1
|
Williams LE, Küffer L, Bawa T, Husi E, Pagès S, Holtmaat A. Repetitive Sensory Stimulation Potentiates and Recruits Sensory-Evoked Cortical Population Activity. J Neurosci 2025; 45:e2189232024. [PMID: 39510832 PMCID: PMC11756624 DOI: 10.1523/jneurosci.2189-23.2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2023] [Revised: 10/15/2024] [Accepted: 10/17/2024] [Indexed: 11/15/2024] Open
Abstract
Sensory experience and learning are thought to be associated with plasticity of neocortical circuits. Repetitive sensory stimulation can induce long-term potentiation (LTP) of cortical excitatory synapses in anesthetized mice; however, it is unclear if these phenomena are associated with sustained changes in activity during wakefulness. Here we used time-lapse, calcium imaging of layer (L) 2/3 neurons in the primary somatosensory cortex (S1), in awake male mice, to assess the effects of a bout of rhythmic whisker stimulation (RWS) at a frequency by which rodents sample objects. We found that RWS induced a 1 h increase in whisker-evoked L2/3 neuronal activity in most cells. This was not observed for whiskers functionally connected to distant cortical columns. We also found that RWS could heterogeneously recruit or suppress whisker-evoked activity in different populations of neurons. Vasoactive intestinal-peptide-expressing (VIP) interneurons, which promote plasticity through disinhibition of pyramidal neurons, were found to exclusively elevate activity during RWS. These findings indicate that cortical neurons' representation of sensory input can be modulated over hours through repetitive sensory stimulation, which may be gated by activation of disinhibitory circuits.
Collapse
Affiliation(s)
- Leena Eve Williams
- Department of Basic Neurosciences, Faculty of Medicine, University of Geneva, Geneva 1211, Switzerland
| | - Laura Küffer
- Department of Basic Neurosciences, Faculty of Medicine, University of Geneva, Geneva 1211, Switzerland
| | - Tanika Bawa
- Department of Basic Neurosciences, Faculty of Medicine, University of Geneva, Geneva 1211, Switzerland
- Lemanic Neuroscience Doctoral School, University of Geneva, Geneva 1211, Switzerland
| | - Elodie Husi
- Department of Basic Neurosciences, Faculty of Medicine, University of Geneva, Geneva 1211, Switzerland
| | - Stéphane Pagès
- Department of Basic Neurosciences, Faculty of Medicine, University of Geneva, Geneva 1211, Switzerland
| | - Anthony Holtmaat
- Department of Basic Neurosciences, Faculty of Medicine, University of Geneva, Geneva 1211, Switzerland
| |
Collapse
|
2
|
Curic D, Ashby DM, McGirr A, Davidsen J. Existence of multiple transitions of the critical state due to anesthetics. Nat Commun 2024; 15:7025. [PMID: 39147749 PMCID: PMC11327335 DOI: 10.1038/s41467-024-51399-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2023] [Accepted: 08/05/2024] [Indexed: 08/17/2024] Open
Abstract
Scale-free statistics of coordinated neuronal activity, suggesting a universal operating mechanism across spatio-temporal scales, have been proposed as a necessary condition of healthy resting-state brain activity. Recent studies have focused on anesthetic agents to induce distinct neural states in which consciousness is altered to understand the importance of critical dynamics. However, variation in experimental techniques, species, and anesthetics, have made comparisons across studies difficult. Here we conduct a survey of several common anesthetics (isoflurane, pentobarbital, ketamine) at multiple dosages, using calcium wide-field optical imaging of the mouse cortex. We show that while low-dose anesthesia largely preserves scale-free statistics, surgical plane anesthesia induces multiple dynamical modes, most of which do not maintain critical avalanche dynamics. Our findings indicate multiple pathways away from default critical dynamics associated with quiet wakefulness, not only reflecting differences between these common anesthetics but also showing significant variations in individual responses. This is suggestive of a non-trivial relationship between criticality and the underlying state of the subject.
Collapse
Affiliation(s)
- Davor Curic
- Complexity Science Group, Department of Physics and Astronomy, University of Calgary, Calgary, Alberta, T2N 1N4, Canada.
| | - Donovan M Ashby
- Department of Psychiatry, University of Calgary, Calgary, AB, T2N 1N4, Canada
- Hotchkiss Brain Institute, University of Calgary, Calgary, AB, T2N 4N1, Canada
- Mathison Centre for Mental Health Research and Education, Calgary, AB, Canada
| | - Alexander McGirr
- Department of Psychiatry, University of Calgary, Calgary, AB, T2N 1N4, Canada
- Hotchkiss Brain Institute, University of Calgary, Calgary, AB, T2N 4N1, Canada
- Mathison Centre for Mental Health Research and Education, Calgary, AB, Canada
| | - Jörn Davidsen
- Complexity Science Group, Department of Physics and Astronomy, University of Calgary, Calgary, Alberta, T2N 1N4, Canada
- Hotchkiss Brain Institute, University of Calgary, Calgary, AB, T2N 4N1, Canada
| |
Collapse
|
3
|
Varela C, Moreira JVS, Kocaoglu B, Dura-Bernal S, Ahmad S. A mechanism for deviance detection and contextual routing in the thalamus: a review and theoretical proposal. Front Neurosci 2024; 18:1359180. [PMID: 38486972 PMCID: PMC10938916 DOI: 10.3389/fnins.2024.1359180] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2023] [Accepted: 02/15/2024] [Indexed: 03/17/2024] Open
Abstract
Predictive processing theories conceptualize neocortical feedback as conveying expectations and contextual attention signals derived from internal cortical models, playing an essential role in the perception and interpretation of sensory information. However, few predictive processing frameworks outline concrete mechanistic roles for the corticothalamic (CT) feedback from layer 6 (L6), despite the fact that the number of CT axons is an order of magnitude greater than that of feedforward thalamocortical (TC) axons. Here we review the functional architecture of CT circuits and propose a mechanism through which L6 could regulate thalamic firing modes (burst, tonic) to detect unexpected inputs. Using simulations in a model of a TC cell, we show how the CT feedback could support prediction-based input discrimination in TC cells by promoting burst firing. This type of CT control can enable the thalamic circuit to implement spatial and context selective attention mechanisms. The proposed mechanism generates specific experimentally testable hypotheses. We suggest that the L6 CT feedback allows the thalamus to detect deviance from predictions of internal cortical models, thereby supporting contextual attention and routing operations, a far more powerful role than traditionally assumed.
Collapse
Affiliation(s)
- Carmen Varela
- Psychology Department, Florida Atlantic University, Boca Raton, FL, United States
| | - Joao V. S. Moreira
- Department of Physiology and Pharmacology, State University of New York (SUNY) Downstate Health Sciences University, Brooklyn, NY, United States
| | - Basak Kocaoglu
- Center for Connected Autonomy and Artificial Intelligence, Florida Atlantic University, Boca Raton, FL, United States
| | - Salvador Dura-Bernal
- Department of Physiology and Pharmacology, State University of New York (SUNY) Downstate Health Sciences University, Brooklyn, NY, United States
- Center for Biomedical Imaging and Neuromodulation, Nathan S. Kline Institute for Psychiatric Research, Orangeburg, NY, United States
| | | |
Collapse
|
4
|
Tsai YC, Hleihil M, Otomo K, Abegg A, Cavaccini A, Panzanelli P, Cramer T, Ferrari KD, Barrett MJP, Bosshard G, Karayannis T, Weber B, Tyagarajan SK, Stobart JL. The gephyrin scaffold modulates cortical layer 2/3 pyramidal neuron responsiveness to single whisker stimulation. Sci Rep 2024; 14:4169. [PMID: 38379020 PMCID: PMC10879104 DOI: 10.1038/s41598-024-54720-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2023] [Accepted: 02/15/2024] [Indexed: 02/22/2024] Open
Abstract
Gephyrin is the main scaffolding protein at inhibitory postsynaptic sites, and its clusters are the signaling hubs where several molecular pathways converge. Post-translational modifications (PTMs) of gephyrin alter GABAA receptor clustering at the synapse, but it is unclear how this affects neuronal activity at the circuit level. We assessed the contribution of gephyrin PTMs to microcircuit activity in the mouse barrel cortex by slice electrophysiology and in vivo two-photon calcium imaging of layer 2/3 (L2/3) pyramidal cells during single-whisker stimulation. Our results suggest that, depending on the type of gephyrin PTM, the neuronal activities of L2/3 pyramidal neurons can be differentially modulated, leading to changes in the size of the neuronal population responding to the single-whisker stimulation. Furthermore, we show that gephyrin PTMs have their preference for selecting synaptic GABAA receptor subunits. Our results identify an important role of gephyrin and GABAergic postsynaptic sites for cortical microcircuit function during sensory stimulation.
Collapse
Affiliation(s)
- Yuan-Chen Tsai
- Institute of Pharmacology and Toxicology, University of Zurich, Winterthurerstrasse 190, 8057, Zurich, Switzerland
- Center for Neuroscience Zurich (ZNZ), Winterthurerstrasse 190, 8057, Zurich, Switzerland
| | - Mohammad Hleihil
- Institute of Pharmacology and Toxicology, University of Zurich, Winterthurerstrasse 190, 8057, Zurich, Switzerland
- Center for Neuroscience Zurich (ZNZ), Winterthurerstrasse 190, 8057, Zurich, Switzerland
| | - Kanako Otomo
- Institute of Pharmacology and Toxicology, University of Zurich, Winterthurerstrasse 190, 8057, Zurich, Switzerland
| | - Andrin Abegg
- Institute of Pharmacology and Toxicology, University of Zurich, Winterthurerstrasse 190, 8057, Zurich, Switzerland
| | - Anna Cavaccini
- Brain Research Institute, University of Zurich, Winterthurerstrasse 190, 8057, Zurich, Switzerland
| | - Patrizia Panzanelli
- Department of Neuroscience Rita Levi Montalcini, University of Turin, Turin, Italy
| | - Teresa Cramer
- Institute of Pharmacology and Toxicology, University of Zurich, Winterthurerstrasse 190, 8057, Zurich, Switzerland
- Center for Neuroscience Zurich (ZNZ), Winterthurerstrasse 190, 8057, Zurich, Switzerland
| | - Kim David Ferrari
- Institute of Pharmacology and Toxicology, University of Zurich, Winterthurerstrasse 190, 8057, Zurich, Switzerland
- Center for Neuroscience Zurich (ZNZ), Winterthurerstrasse 190, 8057, Zurich, Switzerland
| | - Matthew J P Barrett
- Institute of Pharmacology and Toxicology, University of Zurich, Winterthurerstrasse 190, 8057, Zurich, Switzerland
- Center for Neuroscience Zurich (ZNZ), Winterthurerstrasse 190, 8057, Zurich, Switzerland
| | - Giovanna Bosshard
- Institute of Pharmacology and Toxicology, University of Zurich, Winterthurerstrasse 190, 8057, Zurich, Switzerland
| | - Theofanis Karayannis
- Brain Research Institute, University of Zurich, Winterthurerstrasse 190, 8057, Zurich, Switzerland
| | - Bruno Weber
- Institute of Pharmacology and Toxicology, University of Zurich, Winterthurerstrasse 190, 8057, Zurich, Switzerland
- Center for Neuroscience Zurich (ZNZ), Winterthurerstrasse 190, 8057, Zurich, Switzerland
| | - Shiva K Tyagarajan
- Institute of Pharmacology and Toxicology, University of Zurich, Winterthurerstrasse 190, 8057, Zurich, Switzerland
- Center for Neuroscience Zurich (ZNZ), Winterthurerstrasse 190, 8057, Zurich, Switzerland
| | - Jillian L Stobart
- Institute of Pharmacology and Toxicology, University of Zurich, Winterthurerstrasse 190, 8057, Zurich, Switzerland.
- College of Pharmacy, University of Manitoba, Winnipeg, MB, R3E 0T5, Canada.
| |
Collapse
|
5
|
Calhoun G, Chen CT, Kanold PO. Bilateral widefield calcium imaging reveals circuit asymmetries and lateralized functional activation of the mouse auditory cortex. Proc Natl Acad Sci U S A 2023; 120:e2219340120. [PMID: 37459544 PMCID: PMC10372568 DOI: 10.1073/pnas.2219340120] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2022] [Accepted: 05/29/2023] [Indexed: 07/20/2023] Open
Abstract
Coordinated functioning of the two cortical hemispheres is crucial for perception. The human auditory cortex (ACx) shows functional lateralization with the left hemisphere specialized for processing speech, whereas the right analyzes spectral content. In mice, virgin females demonstrate a left-hemisphere response bias to pup vocalizations that strengthens with motherhood. However, how this lateralized function is established is unclear. We developed a widefield imaging microscope to simultaneously image both hemispheres of mice to bilaterally monitor functional responses. We found that global ACx topography is symmetrical and stereotyped. In both male and virgin female mice, the secondary auditory cortex (A2) in the left hemisphere shows larger responses than right to high-frequency tones and adult vocalizations; however, only virgin female mice show a left-hemisphere bias in A2 in response to adult pain calls. These results indicate hemispheric bias with both sex-independent and -dependent aspects. Analyzing cross-hemispheric functional correlations showed that asymmetries exist in the strength of correlations between DM-AAF and A2-AAF, while other ACx areas showed smaller differences. We found that A2 showed lower cross-hemisphere correlation than other cortical areas, consistent with the lateralized functional activation of A2. Cross-hemispheric activity correlations are lower in deaf, otoferlin knockout (OTOF-/-) mice, indicating that the development of functional cross-hemispheric connections is experience dependent. Together, our results reveal that ACx is topographically symmetric at the macroscopic scale but that higher-order A2 shows sex-dependent and independent lateralized responses due to asymmetric intercortical functional connections. Moreover, our results suggest that sensory experience is required to establish functional cross-hemispheric connectivity.
Collapse
Affiliation(s)
- Georgia Calhoun
- Department of Biomedical Engineering, Johns Hopkins University, Baltimore, MD21205
- Kavli Neuroscience Discovery Institute, Johns Hopkins University, Baltimore, MD21205
| | - Chih-Ting Chen
- Department of Biomedical Engineering, Johns Hopkins University, Baltimore, MD21205
- Kavli Neuroscience Discovery Institute, Johns Hopkins University, Baltimore, MD21205
| | - Patrick O. Kanold
- Department of Biomedical Engineering, Johns Hopkins University, Baltimore, MD21205
- Kavli Neuroscience Discovery Institute, Johns Hopkins University, Baltimore, MD21205
| |
Collapse
|
6
|
Buchholz MO, Gastone Guilabert A, Ehret B, Schuhknecht GFP. How synaptic strength, short-term plasticity, and input synchrony contribute to neuronal spike output. PLoS Comput Biol 2023; 19:e1011046. [PMID: 37068099 PMCID: PMC10153727 DOI: 10.1371/journal.pcbi.1011046] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2022] [Revised: 05/02/2023] [Accepted: 03/24/2023] [Indexed: 04/18/2023] Open
Abstract
Neurons integrate from thousands of synapses whose strengths span an order of magnitude. Intriguingly, in mouse neocortex, the few 'strong' synapses are formed between similarly tuned cells, suggesting they determine spiking output. This raises the question of how other computational primitives, including 'background' activity from the many 'weak' synapses, short-term plasticity, and temporal factors contribute to spiking. We used paired recordings and extracellular stimulation experiments to map excitatory postsynaptic potential (EPSP) amplitudes and paired-pulse ratios of synaptic connections formed between pyramidal neurons in layer 2/3 (L2/3) of barrel cortex. While net short-term plasticity was weak, strong synaptic connections were exclusively depressing. Importantly, we found no evidence for clustering of synaptic properties on individual neurons. Instead, EPSPs and paired-pulse ratios of connections converging onto the same cells spanned the full range observed across L2/3, which critically constrains theoretical models of cortical filtering. To investigate how different computational primitives of synaptic information processing interact to shape spiking, we developed a computational model of a pyramidal neuron in the excitatory L2/3 circuitry, which was constrained by our experiments and published in vivo data. We found that strong synapses were substantially depressed during ongoing activation and their ability to evoke correlated spiking primarily depended on their high temporal synchrony and high firing rates observed in vivo. However, despite this depression, their larger EPSP amplitudes strongly amplified information transfer and responsiveness. Thus, our results contribute to a nuanced framework of how cortical neurons exploit synergies between temporal coding, synaptic properties, and noise to transform synaptic inputs into spikes.
Collapse
Affiliation(s)
- Moritz O Buchholz
- Institute of Neuroinformatics, University of Zürich and ETH Zürich Zürich, Switzerland
| | | | - Benjamin Ehret
- Institute of Neuroinformatics, University of Zürich and ETH Zürich Zürich, Switzerland
| | - Gregor F P Schuhknecht
- Institute of Neuroinformatics, University of Zürich and ETH Zürich Zürich, Switzerland
- Department of Molecular and Cellular Biology, Harvard University Cambridge, Massachusetts, United States of America
| |
Collapse
|
7
|
Lin Y, Zhang XJ, Yang J, Li S, Li L, Lv X, Ma J, Shi SH. Developmental neuronal origin regulates neocortical map formation. Cell Rep 2023; 42:112170. [PMID: 36842085 DOI: 10.1016/j.celrep.2023.112170] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2022] [Revised: 12/14/2022] [Accepted: 02/10/2023] [Indexed: 02/27/2023] Open
Abstract
Sensory neurons in the neocortex exhibit distinct functional selectivity to constitute the neural map. While neocortical map of the visual cortex in higher mammals is clustered, it displays a striking "salt-and-pepper" pattern in rodents. However, little is known about the origin and basis of the interspersed neocortical map. Here we report that the intricate excitatory neuronal kinship-dependent synaptic connectivity influences precise functional map organization in the mouse primary visual cortex. While sister neurons originating from the same neurogenic radial glial progenitors (RGPs) preferentially develop synapses, cousin neurons derived from amplifying RGPs selectively antagonize horizontal synapse formation. Accordantly, cousin neurons in similar layers exhibit clear functional selectivity differences, contributing to a salt-and-pepper architecture. Removal of clustered protocadherins (cPCDHs), the largest subgroup of the diverse cadherin superfamily, eliminates functional selectivity differences between cousin neurons and alters neocortical map organization. These results suggest that developmental neuronal origin regulates neocortical map formation via cPCDHs.
Collapse
Affiliation(s)
- Yang Lin
- IDG/McGovern Institute for Brain Research, Tsinghua-Peking Center for Life Sciences, Beijing Frontier Research Center for Biological Structure, Beijing Advanced Innovation Center for Structural Biology, School of Life Sciences, Tsinghua University, Beijing 100084, China
| | - Xin-Jun Zhang
- Developmental Biology Program, Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center, 1275 York Avenue, New York, NY 10065, USA
| | - Jiajun Yang
- IDG/McGovern Institute for Brain Research, Tsinghua-Peking Center for Life Sciences, Beijing Frontier Research Center for Biological Structure, Beijing Advanced Innovation Center for Structural Biology, School of Life Sciences, Tsinghua University, Beijing 100084, China
| | - Shuo Li
- IDG/McGovern Institute for Brain Research, Tsinghua-Peking Center for Life Sciences, Beijing Frontier Research Center for Biological Structure, Beijing Advanced Innovation Center for Structural Biology, School of Life Sciences, Tsinghua University, Beijing 100084, China
| | - Laura Li
- IDG/McGovern Institute for Brain Research, Tsinghua-Peking Center for Life Sciences, Beijing Frontier Research Center for Biological Structure, Beijing Advanced Innovation Center for Structural Biology, School of Life Sciences, Tsinghua University, Beijing 100084, China
| | - Xiaohui Lv
- IDG/McGovern Institute for Brain Research, Tsinghua-Peking Center for Life Sciences, Beijing Frontier Research Center for Biological Structure, Beijing Advanced Innovation Center for Structural Biology, School of Life Sciences, Tsinghua University, Beijing 100084, China
| | - Jian Ma
- IDG/McGovern Institute for Brain Research, Tsinghua-Peking Center for Life Sciences, Beijing Frontier Research Center for Biological Structure, Beijing Advanced Innovation Center for Structural Biology, School of Life Sciences, Tsinghua University, Beijing 100084, China
| | - Song-Hai Shi
- IDG/McGovern Institute for Brain Research, Tsinghua-Peking Center for Life Sciences, Beijing Frontier Research Center for Biological Structure, Beijing Advanced Innovation Center for Structural Biology, School of Life Sciences, Tsinghua University, Beijing 100084, China; Chinese Institute for Brain Research, Beijing, China.
| |
Collapse
|
8
|
Tuning instability of non-columnar neurons in the salt-and-pepper whisker map in somatosensory cortex. Nat Commun 2022; 13:6611. [PMID: 36329010 PMCID: PMC9633707 DOI: 10.1038/s41467-022-34261-1] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2021] [Accepted: 10/19/2022] [Indexed: 11/06/2022] Open
Abstract
Rodent sensory cortex contains salt-and-pepper maps of sensory features, whose structure is not fully known. Here we investigated the structure of the salt-and-pepper whisker somatotopic map among L2/3 pyramidal neurons in somatosensory cortex, in awake mice performing one-vs-all whisker discrimination. Neurons tuned for columnar (CW) and non-columnar (non-CW) whiskers were spatially intermixed, with co-tuned neurons forming local (20 µm) clusters. Whisker tuning was markedly unstable in expert mice, with 35-46% of pyramidal cells significantly shifting tuning over 5-18 days. Tuning instability was highly concentrated in non-CW tuned neurons, and thus was structured in the map. Instability of non-CW neurons was unchanged during chronic whisker paralysis and when mice discriminated individual whiskers, suggesting it is an inherent feature. Thus, L2/3 combines two distinct components: a stable columnar framework of CW-tuned cells that may promote spatial perceptual stability, plus an intermixed, non-columnar surround with highly unstable tuning.
Collapse
|
9
|
Song X, Guo Y, Chen C, Wang X. A silent two-photon imaging system for studying in vivo auditory neuronal functions. LIGHT, SCIENCE & APPLICATIONS 2022; 11:96. [PMID: 35422090 PMCID: PMC9010453 DOI: 10.1038/s41377-022-00783-y] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/25/2021] [Revised: 03/28/2022] [Accepted: 03/30/2022] [Indexed: 05/04/2023]
Abstract
Two-photon laser-scanning microscopy has become an essential tool for imaging neuronal functions in vivo and has been applied to different parts of the neural system, including the auditory system. However, many components of a two-photon microscope, such as galvanometer-based laser scanners, generate mechanical vibrations and thus acoustic artifacts, making it difficult to interpret auditory responses from recorded neurons. Here, we report the development of a silent two-photon imaging system and its applications in the common marmoset (Callithrix Jacchus), a non-human primate species sharing a similar hearing range with humans. By utilizing an orthogonal pair of acousto-optical deflectors (AODs), full-frame raster scanning at video rate was achieved without introducing mechanical vibrations. Imaging depth can be optically controlled by adjusting the chirping speed on the AODs without any mechanical motion along the Z-axis. Furthermore, all other sound-generating components of the system were acoustically isolated, leaving the noise floor of the working system below the marmoset's hearing threshold. Imaging with the system in awake marmosets revealed many auditory cortex neurons that exhibited maximal responses at low sound levels, which were not possible to study using traditional two-photon imaging systems. This is the first demonstration of a silent two-photon imaging system that is capable of imaging auditory neuronal functions in vivo without acoustic artifacts. This capacity opens new opportunities for a better understanding of auditory functions in the brain and helps isolate animal behavior from microscope-generated acoustic interference.
Collapse
Affiliation(s)
- Xindong Song
- Laboratory of Auditory Neurophysiology, Department of Biomedical Engineering, Johns Hopkins University School of Medicine, Baltimore, MD, 21205, USA.
| | - Yueqi Guo
- Laboratory of Auditory Neurophysiology, Department of Biomedical Engineering, Johns Hopkins University School of Medicine, Baltimore, MD, 21205, USA
| | - Chenggang Chen
- Laboratory of Auditory Neurophysiology, Department of Biomedical Engineering, Johns Hopkins University School of Medicine, Baltimore, MD, 21205, USA
| | - Xiaoqin Wang
- Laboratory of Auditory Neurophysiology, Department of Biomedical Engineering, Johns Hopkins University School of Medicine, Baltimore, MD, 21205, USA.
| |
Collapse
|
10
|
Jackson JG, Krizman E, Takano H, Lee M, Choi GH, Putt ME, Robinson MB. Activation of Glutamate Transport Increases Arteriole Diameter in v ivo: Implications for Neurovascular Coupling. Front Cell Neurosci 2022; 16:831061. [PMID: 35308116 PMCID: PMC8930833 DOI: 10.3389/fncel.2022.831061] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2021] [Accepted: 01/24/2022] [Indexed: 11/21/2022] Open
Abstract
In order to meet the energetic demands of cell-to-cell signaling, increases in local neuronal signaling are matched by a coordinated increase in local blood flow, termed neurovascular coupling. Multiple different signals from neurons, astrocytes, and pericytes contribute to this control of blood flow. Previously, several groups demonstrated that inhibition/ablation of glutamate transporters attenuates the neurovascular response. However, it was not determined if glutamate transporter activation was sufficient to increase blood flow. Here, we used multiphoton imaging to monitor the diameter of fluorescently labeled cortical arterioles in anesthetized C57/B6J mice. We delivered vehicle, glutamate transporter substrates, or a combination of a glutamate transporter substrate with various pharmacologic agents via a glass micropipette while simultaneously visualizing changes in arteriole diameter. We developed a novel image analysis method to automate the measurement of arteriole diameter in these time-lapse analyses. Using this workflow, we first conducted pilot experiments in which we focally applied L-glutamate, D-aspartate, or L-threo-hydroxyaspartate (L-THA) and measured arteriole responses as proof of concept. We subsequently applied the selective glutamate transport substrate L-THA (applied at concentrations that do not activate glutamate receptors). We found that L-THA evoked a significantly larger dilation than that observed with focal saline application. This response was blocked by co-application of the potent glutamate transport inhibitor, L-(2S,3S)-3-[3-[4-(trifluoromethyl)-benzoylamino]benzyloxy]-aspartate (TFB-TBOA). Conversely, we were unable to demonstrate a reduction of this effect through co-application of a cocktail of glutamate and GABA receptor antagonists. These studies provide the first direct evidence that activation of glutamate transport is sufficient to increase arteriole diameter. We explored potential downstream mechanisms mediating this transporter-mediated dilation by using a Ca2+ chelator or inhibitors of reversed-mode Na+/Ca2+ exchange, nitric oxide synthetase, or cyclo-oxygenase. The estimated effects and confidence intervals suggested some form of inhibition for a number of these inhibitors. Limitations to our study design prevented definitive conclusions with respect to these downstream inhibitors; these limitations are discussed along with possible next steps. Understanding the mechanisms that control blood flow are important because changes in blood flow/energy supply are implicated in several neurodegenerative disorders and are used as a surrogate measure of neuronal activity in widely used techniques such as functional magnetic resonance imaging (fMRI).
Collapse
Affiliation(s)
- Joshua G. Jackson
- Children’s Hospital of Philadelphia, Philadelphia, PA, United States
- Department of Pediatrics, University of Pennsylvania, Philadelphia, PA, United States
| | - Elizabeth Krizman
- Children’s Hospital of Philadelphia, Philadelphia, PA, United States
- Department of Pediatrics, University of Pennsylvania, Philadelphia, PA, United States
| | - Hajime Takano
- Children’s Hospital of Philadelphia, Philadelphia, PA, United States
- Department of Neurology, University of Pennsylvania, Philadelphia, PA, United States
| | - Meredith Lee
- Children’s Hospital of Philadelphia, Philadelphia, PA, United States
| | - Grace H. Choi
- Department of Biostatistics, Epidemiology & Informatics, University of Pennsylvania, Philadelphia, PA, United States
| | - Mary E. Putt
- Department of Biostatistics, Epidemiology & Informatics, University of Pennsylvania, Philadelphia, PA, United States
| | - Michael B. Robinson
- Children’s Hospital of Philadelphia, Philadelphia, PA, United States
- Department of Systems Pharmacology and Translational Therapeutics, University of Pennsylvania, Philadelphia, PA, United States
| |
Collapse
|
11
|
Abdelfattah AS, Ahuja S, Akkin T, Allu SR, Brake J, Boas DA, Buckley EM, Campbell RE, Chen AI, Cheng X, Čižmár T, Costantini I, De Vittorio M, Devor A, Doran PR, El Khatib M, Emiliani V, Fomin-Thunemann N, Fainman Y, Fernandez-Alfonso T, Ferri CGL, Gilad A, Han X, Harris A, Hillman EMC, Hochgeschwender U, Holt MG, Ji N, Kılıç K, Lake EMR, Li L, Li T, Mächler P, Miller EW, Mesquita RC, Nadella KMNS, Nägerl UV, Nasu Y, Nimmerjahn A, Ondráčková P, Pavone FS, Perez Campos C, Peterka DS, Pisano F, Pisanello F, Puppo F, Sabatini BL, Sadegh S, Sakadzic S, Shoham S, Shroff SN, Silver RA, Sims RR, Smith SL, Srinivasan VJ, Thunemann M, Tian L, Tian L, Troxler T, Valera A, Vaziri A, Vinogradov SA, Vitale F, Wang LV, Uhlířová H, Xu C, Yang C, Yang MH, Yellen G, Yizhar O, Zhao Y. Neurophotonic tools for microscopic measurements and manipulation: status report. NEUROPHOTONICS 2022; 9:013001. [PMID: 35493335 PMCID: PMC9047450 DOI: 10.1117/1.nph.9.s1.013001] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/30/2023]
Abstract
Neurophotonics was launched in 2014 coinciding with the launch of the BRAIN Initiative focused on development of technologies for advancement of neuroscience. For the last seven years, Neurophotonics' agenda has been well aligned with this focus on neurotechnologies featuring new optical methods and tools applicable to brain studies. While the BRAIN Initiative 2.0 is pivoting towards applications of these novel tools in the quest to understand the brain, this status report reviews an extensive and diverse toolkit of novel methods to explore brain function that have emerged from the BRAIN Initiative and related large-scale efforts for measurement and manipulation of brain structure and function. Here, we focus on neurophotonic tools mostly applicable to animal studies. A companion report, scheduled to appear later this year, will cover diffuse optical imaging methods applicable to noninvasive human studies. For each domain, we outline the current state-of-the-art of the respective technologies, identify the areas where innovation is needed, and provide an outlook for the future directions.
Collapse
Affiliation(s)
- Ahmed S. Abdelfattah
- Brown University, Department of Neuroscience, Providence, Rhode Island, United States
| | - Sapna Ahuja
- University of Pennsylvania, Perelman School of Medicine, Department of Biochemistry and Biophysics, Philadelphia, Pennsylvania, United States
- University of Pennsylvania, School of Arts and Sciences, Department of Chemistry, Philadelphia, Pennsylvania, United States
| | - Taner Akkin
- University of Minnesota, Department of Biomedical Engineering, Minneapolis, Minnesota, United States
| | - Srinivasa Rao Allu
- University of Pennsylvania, Perelman School of Medicine, Department of Biochemistry and Biophysics, Philadelphia, Pennsylvania, United States
- University of Pennsylvania, School of Arts and Sciences, Department of Chemistry, Philadelphia, Pennsylvania, United States
| | - Joshua Brake
- Harvey Mudd College, Department of Engineering, Claremont, California, United States
| | - David A. Boas
- Boston University, Department of Biomedical Engineering, Boston, Massachusetts, United States
| | - Erin M. Buckley
- Georgia Institute of Technology and Emory University, Wallace H. Coulter Department of Biomedical Engineering, Atlanta, Georgia, United States
- Emory University, Department of Pediatrics, Atlanta, Georgia, United States
| | - Robert E. Campbell
- University of Tokyo, Department of Chemistry, Tokyo, Japan
- University of Alberta, Department of Chemistry, Edmonton, Alberta, Canada
| | - Anderson I. Chen
- Boston University, Department of Biomedical Engineering, Boston, Massachusetts, United States
| | - Xiaojun Cheng
- Boston University, Department of Biomedical Engineering, Boston, Massachusetts, United States
| | - Tomáš Čižmár
- Institute of Scientific Instruments of the Czech Academy of Sciences, Brno, Czech Republic
| | - Irene Costantini
- University of Florence, European Laboratory for Non-Linear Spectroscopy, Department of Biology, Florence, Italy
- National Institute of Optics, National Research Council, Rome, Italy
| | - Massimo De Vittorio
- Istituto Italiano di Tecnologia, Center for Biomolecular Nanotechnologies, Arnesano, Italy
| | - Anna Devor
- Boston University, Department of Biomedical Engineering, Boston, Massachusetts, United States
- Massachusetts General Hospital, Harvard Medical School, Athinoula A. Martinos Center for Biomedical Imaging, Charlestown, Massachusetts, United States
| | - Patrick R. Doran
- Boston University, Department of Biomedical Engineering, Boston, Massachusetts, United States
| | - Mirna El Khatib
- University of Pennsylvania, Perelman School of Medicine, Department of Biochemistry and Biophysics, Philadelphia, Pennsylvania, United States
- University of Pennsylvania, School of Arts and Sciences, Department of Chemistry, Philadelphia, Pennsylvania, United States
| | | | - Natalie Fomin-Thunemann
- Boston University, Department of Biomedical Engineering, Boston, Massachusetts, United States
| | - Yeshaiahu Fainman
- University of California San Diego, Department of Electrical and Computer Engineering, La Jolla, California, United States
| | - Tomas Fernandez-Alfonso
- University College London, Department of Neuroscience, Physiology and Pharmacology, London, United Kingdom
| | - Christopher G. L. Ferri
- University of California San Diego, Departments of Neurosciences, La Jolla, California, United States
| | - Ariel Gilad
- The Hebrew University of Jerusalem, Institute for Medical Research Israel–Canada, Department of Medical Neurobiology, Faculty of Medicine, Jerusalem, Israel
| | - Xue Han
- Boston University, Department of Biomedical Engineering, Boston, Massachusetts, United States
| | - Andrew Harris
- Weizmann Institute of Science, Department of Brain Sciences, Rehovot, Israel
| | | | - Ute Hochgeschwender
- Central Michigan University, Department of Neuroscience, Mount Pleasant, Michigan, United States
| | - Matthew G. Holt
- University of Porto, Instituto de Investigação e Inovação em Saúde (i3S), Porto, Portugal
| | - Na Ji
- University of California Berkeley, Department of Physics, Berkeley, California, United States
| | - Kıvılcım Kılıç
- Boston University, Department of Biomedical Engineering, Boston, Massachusetts, United States
| | - Evelyn M. R. Lake
- Yale School of Medicine, Department of Radiology and Biomedical Imaging, New Haven, Connecticut, United States
| | - Lei Li
- California Institute of Technology, Andrew and Peggy Cherng Department of Medical Engineering, Department of Electrical Engineering, Pasadena, California, United States
| | - Tianqi Li
- University of Minnesota, Department of Biomedical Engineering, Minneapolis, Minnesota, United States
| | - Philipp Mächler
- Boston University, Department of Biomedical Engineering, Boston, Massachusetts, United States
| | - Evan W. Miller
- University of California Berkeley, Departments of Chemistry and Molecular & Cell Biology and Helen Wills Neuroscience Institute, Berkeley, California, United States
| | | | | | - U. Valentin Nägerl
- Interdisciplinary Institute for Neuroscience University of Bordeaux & CNRS, Bordeaux, France
| | - Yusuke Nasu
- University of Tokyo, Department of Chemistry, Tokyo, Japan
| | - Axel Nimmerjahn
- Salk Institute for Biological Studies, Waitt Advanced Biophotonics Center, La Jolla, California, United States
| | - Petra Ondráčková
- Institute of Scientific Instruments of the Czech Academy of Sciences, Brno, Czech Republic
| | - Francesco S. Pavone
- National Institute of Optics, National Research Council, Rome, Italy
- University of Florence, European Laboratory for Non-Linear Spectroscopy, Department of Physics, Florence, Italy
| | - Citlali Perez Campos
- Columbia University, Zuckerman Mind Brain Behavior Institute, New York, United States
| | - Darcy S. Peterka
- Columbia University, Zuckerman Mind Brain Behavior Institute, New York, United States
| | - Filippo Pisano
- Istituto Italiano di Tecnologia, Center for Biomolecular Nanotechnologies, Arnesano, Italy
| | - Ferruccio Pisanello
- Istituto Italiano di Tecnologia, Center for Biomolecular Nanotechnologies, Arnesano, Italy
| | - Francesca Puppo
- University of California San Diego, Departments of Neurosciences, La Jolla, California, United States
| | - Bernardo L. Sabatini
- Harvard Medical School, Howard Hughes Medical Institute, Department of Neurobiology, Boston, Massachusetts, United States
| | - Sanaz Sadegh
- University of California San Diego, Departments of Neurosciences, La Jolla, California, United States
| | - Sava Sakadzic
- Massachusetts General Hospital, Harvard Medical School, Athinoula A. Martinos Center for Biomedical Imaging, Charlestown, Massachusetts, United States
| | - Shy Shoham
- New York University Grossman School of Medicine, Tech4Health and Neuroscience Institutes, New York, New York, United States
| | - Sanaya N. Shroff
- Boston University, Department of Biomedical Engineering, Boston, Massachusetts, United States
| | - R. Angus Silver
- University College London, Department of Neuroscience, Physiology and Pharmacology, London, United Kingdom
| | - Ruth R. Sims
- Sorbonne University, INSERM, CNRS, Institut de la Vision, Paris, France
| | - Spencer L. Smith
- University of California Santa Barbara, Department of Electrical and Computer Engineering, Santa Barbara, California, United States
| | - Vivek J. Srinivasan
- New York University Langone Health, Departments of Ophthalmology and Radiology, New York, New York, United States
| | - Martin Thunemann
- Boston University, Department of Biomedical Engineering, Boston, Massachusetts, United States
| | - Lei Tian
- Boston University, Departments of Electrical Engineering and Biomedical Engineering, Boston, Massachusetts, United States
| | - Lin Tian
- University of California Davis, Department of Biochemistry and Molecular Medicine, Davis, California, United States
| | - Thomas Troxler
- University of Pennsylvania, Perelman School of Medicine, Department of Biochemistry and Biophysics, Philadelphia, Pennsylvania, United States
- University of Pennsylvania, School of Arts and Sciences, Department of Chemistry, Philadelphia, Pennsylvania, United States
| | - Antoine Valera
- University College London, Department of Neuroscience, Physiology and Pharmacology, London, United Kingdom
| | - Alipasha Vaziri
- Rockefeller University, Laboratory of Neurotechnology and Biophysics, New York, New York, United States
- The Rockefeller University, The Kavli Neural Systems Institute, New York, New York, United States
| | - Sergei A. Vinogradov
- University of Pennsylvania, Perelman School of Medicine, Department of Biochemistry and Biophysics, Philadelphia, Pennsylvania, United States
- University of Pennsylvania, School of Arts and Sciences, Department of Chemistry, Philadelphia, Pennsylvania, United States
| | - Flavia Vitale
- Center for Neuroengineering and Therapeutics, Departments of Neurology, Bioengineering, Physical Medicine and Rehabilitation, Philadelphia, Pennsylvania, United States
| | - Lihong V. Wang
- California Institute of Technology, Andrew and Peggy Cherng Department of Medical Engineering, Department of Electrical Engineering, Pasadena, California, United States
| | - Hana Uhlířová
- Institute of Scientific Instruments of the Czech Academy of Sciences, Brno, Czech Republic
| | - Chris Xu
- Cornell University, School of Applied and Engineering Physics, Ithaca, New York, United States
| | - Changhuei Yang
- California Institute of Technology, Departments of Electrical Engineering, Bioengineering and Medical Engineering, Pasadena, California, United States
| | - Mu-Han Yang
- University of California San Diego, Department of Electrical and Computer Engineering, La Jolla, California, United States
| | - Gary Yellen
- Harvard Medical School, Department of Neurobiology, Boston, Massachusetts, United States
| | - Ofer Yizhar
- Weizmann Institute of Science, Department of Brain Sciences, Rehovot, Israel
| | - Yongxin Zhao
- Carnegie Mellon University, Department of Biological Sciences, Pittsburgh, Pennsylvania, United States
| |
Collapse
|
12
|
Lyall EH, Mossing DP, Pluta SR, Chu YW, Dudai A, Adesnik H. Synthesis of a comprehensive population code for contextual features in the awake sensory cortex. eLife 2021; 10:e62687. [PMID: 34723796 PMCID: PMC8598168 DOI: 10.7554/elife.62687] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2020] [Accepted: 10/25/2021] [Indexed: 11/13/2022] Open
Abstract
How cortical circuits build representations of complex objects is poorly understood. Individual neurons must integrate broadly over space, yet simultaneously obtain sharp tuning to specific global stimulus features. Groups of neurons identifying different global features must then assemble into a population that forms a comprehensive code for these global stimulus properties. Although the logic for how single neurons summate over their spatial inputs has been well explored in anesthetized animals, how large groups of neurons compose a flexible population code of higher-order features in awake animals is not known. To address this question, we probed the integration and population coding of higher-order stimuli in the somatosensory and visual cortices of awake mice using two-photon calcium imaging across cortical layers. We developed a novel tactile stimulator that allowed the precise measurement of spatial summation even in actively whisking mice. Using this system, we found a sparse but comprehensive population code for higher-order tactile features that depends on a heterogeneous and neuron-specific logic of spatial summation beyond the receptive field. Different somatosensory cortical neurons summed specific combinations of sensory inputs supra-linearly, but integrated other inputs sub-linearly, leading to selective responses to higher-order features. Visual cortical populations employed a nearly identical scheme to generate a comprehensive population code for contextual stimuli. These results suggest that a heterogeneous logic of input-specific supra-linear summation may represent a widespread cortical mechanism for the synthesis of sparse higher-order feature codes in neural populations. This may explain how the brain exploits the thalamocortical expansion of dimensionality to encode arbitrary complex features of sensory stimuli.
Collapse
Affiliation(s)
- Evan H Lyall
- Biophysics Graduate GroupBerkeleyUnited States
- Department of Molecular and Cell BiologyBerkeleyUnited States
| | - Daniel P Mossing
- Biophysics Graduate GroupBerkeleyUnited States
- Department of Molecular and Cell BiologyBerkeleyUnited States
| | - Scott R Pluta
- Department of Molecular and Cell BiologyBerkeleyUnited States
| | - Yun Wen Chu
- Department of Molecular and Cell BiologyBerkeleyUnited States
| | - Amir Dudai
- The Edmond and Lily Safra Center for Brain Sciences and The Life Sciences Institute, The Hebrew University of JerusalemJerusalemIsrael
| | - Hillel Adesnik
- Department of Molecular and Cell BiologyBerkeleyUnited States
- The Helen Wills Neuroscience Institute, University of California, BerkeleyBerkeleyUnited States
| |
Collapse
|
13
|
Broussard GJ, Petreanu L. Eavesdropping wires: Recording activity in axons using genetically encoded calcium indicators. J Neurosci Methods 2021; 360:109251. [PMID: 34119572 PMCID: PMC8363211 DOI: 10.1016/j.jneumeth.2021.109251] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2021] [Revised: 05/31/2021] [Accepted: 06/05/2021] [Indexed: 12/23/2022]
Abstract
Neurons broadcast electrical signals to distal brain regions through extensive axonal arbors. Genetically encoded calcium sensors permit the direct observation of action potential activity at axonal terminals, providing unique insights on the organization and function of neural projections. Here, we consider what information can be gleaned from axonal recordings made at scales ranging from the summed activity extracted from multi-cell axon projections to single boutons. In particular, we discuss the application of different recently developed multi photon and fiber photometry methods for recording neural activity in axons of rodents. We define experimental difficulties associated with imaging approaches in the axonal compartment and highlight the latest methodological advances for addressing these issues. Finally, we reflect on ways in which new technologies can be used in conjunction with axon calcium imaging to address current questions in neurobiology.
Collapse
Affiliation(s)
| | - Leopoldo Petreanu
- Champalimaud Research, Champalimaud Center for the Unknown, Lisbon, Portugal.
| |
Collapse
|
14
|
Romero S, Hight AE, Clayton KK, Resnik J, Williamson RS, Hancock KE, Polley DB. Cellular and Widefield Imaging of Sound Frequency Organization in Primary and Higher Order Fields of the Mouse Auditory Cortex. Cereb Cortex 2021; 30:1603-1622. [PMID: 31667491 DOI: 10.1093/cercor/bhz190] [Citation(s) in RCA: 60] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Abstract
The mouse auditory cortex (ACtx) contains two core fields-primary auditory cortex (A1) and anterior auditory field (AAF)-arranged in a mirror reversal tonotopic gradient. The best frequency (BF) organization and naming scheme for additional higher order fields remain a matter of debate, as does the correspondence between smoothly varying global tonotopy and heterogeneity in local cellular tuning. Here, we performed chronic widefield and two-photon calcium imaging from the ACtx of awake Thy1-GCaMP6s reporter mice. Data-driven parcellation of widefield maps identified five fields, including a previously unidentified area at the ventral posterior extreme of the ACtx (VPAF) and a tonotopically organized suprarhinal auditory field (SRAF) that extended laterally as far as ectorhinal cortex. Widefield maps were stable over time, where single pixel BFs fluctuated by less than 0.5 octaves throughout a 1-month imaging period. After accounting for neuropil signal and frequency tuning strength, BF organization in neighboring layer 2/3 neurons was intermediate to the heterogeneous salt and pepper organization and the highly precise local organization that have each been described in prior studies. Multiscale imaging data suggest there is no ultrasonic field or secondary auditory cortex in the mouse. Instead, VPAF and a dorsal posterior (DP) field emerged as the strongest candidates for higher order auditory areas.
Collapse
Affiliation(s)
- Sandra Romero
- Eaton-Peabody Laboratories, Massachusetts Eye and Ear Infirmary, Boston, MA 02114, USA
| | - Ariel E Hight
- Eaton-Peabody Laboratories, Massachusetts Eye and Ear Infirmary, Boston, MA 02114, USA
| | - Kameron K Clayton
- Eaton-Peabody Laboratories, Massachusetts Eye and Ear Infirmary, Boston, MA 02114, USA
| | - Jennifer Resnik
- Eaton-Peabody Laboratories, Massachusetts Eye and Ear Infirmary, Boston, MA 02114, USA.,Department of Otolaryngology, Harvard Medical School, Boston, MA 02114, USA
| | - Ross S Williamson
- Eaton-Peabody Laboratories, Massachusetts Eye and Ear Infirmary, Boston, MA 02114, USA.,Department of Otolaryngology, Harvard Medical School, Boston, MA 02114, USA
| | - Kenneth E Hancock
- Eaton-Peabody Laboratories, Massachusetts Eye and Ear Infirmary, Boston, MA 02114, USA.,Department of Otolaryngology, Harvard Medical School, Boston, MA 02114, USA
| | - Daniel B Polley
- Eaton-Peabody Laboratories, Massachusetts Eye and Ear Infirmary, Boston, MA 02114, USA.,Department of Otolaryngology, Harvard Medical School, Boston, MA 02114, USA
| |
Collapse
|
15
|
Müller L, Kirschstein T, Köhling R, Kuhla A, Teipel S. Neuronal Hyperexcitability in APPSWE/PS1dE9 Mouse Models of Alzheimer's Disease. J Alzheimers Dis 2021; 81:855-869. [PMID: 33843674 DOI: 10.3233/jad-201540] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Transgenic mouse models serve a better understanding of Alzheimer's disease (AD) pathogenesis and its consequences on neuronal function. Well-known and broadly used AD models are APPswe/PS1dE9 mice, which are able to reproduce features of amyloid-β (Aβ) plaque formations as well as neuronal dysfunction as reflected in electrophysiological recordings of neuronal hyperexcitability. The most prominent findings include abnormal synaptic function and synaptic reorganization as well as changes in membrane threshold and spontaneous neuronal firing activities leading to generalized excitation-inhibition imbalances in larger neuronal circuits and networks. Importantly, these findings in APPswe/PS1dE9 mice are at least partly consistent with results of electrophysiological studies in humans with sporadic AD. This underscores the potential to transfer mechanistic insights into amyloid related neuronal dysfunction from animal models to humans. This is of high relevance for targeted downstream interventions into neuronal hyperexcitability, for example based on repurposing of existing antiepileptic drugs, as well as the use of combinations of imaging and electrophysiological readouts to monitor effects of upstream interventions into amyloid build-up and processing on neuronal function in animal models and human studies. This article gives an overview on the pathogenic and methodological basis for recording of neuronal hyperexcitability in AD mouse models and on key findings in APPswe/PS1dE9 mice. We point at several instances to the translational perspective into clinical intervention and observation studies in humans. We particularly focus on bi-directional relations between hyperexcitability and cerebral amyloidosis, including build-up as well as clearance of amyloid, possibly related to sleep and so called glymphatic system function.
Collapse
Affiliation(s)
- Luisa Müller
- Department of Psychosomatic Medicine and Psychotherapy, University of Rostock, Rostock, Germany.,Rudolf Zenker Institute for Experimental Surgery, University of Rostock, Rostock, Germany.,Centre for Transdisciplinary Neurosciences Rostock (CTNR), University of Rostock, Rostock, Germany
| | - Timo Kirschstein
- Oscar Langendorff Institute of Physiology, University of Rostock, Rostock, Germany.,Centre for Transdisciplinary Neurosciences Rostock (CTNR), University of Rostock, Rostock, Germany
| | - Rüdiger Köhling
- Oscar Langendorff Institute of Physiology, University of Rostock, Rostock, Germany.,Centre for Transdisciplinary Neurosciences Rostock (CTNR), University of Rostock, Rostock, Germany
| | - Angela Kuhla
- Rudolf Zenker Institute for Experimental Surgery, University of Rostock, Rostock, Germany.,Centre for Transdisciplinary Neurosciences Rostock (CTNR), University of Rostock, Rostock, Germany
| | - Stefan Teipel
- Department of Psychosomatic Medicine and Psychotherapy, University of Rostock, Rostock, Germany.,German Center for Neurodegenerative Diseases (DZNE), Rostock and Greifswald, Germany.,Centre for Transdisciplinary Neurosciences Rostock (CTNR), University of Rostock, Rostock, Germany
| |
Collapse
|
16
|
Environmental Enrichment Sharpens Sensory Acuity by Enhancing Information Coding in Barrel Cortex and Premotor Cortex. eNeuro 2021; 8:ENEURO.0309-20.2021. [PMID: 33893166 PMCID: PMC8143018 DOI: 10.1523/eneuro.0309-20.2021] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2020] [Revised: 04/13/2021] [Accepted: 04/17/2021] [Indexed: 12/20/2022] Open
Abstract
Environmental enrichment (EE) is beneficial to sensory functions. Thus, elucidating the neural mechanism underlying improvement of sensory stimulus discrimination is important for developing therapeutic strategies. We aim to advance the understanding of such neural mechanism. We found that tactile enrichment improved tactile stimulus feature discrimination. The neural correlate of such improvement was revealed by analyzing single-cell information coding in both the primary somatosensory cortex and the premotor cortex of awake behaving animals. Our results show that EE enhances the decision-information coding capacity of cells that are tuned to adjacent whiskers, and of premotor cortical cells.
Collapse
|
17
|
Barz CS, Garderes PM, Ganea DA, Reischauer S, Feldmeyer D, Haiss F. Functional and Structural Properties of Highly Responsive Somatosensory Neurons in Mouse Barrel Cortex. Cereb Cortex 2021; 31:4533-4553. [PMID: 33963394 PMCID: PMC8408454 DOI: 10.1093/cercor/bhab104] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2020] [Revised: 03/12/2021] [Accepted: 03/24/2021] [Indexed: 11/14/2022] Open
Abstract
Sparse population activity is a well-known feature of supragranular sensory neurons in neocortex. The mechanisms underlying sparseness are not well understood because a direct link between the neurons activated in vivo, and their cellular properties investigated in vitro has been missing. We used two-photon calcium imaging to identify a subset of neurons in layer L2/3 (L2/3) of mouse primary somatosensory cortex that are highly active following principal whisker vibrotactile stimulation. These high responders (HRs) were then tagged using photoconvertible green fluorescent protein for subsequent targeting in the brain slice using intracellular patch-clamp recordings and biocytin staining. This approach allowed us to investigate the structural and functional properties of HRs that distinguish them from less active control cells. Compared to less responsive L2/3 neurons, HRs displayed increased levels of stimulus-evoked and spontaneous activity, elevated noise and spontaneous pairwise correlations, and stronger coupling to the population response. Intrinsic excitability was reduced in HRs, while we found no evidence for differences in other electrophysiological and morphological parameters. Thus, the choice of which neurons participate in stimulus encoding may be determined largely by network connectivity rather than by cellular structure and function.
Collapse
Affiliation(s)
- C S Barz
- Institute of Neuroscience and Medicine, INM-10, Research Centre Jülich, 52425 Jülich, Germany.,Department of Psychiatry, Psychotherapy and Psychosomatics, Medical School, RWTH Aachen University, 52074 Aachen, Germany.,Jülich-Aachen Research Alliance - Translational Brain Medicine, 52074 Aachen, Germany.,IZKF Aachen, Medical School, RWTH Aachen University, 52074 Aachen, Germany
| | - P M Garderes
- IZKF Aachen, Medical School, RWTH Aachen University, 52074 Aachen, Germany.,Department of Neuropathology, Medical School, RWTH Aachen University, 52074 Aachen, Germany.,Department of Ophthalmology, Medical School, RWTH Aachen University, 52074 Aachen, Germany.,Unit of Neural Circuits Dynamics and Decision Making, Institut Pasteur, 75015 Paris, France
| | - D A Ganea
- IZKF Aachen, Medical School, RWTH Aachen University, 52074 Aachen, Germany.,Department of Neuropathology, Medical School, RWTH Aachen University, 52074 Aachen, Germany.,Department of Ophthalmology, Medical School, RWTH Aachen University, 52074 Aachen, Germany.,Biomedical Department, University of Basel, 4056 Basel, Switzerland
| | - S Reischauer
- Medical Clinic I, (Cardiology/Angiology) and Campus Kerckhoff, Justus-Liebig-University Giessen, 35390 Giessen Germany.,Department of Developmental Genetics, Max Planck Institute for Heart and Lung Research, 61231 Bad Nauheim, Germany.,Cardio-Pulmonary Institute (CPI), 35392 Giessen, Germany
| | - D Feldmeyer
- Institute of Neuroscience and Medicine, INM-10, Research Centre Jülich, 52425 Jülich, Germany.,Department of Psychiatry, Psychotherapy and Psychosomatics, Medical School, RWTH Aachen University, 52074 Aachen, Germany.,Jülich-Aachen Research Alliance - Translational Brain Medicine, 52074 Aachen, Germany
| | - F Haiss
- IZKF Aachen, Medical School, RWTH Aachen University, 52074 Aachen, Germany.,Department of Neuropathology, Medical School, RWTH Aachen University, 52074 Aachen, Germany.,Department of Ophthalmology, Medical School, RWTH Aachen University, 52074 Aachen, Germany.,Unit of Neural Circuits Dynamics and Decision Making, Institut Pasteur, 75015 Paris, France
| |
Collapse
|
18
|
Yao J, Sun B, Institoris A, Zhan X, Guo W, Song Z, Liu Y, Hiess F, Boyce AKJ, Ni M, Wang R, Ter Keurs H, Back TG, Fill M, Thompson RJ, Turner RW, Gordon GR, Chen SRW. Limiting RyR2 Open Time Prevents Alzheimer's Disease-Related Neuronal Hyperactivity and Memory Loss but Not β-Amyloid Accumulation. Cell Rep 2021; 32:108169. [PMID: 32966798 PMCID: PMC7532726 DOI: 10.1016/j.celrep.2020.108169] [Citation(s) in RCA: 43] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2019] [Revised: 07/23/2020] [Accepted: 08/27/2020] [Indexed: 12/31/2022] Open
Abstract
Neuronal hyperactivity is an early primary dysfunction in Alzheimer’s disease (AD) in humans and animal models, but effective neuronal hyperactivity-directed anti-AD therapeutic agents are lacking. Here we define a previously unknown mode of ryanodine receptor 2 (RyR2) control of neuronal hyperactivity and AD progression. We show that a single RyR2 point mutation, E4872Q, which reduces RyR2 open time, prevents hyperexcitability, hyperactivity, memory impairment, neuronal cell death, and dendritic spine loss in a severe early-onset AD mouse model (5xFAD). The RyR2-E4872Q mutation upregulates hippocampal CA1-pyramidal cell A-type K+ current, a well-known neuronal excitability control that is downregulated in AD. Pharmacologically limiting RyR2 open time with the R-carvedilol enantiomer (but not racemic carvedilol) prevents and rescues neuronal hyperactivity, memory impairment, and neuron loss even in late stages of AD. These AD-related deficits are prevented even with continued β-amyloid accumulation. Thus, limiting RyR2 open time may be a hyperactivity-directed, non-β-amyloid-targeted anti-AD strategy. Yao et al. show that genetically or pharmacologically limiting the open duration of ryanodine receptor 2 upregulates the A-type potassium current and prevents neuronal hyperexcitability and hyperactivity, memory impairment, neuronal cell death, and dendritic spine loss in a severe early-onset Alzheimer’s disease mouse model, even with continued accumulation of β-amyloid.
Collapse
Affiliation(s)
- Jinjing Yao
- Libin Cardiovascular Institute, Department of Physiology and Pharmacology, Cumming School of Medicine, University of Calgary, Calgary, AB T2N 1N4, Canada
| | - Bo Sun
- Libin Cardiovascular Institute, Department of Physiology and Pharmacology, Cumming School of Medicine, University of Calgary, Calgary, AB T2N 1N4, Canada; Medical School, Kunming University of Science and Technology, Kunming 650504, China
| | - Adam Institoris
- Hotchkiss Brain Institute, Department of Physiology and Pharmacology, Cumming School of Medicine, University of Calgary, Calgary, AB T2N 1N4, Canada
| | - Xiaoqin Zhan
- Hotchkiss Brain Institute, Department of Cell Biology and Anatomy, Cumming School of Medicine, University of Calgary, Calgary, AB T2N 1N4, Canada
| | - Wenting Guo
- Libin Cardiovascular Institute, Department of Physiology and Pharmacology, Cumming School of Medicine, University of Calgary, Calgary, AB T2N 1N4, Canada
| | - Zhenpeng Song
- Libin Cardiovascular Institute, Department of Physiology and Pharmacology, Cumming School of Medicine, University of Calgary, Calgary, AB T2N 1N4, Canada
| | - Yajing Liu
- Libin Cardiovascular Institute, Department of Physiology and Pharmacology, Cumming School of Medicine, University of Calgary, Calgary, AB T2N 1N4, Canada
| | - Florian Hiess
- Libin Cardiovascular Institute, Department of Physiology and Pharmacology, Cumming School of Medicine, University of Calgary, Calgary, AB T2N 1N4, Canada
| | - Andrew K J Boyce
- Hotchkiss Brain Institute, Department of Cell Biology and Anatomy, Cumming School of Medicine, University of Calgary, Calgary, AB T2N 1N4, Canada
| | - Mingke Ni
- Libin Cardiovascular Institute, Department of Physiology and Pharmacology, Cumming School of Medicine, University of Calgary, Calgary, AB T2N 1N4, Canada
| | - Ruiwu Wang
- Libin Cardiovascular Institute, Department of Physiology and Pharmacology, Cumming School of Medicine, University of Calgary, Calgary, AB T2N 1N4, Canada
| | - Henk Ter Keurs
- Libin Cardiovascular Institute, Department of Physiology and Pharmacology, Cumming School of Medicine, University of Calgary, Calgary, AB T2N 1N4, Canada
| | - Thomas G Back
- Department of Chemistry, University of Calgary, Calgary, AB T2N 1N4, Canada
| | - Michael Fill
- Department of Physiology & Biophysics, Rush University Medical Center, Chicago, IL 60612, USA
| | - Roger J Thompson
- Hotchkiss Brain Institute, Department of Cell Biology and Anatomy, Cumming School of Medicine, University of Calgary, Calgary, AB T2N 1N4, Canada
| | - Ray W Turner
- Hotchkiss Brain Institute, Department of Cell Biology and Anatomy, Cumming School of Medicine, University of Calgary, Calgary, AB T2N 1N4, Canada
| | - Grant R Gordon
- Hotchkiss Brain Institute, Department of Physiology and Pharmacology, Cumming School of Medicine, University of Calgary, Calgary, AB T2N 1N4, Canada
| | - S R Wayne Chen
- Libin Cardiovascular Institute, Department of Physiology and Pharmacology, Cumming School of Medicine, University of Calgary, Calgary, AB T2N 1N4, Canada; Department of Physiology & Biophysics, Rush University Medical Center, Chicago, IL 60612, USA.
| |
Collapse
|
19
|
Chen K, Kogan JF, Fontanini A. Spatially Distributed Representation of Taste Quality in the Gustatory Insular Cortex of Behaving Mice. Curr Biol 2020; 31:247-256.e4. [PMID: 33186554 PMCID: PMC7855361 DOI: 10.1016/j.cub.2020.10.014] [Citation(s) in RCA: 39] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2020] [Revised: 09/15/2020] [Accepted: 10/07/2020] [Indexed: 12/28/2022]
Abstract
Visual, auditory, and somatosensory cortices are topographically organized, with neurons responding to similar sensory features clustering in adjacent portions of the cortex. Such topography has not been observed in the piriform cortex, whose responses to odorants are sparsely distributed across the cortex. The spatial organization of taste responses in the gustatory insular cortex (GC) is currently debated, with conflicting evidence from anesthetized rodents pointing to alternative and mutually exclusive models. Here, we rely on calcium imaging to determine how taste and task-related variables are represented in the superficial layers of GC of alert, licking mice. Our data show that the various stimuli evoke sparse responses from a combination of broadly and narrowly tuned neurons. Analysis of the distribution of responses over multiple spatial scales demonstrates that taste representations are distributed across the cortex, with no sign of spatial clustering or topography. Altogether, data presented here support the idea that the representation of taste qualities in GC of alert mice is sparse and distributed, analogous to the representation of odorants in piriform cortex.
Collapse
Affiliation(s)
- Ke Chen
- Department of Neurobiology and Behavior, Stony Brook University, Stony Brook, NY 11794, USA; Graduate Program in Neuroscience, Stony Brook University, Stony Brook, NY 11794, USA.
| | - Joshua F Kogan
- Department of Neurobiology and Behavior, Stony Brook University, Stony Brook, NY 11794, USA; Graduate Program in Neuroscience, Stony Brook University, Stony Brook, NY 11794, USA; Medical Scientist Training Program, Stony Brook University, Stony Brook, NY 11794, USA
| | - Alfredo Fontanini
- Department of Neurobiology and Behavior, Stony Brook University, Stony Brook, NY 11794, USA; Graduate Program in Neuroscience, Stony Brook University, Stony Brook, NY 11794, USA.
| |
Collapse
|
20
|
Staiger JF, Petersen CCH. Neuronal Circuits in Barrel Cortex for Whisker Sensory Perception. Physiol Rev 2020; 101:353-415. [PMID: 32816652 DOI: 10.1152/physrev.00019.2019] [Citation(s) in RCA: 67] [Impact Index Per Article: 13.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
The array of whiskers on the snout provides rodents with tactile sensory information relating to the size, shape and texture of objects in their immediate environment. Rodents can use their whiskers to detect stimuli, distinguish textures, locate objects and navigate. Important aspects of whisker sensation are thought to result from neuronal computations in the whisker somatosensory cortex (wS1). Each whisker is individually represented in the somatotopic map of wS1 by an anatomical unit named a 'barrel' (hence also called barrel cortex). This allows precise investigation of sensory processing in the context of a well-defined map. Here, we first review the signaling pathways from the whiskers to wS1, and then discuss current understanding of the various types of excitatory and inhibitory neurons present within wS1. Different classes of cells can be defined according to anatomical, electrophysiological and molecular features. The synaptic connectivity of neurons within local wS1 microcircuits, as well as their long-range interactions and the impact of neuromodulators, are beginning to be understood. Recent technological progress has allowed cell-type-specific connectivity to be related to cell-type-specific activity during whisker-related behaviors. An important goal for future research is to obtain a causal and mechanistic understanding of how selected aspects of tactile sensory information are processed by specific types of neurons in the synaptically connected neuronal networks of wS1 and signaled to downstream brain areas, thus contributing to sensory-guided decision-making.
Collapse
Affiliation(s)
- Jochen F Staiger
- University Medical Center Göttingen, Institute for Neuroanatomy, Göttingen, Germany; and Laboratory of Sensory Processing, Faculty of Life Sciences, Brain Mind Institute, École Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland
| | - Carl C H Petersen
- University Medical Center Göttingen, Institute for Neuroanatomy, Göttingen, Germany; and Laboratory of Sensory Processing, Faculty of Life Sciences, Brain Mind Institute, École Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland
| |
Collapse
|
21
|
Gaucher Q, Panniello M, Ivanov AZ, Dahmen JC, King AJ, Walker KM. Complexity of frequency receptive fields predicts tonotopic variability across species. eLife 2020; 9:53462. [PMID: 32420865 PMCID: PMC7269667 DOI: 10.7554/elife.53462] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2019] [Accepted: 05/18/2020] [Indexed: 12/17/2022] Open
Abstract
Primary cortical areas contain maps of sensory features, including sound frequency in primary auditory cortex (A1). Two-photon calcium imaging in mice has confirmed the presence of these global tonotopic maps, while uncovering an unexpected local variability in the stimulus preferences of individual neurons in A1 and other primary regions. Here we show that local heterogeneity of frequency preferences is not unique to rodents. Using two-photon calcium imaging in layers 2/3, we found that local variance in frequency preferences is equivalent in ferrets and mice. Neurons with multipeaked frequency tuning are less spatially organized than those tuned to a single frequency in both species. Furthermore, we show that microelectrode recordings may describe a smoother tonotopic arrangement due to a sampling bias towards neurons with simple frequency tuning. These results help explain previous inconsistencies in cortical topography across species and recording techniques.
Collapse
Affiliation(s)
- Quentin Gaucher
- Department of Physiology, Anatomy & Genetics, University of Oxford, Oxford, United Kingdom
| | - Mariangela Panniello
- Department of Physiology, Anatomy & Genetics, University of Oxford, Oxford, United Kingdom
| | - Aleksandar Z Ivanov
- Department of Physiology, Anatomy & Genetics, University of Oxford, Oxford, United Kingdom
| | - Johannes C Dahmen
- Department of Physiology, Anatomy & Genetics, University of Oxford, Oxford, United Kingdom
| | - Andrew J King
- Department of Physiology, Anatomy & Genetics, University of Oxford, Oxford, United Kingdom
| | - Kerry Mm Walker
- Department of Physiology, Anatomy & Genetics, University of Oxford, Oxford, United Kingdom
| |
Collapse
|
22
|
Soulet D, Lamontagne-Proulx J, Aubé B, Davalos D. Multiphoton intravital microscopy in small animals: motion artefact challenges and technical solutions. J Microsc 2020; 278:3-17. [PMID: 32072642 PMCID: PMC7187339 DOI: 10.1111/jmi.12880] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2019] [Revised: 02/06/2020] [Accepted: 02/14/2020] [Indexed: 12/28/2022]
Abstract
Since its invention 29 years ago, two‐photon laser‐scanning microscopy has evolved from a promising imaging technique, to an established widely available imaging modality used throughout the biomedical research community. The establishment of two‐photon microscopy as the preferred method for imaging fluorescently labelled cells and structures in living animals can be attributed to the biophysical mechanism by which the generation of fluorescence is accomplished. The use of powerful lasers capable of delivering infrared light pulses within femtosecond intervals, facilitates the nonlinear excitation of fluorescent molecules only at the focal plane and determines by objective lens position. This offers numerous benefits for studies of biological samples at high spatial and temporal resolutions with limited photo‐damage and superior tissue penetration. Indeed, these attributes have established two‐photon microscopy as the ideal method for live‐animal imaging in several areas of biology and have led to a whole new field of study dedicated to imaging biological phenomena in intact tissues and living organisms. However, despite its appealing features, two‐photon intravital microscopy is inherently limited by tissue motion from heartbeat, respiratory cycles, peristalsis, muscle/vascular tone and physiological functions that change tissue geometry. Because these movements impede temporal and spatial resolution, they must be properly addressed to harness the full potential of two‐photon intravital microscopy and enable accurate data analysis and interpretation. In addition, the sources and features of these motion artefacts are varied, sometimes unpredictable and unique to specific organs and multiple complex strategies have previously been devised to address them. This review will discuss these motion artefacts requirement and technical solutions for their correction and after intravital two‐photon microscopy.
Collapse
Affiliation(s)
- D Soulet
- Centre de recherche du CHUL, Department of Neurosciences, Quebec, Canada.,Faculty of Pharmacy, Université Laval, Quebec, Canada
| | - J Lamontagne-Proulx
- Centre de recherche du CHUL, Department of Neurosciences, Quebec, Canada.,Faculty of Pharmacy, Université Laval, Quebec, Canada
| | - B Aubé
- Centre de recherche du CHUL, Department of Neurosciences, Quebec, Canada
| | - D Davalos
- Department of Neurosciences, Lerner Research Institute, Cleveland Clinic, Cleveland, Ohio, U.S.A
| |
Collapse
|
23
|
LeMessurier AM, Laboy-Juárez KJ, McClain K, Chen S, Nguyen T, Feldman DE. Enrichment drives emergence of functional columns and improves sensory coding in the whisker map in L2/3 of mouse S1. eLife 2019; 8:46321. [PMID: 31418693 PMCID: PMC6697414 DOI: 10.7554/elife.46321] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2019] [Accepted: 08/01/2019] [Indexed: 12/02/2022] Open
Abstract
Sensory maps in layer (L) 2/3 of rodent cortex lack precise functional column boundaries, and instead exhibit locally heterogeneous (salt-and-pepper) tuning superimposed on smooth global topography. Could this organization be a byproduct of impoverished experience in laboratory housing? We compared whisker map somatotopy in L2/3 and L4 excitatory cells of somatosensory (S1) cortex in normally housed vs. tactile-enriched mice, using GCaMP6s imaging. Normally housed mice had a dispersed, salt-and-pepper whisker map in L2/3, but L4 was more topographically precise. Enrichment (P21 to P46-71) sharpened whisker tuning and decreased, but did not abolish, local tuning heterogeneity. In L2/3, enrichment strengthened and sharpened whisker point representations, and created functional boundaries of tuning similarity and noise correlations at column edges. Thus, enrichment drives emergence of functional columnar topography in S1, and reduces local tuning heterogeneity. These changes predict better touch detection by neural populations within each column.
Collapse
Affiliation(s)
- Amy M LeMessurier
- Department of Molecular and Cellular Biology, Helen Wills Neuroscience Institute, University of California, Berkeley, Berkeley, United States
| | - Keven J Laboy-Juárez
- Department of Molecular and Cellular Biology, Helen Wills Neuroscience Institute, University of California, Berkeley, Berkeley, United States
| | - Kathryn McClain
- Department of Molecular and Cellular Biology, Helen Wills Neuroscience Institute, University of California, Berkeley, Berkeley, United States
| | - Shilin Chen
- Department of Molecular and Cellular Biology, Helen Wills Neuroscience Institute, University of California, Berkeley, Berkeley, United States
| | - Theresa Nguyen
- Department of Molecular and Cellular Biology, Helen Wills Neuroscience Institute, University of California, Berkeley, Berkeley, United States
| | - Daniel E Feldman
- Department of Molecular and Cellular Biology, Helen Wills Neuroscience Institute, University of California, Berkeley, Berkeley, United States
| |
Collapse
|
24
|
Laboy-Juárez KJ, Langberg T, Ahn S, Feldman DE. Elementary motion sequence detectors in whisker somatosensory cortex. Nat Neurosci 2019; 22:1438-1449. [PMID: 31332375 PMCID: PMC6713603 DOI: 10.1038/s41593-019-0448-6] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2018] [Accepted: 06/11/2019] [Indexed: 01/09/2023]
Abstract
How somatosensory cortex (S1) encodes complex patterns of touch, as occur during tactile exploration, is poorly understood. In mouse whisker S1, temporally dense stimulation of local whisker pairs revealed that most neurons are not classical single-whisker feature detectors, but instead are strongly tuned to 2-whisker sequences involving the columnar whisker (CW) and one, specific surround whisker (SW), usually in SW-leading-CW order. Tuning was spatiotemporally precise and diverse across cells, generating a rate code for local motion vectors defined by SW-CW combinations. Spatially asymmetric, sublinear suppression for suboptimal combinations and near-linearity for preferred combinations sharpened combination tuning relative to linearly predicted tuning. This resembles computation of motion direction selectivity in vision. SW-tuned neurons, misplaced in the classical whisker map, had the strongest combination tuning. Thus, each S1 column contains a rate code for local motion sequences involving the CW, providing a basis for higher-order feature extraction.
Collapse
Affiliation(s)
- Keven J Laboy-Juárez
- Deparment of Molecular and Cell Biology and Helen Wills Neuroscience Institute, University of California Berkeley, Berkeley, CA, USA.,Department of Organismic and Evolutionary Biology and Center for Brain Science, Harvard University, Cambridge, MA, USA
| | - Tomer Langberg
- Deparment of Molecular and Cell Biology and Helen Wills Neuroscience Institute, University of California Berkeley, Berkeley, CA, USA
| | - Seoiyoung Ahn
- Deparment of Molecular and Cell Biology and Helen Wills Neuroscience Institute, University of California Berkeley, Berkeley, CA, USA
| | - Daniel E Feldman
- Deparment of Molecular and Cell Biology and Helen Wills Neuroscience Institute, University of California Berkeley, Berkeley, CA, USA.
| |
Collapse
|
25
|
Ouzounov DG, Wang T, Wu C, Xu C. GCaMP6 ΔF/F dependence on the excitation wavelength in 3-photon and 2-photon microscopy of mouse brain activity. BIOMEDICAL OPTICS EXPRESS 2019; 10:3343-3352. [PMID: 31467781 PMCID: PMC6706025 DOI: 10.1364/boe.10.003343] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/06/2019] [Revised: 05/04/2019] [Accepted: 05/29/2019] [Indexed: 05/03/2023]
Abstract
A fundamental challenge in calcium imaging is to minimize the excitation laser power while still maintaining a sufficient signal-to-noise ratio to distinguish individual transients in the fluorescence traces. It is important to characterize relative fluorescence (i.e., ΔF/F) dependence on the excitation wavelength in vivo where the environment cannot be controlled effectively during imaging. Leveraging time division multiplexing of two excitation beams to achieve nearly simultaneous 2-photon and 3-photon imaging of the calcium transients, we measured systematically the ΔF/F dependence on the excitation wavelength in 2-photon and 3-photon in vivo imaging of neuronal activity in mouse brain labeled with GCaMP6s. The technique can be applied to in vivo measurements of other fluorescence sensors.
Collapse
|
26
|
Michelson NJ, Eles JR, Vazquez AL, Ludwig KA, Kozai TDY. Calcium activation of cortical neurons by continuous electrical stimulation: Frequency dependence, temporal fidelity, and activation density. J Neurosci Res 2019; 97:620-638. [PMID: 30585651 PMCID: PMC6469875 DOI: 10.1002/jnr.24370] [Citation(s) in RCA: 55] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2018] [Revised: 11/20/2018] [Accepted: 11/28/2018] [Indexed: 01/18/2023]
Abstract
Electrical stimulation of the brain has become a mainstay of fundamental neuroscience research and an increasingly prevalent clinical therapy. Despite decades of use in basic neuroscience research and the growing prevalence of neuromodulation therapies, gaps in knowledge regarding activation or inactivation of neural elements over time have limited its ability to adequately interpret evoked downstream responses or fine-tune stimulation parameters to focus on desired responses. In this work, in vivo two-photon microscopy was used to image neuronal calcium activity in layer 2/3 neurons of somatosensory cortex (S1) in male C57BL/6J-Tg(Thy1-GCaMP6s)GP4.3Dkim/J mice during 30 s of continuous electrical stimulation at varying frequencies. We show frequency-dependent differences in spatial and temporal somatic responses during continuous stimulation. Our results elucidate conflicting results from prior studies reporting either dense spherical activation of somas biased toward those near the electrode, or sparse activation of somas at a distance via axons near the electrode. These findings indicate that the neural element specific temporal response local to the stimulating electrode changes as a function of applied charge density and frequency. These temporal responses need to be considered to properly interpret downstream circuit responses or determining mechanisms of action in basic science experiments or clinical therapeutic applications.
Collapse
Affiliation(s)
- Nicholas J. Michelson
- Department of Bioengineering, University of Pittsburgh, Pittsburgh, PA 15213, USA
- Department of Psychiatry, University of British Columbia, Vancouver, BC V6T 1Z3, CA
| | - James R. Eles
- Department of Bioengineering, University of Pittsburgh, Pittsburgh, PA 15213, USA
- Center for the Neural Basis of Cognition, University of Pittsburgh, Pittsburgh, PA 15213, USA
| | - Alberto L. Vazquez
- Department of Bioengineering, University of Pittsburgh, Pittsburgh, PA 15213, USA
- Center for the Neural Basis of Cognition, University of Pittsburgh, Pittsburgh, PA 15213, USA
- Department of Radiology, University of Pittsburgh, Pittsburgh, PA 15213, USA
- Department of Neurobiology, University of Pittsburgh, Pittsburgh, PA 15213, USA
- Center for Neuroscience, University of Pittsburgh, Pittsburgh, PA 15213, USA
| | - Kip A Ludwig
- Department of Biomedical Engineering, University of Wisconsin Madison
- Department of Neurological Surgery, University of Wisconsin Madison
| | - Takashi DY Kozai
- Department of Bioengineering, University of Pittsburgh, Pittsburgh, PA 15213, USA
- Center for the Neural Basis of Cognition, University of Pittsburgh, Pittsburgh, PA 15213, USA
- Center for Neuroscience, University of Pittsburgh, Pittsburgh, PA 15213, USA
- McGowan Institute of Regenerative Medicine, University of Pittsburgh, Pittsburgh, PA 15213, USA
- NeuroTech Center, University of Pittsburgh Brain Institute, Pittsburgh, PA 15213, USA
| |
Collapse
|
27
|
Local homogeneity of tonotopic organization in the primary auditory cortex of marmosets. Proc Natl Acad Sci U S A 2019; 116:3239-3244. [PMID: 30718428 DOI: 10.1073/pnas.1816653116] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Marmoset has emerged as a useful nonhuman primate species for studying brain structure and function. Previous studies on the mouse primary auditory cortex (A1) showed that neurons with preferential frequency-tuning responses are mixed within local cortical regions, despite a large-scale tonotopic organization. Here we found that frequency-tuning properties of marmoset A1 neurons are highly uniform within local cortical regions. We first defined the tonotopic map of A1 using intrinsic optical imaging and then used in vivo two-photon calcium imaging of large neuronal populations to examine the tonotopic preference at the single-cell level. We found that tuning preferences of layer 2/3 neurons were highly homogeneous over hundreds of micrometers in both horizontal and vertical directions. Thus, marmoset A1 neurons are distributed in a tonotopic manner at both macro- and microscopic levels. Such organization is likely to be important for the organization of auditory circuits in the primate brain.
Collapse
|
28
|
Hayashi A, Yoshida T, Ohki K. Cell Type Specific Representation of Vibro-tactile Stimuli in the Mouse Primary Somatosensory Cortex. Front Neural Circuits 2018; 12:109. [PMID: 30618647 PMCID: PMC6307530 DOI: 10.3389/fncir.2018.00109] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2018] [Accepted: 11/20/2018] [Indexed: 11/17/2022] Open
Abstract
Although the processing of whisker deflections in the barrel area of the rodent primary somatosensory cortex (S1) has been studied extensively, how cutaneous vibro-tactile stimuli are processed in the rodent S1 outside the barrel area has not been fully examined. Particularly, the cell-type specific representation of multiple vibration frequencies in genetically identified inhibitory cells in the S1 has not been examined. Using two-photon calcium imaging, we examined the responses to vibration stimuli of excitatory and inhibitory neurons in the S1 hind limb area of male and female mice. The excitatory cells showed relatively sharp selectivity to vibration stimuli, whereas the inhibitory cells exhibited less selectivity. The excitatory and inhibitory cells with different preferred stimuli were intermingled in a “salt and pepper” manner. Furthermore, the noise correlation tended to be especially strong in excitatory-inhibitory and inhibitory-inhibitory cell pairs that have similar stimulus selectivity. These results suggest that excitatory cells tend to represent specific stimulus information and work together with similarly tuned inhibitory cells as a functionally connected network.
Collapse
Affiliation(s)
- Ayako Hayashi
- Department of Molecular Physiology, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan.,Department of Dermatology, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Takashi Yoshida
- Department of Molecular Physiology, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan.,Department of Physiology, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan.,CREST, Japan Agency for Medical Research and Development (AMED), Tokyo, Japan
| | - Kenichi Ohki
- Department of Molecular Physiology, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan.,Department of Physiology, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan.,CREST, Japan Agency for Medical Research and Development (AMED), Tokyo, Japan.,International Research Center for Neurointelligence (WPI-IRCN), The University of Tokyo Institutes for Advanced Studies (UTIAS), Tokyo, Japan
| |
Collapse
|
29
|
Holley ZL, Bland KM, Casey ZO, Handwerk CJ, Vidal GS. Cross-Regional Gradient of Dendritic Morphology in Isochronically-Sourced Mouse Supragranular Pyramidal Neurons. Front Neuroanat 2018; 12:103. [PMID: 30564104 PMCID: PMC6288488 DOI: 10.3389/fnana.2018.00103] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2018] [Accepted: 11/15/2018] [Indexed: 11/13/2022] Open
Abstract
Architectonic heterogeneity in neurons is thought to be important for equipping the mammalian cerebral cortex with an adaptable network that can organize the manifold totality of information it receives. To this end, the dendritic arbors of supragranular pyramidal neurons, even those of the same class, are known to vary substantially. This diversity of dendritic morphology appears to have a rostrocaudal configuration in some brain regions of various species. For example, in humans and non-human primates, neurons in more rostral visual association areas (e.g., V4) tend to have more complex dendritic arbors than those in the caudal primary visual cortex. A rostrocaudal configuration is not so clear in any region of the mouse, which is increasingly being used as a model for neurodevelopmental disorders that arise from dysfunctional cerebral cortical circuits. Therefore, in this study we investigated the complexity of dendritic arbors of neurons distributed throughout a broad area of the mouse cerebral cortex. We reduced selection bias by labeling neurons restricted to become supragranular pyramidal neurons using in utero electroporation. While we observed that the simple rostrocaudal position, cortical depth, or even functional region of a neuron was not directly related to its dendritic morphology, a model that instead included a caudomedial-to-rostrolateral gradient accounted for a significant amount of the observed dendritic morphological variance. In other words, rostrolateral neurons from our data set were generally more complex when compared to caudomedial neurons. Furthermore, dividing the cortex into a visual area and a non-visual area maintained the power of the relationship between caudomedial-to-rostrolateral position and dendritic complexity. Our observations therefore support the idea that dendritic morphology of mouse supragranular excitatory pyramidal neurons across much of the tangential plane of the cerebral cortex is partly shaped by a developmental gradient spanning several functional regions.
Collapse
Affiliation(s)
- Zachary Logan Holley
- Department of Biology, James Madison University, Harrisonburg, VA, United States
| | - Katherine M Bland
- Department of Biology, James Madison University, Harrisonburg, VA, United States
| | - Zachary O Casey
- Department of Biology, James Madison University, Harrisonburg, VA, United States
| | | | - George S Vidal
- Department of Biology, James Madison University, Harrisonburg, VA, United States
| |
Collapse
|
30
|
Martini FJ, Molano-Mazón M, Maravall M. Interspersed Distribution of Selectivity to Kinematic Stimulus Features in Supragranular Layers of Mouse Barrel Cortex. Cereb Cortex 2018; 27:3782-3789. [PMID: 28334121 DOI: 10.1093/cercor/bhx019] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2016] [Accepted: 12/14/2016] [Indexed: 01/17/2023] Open
Abstract
Neurons in the primary sensory regions of neocortex have heterogeneous response properties. The spatial arrangement of neurons with particular response properties is a key aspect of population representations and can shed light on how local circuits are wired. Here, we investigated how neurons with sensitivity to different kinematic features of whisker stimuli are distributed across local circuits in supragranular layers of the barrel cortex. Using 2-photon calcium population imaging in anesthetized mice, we found that nearby neurons represent diverse kinematic features, providing a rich population representation at the local scale. Neurons interspersed in space therefore responded differently to a common stimulus kinematic feature. Conversely, neurons with similar feature selectivity were located no closer to each other than predicted by a random distribution null hypothesis. This finding relied on defining a null hypothesis that was specific for testing the spatial distribution of tuning across neurons. We also measured how neurons sensitive to specific features were distributed relative to barrel boundaries, and found no systematic organization. Our results are compatible with randomly distributed selectivity to kinematic features, with no systematic ordering superimposed upon the whisker map.
Collapse
Affiliation(s)
- Francisco J Martini
- Instituto de Neurociencias de Alicante UMH-CSIC, Avda. Ramón y Cajal s/n, Campus de San Juan, 03550 Sant Joan d'Alacant, Spain
| | - Manuel Molano-Mazón
- Instituto de Neurociencias de Alicante UMH-CSIC, Avda. Ramón y Cajal s/n, Campus de San Juan, 03550 Sant Joan d'Alacant, Spain.,Laboratory of Neural Computation, Center for Neuroscience and Cognitive Systems @UniTn, Istituto Italiano di Tecnologia, 38068 Rovereto, Italy
| | - Miguel Maravall
- Instituto de Neurociencias de Alicante UMH-CSIC, Avda. Ramón y Cajal s/n, Campus de San Juan, 03550 Sant Joan d'Alacant, Spain.,Sussex Neuroscience, School of Life Sciences, University of Sussex, Brighton, UK
| |
Collapse
|
31
|
Structured networks support sparse traveling waves in rodent somatosensory cortex. Proc Natl Acad Sci U S A 2018; 115:5277-5282. [PMID: 29712831 DOI: 10.1073/pnas.1710202115] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Neurons responding to different whiskers are spatially intermixed in the superficial layer 2/3 (L2/3) of the rodent barrel cortex, where a single whisker deflection activates a sparse, distributed neuronal population that spans multiple cortical columns. How the superficial layer of the rodent barrel cortex is organized to support such distributed sensory representations is not clear. In a computer model, we tested the hypothesis that sensory representations in L2/3 of the rodent barrel cortex are formed by activity propagation horizontally within L2/3 from a site of initial activation. The model explained the observed properties of L2/3 neurons, including the low average response probability in the majority of responding L2/3 neurons, and the existence of a small subset of reliably responding L2/3 neurons. Sparsely propagating traveling waves similar to those observed in L2/3 of the rodent barrel cortex occurred in the model only when a subnetwork of strongly connected neurons was immersed in a much larger network of weakly connected neurons.
Collapse
|
32
|
Sharifian S, Homaei A, Hemmati R, B Luwor R, Khajeh K. The emerging use of bioluminescence in medical research. Biomed Pharmacother 2018; 101:74-86. [PMID: 29477474 DOI: 10.1016/j.biopha.2018.02.065] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2018] [Revised: 02/13/2018] [Accepted: 02/15/2018] [Indexed: 01/01/2023] Open
Abstract
Bioluminescence is the light produced by a living organism and is commonly emitted by sea life with Ca2+-regulated photoproteins being the most responsible for bioluminescence emission. Marine coelenterates provide important functions involved in essential purposes such as defense, feeding, and breeding. In this review, the main characteristics of marine photoproteins including aequorin, clytin, obelin, berovin, pholasin and symplectin from different marine organisms will be discussed. We will focused on the recent use of recombinant photoproteins in different biomedical research fields including the measurement of Ca2+ in different intracellular compartments of animal cells, as labels in the design and development of binding assays. This review will also outline how bioluminescent photoproteins have been used in a plethora of analytical methods including ultra-sensitive assays and in vivo imaging of cellular processes. Due to their unique properties including elective intracellular distribution, wide dynamic range, high signal-to-noise ratio and low Ca2+-buffering effect, recombinant photoproteins represent a promising future analytical tool in several in vitro and in vivo experiments.
Collapse
Affiliation(s)
- Sana Sharifian
- Department of Marine Biology, Faculty of Sciences, University of Hormozgan, Bandar Abbas, Iran
| | - Ahmad Homaei
- Department of Biochemistry, Faculty of Sciences, University of Hormozgan, Bandar Abbas, Iran.
| | - Roohullah Hemmati
- Department of Biology, Faculty of Basic Sciences, Shahrekord University, Shahrekord, Iran
| | - Rodney B Luwor
- Department of Surgery, Level 5, Clinical Sciences Building, The University of Melbourne, The Royal Melbourne Hospital, Grattan Street, Parkville, VIC 3050, Australia
| | - Khosro Khajeh
- Department of Biochemistry, Faculty of Biological Sciences, Tarbiat Modares University, Tehran, Iran
| |
Collapse
|
33
|
Abstract
Somatosensory areas containing topographic maps of the body surface are a major feature of parietal cortex. In primates, parietal cortex contains four somatosensory areas, each with its own map, with the primary cutaneous map in area 3b. Rodents have at least three parietal somatosensory areas. Maps are not isomorphic to the body surface, but magnify behaviorally important skin regions, which include the hands and face in primates, and the whiskers in rodents. Within each map, intracortical circuits process tactile information, mediate spatial integration, and support active sensation. Maps may also contain fine-scale representations of touch submodalities, or direction of tactile motion. Functional representations are more overlapping than suggested by textbook depictions of map topography. The whisker map in rodent somatosensory cortex is a canonic system for studying cortical microcircuits, sensory coding, and map plasticity. Somatosensory maps are plastic throughout life in response to altered use or injury. This chapter reviews basic principles and recent findings in primate, human, and rodent somatosensory maps.
Collapse
Affiliation(s)
- Samuel Harding-Forrester
- Department of Molecular and Cell Biology, Helen Wills Neuroscience Institute, University of California, Berkeley, CA, United States
| | - Daniel E Feldman
- Department of Molecular and Cell Biology, Helen Wills Neuroscience Institute, University of California, Berkeley, CA, United States.
| |
Collapse
|
34
|
Three-dimensional scanless holographic optogenetics with temporal focusing (3D-SHOT). Nat Commun 2017; 8:1228. [PMID: 29089483 PMCID: PMC5663714 DOI: 10.1038/s41467-017-01031-3] [Citation(s) in RCA: 121] [Impact Index Per Article: 15.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2017] [Accepted: 08/14/2017] [Indexed: 11/09/2022] Open
Abstract
Optical methods capable of manipulating neural activity with cellular resolution and millisecond precision in three dimensions will accelerate the pace of neuroscience research. Existing approaches for targeting individual neurons, however, fall short of these requirements. Here we present a new multiphoton photo-excitation method, termed three-dimensional scanless holographic optogenetics with temporal focusing (3D-SHOT), which allows precise, simultaneous photo-activation of arbitrary sets of neurons anywhere within the addressable volume of a microscope. This technique uses point-cloud holography to place multiple copies of a temporally focused disc matching the dimensions of a neuron's cell body. Experiments in cultured cells, brain slices, and in living mice demonstrate single-neuron spatial resolution even when optically targeting randomly distributed groups of neurons in 3D. This approach opens new avenues for mapping and manipulating neural circuits, allowing a real-time, cellular resolution interface to the brain.
Collapse
|
35
|
O'Donnell C, Gonçalves JT, Portera-Cailliau C, Sejnowski TJ. Beyond excitation/inhibition imbalance in multidimensional models of neural circuit changes in brain disorders. eLife 2017; 6:26724. [PMID: 29019321 PMCID: PMC5663477 DOI: 10.7554/elife.26724] [Citation(s) in RCA: 43] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2017] [Accepted: 10/04/2017] [Indexed: 11/28/2022] Open
Abstract
A leading theory holds that neurodevelopmental brain disorders arise from imbalances in excitatory and inhibitory (E/I) brain circuitry. However, it is unclear whether this one-dimensional model is rich enough to capture the multiple neural circuit alterations underlying brain disorders. Here, we combined computational simulations with analysis of in vivo two-photon Ca2+ imaging data from somatosensory cortex of Fmr1 knock-out (KO) mice, a model of Fragile-X Syndrome, to test the E/I imbalance theory. We found that: (1) The E/I imbalance model cannot account for joint alterations in the observed neural firing rates and correlations; (2) Neural circuit function is vastly more sensitive to changes in some cellular components over others; (3) The direction of circuit alterations in Fmr1 KO mice changes across development. These findings suggest that the basic E/I imbalance model should be updated to higher dimensional models that can better capture the multidimensional computational functions of neural circuits. In many brain disorders, from autism to schizophrenia, the anatomy of the brain appears remarkably unchanged. This implies that the problem may reside in how neurons communicate with one another. Unfortunately, neuroscientists know little about how brain activity might differ from normal in these disorders, or how specific changes in activity give rise to symptoms. One leading theory, first proposed over a decade ago, is that these disorders reflect an imbalance in the activity of excitatory and inhibitory neurons. Excitatory neurons activate their targets, whereas inhibitory neurons suppress or silence them. While studies in mice have lent support to this theory, they have not yet culminated in new treatments for brain disorders. One limitation of the excitation-inhibition imbalance theory is that it is one-dimensional. It assumes that there is an optimal balance of excitation and inhibition, and that brain disorders can be arranged in an imaginary line on either side of this optimum. Disorders to the right of the optimum, such as epilepsy and some forms of autism, feature too much excitation. Disorders to the left, such as the developmental disorder Rett syndrome, feature too much inhibition. But can diverse brain disorders really be classified on the basis of a single property, or do scientists need to consider other factors? To find out, O’Donnell et al. analyzed recordings of brain activity from genetically modified mice with the mutation that causes fragile X syndrome, the most common form of inherited learning disability and autism. The mice showed changes in their overall brain activity compared to control animals. Their neurons also tended to fire in a more synchronized manner. A computer simulation revealed that an imbalance in excitation and inhibition alone could not explain these changes. Yet, a more complex simulation incorporating extra properties of neural circuits did a better job of explaining the altered neural activity seen in the mice. O’Donnell et al. propose that this more advanced multi-dimensional model of changes in neural circuits could be used to screen candidate drugs before testing them in patients. In principle, the model could even help with designing drugs or other interventions by making it easier for researchers to target more precisely the changes in neural circuits that occur in brain disorders.
Collapse
Affiliation(s)
- Cian O'Donnell
- Department of Computer Science, University of Bristol, Bristol, United Kingdom.,Howard Hughes Medical Institute, Salk Institute for Biological Studies, La Jolla, United States
| | - J Tiago Gonçalves
- Dominick Purpura Department of Neuroscience, Albert Einstein College of Medicine, Bronx, United States.,Department of Neurology, David Geffen School of Medicine at UCLA, Los Angeles, United States
| | - Carlos Portera-Cailliau
- Department of Neurology, David Geffen School of Medicine at UCLA, Los Angeles, United States.,Department of Neurobiology, David Geffen School of Medicine at UCLA, Los Angeles, United States
| | - Terrence J Sejnowski
- Howard Hughes Medical Institute, Salk Institute for Biological Studies, La Jolla, United States.,Division of Biological Sciences, University of California at San Diego, La Jolla, United States
| |
Collapse
|
36
|
Bale MR, Maravall M. Organization of sensory feature selectivity in the whisker system. Neuroscience 2017; 368:70-80. [PMID: 28918260 PMCID: PMC5798594 DOI: 10.1016/j.neuroscience.2017.09.014] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2017] [Revised: 08/25/2017] [Accepted: 09/05/2017] [Indexed: 12/14/2022]
Abstract
Neurons in the whisker system are selective to spatial and dynamical properties – features – of sensory stimuli. At each stage of the pathway, different neurons encode distinct features, generating a rich population representation. Whisker touch is robustly represented; neurons respond to touch-driven fast fluctuations in forces at the whisker base. Cortical neurons have more complex and context-dependent selectivity than subcortical, e.g., to collective whisker motion. Understanding how these signals are integrated to construct whisker-mediated percepts requires further research.
Our sensory receptors are faced with an onslaught of different environmental inputs. Each sensory event or encounter with an object involves a distinct combination of physical energy sources impinging upon receptors. In the rodent whisker system, each primary afferent neuron located in the trigeminal ganglion innervates and responds to a single whisker and encodes a distinct set of physical stimulus properties – features – corresponding to changes in whisker angle and shape and the consequent forces acting on the whisker follicle. Here we review the nature of the features encoded by successive stages of processing along the whisker pathway. At each stage different neurons respond to distinct features, such that the population as a whole represents diverse properties. Different neuronal types also have distinct feature selectivity. Thus, neurons at the same stage of processing and responding to the same whisker nevertheless play different roles in representing objects contacted by the whisker. This diversity, combined with the precise timing and high reliability of responses, enables populations at each stage to represent a wide range of stimuli. Cortical neurons respond to more complex stimulus properties – such as correlated motion across whiskers – than those at early subcortical stages. Temporal integration along the pathway is comparatively weak: neurons up to barrel cortex (BC) are sensitive mainly to fast (tens of milliseconds) fluctuations in whisker motion. The topographic organization of whisker sensitivity is paralleled by systematic organization of neuronal selectivity to certain other physical features, but selectivity to touch and to dynamic stimulus properties is distributed in “salt-and-pepper” fashion.
Collapse
Affiliation(s)
- Michael R Bale
- Sussex Neuroscience, School of Life Sciences, University of Sussex, Brighton BN1 9QG, United Kingdom
| | - Miguel Maravall
- Sussex Neuroscience, School of Life Sciences, University of Sussex, Brighton BN1 9QG, United Kingdom.
| |
Collapse
|
37
|
Kwon SE, Tsytsarev V, Erzurumlu RS, O'Connor DH. Organization of orientation-specific whisker deflection responses in layer 2/3 of mouse somatosensory cortex. Neuroscience 2017; 368:46-56. [PMID: 28827090 DOI: 10.1016/j.neuroscience.2017.07.067] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2017] [Revised: 07/24/2017] [Accepted: 07/27/2017] [Indexed: 11/18/2022]
Abstract
The rodent whisker-barrel system is characterized by its patterned somatotopic mapping between the sensory periphery and multiple regions of the brain. While somatotopy in the whisker system is established, we know far less about how preferences for stimulus orientation or other features are organized. Mouse somatosensation is an increasingly popular model for circuit-based dissection of perceptual decision making and learning, yet our understanding of how stimulus feature representations are organized in the cortex is incomplete. Here, we used in vivo two-photon calcium imaging to monitor activity of populations of layer (L) 2/3 neurons in the mouse primary somatosensory cortex during deflections of a single whisker in two orthogonal orientations (azimuthal or elevational). We split the population response to whisker deflections into an orientation-specific component and a non-specific component that reflected overall excitability in response to deflection of a single whisker. Orientation-specific responses were organized in a locally heterogeneous and spatially distributed manner. Correlations in the stimulus-independent trial-to-trial variability of pairs of neurons were higher among neurons that preferred the same orientation. These correlations depended on similarity in both orientation-specific and non-specific components of responses to single-whisker deflections. Our results shed light on L2/3 organization in mouse somatosensory cortex, and lay a foundation for dissecting circuit mechanisms of perceptual learning and decision-making during orientation discrimination tasks.
Collapse
Affiliation(s)
- Sung Eun Kwon
- The Solomon H. Snyder Department of Neuroscience, Kavli Neuroscience Discovery Institute, Brain Science Institute, The Johns Hopkins University School of Medicine, Baltimore, MD, United States
| | - Vassiliy Tsytsarev
- Department of Anatomy and Neurobiology, University of Maryland School of Medicine, Baltimore, MD, United States
| | - Reha S Erzurumlu
- Department of Anatomy and Neurobiology, University of Maryland School of Medicine, Baltimore, MD, United States
| | - Daniel H O'Connor
- The Solomon H. Snyder Department of Neuroscience, Kavli Neuroscience Discovery Institute, Brain Science Institute, The Johns Hopkins University School of Medicine, Baltimore, MD, United States.
| |
Collapse
|
38
|
Pluta SR, Lyall EH, Telian GI, Ryapolova-Webb E, Adesnik H. Surround Integration Organizes a Spatial Map during Active Sensation. Neuron 2017; 94:1220-1233.e5. [PMID: 28504117 DOI: 10.1016/j.neuron.2017.04.026] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2016] [Revised: 03/05/2017] [Accepted: 04/18/2017] [Indexed: 01/09/2023]
Abstract
During active sensation, sensors scan space in order to generate a representation of the outside world. However, since spatial coding in sensory systems is typically addressed by measuring receptive fields in a fixed, sensor-based coordinate frame, the cortical representation of scanned space is poorly understood. To address this question, we probed spatial coding in the rodent whisker system using a combination of two-photon imaging and electrophysiology during active touch. We found that surround whiskers powerfully transform the cortical representation of scanned space. On the single-neuron level, surround input profoundly alters response amplitude and modulates spatial preference in the cortex. On the population level, surround input organizes the spatial preference of neurons into a continuous map of the space swept out by the whiskers. These data demonstrate how spatial summation over a moving sensor array is critical to generating population codes of sensory space.
Collapse
Affiliation(s)
- Scott R Pluta
- Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, CA 94720, USA
| | - Evan H Lyall
- Biophysics Graduate Group, University of California, Berkeley, Berkeley, CA 94720, USA
| | - Greg I Telian
- Helen Wills Neuroscience Institute, University of California, Berkeley, Berkeley, CA 94720, USA
| | - Elena Ryapolova-Webb
- Helen Wills Neuroscience Institute, University of California, Berkeley, Berkeley, CA 94720, USA
| | - Hillel Adesnik
- Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, CA 94720, USA; Helen Wills Neuroscience Institute, University of California, Berkeley, Berkeley, CA 94720, USA.
| |
Collapse
|
39
|
Li J, Zhang J, Wang M, Pan J, Chen X, Liao X. Functional imaging of neuronal activity of auditory cortex by using Cal-520 in anesthetized and awake mice. BIOMEDICAL OPTICS EXPRESS 2017; 8:2599-2610. [PMID: 28663893 PMCID: PMC5480500 DOI: 10.1364/boe.8.002599] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/27/2017] [Revised: 04/14/2017] [Accepted: 04/14/2017] [Indexed: 06/01/2023]
Abstract
The organization in the primary auditory cortex (Au1) is critical to the basic function of auditory information processing and integration. However, recent mapping experiments using in vivo two-photon imaging with different Ca2+ indicators have reached controversial conclusions on this topic, possibly because of the different sensitivities and properties of the indicators used. Therefore, it is essential to identify a reliable Ca2+ indicator for use in in vivo functional imaging of the Au1, to understand its functional organization. Here, we demonstrate that a previously reported indicator, Cal-520, performs well in both anesthetized and awake conditions. Cal-520 shows a sufficient sensitivity for the detection of single action potentials, and a high signal-to-noise ratio. Cal-520 reliably reported on both spontaneous and sound-evoked neuronal activity in anesthetized and awake mice. After testing with pure tones at a range of frequencies, we confirmed the local heterogeneity of the functional organization of the mouse Au1. Therefore, Cal-520 is a reliable and useful Ca2+ indicator for in vivo functional imaging of the Au1.
Collapse
Affiliation(s)
- Jingcheng Li
- Brain Research Center, Third Military Medical University, Chongqing 400038, China
- These authors contributed equally to this work
| | - Jianxiong Zhang
- Brain Research Center, Third Military Medical University, Chongqing 400038, China
- These authors contributed equally to this work
| | - Meng Wang
- Brain Research Center, Third Military Medical University, Chongqing 400038, China
| | - Junxia Pan
- Brain Research Center, Third Military Medical University, Chongqing 400038, China
| | - Xiaowei Chen
- Brain Research Center, Third Military Medical University, Chongqing 400038, China
| | - Xiang Liao
- Brain Research Center, Third Military Medical University, Chongqing 400038, China
| |
Collapse
|
40
|
Hasegawa M, Majima K, Itokazu T, Maki T, Albrecht UR, Castner N, Izumo M, Sohya K, Sato TK, Kamitani Y, Sato TR. Selective Suppression of Local Circuits during Movement Preparation in the Mouse Motor Cortex. Cell Rep 2017; 18:2676-2686. [DOI: 10.1016/j.celrep.2017.02.043] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2016] [Revised: 01/08/2017] [Accepted: 02/14/2017] [Indexed: 10/20/2022] Open
|
41
|
In vivo three-photon imaging of activity of GCaMP6-labeled neurons deep in intact mouse brain. Nat Methods 2017; 14:388-390. [PMID: 28218900 DOI: 10.1038/nmeth.4183] [Citation(s) in RCA: 304] [Impact Index Per Article: 38.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2016] [Accepted: 01/09/2017] [Indexed: 01/23/2023]
Abstract
High-resolution optical imaging is critical to understanding brain function. We demonstrate that three-photon microscopy at 1,300-nm excitation enables functional imaging of GCaMP6s-labeled neurons beyond the depth limit of two-photon microscopy. We record spontaneous activity from up to 150 neurons in the hippocampal stratum pyramidale at ∼1-mm depth within an intact mouse brain. Our method creates opportunities for noninvasive recording of neuronal activity with high spatial and temporal resolution deep within scattering brain tissues.
Collapse
|
42
|
Ranjbar-Slamloo Y, Arabzadeh E. High-velocity stimulation evokes "dense" population response in layer 2/3 vibrissal cortex. J Neurophysiol 2016; 117:1218-1228. [PMID: 28003414 DOI: 10.1152/jn.00815.2016] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2016] [Revised: 12/14/2016] [Accepted: 12/14/2016] [Indexed: 12/23/2022] Open
Abstract
Supragranular layers of sensory cortex are known to exhibit sparse firing. In rodent vibrissal cortex, a small fraction of neurons in layer 2 and 3 (L2/3) respond to whisker stimulation. In this study, we combined whole cell recording and two-photon imaging in anesthetized mice and quantified the synaptic response and spiking profile of L2/3 neurons. Previous literature has shown that neurons across layers of vibrissal cortex are tuned to the velocity of whisker movement. We therefore used a broad range of stimuli that included the standard range of velocities (0-1.2 deg/ms) and extended to a "sharp" high-velocity deflection (3.8 deg/ms). Consistent with previous literature, whole cell recording revealed a sparse response to the standard range of velocities: although all recorded cells showed tuning to velocity in their postsynaptic potentials, only a small fraction produced stimulus-evoked spikes. In contrast, the sharp stimulus evoked reliable spiking in the majority of neurons. The action potential threshold of spikes evoked by the sharp stimulus was significantly lower than that of the spontaneous spikes. Juxtacellular recordings confirmed that application of sharp stimulus to single or multiple whiskers produced temporally precise spiking with minimal trial-to-trial spike count variability (Fano factors equal or close to the theoretical minimum). Two-photon imaging further confirmed that most neurons that were not responsive to the standard deflections responded to the sharp stimulus. Altogether, our results indicate that sparseness in L2/3 cortex depends on the choice of stimulus: strong single- or multiwhisker stimulation can induce the transition from sparse to "dense" population response.NEW & NOTEWORTHY In superficial layers of sensory cortex, only a small fraction of neurons fire most of the spontaneous and sensory evoked spikes. However, the functional relevance of such "sparse" activity remains unknown. We found that a "dense" population response is evoked by high-velocity micromotions applied to whiskers. Our results suggest that flashes of precisely timed population response on an almost silent background can provide a high capacity for coding of ecologically salient stimuli.
Collapse
Affiliation(s)
- Yadollah Ranjbar-Slamloo
- Eccles Institute of Neuroscience, John Curtin School of Medical Research, The Australian National University, Canberra, ACT 0200, Australia; and.,Australian Research Council Centre of Excellence for Integrative Brain Function, The Australian National University Node, Canberra, Australia
| | - Ehsan Arabzadeh
- Eccles Institute of Neuroscience, John Curtin School of Medical Research, The Australian National University, Canberra, ACT 0200, Australia; and .,Australian Research Council Centre of Excellence for Integrative Brain Function, The Australian National University Node, Canberra, Australia
| |
Collapse
|
43
|
Carrillo-Medina JL, Latorre R. Implementing Signature Neural Networks with Spiking Neurons. Front Comput Neurosci 2016; 10:132. [PMID: 28066221 PMCID: PMC5167754 DOI: 10.3389/fncom.2016.00132] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2016] [Accepted: 11/30/2016] [Indexed: 11/17/2022] Open
Abstract
Spiking Neural Networks constitute the most promising approach to develop realistic Artificial Neural Networks (ANNs). Unlike traditional firing rate-based paradigms, information coding in spiking models is based on the precise timing of individual spikes. It has been demonstrated that spiking ANNs can be successfully and efficiently applied to multiple realistic problems solvable with traditional strategies (e.g., data classification or pattern recognition). In recent years, major breakthroughs in neuroscience research have discovered new relevant computational principles in different living neural systems. Could ANNs benefit from some of these recent findings providing novel elements of inspiration? This is an intriguing question for the research community and the development of spiking ANNs including novel bio-inspired information coding and processing strategies is gaining attention. From this perspective, in this work, we adapt the core concepts of the recently proposed Signature Neural Network paradigm—i.e., neural signatures to identify each unit in the network, local information contextualization during the processing, and multicoding strategies for information propagation regarding the origin and the content of the data—to be employed in a spiking neural network. To the best of our knowledge, none of these mechanisms have been used yet in the context of ANNs of spiking neurons. This paper provides a proof-of-concept for their applicability in such networks. Computer simulations show that a simple network model like the discussed here exhibits complex self-organizing properties. The combination of multiple simultaneous encoding schemes allows the network to generate coexisting spatio-temporal patterns of activity encoding information in different spatio-temporal spaces. As a function of the network and/or intra-unit parameters shaping the corresponding encoding modality, different forms of competition among the evoked patterns can emerge even in the absence of inhibitory connections. These parameters also modulate the memory capabilities of the network. The dynamical modes observed in the different informational dimensions in a given moment are independent and they only depend on the parameters shaping the information processing in this dimension. In view of these results, we argue that plasticity mechanisms inside individual cells and multicoding strategies can provide additional computational properties to spiking neural networks, which could enhance their capacity and performance in a wide variety of real-world tasks.
Collapse
Affiliation(s)
- José Luis Carrillo-Medina
- Departamento de Eléctrica y Electrónica, Universidad de las Fuerzas Armadas - ESPE Sangolquí, Ecuador
| | - Roberto Latorre
- Grupo de Neurocomputación Biológica, Dpto. de Ingeniería Informática, Escuela Politécnica Superior, Universidad Autónoma de Madrid Madrid, Spain
| |
Collapse
|
44
|
Estebanez L, Bertherat J, Shulz DE, Bourdieu L, Léger JF. A radial map of multi-whisker correlation selectivity in the rat barrel cortex. Nat Commun 2016; 7:13528. [PMID: 27869114 PMCID: PMC5121329 DOI: 10.1038/ncomms13528] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2016] [Accepted: 10/12/2016] [Indexed: 01/21/2023] Open
Abstract
In the barrel cortex, several features of single-whisker stimuli are organized in functional maps. The barrel cortex also encodes spatio-temporal correlation patterns of multi-whisker inputs, but so far the cortical mapping of neurons tuned to such input statistics is unknown. Here we report that layer 2/3 of the rat barrel cortex contains an additional functional map based on neuronal tuning to correlated versus uncorrelated multi-whisker stimuli: neuron responses to uncorrelated multi-whisker stimulation are strongest above barrel centres, whereas neuron responses to correlated and anti-correlated multi-whisker stimulation peak above the barrel–septal borders, forming rings of multi-whisker synchrony-preferring cells. Barrel cortex contains a functional map of whiskers but how neuronal activity maps multi-whisker inputs has not been studied. Here the authors show that while uncorrelated multi-whisker stimuli activate barrel neurons, correlated multi-whisker inputs activate neurons in a ring at the barrel-septa boundary
Collapse
Affiliation(s)
- Luc Estebanez
- École Normale Supérieure, PSL Research University, CNRS, Inserm, Institut de Biologie de l'École Normale Supérieure (IBENS), Paris F-75005, France.,Unité de Neurosciences, Information et Complexité, UNIC-FRE3693, Centre National de la Recherche Scientifique, Gif sur Yvette, F-91198, France
| | - Julien Bertherat
- École Normale Supérieure, PSL Research University, CNRS, Inserm, Institut de Biologie de l'École Normale Supérieure (IBENS), Paris F-75005, France.,Unité de Neurosciences, Information et Complexité, UNIC-FRE3693, Centre National de la Recherche Scientifique, Gif sur Yvette, F-91198, France
| | - Daniel E Shulz
- Unité de Neurosciences, Information et Complexité, UNIC-FRE3693, Centre National de la Recherche Scientifique, Gif sur Yvette, F-91198, France
| | - Laurent Bourdieu
- École Normale Supérieure, PSL Research University, CNRS, Inserm, Institut de Biologie de l'École Normale Supérieure (IBENS), Paris F-75005, France
| | - Jean-François Léger
- École Normale Supérieure, PSL Research University, CNRS, Inserm, Institut de Biologie de l'École Normale Supérieure (IBENS), Paris F-75005, France
| |
Collapse
|
45
|
Maor I, Shalev A, Mizrahi A. Distinct Spatiotemporal Response Properties of Excitatory Versus Inhibitory Neurons in the Mouse Auditory Cortex. Cereb Cortex 2016; 26:4242-4252. [PMID: 27600839 PMCID: PMC5066836 DOI: 10.1093/cercor/bhw266] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2016] [Revised: 07/05/2016] [Accepted: 08/01/2016] [Indexed: 01/31/2023] Open
Abstract
In the auditory system, early neural stations such as brain stem are characterized by strict tonotopy, which is used to deconstruct sounds to their basic frequencies. But higher along the auditory hierarchy, as early as primary auditory cortex (A1), tonotopy starts breaking down at local circuits. Here, we studied the response properties of both excitatory and inhibitory neurons in the auditory cortex of anesthetized mice. We used in vivo two photon-targeted cell-attached recordings from identified parvalbumin-positive neurons (PVNs) and their excitatory pyramidal neighbors (PyrNs). We show that PyrNs are locally heterogeneous as characterized by diverse best frequencies, pairwise signal correlations, and response timing. In marked contrast, neighboring PVNs exhibited homogenous response properties in pairwise signal correlations and temporal responses. The distinct physiological microarchitecture of different cell types is maintained qualitatively in response to natural sounds. Excitatory heterogeneity and inhibitory homogeneity within the same circuit suggest different roles for each population in coding natural stimuli.
Collapse
Affiliation(s)
- Ido Maor
- Department of Neurobiology
- The Edmond and Lily Safra Center for Brain Sciences, The Hebrew University of Jerusalem, Edmond J. Safra Campus, Givat Ram Jerusalem 91904, Israel
| | - Amos Shalev
- Department of Neurobiology
- The Edmond and Lily Safra Center for Brain Sciences, The Hebrew University of Jerusalem, Edmond J. Safra Campus, Givat Ram Jerusalem 91904, Israel
| | - Adi Mizrahi
- Department of Neurobiology
- The Edmond and Lily Safra Center for Brain Sciences, The Hebrew University of Jerusalem, Edmond J. Safra Campus, Givat Ram Jerusalem 91904, Israel
| |
Collapse
|
46
|
Niethard N, Hasegawa M, Itokazu T, Oyanedel C, Born J, Sato T. Sleep-Stage-Specific Regulation of Cortical Excitation and Inhibition. Curr Biol 2016; 26:2739-2749. [DOI: 10.1016/j.cub.2016.08.035] [Citation(s) in RCA: 91] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2016] [Revised: 08/06/2016] [Accepted: 08/16/2016] [Indexed: 10/20/2022]
|
47
|
Sofroniew NJ, Flickinger D, King J, Svoboda K. A large field of view two-photon mesoscope with subcellular resolution for in vivo imaging. eLife 2016; 5:e14472. [PMID: 27300105 PMCID: PMC4951199 DOI: 10.7554/elife.14472] [Citation(s) in RCA: 398] [Impact Index Per Article: 44.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2016] [Accepted: 06/13/2016] [Indexed: 01/17/2023] Open
Abstract
Imaging is used to map activity across populations of neurons. Microscopes with cellular resolution have small (.
Collapse
Affiliation(s)
| | - Daniel Flickinger
- Janelia Research Campus, Howard Hughes Medical Institute, Ashburn, United States
| | | | - Karel Svoboda
- Janelia Research Campus, Howard Hughes Medical Institute, Ashburn, United States
| |
Collapse
|
48
|
Emergence of functional subnetworks in layer 2/3 cortex induced by sequential spikes in vivo. Proc Natl Acad Sci U S A 2016; 113:E1372-81. [PMID: 26903616 DOI: 10.1073/pnas.1513410113] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
During cortical circuit development in the mammalian brain, groups of excitatory neurons that receive similar sensory information form microcircuits. However, cellular mechanisms underlying cortical microcircuit development remain poorly understood. Here we implemented combined two-photon imaging and photolysis in vivo to monitor and manipulate neuronal activities to study the processes underlying activity-dependent circuit changes. We found that repeated triggering of spike trains in a randomly chosen group of layer 2/3 pyramidal neurons in the somatosensory cortex triggered long-term plasticity of circuits (LTPc), resulting in the increased probability that the selected neurons would fire when action potentials of individual neurons in the group were evoked. Significant firing pattern changes were observed more frequently in the selected group of neurons than in neighboring control neurons, and the induction was dependent on the time interval between spikes, N-methyl-D-aspartate (NMDA) receptor activation, and Calcium/calmodulin-dependent protein kinase II (CaMKII) activation. In addition, LTPc was associated with an increase of activity from a portion of neighboring neurons with different probabilities. Thus, our results demonstrate that the formation of functional microcircuits requires broad network changes and that its directionality is nonrandom, which may be a general feature of cortical circuit assembly in the mammalian cortex.
Collapse
|
49
|
Inferring Neuronal Dynamics from Calcium Imaging Data Using Biophysical Models and Bayesian Inference. PLoS Comput Biol 2016; 12:e1004736. [PMID: 26894748 PMCID: PMC4760968 DOI: 10.1371/journal.pcbi.1004736] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2015] [Accepted: 01/05/2016] [Indexed: 11/26/2022] Open
Abstract
Calcium imaging has been used as a promising technique to monitor the dynamic activity of neuronal populations. However, the calcium trace is temporally smeared which restricts the extraction of quantities of interest such as spike trains of individual neurons. To address this issue, spike reconstruction algorithms have been introduced. One limitation of such reconstructions is that the underlying models are not informed about the biophysics of spike and burst generations. Such existing prior knowledge might be useful for constraining the possible solutions of spikes. Here we describe, in a novel Bayesian approach, how principled knowledge about neuronal dynamics can be employed to infer biophysical variables and parameters from fluorescence traces. By using both synthetic and in vitro recorded fluorescence traces, we demonstrate that the new approach is able to reconstruct different repetitive spiking and/or bursting patterns with accurate single spike resolution. Furthermore, we show that the high inference precision of the new approach is preserved even if the fluorescence trace is rather noisy or if the fluorescence transients show slow rise kinetics lasting several hundred milliseconds, and inhomogeneous rise and decay times. In addition, we discuss the use of the new approach for inferring parameter changes, e.g. due to a pharmacological intervention, as well as for inferring complex characteristics of immature neuronal circuits. Calcium imaging of single neurons enables the indirect observation of neuronal dynamics, for example action potential firing. In contrast to the precise timing of spike trains, the calcium trace is temporally rather smeared and measured as a fluorescence trace. Consequently, several methods have been proposed to reconstruct spikes from calcium imaging data. However, a common feature of these methods is that they are not based on the biophysics of how neurons fire spikes and bursts. We propose to introduce well-established biophysical models to create a direct link between neuronal dynamics, e.g. the membrane potential, and fluorescence traces. Using both synthetic and experimental data, we show that this approach not only provides a robust and accurate spike reconstruction but also a reliable inference about the biophysically relevant parameters and variables. This enables novel ways of analyzing calcium imaging experiments in terms of the underlying biophysical quantities.
Collapse
|
50
|
Altered Kv2.1 functioning promotes increased excitability in hippocampal neurons of an Alzheimer's disease mouse model. Cell Death Dis 2016; 7:e2100. [PMID: 26890139 PMCID: PMC5399189 DOI: 10.1038/cddis.2016.18] [Citation(s) in RCA: 70] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2015] [Revised: 12/28/2015] [Accepted: 01/03/2016] [Indexed: 01/02/2023]
Abstract
Altered neuronal excitability is emerging as an important feature in Alzheimer's disease (AD). Kv2.1 potassium channels are important modulators of neuronal excitability and synaptic activity. We investigated Kv2.1 currents and its relation to the intrinsic synaptic activity of hippocampal neurons from 3xTg-AD (triple transgenic mouse model of Alzheimer's disease) mice, a widely employed preclinical AD model. Synaptic activity was also investigated by analyzing spontaneous [Ca2+]i spikes. Compared with wild-type (Non-Tg (non-transgenic mouse model)) cultures, 3xTg-AD neurons showed enhanced spike frequency and decreased intensity. Compared with Non-Tg cultures, 3xTg-AD hippocampal neurons revealed reduced Kv2.1-dependent Ik current densities as well as normalized conductances. 3xTg-AD cultures also exhibited an overall decrease in the number of functional Kv2.1 channels. Immunofluorescence assay revealed an increase in Kv2.1 channel oligomerization, a condition associated with blockade of channel function. In Non-Tg neurons, pharmacological blockade of Kv2.1 channels reproduced the altered pattern found in the 3xTg-AD cultures. Moreover, compared with untreated sister cultures, pharmacological inhibition of Kv2.1 in 3xTg-AD neurons did not produce any significant modification in Ik current densities. Reactive oxygen species (ROS) promote Kv2.1 oligomerization, thereby acting as negative modulator of the channel activity. Glutamate receptor activation produced higher ROS levels in hippocampal 3xTg-AD cultures compared with Non-Tg neurons. Antioxidant treatment with N-Acetyl-Cysteine was found to rescue Kv2.1-dependent currents and decreased spontaneous hyperexcitability in 3xTg-AD neurons. Analogous results regarding spontaneous synaptic activity were observed in neuronal cultures treated with the antioxidant 6-hydroxy-2,5,7,8-tetramethylchroman-2-carboxylic acid (Trolox). Our study indicates that AD-related mutations may promote enhanced ROS generation, oxidative-dependent oligomerization, and loss of function of Kv2.1 channels. These processes can be part on the increased neuronal excitability of these neurons. These steps may set a deleterious vicious circle that eventually helps to promote excitotoxic damage found in the AD brain.
Collapse
|