1
|
Kukreja K, Jia BZ, McGeary SE, Patel N, Megason SG, Klein AM. Cell state transitions are decoupled from cell division during early embryo development. Nat Cell Biol 2024; 26:2035-2045. [PMID: 39516639 DOI: 10.1038/s41556-024-01546-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2023] [Accepted: 09/23/2024] [Indexed: 11/16/2024]
Abstract
As tissues develop, cells divide and differentiate concurrently. Conflicting evidence shows that cell division is either dispensable or required for formation of cell types. Here, to determine the role of cell division in differentiation, we arrested the cell cycle in zebrafish embryos using two independent approaches and profiled them at single-cell resolution. We show that cell division is dispensable for differentiation of all embryonic tissues from early gastrulation to the end of segmentation. However, arresting cell division does slow down differentiation in some cell types, and it induces global stress responses. While differentiation is robust to blocking cell division, the proportions of cells across cell states are not, but show evidence of partial compensation. This work clarifies our understanding of the role of cell division in development and showcases the utility of combining embryo-wide perturbations with single-cell RNA sequencing to uncover the role of common biological processes across multiple tissues.
Collapse
Affiliation(s)
- Kalki Kukreja
- Department of Systems Biology, Harvard Medical School, Boston, MA, USA
- Department of Chemistry, University of Chicago, Chicago, IL, USA
| | - Bill Z Jia
- Department of Systems Biology, Harvard Medical School, Boston, MA, USA
- Department of Chemistry and Chemical Biology, Harvard University, Cambridge, MA, USA
| | - Sean E McGeary
- Department of Systems Biology, Harvard Medical School, Boston, MA, USA
| | - Nikit Patel
- Department of Systems Biology, Harvard Medical School, Boston, MA, USA
- Department of Biomedical Engineering, Boston University, Boston, MA, USA
| | - Sean G Megason
- Department of Systems Biology, Harvard Medical School, Boston, MA, USA
| | - Allon M Klein
- Department of Systems Biology, Harvard Medical School, Boston, MA, USA.
| |
Collapse
|
2
|
Takasaki K, Wafula EK, Kumar SS, Smith D, Sit YT, Gagne AL, French DL, Thom CS, Chou ST. Single-cell transcriptomics reveal individual and synergistic effects of Trisomy 21 and GATA1s on hematopoiesis. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.05.24.595827. [PMID: 38826323 PMCID: PMC11142253 DOI: 10.1101/2024.05.24.595827] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/04/2024]
Abstract
Trisomy 21 (T21), or Down syndrome (DS), is associated with baseline macrocytic erythrocytosis, thrombocytopenia, and neutrophilia, as well as transient abnormal myelopoiesis (TAM) and myeloid leukemia of DS (ML-DS). TAM and ML-DS blasts both arise from an aberrant megakaryocyte-erythroid progenitor and exclusively express GATA1s, the truncated isoform of GATA1 , while germline GATA1s mutations in a non-T21 context lead to congenital cytopenia(s) without a leukemic predisposition. This suggests that T21 and GATA1s both perturb hematopoiesis in multipotent progenitors, but studying their individual effects is challenging due to limited access to relevant human progenitor populations. To dissect individual developmental impacts, we used single-cell RNA-sequencing to interrogate hematopoietic progenitor cells (HPCs) from isogenic human induced pluripotent stem cells differing only by chromosome 21 and/or GATA1 status. The transcriptomes of these HPCs revealed significant heterogeneity and lineage skew dictated by T21 and/or GATA1s. T21 and GATA1s each disrupted temporal regulation of lineage-specific transcriptional programs and specifically perturbed cell cycle genes. Trajectory inference revealed that GATA1s nearly eliminated erythropoiesis, slowed MK maturation, and promoted myelopoiesis in the euploid context, while in T21 cells, GATA1s competed with the enhanced erythropoiesis and impaired megakaryopoiesis driven by T21 to promote production of immature erythrocytes, MKs, and myeloid cells. The use of isogenic cells revealed distinct transcriptional programs that can be attributed specifically to T21 and GATA1s, and how they independently and synergistically result in HPC proliferation at the expense of maturation, consistent with a pro-leukemic phenotype.
Collapse
|
3
|
Elli EM, Mauri M, D'Aliberti D, Crespiatico I, Fontana D, Redaelli S, Pelucchi S, Spinelli S, Manghisi B, Cavalca F, Aroldi A, Ripamonti A, Ferrari S, Palamini S, Mottadelli F, Massimino L, Ramazzotti D, Cazzaniga G, Piperno A, Gambacorti-Passerini C, Piazza R. Idiopathic erythrocytosis: a germline disease? Clin Exp Med 2024; 24:11. [PMID: 38244120 PMCID: PMC10799805 DOI: 10.1007/s10238-023-01283-y] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2023] [Accepted: 11/08/2023] [Indexed: 01/22/2024]
Abstract
Polycythemia Vera (PV) is typically caused by V617F or exon 12 JAK2 mutations. Little is known about Polycythemia cases where no JAK2 variants can be detected, and no other causes identified. This condition is defined as idiopathic erythrocytosis (IE). We evaluated clinical-laboratory parameters of a cohort of 56 IE patients and we determined their molecular profile at diagnosis with paired blood/buccal-DNA exome-sequencing coupled with a high-depth targeted OncoPanel to identify a possible underling germline or somatic cause. We demonstrated that most of our cohort (40/56: 71.4%) showed no evidence of clonal hematopoiesis, suggesting that IE is, in large part, a germline disorder. We identified 20 low mutation burden somatic variants (Variant allelic fraction, VAF, < 10%) in only 14 (25%) patients, principally involving DNMT3A and TET2. Only 2 patients presented high mutation burden somatic variants, involving DNMT3A, TET2, ASXL1 and WT1. We identified recurrent germline variants in 42 (75%) patients occurring mainly in JAK/STAT, Hypoxia and Iron metabolism pathways, among them: JAK3-V722I and HIF1A-P582S; a high fraction of patients (48.2%) resulted also mutated in homeostatic iron regulatory gene HFE-H63D or C282Y. By generating cellular models, we showed that JAK3-V722I causes activation of the JAK-STAT5 axis and upregulation of EPAS1/HIF2A, while HIF1A-P582S causes suppression of hepcidin mRNA synthesis, suggesting a major role for these variants in the onset of IE.
Collapse
Affiliation(s)
- E M Elli
- Division of Hematology and Bone Marrow Transplant Unit, Fondazione IRCCS, San Gerardo dei Tintori, Monza, Italy
| | - M Mauri
- Department of Medicine and Surgery, University of Milano - Bicocca, Monza, Italy
| | - D D'Aliberti
- Department of Medicine and Surgery, University of Milano - Bicocca, Monza, Italy
| | - I Crespiatico
- Department of Medicine and Surgery, University of Milano - Bicocca, Monza, Italy
| | - D Fontana
- Department of Medicine and Surgery, University of Milano - Bicocca, Monza, Italy
| | - S Redaelli
- Department of Medicine and Surgery, University of Milano - Bicocca, Monza, Italy
| | - S Pelucchi
- Department of Medicine and Surgery, University of Milano - Bicocca, Monza, Italy
| | - S Spinelli
- Department of Medicine and Surgery, University of Milano - Bicocca, Monza, Italy
| | - B Manghisi
- Division of Hematology and Bone Marrow Transplant Unit, Fondazione IRCCS, San Gerardo dei Tintori, Monza, Italy
- Department of Medicine and Surgery, University of Milano - Bicocca, Monza, Italy
| | - F Cavalca
- Division of Hematology and Bone Marrow Transplant Unit, Fondazione IRCCS, San Gerardo dei Tintori, Monza, Italy
- Department of Medicine and Surgery, University of Milano - Bicocca, Monza, Italy
| | - A Aroldi
- Division of Hematology and Bone Marrow Transplant Unit, Fondazione IRCCS, San Gerardo dei Tintori, Monza, Italy
- Department of Medicine and Surgery, University of Milano - Bicocca, Monza, Italy
| | - A Ripamonti
- Division of Hematology and Bone Marrow Transplant Unit, Fondazione IRCCS, San Gerardo dei Tintori, Monza, Italy
- Department of Medicine and Surgery, University of Milano - Bicocca, Monza, Italy
| | - S Ferrari
- Division of Hematology and Bone Marrow Transplant Unit, Fondazione IRCCS, San Gerardo dei Tintori, Monza, Italy
- Department of Medicine and Surgery, University of Milano - Bicocca, Monza, Italy
| | - S Palamini
- Tettamanti Research Center, IRCCS, San Gerardo dei Tintori, Monza, Italy
| | - F Mottadelli
- Monza and Brianza Foundation for the Child and his Mother (MBBM), IRCCS, San Gerardo dei Tintori, Monza, Italy
| | - L Massimino
- Department of Medicine and Surgery, University of Milano - Bicocca, Monza, Italy
| | - D Ramazzotti
- Department of Medicine and Surgery, University of Milano - Bicocca, Monza, Italy
| | - G Cazzaniga
- Tettamanti Research Center, IRCCS, San Gerardo dei Tintori, Monza, Italy
| | - A Piperno
- Department of Medicine and Surgery, University of Milano - Bicocca, Monza, Italy
| | - C Gambacorti-Passerini
- Division of Hematology and Bone Marrow Transplant Unit, Fondazione IRCCS, San Gerardo dei Tintori, Monza, Italy
- Department of Medicine and Surgery, University of Milano - Bicocca, Monza, Italy
| | - R Piazza
- Division of Hematology and Bone Marrow Transplant Unit, Fondazione IRCCS, San Gerardo dei Tintori, Monza, Italy.
- Department of Medicine and Surgery, University of Milano - Bicocca, Monza, Italy.
| |
Collapse
|
4
|
Sit YT, Takasaki K, An HH, Xiao Y, Hurtz C, Gearhart PA, Zhang Z, Gadue P, French DL, Chou ST. Synergistic roles of DYRK1A and GATA1 in trisomy 21 megakaryopoiesis. JCI Insight 2023; 8:e172851. [PMID: 37906251 PMCID: PMC10895998 DOI: 10.1172/jci.insight.172851] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2023] [Accepted: 10/25/2023] [Indexed: 11/02/2023] Open
Abstract
Patients with Down syndrome (DS), or trisomy 21 (T21), are at increased risk of transient abnormal myelopoiesis (TAM) and acute megakaryoblastic leukemia (ML-DS). Both TAM and ML-DS require prenatal somatic mutations in GATA1, resulting in the truncated isoform GATA1s. The mechanism by which individual chromosome 21 (HSA21) genes synergize with GATA1s for leukemic transformation is challenging to study, in part due to limited human cell models with wild-type GATA1 (wtGATA1) or GATA1s. HSA21-encoded DYRK1A is overexpressed in ML-DS and may be a therapeutic target. To determine how DYRK1A influences hematopoiesis in concert with GATA1s, we used gene editing to disrupt all 3 alleles of DYRK1A in isogenic T21 induced pluripotent stem cells (iPSCs) with and without the GATA1s mutation. Unexpectedly, hematopoietic differentiation revealed that DYRK1A loss combined with GATA1s leads to increased megakaryocyte proliferation and decreased maturation. This proliferative phenotype was associated with upregulation of D-type cyclins and hyperphosphorylation of Rb to allow E2F release and derepression of its downstream targets. Notably, DYRK1A loss had no effect in T21 iPSCs or megakaryocytes with wtGATA1. These surprising results suggest that DYRK1A and GATA1 may synergistically restrain megakaryocyte proliferation in T21 and that DYRK1A inhibition may not be a therapeutic option for GATA1s-associated leukemias.
Collapse
Affiliation(s)
- Ying Ting Sit
- Division of Hematology, Department of Pediatrics, Children’s Hospital of Philadelphia, Philadelphia, Pennsylvania, USA
| | - Kaoru Takasaki
- Division of Hematology, Department of Pediatrics, Children’s Hospital of Philadelphia, Philadelphia, Pennsylvania, USA
| | - Hyun Hyung An
- Division of Hematology, Department of Pediatrics, Children’s Hospital of Philadelphia, Philadelphia, Pennsylvania, USA
| | - Yan Xiao
- Division of Hematology, Department of Pediatrics, Children’s Hospital of Philadelphia, Philadelphia, Pennsylvania, USA
| | - Christian Hurtz
- Fels Cancer Institute for Personalized Medicine, Lewis Katz School of Medicine, Temple University, Philadelphia, Pennsylvania, USA
| | - Peter A. Gearhart
- Deparment of Obstetrics and Gynecology, Pennsylvania Hospital, University of Pennsylvania Health System, Philadelphia, Pennsylvania, USA
| | - Zhe Zhang
- Department of Biomedical Informatics and
| | - Paul Gadue
- Center for Cellular and Molecular Therapeutics, Children’s Hospital of Philadelphia, Philadelphia, Pennsylvania, USA
- Department of Pathology and Laboratory Medicine, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Deborah L. French
- Center for Cellular and Molecular Therapeutics, Children’s Hospital of Philadelphia, Philadelphia, Pennsylvania, USA
- Department of Pathology and Laboratory Medicine, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Stella T. Chou
- Division of Hematology, Department of Pediatrics, Children’s Hospital of Philadelphia, Philadelphia, Pennsylvania, USA
- Department of Pathology and Laboratory Medicine, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, Pennsylvania, USA
| |
Collapse
|
5
|
Kukreja K, Patel N, Megason SG, Klein AM. Global decoupling of cell differentiation from cell division in early embryo development. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.07.29.551123. [PMID: 37546736 PMCID: PMC10402169 DOI: 10.1101/2023.07.29.551123] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/08/2023]
Abstract
As tissues develop, cells divide and differentiate concurrently. Conflicting evidence shows that cell division is either dispensable or required for formation of cell types. To determine the role of cell division in differentiation, we arrested the cell cycle in zebrafish embryos using two independent approaches and profiled them at single-cell resolution. We show that cell division is dispensable for differentiation of all embryonic tissues during initial cell type differentiation from early gastrulation to the end of segmentation. In the absence of cell division, differentiation slows down in some cell types, and cells exhibit global stress responses. While differentiation is robust to blocking cell division, the proportions of cells across cell states are not. This work simplifies our understanding of the role of cell division in development and showcases the utility of combining embryo-wide perturbations with single-cell RNA sequencing to uncover the role of common biological processes across multiple tissues.
Collapse
Affiliation(s)
- Kalki Kukreja
- Department of Systems Biology, Harvard Medical School, Boston, MA, USA
| | - Nikit Patel
- Department of Systems Biology, Harvard Medical School, Boston, MA, USA
| | - Sean G Megason
- Department of Systems Biology, Harvard Medical School, Boston, MA, USA
| | - Allon M Klein
- Department of Systems Biology, Harvard Medical School, Boston, MA, USA
| |
Collapse
|
6
|
Roberts I. Leukemogenesis in infants and young children with trisomy 21. HEMATOLOGY. AMERICAN SOCIETY OF HEMATOLOGY. EDUCATION PROGRAM 2022; 2022:1-8. [PMID: 36485097 PMCID: PMC9820574 DOI: 10.1182/hematology.2022000395] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
Abstract
Children with Down syndrome (DS) have a greater than 100-fold increased risk of developing acute myeloid leukemia (ML) and an approximately 30-fold increased risk of acute lymphoblastic leukemia (ALL) before their fifth birthday. ML-DS originates in utero and typically presents with a self-limiting, neonatal leukemic syndrome known as transient abnormal myelopoiesis (TAM) that is caused by cooperation between trisomy 21-associated abnormalities of fetal hematopoiesis and somatic N-terminal mutations in the transcription factor GATA1. Around 10% of neonates with DS have clinical signs of TAM, although the frequency of hematologically silent GATA1 mutations in DS neonates is much higher (~25%). While most cases of TAM/silent TAM resolve without treatment within 3 to 4 months, in 10% to 20% of cases transformation to full-blown leukemia occurs within the first 4 years of life when cells harboring GATA1 mutations persist and acquire secondary mutations, most often in cohesin genes. By contrast, DS-ALL, which is almost always B-lineage, presents after the first few months of life and is characterized by a high frequency of rearrangement of the CRLF2 gene (60%), often co-occurring with activating mutations in JAK2 or RAS genes. While treatment of ML-DS achieves long-term survival in approximately 90% of children, the outcome of DS-ALL is inferior to ALL in children without DS. Ongoing studies in primary cells and model systems indicate that the role of trisomy 21 in DS leukemogenesis is complex and cell context dependent but show promise in improving management and the treatment of relapse, in which the outcome of both ML-DS and DS-ALL remains poor.
Collapse
Affiliation(s)
- Irene Roberts
- Correspondence Irene Roberts, Department of Paediatrics, MRC Molecular Haematology Unit, MRC Weatherall Institute of Molecular Medicine, University of Oxford, Headington, Oxford OX3 9DS, United Kingdom; e-mail: ,
| |
Collapse
|
7
|
León-Ruiz JA, Cruz Ramírez A. Predicted landscape of RETINOBLASTOMA-RELATED LxCxE-mediated interactions across the Chloroplastida. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2022; 112:1507-1524. [PMID: 36305297 DOI: 10.1111/tpj.16012] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/08/2022] [Revised: 09/20/2022] [Accepted: 10/14/2022] [Indexed: 05/16/2023]
Abstract
The colonization of land by a single streptophyte algae lineage some 450 million years ago has been linked to multiple key innovations such as three-dimensional growth, alternation of generations, the presence of stomata, as well as innovations inherent to the birth of major plant lineages, such as the origins of vascular tissues, roots, seeds and flowers. Multicellularity, which evolved multiple times in the Chloroplastida coupled with precise spatiotemporal control of proliferation and differentiation were instrumental for the evolution of these traits. RETINOBLASTOMA-RELATED (RBR), the plant homolog of the metazoan Retinoblastoma protein (pRB), is a highly conserved and multifunctional core cell cycle regulator that has been implicated in the evolution of multicellularity in the green lineage as well as in plant multicellularity-related processes such as proliferation, differentiation, stem cell regulation and asymmetric cell division. RBR fulfills these roles through context-specific protein-protein interactions with proteins containing the Leu-x-Cys-x-Glu (LxCxE) short-linear motif (SLiM); however, how RBR-LxCxE interactions have changed throughout major innovations in the Viridiplantae kingdom is a question that remains unexplored. Here, we employ an in silico evo-devo approach to predict and analyze potential RBR-LxCxE interactions in different representative species of key Chloroplastida lineages, providing a valuable resource for deciphering RBR-LxCxE multiple functions. Furthermore, our analyses suggest that RBR-LxCxE interactions are an important component of RBR functions and that interactions with chromatin modifiers/remodelers, DNA replication and repair machinery are highly conserved throughout the Viridiplantae, while LxCxE interactions with transcriptional regulators likely diversified throughout the water-to-land transition.
Collapse
Affiliation(s)
- Jesús A León-Ruiz
- Molecular and Developmental Complexity Group, Unidad de Genómica Avanzada, Laboratorio Nacional de Genómica para la Biodiversidad, Cinvestav Sede Irapuato, Km. 9.6 Libramiento Norte Carretera, Irapuato-León, Irapuato, 36821, Guanajuato, Mexico
| | - Alfredo Cruz Ramírez
- Molecular and Developmental Complexity Group, Unidad de Genómica Avanzada, Laboratorio Nacional de Genómica para la Biodiversidad, Cinvestav Sede Irapuato, Km. 9.6 Libramiento Norte Carretera, Irapuato-León, Irapuato, 36821, Guanajuato, Mexico
| |
Collapse
|
8
|
Kanezaki R, Toki T, Terui K, Sato T, Kobayashi A, Kudo K, Kamio T, Sasaki S, Kawaguchi K, Watanabe K, Ito E. Mechanism of KIT gene regulation by GATA1 lacking the N-terminal domain in Down syndrome-related myeloid disorders. Sci Rep 2022; 12:20587. [PMID: 36447001 PMCID: PMC9708825 DOI: 10.1038/s41598-022-25046-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2022] [Accepted: 11/23/2022] [Indexed: 12/03/2022] Open
Abstract
Children with Down syndrome (DS) are at high risk of transient abnormal myelopoiesis (TAM) and myeloid leukemia of DS (ML-DS). GATA1 mutations are detected in almost all TAM and ML-DS samples, with exclusive expression of short GATA1 protein (GATA1s) lacking the N-terminal domain (NTD). However, it remains to be clarified how GATA1s is involved with both disorders. Here, we established the K562 GATA1s (K562-G1s) clones expressing only GATA1s by CRISPR/Cas9 genome editing. The K562-G1s clones expressed KIT at significantly higher levels compared to the wild type of K562 (K562-WT). Chromatin immunoprecipitation studies identified the GATA1-bound regulatory sites upstream of KIT in K562-WT, K562-G1s clones and two ML-DS cell lines; KPAM1 and CMK11-5. Sonication-based chromosome conformation capture (3C) assay demonstrated that in K562-WT, the - 87 kb enhancer region of KIT was proximal to the - 115 kb, - 109 kb and + 1 kb region, while in a K562-G1s clone, CMK11-5 and primary TAM cells, the - 87 kb region was more proximal to the KIT transcriptional start site. These results suggest that the NTD of GATA1 is essential for proper genomic conformation and regulation of KIT gene expression, and that perturbation of this function might be involved in the pathogenesis of TAM and ML-DS.
Collapse
Affiliation(s)
- Rika Kanezaki
- grid.257016.70000 0001 0673 6172Department of Pediatrics, Hirosaki University Graduate School of Medicine, 5 Zaifucho, Hirosaki, Aomori 036-8562 Japan
| | - Tsutomu Toki
- grid.257016.70000 0001 0673 6172Department of Pediatrics, Hirosaki University Graduate School of Medicine, 5 Zaifucho, Hirosaki, Aomori 036-8562 Japan
| | - Kiminori Terui
- grid.257016.70000 0001 0673 6172Department of Pediatrics, Hirosaki University Graduate School of Medicine, 5 Zaifucho, Hirosaki, Aomori 036-8562 Japan
| | - Tomohiko Sato
- grid.257016.70000 0001 0673 6172Department of Pediatrics, Hirosaki University Graduate School of Medicine, 5 Zaifucho, Hirosaki, Aomori 036-8562 Japan
| | - Akie Kobayashi
- grid.257016.70000 0001 0673 6172Department of Pediatrics, Hirosaki University Graduate School of Medicine, 5 Zaifucho, Hirosaki, Aomori 036-8562 Japan
| | - Ko Kudo
- grid.257016.70000 0001 0673 6172Department of Pediatrics, Hirosaki University Graduate School of Medicine, 5 Zaifucho, Hirosaki, Aomori 036-8562 Japan
| | - Takuya Kamio
- grid.257016.70000 0001 0673 6172Department of Pediatrics, Hirosaki University Graduate School of Medicine, 5 Zaifucho, Hirosaki, Aomori 036-8562 Japan
| | - Shinya Sasaki
- grid.257016.70000 0001 0673 6172Department of Pediatrics, Hirosaki University Graduate School of Medicine, 5 Zaifucho, Hirosaki, Aomori 036-8562 Japan
| | - Koji Kawaguchi
- grid.415798.60000 0004 0378 1551Department of Hematology and Oncology, Shizuoka Children’s Hospital, Shizuoka, Japan
| | - Kenichiro Watanabe
- grid.415798.60000 0004 0378 1551Department of Hematology and Oncology, Shizuoka Children’s Hospital, Shizuoka, Japan
| | - Etsuro Ito
- grid.257016.70000 0001 0673 6172Department of Pediatrics, Hirosaki University Graduate School of Medicine, 5 Zaifucho, Hirosaki, Aomori 036-8562 Japan ,grid.257016.70000 0001 0673 6172Department of Community Medicine, Hirosaki University Graduate School of Medicine, Hirosaki, Japan
| |
Collapse
|
9
|
A Novel GATA1 Variant in the C-Terminal Zinc Finger Compared with the Platelet Phenotype of Patients with A Likely Pathogenic Variant in the N-Terminal Zinc Finger. Cells 2022; 11:cells11203223. [PMID: 36291092 PMCID: PMC9600848 DOI: 10.3390/cells11203223] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2022] [Revised: 09/22/2022] [Accepted: 10/10/2022] [Indexed: 01/19/2023] Open
Abstract
The GATA1 transcription factor is essential for normal erythropoiesis and megakaryocytic differentiation. Germline GATA1 pathogenic variants in the N-terminal zinc finger (N-ZF) are typically associated with X-linked thrombocytopenia, platelet dysfunction, and dyserythropoietic anemia. A few variants in the C-terminal ZF (C-ZF) domain are described with normal platelet count but altered platelet function as the main characteristic. Independently performed molecular genetic analysis identified a novel hemizygous variant (c.865C>T, p.H289Y) in the C-ZF region of GATA1 in a German patient and in a Spanish patient. We characterized the bleeding and platelet phenotype of these patients and compared these findings with the parameters of two German siblings carrying the likely pathogenic variant p.D218N in the GATA1 N-ZF domain. The main difference was profound thrombocytopenia in the brothers carrying the p.D218N variant compared to a normal platelet count in patients carrying the p.H289Y variant; only the Spanish patient occasionally developed mild thrombocytopenia. A functional platelet defect affecting αIIbβ3 integrin activation and α-granule secretion was present in all patients. Additionally, mild anemia, anisocytosis, and poikilocytosis were observed in the patients with the C-ZF variant. Our data support the concept that GATA1 variants located in the different ZF regions can lead to clinically diverse manifestations.
Collapse
|
10
|
Arkoun B, Robert E, Boudia F, Mazzi S, Dufour V, Siret A, Mammasse Y, Aid Z, Vieira M, Imanci A, Aglave M, Cambot M, Petermann R, Souquere S, Rameau P, Catelain C, Diot R, Tachdjian G, Hermine O, Droin N, Debili N, Plo I, Malinge S, Soler E, Raslova H, Mercher T, Vainchenker W. Stepwise GATA1 and SMC3 mutations alter megakaryocyte differentiation in a Down syndrome leukemia model. J Clin Invest 2022; 132:156290. [PMID: 35587378 PMCID: PMC9282925 DOI: 10.1172/jci156290] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2021] [Accepted: 05/13/2022] [Indexed: 11/22/2022] Open
Abstract
Acute megakaryoblastic leukemia of Down syndrome (DS-AMKL) is a model of clonal evolution from a preleukemic transient myeloproliferative disorder requiring both a trisomy 21 (T21) and a GATA1s mutation to a leukemia driven by additional driver mutations. We modeled the megakaryocyte differentiation defect through stepwise gene editing of GATA1s, SMC3+/–, and MPLW515K, providing 20 different T21 or disomy 21 (D21) induced pluripotent stem cell (iPSC) clones. GATA1s profoundly reshaped iPSC-derived hematopoietic architecture with gradual myeloid-to-megakaryocyte shift and megakaryocyte differentiation alteration upon addition of SMC3 and MPL mutations. Transcriptional, chromatin accessibility, and GATA1-binding data showed alteration of essential megakaryocyte differentiation genes, including NFE2 downregulation that was associated with loss of GATA1s binding and functionally involved in megakaryocyte differentiation blockage. T21 enhanced the proliferative phenotype, reproducing the cellular and molecular abnormalities of DS-AMKL. Our study provides an array of human cell–based models revealing individual contributions of different mutations to DS-AMKL differentiation blockage, a major determinant of leukemic progression.
Collapse
Affiliation(s)
- Brahim Arkoun
- INSERM, UMR1287, Institut Gustave Roussy, Villejuif, France
| | - Elie Robert
- INSERM, UMR1170, Institut Gustave Roussy, Villejuif, France
| | - Fabien Boudia
- INSERM, UMR1170, Institut Gustave Roussy, Villejuif, France
| | - Stefania Mazzi
- INSERM, UMR1287, Institut Gustave Roussy, Villejuif, France
| | - Virginie Dufour
- INSERM, UMR1287, Institut National de la Transfusion Sanguine, Villejuif, France
| | - Aurelie Siret
- INSERM, UMR1170, Institut Gustave Roussy, Villejuif, France
| | - Yasmine Mammasse
- Département d'Immunologie Plaquettaire, Institut National de la Transfusion Sanguine, Paris, France
| | - Zakia Aid
- INSERM, UMR1170, Institut Gustave Roussy, Villejuif, France
| | - Mathieu Vieira
- INSERM, UMR1287, Institut Gustave Roussy, Villejuif, France
| | - Aygun Imanci
- INSERM, UMR1287, Institut Gustave Roussy, Villejuif, France
| | - Marine Aglave
- Plateforme de Bioinformatique, Institut Gustave Roussy, Villejuif, France
| | - Marie Cambot
- Département d'Immunologie Plaquettaire, Institut National de la Transfusion Sanguine, Paris, France
| | - Rachel Petermann
- Département d'Immunologie Plaquettaire, Institut National de Transfusion Sanguine, Paris, France
| | - Sylvie Souquere
- Centre National de la Recherche Scientifique, UMR8122, Institut Gustave Roussy, Villejuif, France
| | - Philippe Rameau
- UMS AMMICA, INSERM US23, Institut Gustave Roussy, Villejuif, France
| | - Cyril Catelain
- UMS AMMICA, INSERM US23, Institut Gustave Roussy, Villejuif, France
| | - Romain Diot
- Service d'Histologie, Embryologie et Cytogénétique, Hôpital Antoine Béclère, Clamart, France
| | - Gerard Tachdjian
- Service d'Histologie, Embryologie et Cytogénétique, Hôpital Antoine Béclère, Clamart, France
| | | | - Nathalie Droin
- INSERM, UMR1170, Institut Gustave Roussy, Villejuif, France
| | - Najet Debili
- INSERM, UMR1287, Institut Gustave Roussy, Villejuif, France
| | - Isabelle Plo
- INSERM, UMR1287, Institut Gustave Roussy, Villejuif, France
| | - Sebastien Malinge
- Telethon Kids Cancer Centre, Telethon Kids Institute, University of Western Australia, Perth, Australia
| | - Eric Soler
- IGMM, University of Montpellier, Montpellier, France
| | - Hana Raslova
- INSERM, UMR1287, Institut Gustave Roussy, Villejuif, France
| | - Thomas Mercher
- INSERM, UMR1170, Institut Gustave Roussy, Villejuif, France
| | | |
Collapse
|
11
|
Janostiak R, Torres-Sanchez A, Posas F, de Nadal E. Understanding Retinoblastoma Post-Translational Regulation for the Design of Targeted Cancer Therapies. Cancers (Basel) 2022; 14:cancers14051265. [PMID: 35267571 PMCID: PMC8909233 DOI: 10.3390/cancers14051265] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2022] [Revised: 02/22/2022] [Accepted: 02/25/2022] [Indexed: 01/05/2023] Open
Abstract
Simple Summary Rb1 is a regulator of cell cycle progression and genomic stability. This review focuses on post-translational modifications, their effect on Rb1 interactors, and their role in intracellular signaling in the context of cancer development. Finally, we highlight potential approaches to harness these post-translational modifications to design novel effective anticancer therapies. Abstract The retinoblastoma protein (Rb1) is a prototypical tumor suppressor protein whose role was described more than 40 years ago. Together with p107 (also known as RBL1) and p130 (also known as RBL2), the Rb1 belongs to a family of structurally and functionally similar proteins that inhibits cell cycle progression. Given the central role of Rb1 in regulating proliferation, its expression or function is altered in most types of cancer. One of the mechanisms underlying Rb-mediated cell cycle inhibition is the binding and repression of E2F transcription factors, and these processes are dependent on Rb1 phosphorylation status. However, recent work shows that Rb1 is a convergent point of many pathways and thus the regulation of its function through post-translational modifications is more complex than initially expected. Moreover, depending on the context, downstream signaling can be both E2F-dependent and -independent. This review seeks to summarize the most recent research on Rb1 function and regulation and discuss potential avenues for the design of novel cancer therapies.
Collapse
Affiliation(s)
- Radoslav Janostiak
- Institute for Research in Biomedicine (IRB Barcelona), The Barcelona Institute of Science and Technology, Baldiri Reixac, 10, 08028 Barcelona, Spain; (R.J.); (A.T.-S.)
- Department of Medicine and Life Sciences (MELIS), Universitat Pompeu Fabra (UPF), 08003 Barcelona, Spain
| | - Ariadna Torres-Sanchez
- Institute for Research in Biomedicine (IRB Barcelona), The Barcelona Institute of Science and Technology, Baldiri Reixac, 10, 08028 Barcelona, Spain; (R.J.); (A.T.-S.)
- Department of Medicine and Life Sciences (MELIS), Universitat Pompeu Fabra (UPF), 08003 Barcelona, Spain
| | - Francesc Posas
- Institute for Research in Biomedicine (IRB Barcelona), The Barcelona Institute of Science and Technology, Baldiri Reixac, 10, 08028 Barcelona, Spain; (R.J.); (A.T.-S.)
- Department of Medicine and Life Sciences (MELIS), Universitat Pompeu Fabra (UPF), 08003 Barcelona, Spain
- Correspondence: (F.P.); (E.d.N.); Tel.: +34-93-403-4810 (F.P.); +34-93-403-9895 (E.d.N.)
| | - Eulàlia de Nadal
- Institute for Research in Biomedicine (IRB Barcelona), The Barcelona Institute of Science and Technology, Baldiri Reixac, 10, 08028 Barcelona, Spain; (R.J.); (A.T.-S.)
- Department of Medicine and Life Sciences (MELIS), Universitat Pompeu Fabra (UPF), 08003 Barcelona, Spain
- Correspondence: (F.P.); (E.d.N.); Tel.: +34-93-403-4810 (F.P.); +34-93-403-9895 (E.d.N.)
| |
Collapse
|
12
|
Juban G, Sakakini N, Chagraoui H, Cruz Hernandez D, Cheng Q, Soady K, Stoilova B, Garnett C, Waithe D, Otto G, Doondeea J, Usukhbayar B, Karkoulia E, Alexiou M, Strouboulis J, Morrissey E, Roberts I, Porcher C, Vyas P. Oncogenic Gata1 causes stage-specific megakaryocyte differentiation delay. Haematologica 2021; 106:1106-1119. [PMID: 32527952 PMCID: PMC8018159 DOI: 10.3324/haematol.2019.244541] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2020] [Indexed: 01/12/2023] Open
Abstract
The megakaryocyte/erythroid transient myeloproliferative disorder (TMD) in newborns with Down syndrome (DS) occurs when Nterminal truncating mutations of the hemopoietic transcription factor GATA1, that produce GATA1short protein (GATA1s), are acquired early in development. Prior work has shown that murine GATA1s, by itself, causes a transient yolk sac myeloproliferative disorder. However, it is unclear where in the hemopoietic cellular hierarchy GATA1s exerts its effects to produce this myeloproliferative state. Here, through a detailed examination of hemopoiesis from murine GATA1s embryonic stem cells (ESC) and GATA1s embryos we define defects in erythroid and megakaryocytic differentiation that occur late in hemopoiesis. GATA1s causes an arrest late in erythroid differentiation in vivo, and even more profoundly in ESC-derived cultures, with a marked reduction of Ter-119 cells and reduced erythroid gene expression. In megakaryopoiesis, GATA1s causes a differentiation delay at a specific stage, with accumulation of immature, kit-expressing CD41hi megakaryocytic cells. In this specific megakaryocytic compartment, there are increased numbers of GATA1s cells in S-phase of the cell cycle and a reduced number of apoptotic cells compared to GATA1 cells in the same cell compartment. There is also a delay in maturation of these immature GATA1s megakaryocytic lineage cells compared to GATA1 cells at the same stage of differentiation. Finally, even when GATA1s megakaryocytic cells mature, they mature aberrantly with altered megakaryocyte-specific gene expression and activity of the mature megakaryocyte enzyme, acetylcholinesterase. These studies pinpoint the hemopoietic compartment where GATA1s megakaryocyte myeloproliferation occurs, defining where molecular studies should now be focused to understand the oncogenic action of GATA1s.
Collapse
Affiliation(s)
- Gaëtan Juban
- MRC Molecular Haematology Unit WIMM, University of Oxford, UK
| | | | - Hedia Chagraoui
- MRC Molecular Haematology Unit WIMM, University of Oxford, UK
| | | | - Qian Cheng
- Centre for Computational Biology WIMM, University of Oxford, UK
| | - Kelly Soady
- MRC Molecular Haematology Unit WIMM, University of Oxford, UK
| | | | | | - Dominic Waithe
- Centre for Computational Biology WIMM, University of Oxford, UK
| | - Georg Otto
- University College London Institute of Child Health, London
| | | | | | - Elena Karkoulia
- Institute of Molecular Biology and Biotechnology, Foundation of Rese and Technology-Hellas, Crete Greece
| | - Maria Alexiou
- Biomedical Sciences Research Center "Alexander Fleming" Vari, Greece
| | - John Strouboulis
- Institute of Molecular Biology and Biotechnology, Foundation of Rese and Technology-Hellas, Crete Greece
| | | | | | | | - Paresh Vyas
- MRC Molecular Haematology Unit WIMM, University of Oxford, UK
| |
Collapse
|
13
|
Grimm J, Heckl D, Klusmann JH. Molecular Mechanisms of the Genetic Predisposition to Acute Megakaryoblastic Leukemia in Infants With Down Syndrome. Front Oncol 2021; 11:636633. [PMID: 33777792 PMCID: PMC7992977 DOI: 10.3389/fonc.2021.636633] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2020] [Accepted: 01/12/2021] [Indexed: 01/28/2023] Open
Abstract
Individuals with Down syndrome are genetically predisposed to developing acute megakaryoblastic leukemia. This myeloid leukemia associated with Down syndrome (ML–DS) demonstrates a model of step-wise leukemogenesis with perturbed hematopoiesis already presenting in utero, facilitating the acquisition of additional driver mutations such as truncating GATA1 variants, which are pathognomonic to the disease. Consequently, the affected individuals suffer from a transient abnormal myelopoiesis (TAM)—a pre-leukemic state preceding the progression to ML–DS. In our review, we focus on the molecular mechanisms of the different steps of clonal evolution in Down syndrome leukemogenesis, and aim to provide a comprehensive view on the complex interplay between gene dosage imbalances, GATA1 mutations and somatic mutations affecting JAK-STAT signaling, the cohesin complex and epigenetic regulators.
Collapse
Affiliation(s)
- Juliane Grimm
- Pediatric Hematology and Oncology, Martin Luther University Halle-Wittenberg, Halle, Germany.,Department of Internal Medicine IV, Oncology/Hematology, Martin Luther University Halle-Wittenberg, Halle, Germany
| | - Dirk Heckl
- Pediatric Hematology and Oncology, Martin Luther University Halle-Wittenberg, Halle, Germany
| | - Jan-Henning Klusmann
- Pediatric Hematology and Oncology, Martin Luther University Halle-Wittenberg, Halle, Germany
| |
Collapse
|
14
|
Direct Regulation of DNA Repair by E2F and RB in Mammals and Plants: Core Function or Convergent Evolution? Cancers (Basel) 2021; 13:cancers13050934. [PMID: 33668093 PMCID: PMC7956360 DOI: 10.3390/cancers13050934] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2020] [Revised: 02/10/2021] [Accepted: 02/19/2021] [Indexed: 12/13/2022] Open
Abstract
Simple Summary Retinoblastoma (RB) proteins and E2F transcription factors partner together to regulate the cell cycle in many eukaryotic organisms. In organisms that lack one or both of these proteins, other proteins have taken on the essential function of cell cycle regulation. RB and E2F also have important functions outside of the cell cycle, including DNA repair. This review summarizes the non-canonical functions of RB and E2F in maintaining genome integrity and raises the question of whether such functions have always been present or have evolved more recently. Abstract Members of the E2F transcription factor family regulate the expression of genes important for DNA replication and mitotic cell division in most eukaryotes. Homologs of the retinoblastoma (RB) tumor suppressor inhibit the activity of E2F factors, thus controlling cell cycle progression. Organisms such as budding and fission yeast have lost genes encoding E2F and RB, but have gained genes encoding other proteins that take on E2F and RB cell cycle-related functions. In addition to regulating cell proliferation, E2F and RB homologs have non-canonical functions outside the mitotic cell cycle in a variety of eukaryotes. For example, in both mammals and plants, E2F and RB homologs localize to DNA double-strand breaks (DSBs) and directly promote repair by homologous recombination (HR). Here, we discuss the parallels between mammalian E2F1 and RB and their Arabidopsis homologs, E2FA and RB-related (RBR), with respect to their recruitment to sites of DNA damage and how they help recruit repair factors important for DNA end resection. We also explore the question of whether this role in DNA repair is a conserved ancient function of the E2F and RB homologs in the last eukaryotic common ancestor or whether this function evolved independently in mammals and plants.
Collapse
|
15
|
Ush regulates hemocyte-specific gene expression, fatty acid metabolism and cell cycle progression and cooperates with dNuRD to orchestrate hematopoiesis. PLoS Genet 2021; 17:e1009318. [PMID: 33600407 PMCID: PMC7891773 DOI: 10.1371/journal.pgen.1009318] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2020] [Accepted: 12/20/2020] [Indexed: 12/13/2022] Open
Abstract
The generation of lineage-specific gene expression programmes that alter proliferation capacity, metabolic profile and cell type-specific functions during differentiation from multipotent stem cells to specialised cell types is crucial for development. During differentiation gene expression programmes are dynamically modulated by a complex interplay between sequence-specific transcription factors, associated cofactors and epigenetic regulators. Here, we study U-shaped (Ush), a multi-zinc finger protein that maintains the multipotency of stem cell-like hemocyte progenitors during Drosophila hematopoiesis. Using genomewide approaches we reveal that Ush binds to promoters and enhancers and that it controls the expression of three gene classes that encode proteins relevant to stem cell-like functions and differentiation: cell cycle regulators, key metabolic enzymes and proteins conferring specific functions of differentiated hemocytes. We employ complementary biochemical approaches to characterise the molecular mechanisms of Ush-mediated gene regulation. We uncover distinct Ush isoforms one of which binds the Nucleosome Remodeling and Deacetylation (NuRD) complex using an evolutionary conserved peptide motif. Remarkably, the Ush/NuRD complex specifically contributes to the repression of lineage-specific genes but does not impact the expression of cell cycle regulators or metabolic genes. This reveals a mechanism that enables specific and concerted modulation of functionally related portions of a wider gene expression programme. Finally, we use genetic assays to demonstrate that Ush and NuRD regulate enhancer activity during hemocyte differentiation in vivo and that both cooperate to suppress the differentiation of lamellocytes, a highly specialised blood cell type. Our findings reveal that Ush coordinates proliferation, metabolism and cell type-specific activities by isoform-specific cooperation with an epigenetic regulator.
Collapse
|
16
|
Ducloux C, You B, Langelé A, Goupille O, Payen E, Chrétien S, Kadri Z. Enhanced Cell-Based Detection of Parvovirus B19V Infectious Units According to Cell Cycle Status. Viruses 2020; 12:v12121467. [PMID: 33353185 PMCID: PMC7766612 DOI: 10.3390/v12121467] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2020] [Revised: 09/21/2020] [Accepted: 09/29/2020] [Indexed: 12/17/2022] Open
Abstract
Human parvovirus B19 (B19V) causes various human diseases, ranging from childhood benign infection to arthropathies, severe anemia and fetal hydrops, depending on the health state and hematological status of the patient. To counteract B19V blood-borne contamination, evaluation of B19 DNA in plasma pools and viral inactivation/removal steps are performed, but nucleic acid testing does not correctly reflect B19V infectivity. There is currently no appropriate cellular model for detection of infectious units of B19V. We describe here an improved cell-based method for detecting B19V infectious units by evaluating its host transcription. We evaluated the ability of various cell lines to support B19V infection. Of all tested, UT7/Epo cell line, UT7/Epo-STI, showed the greatest sensitivity to B19 infection combined with ease of performance. We generated stable clones by limiting dilution on the UT7/Epo-STI cell line with graduated permissiveness for B19V and demonstrated a direct correlation between infectivity and S/G2/M cell cycle stage. Two of the clones tested, B12 and E2, reached sensitivity levels higher than those of UT7/Epo-S1 and CD36+ erythroid progenitor cells. These findings highlight the importance of cell cycle status for sensitivity to B19V, and we propose a promising new straightforward cell-based method for quantifying B19V infectious units.
Collapse
Affiliation(s)
- Céline Ducloux
- Laboratoire Français du Fractionnement et des Biotechnologies (LFB), 3 Avenue des Tropiques, BP 305, Courtabœuf CEDEX, 91958 Les Ulis, France; (C.D.); (B.Y.); (A.L.)
| | - Bruno You
- Laboratoire Français du Fractionnement et des Biotechnologies (LFB), 3 Avenue des Tropiques, BP 305, Courtabœuf CEDEX, 91958 Les Ulis, France; (C.D.); (B.Y.); (A.L.)
| | - Amandine Langelé
- Laboratoire Français du Fractionnement et des Biotechnologies (LFB), 3 Avenue des Tropiques, BP 305, Courtabœuf CEDEX, 91958 Les Ulis, France; (C.D.); (B.Y.); (A.L.)
- Division of Innovative Therapies, UMR-1184, IMVA-HB and IDMIT Center, CEA, INSERM and Paris-Saclay University, F-92265 Fontenay-aux-Roses, France; (O.G.); (E.P.); (S.C.)
| | - Olivier Goupille
- Division of Innovative Therapies, UMR-1184, IMVA-HB and IDMIT Center, CEA, INSERM and Paris-Saclay University, F-92265 Fontenay-aux-Roses, France; (O.G.); (E.P.); (S.C.)
| | - Emmanuel Payen
- Division of Innovative Therapies, UMR-1184, IMVA-HB and IDMIT Center, CEA, INSERM and Paris-Saclay University, F-92265 Fontenay-aux-Roses, France; (O.G.); (E.P.); (S.C.)
| | - Stany Chrétien
- Division of Innovative Therapies, UMR-1184, IMVA-HB and IDMIT Center, CEA, INSERM and Paris-Saclay University, F-92265 Fontenay-aux-Roses, France; (O.G.); (E.P.); (S.C.)
| | - Zahra Kadri
- Division of Innovative Therapies, UMR-1184, IMVA-HB and IDMIT Center, CEA, INSERM and Paris-Saclay University, F-92265 Fontenay-aux-Roses, France; (O.G.); (E.P.); (S.C.)
- Correspondence:
| |
Collapse
|
17
|
Barwe SP, Sidhu I, Kolb EA, Gopalakrishnapillai A. Modeling Transient Abnormal Myelopoiesis Using Induced Pluripotent Stem Cells and CRISPR/Cas9 Technology. MOLECULAR THERAPY-METHODS & CLINICAL DEVELOPMENT 2020; 19:201-209. [PMID: 33102613 PMCID: PMC7558799 DOI: 10.1016/j.omtm.2020.09.007] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/18/2020] [Accepted: 09/13/2020] [Indexed: 01/18/2023]
Abstract
Approximately 1%–2% of children with Down syndrome (DS) develop acute myeloid leukemia (AML) prior to age 5 years. AML in DS children (ML-DS) is characterized by the pathognomonic mutation in the gene encoding the essential hematopoietic transcription factor GATA1, resulting in N-terminally truncated short form of GATA1 (GATA1s). Trisomy 21 and GATA1s together are sufficient to induce transient abnormal myelopoiesis (TAM) exhibiting pre-leukemic characteristics. Approximately 30% of these cases progress into ML-DS by acquisition of additional somatic mutations. We employed disease modeling in vitro by the use of customizable induced pluripotent stem cells (iPSCs) to generate a TAM model. Isogenic iPSC lines derived from the fibroblasts of DS individuals with trisomy 21 and with disomy 21 were used. The CRISPR (Clustered Regularly Interspaced Short Palindromic Repeats)/Cas9 system was used to introduce GATA1 mutation in disomic and trisomic iPSC lines. The hematopoietic stem and progenitor cells (HSPCs) derived from GATA1 mutant iPSC lines expressed GATA1s. The expression of GATA1s concomitant with loss of full-length GATA1 reduced the erythroid population, whereas it augmented megakaryoid and myeloid populations, characteristic of TAM. In conclusion, we have developed a model system representing TAM, which can be used for modeling ML-DS by stepwise introduction of additional mutations.
Collapse
Affiliation(s)
- Sonali P Barwe
- Nemours Center for Childhood Cancer Research, A.I. DuPont Hospital for Children, Wilmington, DE 19803, USA.,University of Delaware, Newark, DE 19711, USA
| | - Ishnoor Sidhu
- Nemours Center for Childhood Cancer Research, A.I. DuPont Hospital for Children, Wilmington, DE 19803, USA.,University of Delaware, Newark, DE 19711, USA
| | - E Anders Kolb
- Nemours Center for Childhood Cancer Research, A.I. DuPont Hospital for Children, Wilmington, DE 19803, USA
| | - Anilkumar Gopalakrishnapillai
- Nemours Center for Childhood Cancer Research, A.I. DuPont Hospital for Children, Wilmington, DE 19803, USA.,University of Delaware, Newark, DE 19711, USA
| |
Collapse
|
18
|
Chromatin occupancy and epigenetic analysis reveal new insights into the function of the GATA1 N terminus in erythropoiesis. Blood 2020; 134:1619-1631. [PMID: 31409672 DOI: 10.1182/blood.2019001234] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2019] [Accepted: 08/05/2019] [Indexed: 12/13/2022] Open
Abstract
Mutations in GATA1, which lead to expression of the GATA1s isoform that lacks the GATA1 N terminus, are seen in patients with Diamond-Blackfan anemia (DBA). In our efforts to better understand the connection between GATA1s and DBA, we comprehensively studied erythropoiesis in Gata1s mice. Defects in yolks sac and fetal liver hematopoiesis included impaired terminal maturation and reduced numbers of erythroid progenitors. RNA-sequencing revealed that both erythroid and megakaryocytic gene expression patterns were altered by the loss of the N terminus, including aberrant upregulation of Gata2 and Runx1. Dysregulation of global H3K27 methylation was found in the erythroid progenitors upon loss of N terminus of GATA1. Chromatin-binding assays revealed that, despite similar occupancy of GATA1 and GATA1s, there was a striking reduction of H3K27me3 at regulatory elements of the Gata2 and Runx1 genes. Consistent with the observation that overexpression of GATA2 has been reported to impair erythropoiesis, we found that haploinsufficiency of Gata2 rescued the erythroid defects of Gata1s fetuses. Together, our integrated genomic analysis of transcriptomic and epigenetic signatures reveals that, Gata1 mice provide novel insights into the role of the N terminus of GATA1 in transcriptional regulation and red blood cell maturation which may potentially be useful for DBA patients.
Collapse
|
19
|
Garnett C, Cruz Hernandez D, Vyas P. GATA1 and cooperating mutations in myeloid leukaemia of Down syndrome. IUBMB Life 2019; 72:119-130. [PMID: 31769932 DOI: 10.1002/iub.2197] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2019] [Accepted: 10/24/2019] [Indexed: 12/22/2022]
Abstract
Myeloid leukaemia of Down syndrome (ML-DS) is an acute megakaryoblastic/erythroid leukaemia uniquely found in children with Down syndrome (constitutive trisomy 21). It has a unique clinical course, being preceded by a pre-leukaemic condition known as transient abnormal myelopoiesis (TAM), and provides an excellent model to study multistep leukaemogenesis. Both TAM and ML-DS blasts carry acquired N-terminal truncating mutations in the erythro-megakaryocytic transcription factor GATA1. These result in exclusive production of a shorter isoform (GATA1s). The majority of TAM cases resolve spontaneously without the need for treatment; however, around 10% acquire additional cooperating mutations and transform to leukaemia, with differentiation block and clinically significant cytopenias. Transformation is driven by the acquisition of additional mutation(s), which cooperate with GATA1s to perturb normal haematopoiesis.
Collapse
Affiliation(s)
- Catherine Garnett
- MRC Weatherall Institute of Molecular Medicine, University of Oxford, United Kingdom of Great Britain and Northern Ireland
| | - David Cruz Hernandez
- MRC Weatherall Institute of Molecular Medicine, University of Oxford, United Kingdom of Great Britain and Northern Ireland
| | - Paresh Vyas
- MRC Weatherall Institute of Molecular Medicine, University of Oxford, United Kingdom of Great Britain and Northern Ireland
| |
Collapse
|
20
|
Gutiérrez L, Caballero N, Fernández-Calleja L, Karkoulia E, Strouboulis J. Regulation of GATA1 levels in erythropoiesis. IUBMB Life 2019; 72:89-105. [PMID: 31769197 DOI: 10.1002/iub.2192] [Citation(s) in RCA: 76] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2019] [Accepted: 10/14/2019] [Indexed: 12/15/2022]
Abstract
GATA1 is considered as the "master" transcription factor in erythropoiesis. It regulates at the transcriptional level all aspects of erythroid maturation and function, as revealed by gene knockout studies in mice and by genome-wide occupancies in erythroid cells. The GATA1 protein contains two zinc finger domains and an N-terminal transactivation domain. GATA1 translation results in the production of the full-length protein and of a shorter variant (GATA1s) lacking the N-terminal transactivation domain, which is functionally deficient in supporting erythropoiesis. GATA1 protein abundance is highly regulated in erythroid cells at different levels, including transcription, mRNA translation, posttranslational modifications, and protein degradation, in a differentiation-stage-specific manner. Maintaining high GATA1 protein levels is essential in the early stages of erythroid maturation, whereas downregulating GATA1 protein levels is a necessary step in terminal erythroid differentiation. The importance of maintaining proper GATA1 protein homeostasis in erythropoiesis is demonstrated by the fact that both GATA1 loss and its overexpression result in lethal anemia. Importantly, alterations in any of those GATA1 regulatory checkpoints have been recognized as an important cause of hematological disorders such as dyserythropoiesis (with or without thrombocytopenia), β-thalassemia, Diamond-Blackfan anemia, myelodysplasia, or leukemia. In this review, we provide an overview of the multilevel regulation of GATA1 protein homeostasis in erythropoiesis and of its deregulation in hematological disease.
Collapse
Affiliation(s)
- Laura Gutiérrez
- Platelet Research Lab, Instituto de Investigación Sanitaria del Principado de Asturias (ISPA), Oviedo, Spain.,Department of Medicine, Universidad de Oviedo, Oviedo, Spain
| | - Noemí Caballero
- Platelet Research Lab, Instituto de Investigación Sanitaria del Principado de Asturias (ISPA), Oviedo, Spain
| | - Luis Fernández-Calleja
- Platelet Research Lab, Instituto de Investigación Sanitaria del Principado de Asturias (ISPA), Oviedo, Spain
| | - Elena Karkoulia
- Institute of Molecular Biology and Biotechnology, Foundation of Research & Technology Hellas, Heraklion, Crete, Greece
| | - John Strouboulis
- Cancer Comprehensive Center, School of Cancer and Pharmaceutical Sciences, King's College London, London, United Kingdom
| |
Collapse
|
21
|
Ling T, Crispino JD. GATA1 mutations in red cell disorders. IUBMB Life 2019; 72:106-118. [PMID: 31652397 DOI: 10.1002/iub.2177] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2019] [Accepted: 09/18/2019] [Indexed: 01/01/2023]
Abstract
GATA1 is an essential regulator of erythroid cell gene expression and maturation. In its absence, erythroid progenitors are arrested in differentiation and undergo apoptosis. Much has been learned about GATA1 function through animal models, which include genetic knockouts as well as ones with decreased levels of expression. However, even greater insights have come from the finding that a number of rare red cell disorders, including Diamond-Blackfan anemia, are associated with GATA1 mutations. These mutations affect the amino-terminal zinc finger (N-ZF) and the amino-terminus of the protein, and in both cases can alter the DNA-binding activity, which is primarily conferred by the third functional domain, the carboxyl-terminal zinc finger (C-ZF). Here we discuss the role of GATA1 in erythropoiesis with an emphasis on the mutations found in human patients with red cell disorders.
Collapse
Affiliation(s)
- Te Ling
- Division of Hematology/Oncology, Northwestern University, Chicago, Illinois
| | - John D Crispino
- Division of Hematology/Oncology, Northwestern University, Chicago, Illinois
| |
Collapse
|
22
|
Zhang N, Jiang H, Bai Y, Lu X, Feng M, Guo Y, Zhang S, Luo Q, Wu H, Wang L. The molecular mechanism study of insulin on proliferation and differentiation of osteoblasts under high glucose conditions. Cell Biochem Funct 2019; 37:385-394. [PMID: 31140646 DOI: 10.1002/cbf.3415] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2018] [Revised: 04/02/2019] [Accepted: 05/11/2019] [Indexed: 12/26/2022]
Affiliation(s)
- Nong Zhang
- Department of StomatologyShenzhen Longgang District Maternal and Child Health Care Hospital Shenzhen China
| | - Hua Jiang
- Department of StomatologyGeneral Hospital of Chinese People's Liberation Army Beijing China
| | - Yang Bai
- Department of StomatologyGeneral Hospital of Chinese People's Liberation Army Beijing China
| | - Xingmei Lu
- Department of Chemical Engineering and Technology, a CAS key Laboratory of Green Process and Engineering, Institute of Process Engineering, China B college of Chemical and Engineering, University of Chinese Academy of SciencesChinese Academy of Sciences Beijing China
| | - Mi Feng
- Department of Applied Chemistry, a CAS key Laboratory of Green Process and Engineering, Institute of Process Engineering, China B college of Chemical and Engineering, University of Chinese Academy of SciencesChinese Academy of Sciences Beijing China
| | - Yu Guo
- Department of StomatologyGeneral Hospital of Chinese People's Liberation Army Beijing China
| | - Shuo Zhang
- Department of StomatologyGeneral Hospital of Chinese People's Liberation Army Beijing China
| | - Qiang Luo
- Department of StomatologyGeneral Hospital of Chinese People's Liberation Army Beijing China
| | - Hao Wu
- Department of StomatologyGeneral Hospital of Chinese People's Liberation Army Beijing China
| | - Lin Wang
- Department of StomatologyGeneral Hospital of Chinese People's Liberation Army Beijing China
| |
Collapse
|
23
|
Goupille O, Kadri Z, Langelé A, Luccantoni S, Badoual C, Leboulch P, Chrétien S. The integrity of the FOG-2 LXCXE pRb-binding motif is required for small intestine homeostasis. Exp Physiol 2019; 104:1074-1089. [PMID: 31012180 DOI: 10.1113/ep087369] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2018] [Accepted: 04/16/2019] [Indexed: 11/08/2022]
Abstract
NEW FINDINGS What is the central question of this study? Do Fog2Rb- / Rb- mice present a defect of small intestine homeostasis? What is the main finding and its importance? The importance of interactions between FOG-2 and pRb in adipose tissue physiology has previously been demonstrated. Here it is shown that this interaction is also intrinsic to small intestine homeostasis and exerts extrinsic control over mouse metabolism. Thus, this association is involved in maintaining small intestine morphology, and regulating crypt proliferation and lineage differentiation. It therefore affects mouse growth and adaptation to a high-fat diet. ABSTRACT GATA transcription factors and their FOG cofactors play a key role in tissue-specific development and differentiation, from worms to humans. We have shown that GATA-1 and FOG-2 contain an LXCXE pRb-binding motif. Interactions between retinoblastoma protein (pRb) and GATA-1 are crucial for erythroid proliferation and differentiation, whereas the LXCXE pRb-binding site of FOG-2 is involved in adipogenesis. Fog2-knock-in mice have defective pRb binding and are resistant to obesity, due to efficient white-into-brown fat conversion. Our aim was to investigate the pathophysiological impact of FOG-2-pRb interaction on the small intestine and mouse growth. Histological analysis of the small intestine revealed architectural changes in Fog2Rb- / Rb- mice, including villus shortening, with crypt expansion and a change in muscularis propria thickness. These differences were more marked in the proximo-distal part of the small intestine and were associated with an increase in crypt cell proliferation and disruption of the goblet and Paneth cell lineage. The small intestine of the mutants was unable to adapt to a high-fat diet, and had significantly lower plasma lipid levels on such a diet. Fog2Rb- / Rb- mice displayed higher levels of glucose-dependent insulinotropic peptide release, and lower levels of insulin-like growth factor I release on a regular diet. Their intestinal lipid absorption was impaired, resulting in restricted weight gain. In addition to the intrinsic effects of the mutation on adipose tissue, we show here an extrinsic relationship between the intestine and the effect of FOG-2 mutation on mouse metabolism. In conclusion, the interaction of FOG-2 with pRb coordinates the crypt-villus axis and controls small intestine homeostasis.
Collapse
Affiliation(s)
- Olivier Goupille
- Division of Innovative Therapies, UMR E007, Institute of Biology François Jacob, CEA, Université Paris Sud, Université Paris-Saclay, Fontenay aux Roses, France
| | - Zahra Kadri
- Division of Innovative Therapies, UMR E007, Institute of Biology François Jacob, CEA, Université Paris Sud, Université Paris-Saclay, Fontenay aux Roses, France
| | - Amandine Langelé
- Division of Innovative Therapies, UMR E007, Institute of Biology François Jacob, CEA, Université Paris Sud, Université Paris-Saclay, Fontenay aux Roses, France
| | - Sophie Luccantoni
- Immunology of Viral Infections and Autoimmune Diseases, IDMIT Department, Institute of Biology François Jacob, CEA - Université Paris Sud 11 - INSERM U1184, Fontenay-aux-Roses, France
| | - Cécile Badoual
- Department of Pathology, G. Pompidou European Hospital APHP - Université Paris, Descartes, Paris, France
| | - Philippe Leboulch
- Division of Innovative Therapies, UMR E007, Institute of Biology François Jacob, CEA, Université Paris Sud, Université Paris-Saclay, Fontenay aux Roses, France.,Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA.,Ramathibodi Hospital, Mahidol University, Bangkok, Thailand
| | - Stany Chrétien
- Division of Innovative Therapies, UMR E007, Institute of Biology François Jacob, CEA, Université Paris Sud, Université Paris-Saclay, Fontenay aux Roses, France.,INSERM, Paris, France
| |
Collapse
|
24
|
Lopez CK, Mercher T. [Pediatric de novo acute megakaryoblastic leukemia: an affair of complexes]. Med Sci (Paris) 2018; 34:954-962. [PMID: 30526836 DOI: 10.1051/medsci/2018237] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Pediatric acute megakaryoblastic leukemia (AMKL) are generally associated with poor prognosis and the expression of fusion oncogenes involving transcriptional regulators. Recent results indicate that the ETO2-GLIS2 fusion, associated with 25-30 % of pediatric AMKL, binds and alters the activity of regulatory regions of gene expression, called "enhancers", resulting in the deregulation of GATA and ETS factors essential for the development of hematopoietic stem cells. An imbalance in GATA/ETS factor activity is also found in other AMKL subgroups. This review addresses the transcriptional bases of transformation in pediatric AMKL and therapeutic perspectives.
Collapse
Affiliation(s)
- Cécile K Lopez
- Inserm U1170, Institut Gustave Roussy, Pavillon recherche 2, 39 rue Camille Desmoulins, 94800 Villejuif, France
| | - Thomas Mercher
- Inserm U1170, Institut Gustave Roussy, Pavillon recherche 2, 39 rue Camille Desmoulins, 94800 Villejuif, France
| |
Collapse
|
25
|
Goupille O, Penglong T, Kadri Z, Granger-Locatelli M, Denis R, Luquet S, Badoual C, Fucharoen S, Maouche-Chrétien L, Leboulch P, Chrétien S. The LXCXE Retinoblastoma Protein-Binding Motif of FOG-2 Regulates Adipogenesis. Cell Rep 2018; 21:3524-3535. [PMID: 29262331 DOI: 10.1016/j.celrep.2017.11.098] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2017] [Revised: 10/12/2017] [Accepted: 11/28/2017] [Indexed: 02/08/2023] Open
Abstract
GATA transcription factors and their FOG cofactors play a key role in tissue-specific development and differentiation, from worms to humans. Mammals have six GATA and two FOG factors. We recently demonstrated that interactions between retinoblastoma protein (pRb) and GATA-1 are crucial for erythroid proliferation and differentiation. We show here that the LXCXE pRb-binding site of FOG-2 is involved in adipogenesis. Unlike GATA-1, which inhibits cell division, FOG-2 promotes proliferation. Mice with a knockin of a Fog2 gene bearing a mutated LXCXE pRb-binding site are resistant to obesity and display higher rates of white-to-brown fat conversion. Thus, each component of the GATA/FOG complex (GATA-1 and FOG-2) is involved in pRb/E2F regulation, but these molecules have markedly different roles in the control of tissue homeostasis.
Collapse
Affiliation(s)
- Olivier Goupille
- Service des Thérapies Innovantes, Institute Jacob, CEA 92265 Fontenay-aux-Roses and University Paris Saclay UMR-E007, 91405 Orsay Cedex, France
| | - Tipparat Penglong
- Service des Thérapies Innovantes, Institute Jacob, CEA 92265 Fontenay-aux-Roses and University Paris Saclay UMR-E007, 91405 Orsay Cedex, France; Thalassemia Research Center, Institute of Molecular Biosciences, Mahidol University, 73170 Nakhon Pathom, Thailand
| | - Zahra Kadri
- Service des Thérapies Innovantes, Institute Jacob, CEA 92265 Fontenay-aux-Roses and University Paris Saclay UMR-E007, 91405 Orsay Cedex, France
| | - Marine Granger-Locatelli
- Service des Thérapies Innovantes, Institute Jacob, CEA 92265 Fontenay-aux-Roses and University Paris Saclay UMR-E007, 91405 Orsay Cedex, France
| | - Raphaël Denis
- Unité de Biologie Fonctionnelle et Adaptative, Centre National la Recherche scientifique, UMR 8251, Université Paris Diderot, Sorbonne Paris Cité, 75205 Paris, France
| | - Serge Luquet
- Unité de Biologie Fonctionnelle et Adaptative, Centre National la Recherche scientifique, UMR 8251, Université Paris Diderot, Sorbonne Paris Cité, 75205 Paris, France
| | - Cécile Badoual
- Department of Pathology, G. Pompidou European Hospital APHP-Université Paris Descartes, Paris, France
| | - Suthat Fucharoen
- Thalassemia Research Center, Institute of Molecular Biosciences, Mahidol University, 73170 Nakhon Pathom, Thailand
| | - Leila Maouche-Chrétien
- Service des Thérapies Innovantes, Institute Jacob, CEA 92265 Fontenay-aux-Roses and University Paris Saclay UMR-E007, 91405 Orsay Cedex, France; INSERM, Paris, France
| | - Philippe Leboulch
- Service des Thérapies Innovantes, Institute Jacob, CEA 92265 Fontenay-aux-Roses and University Paris Saclay UMR-E007, 91405 Orsay Cedex, France; Thalassemia Research Center, Institute of Molecular Biosciences, Mahidol University, 73170 Nakhon Pathom, Thailand; Genetics Division, Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA 02215, USA
| | - Stany Chrétien
- Service des Thérapies Innovantes, Institute Jacob, CEA 92265 Fontenay-aux-Roses and University Paris Saclay UMR-E007, 91405 Orsay Cedex, France; INSERM, Paris, France.
| |
Collapse
|
26
|
Ling T, Crispino JD, Zingariello M, Martelli F, Migliaccio AR. GATA1 insufficiencies in primary myelofibrosis and other hematopoietic disorders: consequences for therapy. Expert Rev Hematol 2018; 11:169-184. [PMID: 29400094 PMCID: PMC6108178 DOI: 10.1080/17474086.2018.1436965] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
INTRODUCTION GATA1, the founding member of a family of transcription factors, plays important roles in the development of hematopoietic cells of several lineages. Although loss of GATA1 has been known to impair hematopoiesis in animal models for nearly 25 years, the link between GATA1 defects and human blood diseases has only recently been realized. Areas covered: Here the current understanding of the functions of GATA1 in normal hematopoiesis and how it is altered in disease is reviewed. GATA1 is indispensable mainly for erythroid and megakaryocyte differentiation. In erythroid cells, GATA1 regulates early stages of differentiation, and its deficiency results in apoptosis. In megakaryocytes, GATA1 controls terminal maturation and its deficiency induces proliferation. GATA1 alterations are often found in diseases involving these two lineages, such as congenital erythroid and/or megakaryocyte deficiencies, including Diamond Blackfan Anemia (DBA), and acquired neoplasms, such as acute megakaryocytic leukemia (AMKL) and the myeloproliferative neoplasms (MPNs). Expert commentary: Since the first discovery of GATA1 mutations in AMKL, the number of diseases that are associated with impaired GATA1 function has increased to include DBA and MPNs. With respect to the latter, we are only just now appreciating the link between enhanced JAK/STAT signaling, GATA1 deficiency and disease pathogenesis.
Collapse
Affiliation(s)
- Te Ling
- Division of Hematology/Oncology, Northwestern University, Chicago, IL, USA
| | - John D. Crispino
- Division of Hematology/Oncology, Northwestern University, Chicago, IL, USA
| | | | - Fabrizio Martelli
- National Center for Drug Research and Evaluation, Istituto Superiore di Sanità, Roma, Italy
| | - Anna Rita Migliaccio
- Department of Biomedical and Neuromotorial Sciences, Alma Mater University, Bologna, Italy
- Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai (ISMMS), New York, NY, USA
| |
Collapse
|
27
|
|
28
|
Lopez CK, Malinge S, Gaudry M, Bernard OA, Mercher T. Pediatric Acute Megakaryoblastic Leukemia: Multitasking Fusion Proteins and Oncogenic Cooperations. Trends Cancer 2017; 3:631-642. [PMID: 28867167 DOI: 10.1016/j.trecan.2017.07.003] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2017] [Revised: 07/10/2017] [Accepted: 07/17/2017] [Indexed: 02/06/2023]
Abstract
Pediatric leukemia presents specific clinical and genetic features from adult leukemia but the underpinning mechanisms of transformation are still unclear. Acute megakaryoblastic leukemia (AMKL) is the malignant accumulation of progenitors of the megakaryocyte lineage that normally produce blood platelets. AMKL is diagnosed de novo, in patients showing a poor prognosis, or in Down syndrome (DS) patients with a better prognosis. Recent data show that de novo AMKL is primarily associated with chromosomal alterations leading to the expression of fusions between transcriptional regulators. This review highlights the most recurrent genetic events found in de novo pediatric AMKL patients and, based on recent functional analyses, proposes a mechanism of leukemogenesis common to de novo and DS-AMKL.
Collapse
MESH Headings
- Age Factors
- Animals
- Carcinogenesis/genetics
- Carcinogenesis/metabolism
- Cell Differentiation/genetics
- Cell Lineage/genetics
- Child
- Gene Expression Regulation, Leukemic
- Humans
- Leukemia, Megakaryoblastic, Acute/drug therapy
- Leukemia, Megakaryoblastic, Acute/etiology
- Leukemia, Megakaryoblastic, Acute/metabolism
- Leukemia, Megakaryoblastic, Acute/pathology
- Megakaryocytes/metabolism
- Megakaryocytes/pathology
- Molecular Targeted Therapy
- Oncogene Proteins, Fusion/genetics
- Oncogene Proteins, Fusion/metabolism
- Signal Transduction
Collapse
Affiliation(s)
- Cécile K Lopez
- INSERM U1170, Equipe Labellisée Ligue Contre le Cancer, 94800 Villejuif, France; Gustave Roussy, 94800 Villejuif, France; Université Paris-Sud, 91405 Orsay, France
| | - Sébastien Malinge
- INSERM U1170, Equipe Labellisée Ligue Contre le Cancer, 94800 Villejuif, France; Gustave Roussy, 94800 Villejuif, France; Université Paris Diderot, 75013 Paris, France
| | - Muriel Gaudry
- INSERM U1170, Equipe Labellisée Ligue Contre le Cancer, 94800 Villejuif, France; Gustave Roussy, 94800 Villejuif, France; Université Paris-Sud, 91405 Orsay, France
| | - Olivier A Bernard
- INSERM U1170, Equipe Labellisée Ligue Contre le Cancer, 94800 Villejuif, France; Gustave Roussy, 94800 Villejuif, France; Université Paris-Sud, 91405 Orsay, France
| | - Thomas Mercher
- INSERM U1170, Equipe Labellisée Ligue Contre le Cancer, 94800 Villejuif, France; Gustave Roussy, 94800 Villejuif, France; Université Paris-Sud, 91405 Orsay, France; Université Paris Diderot, 75013 Paris, France.
| |
Collapse
|
29
|
Hutcheson J, Witkiewicz AK, Knudsen ES. The RB tumor suppressor at the intersection of proliferation and immunity: relevance to disease immune evasion and immunotherapy. Cell Cycle 2016; 14:3812-9. [PMID: 25714546 DOI: 10.1080/15384101.2015.1010922] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
The retinoblastoma tumor suppressor (RB) was the first identified tumor suppressor based on germline predisposition to the pediatric eye tumor. Since these early studies, it has become apparent that the functional inactivation of RB is a common event in nearly all human malignancy. A great deal of research has gone into understanding how the loss of RB promotes tumor etiology and progression. Since malignant tumors are characterized by aberrant cell division, much of this research has focused upon the ability of RB to regulate the cell cycle by repression of proliferation-related genes. However, it is progressively understood that RB is an important mediator of multiple functions. One area that is gaining progressive interest is the emerging role for RB in regulating diverse features of immune function. These findings suggest that RB is more than simply a regulator of cellular proliferation; it is at the crossroads of proliferation and the immune response. Here we review the data related to the functional roles of RB on the immune system, relevance to immune evasion, and potential significance to the response to immune-therapy.
Collapse
Affiliation(s)
- Jack Hutcheson
- a Department of Pathology ; University of Texas Southwestern Medical Center ; Dallas , TX USA
| | - Agnieszka K Witkiewicz
- a Department of Pathology ; University of Texas Southwestern Medical Center ; Dallas , TX USA.,b Simmons Cancer Center ; University of Texas Southwestern Medical Center ; Dallas , TX USA
| | - Erik S Knudsen
- a Department of Pathology ; University of Texas Southwestern Medical Center ; Dallas , TX USA.,b Simmons Cancer Center ; University of Texas Southwestern Medical Center ; Dallas , TX USA
| |
Collapse
|
30
|
Zhang J, Loyd MR, Randall MS, Morris JJ, Shah JG, Ney PA. Repression by RB1 characterizes genes involved in the penultimate stage of erythroid development. Cell Cycle 2016; 14:3441-53. [PMID: 26397180 DOI: 10.1080/15384101.2015.1090067] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023] Open
Abstract
Retinoblastoma-1 (RB1), and the RB1-related proteins p107 and p130, are key regulators of the cell cycle. Although RB1 is required for normal erythroid development in vitro, it is largely dispensable for erythropoiesis in vivo. The modest phenotype caused by RB1 deficiency in mice raises questions about redundancy within the RB1 family, and the role of RB1 in erythroid differentiation. Here we show that RB1 is the major pocket protein that regulates terminal erythroid differentiation. Erythroid cells lacking all pocket proteins exhibit the same cell cycle defects as those deficient for RB1 alone. RB1 has broad repressive effects on gene transcription in erythroid cells. As a group, RB1-repressed genes are generally well expressed but downregulated at the final stage of erythroid development. Repression correlates with E2F binding, implicating E2Fs in the recruitment of RB1 to repressed genes. Merging differential and time-dependent changes in expression, we define a group of approximately 800 RB1-repressed genes. Bioinformatics analysis shows that this list is enriched for terms related to the cell cycle, but also for terms related to terminal differentiation. Some of these have not been previously linked to RB1. These results expand the range of processes potentially regulated by RB1, and suggest that a principal role of RB1 in development is coordinating the events required for terminal differentiation.
Collapse
Affiliation(s)
- Ji Zhang
- a Department of Biochemistry ; St. Jude Children's Research Hospital ; Memphis , TN USA.,b Current address: Cancer Biology & Genetics; Memorial Sloan-Kettering Cancer Center ; New York , NY USA
| | - Melanie R Loyd
- a Department of Biochemistry ; St. Jude Children's Research Hospital ; Memphis , TN USA.,c Hartwell Center for Bioinformatics and Biotechnology; St. Jude Children's Research Hospital ; Memphis , TN USA
| | - Mindy S Randall
- a Department of Biochemistry ; St. Jude Children's Research Hospital ; Memphis , TN USA
| | - John J Morris
- c Hartwell Center for Bioinformatics and Biotechnology; St. Jude Children's Research Hospital ; Memphis , TN USA
| | - Jayesh G Shah
- d Cell & Molecular Biology; Lindsley F. Kimball Research Institute; New York Blood Center ; New York , NY USA
| | - Paul A Ney
- a Department of Biochemistry ; St. Jude Children's Research Hospital ; Memphis , TN USA.,d Cell & Molecular Biology; Lindsley F. Kimball Research Institute; New York Blood Center ; New York , NY USA.,e Current address: 1735 York Ave., New York , NY USA
| |
Collapse
|
31
|
Kadri Z, Lefevre C, Goupille O, Penglong T, Granger-Locatelli M, Fucharoen S, Maouche-Chretien L, Leboulch P, Chretien S. Erythropoietin and IGF-1 signaling synchronize cell proliferation and maturation during erythropoiesis. Genes Dev 2016; 29:2603-16. [PMID: 26680303 PMCID: PMC4699388 DOI: 10.1101/gad.267633.115] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
Kadri et al. show that erythropoietin activates AKT, which phosphorylates GATA-1 at Ser310, thereby increasing GATA-1 affinity for FOG-1. In turn, FOG-1 displaces pRb/E2F-2 from GATA-1, ultimately releasing free, proproliferative E2F-2. Mice bearing a GATA-1S310A mutation suffer from fatal anemia when a compensatory pathway for E2F-2 production involving IGF-1 signaling is simultaneously abolished. Tight coordination of cell proliferation and differentiation is central to red blood cell formation. Erythropoietin controls the proliferation and survival of red blood cell precursors, while variations in GATA-1/FOG-1 complex composition and concentrations drive their maturation. However, clear evidence of cross-talk between molecular pathways is lacking. Here, we show that erythropoietin activates AKT, which phosphorylates GATA-1 at Ser310, thereby increasing GATA-1 affinity for FOG-1. In turn, FOG-1 displaces pRb/E2F-2 from GATA-1, ultimately releasing free, proproliferative E2F-2. Mice bearing a Gata-1S310A mutation suffer from fatal anemia when a compensatory pathway for E2F-2 production involving insulin-like growth factor-1 (IGF-1) signaling is simultaneously abolished. In the context of the GATA-1V205G mutation resulting in lethal anemia, we show that the Ser310 cannot be phosphorylated and that constitutive phosphorylation at this position restores partial erythroid differentiation. This study sheds light on the GATA-1 pathways that synchronize cell proliferation and differentiation for tissue homeostasis.
Collapse
Affiliation(s)
- Zahra Kadri
- Commissariat à l'Energie Atomique et aux Énergies Alternatives, Institute of Emerging Diseases and Innovative Therapies (iMETI), 92265 Fontenay-aux-Roses, France; UMR-E 007, Université Paris-Saclay, 91400 Orsay, France
| | - Carine Lefevre
- Commissariat à l'Energie Atomique et aux Énergies Alternatives, Institute of Emerging Diseases and Innovative Therapies (iMETI), 92265 Fontenay-aux-Roses, France; UMR-E 007, Université Paris-Saclay, 91400 Orsay, France
| | - Olivier Goupille
- Commissariat à l'Energie Atomique et aux Énergies Alternatives, Institute of Emerging Diseases and Innovative Therapies (iMETI), 92265 Fontenay-aux-Roses, France; UMR-E 007, Université Paris-Saclay, 91400 Orsay, France
| | - Tipparat Penglong
- Commissariat à l'Energie Atomique et aux Énergies Alternatives, Institute of Emerging Diseases and Innovative Therapies (iMETI), 92265 Fontenay-aux-Roses, France; UMR-E 007, Université Paris-Saclay, 91400 Orsay, France; Thalassemia Research Center, Institute of Molecular Biosciences, Mahidol University, 73170 Nakhon Pathom, Thailand
| | - Marine Granger-Locatelli
- Commissariat à l'Energie Atomique et aux Énergies Alternatives, Institute of Emerging Diseases and Innovative Therapies (iMETI), 92265 Fontenay-aux-Roses, France; UMR-E 007, Université Paris-Saclay, 91400 Orsay, France
| | - Suthat Fucharoen
- Thalassemia Research Center, Institute of Molecular Biosciences, Mahidol University, 73170 Nakhon Pathom, Thailand
| | - Leila Maouche-Chretien
- Commissariat à l'Energie Atomique et aux Énergies Alternatives, Institute of Emerging Diseases and Innovative Therapies (iMETI), 92265 Fontenay-aux-Roses, France; UMR-E 007, Université Paris-Saclay, 91400 Orsay, France; Institut National de la Santé et de la Recherche Médicale, 75013 Paris, France
| | - Philippe Leboulch
- Commissariat à l'Energie Atomique et aux Énergies Alternatives, Institute of Emerging Diseases and Innovative Therapies (iMETI), 92265 Fontenay-aux-Roses, France; UMR-E 007, Université Paris-Saclay, 91400 Orsay, France; Thalassemia Research Center, Institute of Molecular Biosciences, Mahidol University, 73170 Nakhon Pathom, Thailand; Genetics Division, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts 02215, USA
| | - Stany Chretien
- Commissariat à l'Energie Atomique et aux Énergies Alternatives, Institute of Emerging Diseases and Innovative Therapies (iMETI), 92265 Fontenay-aux-Roses, France; UMR-E 007, Université Paris-Saclay, 91400 Orsay, France; Institut National de la Santé et de la Recherche Médicale, 75013 Paris, France
| |
Collapse
|
32
|
Su R, Dong L, Zou D, Zhao H, Ren Y, Li F, Yi P, Li L, Zhu Y, Ma Y, Wang J, Wang F, Yu J. microRNA-23a, -27a and -24 synergistically regulate JAK1/Stat3 cascade and serve as novel therapeutic targets in human acute erythroid leukemia. Oncogene 2016; 35:6001-6014. [DOI: 10.1038/onc.2016.127] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2015] [Revised: 03/05/2016] [Accepted: 03/07/2016] [Indexed: 01/01/2023]
|
33
|
Chlon TM, McNulty M, Goldenson B, Rosinski A, Crispino JD. Global transcriptome and chromatin occupancy analysis reveal the short isoform of GATA1 is deficient for erythroid specification and gene expression. Haematologica 2015; 100:575-84. [PMID: 25682601 DOI: 10.3324/haematol.2014.112714] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2014] [Accepted: 02/02/2015] [Indexed: 01/23/2023] Open
Abstract
GATA1 is a master transcriptional regulator of the differentiation of several related myeloid blood cell types, including erythrocytes and megakaryocytes. Germ-line mutations that cause loss of full length GATA1, but allow for expression of the short isoform (GATA1s), are associated with defective erythropoiesis in a subset of patients with Diamond Blackfan Anemia. Despite extensive studies of GATA1s in megakaryopoiesis, the mechanism by which GATA1s fails to support normal erythropoiesis is not understood. In this study, we used global gene expression and chromatin occupancy analysis to compare the transcriptional activity of GATA1s to GATA1. We discovered that compared to GATA1, GATA1s is less able to activate the erythroid gene expression program and terminal differentiation in cells with dual erythroid-megakaryocytic differentiation potential. Moreover, we found that GATA1s bound to many of its erythroid-specific target genes less efficiently than full length GATA1. These results suggest that the impaired ability of GATA1s to promote erythropoiesis in DBA may be caused by failure to occupy erythroid-specific gene regulatory elements.
Collapse
Affiliation(s)
- Timothy M Chlon
- Division of Hematology/Oncology, Northwestern University, Chicago, IL, USA Present address Cincinnati Children's Hospital, Cincinnati, OH, USA
| | - Maureen McNulty
- Division of Hematology/Oncology, Northwestern University, Chicago, IL, USA
| | - Benjamin Goldenson
- Division of Hematology/Oncology, Northwestern University, Chicago, IL, USA
| | - Alexander Rosinski
- Division of Hematology/Oncology, Northwestern University, Chicago, IL, USA
| | - John D Crispino
- Division of Hematology/Oncology, Northwestern University, Chicago, IL, USA
| |
Collapse
|
34
|
Byrska-Bishop M, VanDorn D, Campbell AE, Betensky M, Arca PR, Yao Y, Gadue P, Costa FF, Nemiroff RL, Blobel GA, French DL, Hardison RC, Weiss MJ, Chou ST. Pluripotent stem cells reveal erythroid-specific activities of the GATA1 N-terminus. J Clin Invest 2015; 125:993-1005. [PMID: 25621499 DOI: 10.1172/jci75714] [Citation(s) in RCA: 60] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2014] [Accepted: 12/15/2014] [Indexed: 01/13/2023] Open
Abstract
Germline GATA1 mutations that result in the production of an amino-truncated protein termed GATA1s (where s indicates short) cause congenital hypoplastic anemia. In patients with trisomy 21, similar somatic GATA1s-producing mutations promote transient myeloproliferative disease and acute megakaryoblastic leukemia. Here, we demonstrate that induced pluripotent stem cells (iPSCs) from patients with GATA1-truncating mutations exhibit impaired erythroid potential, but enhanced megakaryopoiesis and myelopoiesis, recapitulating the major phenotypes of the associated diseases. Similarly, in developmentally arrested GATA1-deficient murine megakaryocyte-erythroid progenitors derived from murine embryonic stem cells (ESCs), expression of GATA1s promoted megakaryopoiesis, but not erythropoiesis. Transcriptome analysis revealed a selective deficiency in the ability of GATA1s to activate erythroid-specific genes within populations of hematopoietic progenitors. Although its DNA-binding domain was intact, chromatin immunoprecipitation studies showed that GATA1s binding at specific erythroid regulatory regions was impaired, while binding at many nonerythroid sites, including megakaryocytic and myeloid target genes, was normal. Together, these observations indicate that lineage-specific GATA1 cofactor associations are essential for normal chromatin occupancy and provide mechanistic insights into how GATA1s mutations cause human disease. More broadly, our studies underscore the value of ESCs and iPSCs to recapitulate and study disease phenotypes.
Collapse
|
35
|
Aberrant splicing of U12-type introns is the hallmark of ZRSR2 mutant myelodysplastic syndrome. Nat Commun 2015; 6:6042. [PMID: 25586593 PMCID: PMC4349895 DOI: 10.1038/ncomms7042] [Citation(s) in RCA: 182] [Impact Index Per Article: 18.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2014] [Accepted: 12/04/2014] [Indexed: 02/07/2023] Open
Abstract
Somatic mutations in the spliceosome gene ZRSR2 — located on the X chromosome — are associated with myelodysplastic syndrome (MDS). ZRSR2 is involved in the recognition of 3΄ splice site during the early stages of spliceosome assembly; however, its precise role in RNA splicing has remained unclear. Here, we characterize ZRSR2 as an essential component of the minor spliceosome (U12-dependent) assembly. shRNA mediated knockdown of ZRSR2 leads to impaired splicing of the U12-type introns, and RNA-Sequencing of MDS bone marrow reveals that loss of ZRSR2 activity causes increased mis-splicing. These splicing defects involve retention of the U12-type introns while splicing of the U2-type introns remain mostly unaffected. ZRSR2 deficient cells also exhibit reduced proliferation potential and distinct alterations in myeloid and erythroid differentiation in vitro. These data identify a specific role for ZRSR2 in RNA splicing and highlight dysregulated splicing of U12-type introns as a characteristic feature of ZRSR2 mutations in MDS.
Collapse
|
36
|
Kim WS, Zhu Y, Deng Q, Chin CJ, He CB, Grieco AJ, Dravid GG, Parekh C, Hollis RP, Lane TF, Bouhassira EE, Kohn DB, Crooks GM. Erythropoiesis from human embryonic stem cells through erythropoietin-independent AKT signaling. Stem Cells 2015; 32:1503-14. [PMID: 24677652 DOI: 10.1002/stem.1677] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2013] [Revised: 12/16/2013] [Accepted: 01/11/2014] [Indexed: 12/25/2022]
Abstract
Unlimited self renewal capacity and differentiation potential make human pluripotent stem cells (PSC) a promising source for the ex vivo manufacture of red blood cells (RBCs) for safe transfusion. Current methods to induce erythropoiesis from PSC suffer from low yields of RBCs, most of which are immature and contain embryonic and fetal rather than adult hemoglobins. We have previously shown that homodimerization of the intracellular component of MPL (ic-MPL) induces erythropoiesis from human cord blood progenitors. The goal of this study was to investigate the potential of ic-MPL dimerization to induce erythropoiesis from human embryonic stem cells (hESCs) and to identify the signaling pathways activated by this strategy. We present here the evidence that ic-MPL dimerization induces erythropoietin (EPO)-independent erythroid differentiation from hESC by inducing the generation of erythroid progenitors and by promoting more efficient erythroid maturation with increased RBC enucleation as well as increased gamma:epsilon globin ratio and production of beta-globin protein. ic-MPL dimerization is significantly more potent than EPO in inducing erythropoiesis, and its effect is additive to EPO. Signaling studies show that dimerization of ic-MPL, unlike stimulation of the wild type MPL receptor, activates AKT in the absence of JAK2/STAT5 signaling. AKT activation upregulates GATA-1 and FOXO3 transcriptional pathways with resulting inhibition of apoptosis, modulation of cell cycle, and enhanced maturation of erythroid cells. These findings open up potential new targets for the generation of therapeutically relevant RBC products from hPSC.
Collapse
Affiliation(s)
- William S Kim
- Department of Pathology and Laboratory Medicine, University of California Los Angeles (UCLA),, Los Angeles, California, USA
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
37
|
Inactivation of Rb and E2f8 synergizes to trigger stressed DNA replication during erythroid terminal differentiation. Mol Cell Biol 2014; 34:2833-47. [PMID: 24865965 DOI: 10.1128/mcb.01651-13] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Rb is critical for promoting cell cycle exit in cells undergoing terminal differentiation. Here we show that during erythroid terminal differentiation, Rb plays a previously unappreciated and unorthodox role in promoting DNA replication and cell cycle progression. Specifically, inactivation of Rb in erythroid cells led to stressed DNA replication, increased DNA damage, and impaired cell cycle progression, culminating in defective terminal differentiation and anemia. Importantly, all of these defects associated with Rb loss were exacerbated by the concomitant inactivation of E2f8. Gene expression profiling and chromatin immunoprecipitation (ChIP) revealed that Rb and E2F8 cosuppressed a large array of E2F target genes that are critical for DNA replication and cell cycle progression. Remarkably, inactivation of E2f2 rescued the erythropoietic defects resulting from Rb and E2f8 deficiencies. Interestingly, real-time quantitative PCR (qPCR) on E2F2 ChIPs indicated that inactivation of Rb and E2f8 synergizes to increase E2F2 binding to its target gene promoters. Taken together, we propose that Rb and E2F8 collaborate to promote DNA replication and erythroid terminal differentiation by preventing E2F2-mediated aberrant transcriptional activation through the ability of Rb to bind and sequester E2F2 and the ability of E2F8 to compete with E2F2 for E2f-binding sites on target gene promoters.
Collapse
|
38
|
Chen C, Lodish HF. Global analysis of induced transcription factors and cofactors identifies Tfdp2 as an essential coregulator during terminal erythropoiesis. Exp Hematol 2014; 42:464-76.e5. [PMID: 24607859 DOI: 10.1016/j.exphem.2014.03.001] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2014] [Accepted: 03/01/2014] [Indexed: 11/20/2022]
Abstract
Key transcriptional regulators of terminal erythropoiesis, such as GATA-binding factor 1 (GATA1) and T-cell acute lymphocytic leukemia protein 1 (TAL1), have been well characterized, but transcription factors and cofactors and their expression modulations have not yet been explored on a global scale. Here, we use global gene expression analysis to identify 28 transcription factors and 19 transcriptional cofactors induced during terminal erythroid differentiation whose promoters are enriched for binding by GATA1 and TAL1. Utilizing protein-protein interaction databases to identify cofactors for each transcription factor, we pinpoint several co-induced pairs, of which E2f2 and its cofactor transcription factor Dp-2 (Tfdp2) were the most highly induced. TFDP2 is a critical cofactor required for proper cell cycle control and gene expression. GATA1 and TAL1 are bound to the regulatory regions of Tfdp2 and upregulate its expression and knockdown of Tfdp2 results in significantly reduced rates of proliferation as well as reduced upregulation of many erythroid-important genes. Loss of Tfdp2 also globally inhibits the normal downregulation of many E2F2 target genes, including those that regulate the cell cycle, causing cells to accumulate in S phase and resulting in increased erythrocyte size. Our findings highlight the importance of TFDP2 in coupling the erythroid cell cycle with terminal differentiation and validate this study as a resource for future work on elucidating the role of diverse transcription factors and coregulators in erythropoiesis.
Collapse
Affiliation(s)
- Cynthia Chen
- Whitehead Institute for Biomedical Research, Massachusetts Institute of Technology, Cambridge, MA, USA; Department of Biology, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Harvey F Lodish
- Whitehead Institute for Biomedical Research, Massachusetts Institute of Technology, Cambridge, MA, USA; Department of Biology, Massachusetts Institute of Technology, Cambridge, MA, USA.
| |
Collapse
|
39
|
Elagib KE, Rubinstein JD, Delehanty LL, Ngoh VS, Greer PA, Li S, Lee JK, Li Z, Orkin SH, Mihaylov IS, Goldfarb AN. Calpain 2 activation of P-TEFb drives megakaryocyte morphogenesis and is disrupted by leukemogenic GATA1 mutation. Dev Cell 2014; 27:607-20. [PMID: 24369834 DOI: 10.1016/j.devcel.2013.11.013] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2013] [Revised: 08/01/2013] [Accepted: 11/18/2013] [Indexed: 12/11/2022]
Abstract
Megakaryocyte morphogenesis employs a "hypertrophy-like" developmental program that is dependent on P-TEFb kinase activation and cytoskeletal remodeling. P-TEFb activation classically occurs by a feedback-regulated process of signal-induced, reversible release of active Cdk9-cyclin T modules from large, inactive 7SK small nuclear ribonucleoprotein particle (snRNP) complexes. Here, we have identified an alternative pathway of irreversible P-TEFb activation in megakaryopoiesis that is mediated by dissolution of the 7SK snRNP complex. In this pathway, calpain 2 cleavage of the core 7SK snRNP component MePCE promoted P-TEFb release and consequent upregulation of a cohort of cytoskeleton remodeling factors, including α-actinin-1. In a subset of human megakaryocytic leukemias, the transcription factor GATA1 undergoes truncating mutation (GATA1s). Here, we linked the GATA1s mutation to defects in megakaryocytic upregulation of calpain 2 and of P-TEFb-dependent cytoskeletal remodeling factors. Restoring calpain 2 expression in GATA1s mutant megakaryocytes rescued normal development, implicating this morphogenetic pathway as a target in human leukemogenesis.
Collapse
Affiliation(s)
- Kamaleldin E Elagib
- Department of Pathology, University of Virginia School of Medicine, Charlottesville, VA 22908, USA
| | - Jeremy D Rubinstein
- Department of Pathology, University of Virginia School of Medicine, Charlottesville, VA 22908, USA
| | - Lorrie L Delehanty
- Department of Pathology, University of Virginia School of Medicine, Charlottesville, VA 22908, USA
| | - Valerie S Ngoh
- Department of Pathology, University of Virginia School of Medicine, Charlottesville, VA 22908, USA
| | - Peter A Greer
- Department of Pathology and Molecular Medicine, Queen's University, Kingston, Ontario K7L 3N6, Canada
| | - Shuran Li
- Department of Public Health Sciences, University of Virginia School of Medicine, Charlottesville, VA 22908, USA
| | - Jae K Lee
- Department of Public Health Sciences, University of Virginia School of Medicine, Charlottesville, VA 22908, USA
| | - Zhe Li
- Division of Hematology/Oncology, Children's Hospital Boston, Harvard Stem Cell Institute, Harvard Medical School, Boston, MA 02115, USA; Department of Pediatric Oncology, Dana-Farber Cancer Institute, Harvard Stem Cell Institute, Harvard Medical School, Boston, MA 02115, USA
| | - Stuart H Orkin
- Division of Hematology/Oncology, Children's Hospital Boston, Harvard Stem Cell Institute, Harvard Medical School, Boston, MA 02115, USA; Department of Pediatric Oncology, Dana-Farber Cancer Institute, Harvard Stem Cell Institute, Harvard Medical School, Boston, MA 02115, USA
| | - Ivailo S Mihaylov
- Department of Pathology, University of Virginia School of Medicine, Charlottesville, VA 22908, USA
| | - Adam N Goldfarb
- Department of Pathology, University of Virginia School of Medicine, Charlottesville, VA 22908, USA.
| |
Collapse
|
40
|
Maroz A, Stachorski L, Emmrich S, Reinhardt K, Xu J, Shao Z, Käbler S, Dertmann T, Hitzler J, Roberts I, Vyas P, Juban G, Hennig C, Hansen G, Li Z, Orkin S, Reinhardt D, Klusmann JH. GATA1s induces hyperproliferation of eosinophil precursors in Down syndrome transient leukemia. Leukemia 2013; 28:1259-70. [PMID: 24336126 PMCID: PMC4047213 DOI: 10.1038/leu.2013.373] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2013] [Revised: 12/01/2013] [Accepted: 12/03/2013] [Indexed: 02/06/2023]
Abstract
Transient leukemia (TL) is evident in 5–10% of all neonates with Down syndrome (DS) and associated with N-terminal truncating GATA1-mutations (GATA1s). Here we report that TL cell clones generate abundant eosinophils in a substantial fraction of patients. Sorted eosinophils from patients with TL and eosinophilia carried the same GATA1s-mutation as sorted TL-blasts, consistent with their clonal origin. TL-blasts exhibited a genetic program characteristic of eosinophils and differentiated along the eosinophil lineage in vitro. Similarly, ectopic expression of Gata1s, but not Gata1, in wild-type CD34+-hematopoietic stem and progenitor cells induced hyperproliferation of eosinophil promyelocytes in vitro. While GATA1s retained the function of GATA1 to induce eosinophil genes by occupying their promoter regions, GATA1s was impaired in its ability to repress oncogenic MYC and the pro-proliferative E2F transcription network. ChIP-seq indicated reduced GATA1s occupancy at the MYC promoter. Knockdown of MYC, or the obligate E2F-cooperation partner DP1, rescued the GATA1s-induced hyperproliferative phenotype. In agreement, terminal eosinophil maturation was blocked in Gata1Δe2 knockin mice, exclusively expressing Gata1s, leading to accumulation of eosinophil precursors in blood and bone marrow. These data suggest a direct relationship between the N-terminal truncating mutations of GATA1 and clonal eosinophilia in DS patients.
Collapse
Affiliation(s)
- A Maroz
- Department of Pediatric Hematology and Oncology, Hannover Medical School, Hannover, Germany
| | - L Stachorski
- Department of Pediatric Hematology and Oncology, Hannover Medical School, Hannover, Germany
| | - S Emmrich
- Department of Pediatric Hematology and Oncology, Hannover Medical School, Hannover, Germany
| | - K Reinhardt
- Department of Pediatric Hematology and Oncology, Hannover Medical School, Hannover, Germany
| | - J Xu
- 1] Division of Hematology/Oncology, Boston Children's Hospital, Boston, MA, USA [2] Howard Hughes Medical Institute, Harvard Medical School, Boston, MA, USA [3] Department of Pediatric Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA, USA
| | - Z Shao
- 1] Division of Hematology/Oncology, Boston Children's Hospital, Boston, MA, USA [2] Howard Hughes Medical Institute, Harvard Medical School, Boston, MA, USA [3] Department of Pediatric Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA, USA
| | - S Käbler
- Department of Pediatric Hematology and Oncology, Hannover Medical School, Hannover, Germany
| | - T Dertmann
- Department of Pediatric Hematology and Oncology, Hannover Medical School, Hannover, Germany
| | - J Hitzler
- Division of Hematology/Oncology, Department of Pediatrics, The Hospital for Sick Children, Toronto, Ontario, Canada
| | - I Roberts
- Oxford University Department of Paediatrics, Childrens Hospital and Molecular Haematology Unit, Weatherall Institute of Molecular Medicine, John Radcliffe Hospital, UK
| | - P Vyas
- 1] MRC Molecular Haematology Unit, Weatherall Institute of Molecular Medicine, University of Oxford, Oxford, UK [2] Department of Haematology, Oxford University Hospital, NHS Trust, Oxford, UK
| | - G Juban
- 1] MRC Molecular Haematology Unit, Weatherall Institute of Molecular Medicine, University of Oxford, Oxford, UK [2] Department of Haematology, Oxford University Hospital, NHS Trust, Oxford, UK
| | - C Hennig
- Department of Pediatric Pneumology, Hannover Medical School, Hannover, Germany
| | - G Hansen
- Department of Pediatric Pneumology, Hannover Medical School, Hannover, Germany
| | - Z Li
- Division of Genetics, Brigham & Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - S Orkin
- 1] Division of Hematology/Oncology, Boston Children's Hospital, Boston, MA, USA [2] Howard Hughes Medical Institute, Harvard Medical School, Boston, MA, USA [3] Department of Pediatric Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA, USA
| | - D Reinhardt
- Department of Pediatric Hematology and Oncology, Hannover Medical School, Hannover, Germany
| | - J-H Klusmann
- Department of Pediatric Hematology and Oncology, Hannover Medical School, Hannover, Germany
| |
Collapse
|
41
|
PML4 facilitates erythroid differentiation by enhancing the transcriptional activity of GATA-1. Blood 2013; 123:261-70. [PMID: 24255919 DOI: 10.1182/blood-2013-02-483289] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
Promyelocytic leukemia protein (PML) has been implicated as a participant in multiple cellular processes including senescence, apoptosis, proliferation, and differentiation. Studies of PML function in hematopoietic differentiation previously focused principally on its myeloid activities and also indicated that PML is involved in erythroid colony formation. However, the exact role that PML plays in erythropoiesis is essentially unknown. In this report, we found that PML4, a specific PML isoform expressed in erythroid cells, promotes endogenous erythroid genes expression in K562 and primary human erythroid cells. We show that the PML4 effect is GATA binding protein 1 (GATA-1) dependent using GATA-1 knockout/rescued G1E/G1E-ER4 cells. PML4, but not other detected PML isoforms, directly interacts with GATA-1 and can recruit it into PML nuclear bodies. Furthermore, PML4 facilitates GATA-1 trans-activation activity in an interaction-dependent manner. Finally, we present evidence that PML4 enhances GATA-1 occupancy within the globin gene cluster and stimulates cooperation between GATA-1 and its coactivator p300. These results demonstrate that PML4 is an important regulator of GATA-1 and participates in erythroid differention by enhancing GATA-1 trans-activation activity.
Collapse
|
42
|
Jellen LC, Lu L, Wang X, Unger EL, Earley CJ, Allen RP, Williams RW, Jones BC. Iron deficiency alters expression of dopamine-related genes in the ventral midbrain in mice. Neuroscience 2013; 252:13-23. [PMID: 23911809 DOI: 10.1016/j.neuroscience.2013.07.058] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2013] [Revised: 07/24/2013] [Accepted: 07/24/2013] [Indexed: 12/01/2022]
Abstract
A clear link exists between iron deficiency (ID) and nigrostriatal dopamine malfunction. This link appears to play an important role in at least restless legs syndrome (RLS) if not several other neurological diseases. Yet, the underlying mechanisms remain unclear. The effects of ID on gene expression in the brain have not been studied extensively. Here, to better understand how exactly ID alters dopamine functioning, we investigated the effects of ID on gene expression in the brain, seeking to identify any potential transcription-based mechanisms. We used six strains of recombinant inbred mice (BXD type) known to differ in susceptibility to ID in the brain. Upon weaning, we subjected mice from each strain to either an iron-deficient or iron-adequate diet. After 100 days of dietary treatment, we measured the effects of ID on gene expression in the ventral midbrain, a region containing the substantia nigra. The substantia nigra is the base of the nigrostriatal dopamine pathway and a region particularly affected by iron loss in RLS. We screened for ID-induced changes in expression, including changes in that of both iron-regulating and dopamine-related genes. Results revealed a number of expression changes occurring in ID, with large strain-dependent differences in the genes involved and number of expression changes occurring. In terms of dopamine-related genes, results revealed ID-induced expression changes in three genes with direct ties to nigrostriatal dopamine functioning, two of which have never before been implicated in an iron-dopamine pathway. These were stromal cell-derived factor 1 (Cxcl12, or SDF-1), a ferritin regulator and potent dopamine neuromodulator, and hemoglobin, beta adult chain 1 (Hbb-b1), a gene recently shown to play a functional role in dopaminergic neurons. The extent of up-regulation of these genes varied by strain. This work not only demonstrates a wide genetic variation in the transcriptional response to ID in the brain, but also reveals two novel biochemical pathways by which iron may potentially alter dopamine function.
Collapse
Affiliation(s)
- L C Jellen
- Neuroscience Institute, The Pennsylvania State University, University Park, PA, USA
| | | | | | | | | | | | | | | |
Collapse
|
43
|
Mukai HY, Suzuki M, Nagano M, Ohmori S, Otsuki A, Tsuchida K, Moriguchi T, Ohneda K, Shimizu R, Ohneda O, Yamamoto M. Establishment of erythroleukemic GAK14 cells and characterization of GATA1 N-terminal domain. Genes Cells 2013; 18:886-98. [PMID: 23890289 DOI: 10.1111/gtc.12084] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2013] [Accepted: 06/10/2013] [Indexed: 12/31/2022]
Abstract
GATA1 is a transcription factor essential for erythropoiesis and megakaryopoiesis. It has been found that Gata1 gene knockdown heterozygous female (Gata1(G1.05/+)) mice spontaneously develop erythroblastic leukemias. In this study, we have generated a novel Gata1 knockdown erythroblastic cell line, designated GAK14, from the leukemia cells in the Gata1(G1.05/+) mice. Although GAK14 cells maintain immature phenotype on OP9 stromal cells in the presence of erythropoietin and stem cell factor, the cells produce Gr-1-, Mac1-, B220-, CD3e- or CD49b-positive hematopoietic cells when co-cultured with DAS104-8 feeder cells. However, GAK14 cells did not produce erythroid and megakaryocytic lineages, perhaps due to the absence of GATA1. Indeed, GAK14 cells became capable of differentiating into mature erythroid cells when complemented with full-length GATA1 and co-cultured with fetal liver-derived FLS5 stromal cells. This differentiation potential was impaired when GATA1 lacking the N-terminal domain was complemented. The N-terminal domain is known to contribute to the pathogenesis of transient abnormal myelopoiesis and acute megakaryoblastic leukemia related to Down syndrome. These results thus showed that GAK14 cells will serve as a powerful tool for dissecting domain function of GATA1 and that the GATA1 N-terminal domain is essential for the erythroid differentiation of GAK14 cells.
Collapse
Affiliation(s)
- Harumi Y Mukai
- Graduate School of Comprehensive Human Sciences, Center for Tsukuba Advanced Research Alliance, University of Tsukuba, Tsukuba, 305-8577, Japan; Department of Medical Biochemistry, Tohoku University Graduate School of Medicine, Sendai, 980-8575, Japan
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
44
|
Ferreon ACM, Ferreon JC, Wright PE, Deniz AA. Modulation of allostery by protein intrinsic disorder. Nature 2013; 498:390-4. [PMID: 23783631 PMCID: PMC3718496 DOI: 10.1038/nature12294] [Citation(s) in RCA: 257] [Impact Index Per Article: 21.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2012] [Accepted: 05/17/2013] [Indexed: 12/26/2022]
Abstract
Allostery is an intrinsic property of many globular proteins and enzymes that is indispensable for cellular regulatory and feedback mechanisms. Recent theoretical and empirical observations indicate that allostery is also manifest in intrinsically disordered proteins, which account for a substantial proportion of the proteome. Many intrinsically disordered proteins are promiscuous binders that interact with multiple partners and frequently function as molecular hubs in protein interaction networks. The adenovirus early region 1A (E1A) oncoprotein is a prime example of a molecular hub intrinsically disordered protein. E1A can induce marked epigenetic reprogramming of the cell within hours after infection, through interactions with a diverse set of partners that include key host regulators such as the general transcriptional coactivator CREB binding protein (CBP), its paralogue p300, and the retinoblastoma protein (pRb; also called RB1). Little is known about the allosteric effects at play in E1A-CBP-pRb interactions, or more generally in hub intrinsically disordered protein interaction networks. Here we used single-molecule fluorescence resonance energy transfer (smFRET) to study coupled binding and folding processes in the ternary E1A system. The low concentrations used in these high-sensitivity experiments proved to be essential for these studies, which are challenging owing to a combination of E1A aggregation propensity and high-affinity binding interactions. Our data revealed that E1A-CBP-pRb interactions have either positive or negative cooperativity, depending on the available E1A interaction sites. This striking cooperativity switch enables fine-tuning of the thermodynamic accessibility of the ternary versus binary E1A complexes, and may permit a context-specific tuning of associated downstream signalling outputs. Such a modulation of allosteric interactions is probably a common mechanism in molecular hub intrinsically disordered protein function.
Collapse
Affiliation(s)
- Allan Chris M Ferreon
- Department of Integrative Structural and Computational Biology, The Scripps Research Institute, 10550 North Torrey Pines Road, La Jolla, California 92037, USA
| | | | | | | |
Collapse
|
45
|
Naturally occurring oncogenic GATA1 mutants with internal deletions in transient abnormal myelopoiesis in Down syndrome. Blood 2013; 121:3181-4. [PMID: 23440243 DOI: 10.1182/blood-2012-01-405746] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Children with Down syndrome have an increased incidence of transient abnormal myelopoiesis (TAM) and acute megakaryoblastic leukemia. The majority of these cases harbor somatic mutations in the GATA1 gene, which results in the loss of full-length GATA1. Only a truncated isoform of GATA1 that lacks the N-terminal 83 amino acids (GATA1-S) remains. We found through genetic studies of 106 patients with TAM that internally deleted GATA1 proteins (GATA1-IDs) lacking amino acid residues 77-119 or 74-88 (created by splicing mutations) contributed to the genesis of TAM in 6 patients. Analyses of GATA1-deficient embryonic megakaryocytic progenitors revealed that the GATA1 function in growth restriction was disrupted in GATA1-IDs. In contrast, GATA1-S promoted megakaryocyte proliferation more profoundly than that induced by GATA1 deficiency. These results indicate that the internally deleted regions play important roles in megakaryocyte proliferation and that perturbation of this mechanism is involved in the pathogenesis of TAM.
Collapse
|
46
|
Goupille O, Penglong T, Lefèvre C, Granger M, Kadri Z, Fucharoen S, Maouche-Chrétien L, Leboulch P, Chrétien S. BET bromodomain inhibition rescues erythropoietin differentiation of human erythroleukemia cell line UT7. Biochem Biophys Res Commun 2012; 429:1-5. [PMID: 23137537 DOI: 10.1016/j.bbrc.2012.10.112] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2012] [Accepted: 10/26/2012] [Indexed: 01/08/2023]
Abstract
Malignant transformation is a multistep process requiring oncogenic activation, promoting cellular proliferation, frequently coupled to inhibition of terminal differentiation. Consequently, forcing the reengagement of terminal differentiation of transformed cells coupled or not with an inhibition of their proliferation is a putative therapeutic approach to counteracting tumorigenicity. UT7 is a human leukemic cell line able to grow in the presence of IL3, GM-CSF and Epo. This cell line has been widely used to study Epo-R/Epo signaling pathways but is a poor model for erythroid differentiation. We used the BET bromodomain inhibition drug JQ1 to target gene expression, including that of c-Myc. We have shown that only 2 days of JQ1 treatment was required to transitory inhibit Epo-induced UT7 proliferation and to restore terminal erythroid differentiation. This study highlights the importance of a cellular erythroid cycle break mediated by c-Myc inhibition before initiation of the erythropoiesis program and describes a new model for BET bromodomain inhibitor drug application.
Collapse
Affiliation(s)
- Olivier Goupille
- CEA, Institute of Emerging Diseases and Innovative Therapies, Fontenay-aux-Roses, France
| | | | | | | | | | | | | | | | | |
Collapse
|
47
|
Evidence for autoregulation and cell signaling pathway regulation from genome-wide binding of the Drosophila retinoblastoma protein. G3-GENES GENOMES GENETICS 2012; 2:1459-72. [PMID: 23173097 PMCID: PMC3484676 DOI: 10.1534/g3.112.004424] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/26/2012] [Accepted: 09/20/2012] [Indexed: 12/24/2022]
Abstract
The retinoblastoma (RB) tumor suppressor protein is a transcriptional cofactor with essential roles in cell cycle and development. Physical and functional targets of RB and its paralogs p107/p130 have been studied largely in cultured cells, but the full biological context of this family of proteins' activities will likely be revealed only in whole organismal studies. To identify direct targets of the major Drosophila RB counterpart in a developmental context, we carried out ChIP-Seq analysis of Rbf1 in the embryo. The association of the protein with promoters is developmentally controlled; early promoter access is globally inhibited, whereas later in development Rbf1 is found to associate with promoter-proximal regions of approximately 2000 genes. In addition to conserved cell-cycle-related genes, a wholly unexpected finding was that Rbf1 targets many components of the insulin, Hippo, JAK/STAT, Notch, and other conserved signaling pathways. Rbf1 may thus directly affect output of these essential growth-control and differentiation pathways by regulation of expression of receptors, kinases and downstream effectors. Rbf1 was also found to target multiple levels of its own regulatory hierarchy. Bioinformatic analysis indicates that different classes of genes exhibit distinct constellations of motifs associated with the Rbf1-bound regions, suggesting that the context of Rbf1 recruitment may vary within the Rbf1 regulon. Many of these targeted genes are bound by Rbf1 homologs in human cells, indicating that a conserved role of RB proteins may be to adjust the set point of interlinked signaling networks essential for growth and development.
Collapse
|
48
|
Shimizu R, Yamamoto M. Contribution of GATA1 dysfunction to multi-step leukemogenesis. Cancer Sci 2012; 103:2039-44. [PMID: 22937757 DOI: 10.1111/cas.12007] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2012] [Revised: 08/19/2012] [Accepted: 08/23/2012] [Indexed: 01/01/2023] Open
Abstract
In mammals, hematopoietic homeostasis is maintained by a fine-tuned balance among the self-renewal, proliferation, differentiation and survival of hematopoietic stem cells and their progenies. Each process is also supported by the delicate balance of the expression of multiple genes specific to each process. GATA1 is a transcription factor that comprehensively regulates the genes that are important for the development of erythroid and megakaryocytic cells. Accumulating evidence supports the notion that defects in GATA1 function are intimately linked to hematopoietic disorders. In particular, the somatic mutation of the GATA1 gene, which leads to the production of N-terminally truncated GATA1, contributes to the genesis of transient myeloproliferative disorder and acute megakaryoblastic leukemia in infants with Down syndrome. Similarly, a mutation in the GATA1 regulatory region that reduces GATA1 expression is involved in the onset of erythroid leukemia in mice. In both cases, the accumulation of immature progenitor cells caused by GATA1 dysregulation underlies the pathogenesis of the leukemia. This review provides a summary of multi-step leukemogenesis with a focus on GATA1 dysfunction.
Collapse
Affiliation(s)
- Ritsuko Shimizu
- Department of Molecular Hematology, Tohoku University Graduate School of Medicine, Sendai, Japan
| | | |
Collapse
|
49
|
Strasser K, Bloomfield G, MacWilliams A, Ceccarelli A, MacWilliams H, Tsang A. A retinoblastoma orthologue is a major regulator of S-phase, mitotic, and developmental gene expression in Dictyostelium. PLoS One 2012; 7:e39914. [PMID: 22768168 PMCID: PMC3386910 DOI: 10.1371/journal.pone.0039914] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2011] [Accepted: 06/04/2012] [Indexed: 12/21/2022] Open
Abstract
Background The retinoblastoma tumour suppressor, Rb, has two major functions. First, it represses genes whose products are required for S-phase entry and progression thus stabilizing cells in G1. Second, Rb interacts with factors that induce cell-cycle exit and terminal differentiation. Dictyostelium lacks a G1 phase in its cell cycle but it has a retinoblastoma orthologue, rblA. Methodology/Principal Findings Using microarray analysis and mRNA-Seq transcriptional profiling, we show that RblA strongly represses genes whose products are involved in S phase and mitosis. Both S-phase and mitotic genes are upregulated at a single point in late G2 and again in mid-development, near the time when cell cycling is reactivated. RblA also activates a set of genes unique to slime moulds that function in terminal differentiation. Conclusions Like its mammalian counterpart Dictyostelium, RblA plays a dual role, regulating cell-cycle progression and transcriptional events leading to terminal differentiation. In the absence of a G1 phase, however, RblA functions in late G2 controlling the expression of both S-phase and mitotic genes.
Collapse
Affiliation(s)
- Kimchi Strasser
- Biology Department and Centre for Structural and Functional Genomics, Concordia University, Montreal, Canada
- * E-mail:
| | - Gareth Bloomfield
- MRC Laboratory of Molecular Biology, Cambridge, United Kingdom
- Wellcome Trust Sanger Institute, Hinxton, United Kingdom
| | | | - Adriano Ceccarelli
- Neuroscience Institute Cavalieri Ottolenghi, University of Torino, Torino, Italy
| | | | - Adrian Tsang
- Biology Department and Centre for Structural and Functional Genomics, Concordia University, Montreal, Canada
| |
Collapse
|
50
|
Abstract
Mutations in numerous genes encoding ribosomal proteins (RPs) occur in 50%-70% of individuals with Diamond-Blackfan anemia (DBA), establishing the disease as a ribosomopathy. As described in this issue of JCI, Sankaran, Gazda, and colleagues used genome-wide exome sequencing to study DBA patients with no detectable mutations in RP genes. They identified two unrelated pedigrees in which the disease is associated with mutations in GATA1, which encodes an essential hematopoietic transcription factor with no known mechanistic links to ribosomes. These findings ignite an interesting and potentially emotional debate on how we define DBA and whether the term should be restricted to pure ribosomopathies. More generally, the work reflects the powerful knowledge and controversies arising from the deluge of data generated by new genetic technologies that are being used to analyze human diseases.
Collapse
|