1
|
Stegemann F, Marcus E, Neupert S, Ostrowski S, Mathews DH, Phizicky EM. Schizosaccharomyces pombe pus1 mutants are temperature sensitive due to decay of tRNA Ile(UAU) by the 5'-3' exonuclease Dhp1, primarily targeting the unspliced pre-tRNA. RNA (NEW YORK, N.Y.) 2025; 31:566-584. [PMID: 39848696 PMCID: PMC11912914 DOI: 10.1261/rna.080315.124] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/06/2024] [Accepted: 01/11/2025] [Indexed: 01/25/2025]
Abstract
The pseudouridylase Pus1 catalyzes pseudouridine (Ψ) formation at multiple uridine residues in tRNAs, and in some snRNAs and mRNAs. Although Pus1 is highly conserved, and mutations are associated with human disease, little is known about eukaryotic Pus1 biology. Here, we show that Schizosaccharomyces pombe pus1Δ mutants are temperature sensitive due to decay of tRNAIle(UAU), as tRNAIle(UAU) levels are reduced, and its overexpression suppresses the defect. We show that tRNAIle(UAU) is degraded by the 5'-3' exonuclease Dhp1 (ortholog of Saccharomyces cerevisiae Rat1), as each of four spontaneous pus1Δ suppressors had dhp1 mutations and restored tRNAIle(UAU) levels, and two suppressors that also restored tRNAIle(UAU) levels had mutations in tol1 (S. cerevisiae MET22 ortholog), predicted to inhibit Dhp1. We show that Pus1 modifies U27, U34, and U36 of tRNAIle(UAU), raising the question about how these modifications prevent decay. Our results suggest that Dhp1 targets unspliced pre-tRNAIle(UAU), as a pus1Δ strain in which the only copy of tRNAIle(UAU) has no intron [tI(UAU)-iΔ] is temperature resistant and undergoes no detectable decay, and the corresponding pus1Δ tI(UAU)-WT strain accumulates unspliced pre-tRNAIle(UAU) Moreover, the predicted exon-intron structure of pre-tRNAIle(UAU) differs from the canonical bulge-helix-loop structure compatible with tRNA splicing, and a pus1Δ tI(UAU)i-var strain with intron mutations predicted to improve exon-intron structure is temperature resistant and undergoes little decay. These results suggest that decay of tRNAIle(UAU) by Dhp1 in pus1Δ strains occurs at the level of unspliced pre-tRNAIle(UAU), implying a substantial role for one or more of the Ψ residues in stabilizing the pre-tRNA structure for splicing.
Collapse
Affiliation(s)
- Franziska Stegemann
- Department of Biochemistry and Biophysics, Center for RNA Biology, University of Rochester School of Medicine, Rochester, New York 14642, USA
| | - Erin Marcus
- Department of Biochemistry and Biophysics, Center for RNA Biology, University of Rochester School of Medicine, Rochester, New York 14642, USA
| | - Savanah Neupert
- Department of Biochemistry and Biophysics, Center for RNA Biology, University of Rochester School of Medicine, Rochester, New York 14642, USA
| | - Sarah Ostrowski
- Department of Biochemistry and Biophysics, Center for RNA Biology, University of Rochester School of Medicine, Rochester, New York 14642, USA
| | - David H Mathews
- Department of Biochemistry and Biophysics, Center for RNA Biology, University of Rochester School of Medicine, Rochester, New York 14642, USA
| | - Eric M Phizicky
- Department of Biochemistry and Biophysics, Center for RNA Biology, University of Rochester School of Medicine, Rochester, New York 14642, USA
| |
Collapse
|
2
|
Arrías PN, Osmanli Z, Peralta E, Chinestrad PM, Monzon AM, Tosatto SCE. Diversity and structural-functional insights of alpha-solenoid proteins. Protein Sci 2024; 33:e5189. [PMID: 39465903 PMCID: PMC11514114 DOI: 10.1002/pro.5189] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2024] [Revised: 09/25/2024] [Accepted: 09/29/2024] [Indexed: 10/29/2024]
Abstract
Alpha-solenoids are a significant and diverse subset of structured tandem repeat proteins (STRPs) that are important in various domains of life. This review examines their structural and functional diversity and highlights their role in critical cellular processes such as signaling, apoptosis, and transcriptional regulation. Alpha-solenoids can be classified into three geometric folds: low curvature, high curvature, and corkscrew, as well as eight subfolds: ankyrin repeats; Huntingtin, elongation factor 3, protein phosphatase 2A, and target of rapamycin; armadillo repeats; tetratricopeptide repeats; pentatricopeptide repeats; Pumilio repeats; transcription activator-like; and Sel-1 and Sel-1-like repeats. These subfolds represent distinct protein families with unique structural properties and functions, highlighting the versatility of alpha-solenoids. The review also discusses their association with disease, highlighting their potential as therapeutic targets and their role in protein design. Advances in state-of-the-art structure prediction methods provide new opportunities and challenges in the functional characterization and classification of this kind of fold, emphasizing the need for continued development of methods for their identification and proper data curation and deposition in the main databases.
Collapse
Affiliation(s)
- Paula Nazarena Arrías
- Department of Biomedical SciencesUniversity of PadovaPadovaItaly
- Department of Protein ScienceKTH Royal Institute of TechnologyStockholmSweden
| | - Zarifa Osmanli
- Department of Biomedical SciencesUniversity of PadovaPadovaItaly
| | - Estefanía Peralta
- Laboratorio de Investigación y Desarrollo de Bioactivos (LIDeB), Departamento de Ciencias Biológicas, Facultad de Ciencias ExactasUniversidad Nacional de La PlataLa PlataBuenos AiresArgentina
| | | | | | - Silvio C. E. Tosatto
- Department of Biomedical SciencesUniversity of PadovaPadovaItaly
- Institute of Biomembranes, Bioenergetics and Molecular BiotechnologiesNational Research Council (CNR‐IBIOM)BariItaly
| |
Collapse
|
3
|
Turnbull K, Paternoga H, von der Weth E, Egorov A, Pochopien A, Zhang Y, Nersisyan L, Margus T, Johansson MO, Pelechano V, Wilson D, Hauryliuk V. The ABCF ATPase New1 resolves translation termination defects associated with specific tRNAArg and tRNALys isoacceptors in the P site. Nucleic Acids Res 2024; 52:12005-12020. [PMID: 39217469 PMCID: PMC11514491 DOI: 10.1093/nar/gkae748] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2024] [Revised: 08/06/2024] [Accepted: 08/19/2024] [Indexed: 09/04/2024] Open
Abstract
The efficiency of translation termination is determined by the nature of the stop codon as well as its context. In eukaryotes, recognition of the A-site stop codon and release of the polypeptide are mediated by release factors eRF1 and eRF3, respectively. Translation termination is modulated by other factors which either directly interact with release factors or bind to the E-site and modulate the activity of the peptidyl transferase center. Previous studies suggested that the Saccharomyces cerevisiae ABCF ATPase New1 is involved in translation termination and/or ribosome recycling, however, the exact function remained unclear. Here, we have applied 5PSeq, single-particle cryo-EM and readthrough reporter assays to provide insight into the biological function of New1. We show that the lack of New1 results in ribosomal stalling at stop codons preceded by a lysine or arginine codon and that the stalling is not defined by the nature of the C-terminal amino acid but rather by the identity of the tRNA isoacceptor in the P-site. Collectively, our results suggest that translation termination is inefficient when ribosomes have specific tRNA isoacceptors in the P-site and that the recruitment of New1 rescues ribosomes at these problematic termination contexts.
Collapse
MESH Headings
- Adenosine Triphosphatases/metabolism
- Adenosine Triphosphatases/genetics
- ATP-Binding Cassette Transporters/metabolism
- ATP-Binding Cassette Transporters/genetics
- Codon, Terminator
- Cryoelectron Microscopy
- Peptide Chain Termination, Translational
- Peptide Termination Factors/metabolism
- Peptide Termination Factors/genetics
- Ribosomes/metabolism
- RNA, Transfer, Arg/metabolism
- RNA, Transfer, Arg/genetics
- RNA, Transfer, Arg/chemistry
- RNA, Transfer, Lys/metabolism
- RNA, Transfer, Lys/genetics
- RNA, Transfer, Lys/chemistry
- Saccharomyces cerevisiae/genetics
- Saccharomyces cerevisiae/metabolism
- Saccharomyces cerevisiae Proteins/metabolism
- Saccharomyces cerevisiae Proteins/genetics
Collapse
Affiliation(s)
- Kathryn Turnbull
- Department of Clinical Microbiology, Rigshospitalet, 2200 Copenhagen, Denmark
| | - Helge Paternoga
- Institute for Biochemistry and Molecular Biology, University of Hamburg, Martin-Luther-King-Platz 6, 20146 Hamburg, Germany
| | - Esther von der Weth
- Max Planck Institute of Molecular Cell Biology and Genetics, Dresden, Germany
| | - Artyom A Egorov
- Department of Experimental Medicine, University of Lund, 221 84 Lund, Sweden
| | - Agnieszka A Pochopien
- Institute for Biochemistry and Molecular Biology, University of Hamburg, Martin-Luther-King-Platz 6, 20146 Hamburg, Germany
| | - Yujie Zhang
- SciLifeLab, Department of Microbiology, Tumor and Cell Biology. Karolinska Institutet, Solna, Sweden
| | - Lilit Nersisyan
- SciLifeLab, Department of Microbiology, Tumor and Cell Biology. Karolinska Institutet, Solna, Sweden
- Armenian Bioinformatics Institute, Yerevan, Armenia
- Institute of Molecular Biology, National Academy of Sciences of Armenia, Yerevan, Armenia
| | | | | | - Vicent Pelechano
- SciLifeLab, Department of Microbiology, Tumor and Cell Biology. Karolinska Institutet, Solna, Sweden
| | - Daniel N Wilson
- Institute for Biochemistry and Molecular Biology, University of Hamburg, Martin-Luther-King-Platz 6, 20146 Hamburg, Germany
| | - Vasili Hauryliuk
- Department of Experimental Medicine, University of Lund, 221 84 Lund, Sweden
- University of Tartu, Institute of Technology, 50411 Tartu, Estonia
| |
Collapse
|
4
|
Takada S, Bolkan BJ, O’Connor M, Goldberg M, O’Connor MB. Drosophila Trus, the orthologue of mammalian PDCD2L, is required for proper cell proliferation, larval developmental timing, and oogenesis. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.10.24.620039. [PMID: 39484569 PMCID: PMC11527112 DOI: 10.1101/2024.10.24.620039] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/03/2024]
Abstract
Toys are us (Trus) is the Drosophila melanogaster ortholog of mammalian Programmed Cell Death 2-Like (PDCD2L), a protein that has been implicated in ribosome biogenesis, cell cycle regulation, and oncogenesis. In this study, we examined the function of Trus during Drosophila development. CRISPR/Cas9 generated null mutations in trus lead to partial embryonic lethality, significant larval developmental delay, and complete pre-pupal lethality. In mutant larvae, we found decreased cell proliferation and growth defects in the brain and imaginal discs. Mapping relevant tissues for Trus function using trus RNAi and trus mutant rescue experiments revealed that imaginal disc defects are primarily responsible for the developmental delay, while the pre-pupal lethality is likely associated with faulty central nervous system (CNS) development. Examination of the molecular mechanism behind the developmental delay phenotype revealed that trus mutations induce the Xrp1-Dilp8 ribosomal stress-response in growth-impaired imaginal discs, and this signaling pathway attenuates production of the hormone ecdysone in the prothoracic gland. Additional Tap-tagging and mass spectrometry of components in Trus complexes isolated from Drosophila Kc cells identified Ribosomal protein subunit 2 (RpS2), which is coded by string of pearls (sop) in Drosophila, and Eukaryotic translation elongation factor 1 alpha 1 (eEF1α1) as interacting factors. We discuss the implication of these findings with respect to the similarity and differences in trus genetic null mutant phenotypes compared to the haplo-insufficiency phenotypes produced by heterozygosity for mutants in Minute genes and other genes involved in ribosome biogenesis.
Collapse
Affiliation(s)
- Saeko Takada
- Department of Biochemistry, Molecular Biology, and Biophysics, University of Minnesota, Minneapolis, MN 55455
| | - Bonnie J. Bolkan
- Department of Biology, Pacific University Oregon, Forest Grove, OR 97116
| | - MaryJane O’Connor
- Department of Genetics, Cell Biology and Development, University of Minnesota, Minneapolis, MN 55455
| | - Michael Goldberg
- Department of Molecular Biology and Genetics, Cornell University, Ithaca, NY 14853
| | - Michael B. O’Connor
- Department of Genetics, Cell Biology and Development, University of Minnesota, Minneapolis, MN 55455
| |
Collapse
|
5
|
Turnbull K, Paternoga H, von der Weth E, Egorov AA, Pochopien AA, Zhang Y, Nersisyan L, Margus T, Johansson MJ, Pelechano V, Wilson DN, Hauryliuk V. The ABCF ATPase New1 resolves translation termination defects associated with specific tRNA Arg and tRNA Lys isoacceptors in the P site. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.05.29.596377. [PMID: 38854126 PMCID: PMC11160720 DOI: 10.1101/2024.05.29.596377] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2024]
Abstract
The efficiency of translation termination is determined by the nature of the stop codon as well as its context. In eukaryotes, recognition of the A-site stop codon and release of the polypeptide are mediated by release factors eRF1 and eRF3, respectively. Translation termination is modulated by other factors which either directly interact with release factors or bind to the E-site and modulate the activity of the peptidyl transferase center. Previous studies suggested that the Saccharomyces cerevisiae ABCF ATPase New1 is involved in translation termination and/or ribosome recycling, however, the exact function remained unclear. Here, we have applied 5PSeq, single-particle cryo-EM and readthrough reporter assays to provide insight into the biological function of New1. We show that the lack of New1 results in ribosomal stalling at stop codons preceded by a lysine or arginine codon and that the stalling is not defined by the nature of the C-terminal amino acid but rather by the identity of the tRNA isoacceptor in the P-site. Collectively, our results suggest that translation termination is inefficient when ribosomes have specific tRNA isoacceptors in the P-site and that the recruitment of New1 rescues ribosomes at these problematic termination contexts.
Collapse
Affiliation(s)
- Kathryn Turnbull
- Department of Clinical Microbiology, Rigshospitalet, 2200 Copenhagen, Denmark
| | - Helge Paternoga
- Institute for Biochemistry and Molecular Biology, University of Hamburg, Martin-Luther-King-Platz 6, 20146 Hamburg, Germany
| | - Esther von der Weth
- Max Planck Institute of Molecular Cell Biology and Genetics, Dresden, Germany
| | - Artyom A. Egorov
- Department of Experimental Medicine, University of Lund, 221 84 Lund, Sweden
| | - Agnieszka A Pochopien
- Institute for Biochemistry and Molecular Biology, University of Hamburg, Martin-Luther-King-Platz 6, 20146 Hamburg, Germany
| | - Yujie Zhang
- SciLifeLab, Department of Microbiology, Tumor and Cell Biology. Karolinska Institutet, Solna, Sweden
| | - Lilit Nersisyan
- SciLifeLab, Department of Microbiology, Tumor and Cell Biology. Karolinska Institutet, Solna, Sweden
- Armenian Bioinformatics Institute, Yerevan, Armenia
- Institute of Molecular Biology, National Academy of Sciences of Armenia, Yerevan, Armenia
| | | | | | - Vicent Pelechano
- SciLifeLab, Department of Microbiology, Tumor and Cell Biology. Karolinska Institutet, Solna, Sweden
| | - Daniel N. Wilson
- Institute for Biochemistry and Molecular Biology, University of Hamburg, Martin-Luther-King-Platz 6, 20146 Hamburg, Germany
| | - Vasili Hauryliuk
- Department of Experimental Medicine, University of Lund, 221 84 Lund, Sweden
- University of Tartu, Institute of Technology, 50411 Tartu, Estonia
| |
Collapse
|
6
|
Aragoneses-Cazorla G, Alvarez-Fernandez Garcia R, Martinez-Lopez A, Gomez Gomez M, Vallet-Regí M, Castillo-Lluva S, González B, Luque-Garcia JL. Mechanistic insights into the antitumoral potential and in vivo antiproliferative efficacy of a silver-based core@shell nanosystem. Int J Pharm 2024; 655:124023. [PMID: 38513815 DOI: 10.1016/j.ijpharm.2024.124023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2024] [Revised: 03/07/2024] [Accepted: 03/18/2024] [Indexed: 03/23/2024]
Abstract
This study delves into the biomolecular mechanisms underlying the antitumoral efficacy of a hybrid nanosystem, comprised of a silver core@shell (Ag@MSNs) functionalized with transferrin (Tf). Employing a SILAC proteomics strategy, we identified over 150 de-regulated proteins following exposure to the nanosystem. These proteins play pivotal roles in diverse cellular processes, including mitochondrial fission, calcium homeostasis, endoplasmic reticulum (ER) stress, oxidative stress response, migration, invasion, protein synthesis, RNA maturation, chemoresistance, and cellular proliferation. Rigorous validation of key findings substantiates that the nanosystem elicits its antitumoral effects by activating mitochondrial fission, leading to disruptions in calcium homeostasis, as corroborated by RT-qPCR and flow cytometry analyses. Additionally, induction of ER stress was validated through western blotting of ER stress markers. The cytotoxic action of the nanosystem was further affirmed through the generation of cytosolic and mitochondrial reactive oxygen species (ROS). Finally, in vivo experiments using a chicken embryo model not only confirmed the antitumoral capacity of the nanosystem, but also demonstrated its efficacy in reducing cellular proliferation. These comprehensive findings endorse the potential of the designed Ag@MSNs-Tf nanosystem as a groundbreaking chemotherapeutic agent, shedding light on its multifaceted mechanisms and in vivo applicability.
Collapse
Affiliation(s)
- Guillermo Aragoneses-Cazorla
- Department of Analytical Chemistry, Faculty of Chemical Sciences, Complutense University of Madrid, 28040 Madrid, Spain
| | | | - Angelica Martinez-Lopez
- Department of Biochemistry and Molecular Biology, Faculty of Chemical Sciences, Complutense University of Madrid, 28040 Madrid, Spain
| | - Milagros Gomez Gomez
- Department of Analytical Chemistry, Faculty of Chemical Sciences, Complutense University of Madrid, 28040 Madrid, Spain
| | - Maria Vallet-Regí
- Department of Chemistry in Pharmaceutical Sciences, Faculty of Pharmacy, Complutense University of Madrid, Instituto de Investigación Sanitaria Hospital 12 de Octubre (i+12), 28040 Madrid, Spain; Centro de Investigación Biomédica en Red de Bioingeniería, Biomateriales y Nanomedicina (CIBER-BBN), Spain
| | - Sonia Castillo-Lluva
- Department of Biochemistry and Molecular Biology, Faculty of Chemical Sciences, Complutense University of Madrid, 28040 Madrid, Spain
| | - Blanca González
- Department of Chemistry in Pharmaceutical Sciences, Faculty of Pharmacy, Complutense University of Madrid, Instituto de Investigación Sanitaria Hospital 12 de Octubre (i+12), 28040 Madrid, Spain; Centro de Investigación Biomédica en Red de Bioingeniería, Biomateriales y Nanomedicina (CIBER-BBN), Spain
| | - Jose L Luque-Garcia
- Department of Analytical Chemistry, Faculty of Chemical Sciences, Complutense University of Madrid, 28040 Madrid, Spain.
| |
Collapse
|
7
|
Plank M, Carmiol N, Mitri B, Lipinski AA, Langlais PR, Capaldi AP. Systems level analysis of time and stimuli specific signaling through PKA. Mol Biol Cell 2024; 35:ar60. [PMID: 38446618 PMCID: PMC11064662 DOI: 10.1091/mbc.e23-02-0066] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2023] [Revised: 02/13/2024] [Accepted: 03/01/2024] [Indexed: 03/08/2024] Open
Abstract
It is well known that eukaryotic cells create gradients of cAMP across space and time to regulate the cAMP dependent protein kinase (PKA) and, in turn, growth and metabolism. However, it is unclear how PKA responds to different concentrations of cAMP. Here, to address this question, we examine PKA signaling in Saccharomyces cerevisiae in different conditions, timepoints, and concentrations of the chemical inhibitor 1-NM-PP1, using phosphoproteomics. These experiments show that there are numerous proteins that are only phosphorylated when cAMP and PKA activity are at/near their maximum level, while other proteins are phosphorylated even when cAMP levels and PKA activity are low. The data also show that PKA drives cells into distinct growth states by acting on proteins with different thresholds for phosphorylation in different conditions. Analysis of the sequences surrounding the 118 PKA-dependent phosphosites suggests that the phosphorylation thresholds are set, at least in part, by the affinity of PKA for each site.
Collapse
Affiliation(s)
- Michael Plank
- Department of Molecular and Cellular Biology, University of Arizona, Tucson, AZ 85721
- The Bio5 Institute, University of Arizona, Tucson, AZ 85721
| | - Nicole Carmiol
- Department of Molecular and Cellular Biology, University of Arizona, Tucson, AZ 85721
| | - Bassam Mitri
- Department of Molecular and Cellular Biology, University of Arizona, Tucson, AZ 85721
| | | | - Paul R. Langlais
- The Department of Medicine, University of Arizona, Tucson, AZ 85721
| | - Andrew P. Capaldi
- Department of Molecular and Cellular Biology, University of Arizona, Tucson, AZ 85721
- The Bio5 Institute, University of Arizona, Tucson, AZ 85721
| |
Collapse
|
8
|
De Zoysa T, Hauke AC, Iyer NR, Marcus E, Ostrowski SM, Stegemann F, Ermolenko DN, Fay JC, Phizicky EM. A connection between the ribosome and two S. pombe tRNA modification mutants subject to rapid tRNA decay. PLoS Genet 2024; 20:e1011146. [PMID: 38295128 PMCID: PMC10861057 DOI: 10.1371/journal.pgen.1011146] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2023] [Revised: 02/12/2024] [Accepted: 01/22/2024] [Indexed: 02/02/2024] Open
Abstract
tRNA modifications are crucial in all organisms to ensure tRNA folding and stability, and accurate translation. In both the yeast Saccharomyces cerevisiae and the evolutionarily distant yeast Schizosaccharomyces pombe, mutants lacking certain tRNA body modifications (outside the anticodon loop) are temperature sensitive due to rapid tRNA decay (RTD) of a subset of hypomodified tRNAs. Here we show that for each of two S. pombe mutants subject to RTD, mutations in ribosomal protein genes suppress the temperature sensitivity without altering tRNA levels. Prior work showed that S. pombe trm8Δ mutants, lacking 7-methylguanosine, were temperature sensitive due to RTD, and that one class of suppressors had mutations in the general amino acid control (GAAC) pathway, which was activated concomitant with RTD, resulting in further tRNA loss. We now find that another class of S. pombe trm8Δ suppressors have mutations in rpl genes, encoding 60S subunit proteins, and that suppression occurs with minimal restoration of tRNA levels and reduced GAAC activation. Furthermore, trm8Δ suppression extends to other mutations in the large or small ribosomal subunit. We also find that S. pombe tan1Δ mutants, lacking 4-acetylcytidine, are temperature sensitive due to RTD, that one class of suppressors have rpl mutations, associated with minimal restoration of tRNA levels, and that suppression extends to other rpl and rps mutations. However, although S. pombe tan1Δ temperature sensitivity is associated with some GAAC activation, suppression by an rpl mutation only modestly inhibits GAAC activation. We propose a model in which ribosomal protein mutations result in reduced ribosome concentrations, leading to both reduced ribosome collisions and a reduced requirement for tRNA, with these effects having different relative importance in trm8Δ and tan1Δ mutants. This model is consistent with our results in S. cerevisiae trm8Δ trm4Δ mutants, known to undergo RTD, fueling speculation that this model applies across eukaryotes.
Collapse
Affiliation(s)
- Thareendra De Zoysa
- Department of Biochemistry and Biophysics, Center for RNA Biology, University of Rochester School of Medicine, Rochester, New York, United States of America
| | - Alayna C. Hauke
- Department of Biochemistry and Biophysics, Center for RNA Biology, University of Rochester School of Medicine, Rochester, New York, United States of America
| | - Nivedita R. Iyer
- Department of Biochemistry and Biophysics, Center for RNA Biology, University of Rochester School of Medicine, Rochester, New York, United States of America
| | - Erin Marcus
- Department of Biochemistry and Biophysics, Center for RNA Biology, University of Rochester School of Medicine, Rochester, New York, United States of America
| | - Sarah M. Ostrowski
- Department of Biochemistry and Biophysics, Center for RNA Biology, University of Rochester School of Medicine, Rochester, New York, United States of America
| | - Franziska Stegemann
- Department of Biochemistry and Biophysics, Center for RNA Biology, University of Rochester School of Medicine, Rochester, New York, United States of America
| | - Dmitri N. Ermolenko
- Department of Biochemistry and Biophysics, Center for RNA Biology, University of Rochester School of Medicine, Rochester, New York, United States of America
| | - Justin C. Fay
- Department of Biology, University of Rochester, Rochester, New York, United States of America
| | - Eric M. Phizicky
- Department of Biochemistry and Biophysics, Center for RNA Biology, University of Rochester School of Medicine, Rochester, New York, United States of America
| |
Collapse
|
9
|
Alagar Boopathy LR, Beadle E, Garcia-Bueno Rico A, Vera M. Proteostasis regulation through ribosome quality control and no-go-decay. WILEY INTERDISCIPLINARY REVIEWS. RNA 2023; 14:e1809. [PMID: 37488089 DOI: 10.1002/wrna.1809] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/25/2022] [Revised: 06/14/2023] [Accepted: 06/30/2023] [Indexed: 07/26/2023]
Abstract
Cell functionality relies on the existing pool of proteins and their folding into functional conformations. This is achieved through the regulation of protein synthesis, which requires error-free mRNAs and ribosomes. Ribosomes are quality control hubs for mRNAs and proteins. Problems during translation elongation slow down the decoding rate, leading to ribosome halting and the eventual collision with the next ribosome. Collided ribosomes form a specific disome structure recognized and solved by ribosome quality control (RQC) mechanisms. RQC pathways orchestrate the degradation of the problematic mRNA by no-go decay and the truncated nascent peptide, the repression of translation initiation, and the recycling of the stalled ribosomes. All these events maintain protein homeostasis and return valuable ribosomes to translation. As such, cell homeostasis and function are maintained at the mRNA level by preventing the production of aberrant or unnecessary proteins. It is becoming evident that the crosstalk between RQC and the protein homeostasis network is vital for cell function, as the absence of RQC components leads to the activation of stress response and neurodegenerative diseases. Here, we review the molecular events of RQC discovered through well-designed stalling reporters. Given the impact of RQC in proteostasis, we discuss the relevance of identifying endogenous mRNA regulated by RQC and their preservation in stress conditions. This article is categorized under: RNA Turnover and Surveillance > Turnover/Surveillance Mechanisms Translation > Regulation.
Collapse
Affiliation(s)
| | - Emma Beadle
- Department of Biochemistry, McGill University, Montreal, Canada
| | | | - Maria Vera
- Department of Biochemistry, McGill University, Montreal, Canada
| |
Collapse
|
10
|
Alagar Boopathy L, Beadle E, Xiao A, Garcia-Bueno Rico A, Alecki C, Garcia de-Andres I, Edelmeier K, Lazzari L, Amiri M, Vera M. The ribosome quality control factor Asc1 determines the fate of HSP70 mRNA on and off the ribosome. Nucleic Acids Res 2023; 51:6370-6388. [PMID: 37158240 PMCID: PMC10325905 DOI: 10.1093/nar/gkad338] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2022] [Revised: 04/16/2023] [Accepted: 04/20/2023] [Indexed: 05/10/2023] Open
Abstract
Cells survive harsh environmental conditions by potently upregulating molecular chaperones such as heat shock proteins (HSPs), particularly the inducible members of the HSP70 family. The life cycle of HSP70 mRNA in the cytoplasm is unique-it is translated during stress when most cellular mRNA translation is repressed and rapidly degraded upon recovery. Contrary to its 5' untranslated region's role in maximizing translation, we discovered that the HSP70 coding sequence (CDS) suppresses its translation via the ribosome quality control (RQC) mechanism. The CDS of the most inducible Saccharomyces cerevisiae HSP70 gene, SSA4, is uniquely enriched with low-frequency codons that promote ribosome stalling during heat stress. Stalled ribosomes are recognized by the RQC components Asc1p and Hel2p and two novel RQC components, the ribosomal proteins Rps28Ap and Rps19Bp. Surprisingly, RQC does not signal SSA4 mRNA degradation via No-Go-Decay. Instead, Asc1p destabilizes SSA4 mRNA during recovery from heat stress by a mechanism independent of ribosome binding and SSA4 codon optimality. Therefore, Asc1p operates in two pathways that converge to regulate the SSA4 mRNA life cycle during stress and recovery. Our research identifies Asc1p as a critical regulator of the stress response and RQC as the mechanism tuning HSP70 synthesis.
Collapse
Affiliation(s)
| | - Emma Beadle
- Department of Biochemistry. McGill University, Montreal, QuebecH3G 1Y6, Canada
| | - Alan RuoChen Xiao
- Department of Biochemistry. McGill University, Montreal, QuebecH3G 1Y6, Canada
| | | | - Celia Alecki
- Department of Biochemistry. McGill University, Montreal, QuebecH3G 1Y6, Canada
| | | | - Kyla Edelmeier
- Department of Biochemistry. McGill University, Montreal, QuebecH3G 1Y6, Canada
| | - Luca Lazzari
- Department of Biochemistry. McGill University, Montreal, QuebecH3G 1Y6, Canada
| | - Mehdi Amiri
- Department of Biochemistry. McGill University, Montreal, QuebecH3G 1Y6, Canada
| | - Maria Vera
- Department of Biochemistry. McGill University, Montreal, QuebecH3G 1Y6, Canada
| |
Collapse
|
11
|
Landry-Voyer AM, Mir Hassani Z, Avino M, Bachand F. Ribosomal Protein uS5 and Friends: Protein-Protein Interactions Involved in Ribosome Assembly and Beyond. Biomolecules 2023; 13:biom13050853. [PMID: 37238722 DOI: 10.3390/biom13050853] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2023] [Revised: 05/15/2023] [Accepted: 05/16/2023] [Indexed: 05/28/2023] Open
Abstract
Ribosomal proteins are fundamental components of the ribosomes in all living cells. The ribosomal protein uS5 (Rps2) is a stable component of the small ribosomal subunit within all three domains of life. In addition to its interactions with proximal ribosomal proteins and rRNA inside the ribosome, uS5 has a surprisingly complex network of evolutionarily conserved non-ribosome-associated proteins. In this review, we focus on a set of four conserved uS5-associated proteins: the protein arginine methyltransferase 3 (PRMT3), the programmed cell death 2 (PDCD2) and its PDCD2-like (PDCD2L) paralog, and the zinc finger protein, ZNF277. We discuss recent work that presents PDCD2 and homologs as a dedicated uS5 chaperone and PDCD2L as a potential adaptor protein for the nuclear export of pre-40S subunits. Although the functional significance of the PRMT3-uS5 and ZNF277-uS5 interactions remain elusive, we reflect on the potential roles of uS5 arginine methylation by PRMT3 and on data indicating that ZNF277 and PRMT3 compete for uS5 binding. Together, these discussions highlight the complex and conserved regulatory network responsible for monitoring the availability and the folding of uS5 for the formation of 40S ribosomal subunits and/or the role of uS5 in potential extra-ribosomal functions.
Collapse
Affiliation(s)
- Anne-Marie Landry-Voyer
- Dept of Biochemistry & Functional Genomics, Université de Sherbrooke, Sherbrooke, QC J1E 4K8, Canada
| | - Zabih Mir Hassani
- Dept of Biochemistry & Functional Genomics, Université de Sherbrooke, Sherbrooke, QC J1E 4K8, Canada
| | - Mariano Avino
- Dept of Biochemistry & Functional Genomics, Université de Sherbrooke, Sherbrooke, QC J1E 4K8, Canada
| | - François Bachand
- Dept of Biochemistry & Functional Genomics, Université de Sherbrooke, Sherbrooke, QC J1E 4K8, Canada
| |
Collapse
|
12
|
Cytosolic and mitochondrial ribosomal proteins mediate the locust phase transition via divergence of translational profiles. Proc Natl Acad Sci U S A 2023; 120:e2216851120. [PMID: 36701367 PMCID: PMC9945961 DOI: 10.1073/pnas.2216851120] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023] Open
Abstract
The phase transition from solitary to gregarious locusts is crucial in outbreaks of locust plague, which threaten agricultural yield and food security. Research on the regulatory mechanisms of phase transition in locusts has focused primarily on the transcriptional or posttranslational level. However, the translational regulation of phase transition is unexplored. Here, we show a phase-dependent pattern at the translation level, which exhibits different polysome profiles between gregarious and solitary locusts. The gregarious locusts exhibit significant increases in 60S and polyribosomes, while solitary locusts possess higher peaks of the monoribosome and a specific "halfmer." The polysome profiles, a molecular phenotype, respond to changes in population density. In gregarious locusts, ten genes involved in the cytosolic ribosome pathway exhibited increased translational efficiency (TE). In solitary locusts, five genes from the mitochondrial ribosome pathway displayed increased TE. The high expression of large ribosomal protein 7 at the translational level promotes accumulation of the free 60S ribosomal subunit in gregarious locusts, while solitary locusts employ mitochondrial small ribosomal protein 18c to induce the assembly of mitochondrial ribosomes, causing divergence of the translational profiles and behavioral transition. This study reveals the translational regulatory mechanism of locust phase transition, in which the locusts employ divergent ribosome pathways to cope with changes in population density.
Collapse
|
13
|
Jagadeesan SK, Al-gafari M, Wang J, Takallou S, Allard D, Hajikarimlou M, Kazmirchuk TDD, Moteshareie H, Said KB, Nokhbeh R, Smith M, Samanfar B, Golshani A. DBP7 and YRF1-6 Are Involved in Cell Sensitivity to LiCl by Regulating the Translation of PGM2 mRNA. Int J Mol Sci 2023; 24:ijms24021785. [PMID: 36675300 PMCID: PMC9864399 DOI: 10.3390/ijms24021785] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2022] [Revised: 01/13/2023] [Accepted: 01/14/2023] [Indexed: 01/17/2023] Open
Abstract
Lithium chloride (LiCl) has been widely researched and utilized as a therapeutic option for bipolar disorder (BD). Several pathways, including cell signaling and signal transduction pathways in mammalian cells, are shown to be regulated by LiCl. LiCl can negatively control the expression and activity of PGM2, a phosphoglucomutase that influences sugar metabolism in yeast. In the presence of galactose, when yeast cells are challenged by LiCl, the phosphoglucomutase activity of PGM2p is decreased, causing an increase in the concentration of toxic galactose metabolism intermediates that result in cell sensitivity. Here, we report that the null yeast mutant strains DBP7∆ and YRF1-6∆ exhibit increased LiCl sensitivity on galactose-containing media. Additionally, we demonstrate that DBP7 and YRF1-6 modulate the translational level of PGM2 mRNA, and the observed alteration in translation seems to be associated with the 5'-untranslated region (UTR) of PGM2 mRNA. Furthermore, we observe that DBP7 and YRF1-6 influence, to varying degrees, the translation of other mRNAs that carry different 5'-UTR secondary structures.
Collapse
Affiliation(s)
- Sasi Kumar Jagadeesan
- Ottawa Institute of Systems Biology, University of Ottawa, Ottawa, ON K1N 6N5, Canada
- Department of Biology, Carleton University, Ottawa, ON K1S 5B6, Canada
| | - Mustafa Al-gafari
- Ottawa Institute of Systems Biology, University of Ottawa, Ottawa, ON K1N 6N5, Canada
- Department of Biology, Carleton University, Ottawa, ON K1S 5B6, Canada
| | - Jiashu Wang
- Ottawa Institute of Systems Biology, University of Ottawa, Ottawa, ON K1N 6N5, Canada
- Department of Biology, Carleton University, Ottawa, ON K1S 5B6, Canada
| | - Sarah Takallou
- Ottawa Institute of Systems Biology, University of Ottawa, Ottawa, ON K1N 6N5, Canada
- Department of Biology, Carleton University, Ottawa, ON K1S 5B6, Canada
| | - Danielle Allard
- Ottawa Institute of Systems Biology, University of Ottawa, Ottawa, ON K1N 6N5, Canada
- Department of Biology, Carleton University, Ottawa, ON K1S 5B6, Canada
| | - Maryam Hajikarimlou
- Ottawa Institute of Systems Biology, University of Ottawa, Ottawa, ON K1N 6N5, Canada
- Department of Biology, Carleton University, Ottawa, ON K1S 5B6, Canada
| | - Thomas David Daniel Kazmirchuk
- Ottawa Institute of Systems Biology, University of Ottawa, Ottawa, ON K1N 6N5, Canada
- Department of Biology, Carleton University, Ottawa, ON K1S 5B6, Canada
| | - Houman Moteshareie
- Department of Biology, Carleton University, Ottawa, ON K1S 5B6, Canada
- Biotechnology Laboratory, Environmental Health Science and Research Bureau, Healthy Environments and Consumer Safety Branch, Health Canada, Ottawa, ON K1A 0K9, Canada
| | - Kamaledin B. Said
- Department of Biology, Carleton University, Ottawa, ON K1S 5B6, Canada
- Department of Pathology and Microbiology, College of Medicine, University of Hail, Hail 55476, Saudi Arabia
| | - Reza Nokhbeh
- Department of Biology, Carleton University, Ottawa, ON K1S 5B6, Canada
| | - Myron Smith
- Department of Biology, Carleton University, Ottawa, ON K1S 5B6, Canada
| | - Bahram Samanfar
- Department of Biology, Carleton University, Ottawa, ON K1S 5B6, Canada
- Agriculture and Agri-Food Canada, Ottawa Research and Development Centre (ORDC), Ottawa, ON K1A 0C6, Canada
| | - Ashkan Golshani
- Ottawa Institute of Systems Biology, University of Ottawa, Ottawa, ON K1N 6N5, Canada
- Department of Biology, Carleton University, Ottawa, ON K1S 5B6, Canada
- Correspondence:
| |
Collapse
|
14
|
Modulation and function of Pumilio proteins in cancer. Semin Cancer Biol 2022; 86:298-309. [PMID: 35301091 DOI: 10.1016/j.semcancer.2022.03.010] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2022] [Revised: 03/06/2022] [Accepted: 03/11/2022] [Indexed: 01/27/2023]
Abstract
Post-transcriptional regulation is involved in tumorigenesis, and in this control, RNA-binding proteins are the main protagonists. Pumilio proteins are highly conserved RNA-binding proteins that regulate many aspects of RNA processing. The dysregulation of Pumilio expression is associated with different types of cancer. This review summarizes the roles of Pumilio 1 and Pumilio 2 in cancer and discusses the factors that account for their distinct biological functions. Pumilio levels seem to be related to tumor progression and poor prognoses in some kinds of tumors, such as lung, pancreatic, prostate, and cervical cancers. Pumilio 1 is associated with cancer proliferation, migration, and invasion, and so is Pumilio 2, although there are contradictory reports regarding the latter. Furthermore, the circular RNA, circPUM1, has been described as a miRNAs sponge, regulating miRNA involved in the cell cycle. The expression and function of Pumilio proteins depend on the fine adjustment of a set of modulators, including miRNAs, lncRNAs, and circRNAs; this demonstrates that Pumilio plays an important role in tumorigenesis through a variety of regulatory axes.
Collapse
|
15
|
Wagner A, Schosserer M. The epitranscriptome in ageing and stress resistance: A systematic review. Ageing Res Rev 2022; 81:101700. [PMID: 35908668 DOI: 10.1016/j.arr.2022.101700] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2022] [Revised: 07/15/2022] [Accepted: 07/25/2022] [Indexed: 01/31/2023]
Abstract
Modifications of RNA, collectively called the "epitranscriptome", might provide novel biomarkers and innovative targets for interventions in geroscience but are just beginning to be studied in the context of ageing and stress resistance. RNA modifications modulate gene expression by affecting translation initiation and speed, miRNA binding, RNA stability, and RNA degradation. Nonetheless, the precise underlying molecular mechanisms and physiological consequences of most alterations of the epitranscriptome are still only poorly understood. We here systematically review different types of modifications of rRNA, tRNA and mRNA, the methodology to analyze them, current challenges in the field, and human disease associations. Furthermore, we compiled evidence for a connection between individual enzymes, which install RNA modifications, and lifespan in yeast, worm and fly. We also included resistance to different stressors and competitive fitness as search criteria for genes potentially relevant to ageing. Promising candidates identified by this approach include RCM1/NSUN5, RRP8, and F33A8.4/ZCCHC4 that introduce base methylations in rRNA, the methyltransferases DNMT2 and TRM9/ALKBH8, as well as factors involved in the thiolation or A to I editing in tRNA, and finally the m6A machinery for mRNA.
Collapse
Affiliation(s)
- Anja Wagner
- Institute of Molecular Biotechnology, University of Natural Resources and Life Sciences, Vienna, Austria
| | - Markus Schosserer
- Institute of Molecular Biotechnology, University of Natural Resources and Life Sciences, Vienna, Austria; Institute of Medical Genetics, Center for Pathobiochemistry and Genetics, Medical University of Vienna, Vienna, Austria; Austrian Cluster for Tissue Regeneration, Vienna, Austria.
| |
Collapse
|
16
|
Tseng YT, Sung YC, Liu CY, Lo KY. Translation initiation factor eIF4G1 modulates assembly of the polypeptide exit tunnel region in yeast ribosome biogenesis. J Cell Sci 2022; 135:275526. [PMID: 35615984 DOI: 10.1242/jcs.259540] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2021] [Accepted: 05/12/2022] [Indexed: 01/24/2023] Open
Abstract
eIF4G is an important eukaryotic translation initiation factor. In this study, eIF4G1, one of the eIF4G isoforms, was shown to directly participate in biogenesis of the large (60S) ribosomal subunit in Saccharomyces cerevisiae cells. Mutation of eIF4G1 decreased the amount 60S ribosomal subunits significantly. The C-terminal fragment of eIF4G1 could complement the function in 60S biogenesis. Analyses of its purified complex with mass spectrometry indicated that eIF4G1 associated with the pre-60S form directly. Strong genetic and direct protein-protein interactions were observed between eIF4G1 and Ssf1 protein. Upon deletion of eIF4G1, Ssf1, Rrp15, Rrp14 and Mak16 were abnormally retained on the pre-60S complex. This purturbed the loading of Arx1 and eL31 at the polypeptide exit tunnel (PET) site and the transition to a Nog2 complex. Our data indicate that eIF4G1 is important in facilitating PET maturation and 27S processing correctly. This article has an associated First Person interview with the first author of the paper.
Collapse
Affiliation(s)
- Yun-Ting Tseng
- Department of Agricultural Chemistry, College of Bioresources and Agriculture, National Taiwan University, Taipei 10617, Taiwan
| | - Yu-Cheng Sung
- Department of Agricultural Chemistry, College of Bioresources and Agriculture, National Taiwan University, Taipei 10617, Taiwan
| | - Ching-Yu Liu
- Department of Agricultural Chemistry, College of Bioresources and Agriculture, National Taiwan University, Taipei 10617, Taiwan
| | - Kai-Yin Lo
- Department of Agricultural Chemistry, College of Bioresources and Agriculture, National Taiwan University, Taipei 10617, Taiwan
| |
Collapse
|
17
|
Guo S, Arshad A, Yang L, Qin Y, Mu X, Mi G. Comparative Transcriptome Analysis Reveals Common and Developmental Stage-Specific Genes That Respond to Low Nitrogen in Maize Leaves. PLANTS 2022; 11:plants11121550. [PMID: 35736701 PMCID: PMC9230787 DOI: 10.3390/plants11121550] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/13/2022] [Revised: 06/04/2022] [Accepted: 06/04/2022] [Indexed: 11/16/2022]
Abstract
A growing leaf can be divided into three sections: division zone, elongation zone, and maturation zone. In previous studies, low nitrogen (LN) inhibited maize growth and development, especially leaf growth; however, the gene expression in response to LN in different regions in leaf were not clear. Here, using hydroponics and a transcriptome approach, we systematically analyzed the molecular responses of those zones and differentially expressed genes (DEG) in response to LN supply. Developmental stage-specific genes (SGs) were highly stage-specific and involved in distinct biological processes. SGs from division (SGs–DZ) and elongation zones (SGs–EZ) were more related to developmentally dependent processes, whereas SGs of the maturation zone (SGs–MZ) were more related to metabolic processes. The common genes (CGs) were overrepresented in carbon and N metabolism, suggesting that rebalancing carbon and N metabolism in maize leaves under LN condition was independent of developmental stage. Coexpression modules (CMs) were also constructed in our experiment and a total of eight CMs were detected. Most of SGs–DZ and SGs–EZ were classified into a set termed CM turquoise, which was mainly enriched in ribosome and DNA replication, whereas several genes from SGs–MZ and CGs were clustered into CM blue, which mainly focused on photosynthesis and carbon metabolism. Finally, a comprehensive coexpression network was extracted from CM blue, and several maize CONSTANS-LIKE(ZmCOL) genes seemed to participate in regulating photosynthesis in maize leaves under LN condition in a developmental stage-specific manner. With this study, we uncovered the LN-responsive CGs and SGs that are important for promoting plant growth and development under insufficient nitrogen supply.
Collapse
Affiliation(s)
- Song Guo
- Institute of Agricultural Resources and Environment, Sichuan Academy of Agricultural Sciences, Chengdu 610066, China; (S.G.); (Y.Q.)
| | - Adnan Arshad
- College of Resources and Environmental Science, China Agricultural University, Beijing 100193, China;
- PODA Organization, Islamabad 44000, Pakistan
| | - Lan Yang
- College of Resources and Environmental, Hunan Agricultural University, Changsha 410128, China;
| | - Yusheng Qin
- Institute of Agricultural Resources and Environment, Sichuan Academy of Agricultural Sciences, Chengdu 610066, China; (S.G.); (Y.Q.)
| | - Xiaohuan Mu
- Synergetic Innovation Center of Henan Grain Crops, College of Agronomy, Henan Agricultural University, Zhengzhou 450002, China;
| | - Guohua Mi
- College of Resources and Environmental Science, China Agricultural University, Beijing 100193, China;
- National Academy of Agriculture Green Development, Key Laboratory of Plant-Soil Interactions of MOE, China Agricultural University, Beijing 100193, China
- Correspondence: ; Tel.: +86-10-62734454
| |
Collapse
|
18
|
Ko CF, Chang YC, Cho HC, Yu J. The Puf-A Protein Is Required for Primordial Germ Cell Development. Cells 2022; 11:cells11091476. [PMID: 35563782 PMCID: PMC9105799 DOI: 10.3390/cells11091476] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2022] [Revised: 04/24/2022] [Accepted: 04/25/2022] [Indexed: 11/16/2022] Open
Abstract
Puf-A, a nucleolar Puf domain protein, is required for ribosome biogenesis. A study of Puf-A in zebrafish has shown that Puf-A is highly expressed in primordial germ cells (PGCs) and participates in PGC development. However, it remains unclear how Puf-A governs PGC development in mammals. Here, we generated transgenic mice carrying inducible Puf-A shRNA and obtained double heterozygous mice with Puf-A shRNA and Oct4-EGFP to examine the behavior of PGCs. It was found that the knockdown of Puf-A led to the loss of a considerable number of PGCs and a slowdown of the movement of the remaining PGCs. Puf-A and NPM1 colocalized in clusters in the nuclei of the PGCs. The silencing of Puf-A resulted in the translocation of NPM1 from nucleolus to nucleoplasm and the hyperactivation of p53 in the PGCs. The PGCs in Puf-A knockdown embryos showed a significant increase in subpopulations of PGCs at G1 arrest and apoptosis. Moreover, the expression of essential genes associated with PGC maintenance was decreased in the Puf-A knockdown PGCs. Our study showed that Puf-A governed PGC development by regulating the growth, survival, and maintenance of PGCs. We also observed the alterations of NPM1 and p53 upon Puf-A knockdown to be consistent with the previous study in cancer cells, which might explain the molecular mechanism for the role of Puf-A in PGC development.
Collapse
|
19
|
Cho HC, Huang Y, Hung JT, Hung TH, Cheng KC, Liu YH, Kuo MW, Wang SH, Yu AL, Yu J. Puf-A promotes cancer progression by interacting with nucleophosmin in nucleolus. Oncogene 2022; 41:1155-1165. [PMID: 34999733 PMCID: PMC8856959 DOI: 10.1038/s41388-021-02138-0] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2021] [Revised: 11/11/2021] [Accepted: 11/25/2021] [Indexed: 01/02/2023]
Abstract
Previously, we identified Puf-A as a novel member of Puf-family RNA-binding proteins; however, its biological functions remain obscure. Analysis of tumor samples of non-small cell lung cancer (NSCLC) showed that high Puf-A expression correlated with high histology grade and abnormal p53 status. Kaplan-Meier curve for overall survival revealed high expression of Puf-A to predict poor prognosis in stage I NSCLC. Among patients with colorectal cancer, high Puf-A expression also showed an adverse impact on overall survival. In lung cancer cell lines, downregulation of p53 increased Puf-A expression, and upregulation of p53 dampened its expression. However, luciferase reporter assays indicated that PUF-A locus harbored the p53-response element, but regulated Puf-A transcription indirectly. In vivo suppression of p53 in CCSP-rtTA/TetO-Cre/LSL-KrasG12D/p53flox/flox conditional mutant mice accelerated the progression of the KrasG12D-driven lung cancer, along with enhanced expression of Puf-A. Importantly, intranasal delivery of shPuf-A to the inducible KrasG12D/p53flox/flox mice suppressed tumor progression. Puf-A silencing led to marked decreases in the 80S ribosomes, along with decrease in S6 and L5 in the cytoplasm and accumulation in the nucleolus. Based on immunofluorescence staining and immunoprecipitation studies, Puf-A interacted with NPM1 in nucleolus. Puf-A silencing resulted in NPM1 translocation from nucleolus to nucleoplasm and this disruption of NPM1 localization was reversed by a rescue experiment. Mechanistically, Puf-A silencing altered NPM1 localization, leading to the retention of ribosomal proteins in nucleolus and diminished ribosome biogenesis, followed by cell-cycle arrest/cell death. Puf-A is a potential theranostic target for cancer therapy and an important player in cancer progression.
Collapse
Affiliation(s)
- Huan-Chieh Cho
- Institute of Stem Cell and Translational Cancer Research, Chang Gung Memorial Hospital at Linkou, Taoyuan, Taiwan
| | - Yenlin Huang
- Institute of Stem Cell and Translational Cancer Research, Chang Gung Memorial Hospital at Linkou, Taoyuan, Taiwan
- Department of Anatomic Pathology, Chang Gung Memorial Hospital at Linkou, Taoyuan, Taiwan
| | - Jung-Tung Hung
- Institute of Stem Cell and Translational Cancer Research, Chang Gung Memorial Hospital at Linkou, Taoyuan, Taiwan
| | - Tsai-Hsien Hung
- Institute of Stem Cell and Translational Cancer Research, Chang Gung Memorial Hospital at Linkou, Taoyuan, Taiwan
| | - Kai-Chun Cheng
- Institute of Stem Cell and Translational Cancer Research, Chang Gung Memorial Hospital at Linkou, Taoyuan, Taiwan
| | - Yun-Hen Liu
- Department of Surgery, Chang Gung Memorial Hospital at Linkou, Taoyuan, Taiwan
| | - Ming-Wei Kuo
- Institute of Stem Cell and Translational Cancer Research, Chang Gung Memorial Hospital at Linkou, Taoyuan, Taiwan
| | - Sheng-Hung Wang
- Institute of Stem Cell and Translational Cancer Research, Chang Gung Memorial Hospital at Linkou, Taoyuan, Taiwan
| | - Alice L Yu
- Institute of Stem Cell and Translational Cancer Research, Chang Gung Memorial Hospital at Linkou, Taoyuan, Taiwan
- Genomics Research Center, Academia Sinica, Taipei, Taiwan
- Department of Pediatrics, University of California San Diego Medical Center, San Diego, CA, USA
| | - John Yu
- Institute of Stem Cell and Translational Cancer Research, Chang Gung Memorial Hospital at Linkou, Taoyuan, Taiwan.
- Institute of Cellular and Organismic Biology, Academia Sinica, Taipei, Taiwan.
| |
Collapse
|
20
|
Cui Z, Li X, Shin J, Gamper H, Hou YM, Sacchettini JC, Zhang J. Interplay between an ATP-binding cassette F protein and the ribosome from Mycobacterium tuberculosis. Nat Commun 2022; 13:432. [PMID: 35064151 PMCID: PMC8782954 DOI: 10.1038/s41467-022-28078-1] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2021] [Accepted: 01/07/2022] [Indexed: 12/22/2022] Open
Abstract
EttA, energy-dependent translational throttle A, is a ribosomal factor that gates ribosome entry into the translation elongation cycle. A detailed understanding of its mechanism of action is limited due to the lack of high-resolution structures along its ATPase cycle. Here we present the cryo-electron microscopy (cryo-EM) structures of EttA from Mycobacterium tuberculosis (Mtb), referred to as MtbEttA, in complex with the Mtb 70S ribosome initiation complex (70SIC) at the pre-hydrolysis (ADPNP) and transition (ADP-VO4) states, and the crystal structure of MtbEttA alone in the post-hydrolysis (ADP) state. We observe that MtbEttA binds the E-site of the Mtb 70SIC, remodeling the P-site tRNA and the ribosomal intersubunit bridge B7a during the ribosomal ratcheting. In return, the rotation of the 30S causes conformational changes in MtbEttA, forcing the two nucleotide-binding sites (NBSs) to alternate to engage each ADPNP in the pre-hydrolysis states, followed by complete engagements of both ADP-VO4 molecules in the ATP-hydrolysis transition states. In the post-hydrolysis state, the conserved ATP-hydrolysis motifs of MtbEttA dissociate from both ADP molecules, leaving two nucleotide-binding domains (NBDs) in an open conformation. These structures reveal a dynamic interplay between MtbEttA and the Mtb ribosome, providing insights into the mechanism of translational regulation by EttA-like proteins.
Collapse
Affiliation(s)
- Zhicheng Cui
- Department of Biochemistry and Biophysics, Texas A&M University, College Station, TX, 77843, USA
| | - Xiaojun Li
- Department of Biochemistry and Biophysics, Texas A&M University, College Station, TX, 77843, USA
| | - Joonyoung Shin
- Department of Biochemistry and Biophysics, Texas A&M University, College Station, TX, 77843, USA
| | - Howard Gamper
- Department of Biochemistry and Molecular Biology, Thomas Jefferson University, Philadelphia, PA, 19107, USA
| | - Ya-Ming Hou
- Department of Biochemistry and Molecular Biology, Thomas Jefferson University, Philadelphia, PA, 19107, USA
| | - James C Sacchettini
- Department of Biochemistry and Biophysics, Texas A&M University, College Station, TX, 77843, USA
| | - Junjie Zhang
- Department of Biochemistry and Biophysics, Texas A&M University, College Station, TX, 77843, USA.
| |
Collapse
|
21
|
Oborská-Oplová M, Fischer U, Altvater M, Panse VG. Eukaryotic Ribosome assembly and Nucleocytoplasmic Transport. Methods Mol Biol 2022; 2533:99-126. [PMID: 35796985 PMCID: PMC9761919 DOI: 10.1007/978-1-0716-2501-9_7] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
The process of eukaryotic ribosome assembly stretches across the nucleolus, the nucleoplasm and the cytoplasm, and therefore relies on efficient nucleocytoplasmic transport. In yeast, the import machinery delivers ~140,000 ribosomal proteins every minute to the nucleus for ribosome assembly. At the same time, the export machinery facilitates translocation of ~2000 pre-ribosomal particles every minute through ~200 nuclear pore complexes (NPC) into the cytoplasm. Eukaryotic ribosome assembly also requires >200 conserved assembly factors, which transiently associate with pre-ribosomal particles. Their site(s) of action on maturing pre-ribosomes are beginning to be elucidated. In this chapter, we outline protocols that enable rapid biochemical isolation of pre-ribosomal particles for single particle cryo-electron microscopy (cryo-EM) and in vitro reconstitution of nuclear transport processes. We discuss cell-biological and genetic approaches to investigate how the ribosome assembly and the nucleocytoplasmic transport machineries collaborate to produce functional ribosomes.
Collapse
Affiliation(s)
- Michaela Oborská-Oplová
- Institute of Biochemistry, ETH Zurich, Zurich, Switzerland
- Institute of Medical Microbiology, University of Zurich, Zurich, Switzerland
| | - Ute Fischer
- Institute of Biochemistry, ETH Zurich, Zurich, Switzerland
| | | | - Vikram Govind Panse
- Institute of Medical Microbiology, University of Zurich, Zurich, Switzerland.
- Faculty of Science, University of Zurich, Zurich, Switzerland.
| |
Collapse
|
22
|
Floro J, Dai A, Metzger A, Mora-Martin A, Ganem N, Cifuentes D, Wu CS, Dalal J, Lyons S, Labadorf A, Flynn R. SDE2 is an essential gene required for ribosome biogenesis and the regulation of alternative splicing. Nucleic Acids Res 2021; 49:9424-9443. [PMID: 34365507 PMCID: PMC8450105 DOI: 10.1093/nar/gkab647] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2019] [Revised: 07/08/2021] [Accepted: 07/21/2021] [Indexed: 11/22/2022] Open
Abstract
RNA provides the framework for the assembly of some of the most intricate macromolecular complexes within the cell, including the spliceosome and the mature ribosome. The assembly of these complexes relies on the coordinated association of RNA with hundreds of trans-acting protein factors. While some of these trans-acting factors are RNA-binding proteins (RBPs), others are adaptor proteins, and others still, function as both. Defects in the assembly of these complexes results in a number of human pathologies including neurodegeneration and cancer. Here, we demonstrate that Silencing Defective 2 (SDE2) is both an RNA binding protein and also a trans-acting adaptor protein that functions to regulate RNA splicing and ribosome biogenesis. SDE2 depletion leads to widespread changes in alternative splicing, defects in ribosome biogenesis and ultimately complete loss of cell viability. Our data highlight SDE2 as a previously uncharacterized essential gene required for the assembly and maturation of the complexes that carry out two of the most fundamental processes in mammalian cells.
Collapse
Affiliation(s)
- Jess Floro
- Departments of Pharmacology and Experimental Therapeutics, and Medicine, Cancer Center, Boston University School of Medicine, Boston, MA 02118, USA
| | - Anqi Dai
- Departments of Pharmacology and Experimental Therapeutics, and Medicine, Cancer Center, Boston University School of Medicine, Boston, MA 02118, USA
- Bioinformatics Program, Boston University, Boston, MA 02118 USA
| | - Abigail Metzger
- Departments of Pharmacology and Experimental Therapeutics, and Medicine, Cancer Center, Boston University School of Medicine, Boston, MA 02118, USA
| | - Alexandra Mora-Martin
- Department of Biochemistry, Boston University School of Medicine, Boston, MA 02118, USA
| | - Neil J Ganem
- Departments of Pharmacology and Experimental Therapeutics, and Medicine, Cancer Center, Boston University School of Medicine, Boston, MA 02118, USA
| | - Daniel Cifuentes
- Department of Biochemistry, Boston University School of Medicine, Boston, MA 02118, USA
| | - Ching-Shyi Wu
- Department and Graduate Institute of Pharmacology, National Taiwan University College of Medicine, Taipei, 10051, Taiwan
| | - Jasbir Dalal
- Department of Biochemistry, Boston University School of Medicine, Boston, MA 02118, USA
| | - Shawn M Lyons
- Department of Biochemistry, Boston University School of Medicine, Boston, MA 02118, USA
| | - Adam Labadorf
- Bioinformatics Program, Boston University, Boston, MA 02118 USA
- Department of Neurology, Boston University School of Medicine, Boston, MA 02118 USA
| | - Rachel L Flynn
- Departments of Pharmacology and Experimental Therapeutics, and Medicine, Cancer Center, Boston University School of Medicine, Boston, MA 02118, USA
| |
Collapse
|
23
|
Lin HW, Lee JY, Chou NL, Shih TW, Chang MS. Phosphorylation of PUF-A/PUM3 on Y259 modulates PUF-A stability and cell proliferation. PLoS One 2021; 16:e0256282. [PMID: 34407138 PMCID: PMC8372891 DOI: 10.1371/journal.pone.0256282] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2021] [Accepted: 08/03/2021] [Indexed: 01/24/2023] Open
Abstract
Human PUF-A/PUM3 is a RNA and DNA binding protein participating in the nucleolar processing of 7S to 5.8S rRNA. The nucleolar localization of PUF-A redistributes to the nucleoplasm upon the exposure to genotoxic agents in cells. However, little is known regarding the roles of PUF-A in tumor progression. Phosphoprotein database analysis revealed that Y259 phosphorylation of PUF-A is the most prevalent residue modified. Here, we reported the importance of PUF-A’s phosphorylation on Y259 in tumorigenesis. PUF-A gene was knocked out by the Crispr/Cas9 method in human cervix epithelial HeLa cells. Loss of PUF-A in HeLa cells resulted in reduced clonogenic and lower transwell invasion capacity. Introduction of PUF-AY259F to PUF-A deficient HeLa cells was unable to restore colony formation. In addition, the unphosphorylated mutant of PUF-A, PUF-AY259F, attenuated PUF-A protein stability. Our results suggest the important role of Y259 phosphorylation of PUF-A in cell proliferation.
Collapse
Affiliation(s)
- Hung-Wei Lin
- Institute of Biochemical Sciences, National Taiwan University, Taipei, Taiwan
| | - Jin-Yu Lee
- Institute of Biochemical Sciences, National Taiwan University, Taipei, Taiwan
| | - Nai-Lin Chou
- Institute of Biochemical Sciences, National Taiwan University, Taipei, Taiwan
| | - Ting-Wei Shih
- Institute of Biochemical Sciences, National Taiwan University, Taipei, Taiwan
| | - Mau-Sun Chang
- Institute of Biochemical Sciences, National Taiwan University, Taipei, Taiwan
- Institute of Biological Chemistry, Academia Sinica, Taipei, Taiwan
- * E-mail:
| |
Collapse
|
24
|
Puf6 primes 60S pre-ribosome nuclear export at low temperature. Nat Commun 2021; 12:4696. [PMID: 34349113 PMCID: PMC8338941 DOI: 10.1038/s41467-021-24964-2] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2021] [Accepted: 07/16/2021] [Indexed: 02/07/2023] Open
Abstract
Productive ribosomal RNA (rRNA) compaction during ribosome assembly necessitates establishing correct tertiary contacts between distant secondary structure elements. Here, we quantify the response of the yeast proteome to low temperature (LT), a condition where aberrant mis-paired RNA folding intermediates accumulate. We show that, at LT, yeast cells globally boost production of their ribosome assembly machinery. We find that the LT-induced assembly factor, Puf6, binds to the nascent catalytic RNA-rich subunit interface within the 60S pre-ribosome, at a site that eventually loads the nuclear export apparatus. Ensemble Förster resonance energy transfer studies show that Puf6 mimics the role of Mg2+ to usher a unique long-range tertiary contact to compact rRNA. At LT, puf6 mutants accumulate 60S pre-ribosomes in the nucleus, thus unveiling Puf6-mediated rRNA compaction as a critical temperature-regulated rescue mechanism that counters rRNA misfolding to prime export competence.
Collapse
|
25
|
Witte F, Ruiz-Orera J, Mattioli CC, Blachut S, Adami E, Schulz JF, Schneider-Lunitz V, Hummel O, Patone G, Mücke MB, Šilhavý J, Heinig M, Bottolo L, Sanchis D, Vingron M, Chekulaeva M, Pravenec M, Hubner N, van Heesch S. A trans locus causes a ribosomopathy in hypertrophic hearts that affects mRNA translation in a protein length-dependent fashion. Genome Biol 2021; 22:191. [PMID: 34183069 PMCID: PMC8240307 DOI: 10.1186/s13059-021-02397-w] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2020] [Accepted: 06/02/2021] [Indexed: 12/23/2022] Open
Abstract
BACKGROUND Little is known about the impact of trans-acting genetic variation on the rates with which proteins are synthesized by ribosomes. Here, we investigate the influence of such distant genetic loci on the efficiency of mRNA translation and define their contribution to the development of complex disease phenotypes within a panel of rat recombinant inbred lines. RESULTS We identify several tissue-specific master regulatory hotspots that each control the translation rates of multiple proteins. One of these loci is restricted to hypertrophic hearts, where it drives a translatome-wide and protein length-dependent change in translational efficiency, altering the stoichiometric translation rates of sarcomere proteins. Mechanistic dissection of this locus across multiple congenic lines points to a translation machinery defect, characterized by marked differences in polysome profiles and misregulation of the small nucleolar RNA SNORA48. Strikingly, from yeast to humans, we observe reproducible protein length-dependent shifts in translational efficiency as a conserved hallmark of translation machinery mutants, including those that cause ribosomopathies. Depending on the factor mutated, a pre-existing negative correlation between protein length and translation rates could either be enhanced or reduced, which we propose to result from mRNA-specific imbalances in canonical translation initiation and reinitiation rates. CONCLUSIONS We show that distant genetic control of mRNA translation is abundant in mammalian tissues, exemplified by a single genomic locus that triggers a translation-driven molecular mechanism. Our work illustrates the complexity through which genetic variation can drive phenotypic variability between individuals and thereby contribute to complex disease.
Collapse
Affiliation(s)
- Franziska Witte
- Cardiovascular and Metabolic Sciences, Max Delbrück Center for Molecular Medicine in the Helmholtz Association (MDC), 13125, Berlin, Germany
- Present Address: NUVISAN ICB GmbH, Lead Discovery-Structrual Biology, 13353, Berlin, Germany
| | - Jorge Ruiz-Orera
- Cardiovascular and Metabolic Sciences, Max Delbrück Center for Molecular Medicine in the Helmholtz Association (MDC), 13125, Berlin, Germany
| | - Camilla Ciolli Mattioli
- Berlin Institute for Medical Systems Biology (BIMSB), Max Delbrück Center for Molecular Medicine in the Helmholtz Association (MDC), 10115, Berlin, Germany
- Present Address: Department of Biological Regulation, Weizmann Institute of Science, 7610001, Rehovot, Israel
| | - Susanne Blachut
- Cardiovascular and Metabolic Sciences, Max Delbrück Center for Molecular Medicine in the Helmholtz Association (MDC), 13125, Berlin, Germany
| | - Eleonora Adami
- Cardiovascular and Metabolic Sciences, Max Delbrück Center for Molecular Medicine in the Helmholtz Association (MDC), 13125, Berlin, Germany
- Present Address: Program in Cardiovascular and Metabolic Disorders, Duke-National University of Singapore, Singapore, 169857, Singapore
| | - Jana Felicitas Schulz
- Cardiovascular and Metabolic Sciences, Max Delbrück Center for Molecular Medicine in the Helmholtz Association (MDC), 13125, Berlin, Germany
| | - Valentin Schneider-Lunitz
- Cardiovascular and Metabolic Sciences, Max Delbrück Center for Molecular Medicine in the Helmholtz Association (MDC), 13125, Berlin, Germany
| | - Oliver Hummel
- Cardiovascular and Metabolic Sciences, Max Delbrück Center for Molecular Medicine in the Helmholtz Association (MDC), 13125, Berlin, Germany
| | - Giannino Patone
- Cardiovascular and Metabolic Sciences, Max Delbrück Center for Molecular Medicine in the Helmholtz Association (MDC), 13125, Berlin, Germany
| | - Michael Benedikt Mücke
- Cardiovascular and Metabolic Sciences, Max Delbrück Center for Molecular Medicine in the Helmholtz Association (MDC), 13125, Berlin, Germany
- DZHK (German Centre for Cardiovascular Research), Partner Site Berlin, 13347, Berlin, Germany
- Charité-Universitätsmedizin, 10117, Berlin, Germany
| | - Jan Šilhavý
- Institute of Physiology of the Czech Academy of Sciences, 4, 142 20, Praha, Czech Republic
| | - Matthias Heinig
- Institute of Computational Biology (ICB), HMGU, Ingolstaedter Landstr. 1, 85764 Neuherberg, Munich, Germany
- Department of Informatics, Technische Universitaet Muenchen (TUM), Boltzmannstr. 3, 85748 Garching, Munich, Germany
| | - Leonardo Bottolo
- Department of Medical Genetics, University of Cambridge, Cambridge, CB2 0QQ, UK
- The Alan Turing Institute, London, NW1 2DB, UK
- MRC Biostatistics Unit, University of Cambridge, Cambridge, CB2 0SR, UK
| | - Daniel Sanchis
- Institut de Recerca Biomedica de Lleida (IRBLLEIDA), Universitat de Lleida, Edifici Biomedicina-I. Av. Rovira Roure, 80, 25198, Lleida, Spain
| | - Martin Vingron
- Department of Computational Molecular Biology, Max Planck Institute for Molecular Genetics, 14195, Berlin, Germany
| | - Marina Chekulaeva
- Berlin Institute for Medical Systems Biology (BIMSB), Max Delbrück Center for Molecular Medicine in the Helmholtz Association (MDC), 10115, Berlin, Germany
| | - Michal Pravenec
- Institute of Physiology of the Czech Academy of Sciences, 4, 142 20, Praha, Czech Republic
| | - Norbert Hubner
- Cardiovascular and Metabolic Sciences, Max Delbrück Center for Molecular Medicine in the Helmholtz Association (MDC), 13125, Berlin, Germany.
- DZHK (German Centre for Cardiovascular Research), Partner Site Berlin, 13347, Berlin, Germany.
- Charité-Universitätsmedizin, 10117, Berlin, Germany.
| | - Sebastiaan van Heesch
- Cardiovascular and Metabolic Sciences, Max Delbrück Center for Molecular Medicine in the Helmholtz Association (MDC), 13125, Berlin, Germany.
- Present Address: The Princess Máxima Center for Pediatric Oncology, Utrecht, the Netherlands.
| |
Collapse
|
26
|
Liu K, Santos DA, Hussmann JA, Wang Y, Sutter BM, Weissman JS, Tu BP. Regulation of translation by methylation multiplicity of 18S rRNA. Cell Rep 2021; 34:108825. [PMID: 33691096 PMCID: PMC8063911 DOI: 10.1016/j.celrep.2021.108825] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2020] [Revised: 01/04/2021] [Accepted: 02/12/2021] [Indexed: 02/01/2023] Open
Abstract
N6-methyladenosine (m6A) is a conserved ribonucleoside modification that regulates many facets of RNA metabolism. Using quantitative mass spectrometry, we find that the universally conserved tandem adenosines at the 3' end of 18S rRNA, thought to be constitutively di-methylated (m62A), are also mono-methylated (m6A). Although present at substoichiometric amounts, m6A at these positions increases significantly in response to sulfur starvation in yeast cells and mammalian cell lines. Combining yeast genetics and ribosome profiling, we provide evidence to suggest that m6A-bearing ribosomes carry out translation distinctly from m62A-bearing ribosomes, featuring a striking specificity for sulfur metabolism genes. Our work thus reveals methylation multiplicity as a mechanism to regulate translation.
Collapse
Affiliation(s)
- Kuanqing Liu
- Department of Biochemistry, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Daniel A Santos
- Department of Cellular and Molecular Pharmacology, University of California, San Francisco, San Francisco, CA, USA
| | - Jeffrey A Hussmann
- Department of Cellular and Molecular Pharmacology, University of California, San Francisco, San Francisco, CA, USA; Department of Microbiology and Immunology, University of California, San Francisco, San Francisco, CA, USA
| | - Yun Wang
- Department of Biochemistry, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Benjamin M Sutter
- Department of Biochemistry, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Jonathan S Weissman
- Department of Cellular and Molecular Pharmacology, University of California, San Francisco, San Francisco, CA, USA; Howard Hughes Medical Institute, University of California, San Francisco, San Francisco, CA, USA
| | - Benjamin P Tu
- Department of Biochemistry, University of Texas Southwestern Medical Center, Dallas, TX, USA.
| |
Collapse
|
27
|
Choi WS, Liu B, Shen Z, Yang W. Structure of human BCCIP and implications for binding and modification of partner proteins. Protein Sci 2021; 30:693-699. [PMID: 33452718 PMCID: PMC7888581 DOI: 10.1002/pro.4026] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2020] [Revised: 01/10/2021] [Accepted: 01/12/2021] [Indexed: 11/09/2022]
Abstract
BCCIP was isolated based on its interactions with tumor suppressors BRCA2 and p21. Knockdown or knockout of BCCIP causes embryonic lethality in mice. BCCIP deficient cells exhibit impaired cell proliferation and chromosome instability. BCCIP also plays a key role in biogenesis of ribosome 60S subunits. BCCIP is conserved from yeast to humans, but it has no discernible sequence similarity to proteins of known structures. Here we report two crystal structures of an N-terminal truncated human BCCIPβ, consisting of residues 61-314. Structurally BCCIP is similar to GCN5-related acetyltransferases (GNATs) but contains different sequence motifs. Moreover, both acetyl-CoA and substrate-binding grooves are altered in BCCIP. A large 19-residue flap over the putative CoA binding site adopts either an open or closed conformation in BCCIP. The substrate binding groove is significantly reduced in size and is positively charged despite the acidic isoelectric point of BCCIP. BCCIP has potential binding sites for partner proteins and may have enzymatic activity.
Collapse
Affiliation(s)
- Woo Suk Choi
- Laboratory of Molecular BiologyNIDDK, National Institutes of HealthBethesdaMarylandUSA
| | - Bochao Liu
- Department of Radiation OncologyRutgers Robert Wood Johnson Medical School, Rutgers Cancer Institute of New JerseyNew BrunswickNew JerseyUSA
| | - Zhiyuan Shen
- Department of Radiation OncologyRutgers Robert Wood Johnson Medical School, Rutgers Cancer Institute of New JerseyNew BrunswickNew JerseyUSA
| | - Wei Yang
- Laboratory of Molecular BiologyNIDDK, National Institutes of HealthBethesdaMarylandUSA
| |
Collapse
|
28
|
Ye C, Liu B, Lu H, Liu J, Rabson AB, Jacinto E, Pestov DG, Shen Z. BCCIP is required for nucleolar recruitment of eIF6 and 12S pre-rRNA production during 60S ribosome biogenesis. Nucleic Acids Res 2021; 48:12817-12832. [PMID: 33245766 PMCID: PMC7736804 DOI: 10.1093/nar/gkaa1114] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2020] [Revised: 10/28/2020] [Accepted: 11/05/2020] [Indexed: 01/25/2023] Open
Abstract
Ribosome biogenesis is a fundamental process required for cell proliferation. Although evolutionally conserved, the mammalian ribosome assembly system is more complex than in yeasts. BCCIP was originally identified as a BRCA2 and p21 interacting protein. A partial loss of BCCIP function was sufficient to trigger genomic instability and tumorigenesis. However, a complete deletion of BCCIP arrested cell growth and was lethal in mice. Here, we report that a fraction of mammalian BCCIP localizes in the nucleolus and regulates 60S ribosome biogenesis. Both abrogation of BCCIP nucleolar localization and impaired BCCIP-eIF6 interaction can compromise eIF6 recruitment to the nucleolus and 60S ribosome biogenesis. BCCIP is vital for a pre-rRNA processing step that produces 12S pre-rRNA, a precursor to the 5.8S rRNA. However, a heterozygous Bccip loss was insufficient to impair 60S biogenesis in mouse embryo fibroblasts, but a profound reduction of BCCIP was required to abrogate its function in 60S biogenesis. These results suggest that BCCIP is a critical factor for mammalian pre-rRNA processing and 60S generation and offer an explanation as to why a subtle dysfunction of BCCIP can be tumorigenic but a complete depletion of BCCIP is lethal.
Collapse
Affiliation(s)
- Caiyong Ye
- Rutgers Cancer Institute of New Jersey, Department of Radiation Oncology, Rutgers Robert Wood Johnson Medical School, 195 Little Albany Street, New Brunswick, NJ 08901, USA
| | - Bochao Liu
- Rutgers Cancer Institute of New Jersey, Department of Radiation Oncology, Rutgers Robert Wood Johnson Medical School, 195 Little Albany Street, New Brunswick, NJ 08901, USA
| | - Huimei Lu
- Rutgers Cancer Institute of New Jersey, Department of Radiation Oncology, Rutgers Robert Wood Johnson Medical School, 195 Little Albany Street, New Brunswick, NJ 08901, USA
| | - Jingmei Liu
- Rutgers Cancer Institute of New Jersey, Department of Radiation Oncology, Rutgers Robert Wood Johnson Medical School, 195 Little Albany Street, New Brunswick, NJ 08901, USA
| | - Arnold B Rabson
- Department of Pharmacology, and The Child Health Institute of New Jersey, Rutgers Robert Wood Johnson Medical School, New Brunswick, NJ, USA
| | - Estela Jacinto
- Department of Biochemistry and Molecular Biology, Rutgers Robert Wood Johnson Medical School, Piscataway, NJ, USA
| | - Dimitri G Pestov
- Department of Cell Biology and Neuroscience, Rowan University School of Osteopathic Medicine, Stratford, NJ, USA
| | - Zhiyuan Shen
- Rutgers Cancer Institute of New Jersey, Department of Radiation Oncology, Rutgers Robert Wood Johnson Medical School, 195 Little Albany Street, New Brunswick, NJ 08901, USA
| |
Collapse
|
29
|
Lin MH, Kuo PC, Chiu YC, Chang YY, Chen SC, Hsu CH. The crystal structure of protein-transporting chaperone BCP1 from Saccharomyces cerevisiae. J Struct Biol 2020; 212:107605. [PMID: 32805410 DOI: 10.1016/j.jsb.2020.107605] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2020] [Revised: 08/04/2020] [Accepted: 08/12/2020] [Indexed: 11/25/2022]
Abstract
BCP1 is a protein enriched in the nucleus that is required for Mss4 nuclear export and identified as the chaperone of ribosomal protein Rpl23 in Saccharomyces cerevisiae. According to sequence homology, BCP1 is related to the mammalian BRCA2-interacting protein BCCIP and belongs to the BCIP protein family (PF13862) in the Pfam database. However, the BCIP family has no discernible similarity to proteins with known structure. Here, we report the crystal structure of BCP1, presenting an α/β fold in which the central antiparallel β-sheet is flanked by helices. Protein structural classification revealed that BCP1 has similarity to the GNAT superfamily but no conserved substrate-binding residues. Further modeling and protein-protein docking work provide a plausible model to explain the interaction between BCP1 and Rpl23. Our structural analysis presents the first structure of BCIP family and provides a foundation for understanding the molecular basis of BCP1 as a chaperone of Rpl23 for ribosome biosynthesis.
Collapse
Affiliation(s)
- Meng-Hsuan Lin
- Department of Agricultural Chemistry, National Taiwan University, Taipei 10617, Taiwan; Genome and Systems Biology Degree Program, National Taiwan University and Academia Sinica, Taipei 10617, Taiwan
| | - Po-Chih Kuo
- Department of Agricultural Chemistry, National Taiwan University, Taipei 10617, Taiwan
| | - Yi-Chih Chiu
- Genome and Systems Biology Degree Program, National Taiwan University and Academia Sinica, Taipei 10617, Taiwan
| | - Yu-Yung Chang
- Department of Agricultural Chemistry, National Taiwan University, Taipei 10617, Taiwan
| | - Sheng-Chia Chen
- Department of Agricultural Chemistry, National Taiwan University, Taipei 10617, Taiwan
| | - Chun-Hua Hsu
- Department of Agricultural Chemistry, National Taiwan University, Taipei 10617, Taiwan; Genome and Systems Biology Degree Program, National Taiwan University and Academia Sinica, Taipei 10617, Taiwan; Institute of Biochemical Sciences, National Taiwan University, Taipei 10617, Taiwan.
| |
Collapse
|
30
|
Zhang J, Teramoto T, Qiu C, Wine RN, Gonzalez LE, Baserga SJ, Tanaka Hall TM. Nop9 recognizes structured and single-stranded RNA elements of preribosomal RNA. RNA (NEW YORK, N.Y.) 2020; 26:1049-1059. [PMID: 32371454 PMCID: PMC7373996 DOI: 10.1261/rna.075416.120] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/18/2020] [Accepted: 04/29/2020] [Indexed: 05/04/2023]
Abstract
Nop9 is an essential factor in the processing of preribosomal RNA. Its absence in yeast is lethal, and defects in the human ortholog are associated with breast cancer, autoimmunity, and learning/language impairment. PUF family RNA-binding proteins are best known for sequence-specific RNA recognition, and most contain eight α-helical repeats that bind to the RNA bases of single-stranded RNA. Nop9 is an unusual member of this family in that it contains eleven repeats and recognizes both RNA structure and sequence. Here we report a crystal structure of Saccharomyces cerevisiae Nop9 in complex with its target RNA within the 20S preribosomal RNA. This structure reveals that Nop9 brings together a carboxy-terminal module recognizing the 5' single-stranded region of the RNA and a bifunctional amino-terminal module recognizing the central double-stranded stem region. We further show that the 3' single-stranded region of the 20S target RNA adds sequence-independent binding energy to the RNA-Nop9 interaction. Both the amino- and carboxy-terminal modules retain the characteristic sequence-specific recognition of PUF proteins, but the amino-terminal module has also evolved a distinct interface, which allows Nop9 to recognize either single-stranded RNA sequences or RNAs with a combination of single-stranded and structured elements.
Collapse
Affiliation(s)
- Jun Zhang
- Epigenetics and Stem Cell Biology Laboratory, National Institute of Environmental Health Sciences, National Institutes of Health, Research Triangle Park, North Carolina 27709, USA
- Department of Chemistry, University of Alabama at Birmingham, Birmingham, Alabama 35294, USA
| | - Takamasa Teramoto
- Epigenetics and Stem Cell Biology Laboratory, National Institute of Environmental Health Sciences, National Institutes of Health, Research Triangle Park, North Carolina 27709, USA
- Department of Bioscience and Biotechnology, Faculty of Agriculture, Kyushu University, Fukuoka 819-0395, Japan
| | - Chen Qiu
- Epigenetics and Stem Cell Biology Laboratory, National Institute of Environmental Health Sciences, National Institutes of Health, Research Triangle Park, North Carolina 27709, USA
| | - Robert N Wine
- Epigenetics and Stem Cell Biology Laboratory, National Institute of Environmental Health Sciences, National Institutes of Health, Research Triangle Park, North Carolina 27709, USA
| | - Lauren E Gonzalez
- Epigenetics and Stem Cell Biology Laboratory, National Institute of Environmental Health Sciences, National Institutes of Health, Research Triangle Park, North Carolina 27709, USA
| | - Susan J Baserga
- Department of Genetics, Yale University School of Medicine, New Haven, Connecticut 06520, USA
- Department of Therapeutic Radiology, Yale University School of Medicine, New Haven, Connecticut 06520, USA
- Department of Molecular Biophysics and Biochemistry, Yale University School of Medicine, New Haven, Connecticut 06520, USA
| | - Traci M Tanaka Hall
- Epigenetics and Stem Cell Biology Laboratory, National Institute of Environmental Health Sciences, National Institutes of Health, Research Triangle Park, North Carolina 27709, USA
| |
Collapse
|
31
|
Najdrová V, Stairs CW, Vinopalová M, Voleman L, Doležal P. The evolution of the Puf superfamily of proteins across the tree of eukaryotes. BMC Biol 2020; 18:77. [PMID: 32605621 PMCID: PMC7325665 DOI: 10.1186/s12915-020-00814-3] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2019] [Accepted: 06/18/2020] [Indexed: 12/19/2022] Open
Abstract
BACKGROUND Eukaryotic gene expression is controlled by a number of RNA-binding proteins (RBP), such as the proteins from the Puf (Pumilio and FBF) superfamily (PufSF). These proteins bind to RNA via multiple Puf repeat domains, each of which specifically recognizes a single RNA base. Recently, three diversified PufSF proteins have been described in model organisms, each of which is responsible for the maturation of ribosomal RNA or the translational regulation of mRNAs; however, less is known about the role of these proteins across eukaryotic diversity. RESULTS Here, we investigated the distribution and function of PufSF RBPs in the tree of eukaryotes. We determined that the following PufSF proteins are universally conserved across eukaryotes and can be broadly classified into three groups: (i) Nop9 orthologues, which participate in the nucleolar processing of immature 18S rRNA; (ii) 'classical' Pufs, which control the translation of mRNA; and (iii) PUM3 orthologues, which are involved in the maturation of 7S rRNA. In nearly all eukaryotes, the rRNA maturation proteins, Nop9 and PUM3, are retained as a single copy, while mRNA effectors ('classical' Pufs) underwent multiple lineage-specific expansions. We propose that the variation in number of 'classical' Pufs relates to the size of the transcriptome and thus the potential mRNA targets. We further distinguished full set of PufSF proteins in divergent metamonad Giardia intestinalis and initiated their cellular and biochemical characterization. CONCLUSIONS Our data suggest that the last eukaryotic common ancestor (LECA) already contained all three types of PufSF proteins and that 'classical' Pufs then underwent lineage-specific expansions.
Collapse
Affiliation(s)
- Vladimíra Najdrová
- Department of Parasitology, Faculty of Science, Charles University, BIOCEV, Průmyslová 595, 252 50, Vestec, Czech Republic
| | - Courtney W Stairs
- Department of Cell and Molecular Biology, Science for Life Laboratory, Uppsala University, SE-75123, Uppsala, Sweden
| | - Martina Vinopalová
- Department of Parasitology, Faculty of Science, Charles University, BIOCEV, Průmyslová 595, 252 50, Vestec, Czech Republic
| | - Luboš Voleman
- Department of Parasitology, Faculty of Science, Charles University, BIOCEV, Průmyslová 595, 252 50, Vestec, Czech Republic
| | - Pavel Doležal
- Department of Parasitology, Faculty of Science, Charles University, BIOCEV, Průmyslová 595, 252 50, Vestec, Czech Republic.
| |
Collapse
|
32
|
Martín-Villanueva S, Fernández-Fernández J, Rodríguez-Galán O, Fernández-Boraita J, Villalobo E, de La Cruz J. Role of the 40S beak ribosomal protein eS12 in ribosome biogenesis and function in Saccharomyces cerevisiae. RNA Biol 2020; 17:1261-1276. [PMID: 32408794 DOI: 10.1080/15476286.2020.1767951] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022] Open
Abstract
In eukaryotes, the beak structure of 40S subunits is formed by the protrusion of the 18S rRNA helix 33 and three ribosomal proteins: eS10, eS12 and eS31. The exact role of these proteins in ribosome biogenesis is not well understood. While eS10 is an essential protein encoded by two paralogous genes in Saccharomyces cerevisiae, eS12 and eS31 are not essential proteins encoded by the single-copy genes RPS12 and UBI3, respectively. Here, we have analysed the contribution of yeast eS12 to ribosome biogenesis and compared it with that of eS31. Polysome analysis reveals that deletion of either RPS12 or UBI3 results in equivalent 40S deficits. Analysis of pre-rRNA processing indicates that eS12, akin to eS31, is required for efficient processing of 20S pre-rRNA to mature 18S rRNA. Moreover, we show that the 20S pre-rRNA accumulates within cytoplasmic pre-40S particles, as deduced from FISH experiments and the lack of nuclear retention of 40S subunit reporter proteins, in rps12∆ and ubi3∆ cells. However, these particles containing 20S pre-rRNA are not efficiently incorporated into polyribosomes. We also provide evidence for a genetic interaction between eS12 or eS31 and the late-acting 40S assembly factors Enp1 and Ltv1, which appears not to be linked to the dynamics of their association with or release from pre-40S particles in the absence of either eS12 or eS31. Finally, we show that eS12- and eS31-deficient ribosomes exhibit increased levels of translational misreading. Altogether, our data highlight distinct important roles of the beak region during ribosome assembly and function.
Collapse
Affiliation(s)
- Sara Martín-Villanueva
- Departamento de Genética, Facultad de Biología, Universidad de Sevilla , Seville, Spain.,Instituto de Biomedicina de Sevilla, Hospital Universitario Virgen del Rocío/CSIC/Universidad de Sevilla , Seville, Spain
| | - José Fernández-Fernández
- Departamento de Genética, Facultad de Biología, Universidad de Sevilla , Seville, Spain.,Instituto de Biomedicina de Sevilla, Hospital Universitario Virgen del Rocío/CSIC/Universidad de Sevilla , Seville, Spain
| | - Olga Rodríguez-Galán
- Departamento de Genética, Facultad de Biología, Universidad de Sevilla , Seville, Spain.,Instituto de Biomedicina de Sevilla, Hospital Universitario Virgen del Rocío/CSIC/Universidad de Sevilla , Seville, Spain
| | - Julia Fernández-Boraita
- Departamento de Genética, Facultad de Biología, Universidad de Sevilla , Seville, Spain.,Instituto de Biomedicina de Sevilla, Hospital Universitario Virgen del Rocío/CSIC/Universidad de Sevilla , Seville, Spain
| | - Eduardo Villalobo
- Instituto de Biomedicina de Sevilla, Hospital Universitario Virgen del Rocío/CSIC/Universidad de Sevilla , Seville, Spain.,Departamento de Microbiología, Facultad de Biología, Universidad de Sevilla , Seville, Spain
| | - Jesús de La Cruz
- Departamento de Genética, Facultad de Biología, Universidad de Sevilla , Seville, Spain.,Instituto de Biomedicina de Sevilla, Hospital Universitario Virgen del Rocío/CSIC/Universidad de Sevilla , Seville, Spain
| |
Collapse
|
33
|
Gysi DM, Nowick K. Construction, comparison and evolution of networks in life sciences and other disciplines. J R Soc Interface 2020; 17:20190610. [PMID: 32370689 PMCID: PMC7276545 DOI: 10.1098/rsif.2019.0610] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2019] [Accepted: 04/09/2020] [Indexed: 12/12/2022] Open
Abstract
Network approaches have become pervasive in many research fields. They allow for a more comprehensive understanding of complex relationships between entities as well as their group-level properties and dynamics. Many networks change over time, be it within seconds or millions of years, depending on the nature of the network. Our focus will be on comparative network analyses in life sciences, where deciphering temporal network changes is a core interest of molecular, ecological, neuropsychological and evolutionary biologists. Further, we will take a journey through different disciplines, such as social sciences, finance and computational gastronomy, to present commonalities and differences in how networks change and can be analysed. Finally, we envision how borrowing ideas from these disciplines could enrich the future of life science research.
Collapse
Affiliation(s)
- Deisy Morselli Gysi
- Department of Computer Science, Interdisciplinary Center of Bioinformatics, University of Leipzig, 04109 Leipzig, Germany
- Swarm Intelligence and Complex Systems Group, Faculty of Mathematics and Computer Science, University of Leipzig, 04109 Leipzig, Germany
- Center for Complex Networks Research, Northeastern University, 177 Huntington Avenue, Boston, MA 02115, USA
| | - Katja Nowick
- Human Biology Group, Institute for Biology, Faculty of Biology, Chemistry, Pharmacy, Freie Universität Berlin, Königin-Luise-Straβe 1-3, 14195 Berlin, Germany
| |
Collapse
|
34
|
Takakura M, Ishiguro K, Akichika S, Miyauchi K, Suzuki T. Biogenesis and functions of aminocarboxypropyluridine in tRNA. Nat Commun 2019; 10:5542. [PMID: 31804502 PMCID: PMC6895100 DOI: 10.1038/s41467-019-13525-3] [Citation(s) in RCA: 52] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2019] [Accepted: 11/11/2019] [Indexed: 12/17/2022] Open
Abstract
Transfer (t)RNAs contain a wide variety of post-transcriptional modifications, which play critical roles in tRNA stability and functions. 3-(3-amino-3-carboxypropyl)uridine (acp3U) is a highly conserved modification found in variable- and D-loops of tRNAs. Biogenesis and functions of acp3U have not been extensively investigated. Using a reverse-genetic approach supported by comparative genomics, we find here that the Escherichia coli yfiP gene, which we rename tapT (tRNA aminocarboxypropyltransferase), is responsible for acp3U formation in tRNA. Recombinant TapT synthesizes acp3U at position 47 of tRNAs in the presence of S-adenosylmethionine. Biochemical experiments reveal that acp3U47 confers thermal stability on tRNA. Curiously, the ΔtapT strain exhibits genome instability under continuous heat stress. We also find that the human homologs of tapT, DTWD1 and DTWD2, are responsible for acp3U formation at positions 20 and 20a of tRNAs, respectively. Double knockout cells of DTWD1 and DTWD2 exhibit growth retardation, indicating that acp3U is physiologically important in mammals.
Collapse
Affiliation(s)
- Mayuko Takakura
- Department of Chemistry and Biotechnology, Graduate School of Engineering, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo, 113-8656, Japan
| | - Kensuke Ishiguro
- Department of Chemistry and Biotechnology, Graduate School of Engineering, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo, 113-8656, Japan
| | - Shinichiro Akichika
- Department of Chemistry and Biotechnology, Graduate School of Engineering, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo, 113-8656, Japan
| | - Kenjyo Miyauchi
- Department of Chemistry and Biotechnology, Graduate School of Engineering, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo, 113-8656, Japan
| | - Tsutomu Suzuki
- Department of Chemistry and Biotechnology, Graduate School of Engineering, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo, 113-8656, Japan.
| |
Collapse
|
35
|
Kasari V, Pochopien AA, Margus T, Murina V, Turnbull K, Zhou Y, Nissan T, Graf M, Nováček J, Atkinson GC, Johansson MJO, Wilson DN, Hauryliuk V. A role for the Saccharomyces cerevisiae ABCF protein New1 in translation termination/recycling. Nucleic Acids Res 2019; 47:8807-8820. [PMID: 31299085 PMCID: PMC7145556 DOI: 10.1093/nar/gkz600] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2019] [Revised: 06/14/2019] [Accepted: 07/11/2019] [Indexed: 11/12/2022] Open
Abstract
Translation is controlled by numerous accessory proteins and translation factors. In the yeast Saccharomyces cerevisiae, translation elongation requires an essential elongation factor, the ABCF ATPase eEF3. A closely related protein, New1, is encoded by a non-essential gene with cold sensitivity and ribosome assembly defect knock-out phenotypes. Since the exact molecular function of New1 is unknown, it is unclear if the ribosome assembly defect is direct, i.e. New1 is a bona fide assembly factor, or indirect, for instance due to a defect in protein synthesis. To investigate this, we employed yeast genetics, cryo-electron microscopy (cryo-EM) and ribosome profiling (Ribo-Seq) to interrogate the molecular function of New1. Overexpression of New1 rescues the inviability of a yeast strain lacking the otherwise strictly essential translation factor eEF3. The structure of the ATPase-deficient (EQ2) New1 mutant locked on the 80S ribosome reveals that New1 binds analogously to the ribosome as eEF3. Finally, Ribo-Seq analysis revealed that loss of New1 leads to ribosome queuing upstream of 3′-terminal lysine and arginine codons, including those genes encoding proteins of the cytoplasmic translational machinery. Our results suggest that New1 is a translation factor that fine-tunes the efficiency of translation termination or ribosome recycling.
Collapse
Affiliation(s)
- Villu Kasari
- Department of Molecular Biology, Umeå University, Building 6K, 6L University Hospital Area, 90187 Umeå, Sweden.,Laboratory for Molecular Infection Medicine Sweden (MIMS), Umeå University, Building 6K and 6L, University Hospital Area, 90187 Umeå, Sweden
| | - Agnieszka A Pochopien
- Institute for Biochemistry and Molecular Biology, University of Hamburg, Martin-Luther-King-Platz 6, 20146 Hamburg, Germany
| | - Tõnu Margus
- Department of Molecular Biology, Umeå University, Building 6K, 6L University Hospital Area, 90187 Umeå, Sweden.,Laboratory for Molecular Infection Medicine Sweden (MIMS), Umeå University, Building 6K and 6L, University Hospital Area, 90187 Umeå, Sweden
| | - Victoriia Murina
- Department of Molecular Biology, Umeå University, Building 6K, 6L University Hospital Area, 90187 Umeå, Sweden.,Laboratory for Molecular Infection Medicine Sweden (MIMS), Umeå University, Building 6K and 6L, University Hospital Area, 90187 Umeå, Sweden
| | - Kathryn Turnbull
- Department of Molecular Biology, Umeå University, Building 6K, 6L University Hospital Area, 90187 Umeå, Sweden.,Laboratory for Molecular Infection Medicine Sweden (MIMS), Umeå University, Building 6K and 6L, University Hospital Area, 90187 Umeå, Sweden
| | - Yang Zhou
- Department of Molecular Biology, Umeå University, Building 6K, 6L University Hospital Area, 90187 Umeå, Sweden
| | - Tracy Nissan
- Department of Molecular Biosciences, The Wenner-Gren Institute, Stockholm University, Stockholm, 10691, Sweden.,School of Life Science, University of Sussex, Brighton, BN19RH, UK
| | - Michael Graf
- Institute for Biochemistry and Molecular Biology, University of Hamburg, Martin-Luther-King-Platz 6, 20146 Hamburg, Germany
| | - Jiří Nováček
- Central European Institute of Technology (CEITEC), Masaryk University, Kamenice 5, 62500 Brno, Czech Republic
| | - Gemma C Atkinson
- Department of Molecular Biology, Umeå University, Building 6K, 6L University Hospital Area, 90187 Umeå, Sweden
| | - Marcus J O Johansson
- Department of Molecular Biology, Umeå University, Building 6K, 6L University Hospital Area, 90187 Umeå, Sweden
| | - Daniel N Wilson
- Institute for Biochemistry and Molecular Biology, University of Hamburg, Martin-Luther-King-Platz 6, 20146 Hamburg, Germany
| | - Vasili Hauryliuk
- Department of Molecular Biology, Umeå University, Building 6K, 6L University Hospital Area, 90187 Umeå, Sweden.,Laboratory for Molecular Infection Medicine Sweden (MIMS), Umeå University, Building 6K and 6L, University Hospital Area, 90187 Umeå, Sweden.,University of Tartu, Institute of Technology, 50411 Tartu, Estonia
| |
Collapse
|
36
|
Puf6 and Loc1 Are the Dedicated Chaperones of Ribosomal Protein Rpl43 in Saccharomyces cerevisiae. Int J Mol Sci 2019; 20:ijms20235941. [PMID: 31779129 PMCID: PMC6928942 DOI: 10.3390/ijms20235941] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2019] [Revised: 11/25/2019] [Accepted: 11/25/2019] [Indexed: 12/11/2022] Open
Abstract
Ribosomal proteins are highly expressed, and the quality of ribosomal proteins must be rigorously controlled to build up a functional ribosome. Rpl43, ribosomal protein large subunit 43, is located nearby the E-site of ribosomes. In our previous study, we found that Puf6, Loc1, and Rpl43 form a trimeric complex in Saccharomyces cerevisiae. Rpl43 protein levels are under-accumulated in the absence of PUF6 or LOC1. However, why the loss of Puf6 or Loc1 decreased the protein levels of Rpl43 remained unclear. In the present study, we further dissected the connections among these three proteins and found that the processing defects of pre-ribosomal RNA in puf6Δ and loc1Δ are similar to those of the mutant with depletion of Rpl43. The stability of newly synthesized Rpl43 protein decreased slightly in puf6Δ and significantly in loc1Δ. We also found that Puf6 and Loc1 could interact with nascent Rpl43 co-translationally via the N-terminus of Rpl43. While the association and dissociation of Rpl43 with karyopherins did not depend on Puf6 and Loc1, Puf6 and Loc1 interacted with nascent Rpl43 in collaboration. While the N-terminus of Puf6 contained nuclear localization signals for transport, the PUF (Pumilio) domain was essential to interaction with Loc1, Rpl43, and 60S subunits. The C-terminus of Loc1 is more important for interaction with Puf6 and Rpl43. In this study, we found that Puf6 and Loc1 are the dedicated chaperones of ribosomal protein Rpl43 and also analyzed the potential interaction domains among the three proteins. Correct formation of the Puf6, Loc1, and Rpl43 ternary complex is required to properly proceed to the next step in 60S biogenesis.
Collapse
|
37
|
Schmitt K, Valerius O. yRACK1/Asc1 proxiOMICs-Towards Illuminating Ships Passing in the Night. Cells 2019; 8:cells8111384. [PMID: 31689955 PMCID: PMC6912217 DOI: 10.3390/cells8111384] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2019] [Revised: 10/25/2019] [Accepted: 10/29/2019] [Indexed: 02/01/2023] Open
Abstract
Diverse signals and stress factors regulate the activity and homeostasis of ribosomes in all cells. The Saccharomyces cerevisiae protein Asc1/yRACK1 occupies an exposed site at the head region of the 40S ribosomal subunit (hr40S) and represents a central hub for signaling pathways. Asc1 strongly affects protein phosphorylation and is involved in quality control pathways induced by translation elongation arrest. Therefore, it is important to understand the dynamics of protein formations in the Asc1 microenvironment at the hr40S. We made use of the in vivo protein-proximity labeling technique Biotin IDentification (BioID). Unbiased proxiOMICs from two adjacent perspectives identified nucleocytoplasmic shuttling mRNA-binding proteins, the deubiquitinase complex Ubp3-Bre5, as well as the ubiquitin E3 ligase Hel2 as neighbors of Asc1. We observed Asc1-dependency of hr40S localization of mRNA-binding proteins and the Ubp3 co-factor Bre5. Hel2 and Ubp3-Bre5 are described to balance the mono-ubiquitination of Rps3 (uS3) during ribosome quality control. Here, we show that the absence of Asc1 resulted in massive exposure and accessibility of the C-terminal tail of its ribosomal neighbor Rps3 (uS3). Asc1 and some of its direct neighbors together might form a ribosomal decision tree that is tightly connected to close-by signaling modules.
Collapse
Affiliation(s)
- Kerstin Schmitt
- Department of Molecular Microbiology and Genetics, Institute of Microbiology and Genetics, Göttingen Center for Molecular Biosciences (GZMB), Georg-August-University Göttingen, 37077 Göttingen, Germany.
| | - Oliver Valerius
- Department of Molecular Microbiology and Genetics, Institute of Microbiology and Genetics, Göttingen Center for Molecular Biosciences (GZMB), Georg-August-University Göttingen, 37077 Göttingen, Germany.
| |
Collapse
|
38
|
Ramos-Sáenz A, González-Álvarez D, Rodríguez-Galán O, Rodríguez-Gil A, Gaspar SG, Villalobo E, Dosil M, de la Cruz J. Pol5 is an essential ribosome biogenesis factor required for 60S ribosomal subunit maturation in Saccharomyces cerevisiae. RNA (NEW YORK, N.Y.) 2019; 25:1561-1575. [PMID: 31413149 PMCID: PMC6795146 DOI: 10.1261/rna.072116.119] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/24/2019] [Accepted: 08/08/2019] [Indexed: 06/10/2023]
Abstract
In Saccharomyces cerevisiae, more than 250 trans-acting factors are involved in the maturation of 40S and 60S ribosomal subunits. The expression of most of these factors is transcriptionally coregulated to ensure correct ribosome production under a wide variety of environmental and intracellular conditions. Here, we identified the essential nucleolar Pol5 protein as a novel trans-acting factor required for the synthesis of 60S ribosomal subunits. Pol5 weakly and/or transiently associates with early to medium pre-60S ribosomal particles. Depletion of and temperature-sensitive mutations in Pol5 result in a deficiency of 60S ribosomal subunits and accumulation of half-mer polysomes. Both processing of 27SB pre-rRNA to mature 25S rRNA and release of pre-60S ribosomal particles from the nucle(ol)us to the cytoplasm are impaired in the Pol5-depleted strain. Moreover, we identified the genes encoding ribosomal proteins uL23 and eL27A as multicopy suppressors of the slow growth of a temperature-sensitive pol5 mutant. These results suggest that Pol5 could function in ensuring the correct folding of 25S rRNA domain III; thus, favoring the correct assembly of these two ribosomal proteins at their respective binding sites into medium pre-60S ribosomal particles. Pol5 is homologous to the human tumor suppressor Myb-binding protein 1A (MYBBP1A). However, expression of MYBBP1A failed to complement the lethal phenotype of a pol5 null mutant strain though interfered with 60S ribosomal subunit biogenesis.
Collapse
Affiliation(s)
- Ana Ramos-Sáenz
- Instituto de Biomedicina de Sevilla, Hospital Universitario Virgen del Rocío/CSIC/Universidad de Sevilla, E-41013, Seville, Spain
- Departamento de Genética, Facultad de Biología, Universidad de Sevilla, E-41012, Seville, Spain
| | - Daniel González-Álvarez
- Instituto de Biomedicina de Sevilla, Hospital Universitario Virgen del Rocío/CSIC/Universidad de Sevilla, E-41013, Seville, Spain
- Departamento de Genética, Facultad de Biología, Universidad de Sevilla, E-41012, Seville, Spain
| | - Olga Rodríguez-Galán
- Instituto de Biomedicina de Sevilla, Hospital Universitario Virgen del Rocío/CSIC/Universidad de Sevilla, E-41013, Seville, Spain
- Departamento de Genética, Facultad de Biología, Universidad de Sevilla, E-41012, Seville, Spain
| | - Alfonso Rodríguez-Gil
- Instituto de Biomedicina de Sevilla, Hospital Universitario Virgen del Rocío/CSIC/Universidad de Sevilla, E-41013, Seville, Spain
| | - Sonia G Gaspar
- Centro de Investigación del Cáncer and Instituto de Biología Molecular y Celular del Cáncer, CSIC-Universidad de Salamanca, E-37007, Salamanca, Spain
- Centro de Investigación Biomédica en Red en Cáncer (CIBERONC), CSIC-Universidad de Salamanca, E-37007, Salamanca, Spain
| | - Eduardo Villalobo
- Instituto de Biomedicina de Sevilla, Hospital Universitario Virgen del Rocío/CSIC/Universidad de Sevilla, E-41013, Seville, Spain
- Departamento de Microbiología, Facultad de Biología, Universidad de Sevilla, E-41012, Seville, Spain
| | - Mercedes Dosil
- Centro de Investigación del Cáncer and Instituto de Biología Molecular y Celular del Cáncer, CSIC-Universidad de Salamanca, E-37007, Salamanca, Spain
- Centro de Investigación Biomédica en Red en Cáncer (CIBERONC), CSIC-Universidad de Salamanca, E-37007, Salamanca, Spain
- Departamento de Bioquímica y Biología Molecular, Universidad de Salamanca, E-37007, Salamanca, Spain
| | - Jesús de la Cruz
- Instituto de Biomedicina de Sevilla, Hospital Universitario Virgen del Rocío/CSIC/Universidad de Sevilla, E-41013, Seville, Spain
- Departamento de Genética, Facultad de Biología, Universidad de Sevilla, E-41012, Seville, Spain
| |
Collapse
|
39
|
Musalgaonkar S, Black JJ, Johnson AW. The L1 stalk is required for efficient export of nascent large ribosomal subunits in yeast. RNA (NEW YORK, N.Y.) 2019; 25:1549-1560. [PMID: 31439809 PMCID: PMC6795138 DOI: 10.1261/rna.071811.119] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/08/2019] [Accepted: 08/08/2019] [Indexed: 06/02/2023]
Abstract
The ribosomal protein Rpl1 (uL1 in universal nomenclature) is essential in yeast and constitutes part of the L1 stalk which interacts with E site ligands on the ribosome. Structural studies of nascent pre-60S complexes in yeast have shown that a domain of the Crm1-dependent nuclear export adapter Nmd3, binds in the E site and interacts with Rpl1, inducing closure of the L1 stalk. Based on this observation, we decided to reinvestigate the role of the L1 stalk in nuclear export of pre-60S subunits despite previous work showing that Rpl1-deficient ribosomes are exported from the nucleus and engage in translation. Large cargoes, such as ribosomal subunits, require multiple export factors to facilitate their transport through the nuclear pore complex. Here, we show that pre-60S subunits lacking Rpl1 or truncated for the RNA of the L1 stalk are exported inefficiently. Surprisingly, this is not due to a measurable defect in the recruitment of Nmd3 but appears to result from inefficient recruitment of the Mex67-Mtr2 heterodimer.
Collapse
Affiliation(s)
- Sharmishtha Musalgaonkar
- Department of Molecular Biosciences, The University of Texas at Austin, Austin, Texas 78712, USA
| | - Joshua J Black
- Department of Molecular Biosciences, The University of Texas at Austin, Austin, Texas 78712, USA
| | - Arlen W Johnson
- Department of Molecular Biosciences, The University of Texas at Austin, Austin, Texas 78712, USA
| |
Collapse
|
40
|
Qiu C, Dutcher RC, Porter DF, Arava Y, Wickens M, Hall TM. Distinct RNA-binding modules in a single PUF protein cooperate to determine RNA specificity. Nucleic Acids Res 2019; 47:8770-8784. [PMID: 31294800 PMCID: PMC7145691 DOI: 10.1093/nar/gkz583] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2019] [Revised: 06/19/2019] [Accepted: 06/24/2019] [Indexed: 01/07/2023] Open
Abstract
PUF proteins, named for Drosophila Pumilio (PUM) and Caenorhabditis elegans fem-3-binding factor (FBF), recognize specific sequences in the mRNAs they bind and control. RNA binding by classical PUF proteins is mediated by a characteristic PUM homology domain (PUM-HD). The Puf1 and Puf2 proteins possess a distinct architecture and comprise a highly conserved subfamily among fungal species. Puf1/Puf2 proteins contain two types of RNA-binding domain: a divergent PUM-HD and an RNA recognition motif (RRM). They recognize RNAs containing UAAU motifs, often in clusters. Here, we report a crystal structure of the PUM-HD of a fungal Puf1 in complex with a dual UAAU motif RNA. Each of the two UAAU tetranucleotides are bound by a Puf1 PUM-HD forming a 2:1 protein-to-RNA complex. We also determined crystal structures of the Puf1 RRM domain that identified a dimerization interface. The PUM-HD and RRM domains act in concert to determine RNA-binding specificity: the PUM-HD dictates binding to UAAU, and dimerization of the RRM domain favors binding to dual UAAU motifs rather than a single UAAU. Cooperative action of the RRM and PUM-HD identifies a new mechanism by which multiple RNA-binding modules in a single protein collaborate to create a unique RNA-binding specificity.
Collapse
Affiliation(s)
- Chen Qiu
- Epigenetics and Stem Cell Biology Laboratory, National Institute of Environmental Health Sciences, National Institutes of Health, Research Triangle Park, NC 27709, USA
| | - Robert C Dutcher
- Epigenetics and Stem Cell Biology Laboratory, National Institute of Environmental Health Sciences, National Institutes of Health, Research Triangle Park, NC 27709, USA
| | - Douglas F Porter
- Program in Epithelial Biology, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Yoav Arava
- Department of Biology, Technion—Israel Institute of Technology, Haifa 32000, Israel
| | - Marvin Wickens
- Department of Biochemistry, University of Wisconsin, Madison, WI 53706, USA,Correspondence may also be addressed to Marvin Wickens. Tel: +1 608 263 0858; Fax: +1 608 262 9108;
| | - Traci M Tanaka Hall
- Epigenetics and Stem Cell Biology Laboratory, National Institute of Environmental Health Sciences, National Institutes of Health, Research Triangle Park, NC 27709, USA,To whom correspondence should be addressed. Tel: +1 984 287 3556; Fax: +1 310 480 3055;
| |
Collapse
|
41
|
Sleiman S, Dragon F. Recent Advances on the Structure and Function of RNA Acetyltransferase Kre33/NAT10. Cells 2019; 8:cells8091035. [PMID: 31491951 PMCID: PMC6770127 DOI: 10.3390/cells8091035] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2019] [Revised: 08/23/2019] [Accepted: 08/25/2019] [Indexed: 02/07/2023] Open
Abstract
Ribosome biogenesis is one of the most energy demanding processes in the cell. In eukaryotes, the main steps of this process occur in the nucleolus and include pre-ribosomal RNA (pre-rRNA) processing, post-transcriptional modifications, and assembly of many non-ribosomal factors and ribosomal proteins in order to form mature and functional ribosomes. In yeast and humans, the nucleolar RNA acetyltransferase Kre33/NAT10 participates in different maturation events, such as acetylation and processing of 18S rRNA, and assembly of the 40S ribosomal subunit. Here, we review the structural and functional features of Kre33/NAT10 RNA acetyltransferase, and we underscore the importance of this enzyme in ribosome biogenesis, as well as in acetylation of non-ribosomal targets. We also report on the role of human NAT10 in Hutchinson-Gilford progeria syndrome.
Collapse
Affiliation(s)
- Sophie Sleiman
- Département des Sciences Biologiques and Centre d'Excellence en Recherche sur les Maladies Orphelines-Fondation Courtois (CERMO-FC), Université du Québec à Montréal, Montréal, QC H3C 3P8, Canada.
| | - Francois Dragon
- Département des Sciences Biologiques and Centre d'Excellence en Recherche sur les Maladies Orphelines-Fondation Courtois (CERMO-FC), Université du Québec à Montréal, Montréal, QC H3C 3P8, Canada.
| |
Collapse
|
42
|
Tsr4 Is a Cytoplasmic Chaperone for the Ribosomal Protein Rps2 in Saccharomyces cerevisiae. Mol Cell Biol 2019; 39:MCB.00094-19. [PMID: 31182640 DOI: 10.1128/mcb.00094-19] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2019] [Accepted: 06/03/2019] [Indexed: 01/31/2023] Open
Abstract
Eukaryotic ribosome biogenesis requires the action of approximately 200 trans-acting factors and the incorporation of 79 ribosomal proteins (RPs). The delivery of RPs to preribosomes is a major challenge for the cell because RPs are often highly basic and contain intrinsically disordered regions prone to nonspecific interactions and aggregation. To counteract this, eukaryotes developed dedicated chaperones for certain RPs that promote their solubility and expression, often by binding eukaryote-specific extensions of the RPs. Rps2 (uS5) is a universally conserved RP that assembles into nuclear pre-40S subunits. However, a chaperone for Rps2 had not been identified. Our laboratory previously characterized Tsr4 as a 40S biogenesis factor of unknown function. Here, we report that Tsr4 cotranslationally associates with Rps2. Rps2 harbors a eukaryote-specific N-terminal extension that is critical for its interaction with Tsr4. Moreover, Tsr4 perturbation resulted in decreased Rps2 levels and phenocopied Rps2 depletion. Despite Rps2 joining nuclear pre-40S particles, Tsr4 appears to be restricted to the cytoplasm. Thus, we conclude that Tsr4 is a cytoplasmic chaperone dedicated to Rps2.
Collapse
|
43
|
Rössler I, Embacher J, Pillet B, Murat G, Liesinger L, Hafner J, Unterluggauer JJ, Birner-Gruenberger R, Kressler D, Pertschy B. Tsr4 and Nap1, two novel members of the ribosomal protein chaperOME. Nucleic Acids Res 2019; 47:6984-7002. [PMID: 31062022 PMCID: PMC6648895 DOI: 10.1093/nar/gkz317] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2019] [Revised: 04/15/2019] [Accepted: 04/19/2019] [Indexed: 12/12/2022] Open
Abstract
Dedicated chaperones protect newly synthesized ribosomal proteins (r-proteins) from aggregation and accompany them on their way to assembly into nascent ribosomes. Currently, only nine of the ∼80 eukaryotic r-proteins are known to be guarded by such chaperones. In search of new dedicated r-protein chaperones, we performed a tandem-affinity purification based screen and looked for factors co-enriched with individual small subunit r-proteins. We report the identification of Nap1 and Tsr4 as direct binding partners of Rps6 and Rps2, respectively. Both factors promote the solubility of their r-protein clients in vitro. While Tsr4 is specific for Rps2, Nap1 has several interaction partners including Rps6 and two other r-proteins. Tsr4 binds co-translationally to the essential, eukaryote-specific N-terminal extension of Rps2, whereas Nap1 interacts with a large, mostly eukaryote-specific binding surface of Rps6. Mutation of the essential Tsr4 and deletion of the non-essential Nap1 both enhance the 40S synthesis defects of the corresponding r-protein mutants. Our findings highlight that the acquisition of eukaryote-specific domains in r-proteins was accompanied by the co-evolution of proteins specialized to protect these domains and emphasize the critical role of r-protein chaperones for the synthesis of eukaryotic ribosomes.
Collapse
Affiliation(s)
- Ingrid Rössler
- Institute of Molecular Biosciences, University of Graz, Humboldtstrasse 50, 8010 Graz, Austria
- BioTechMed-Graz, Graz, Austria
| | - Julia Embacher
- Institute of Molecular Biosciences, University of Graz, Humboldtstrasse 50, 8010 Graz, Austria
- BioTechMed-Graz, Graz, Austria
| | - Benjamin Pillet
- Unit of Biochemistry, Department of Biology, University of Fribourg, Chemin du Musée 10, 1700 Fribourg, Switzerland
| | - Guillaume Murat
- Unit of Biochemistry, Department of Biology, University of Fribourg, Chemin du Musée 10, 1700 Fribourg, Switzerland
| | - Laura Liesinger
- BioTechMed-Graz, Graz, Austria
- Gottfried Schatz Research Center, Medical University of Graz, Graz, Austria
- Omics Center Graz, BioTechMed-Graz, Graz, Austria
| | - Jutta Hafner
- Institute of Molecular Biosciences, University of Graz, Humboldtstrasse 50, 8010 Graz, Austria
- BioTechMed-Graz, Graz, Austria
| | - Julia Judith Unterluggauer
- Institute of Molecular Biosciences, University of Graz, Humboldtstrasse 50, 8010 Graz, Austria
- BioTechMed-Graz, Graz, Austria
| | - Ruth Birner-Gruenberger
- BioTechMed-Graz, Graz, Austria
- Gottfried Schatz Research Center, Medical University of Graz, Graz, Austria
- Omics Center Graz, BioTechMed-Graz, Graz, Austria
| | - Dieter Kressler
- Unit of Biochemistry, Department of Biology, University of Fribourg, Chemin du Musée 10, 1700 Fribourg, Switzerland
| | - Brigitte Pertschy
- Institute of Molecular Biosciences, University of Graz, Humboldtstrasse 50, 8010 Graz, Austria
- BioTechMed-Graz, Graz, Austria
| |
Collapse
|
44
|
Taoka M, Nobe Y, Yamaki Y, Sato K, Ishikawa H, Izumikawa K, Yamauchi Y, Hirota K, Nakayama H, Takahashi N, Isobe T. Landscape of the complete RNA chemical modifications in the human 80S ribosome. Nucleic Acids Res 2019; 46:9289-9298. [PMID: 30202881 PMCID: PMC6182160 DOI: 10.1093/nar/gky811] [Citation(s) in RCA: 252] [Impact Index Per Article: 42.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2018] [Accepted: 09/06/2018] [Indexed: 01/08/2023] Open
Abstract
During ribosome biogenesis, ribosomal RNAs acquire various chemical modifications that ensure the fidelity of translation, and dysregulation of the modification processes can cause proteome changes as observed in cancer and inherited human disorders. Here, we report the complete chemical modifications of all RNAs of the human 80S ribosome as determined with quantitative mass spectrometry. We assigned 228 sites with 14 different post-transcriptional modifications, most of which are located in functional regions of the ribosome. All modifications detected are typical of eukaryotic ribosomal RNAs, and no human-specific modifications were observed, in contrast to a recently reported cryo-electron microscopy analysis. While human ribosomal RNAs appeared to have little polymorphism regarding the post-transcriptional modifications, we found that pseudouridylation at two specific sites in 28S ribosomal RNA are significantly reduced in ribosomes of patients with familial dyskeratosis congenita, a genetic disease caused by a point mutation in the pseudouridine synthase gene DKC1. The landscape of the entire epitranscriptomic ribosomal RNA modifications provides a firm basis for understanding ribosome function and dysfunction associated with human disease.
Collapse
Affiliation(s)
- Masato Taoka
- Department of Chemistry, Graduate School of Science, Tokyo Metropolitan University, Minami-osawa 1-1, Hachioji-shi, Tokyo 192-0397, Japan
| | - Yuko Nobe
- Department of Chemistry, Graduate School of Science, Tokyo Metropolitan University, Minami-osawa 1-1, Hachioji-shi, Tokyo 192-0397, Japan
| | - Yuka Yamaki
- Department of Chemistry, Graduate School of Science, Tokyo Metropolitan University, Minami-osawa 1-1, Hachioji-shi, Tokyo 192-0397, Japan
| | - Ko Sato
- Department of Chemistry, Graduate School of Science, Tokyo Metropolitan University, Minami-osawa 1-1, Hachioji-shi, Tokyo 192-0397, Japan
| | - Hideaki Ishikawa
- Department of Applied Biological Science, Graduate School of Agriculture, Tokyo University of Agriculture and Technology, Saiwai-cho 3-5-8, Fuchu-shi, Tokyo 183-8509, Japan
| | - Keiichi Izumikawa
- Department of Applied Biological Science, Graduate School of Agriculture, Tokyo University of Agriculture and Technology, Saiwai-cho 3-5-8, Fuchu-shi, Tokyo 183-8509, Japan
| | - Yoshio Yamauchi
- Department of Chemistry, Graduate School of Science, Tokyo Metropolitan University, Minami-osawa 1-1, Hachioji-shi, Tokyo 192-0397, Japan
| | - Kouji Hirota
- Department of Chemistry, Graduate School of Science, Tokyo Metropolitan University, Minami-osawa 1-1, Hachioji-shi, Tokyo 192-0397, Japan
| | - Hiroshi Nakayama
- Biomolecular Characterization Unit, RIKEN Center for Sustainable Resource Science, 2-1 Hirosawa, Wako, Saitama 351-0198, Japan
| | - Nobuhiro Takahashi
- Department of Applied Biological Science, Graduate School of Agriculture, Tokyo University of Agriculture and Technology, Saiwai-cho 3-5-8, Fuchu-shi, Tokyo 183-8509, Japan
| | - Toshiaki Isobe
- Department of Chemistry, Graduate School of Science, Tokyo Metropolitan University, Minami-osawa 1-1, Hachioji-shi, Tokyo 192-0397, Japan
| |
Collapse
|
45
|
Abstract
It has recently become clear that ribosomes are much more heterogeneous than previously thought, with diversity arising from rRNA sequence and modifications, ribosomal protein (RP) content and posttranslational modifications (PTMs), as well as bound nonribosomal proteins. In some cases, the existence of these diverse ribosome populations has been verified by biochemical or structural methods. Furthermore, knockout or knockdown of RPs can diversify ribosome populations, while also affecting the translation of some mRNAs (but not others) with biological consequences. However, the effects on translation arising from depletion of diverse proteins can be highly similar, suggesting that there may be a more general defect in ribosome function or stability, perhaps arising from reduced ribosome numbers. Consistently, overall reduced ribosome numbers can differentially affect subclasses of mRNAs, necessitating controls for specificity. Moreover, in order to study the functional consequences of ribosome diversity, perturbations including affinity tags and knockouts are introduced, which can also affect the outcome of the experiment. Here we review the available literature to carefully evaluate whether the published data support functional diversification, defined as diverse ribosome populations differentially affecting translation of distinct mRNA (classes). Based on these observations and the commonly observed cellular responses to perturbations in the system, we suggest a set of important controls to validate functional diversity, which should include gain-of-function assays and the demonstration of inducibility under physiological conditions.
Collapse
Affiliation(s)
- Max B Ferretti
- Department of Integrative Structural and Molecular Biology, The Scripps Research Institute, Jupiter, Florida 33458, USA
- The Skaggs Graduate School of Chemical and Biological Sciences, The Scripps Research Institute, Jupiter, Florida 33458, USA
| | - Katrin Karbstein
- Department of Integrative Structural and Molecular Biology, The Scripps Research Institute, Jupiter, Florida 33458, USA
- The Skaggs Graduate School of Chemical and Biological Sciences, The Scripps Research Institute, Jupiter, Florida 33458, USA
| |
Collapse
|
46
|
Murina V, Kasari M, Takada H, Hinnu M, Saha CK, Grimshaw JW, Seki T, Reith M, Putrinš M, Tenson T, Strahl H, Hauryliuk V, Atkinson GC. ABCF ATPases Involved in Protein Synthesis, Ribosome Assembly and Antibiotic Resistance: Structural and Functional Diversification across the Tree of Life. J Mol Biol 2018; 431:3568-3590. [PMID: 30597160 PMCID: PMC6723617 DOI: 10.1016/j.jmb.2018.12.013] [Citation(s) in RCA: 84] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2018] [Revised: 12/11/2018] [Accepted: 12/15/2018] [Indexed: 10/27/2022]
Abstract
Within the larger ABC superfamily of ATPases, ABCF family members eEF3 in Saccharomyces cerevisiae and EttA in Escherichia coli have been found to function as ribosomal translation factors. Several other ABCFs including biochemically characterized VgaA, LsaA and MsrE confer resistance to antibiotics that target the peptidyl transferase center and exit tunnel of the ribosome. However, the diversity of ABCF subfamilies, the relationships among subfamilies and the evolution of antibiotic resistance (ARE) factors from other ABCFs have not been explored. To address this, we analyzed the presence of ABCFs and their domain architectures in 4505 genomes across the tree of life. We find 45 distinct subfamilies of ABCFs that are widespread across bacterial and eukaryotic phyla, suggesting that they were present in the last common ancestor of both. Surprisingly, currently known ARE ABCFs are not confined to a distinct lineage of the ABCF family tree, suggesting that ARE can readily evolve from other ABCF functions. Our data suggest that there are a number of previously unidentified ARE ABCFs in antibiotic producers and important human pathogens. We also find that ATPase-deficient mutants of all four E. coli ABCFs (EttA, YbiT, YheS and Uup) inhibit protein synthesis, indicative of their ribosomal function, and demonstrate a genetic interaction of ABCFs Uup and YheS with translational GTPase BipA involved in assembly of the 50S ribosome subunit. Finally, we show that the ribosome-binding resistance factor VmlR from Bacillus subtilis is localized to the cytoplasm, ruling out a role in antibiotic efflux.
Collapse
Affiliation(s)
- Victoriia Murina
- Department of Molecular Biology, Umeå University, 901 87 Umeå, Sweden; Laboratory for Molecular Infection Medicine Sweden (MIMS), Umeå University, 901 87 Umeå, Sweden
| | - Marje Kasari
- Department of Molecular Biology, Umeå University, 901 87 Umeå, Sweden
| | - Hiraku Takada
- Department of Molecular Biology, Umeå University, 901 87 Umeå, Sweden; Laboratory for Molecular Infection Medicine Sweden (MIMS), Umeå University, 901 87 Umeå, Sweden
| | - Mariliis Hinnu
- University of Tartu, Institute of Technology, Nooruse 1, 50411 Tartu, Estonia
| | - Chayan Kumar Saha
- Department of Molecular Biology, Umeå University, 901 87 Umeå, Sweden
| | - James W Grimshaw
- Centre for Bacterial Cell Biology, Institute for Cell and Molecular Biosciences Newcastle University, Richardson Road, Newcastle upon Tyne, NE2 4AX, United Kingdom
| | - Takahiro Seki
- Department of Applied Chemistry and Biotechnology, Faculty of Engineering, Chiba University, 263-8522 Chiba, Japan
| | - Michael Reith
- Department of Molecular Biology, Umeå University, 901 87 Umeå, Sweden
| | - Marta Putrinš
- University of Tartu, Institute of Technology, Nooruse 1, 50411 Tartu, Estonia
| | - Tanel Tenson
- University of Tartu, Institute of Technology, Nooruse 1, 50411 Tartu, Estonia
| | - Henrik Strahl
- Centre for Bacterial Cell Biology, Institute for Cell and Molecular Biosciences Newcastle University, Richardson Road, Newcastle upon Tyne, NE2 4AX, United Kingdom
| | - Vasili Hauryliuk
- Department of Molecular Biology, Umeå University, 901 87 Umeå, Sweden; Laboratory for Molecular Infection Medicine Sweden (MIMS), Umeå University, 901 87 Umeå, Sweden; University of Tartu, Institute of Technology, Nooruse 1, 50411 Tartu, Estonia
| | | |
Collapse
|
47
|
Goldstrohm AC, Hall TMT, McKenney KM. Post-transcriptional Regulatory Functions of Mammalian Pumilio Proteins. Trends Genet 2018; 34:972-990. [PMID: 30316580 DOI: 10.1016/j.tig.2018.09.006] [Citation(s) in RCA: 124] [Impact Index Per Article: 17.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2018] [Revised: 09/10/2018] [Accepted: 09/19/2018] [Indexed: 01/18/2023]
Abstract
Mammalian Pumilio proteins, PUM1 and PUM2, are members of the PUF family of sequence-specific RNA-binding proteins. In this review, we explore their mechanisms, regulatory networks, biological functions, and relevance to diseases. Pumilio proteins bind an extensive network of mRNAs and repress protein expression by inhibiting translation and promoting mRNA decay. Opposingly, in certain contexts, they can activate protein expression. Pumilio proteins also regulate noncoding (nc)RNAs. The ncRNA, ncRNA activated by DNA damage (NORAD), can in turn modulate Pumilio activity. Genetic analysis provides new insights into Pumilio protein function. They are essential for growth and development. They control diverse processes, including stem cell fate, and neurological functions, such as behavior and memory formation. Novel findings show that their dysfunction contributes to neurodegeneration, epilepsy, movement disorders, intellectual disability, infertility, and cancer.
Collapse
Affiliation(s)
- Aaron C Goldstrohm
- Department of Biochemistry, Molecular Biology and Biophysics, University of Minnesota, Minneapolis, MN, USA.
| | - Traci M Tanaka Hall
- Epigenetics and Stem Cell Biology Laboratory, National Institute of Environmental Health Sciences, National Institutes of Health, Research Triangle Park, NC, USA
| | - Katherine M McKenney
- Department of Biochemistry, Molecular Biology and Biophysics, University of Minnesota, Minneapolis, MN, USA
| |
Collapse
|
48
|
Abstract
Cells must make careful use of the resources available to them. A key area of cellular regulation involves the biogenesis of ribosomes. Transcriptional regulation of ribosome biogenesis factor genes through alterations in histone acetylation has been well studied. This work identifies a post-transcriptional mechanism of ribosome biogenesis regulation by Puf protein control of mRNA stability. Puf proteins are eukaryotic mRNA binding proteins that play regulatory roles in mRNA degradation and translation via association with specific conserved elements in the 3' untranslated region (UTR) of target mRNAs and with degradation and translation factors. We demonstrate that several ribosome biogenesis factor mRNAs in Saccharomyces cerevisiae containing a canonical Puf4p element in their 3' UTRs are destabilized by Puf2p, Puf4, and Puf5p, yet stabilized by Puf1p and Puf3p. In the absence of all Puf proteins, these ribosome biogenesis mRNAs are destabilized by a secondary mechanism involving the same 3' UTR element. Unlike other targets of Puf4p regulation, the decay of these transcripts is not altered by carbon source. Overexpression of Puf4p results in delayed ribosomal RNA processing and altered ribosomal subunit trafficking. These results represent a novel role for Puf proteins in yeast as regulators of ribosome biogenesis transcript stability.
Collapse
Affiliation(s)
- Anthony D Fischer
- a Department of Biology , University of Missouri-St. Louis , St. Louis , MO , USA
| | - Wendy M Olivas
- a Department of Biology , University of Missouri-St. Louis , St. Louis , MO , USA
| |
Collapse
|
49
|
Sun M, Zhang Y, Wang Q, Wu C, Jiang C, Xu JR. The tri-snRNP specific protein FgSnu66 is functionally related to FgPrp4 kinase in Fusarium graminearum. Mol Microbiol 2018; 109:494-508. [PMID: 29923654 DOI: 10.1111/mmi.14005] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/08/2018] [Indexed: 11/28/2022]
Abstract
Deletion of Prp4, the only kinase among spliceosome components, is not lethal in Fusarium graminearum but Fgprp4 mutants have severe growth defects and produced spontaneous suppressors. To identify novel suppressor mutations of Fgprp4, we sequenced the genome of suppressor S37 that was normal in growth but only partially recovered for intron splicing and identified a tandem duplication of 9-aa in the tri-snRNP component FgSNU66. Among the 19 additional suppressor strains found to have mutations in FgSNU66 (out of 260 screened), five had the same 9-aa duplication event with S37 and another five had the R477H/C mutation. The rest had nonsense or G-to-D mutations in the C-terminal 27-aa (CT27) region of FgSnu66, which is absent in its yeast ortholog. Truncation of this C-terminal region reduced the interaction of FgSnu66 with FgHub1 but increased its interaction with FgPrp8 and FgPrp6. Five phosphorylation sites were identified in FgSnu66 by phosphoproteomic analysis and the T418A-S420A-S422A mutation was shown to reduce virulence. Overall, our results showed that mutations in FgSNU66 can suppress deletion of Fgprp4, which has not been reported in other organisms, and the C-terminal tail of FgSnu66 plays a role in its interaction with key tri-snRNP components during spliceosome activation.
Collapse
Affiliation(s)
- Manli Sun
- State Key Laboratory of Crop Stress Biology for Arid Areas and NWAFU-Purdue Joint Research Center, College of Plant Protection, Northwest A&F University, Yangling, Shaanxi, 712100, China
| | - Yimei Zhang
- State Key Laboratory of Crop Stress Biology for Arid Areas and NWAFU-Purdue Joint Research Center, College of Plant Protection, Northwest A&F University, Yangling, Shaanxi, 712100, China
| | - Qinhu Wang
- State Key Laboratory of Crop Stress Biology for Arid Areas and NWAFU-Purdue Joint Research Center, College of Plant Protection, Northwest A&F University, Yangling, Shaanxi, 712100, China
| | - Chunlan Wu
- State Key Laboratory of Crop Stress Biology for Arid Areas and NWAFU-Purdue Joint Research Center, College of Plant Protection, Northwest A&F University, Yangling, Shaanxi, 712100, China
| | - Cong Jiang
- State Key Laboratory of Crop Stress Biology for Arid Areas and NWAFU-Purdue Joint Research Center, College of Plant Protection, Northwest A&F University, Yangling, Shaanxi, 712100, China
| | - Jin-Rong Xu
- State Key Laboratory of Crop Stress Biology for Arid Areas and NWAFU-Purdue Joint Research Center, College of Plant Protection, Northwest A&F University, Yangling, Shaanxi, 712100, China.,Department of Botany and Plant Pathology, Purdue University, West Lafayette, IN, 47907, USA
| |
Collapse
|
50
|
Black JJ, Wang Z, Goering LM, Johnson AW. Utp14 interaction with the small subunit processome. RNA (NEW YORK, N.Y.) 2018; 24:1214-1228. [PMID: 29925570 PMCID: PMC6097655 DOI: 10.1261/rna.066373.118] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/12/2018] [Accepted: 06/17/2018] [Indexed: 06/08/2023]
Abstract
The SSU processome (sometimes referred to as 90S) is an early stable intermediate in the small ribosomal subunit biogenesis pathway of eukaryotes. Progression of the SSU processome to a pre-40S particle requires a large-scale compaction of the RNA and release of many biogenesis factors. The U3 snoRNA is a primary component of the SSU processome and hybridizes to the rRNA at multiple locations to organize the structure of the SSU processome. Thus, release of U3 is a prerequisite for the transition to pre-40S. Our laboratory proposed that the RNA helicase Dhr1 plays a crucial role in the transition by unwinding U3 and that this activity is controlled by the SSU processome protein Utp14. How Utp14 times the activation of Dhr1 is an open question. Despite being highly conserved, Utp14 contains no recognizable domains, and how Utp14 interacts with the SSU processome is not well characterized. Here, we used UV crosslinking and analysis of cDNA (CRAC) and yeast two-hybrid interaction to characterize how Utp14 interacts with the preribosome. Moreover, proteomic analysis of SSU particles lacking Utp14 revealed that the presence of Utp14 is needed for efficient recruitment of the RNA exosome. Our analysis positions Utp14 to be uniquely poised to communicate the status of assembly of the SSU processome to Dhr1 and possibly to the exosome as well.
Collapse
Affiliation(s)
- Joshua J Black
- Department of Molecular Biosciences, The University of Texas at Austin, Austin, Texas 78712, USA
| | - Zhaohui Wang
- Department of Molecular Biosciences, The University of Texas at Austin, Austin, Texas 78712, USA
| | - Lisa M Goering
- Department of Biological Sciences, St. Edward's University, Austin, Texas 78704, USA
| | - Arlen W Johnson
- Department of Molecular Biosciences, The University of Texas at Austin, Austin, Texas 78712, USA
| |
Collapse
|