann BD, Berman HK, Pietenpol JA, Cardiff RD, Muthuswamy SK. Mislocalization of the cell polarity protein scribble promotes mammary tumorigenesis and is associated with basal breast cancer. Cancer Res 2014; 74:3180-94. [PMID: 24662921 DOI: 10.1158/0008-5472.can-13-3415] [Citation(s) in RCA: 89] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Scribble (SCRIB) localizes to cell-cell junctions and regulates establishment of epithelial cell polarity. Loss of expression of SCRIB functions as a tumor suppressor in Drosophila and mammals; conversely, overexpression of SCRIB promotes epithelial differentiation in mammals. Here, we report that SCRIB is frequently amplified, mRNA overexpressed, and protein is mislocalized from cell-cell junctions in human breast cancers. High levels of SCRIB mRNA are associated with poor clinical prognosis, identifying an unexpected role for SCRIB in breast cancer. We find that transgenic mice expressing a SCRIB mutant [Pro 305 to Leu (P305L)] that fails to localize to cell-cell junctions, under the control of the mouse mammary tumor virus long terminal repeat promoter, develop multifocal hyperplasia that progresses to highly pleomorphic and poorly differentiated tumors with basal characteristics. SCRIB interacts with phosphatase and tensin homolog (PTEN) and the expression of P305L, but not wild-type SCRIB, promotes an increase in PTEN levels in the cytosol. Overexpression of P305L, but not wild-type SCRIB, activates the Akt/mTOR/S6K signaling pathway. Human breast tumors overexpressing SCRIB have high levels of S6K but do not harbor mutations in PTEN or PIK3CA, identifying SCRIB amplification as a mechanism of activating PI3K signaling in tumors without mutations in PIK3CA or PTEN. Thus, we demonstrate that high levels of mislocalized SCRIB functions as a neomorph to promote mammary tumorigenesis by affecting subcellular localization of PTEN and activating an Akt/mTOR/S6kinase signaling pathway.
Collapse
Affiliation(s)
- Michael E Feigin
- Authors' Affiliations: Cold Spring Harbor Laboratory, Cold Spring Harbor, New York; Princess Margaret Cancer Center, Campbell Family Institute for Breast Cancer Research, Department of Medical Biophysics, University of Toronto; Ontario Institute for Cancer Research, Ontario, Canada; Center for Comparative Medicine, University of California, Davis, Davis, California; and Department of Biochemistry, Vanderbilt University, Nashville, Tennessee
| | - S Dipikaa Akshinthala
- Authors' Affiliations: Cold Spring Harbor Laboratory, Cold Spring Harbor, New York; Princess Margaret Cancer Center, Campbell Family Institute for Breast Cancer Research, Department of Medical Biophysics, University of Toronto; Ontario Institute for Cancer Research, Ontario, Canada; Center for Comparative Medicine, University of California, Davis, Davis, California; and Department of Biochemistry, Vanderbilt University, Nashville, Tennessee
| | - Kiyomi Araki
- Authors' Affiliations: Cold Spring Harbor Laboratory, Cold Spring Harbor, New York; Princess Margaret Cancer Center, Campbell Family Institute for Breast Cancer Research, Department of Medical Biophysics, University of Toronto; Ontario Institute for Cancer Research, Ontario, Canada; Center for Comparative Medicine, University of California, Davis, Davis, California; and Department of Biochemistry, Vanderbilt University, Nashville, Tennessee
| | - Avi Z Rosenberg
- Authors' Affiliations: Cold Spring Harbor Laboratory, Cold Spring Harbor, New York; Princess Margaret Cancer Center, Campbell Family Institute for Breast Cancer Research, Department of Medical Biophysics, University of Toronto; Ontario Institute for Cancer Research, Ontario, Canada; Center for Comparative Medicine, University of California, Davis, Davis, California; and Department of Biochemistry, Vanderbilt University, Nashville, Tennessee
| | - Lakshmi B Muthuswamy
- Authors' Affiliations: Cold Spring Harbor Laboratory, Cold Spring Harbor, New York; Princess Margaret Cancer Center, Campbell Family Institute for Breast Cancer Research, Department of Medical Biophysics, University of Toronto; Ontario Institute for Cancer Research, Ontario, Canada; Center for Comparative Medicine, University of California, Davis, Davis, California; and Department of Biochemistry, Vanderbilt University, Nashville, Tennessee
| | - Bernard Martin
- Authors' Affiliations: Cold Spring Harbor Laboratory, Cold Spring Harbor, New York; Princess Margaret Cancer Center, Campbell Family Institute for Breast Cancer Research, Department of Medical Biophysics, University of Toronto; Ontario Institute for Cancer Research, Ontario, Canada; Center for Comparative Medicine, University of California, Davis, Davis, California; and Department of Biochemistry, Vanderbilt University, Nashville, Tennessee
| | - Brian D Lehmann
- Authors' Affiliations: Cold Spring Harbor Laboratory, Cold Spring Harbor, New York; Princess Margaret Cancer Center, Campbell Family Institute for Breast Cancer Research, Department of Medical Biophysics, University of Toronto; Ontario Institute for Cancer Research, Ontario, Canada; Center for Comparative Medicine, University of California, Davis, Davis, California; and Department of Biochemistry, Vanderbilt University, Nashville, Tennessee
| | - Hal K Berman
- Authors' Affiliations: Cold Spring Harbor Laboratory, Cold Spring Harbor, New York; Princess Margaret Cancer Center, Campbell Family Institute for Breast Cancer Research, Department of Medical Biophysics, University of Toronto; Ontario Institute for Cancer Research, Ontario, Canada; Center for Comparative Medicine, University of California, Davis, Davis, California; and Department of Biochemistry, Vanderbilt University, Nashville, Tennessee
| | - Jennifer A Pietenpol
- Authors' Affiliations: Cold Spring Harbor Laboratory, Cold Spring Harbor, New York; Princess Margaret Cancer Center, Campbell Family Institute for Breast Cancer Research, Department of Medical Biophysics, University of Toronto; Ontario Institute for Cancer Research, Ontario, Canada; Center for Comparative Medicine, University of California, Davis, Davis, California; and Department of Biochemistry, Vanderbilt University, Nashville, Tennessee
| | - Robert D Cardiff
- Authors' Affiliations: Cold Spring Harbor Laboratory, Cold Spring Harbor, New York; Princess Margaret Cancer Center, Campbell Family Institute for Breast Cancer Research, Department of Medical Biophysics, University of Toronto; Ontario Institute for Cancer Research, Ontario, Canada; Center for Comparative Medicine, University of California, Davis, Davis, California; and Department of Biochemistry, Vanderbilt University, Nashville, Tennessee
| | - Senthil K Muthuswamy
- Authors' Affiliations: Cold Spring Harbor Laboratory, Cold Spring Harbor, New York; Princess Margaret Cancer Center, Campbell Family Institute for Breast Cancer Research, Department of Medical Biophysics, University of Toronto; Ontario Institute for Cancer Research, Ontario, Canada; Center for Comparative Medicine, University of California, Davis, Davis, California; and Department of Biochemistry, Vanderbilt University, Nashville, TennesseeAuthors' Affiliations: Cold Spring Harbor Laboratory, Cold Spring Harbor, New York; Princess Margaret Cancer Center, Campbell Family Institute for Breast Cancer Research, Department of Medical Biophysics, University of Toronto; Ontario Institute for Cancer Research, Ontario, Canada; Center for Comparative Medicine, University of California, Davis, Davis, California; and Department of Biochemistry, Vanderbilt University, Nashville, Tennessee
| |
Collapse
|
38
|
Ross AP, Zarbalis KS. The emerging roles of ribosome biogenesis in craniofacial development. Front Physiol 2014; 5:26. [PMID: 24550838 PMCID: PMC3912750 DOI: 10.3389/fphys.2014.00026] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2013] [Accepted: 01/13/2014] [Indexed: 12/29/2022] Open
Abstract
Neural crest cells (NCCs) are a transient, migratory cell population, which originates during neurulation at the neural folds and contributes to the majority of tissues, including the mesenchymal structures of the craniofacial skeleton. The deregulation of the complex developmental processes that guide migration, proliferation, and differentiation of NCCs may result in a wide range of pathological conditions grouped together as neurocristopathies. Recently, due to their multipotent properties neural crest stem cells have received considerable attention as a possible source for stem cell based regenerative therapies. This exciting prospect underlines the need to further explore the developmental programs that guide NCC differentiation. This review explores the particular importance of ribosome biogenesis defects in this context since a specific interface between ribosomopathies and neurocristopathies exists as evidenced by disorders such as Treacher-Collins-Franceschetti syndrome (TCS) and Diamond-Blackfan anemia (DBA).
Collapse
Affiliation(s)
- Adam P Ross
- Department of Pathology and Laboratory Medicine, Institute for Pediatric Regenerative Medicine, Shriners Hospitals for Children, University of California at Davis Sacramento, CA, USA
| | - Konstantinos S Zarbalis
- Department of Pathology and Laboratory Medicine, Institute for Pediatric Regenerative Medicine, Shriners Hospitals for Children, University of California at Davis Sacramento, CA, USA
| |
Collapse
|
39
|
Ha S, Stottmann RW, Furley AJ, Beier DR. A forward genetic screen in mice identifies mutants with abnormal cortical patterning. ACTA ACUST UNITED AC 2013; 25:167-79. [PMID: 23968836 DOI: 10.1093/cercor/bht209] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
Formation of a 6-layered cortical plate and axon tract patterning are key features of cerebral cortex development. Abnormalities of these processes may be the underlying cause for a range of functional disabilities seen in human neurodevelopmental disorders. To identify mouse mutants with defects in cortical lamination or corticofugal axon guidance, N-ethyl-N-nitrosourea (ENU) mutagenesis was performed using mice expressing LacZ reporter genes in layers II/III and V of the cortex (Rgs4-lacZ) or in corticofugal axons (TAG1-tau-lacZ). Four lines with abnormal cortical lamination have been identified. One of these was a splice site mutation in reelin (Reln) that results in a premature stop codon and the truncation of the C-terminal region (CTR) domain of reelin. Interestingly, this novel allele of Reln did not display cerebellar malformation or ataxia, and this is the first report of a Reln mutant without a cerebellar defect. Four lines with abnormal cortical axon development were also identified, one of which was found by whole-genome resequencing to carry a mutation in Lrp2. These findings demonstrated that the application of ENU mutagenesis to mice carrying transgenic reporters marking cortical anatomy is a sensitive and specific method to identify mutations that disrupt patterning of the developing brain.
Collapse
Affiliation(s)
- Seungshin Ha
- Genetics Division, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115, USA Center for Developmental Biology and Regenerative Medicine, Seattle Children's Research Institute, University of Washington School of Medicine, Seattle, WA 98101, USA
| | - Rolf W Stottmann
- Genetics Division, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115, USA Divisions of Human Genetics and Developmental Biology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH 45229, USA and
| | - Andrew J Furley
- Department of Biomedical Science, The University of Sheffield, Western Bank, Sheffield S10 2TN, UK
| | - David R Beier
- Genetics Division, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115, USA Center for Developmental Biology and Regenerative Medicine, Seattle Children's Research Institute, University of Washington School of Medicine, Seattle, WA 98101, USA
| |
Collapse
|
40
|
Fedeles S, Gallagher AR. Cell polarity and cystic kidney disease. Pediatr Nephrol 2013; 28:1161-72. [PMID: 23161205 DOI: 10.1007/s00467-012-2337-z] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/06/2012] [Revised: 10/02/2012] [Accepted: 10/02/2012] [Indexed: 10/27/2022]
Abstract
Epithelial cell polarity is essential for organ development; aberrations in this process have been implicated in various diseases, including polycystic kidney disease. Establishment and maintenance of cell polarity is governed by a number of molecular processes and how these processes operate remains an interesting question. Conserved protein complexes guide both apical-basolateral polarity and planar cell polarity. In this review we discuss the recent findings that provide insights into polarity mechanisms and the intriguing crosstalk between apical-basolateral polarity and planar cell polarity, and their relationship to cystic kidney disease.
Collapse
Affiliation(s)
- Sorin Fedeles
- Section of Nephrology, Department of Internal Medicine, Yale University School of Medicine, P.O. Box 208029, 333 Cedar Street, New Haven, CT 06520-8029, USA
| | | |
Collapse
|
41
|
Lei Y, Zhu H, Duhon C, Yang W, Ross ME, Shaw GM, Finnell RH. Mutations in planar cell polarity gene SCRIB are associated with spina bifida. PLoS One 2013; 8:e69262. [PMID: 23922697 PMCID: PMC3724847 DOI: 10.1371/journal.pone.0069262] [Citation(s) in RCA: 59] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2013] [Accepted: 06/06/2013] [Indexed: 11/29/2022] Open
Abstract
Neural tube defects (NTDs) (OMIM #182940) including anencephaly, spina bifida and craniorachischisis, are severe congenital malformations that affect 0.5–1 in 1,000 live births in the United States, with varying prevalence around the world. Mutations in planar cell polarity (PCP) genes are believed to cause a variety of NTDs in both mice and humans. SCRIB is a PCP-associated gene. Mice that are homozygous for the Scrib p.I285K and circletail (Crc) mutations, present with the most severe form of NTDs, namely craniorachischisis. A recent study reported that mutations in SCRIB were associated with craniorachischisis in humans, but whether SCRIB mutations contribute to increased spina bifida risk is still unknown. We sequenced the SCRIB gene in 192 infants with spina bifida and 190 healthy controls. Among the spina bifida patients, we identified five novel missense mutations that were predicted-to-be-deleterious by the PolyPhen software. Of these five mutations, three of them (p.P1043L, p.P1332L, p.L1520R) significantly affected the subcellular localization of SCRIB. In addition, we demonstrated that the craniorachischisis mouse line-90 mutation I285K, also affected SCRIB subcellular localization. In contrast, only one novel missense mutation (p.A1257T) was detected in control samples, and it was predicted to be benign. This study demonstrated that rare deleterious mutations of SCRIB may contribute to the multifactorial risk for human spina bifida.
Collapse
Affiliation(s)
- Yunping Lei
- Dell Pediatric Research Institute, Department of Nutritional Sciences, the University of Texas at Austin, Austin, Texas, United States of America
| | - Huiping Zhu
- Dell Pediatric Research Institute, Department of Nutritional Sciences, the University of Texas at Austin, Austin, Texas, United States of America
| | - Cody Duhon
- Dell Pediatric Research Institute, Department of Nutritional Sciences, the University of Texas at Austin, Austin, Texas, United States of America
| | - Wei Yang
- Department of Pediatrics, Division of Neonatology, Stanford University School of Medicine, Stanford, California, United States of America
| | - M. Elizabeth Ross
- Center for Neurogenetics, Brain and Mind Research Institute, Weill Cornell Medical College, New York, New York, United States of America
| | - Gary M. Shaw
- Department of Pediatrics, Division of Neonatology, Stanford University School of Medicine, Stanford, California, United States of America
| | - Richard H. Finnell
- Dell Pediatric Research Institute, Department of Nutritional Sciences, the University of Texas at Austin, Austin, Texas, United States of America
- Department of Chemistry and Biochemistry, College of Natural Sciences, the University of Texas at Austin, Austin, Texas, United States of America
- * E-mail:
| |
Collapse
|
42
|
Ross AP, Mansilla MA, Choe Y, Helminski S, Sturm R, Maute RL, May SR, Hozyasz KK, Wójcicki P, Mostowska A, Davidson B, Adamopoulos IE, Pleasure SJ, Murray JC, Zarbalis KS. A mutation in mouse Pak1ip1 causes orofacial clefting while human PAK1IP1 maps to 6p24 translocation breaking points associated with orofacial clefting. PLoS One 2013; 8:e69333. [PMID: 23935987 PMCID: PMC3723895 DOI: 10.1371/journal.pone.0069333] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2013] [Accepted: 06/08/2013] [Indexed: 01/05/2023] Open
Abstract
Orofacial clefts are among the most common birth defects and result in an improper formation of the mouth or the roof of the mouth. Monosomy of the distal aspect of human chromosome 6p has been recognized as causative in congenital malformations affecting the brain and cranial skeleton including orofacial clefts. Among the genes located in this region is PAK1IP1, which encodes a nucleolar factor involved in ribosomal stress response. Here, we report the identification of a novel mouse line that carries a point mutation in the Pak1ip1 gene. Homozygous mutants show severe developmental defects of the brain and craniofacial skeleton, including a median orofacial cleft. We recovered this line of mice in a forward genetic screen and named the allele manta-ray (mray). Our findings prompted us to examine human cases of orofacial clefting for mutations in the PAK1IP1 gene or association with the locus. No deleterious variants in the PAK1IP1 gene coding region were recognized, however, we identified a borderline association effect for SNP rs494723 suggesting a possible role for the PAK1IP1 gene in human orofacial clefting.
Collapse
Affiliation(s)
- Adam P. Ross
- Department of Pathology and Laboratory Medicine, University of California Davis, Sacramento, California, United States of America
| | - M. Adela Mansilla
- Department of Pediatrics, University of Iowa, Iowa City, Iowa, United States of America
| | - Youngshik Choe
- Department of Neurology, University of California San Francisco, San Francisco, California, United States of America
| | - Simon Helminski
- Department of Pathology and Laboratory Medicine, University of California Davis, Sacramento, California, United States of America
| | - Richard Sturm
- Interdisciplinary Center for Neurosciences, Heidelberg University, Heidelberg, Germany
| | - Roy L. Maute
- Institute for Cancer Genetics, Columbia University, New York City, New York, United States of America
| | - Scott R. May
- Molecular Neurobiology Laboratory, The Salk Institute for Biological Studies, La Jolla, California, United States of America
| | - Kamil K. Hozyasz
- Department of Pediatrics, Institute of Mother and Child, Warsaw, Poland
| | - Piotr Wójcicki
- Department of Plastic Surgery, Wrocław Medical University, Polanica Zdroj, Poland
- Department of Plastic Surgery, Medical Centre, Polanica-Zdrój, Poland
| | - Adrianna Mostowska
- Department of Biochemistry and Molecular Biology, Poznan University of Medical Sciences, Poznan, Poland
| | - Beth Davidson
- Department of Pediatrics, University of Iowa, Iowa City, Iowa, United States of America
| | - Iannis E. Adamopoulos
- Department of Internal Medicine, University of California Davis, Sacramento, California, United States of America
- Institute for Pediatric Regenerative Medicine, Shriners Hospitals for Children Northern California, Sacramento, California, United States of America
| | - Samuel J. Pleasure
- Department of Neurology, University of California San Francisco, San Francisco, California, United States of America
| | - Jeffrey C. Murray
- Department of Pediatrics, University of Iowa, Iowa City, Iowa, United States of America
| | - Konstantinos S. Zarbalis
- Department of Pathology and Laboratory Medicine, University of California Davis, Sacramento, California, United States of America
- Institute for Pediatric Regenerative Medicine, Shriners Hospitals for Children Northern California, Sacramento, California, United States of America
| |
Collapse
|
43
|
Elsum IA, Humbert PO. Localization, not important in all tumor-suppressing properties: a lesson learnt from scribble. Cells Tissues Organs 2013; 198:1-11. [PMID: 23774808 DOI: 10.1159/000348423] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/21/2013] [Indexed: 11/19/2022] Open
Abstract
Aberrant localization of proteins is increasingly being suggested as a causal player in epithelial cancers. Despite this, few studies have investigated how mislocalization of a protein can alter individual biological processes that contribute to cancer progression. Using Ras as a model of transformation, we investigate how localization of the polarity protein Scribble contributes to its tumor-suppressive properties. Wild-type Scribble has been shown to modulate Ras-mitogen-activated protein kinase (MAPK) transformation both in vitro and in vivo. By utilizing a construct that carries a mutation in the LRR domain of Scribble (Scribble P305L) resulting in a cytosolic rather than the usual membrane-bound localization, we report that discrete tumor suppressive properties of Scribble are differentially sensitive to the localization of Scribble. We find that although the Scribble P305L mislocalization mutant can no longer suppress Ras-MAPK-induced invasion or epithelial to mesenchymal transition phenotypes, mislocalized Scribble can still suppress anchorage-independent cell growth. This study illustrates that the manner in which protein mislocalization contributes to cancer is likely complex and highlights the need for careful interrogation as to how cell polarity protein mislocalization, its secondary consequences, and the mutations that give rise to their mislocalization may contribute to specific aspects of cancer progression.
Collapse
Affiliation(s)
- Imogen A Elsum
- Cell Cycle and Cancer Genetics, Research Division, Peter MacCallum Cancer Centre, Melbourne, Vic. 3002, Australia
| | | |
Collapse
|
44
|
The Scribble-Dlg-Lgl polarity module in development and cancer: from flies to man. Essays Biochem 2012; 53:141-68. [PMID: 22928514 DOI: 10.1042/bse0530141] [Citation(s) in RCA: 100] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
The Scribble, Par and Crumbs modules were originally identified in the vinegar (fruit) fly, Drosophila melanogaster, as being critical regulators of apico-basal cell polarity. In the present chapter we focus on the Scribble polarity module, composed of Scribble, discs large and lethal giant larvae. Since the discovery of the role of the Scribble polarity module in apico-basal cell polarity, these proteins have also been recognized as having important roles in other forms of polarity, as well as regulation of the actin cytoskeleton, cell signalling and vesicular trafficking. In addition to these physiological roles, an important role for polarity proteins in cancer progression has also been uncovered, with loss of polarity and tissue architecture being strongly correlated with metastatic disease.
Collapse
|
45
|
Krol MB, Gromadzinska J, Wasowicz W. SeP, ApoER2 and megalin as necessary factors to maintain Se homeostasis in mammals. J Trace Elem Med Biol 2012; 26:262-6. [PMID: 22683052 DOI: 10.1016/j.jtemb.2012.03.003] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/25/2011] [Accepted: 03/19/2012] [Indexed: 11/23/2022]
Abstract
Selenoprotein P (SeP) is an extracellular protein containing ten selenium atoms in the form of selenocysteine, secreted mainly from the liver. About 60% of the whole plasma selenium level is present in SeP, which makes it a useful biomarker of selenium nutritional status. The main functions of SeP are transport and storage of selenium in plasma. It is especially an important protein for the brain, testes and kidneys where the supplementation of the proper amount of Se ensures the synthesis of selenoenzymes with antioxidant properties.Recently, it has been found that SeP uptake in kidneys, testes and brain depends on the apolipoprotein receptor 2 (ApoER2) and lipoprotein megalin receptor (Lrp2). Megalin receptor represents a physiological SeP receptor in kidneys, mediating the re-uptake of secreted SeP from the primary urine. The absence of a functional megalin receptor causes a significant reduction of plasma selenium and the SeP levels as a result of Se excretion. ApoER2 is a SeP receptor in the brain and testes which uptakes Se from the extracellular fluid. Deletion of ApoER2 in mice leads to a lowered selenium level in the brain and testes, neurological dysfunction, production of abnormal spermatozoa, infertility and even death when the subjects are fed a low-selenium diet.
Collapse
Affiliation(s)
- Magdalena Beata Krol
- Department of Toxicology and Carcinogenesis, Nofer Institute of Occupational Medicine, Lodz, Poland.
| | | | | |
Collapse
|
46
|
Spuch C, Ortolano S, Navarro C. LRP-1 and LRP-2 receptors function in the membrane neuron. Trafficking mechanisms and proteolytic processing in Alzheimer's disease. Front Physiol 2012; 3:269. [PMID: 22934024 PMCID: PMC3429044 DOI: 10.3389/fphys.2012.00269] [Citation(s) in RCA: 68] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2012] [Accepted: 06/26/2012] [Indexed: 11/13/2022] Open
Abstract
Low density lipoprotein receptor-related protein (LRP) belongs to the low-density lipoprotein receptor family, generally recognized as cell surface endocytic receptors, which bind and internalize extracellular ligands for degradation in lysosomes. Neurons require cholesterol to function and keep the membrane rafts stable. Cholesterol uptake into the neuron is carried out by ApoE via LRPs receptors on the cell surface. In neurons the most important are LRP-1 and LRP-2, even it is thought that a causal factor in Alzheimer's disease (AD) is the malfunction of this process which cause impairment intracellular signaling as well as storage and/or release of nutrients and toxic compounds. Both receptors are multifunctional cell surface receptors that are widely expressed in several tissues including neurons and astrocytes. LRPs are constituted by an intracellular (ICD) and extracellular domain (ECD). Through its ECD, LRPs bind at least 40 different ligands ranging from lipoprotein and protease inhibitor complex to growth factors and extracellular matrix proteins. These receptors has also been shown to interact with scaffolding and signaling proteins via its ICD in a phosphorylation-dependent manner and to function as a co-receptor partnering with other cell surface or integral membrane proteins. Thus, LRPs are implicated in two major physiological processes: endocytosis and regulation of signaling pathways, which are both involved in diverse biological roles including lipid metabolism, cell growth processes, degradation of proteases, and tissue invasion. Interestingly, LRPs were also localized in neurons in different stages, suggesting that both receptors could be implicated in signal transduction during embryonic development, neuronal outgrowth or in the pathogenesis of AD.
Collapse
Affiliation(s)
- Carlos Spuch
- Department of Pathology and Neuropathology, University Hospital of VigoVigo, Spain
| | | | | |
Collapse
|
47
|
Ionita-Laza I, Makarov V, Buxbaum JD. Scan-statistic approach identifies clusters of rare disease variants in LRP2, a gene linked and associated with autism spectrum disorders, in three datasets. Am J Hum Genet 2012; 90:1002-13. [PMID: 22578327 DOI: 10.1016/j.ajhg.2012.04.010] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2012] [Revised: 02/27/2012] [Accepted: 04/19/2012] [Indexed: 01/20/2023] Open
Abstract
Cluster-detection approaches, commonly used in epidemiology and astronomy, can be applied in the context of genetic sequence data for the identification of genetic regions significantly enriched with rare disease-risk variants (DRVs). Unlike existing association tests for sequence data, the goal of cluster-detection methods is to localize significant disease mutation clusters within a gene or region of interest. Here, we focus on a chromosome 2q replicated linkage region that is associated with autism spectrum disorder (ASD) and that has been sequenced in three independent datasets. We found that variants in one gene, LRP2, residing on 2q are associated with ASD in two datasets (the combined variable-threshold-test p value is 1.2 × 10(-5)). Using a cluster-detection method, we show that in the discovery and replication datasets, variants associated with ASD cluster preponderantly in 25 kb windows (adjusted p values are p(1) = 0.003 and p(2) = 0.002), and the two windows are highly overlapping. Furthermore, for the third dataset, a 25 kb region similar to those in the other two datasets shows significant evidence of enrichment of rare DRVs. The region implicated by all three studies is involved in ligand binding, suggesting that subtle alterations in either LRP2 expression or LRP2 primary sequence modulate the uptake of LRP2 ligands. BMP4 is a ligand of particular interest given its role in forebrain development, and modest changes in BMP4 binding, which binds to LRP2 near the mutation cluster, might subtly affect development and could lead to autism-associated phenotypes.
Collapse
|
48
|
Hartleben B, Widmeier E, Wanner N, Schmidts M, Kim ST, Schneider L, Mayer B, Kerjaschki D, Miner JH, Walz G, Huber TB. Role of the polarity protein Scribble for podocyte differentiation and maintenance. PLoS One 2012; 7:e36705. [PMID: 22586490 PMCID: PMC3346764 DOI: 10.1371/journal.pone.0036705] [Citation(s) in RCA: 44] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2012] [Accepted: 04/05/2012] [Indexed: 11/19/2022] Open
Abstract
The kidney filter represents a unique assembly of podocyte epithelial cells that tightly enwrap the glomerular capillaries with their complex foot process network. While deficiency of the polarity proteins Crumbs and aPKC result in impaired podocyte foot process architecture, the function of basolateral polarity proteins for podocyte differentiation and maintenance remained unclear. Here we report, that Scribble is expressed in developing podocytes, where it translocates from the lateral aspects of immature podocytes to the basal cell membrane and foot processes of mature podocytes. Immunogold electron microscopy reveals membrane associated localisation of Scribble predominantly at the basolateral site of foot processes. To further study the role of Scribble for podocyte differentiation Scribble(flox/flox) mice were generated by introducing loxP-sites into the Scribble introns 1 and 8 and these mice were crossed to NPHS2.Cre mice and Cre deleter mice. Podocyte-specific Scribble knockout mice develop normally and display no histological, ultrastructural or clinical abnormalities up to 12 months of age. In addition, no increased susceptibility to glomerular stress could be detected in these mice. In contrast, constitutive Scribble knockout animals die during embryonic development indicating the fundamental importance of Scribble for embryogenesis. Like in podocyte-specific Scribble knockout mice, the development of podocyte foot processes and the slit diaphragm was unaffected in kidney cultures from constitutive Scribble knockout animals. In summary these results indicate that basolateral polarity signaling via Scribble is dispensable for podocyte function, highlighting the unique feature of podocyte development with its significant apical membrane expansions being dominated by apical polarity complexes rather than by basolateral polarity signaling.
Collapse
Affiliation(s)
- Björn Hartleben
- Renal Division, University Hospital Freiburg, Freiburg, Germany
| | - Eugen Widmeier
- Renal Division, University Hospital Freiburg, Freiburg, Germany
| | - Nicola Wanner
- Renal Division, University Hospital Freiburg, Freiburg, Germany
- Spemann Graduate School of Biology and Medicine, Albert-Ludwigs-University Freiburg, Freiburg, Germany
| | - Miriam Schmidts
- Renal Division, University Hospital Freiburg, Freiburg, Germany
| | - Sung Tae Kim
- Renal Division, Washington University School of Medicine, St. Louis, Missouri, United States of America
| | - Lisa Schneider
- Renal Division, University Hospital Freiburg, Freiburg, Germany
| | - Britta Mayer
- Renal Division, University Hospital Freiburg, Freiburg, Germany
| | - Dontscho Kerjaschki
- Clinical Institute of Pathology, Medical University of Vienna, Vienna, Austria
| | - Jeffrey H. Miner
- Renal Division, Washington University School of Medicine, St. Louis, Missouri, United States of America
| | - Gerd Walz
- Renal Division, University Hospital Freiburg, Freiburg, Germany
- BIOSS Centre for Biological Signalling Studies, Albert-Ludwigs-University Freiburg, Freiburg, Germany
| | - Tobias B. Huber
- Renal Division, University Hospital Freiburg, Freiburg, Germany
- Spemann Graduate School of Biology and Medicine, Albert-Ludwigs-University Freiburg, Freiburg, Germany
- BIOSS Centre for Biological Signalling Studies, Albert-Ludwigs-University Freiburg, Freiburg, Germany
- * E-mail:
| |
Collapse
|
49
|
Benadiba C, Magnani D, Niquille M, Morlé L, Valloton D, Nawabi H, Ait-Lounis A, Otsmane B, Reith W, Theil T, Hornung JP, Lebrand C, Durand B. The ciliogenic transcription factor RFX3 regulates early midline distribution of guidepost neurons required for corpus callosum development. PLoS Genet 2012; 8:e1002606. [PMID: 22479201 PMCID: PMC3315471 DOI: 10.1371/journal.pgen.1002606] [Citation(s) in RCA: 64] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2011] [Accepted: 02/03/2012] [Indexed: 01/28/2023] Open
Abstract
The corpus callosum (CC) is the major commissure that bridges the cerebral hemispheres. Agenesis of the CC is associated with human ciliopathies, but the origin of this default is unclear. Regulatory Factor X3 (RFX3) is a transcription factor involved in the control of ciliogenesis, and Rfx3-deficient mice show several hallmarks of ciliopathies including left-right asymmetry defects and hydrocephalus. Here we show that Rfx3-deficient mice suffer from CC agenesis associated with a marked disorganisation of guidepost neurons required for axon pathfinding across the midline. Using transplantation assays, we demonstrate that abnormalities of the mutant midline region are primarily responsible for the CC malformation. Conditional genetic inactivation shows that RFX3 is not required in guidepost cells for proper CC formation, but is required before E12.5 for proper patterning of the cortical septal boundary and hence accurate distribution of guidepost neurons at later stages. We observe focused but consistent ectopic expression of Fibroblast growth factor 8 (Fgf8) at the rostro commissural plate associated with a reduced ratio of GLIoma-associated oncogene family zinc finger 3 (GLI3) repressor to activator forms. We demonstrate on brain explant cultures that ectopic FGF8 reproduces the guidepost neuronal defects observed in Rfx3 mutants. This study unravels a crucial role of RFX3 during early brain development by indirectly regulating GLI3 activity, which leads to FGF8 upregulation and ultimately to disturbed distribution of guidepost neurons required for CC morphogenesis. Hence, the RFX3 mutant mouse model brings novel understandings of the mechanisms that underlie CC agenesis in ciliopathies.
Collapse
Affiliation(s)
- Carine Benadiba
- Département de Biologie Cellulaire et de Morphologie, University of Lausanne, Lausanne, Switzerland
- Centre de Génétique et de Physiologie Moléculaire et Cellulaire, CNRS UMR 5534, Université Claude Bernard Lyon 1, Lyon, France
| | - Dario Magnani
- Centre for Integrative Physiology, University of Edinburgh, Edinburgh, United Kingdom
| | - Mathieu Niquille
- Département de Biologie Cellulaire et de Morphologie, University of Lausanne, Lausanne, Switzerland
| | - Laurette Morlé
- Centre de Génétique et de Physiologie Moléculaire et Cellulaire, CNRS UMR 5534, Université Claude Bernard Lyon 1, Lyon, France
| | - Delphine Valloton
- Département de Biologie Cellulaire et de Morphologie, University of Lausanne, Lausanne, Switzerland
| | - Homaira Nawabi
- Centre de Génétique et de Physiologie Moléculaire et Cellulaire, CNRS UMR 5534, Université Claude Bernard Lyon 1, Lyon, France
| | - Aouatef Ait-Lounis
- Department of Pathology and Immunology, Faculty of Medicine, University of Geneva, Centre Médical Universitaire, Geneva, Switzerland
| | - Belkacem Otsmane
- Département de Biologie Cellulaire et de Morphologie, University of Lausanne, Lausanne, Switzerland
| | - Walter Reith
- Department of Pathology and Immunology, Faculty of Medicine, University of Geneva, Centre Médical Universitaire, Geneva, Switzerland
| | - Thomas Theil
- Centre for Integrative Physiology, University of Edinburgh, Edinburgh, United Kingdom
| | - Jean-Pierre Hornung
- Département de Biologie Cellulaire et de Morphologie, University of Lausanne, Lausanne, Switzerland
| | - Cécile Lebrand
- Département de Biologie Cellulaire et de Morphologie, University of Lausanne, Lausanne, Switzerland
- National Center of Competence in Research Robotics, Ecole Polytechnique Fédérale, Lausanne, Switzerland
| | - Bénédicte Durand
- Centre de Génétique et de Physiologie Moléculaire et Cellulaire, CNRS UMR 5534, Université Claude Bernard Lyon 1, Lyon, France
| |
Collapse
|
50
|
Ashique AM, May SR, Kane MA, Folias AE, Phamluong K, Choe Y, Napoli JL, Peterson AS. Morphological defects in a novel Rdh10 mutant that has reduced retinoic acid biosynthesis and signaling. Genesis 2012; 50:415-23. [PMID: 22162152 DOI: 10.1002/dvg.22002] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2011] [Revised: 12/01/2011] [Accepted: 12/02/2011] [Indexed: 11/09/2022]
Abstract
Retinoic acid (RA) signaling is necessary for proper patterning and morphogenesis during embryonic development. Tissue-specific RA signaling requires precise spatial and temporal synthesis of RA from retinal by retinaldehyde dehydrogenases (Raldh) and the conversion of retinol to retinal by retinol dehydrogenases (Rdh) of the short-chain dehydrogenase/reducatase gene family (SDR). The SDR, retinol dehydrogenase 10 (RDH10), is a major contributor to retinal biosynthesis during mid-gestation. We have identified a missense mutation in the Rdh10 gene (Rdh10(m366Asp) ) using an N-ethyl-N-nitrosourea-induced forward genetic screen that result in reduced RA levels and signaling during embryonic development. Rdh10(m366Asp) mutant embryos have unique phenotypes, such as edema, a massive midline facial cleft, and neurogenesis defects in the forebrain, that will allow the identification of novel RA functions.
Collapse
|