1
|
Estelle DL, Jacques GE, Issiaka S, Lovett B, Abdoulaye D, Etienne B. Unstable laboratory Wolbachia strain w-Anga is negatively correlated with Plasmodium falciparum in wild malaria vectors. Sci Rep 2025; 15:17732. [PMID: 40404927 PMCID: PMC12098879 DOI: 10.1038/s41598-025-97288-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2024] [Accepted: 04/03/2025] [Indexed: 05/24/2025] Open
Abstract
Spread of insecticides resistance threatens the control of malaria. In this context, biological control using an endosymbiotic bacterium Wolbachia is being explored as a complementary method for its control. However, for optimal use of this bacterium in biocontrol strategies, it is imperative to characterize it. So, Anopheles gambiae complex mosquitoes were collected, morphologically identified, then blood fed and gravid female mosquitoes oviposited individually. After oviposition, the species of parent was molecularly determined, along with their w-Anga infection status. Additionally, we performed 16SrRNA gene sequencing of w-Anga-positive mosquitoes to determine their phylogeny. Finally, we amplified gene encoding the circumsporozoite protein to determinate their Plasmodium falciparum infection status and assessed the stability of w-Anga transmission of positive females and their offspring. From the results obtained, our w-Anga strains cluster with other Wolbachia Supergroup B strains. However, the prevalence of Plasmodium falciparum infection was lower in Wolbachia-infected females (4.59%) than in those uninfected (22.02%). Furthermore, the transmission frequency of this bacterium in infected Anopheles coluzzii females of the F0 generation to F1 offspring was 10.64% and 16.67% from infected females of the F1 generation to F2 offspring. This study results will serve as preliminary data for the possible use of Wolbachia in malaria control.
Collapse
Affiliation(s)
- Dembélé L Estelle
- Institut de Recherche en Sciences de la Santé (IRSS) Direction Régionale de l'Ouest (DRO)/CNRST, Bobo Dioulasso, Burkina Faso
- Centre d'Excellence Africain en Innovations Biotechnologiques pour l'Elimination des Maladies à Transmission Vectorielle (CEA-ITECH/MTV), Université Nazi Boni, Bobo Dioulasso, Burkina Faso
- Université Nazi Boni (UNB), Bobo Dioulasso, Burkina Faso
| | - Gnambani E Jacques
- Institut de Recherche en Sciences de la Santé (IRSS) Direction Régionale de l'Ouest (DRO)/CNRST, Bobo Dioulasso, Burkina Faso
- Institut National de Santé Publique (INSP)/Centre Muraz, Bobo Dioulasso, Burkina Faso
- Université Nazi Boni (UNB), Bobo Dioulasso, Burkina Faso
| | - Saré Issiaka
- Institut de Recherche en Sciences de la Santé (IRSS) Direction Régionale de l'Ouest (DRO)/CNRST, Bobo Dioulasso, Burkina Faso
- Institut National de Santé Publique (INSP)/Centre Muraz, Bobo Dioulasso, Burkina Faso
| | - Brian Lovett
- Robert W. Holley Center for Agriculture and Health, USDA-ARS, Ithaca, NY, USA
| | - Diabaté Abdoulaye
- Institut de Recherche en Sciences de la Santé (IRSS) Direction Régionale de l'Ouest (DRO)/CNRST, Bobo Dioulasso, Burkina Faso.
- Institut National de Santé Publique (INSP)/Centre Muraz, Bobo Dioulasso, Burkina Faso.
- Centre d'Excellence Africain en Innovations Biotechnologiques pour l'Elimination des Maladies à Transmission Vectorielle (CEA-ITECH/MTV), Université Nazi Boni, Bobo Dioulasso, Burkina Faso.
| | - Bilgo Etienne
- Institut de Recherche en Sciences de la Santé (IRSS) Direction Régionale de l'Ouest (DRO)/CNRST, Bobo Dioulasso, Burkina Faso.
- Institut National de Santé Publique (INSP)/Centre Muraz, Bobo Dioulasso, Burkina Faso.
| |
Collapse
|
2
|
Haraguchi A, Gonda M, Nakayama K, Fujiwara K, Hakozaki J, Nakamura S, Kusakisako K, Ikadai H. Effect of a Blood Meal on Plasmodium Oocyst Growth Using the Enema Injection Method. Vector Borne Zoonotic Dis 2025. [PMID: 40329887 DOI: 10.1089/vbz.2024.0099] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/08/2025] Open
Abstract
Objective: Anopheles mosquitoes transmit Plasmodium parasites through blood feeding. The oocyst stage in mosquitoes is crucial for Plasmodium transmission. Oocysts can form without a blood meal or the midgut passage and utilize nutrients from additional blood feeding. However, it remains unclear the impact of a blood meal during infection on oocysts. The present study evaluated how a blood meal during infection impacts oocyst growth to better understand oocyst development. Methods: We used a novel method for Plasmodium infection known as enema injection, which involves injecting Plasmodium berghei (ANKA strain) into the midgut lumen of Anopheles stephensi mosquitoes (STE2 strain) via the anus, traversing the midgut wall without a blood meal. We compared the size of oocysts in mosquitoes infected by enema injection alone, hemocoel injection alone, and each infection method combined with uninfected blood feeding, as well as those only with infected blood feeding. Results: By enema injection with Plasmodium ookinetes, oocysts formed solely in the mosquito's midgut. Oocysts from enema-injected mosquitoes were similar in size to those from hemocoel-injected mosquitoes. Oocysts from mosquitoes infected by enema injection combined with uninfected blood feeding were larger than oocysts from mosquitoes infected by enema injection alone. However, the size of oocysts from mosquitoes infected by hemocoel injection was not affected by the presence or absence of blood feeding. Conclusion: Enema injection with Plasmodium ookinetes is applicable to Anopheles mosquitoes. Using the enema injection method, we suggest that a blood meal during infection might facilitate oocyst growth within the midgut.
Collapse
Affiliation(s)
- Asako Haraguchi
- Laboratory of Veterinary Parasitology, School of Veterinary Medicine, Kitasato University, Towada, Japan
| | - Moeka Gonda
- Laboratory of Veterinary Parasitology, School of Veterinary Medicine, Kitasato University, Towada, Japan
| | - Kazuhiko Nakayama
- Laboratory of Veterinary Parasitology, School of Veterinary Medicine, Kitasato University, Towada, Japan
| | - Kanta Fujiwara
- Laboratory of Veterinary Parasitology, School of Veterinary Medicine, Kitasato University, Towada, Japan
| | - Jun Hakozaki
- Laboratory of Veterinary Parasitology, School of Veterinary Medicine, Kitasato University, Towada, Japan
- Department of Animal Health TechnologyYamazaki Professional College of Animal Health Technology, Shoto, Japan
| | - Sakure Nakamura
- Laboratory of Veterinary Parasitology, School of Veterinary Medicine, Kitasato University, Towada, Japan
| | - Kodai Kusakisako
- Laboratory of Veterinary Parasitology, School of Veterinary Medicine, Kitasato University, Towada, Japan
| | - Hiromi Ikadai
- Laboratory of Veterinary Parasitology, School of Veterinary Medicine, Kitasato University, Towada, Japan
| |
Collapse
|
3
|
Leyria J, Fruttero LL, Paglione PA, Canavoso LE. How Insects Balance Reproductive Output and Immune Investment. INSECTS 2025; 16:311. [PMID: 40266843 PMCID: PMC11943238 DOI: 10.3390/insects16030311] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/22/2025] [Revised: 03/12/2025] [Accepted: 03/15/2025] [Indexed: 04/25/2025]
Abstract
Insects face the constant challenge of balancing energy allocation between reproduction and immune responses, both of which are highly energy-demanding processes. Immune challenges frequently result in decreased fecundity, reduced egg viability, and delayed ovarian development. Conversely, heightened reproductive activity often suppresses immune functions. This trade-off has profound ecological and evolutionary consequences, shaping insects' survival, adaptation, and population dynamics. The intricate interplay between reproduction and immunity in insects is regulated by the neuroendocrine and endocrine systems, which orchestrate resource distribution alongside other biological processes. Key hormones, such as juvenile hormone and ecdysteroids, serve as central regulators, influencing both immune responses and reproductive activities. Additionally, macromolecules like vitellogenin and lipophorin, primarily known for their functions as yolk protein precursors and lipid carriers, play crucial roles in pathogen recognition and transgenerational immune priming. Advancements in molecular and omics tools have unveiled the complexity of these regulatory mechanisms, providing new insights into how insects dynamically allocate resources to optimize their fitness. This delicate balance underscores critical evolutionary strategies and the integration of physiological systems across species. This review synthesizes insights from life history theory, oogenesis, and immunity, offering new perspectives on the trade-offs between reproductive output and immune investment.
Collapse
Affiliation(s)
- Jimena Leyria
- Departamento de Bioquímica Clínica, Facultad de Ciencias Químicas, Universidad Nacional de Córdoba, Córdoba 5000, CP, Argentina; (J.L.); (L.L.F.); (P.A.P.)
- Centro de Investigaciones en Bioquímica Clínica e Inmunología (CIBICI), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Córdoba 5000, CP, Argentina
| | - Leonardo L. Fruttero
- Departamento de Bioquímica Clínica, Facultad de Ciencias Químicas, Universidad Nacional de Córdoba, Córdoba 5000, CP, Argentina; (J.L.); (L.L.F.); (P.A.P.)
- Centro de Investigaciones en Bioquímica Clínica e Inmunología (CIBICI), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Córdoba 5000, CP, Argentina
| | - Pedro A. Paglione
- Departamento de Bioquímica Clínica, Facultad de Ciencias Químicas, Universidad Nacional de Córdoba, Córdoba 5000, CP, Argentina; (J.L.); (L.L.F.); (P.A.P.)
- Centro de Investigaciones en Bioquímica Clínica e Inmunología (CIBICI), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Córdoba 5000, CP, Argentina
| | - Lilián E. Canavoso
- Departamento de Bioquímica Clínica, Facultad de Ciencias Químicas, Universidad Nacional de Córdoba, Córdoba 5000, CP, Argentina; (J.L.); (L.L.F.); (P.A.P.)
- Centro de Investigaciones en Bioquímica Clínica e Inmunología (CIBICI), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Córdoba 5000, CP, Argentina
| |
Collapse
|
4
|
Saab SA, Cardoso-Jaime V, Kefi M, Dimopoulos G. Advances in the dissection of Anopheles-Plasmodium interactions. PLoS Pathog 2025; 21:e1012965. [PMID: 40163471 PMCID: PMC11957333 DOI: 10.1371/journal.ppat.1012965] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/02/2025] Open
Abstract
Malaria is a life-threatening mosquito-borne disease caused by the Plasmodium parasite, responsible for more than half a million deaths annually and principally involving children. The successful transmission of malaria by Anopheles mosquitoes relies on complex successive interactions between the parasite and various mosquito organs, host factors, and restriction factors. This review summarizes our current understanding of the mechanisms regulating Plasmodium infection of the mosquito vector at successive plasmodial developmental stages and highlights potential transmission-blocking targets and strategies.
Collapse
Affiliation(s)
- Sally A. Saab
- W. Harry Feinstone Department of Molecular Microbiology and Immunology, Bloomberg School of Public Health, Johns Hopkins University, Baltimore, Maryland, United States America
| | - Victor Cardoso-Jaime
- W. Harry Feinstone Department of Molecular Microbiology and Immunology, Bloomberg School of Public Health, Johns Hopkins University, Baltimore, Maryland, United States America
| | - Mary Kefi
- W. Harry Feinstone Department of Molecular Microbiology and Immunology, Bloomberg School of Public Health, Johns Hopkins University, Baltimore, Maryland, United States America
| | - George Dimopoulos
- W. Harry Feinstone Department of Molecular Microbiology and Immunology, Bloomberg School of Public Health, Johns Hopkins University, Baltimore, Maryland, United States America
| |
Collapse
|
5
|
Guo Q, Zu M, Liu D, Yan Y, Yang W, Xu K. Roles of Vitellogenin and Its Receptor Genes in Female Reproduction of the Cigarette Beetle, Lasioderma serricorne. INSECTS 2025; 16:175. [PMID: 40003805 PMCID: PMC11857020 DOI: 10.3390/insects16020175] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/08/2025] [Revised: 02/04/2025] [Accepted: 02/04/2025] [Indexed: 02/27/2025]
Abstract
Vitellogenin (Vg) and the vitellogenin receptor (VgR) play essential roles in insect reproductive development. However, the functions of Vg and VgR genes in Lasioderma serricorne, an important insect pest of stored products, are unknown. We identified and characterized these two genes, designated LsVg and LsVgR, in L. serricorne. The open reading frames of LsVg and LsVgR were 5232 and 5529 bp, encoding 1743 and 1842 amino acid residues, respectively. Both LsVg and LsVgR were predominantly expressed in female adults and exhibited the highest expression in ovaries. The RNAi-mediated silencing of LsVg or LsVgR significantly decreased the average length of ovarian tubes and oocytes and severely affected ovarian development. The Knockdown of LsVg or LsVgR significantly reduced the oviposition period, the number of eggs laid, and the egg hatching rate. Females injected with dsLsVg and dsLsVg + VgR were found to had decreased vitellogenin content. The co-silencing of LsVg and LsVgR had a more pronounced effect on reducing the oviposition period and female fecundity in L. serricorne. This study revealed the importance of LsVg and LsVgR in regulating female reproduction and shows their potential as targets for RNAi-based control of L. serricorne.
Collapse
Affiliation(s)
| | | | | | | | | | - Kangkang Xu
- Key Laboratory of Surveillance and Management of Invasive Alien Species in Guizhou Education Department, College of Biological and Environmental Engineering, Guiyang University, Guiyang 550005, China; (Q.G.); (M.Z.); (D.L.); (Y.Y.); (W.Y.)
| |
Collapse
|
6
|
Lu C, Zhang Y, Xu Y, Wei T, Chen Q. Salivary-secreted vitellogenin suppresses H 2O 2 burst of plants facilitating Recilia dorsalis leafhopper feeding. PEST MANAGEMENT SCIENCE 2024; 80:6222-6235. [PMID: 39101333 DOI: 10.1002/ps.8351] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/19/2024] [Revised: 07/02/2024] [Accepted: 07/18/2024] [Indexed: 08/06/2024]
Abstract
BACKGROUND Vitellogenin (Vg), known as the yolk protein precursor for oocyte development in female insects, can be secreted to plant host from salivary glands of hemipterans, including rice leafhopper Recilia dorsalis. The aim of this study was to investigate the function of salivary-secreted Vg of R. dorsalis (RdVg) in rice host. We propose that RdVg possibly regulates the rice defense against insects, benefiting R. dorsalis feeding. RESULTS RdVg was released into rice phloem along with saliva during R. dorsalis feeding. Knocking down RdVg increased the level of H2O2 and improved H2O2 metabolism in rice plants, making it difficult for R. dorsalis to feed. The transient expression or overexpression of the lipoprotein N-terminal domain of RdVg (RdVg2) significantly reduced hydrogen peroxide (H2O2) metabolism in plants. This suggests that salivary-secreted RdVg acts as an effector suppressing the H2O2 burst in rice plants, and RdVg2 is the key domain. RdVg2 could interact with rice sulfite oxidase (OsSO), which catalyzes the oxidation of SO3 2- and produces H2O2. Exposure of rice plants to R. dorsalis, overexpression of RdVg2 or knocking out OsSO reduced OsSO accumulation and SO3 2- oxidation, benefiting R. dorsalis feeding. However overexpression of OsSO increased SO3 2- oxidation and H2O2 metabolism, inhibiting R. dorsalis feeding. CONCLUSION RdVg inhibits H2O2 generation via suppressing OsSO accumulation, ultimately benefiting R. dorsalis feeding. These findings identify RdVg as an effector that suppresses plant defense to insects, and provide insights into the function of salivary-secreted Vg in other Hemiptera insects. © 2024 Society of Chemical Industry.
Collapse
Affiliation(s)
- Chengcong Lu
- State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Yating Zhang
- State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Yuanyuan Xu
- State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Taiyun Wei
- State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Qian Chen
- State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops, Fujian Agriculture and Forestry University, Fuzhou, China
| |
Collapse
|
7
|
Girotti JR, Calderón-Fernández GM. Lipid Metabolism in Insect Vectors of Diseases. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2024. [PMID: 38954247 DOI: 10.1007/5584_2024_811] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/04/2024]
Abstract
According to the World Health Organization vector-borne diseases account for more than 17% of all infectious diseases, causing more than 700,000 deaths annually. Vectors are organisms that are able to transmit infectious pathogens between humans, or from animals to humans. Many of these vectors are hematophagous insects, which ingest the pathogen from an infected host during a blood meal, and later transmit it into a new host. Malaria, dengue, African trypanosomiasis, yellow fever, leishmaniasis, Chagas disease, and many others are examples of diseases transmitted by insects.Both the diet and the infection with pathogens trigger changes in many metabolic pathways, including lipid metabolism, compared to other insects. Blood contains mostly proteins and is very poor in lipids and carbohydrates. Thus, hematophagous insects attempt to efficiently digest and absorb diet lipids and also rely on a large de novo lipid biosynthesis based on utilization of proteins and carbohydrates as carbon source. Blood meal triggers essential physiological processes as molting, excretion, and oogenesis; therefore, lipid metabolism and utilization of lipid storage should be finely synchronized and regulated regarding that, in order to provide the necessary energy source for these events. Also, pathogens have evolved mechanisms to hijack essential lipids from the insect host by interfering in the biosynthesis, catabolism, and transport of lipids, which pose challenges to reproduction, survival, fitness, and other insect traits.In this chapter, we have tried to collect and highlight the current knowledge and recent discoveries on the metabolism of lipids in insect vectors of diseases related to the hematophagous diet and pathogen infection.
Collapse
Affiliation(s)
- Juan R Girotti
- Instituto de Investigaciones Bioquímicas de La Plata (CONICET-UNLP), Facultad de Ciencias Médicas, Universidad Nacional de La Plata, La Plata, Argentina.
| | - Gustavo M Calderón-Fernández
- Instituto de Investigaciones Bioquímicas de La Plata (CONICET-UNLP), Facultad de Ciencias Médicas, Universidad Nacional de La Plata, La Plata, Argentina.
| |
Collapse
|
8
|
Gao L, Yang W, Wang J. Implications of mosquito metabolism on vector competence. INSECT SCIENCE 2024; 31:674-682. [PMID: 37907431 DOI: 10.1111/1744-7917.13288] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/04/2023] [Revised: 09/20/2023] [Accepted: 09/25/2023] [Indexed: 11/02/2023]
Abstract
Mosquito-borne diseases (MBDs) annually kill nearly half a million people. Due to the lack of effective vaccines and drugs on most MBDs, disease prevention relies primarily on controlling mosquitoes. Despite huge efforts having been put into mosquito control, eco-friendly and sustainable mosquito-control strategies are still lacking and urgently demanded. Most mosquito-transmitted pathogens have lost the capacity of de novo nutrition biosynthesis, and rely on their vertebrate and invertebrate hosts for sustenance during the long-term obligate parasitism process. Therefore, a better understanding of the metabolic interactions between mosquitoes and pathogens will contribute to the discovery of novel metabolic targets or regulators that lead to reduced mosquito populations or vector competence. This review summarizes the current knowledge about the effects of mosquito metabolism on the transmission of multiple pathogens. We also discuss that research in this area remains to be explored to develop multiple biological prevention and control strategies for MBDs.
Collapse
Affiliation(s)
- Li Gao
- State Key Laboratory of Genetic Engineering, School of Life Sciences, Fudan University, Shanghai, China
- Ministry of Education Key Laboratory of Contemporary Anthropology, School of Life Sciences, Fudan University, Shanghai, China
| | - Wenxu Yang
- State Key Laboratory of Genetic Engineering, School of Life Sciences, Fudan University, Shanghai, China
- Ministry of Education Key Laboratory of Contemporary Anthropology, School of Life Sciences, Fudan University, Shanghai, China
| | - Jingwen Wang
- State Key Laboratory of Genetic Engineering, School of Life Sciences, Fudan University, Shanghai, China
- Ministry of Education Key Laboratory of Contemporary Anthropology, School of Life Sciences, Fudan University, Shanghai, China
| |
Collapse
|
9
|
Figueiredo Prates LH, Fiebig J, Schlosser H, Liapi E, Rehling T, Lutrat C, Bouyer J, Sun Q, Wen H, Xi Z, Schetelig MF, Häcker I. Challenges of Robust RNAi-Mediated Gene Silencing in Aedes Mosquitoes. Int J Mol Sci 2024; 25:5218. [PMID: 38791257 PMCID: PMC11121262 DOI: 10.3390/ijms25105218] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2024] [Revised: 05/03/2024] [Accepted: 05/05/2024] [Indexed: 05/26/2024] Open
Abstract
In this study, we report the complexities and challenges associated with achieving robust RNA interference (RNAi)-mediated gene knockdown in the mosquitoes Aedes aegypti and Aedes albopictus, a pivotal approach for genetic analysis and vector control. Despite RNAi's potential for species-specific gene targeting, our independent efforts to establish oral delivery of RNAi for identifying genes critical for mosquito development and fitness encountered significant challenges, failing to reproduce previously reported potent RNAi effects. We independently evaluated a range of RNAi-inducing molecules (siRNAs, shRNAs, and dsRNAs) and administration methods (oral delivery, immersion, and microinjection) in three different laboratories. We also tested various mosquito strains and utilized microorganisms for RNA delivery. Our results reveal a pronounced inconsistency in RNAi efficacy, characterized by minimal effects on larval survival and gene expression levels in most instances despite strong published effects for the tested targets. One or multiple factors, including RNase activity in the gut, the cellular internalization and processing of RNA molecules, and the systemic dissemination of the RNAi signal, could be involved in this variability, all of which are barely understood in mosquitoes. The challenges identified in this study highlight the necessity for additional research into the underlying mechanisms of mosquito RNAi to develop more robust RNAi-based methodologies. Our findings emphasize the intricacies of RNAi application in mosquitoes, which present a substantial barrier to its utilization in genetic control strategies.
Collapse
Affiliation(s)
- Lucas Henrique Figueiredo Prates
- Department of Insect Biotechnology in Plant Protection, Justus Liebig University Giessen, 35394 Giessen, Germany; (L.H.F.P.); (J.F.); (H.S.); (T.R.); (I.H.)
| | - Jakob Fiebig
- Department of Insect Biotechnology in Plant Protection, Justus Liebig University Giessen, 35394 Giessen, Germany; (L.H.F.P.); (J.F.); (H.S.); (T.R.); (I.H.)
| | - Henrik Schlosser
- Department of Insect Biotechnology in Plant Protection, Justus Liebig University Giessen, 35394 Giessen, Germany; (L.H.F.P.); (J.F.); (H.S.); (T.R.); (I.H.)
| | - Eleni Liapi
- Department of Biochemistry and Biotechnology, University of Thessaly, 41500 Larissa, Greece;
| | - Tanja Rehling
- Department of Insect Biotechnology in Plant Protection, Justus Liebig University Giessen, 35394 Giessen, Germany; (L.H.F.P.); (J.F.); (H.S.); (T.R.); (I.H.)
| | | | - Jeremy Bouyer
- ASTRE, CIRAD, 34398 Montpellier, France (J.B.)
- ASTRE, CIRAD, INRAE, Univ. Montpellier, Plateforme Technologique CYROI, 97491 Sainte-Clotilde, La Réunion, France
| | - Qiang Sun
- Department of Microbiology and Molecular Genetics, Michigan State University, East Lansing, MI 48824, USA; (Q.S.); (H.W.); (Z.X.)
| | - Han Wen
- Department of Microbiology and Molecular Genetics, Michigan State University, East Lansing, MI 48824, USA; (Q.S.); (H.W.); (Z.X.)
| | - Zhiyong Xi
- Department of Microbiology and Molecular Genetics, Michigan State University, East Lansing, MI 48824, USA; (Q.S.); (H.W.); (Z.X.)
| | - Marc F. Schetelig
- Department of Insect Biotechnology in Plant Protection, Justus Liebig University Giessen, 35394 Giessen, Germany; (L.H.F.P.); (J.F.); (H.S.); (T.R.); (I.H.)
| | - Irina Häcker
- Department of Insect Biotechnology in Plant Protection, Justus Liebig University Giessen, 35394 Giessen, Germany; (L.H.F.P.); (J.F.); (H.S.); (T.R.); (I.H.)
| |
Collapse
|
10
|
Chuang YM, Stone H, Abouneameh S, Tang X, Fikrig E. Signaling between mammalian adiponectin and a mosquito adiponectin receptor reduces Plasmodium transmission. mBio 2024; 15:e0225723. [PMID: 38078744 PMCID: PMC10790699 DOI: 10.1128/mbio.02257-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2023] [Accepted: 10/27/2023] [Indexed: 01/17/2024] Open
Abstract
IMPORTANCE When a female mosquito takes a blood meal from a mammalian host, components of the blood meal can affect mosquito fitness and indirectly influence pathogen infectivity. We identified a pathway involving an Anopheles gambiae adiponectin receptor, which, triggered by adiponectin from an incoming blood meal, decreases Plasmodium infection in the mosquito. Activation of this pathway negatively regulates lipophorin expression, an important lipid transporter that both enhances egg development and Plasmodium infection. This is an unrecognized cross-phyla interaction between a mosquito and its vertebrate host. These processes are critical to understanding the complex life cycle of mosquitoes and Plasmodium following a blood meal and may be applicable to other hematophagous arthropods and vector-borne infectious agents.
Collapse
Affiliation(s)
- Yu-Min Chuang
- Section of Infectious Diseases, Department of Internal Medicine, School of Medicine, Yale University, New Haven, Connecticut, USA
| | - Helen Stone
- Section of Infectious Diseases, Department of Internal Medicine, School of Medicine, Yale University, New Haven, Connecticut, USA
| | - Selma Abouneameh
- Section of Infectious Diseases, Department of Internal Medicine, School of Medicine, Yale University, New Haven, Connecticut, USA
| | - Xiaotian Tang
- Section of Infectious Diseases, Department of Internal Medicine, School of Medicine, Yale University, New Haven, Connecticut, USA
| | - Erol Fikrig
- Section of Infectious Diseases, Department of Internal Medicine, School of Medicine, Yale University, New Haven, Connecticut, USA
| |
Collapse
|
11
|
Wang Y, Lu C, Guo S, Guo Y, Wei T, Chen Q. Leafhopper salivary vitellogenin mediates virus transmission to plant phloem. Nat Commun 2024; 15:3. [PMID: 38167823 PMCID: PMC10762104 DOI: 10.1038/s41467-023-43488-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2023] [Accepted: 11/10/2023] [Indexed: 01/05/2024] Open
Abstract
Salivary effectors of piercing-sucking insects can suppress plant defense to promote insect feeding, but it remains largely elusive how they facilitate plant virus transmission. Leafhopper Nephotettix cincticeps transmits important rice reovirus via virus-packaging exosomes released from salivary glands and then entering the rice phloem. Here, we report that intact salivary vitellogenin of N. cincticeps (NcVg) is associated with the GTPase Rab5 of N. cincticeps (NcRab5) for release from salivary glands. In virus-infected salivary glands, NcVg is upregulated and packaged into exosomes mediated by virus-induced NcRab5, subsequently entering the rice phloem. The released NcVg inherently suppresses H2O2 burst of rice plants by interacting with rice glutathione S-transferase F12, an enzyme catalyzing glutathione-dependent oxidation, thus facilitating leafhoppers feeding. When leafhoppers transmit virus, virus-upregulated NcVg thus promotes leafhoppers feeding and enhances viral transmission. Taken together, the findings provide evidence that viruses exploit insect exosomes to deliver virus-hijacked effectors for efficient transmission.
Collapse
Affiliation(s)
- Yanfei Wang
- Vector-borne Virus Research Center, State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops, Fujian Agriculture and Forestry University, Fuzhou, Fujian, China
| | - Chengcong Lu
- Vector-borne Virus Research Center, State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops, Fujian Agriculture and Forestry University, Fuzhou, Fujian, China
| | - Shude Guo
- Vector-borne Virus Research Center, State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops, Fujian Agriculture and Forestry University, Fuzhou, Fujian, China
| | - Yuxin Guo
- Vector-borne Virus Research Center, State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops, Fujian Agriculture and Forestry University, Fuzhou, Fujian, China
| | - Taiyun Wei
- Vector-borne Virus Research Center, State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops, Fujian Agriculture and Forestry University, Fuzhou, Fujian, China
| | - Qian Chen
- Vector-borne Virus Research Center, State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops, Fujian Agriculture and Forestry University, Fuzhou, Fujian, China.
| |
Collapse
|
12
|
Stryapunina I, Itoe MA, Trinh Q, Vidoudez C, Du E, Mendoza L, Hulai O, Kauffman J, Carew J, Shaw WR, Catteruccia F. Precise coordination between nutrient transporters ensures fertility in the malaria mosquito Anopheles gambiae. PLoS Genet 2024; 20:e1011145. [PMID: 38285728 PMCID: PMC10852252 DOI: 10.1371/journal.pgen.1011145] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2023] [Revised: 02/08/2024] [Accepted: 01/20/2024] [Indexed: 01/31/2024] Open
Abstract
Females from many mosquito species feed on blood to acquire nutrients for egg development. The oogenetic cycle has been characterized in the arboviral vector Aedes aegypti, where after a bloodmeal, the lipid transporter lipophorin (Lp) shuttles lipids from the midgut and fat body to the ovaries, and a yolk precursor protein, vitellogenin (Vg), is deposited into the oocyte by receptor-mediated endocytosis. Our understanding of how the roles of these two nutrient transporters are mutually coordinated is however limited in this and other mosquito species. Here, we demonstrate that in the malaria mosquito Anopheles gambiae, Lp and Vg are reciprocally regulated in a timely manner to optimize egg development and ensure fertility. Defective lipid transport via Lp knockdown triggers abortive ovarian follicle development, leading to misregulation of Vg and aberrant yolk granules. Conversely, depletion of Vg causes an upregulation of Lp in the fat body in a manner that appears to be at least partially dependent on target of rapamycin (TOR) signaling, resulting in excess lipid accumulation in the developing follicles. Embryos deposited by Vg-depleted mothers are completely inviable, and are arrested early during development, likely due to severely reduced amino acid levels and protein synthesis. Our findings demonstrate that the mutual regulation of these two nutrient transporters is essential to safeguard fertility by ensuring correct nutrient balance in the developing oocyte, and validate Vg and Lp as two potential candidates for mosquito control.
Collapse
Affiliation(s)
- Iryna Stryapunina
- Harvard T.H. Chan School of Public Health, Boston, Massachusetts, United States of America
| | - Maurice A. Itoe
- Harvard T.H. Chan School of Public Health, Boston, Massachusetts, United States of America
| | - Queenie Trinh
- Harvard T.H. Chan School of Public Health, Boston, Massachusetts, United States of America
| | - Charles Vidoudez
- Harvard Center for Mass Spectrometry, Cambridge, Massachusetts, United States of America
| | - Esrah Du
- Harvard T.H. Chan School of Public Health, Boston, Massachusetts, United States of America
| | - Lydia Mendoza
- Harvard T.H. Chan School of Public Health, Boston, Massachusetts, United States of America
| | - Oleksandr Hulai
- Harvard T.H. Chan School of Public Health, Boston, Massachusetts, United States of America
| | - Jamie Kauffman
- Harvard T.H. Chan School of Public Health, Boston, Massachusetts, United States of America
| | - John Carew
- Harvard T.H. Chan School of Public Health, Boston, Massachusetts, United States of America
| | - W. Robert Shaw
- Harvard T.H. Chan School of Public Health, Boston, Massachusetts, United States of America
- Howard Hughes Medical Institute, Chevy Chase, Maryland, United States of America
| | - Flaminia Catteruccia
- Harvard T.H. Chan School of Public Health, Boston, Massachusetts, United States of America
- Howard Hughes Medical Institute, Chevy Chase, Maryland, United States of America
| |
Collapse
|
13
|
Liu F, Xu F, Zhang Y, Qian Y, Zhang G, Shi L, Peng L. Comparative Analyses of Reproductive Caste Types Reveal Vitellogenin Genes Involved in Queen Fertility in Solenopsis invicta. Int J Mol Sci 2023; 24:17130. [PMID: 38138959 PMCID: PMC10743176 DOI: 10.3390/ijms242417130] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Revised: 11/30/2023] [Accepted: 12/01/2023] [Indexed: 12/24/2023] Open
Abstract
The red imported fire ant (Solenopsis invicta Buren) is a social pest species with a robust reproductive ability that causes extensive damage. Identification of the genes involved in queen fertility is critical in order to better understand the reproductive biology and screening for the potential molecular targets in S. invicta. Here, we used the mRNA deep sequencing (RNA-seq) approach to identify differentially expressed genes (DEGs) in the transcriptomes of three reproductive caste types of S. invicta, including queen (QA) and winged female (FA) and male (MA) ants. The genes that were specific to and highly expressed in the queens were then screened, and the Vg2 and Vg3 genes were chosen as targets to explore their functions in oogenesis and fertility. A minimum of 6.08 giga bases (Gb) of clean reads was obtained from all samples, with a mapping rate > 89.78%. There were 7524, 7133, and 977 DEGs identified in the MA vs. QA, MA vs. FA, and FA vs. QA comparisons, respectively. qRT-PCR was used to validate 10 randomly selected DEGs, including vitellogenin 2 (Vg2) and 3 (Vg3), and their expression patterns were mostly consistent with the RNA-seq data. The S. invicta Vgs included conserved domains and motifs that are commonly found in most insect Vgs. SiVg2 and SiVg3 were highly expressed in queens and winged females and were most highly expressed in the thorax, followed by the fat body, head, and epidermis. Evaluation based on a loss-of-function-based knockdown analysis showed that the downregulation of either or both of these genes resulted in smaller ovaries, less oogenesis, and less egg production. The results of transcriptional sequencing provide a foundation for clarifying the regulators of queen fertility in S. invicta. The functions of SiVg2 and SiVg3 as regulators of oogenesis highlight their importance in queen fecundity and their potential as targets of reproductive disruption in S. invicta control.
Collapse
Affiliation(s)
- Fenghao Liu
- State Key Laboratory of Ecological Pest Control for Fujian-Taiwan Crops, Institute of Applied Ecology, Fujian Agriculture and Forestry University, Fuzhou 350002, China; (F.L.); (F.X.); (Y.Z.); (Y.Q.); (G.Z.)
- Ministerial and Provincial Joint Innovation Centre for Safety Production of Cross-Strait Crops, Fujian Agriculture and Forestry University, Fuzhou 350002, China
- Fujian Provincial Key Laboratory of Insect Ecology, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Fengchao Xu
- State Key Laboratory of Ecological Pest Control for Fujian-Taiwan Crops, Institute of Applied Ecology, Fujian Agriculture and Forestry University, Fuzhou 350002, China; (F.L.); (F.X.); (Y.Z.); (Y.Q.); (G.Z.)
- Ministerial and Provincial Joint Innovation Centre for Safety Production of Cross-Strait Crops, Fujian Agriculture and Forestry University, Fuzhou 350002, China
- Fujian Provincial Key Laboratory of Insect Ecology, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Yikun Zhang
- State Key Laboratory of Ecological Pest Control for Fujian-Taiwan Crops, Institute of Applied Ecology, Fujian Agriculture and Forestry University, Fuzhou 350002, China; (F.L.); (F.X.); (Y.Z.); (Y.Q.); (G.Z.)
- Ministerial and Provincial Joint Innovation Centre for Safety Production of Cross-Strait Crops, Fujian Agriculture and Forestry University, Fuzhou 350002, China
- Fujian Provincial Key Laboratory of Insect Ecology, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Yurui Qian
- State Key Laboratory of Ecological Pest Control for Fujian-Taiwan Crops, Institute of Applied Ecology, Fujian Agriculture and Forestry University, Fuzhou 350002, China; (F.L.); (F.X.); (Y.Z.); (Y.Q.); (G.Z.)
- Ministerial and Provincial Joint Innovation Centre for Safety Production of Cross-Strait Crops, Fujian Agriculture and Forestry University, Fuzhou 350002, China
- Fujian Provincial Key Laboratory of Insect Ecology, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Guofeng Zhang
- State Key Laboratory of Ecological Pest Control for Fujian-Taiwan Crops, Institute of Applied Ecology, Fujian Agriculture and Forestry University, Fuzhou 350002, China; (F.L.); (F.X.); (Y.Z.); (Y.Q.); (G.Z.)
- Ministerial and Provincial Joint Innovation Centre for Safety Production of Cross-Strait Crops, Fujian Agriculture and Forestry University, Fuzhou 350002, China
- Fujian Provincial Key Laboratory of Insect Ecology, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Longqing Shi
- Rice Research Institute, Fujian Academy of Agricultural Sciences, Fuzhou 350018, China;
| | - Lu Peng
- State Key Laboratory of Ecological Pest Control for Fujian-Taiwan Crops, Institute of Applied Ecology, Fujian Agriculture and Forestry University, Fuzhou 350002, China; (F.L.); (F.X.); (Y.Z.); (Y.Q.); (G.Z.)
- Ministerial and Provincial Joint Innovation Centre for Safety Production of Cross-Strait Crops, Fujian Agriculture and Forestry University, Fuzhou 350002, China
- Fujian Provincial Key Laboratory of Insect Ecology, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| |
Collapse
|
14
|
Green EI, Jaouen E, Klug D, Proveti Olmo R, Gautier A, Blandin S, Marois E. A population modification gene drive targeting both Saglin and Lipophorin impairs Plasmodium transmission in Anopheles mosquitoes. eLife 2023; 12:e93142. [PMID: 38051195 PMCID: PMC10786457 DOI: 10.7554/elife.93142] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2023] [Accepted: 11/14/2023] [Indexed: 12/07/2023] Open
Abstract
Lipophorin is an essential, highly expressed lipid transport protein that is secreted and circulates in insect hemolymph. We hijacked the Anopheles coluzzii Lipophorin gene to make it co-express a single-chain version of antibody 2A10, which binds sporozoites of the malaria parasite Plasmodium falciparum. The resulting transgenic mosquitoes show a markedly decreased ability to transmit Plasmodium berghei expressing the P. falciparum circumsporozoite protein to mice. To force the spread of this antimalarial transgene in a mosquito population, we designed and tested several CRISPR/Cas9-based gene drives. One of these is installed in, and disrupts, the pro-parasitic gene Saglin and also cleaves wild-type Lipophorin, causing the anti-malarial modified Lipophorin version to replace the wild type and hitch-hike together with the Saglin drive. Although generating drive-resistant alleles and showing instability in its gRNA-encoding multiplex array, the Saglin-based gene drive reached high levels in caged mosquito populations and efficiently promoted the simultaneous spread of the antimalarial Lipophorin::Sc2A10 allele. This combination is expected to decrease parasite transmission via two different mechanisms. This work contributes to the design of novel strategies to spread antimalarial transgenes in mosquitoes, and illustrates some expected and unexpected outcomes encountered when establishing a population modification gene drive.
Collapse
Affiliation(s)
- Emily I Green
- Inserm U1257, CNRS UPR9022, University of StrasbourgStrasbourgFrance
| | - Etienne Jaouen
- Inserm U1257, CNRS UPR9022, University of StrasbourgStrasbourgFrance
| | - Dennis Klug
- Inserm U1257, CNRS UPR9022, University of StrasbourgStrasbourgFrance
| | | | - Amandine Gautier
- Inserm U1257, CNRS UPR9022, University of StrasbourgStrasbourgFrance
| | - Stéphanie Blandin
- Inserm U1257, CNRS UPR9022, University of StrasbourgStrasbourgFrance
| | - Eric Marois
- Inserm U1257, CNRS UPR9022, University of StrasbourgStrasbourgFrance
| |
Collapse
|
15
|
Saeed S, Tremp AZ, Dessens JT. Plasmodium berghei oocysts possess fatty acid synthesis and scavenging routes. Sci Rep 2023; 13:12700. [PMID: 37543672 PMCID: PMC10404217 DOI: 10.1038/s41598-023-39708-z] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2023] [Accepted: 07/29/2023] [Indexed: 08/07/2023] Open
Abstract
Malaria parasites carry out fatty acid synthesis (FAS) in their apicoplast organelle via a bacterially related (type II) enzymatic pathway. In the vertebrate host, exoerythrocytic Plasmodium stages rely on FAS, whereas intraerythrocytic stages depend on scavenging FA from their environment. In the mosquito, P. falciparum oocysts express and rely on FAS enzymes for sporozoite formation, but P. yoelii oocysts do not express, nor depend on, FAS enzymes and thus rely on FA scavenging to support sporogony. In P. berghei, FAS enzymes are similarly expendable for sporogony, indicating it conforms to the P. yoelii scenario. We show here that P. berghei, unexpectedly, expresses FAS enzymes throughout oocyst development. These findings indicate that P. berghei can employ FAS alongside FA scavenging to maximise sporogony and transmission, and is more similar to P. falciparum than previously assumed with respect to FA acquisition by the oocyst. The ability of oocysts to switch between FAS and scavenging could be an important factor in the non-competitive relationship of resource exploitation between Plasmodium parasites and their mosquito vectors, which shapes parasite virulence both in the insect and vertebrate.
Collapse
Affiliation(s)
- Sadia Saeed
- Department of Infection Biology, Faculty of Infectious and Tropical Diseases, London School of Hygiene & Tropical Medicine, Keppel Street, London, WC1E 7HT, UK
| | - Annie Z Tremp
- Department of Infection Biology, Faculty of Infectious and Tropical Diseases, London School of Hygiene & Tropical Medicine, Keppel Street, London, WC1E 7HT, UK
| | - Johannes T Dessens
- Department of Infection Biology, Faculty of Infectious and Tropical Diseases, London School of Hygiene & Tropical Medicine, Keppel Street, London, WC1E 7HT, UK.
| |
Collapse
|
16
|
Adams KL, Selland EK, Willett BC, Carew JW, Vidoudez C, Singh N, Catteruccia F. Selection for insecticide resistance can promote Plasmodium falciparum infection in Anopheles. PLoS Pathog 2023; 19:e1011448. [PMID: 37339122 DOI: 10.1371/journal.ppat.1011448] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2023] [Accepted: 05/29/2023] [Indexed: 06/22/2023] Open
Abstract
Insecticide resistance is under strong selective pressure in Anopheles mosquitoes due to widespread usage of insecticides in vector control strategies. Resistance mechanisms likely cause changes that profoundly affect mosquito physiology, yet it remains poorly understood how selective pressures imposed by insecticides may alter the ability of the mosquito to host and transmit a Plasmodium infection. From pyrethroid-resistant field-derived Anopheles gambiae s.l. mosquitoes, we established resistant (RES) and susceptible (SUS) colonies by either selection for, or loss of insecticide resistance. We show increased oocyst intensity and growth rate as well as increased sporozoite prevalence and intensity in RES compared to SUS females infected with Plasmodium falciparum. The increase in infection intensity in RES females was not associated with the presence of the kdrL1014F mutation and was not impacted by inhibition of Cytochrome P450s. The lipid transporter lipophorin (Lp), which was upregulated in RES compared to SUS, was at least partly implicated in the increased intensity of P. falciparum but not directly involved in the insecticide resistance phenotype. Interestingly, we observed that although P. falciparum infections were not affected when RES females were exposed to permethrin, these females had decreased lipid abundance in the fat body following exposure, pointing to a possible role for lipid mobilization in response to damage caused by insecticide challenge. The finding that selection for insecticide resistance can increase P. falciparum infection intensities and growth rate reinforces the need to assess the overall impact on malaria transmission dynamics caused by selective pressures mosquitoes experience during repeated insecticide challenge.
Collapse
Affiliation(s)
- Kelsey L Adams
- Department of Immunology and Infectious Diseases, Harvard T.H. Chan School of Public Health, Boston, Massachusetts, United States of America
| | - Emily K Selland
- Department of Immunology and Infectious Diseases, Harvard T.H. Chan School of Public Health, Boston, Massachusetts, United States of America
| | - Bailey C Willett
- Department of Immunology and Infectious Diseases, Harvard T.H. Chan School of Public Health, Boston, Massachusetts, United States of America
| | - John W Carew
- Department of Immunology and Infectious Diseases, Harvard T.H. Chan School of Public Health, Boston, Massachusetts, United States of America
| | - Charles Vidoudez
- Harvard Center for Mass Spectrometry, Cambridge, Massachusetts, United States of America
| | - Naresh Singh
- Department of Immunology and Infectious Diseases, Harvard T.H. Chan School of Public Health, Boston, Massachusetts, United States of America
| | - Flaminia Catteruccia
- Department of Immunology and Infectious Diseases, Harvard T.H. Chan School of Public Health, Boston, Massachusetts, United States of America
- Howard Hughes Medical Institute, Chevy Chase, Maryland, United States of America
| |
Collapse
|
17
|
Wrońska AK, Kaczmarek A, Boguś MI, Kuna A. Lipids as a key element of insect defense systems. Front Genet 2023; 14:1183659. [PMID: 37359377 PMCID: PMC10289264 DOI: 10.3389/fgene.2023.1183659] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2023] [Accepted: 05/31/2023] [Indexed: 06/28/2023] Open
Abstract
The relationship between insect pathogenic fungi and their insect hosts is a classic example of a co-evolutionary arms race between pathogen and target host: parasites evolve towards mechanisms that increase their advantage over the host, and the host increasingly strengthens its defenses. The present review summarizes the literature data describing the direct and indirect role of lipids as an important defense mechanism during fungal infection. Insect defense mechanisms comprise anatomical and physiological barriers, and cellular and humoral response mechanisms. The entomopathogenic fungi have the unique ability to digest the insect cuticle by producing hydrolytic enzymes with chitin-, lipo- and proteolytic activity; besides the oral tract, cuticle pays the way for fungal entry within the host. The key factor in insect resistance to fungal infection is the presence of certain types of lipids (free fatty acids, waxes or hydrocarbons) which can promote or inhibit fungal attachment to cuticle, and might also have antifungal activity. Lipids are considered as an important source of energy, and as triglycerides are stored in the fat body, a structure analogous to the liver and adipose tissue in vertebrates. In addition, the fat body plays a key role in innate humoral immunity by producing a range of bactericidal proteins and polypeptides, one of which is lysozyme. Energy derived from lipid metabolism is used by hemocytes to migrate to the site of fungal infection, and for phagocytosis, nodulation and encapsulation. One polyunsaturated fatty acid, arachidonic acid, is used in the synthesis of eicosanoids, which play several crucial roles in insect physiology and immunology. Apolipoprotein III is important compound with antifungal activity, which can modulate insect cellular response and is considered as important signal molecule.
Collapse
Affiliation(s)
- Anna Katarzyna Wrońska
- Museum and Institute of Zoology, Polish Academy of Science, Warszawa, Poland
- Witold Stefański Institute of Parasitology, Polish Academy of Sciences, Warsaw, Poland
| | - Agata Kaczmarek
- Museum and Institute of Zoology, Polish Academy of Science, Warszawa, Poland
- Witold Stefański Institute of Parasitology, Polish Academy of Sciences, Warsaw, Poland
| | - Mieczysława Irena Boguś
- Museum and Institute of Zoology, Polish Academy of Science, Warszawa, Poland
- Witold Stefański Institute of Parasitology, Polish Academy of Sciences, Warsaw, Poland
| | - Anna Kuna
- Independent Researcher, Warsaw, Poland
| |
Collapse
|
18
|
Adipokinetic hormone signaling in the malaria vector Anopheles gambiae facilitates Plasmodium falciparum sporogony. Commun Biol 2023; 6:171. [PMID: 36782045 PMCID: PMC9924834 DOI: 10.1038/s42003-023-04518-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2022] [Accepted: 01/23/2023] [Indexed: 02/15/2023] Open
Abstract
An obligatory step in the complex life cycle of the malaria parasite is sporogony, which occurs during the oocyst stage in adult female Anopheles mosquitoes. Sporogony is metabolically demanding, and successful oocyst maturation is dependent on host lipids. In insects, lipid energy reserves are mobilized by adipokinetic hormones (AKHs). We hypothesized that Plasmodium falciparum infection activates Anopheles gambiae AKH signaling and lipid mobilization. We profiled the expression patterns of AKH pathway genes and AgAkh1 peptide levels in An. gambiae during starvation, after blood feeding, and following infection and observed a significant time-dependent up-regulation of AKH pathway genes and peptide levels during infection. Depletion of AgAkh1 and AgAkhR by RNAi reduced salivary gland sporozoite production, while synthetic AgAkh1 peptide supplementation rescued sporozoite numbers. Inoculation of uninfected female mosquitoes with supernatant from P. falciparum-infected midguts activated AKH signaling. Clearly, identifying the parasite molecules mediating AKH signaling in P. falciparum sporogony is paramount.
Collapse
|
19
|
Sneed SD, Dwivedi SB, DiGate C, Denecke S, Povelones M. Aedes aegypti Malpighian tubules are immunologically activated following systemic Toll activation. Parasit Vectors 2022; 15:469. [PMID: 36522779 PMCID: PMC9753289 DOI: 10.1186/s13071-022-05567-2] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2022] [Accepted: 11/02/2022] [Indexed: 12/23/2022] Open
Abstract
BACKGROUND Canine heartworm is a widespread and potentially fatal mosquito-borne disease caused by infections with the parasitic nematode, Dirofilaria immitis. We have previously shown that systemic activation of the Toll immune pathway via silencing of the negative regulator Cactus in Aedes aegypti blocks parasite development in the Malpighian tubules (MT), the mosquito renal organ. However, it was not established whether the MT were directly responding to Toll activation or were alternatively responding to upregulated proteins or other changes to the hemolymph driven by other tissues. Distinguishing these possibilities is crucial for developing more precise strategies to block D. immitis while potentially avoiding the fitness cost to the mosquito associated with Cactus silencing. METHODS This study defines the transcriptional response of the MT and changes to the hemolymph proteome of Ae. aegypti after systemic Toll activation via intra-thoracic injection of double-stranded Cactus (dsCactus) RNA. RESULTS Malpighian tubules significantly increased expression of the Toll pathway target genes that significantly overlapped expression changes occurring in whole mosquitoes. A significant overlap between the transcriptional response of the MT and proteins upregulated in the hemolymph was also observed. CONCLUSIONS Our data show that MT are capable of RNA interference-mediated gene silencing and directly respond to dsCactus treatment by upregulating targets of the canonical Toll pathway. Although not definitive, the strong correspondence between the MT transcriptional response and the hemolymph proteomic responses provides evidence that the MT may contribute to mosquito humoral immunity.
Collapse
Affiliation(s)
- Sarah D. Sneed
- Department of Pathobiology, School of Veterinary Medicine, University of Pennsylvania, Philadelphia, PA 19104 USA
| | - Sutopa B. Dwivedi
- Department of Pathobiology, School of Veterinary Medicine, University of Pennsylvania, Philadelphia, PA 19104 USA
| | - Cameron DiGate
- Department of Pathobiology, School of Veterinary Medicine, University of Pennsylvania, Philadelphia, PA 19104 USA
| | - Shane Denecke
- Department of Pathobiology, School of Veterinary Medicine, University of Pennsylvania, Philadelphia, PA 19104 USA
| | - Michael Povelones
- Department of Pathobiology, School of Veterinary Medicine, University of Pennsylvania, Philadelphia, PA 19104 USA
| |
Collapse
|
20
|
Sarkar P, Ghanim M. Interaction of Liberibacter Solanacearum with Host Psyllid Vitellogenin and Its Association with Autophagy. Microbiol Spectr 2022; 10:e0157722. [PMID: 35863005 PMCID: PMC9430699 DOI: 10.1128/spectrum.01577-22] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2022] [Accepted: 06/14/2022] [Indexed: 12/28/2022] Open
Abstract
Candidatus Liberibacter solanacearum (CLso) haplotype D, transmitted by the carrot psyllid Bactericera trigonica, is a major constraint for carrot production in Israel. Unveiling the molecular interactions between the psyllid vector and CLso can facilitate the development of nonchemical approaches for controlling the disease caused by CLso. Bacterial surface proteins are often known to be involved in adhesion and virulence; however, interactions of CLso with carrot psyllid proteins that have a role in the transmission process has remained unexplored. In this study, we used CLso outer membrane protein (OmpA) and flagellin as baits to screen for psyllid interacting proteins in a yeast two-hybrid system assay. We identified psyllid vitellogenin (Vg) to interact with both OmpA and flagellin of CLso. As Vg and autophagy are often tightly linked, we also studied the expression of autophagy-related genes to further elucidate this interaction. We used the juvenile hormone (JH-III) to induce the expression of Vg, thapsigargin for suppressing autophagy, and rapamycin for inducing autophagy. The results revealed that Vg negatively regulates autophagy. Induced Vg expression significantly suppressed autophagy-related gene expression and the levels of CLso significantly increased, resulting in a significant mortality of the insect. Although the specific role of Vg remains obscure, the findings presented here identify Vg as an important component in the insect immune responses against CLso and may help in understanding the initial molecular response in the vector against Liberibacter. IMPORTANCE Pathogen transmission by vectors involves multiple levels of interactions, and for the transmission of liberibacter species by psyllid vectors, much of these interactions are yet to be explored. Candidatus Liberibacter solanacearum (CLso) haplotype D inflicts severe economic losses to the carrot industry. Understanding the specific interactions at different stages of infection is hence fundamental and could lead to the development of better management strategies to disrupt the transmission of the bacteria to new host plants. Here, we show that two liberibacter membrane proteins interact with psyllid vitellogenin and also induce autophagy. Altering vitellogenin expression directly influences autophagy and CLso abundance in the psyllid vector. Although the exact mechanism underlying this interaction remains unclear, this study highlights the importance of immune responses in the transmission of this disease agent.
Collapse
Affiliation(s)
- Poulami Sarkar
- Department of Entomology, Agricultural Research Organization, Volcani Institute, Rishon LeZion, Israel
| | - Murad Ghanim
- Department of Entomology, Agricultural Research Organization, Volcani Institute, Rishon LeZion, Israel
| |
Collapse
|
21
|
Kuniyori M, Sato N, Yokoyama N, Kawazu SI, Xuan X, Suzuki H, Fujisaki K, Umemiya-Shirafuji R. Vitellogenin-2 Accumulation in the Fat Body and Hemolymph of Babesia-Infected Haemaphysalis longicornis Ticks. Front Cell Infect Microbiol 2022; 12:908142. [PMID: 35800383 PMCID: PMC9253295 DOI: 10.3389/fcimb.2022.908142] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2022] [Accepted: 05/24/2022] [Indexed: 11/13/2022] Open
Abstract
The protozoan parasite Babesia spp. invades into tick oocytes and remains in the offspring. The transovarial transmission phenomenon of Babesia in ticks has been demonstrated experimentally, but the molecular mechanisms remain unclear. Babesia invasion into oocytes occurs along with the progression of oogenesis. In the present study, to find the key tick factor(s) for Babesia transmission, we focused on molecules involved in yolk protein precursor (vitellogenin, Vg) synthesis and Vg uptake, which are crucial events in tick oogenesis. With a Haemaphysalis longicornis tick–Babesia ovata experimental model, the expression profiles of Akt, target of rapamycin, S6K, GATA, and Vg, Vg synthesis-related genes, and Vg receptor (VgR) and autophagy-related gene 6 (ATG6), Vg uptake-related genes, were analyzed using real-time PCR using tissues collected during the preovipositional period in Babesia-infected ticks. The expression levels of H. longicornis Vg-2 (HlVg-2) and HlVg-3 decreased in the fat body of Babesia-infected ticks 1 day after engorgement. In the ovary, HlVg-2 mRNA expression was significantly higher in Babesia-infected ticks than in uninfected ticks 1 and 2 days after engorgement and decreased 3 days after engorgement. HlVgR expression was significantly lower in Babesia-infected ticks than in uninfected ticks 2 and 4 days after engorgement. HlATG6 had a lower gene expression in Babesia-infected ticks compared to uninfected ticks 2 days after engorgement. Additionally, western blot analysis using protein extracts from each collected tissue revealed that H. longicornis Vg-2 (HlVg-2) accumulate in the fat body and hemolymph of Babesia-infected ticks. These results suggest that Vg uptake from the hemolymph to the ovary was suppressed in the presence of B. ovata. Moreover, HlVg-2 knockdown ticks had a lower detection rate of B. ovata DNA in the ovary and a significant reduction of B. ovata DNA in the hemolymph compared with control ticks. Taken together, our results suggest that accumulated HlVg-2 is associated with Babesia infection or transmission in the tick body. These findings, besides previous reports on VgR, provide important information to elucidate the transovarial transmission mechanisms of pathogens in tick vectors.
Collapse
Affiliation(s)
- Maki Kuniyori
- National Research Center for Protozoan Diseases, Obihiro University of Agriculture and Veterinary Medicine, Obihiro, Japan
| | - Nariko Sato
- National Research Center for Protozoan Diseases, Obihiro University of Agriculture and Veterinary Medicine, Obihiro, Japan
| | - Naoaki Yokoyama
- National Research Center for Protozoan Diseases, Obihiro University of Agriculture and Veterinary Medicine, Obihiro, Japan
| | - Shin-ichiro Kawazu
- National Research Center for Protozoan Diseases, Obihiro University of Agriculture and Veterinary Medicine, Obihiro, Japan
| | - Xuenan Xuan
- National Research Center for Protozoan Diseases, Obihiro University of Agriculture and Veterinary Medicine, Obihiro, Japan
| | - Hiroshi Suzuki
- National Research Center for Protozoan Diseases, Obihiro University of Agriculture and Veterinary Medicine, Obihiro, Japan
| | - Kozo Fujisaki
- National Research Center for Protozoan Diseases, Obihiro University of Agriculture and Veterinary Medicine, Obihiro, Japan
- National Agricultural and Food Research Organization, Tsukuba, Japan
| | - Rika Umemiya-Shirafuji
- National Research Center for Protozoan Diseases, Obihiro University of Agriculture and Veterinary Medicine, Obihiro, Japan
- *Correspondence: Rika Umemiya-Shirafuji,
| |
Collapse
|
22
|
Shaw WR, Marcenac P, Catteruccia F. Plasmodium development in Anopheles: a tale of shared resources. Trends Parasitol 2022; 38:124-135. [PMID: 34548252 PMCID: PMC8758519 DOI: 10.1016/j.pt.2021.08.009] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2021] [Revised: 08/23/2021] [Accepted: 08/26/2021] [Indexed: 02/06/2023]
Abstract
Interactions between the Anopheles mosquito vector and Plasmodium parasites shape how malaria is transmitted in endemic regions. The long association of these two organisms has led to evolutionary processes that minimize fitness costs of infection and benefit both players through shared nutrient resources, parasite immune suppression, and mosquito tolerance to infection. In this review we explore recent data describing how Plasmodium falciparum, the deadliest malaria parasite, associates with one of its most important natural mosquito hosts, Anopheles gambiae, and we discuss the implications of these findings for parasite transmission and vector control strategies currently in development.
Collapse
Affiliation(s)
- W Robert Shaw
- Department of Immunology and Infectious Diseases, Harvard T.H. Chan School of Public Health, Boston, MA, USA.
| | - Perrine Marcenac
- Department of Immunology and Infectious Diseases, Harvard T.H. Chan School of Public Health, Boston, MA, USA
| | - Flaminia Catteruccia
- Department of Immunology and Infectious Diseases, Harvard T.H. Chan School of Public Health, Boston, MA, USA.
| |
Collapse
|
23
|
Tapanelli S, Inghilterra MG, Cai J, Philpott J, Capriotti P, Windbichler N, Christophides GK. Assessment of Plasmodium falciparum Infection and Fitness of Genetically Modified Anopheles gambiae Aimed at Mosquito Population Replacement. FRONTIERS IN TROPICAL DISEASES 2021. [DOI: 10.3389/fitd.2021.806880] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Genetically modified (GM) mosquitoes expressing anti-plasmodial effectors propagating through wild mosquito populations by means of gene drive is a promising tool to support current malaria control strategies. The process of generating GM mosquitoes involves genetic transformation of mosquitoes from a laboratory colony and, often, interbreeding with other GM lines to cross in auxiliary traits. These mosquito colonies and GM lines thus often have different genetic backgrounds and GM lines are invariably highly inbred, which in conjunction with their independent rearing in the laboratory may translate to differences in their susceptibility to malaria parasite infection and life history traits. Here, we show that laboratory Anopheles gambiae colonies and GM lines expressing Cas9 and Cre recombinase vary greatly in their susceptibility to Plasmodium falciparum NF54 infection. Therefore, the choice of mosquitoes to be used as a reference when conducting infection or life history trait assays requires careful consideration. To address these issues, we established an experimental pipeline involving genetic crosses and genotyping of mosquitoes reared in shared containers throughout their lifecycle. We used this protocol to examine whether GM lines expressing the antimicrobial peptide (AMP) Scorpine in the mosquito midgut interfere with parasite infection and mosquito survival. We demonstrate that Scorpine expression in the Peritrophin 1 (Aper1) genomic locus reduces both P. falciparum sporozoite prevalence and mosquito lifespan; both these phenotypes are likely to be associated with the disturbance of the midgut microbiota homeostasis. These data lead us to conclude that the Aper1-Sco GM line could be used in proof-of-concept experiments aimed at mosquito population replacement, although the impact of its reduced fitness on the spread of the transgene through wild populations requires further investigation.
Collapse
|
24
|
Hun LV, Cheung KW, Brooks E, Zudekoff R, Luckhart S, Riehle MA. Increased insulin signaling in the Anopheles stephensi fat body regulates metabolism and enhances the host response to both bacterial challenge and Plasmodium falciparum infection. INSECT BIOCHEMISTRY AND MOLECULAR BIOLOGY 2021; 139:103669. [PMID: 34666189 PMCID: PMC8647039 DOI: 10.1016/j.ibmb.2021.103669] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/21/2021] [Revised: 10/09/2021] [Accepted: 10/10/2021] [Indexed: 05/06/2023]
Abstract
In vertebrates and invertebrates, the insulin/insulin-like growth factor 1 (IGF1) signaling (IIS) cascade is highly conserved and plays a vital role in many different physiological processes. Among the many tissues that respond to IIS in mosquitoes, the fat body has a central role in metabolism, lifespan, reproduction, and innate immunity. We previously demonstrated that fat body specific expression of active Akt, a key IIS signaling molecule, in adult Anopheles stephensi and Aedes aegypti activated the IIS cascade and extended lifespan. Additionally, we found that transgenic females produced more vitellogenin (Vg) protein than non-transgenic mosquitoes, although this did not translate into increased fecundity. These results prompted us to further examine how IIS impacts immunity, metabolism, growth and development of these transgenic mosquitoes. We observed significant changes in glycogen, trehalose, triglycerides, glucose, and protein in young (3-5 d) transgenic mosquitoes relative to non-transgenic sibling controls, while only triglycerides were significantly changed in older (18 d) transgenic mosquitoes. More importantly, we demonstrated that enhanced fat body IIS decreased both the prevalence and intensity of Plasmodium falciparum infection in transgenic An. stephensi. Additionally, challenging transgenic An. stephensi with Gram-positive and Gram-negative bacteria altered the expression of several antimicrobial peptides (AMPs) and two anti-Plasmodium genes, nitric oxide synthase (NOS) and thioester complement-like protein (TEP1), relative to non-transgenic controls. Increased IIS in the fat body of adult female An. stephensi had little to no impact on body size, growth or development of progeny from transgenic mosquitoes relative to non-transgenic controls. This study both confirms and expands our understanding of the critical roles insulin signaling plays in regulating the diverse functions of the mosquito fat body.
Collapse
Affiliation(s)
- Lewis V Hun
- Department of Entomology, University of California Riverside, Riverside, CA, USA; Department of Entomology, University of Arizona, Tucson, AZ, USA
| | - Kong Wai Cheung
- Department of Medical Microbiology and Immunology, University of California Davis, Davis, CA, USA
| | - Elizabeth Brooks
- Department of Entomology, University of Arizona, Tucson, AZ, USA
| | - Rissa Zudekoff
- Department of Entomology, University of Arizona, Tucson, AZ, USA
| | - Shirley Luckhart
- Departrment of Entomology, Plant Pathology and Nematology and Department of Biological Sciences, University of Idaho, Moscow, ID, USA
| | - Michael A Riehle
- Department of Entomology, University of Arizona, Tucson, AZ, USA.
| |
Collapse
|
25
|
Knockout of Anopheles stephensi immune gene LRIM1 by CRISPR-Cas9 reveals its unexpected role in reproduction and vector competence. PLoS Pathog 2021; 17:e1009770. [PMID: 34784388 PMCID: PMC8631644 DOI: 10.1371/journal.ppat.1009770] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2021] [Revised: 11/30/2021] [Accepted: 11/01/2021] [Indexed: 12/27/2022] Open
Abstract
PfSPZ Vaccine against malaria is composed of Plasmodium falciparum (Pf) sporozoites (SPZ) manufactured using aseptically reared Anopheles stephensi mosquitoes. Immune response genes of Anopheles mosquitoes such as Leucin-Rich protein (LRIM1), inhibit Plasmodium SPZ development (sporogony) in mosquitoes by supporting melanization and phagocytosis of ookinetes. With the aim of increasing PfSPZ infection intensities, we generated an A. stephensi LRIM1 knockout line, Δaslrim1, by embryonic genome editing using CRISPR-Cas9. Δaslrim1 mosquitoes had a significantly increased midgut bacterial load and an altered microbiome composition, including elimination of commensal acetic acid bacteria. The alterations in the microbiome caused increased mosquito mortality and unexpectedly, significantly reduced sporogony. The survival rate of Δaslrim1 mosquitoes and their ability to support PfSPZ development, were partially restored by antibiotic treatment of the mosquitoes, and fully restored to baseline when Δaslrim1 mosquitoes were produced aseptically. Deletion of LRIM1 also affected reproductive capacity: oviposition, fecundity and male fertility were significantly compromised. Attenuation in fecundity was not associated with the altered microbiome. This work demonstrates that LRIM1's regulation of the microbiome has a major impact on vector competence and longevity of A. stephensi. Additionally, LRIM1 deletion identified an unexpected role for this gene in fecundity and reduction of sperm transfer by males.
Collapse
|
26
|
Dong S, Dong Y, Simões ML, Dimopoulos G. Mosquito transgenesis for malaria control. Trends Parasitol 2021; 38:54-66. [PMID: 34483052 DOI: 10.1016/j.pt.2021.08.001] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2021] [Revised: 08/01/2021] [Accepted: 08/03/2021] [Indexed: 12/14/2022]
Abstract
Malaria is one of the deadliest diseases. Because of the ineffectiveness of current malaria-control methods, several novel mosquito vector-based control strategies have been proposed to supplement existing control strategies. Mosquito transgenesis and gene drive have emerged as promising tools for preventing the spread of malaria by either suppressing mosquito populations by self-destructing mosquitoes or replacing mosquito populations with disease-refractory populations. Here we review the development of mosquito transgenesis and its application for malaria control, highlighting the transgenic expression of antiparasitic effector genes, inactivation of host factor genes, and manipulation of miRNAs and lncRNAs. Overall, from a malaria-control perspective, mosquito transgenesis is not envisioned as a stand-alone approach; rather, its use is proposed as a complement to existing vector-control strategies.
Collapse
Affiliation(s)
- Shengzhang Dong
- W. Harry Feinstone Department of Molecular Microbiology and Immunology, Bloomberg School of Public Health, Johns Hopkins University, Baltimore, MD 21205, USA
| | - Yuemei Dong
- W. Harry Feinstone Department of Molecular Microbiology and Immunology, Bloomberg School of Public Health, Johns Hopkins University, Baltimore, MD 21205, USA
| | - Maria L Simões
- W. Harry Feinstone Department of Molecular Microbiology and Immunology, Bloomberg School of Public Health, Johns Hopkins University, Baltimore, MD 21205, USA
| | - George Dimopoulos
- W. Harry Feinstone Department of Molecular Microbiology and Immunology, Bloomberg School of Public Health, Johns Hopkins University, Baltimore, MD 21205, USA.
| |
Collapse
|
27
|
Jayaswal V, Ndo C, Ma HC, Clifton BD, Pombi M, Cabrera K, Couhet A, Mouline K, Diabaté A, Dabiré R, Ayala D, Ranz JM. Intraspecific Transcriptome Variation and Sex-Biased Expression in Anopheles arabiensis. Genome Biol Evol 2021; 13:6357708. [PMID: 34432020 PMCID: PMC8449828 DOI: 10.1093/gbe/evab199] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/22/2021] [Indexed: 01/17/2023] Open
Abstract
The magnitude and functional patterns of intraspecific transcriptional variation in the anophelines, including those of sex-biased genes underlying sex-specific traits relevant for malaria transmission, remain understudied. As a result, how changes in expression levels drive adaptation in these species is poorly understood. We sequenced the female, male, and larval transcriptomes of three populations of Anopheles arabiensis from Burkina Faso. One-third of the genes were differentially expressed between populations, often involving insecticide resistance-related genes in a sample type-specific manner, and with the females showing the largest number of differentially expressed genes. At the genomic level, the X chromosome appears depleted of differentially expressed genes compared with the autosomes, chromosomes harboring inversions do not exhibit evidence for enrichment of such genes, and genes that are top contributors to functional enrichment patterns of population differentiation tend to be clustered in the genome. Further, the magnitude of variation for the sex expression ratio across populations did not substantially differ between male- and female-biased genes, except for some populations in which male-limited expressed genes showed more variation than their female counterparts. In fact, female-biased genes exhibited a larger level of interpopulation variation than male-biased genes, both when assayed in males and females. Beyond uncovering the extensive adaptive potential of transcriptional variation in An. Arabiensis, our findings suggest that the evolutionary rate of changes in expression levels on the X chromosome exceeds that on the autosomes, while pointing to female-biased genes as the most variable component of the An. Arabiensis transcriptome.
Collapse
Affiliation(s)
- Vivek Jayaswal
- School of Mathematics and Statistics, The University of Sydney, Sydney, NSW, Australia
| | - Cyrille Ndo
- Institut de Recherche en Sciences de la Santé, Bobo-Dioulasso, Burkina Faso
| | - Hsiu-Ching Ma
- Department of Ecology and Evolutionary Biology, University of California Irvine, Irvine, California, USA
| | - Bryan D Clifton
- Department of Ecology and Evolutionary Biology, University of California Irvine, Irvine, California, USA
| | - Marco Pombi
- Dipartimento di Sanità Pubblica e Malattie Infettive, University of Rome "Sapienza", Rome, Italy
| | - Kevin Cabrera
- Department of Ecology and Evolutionary Biology, University of California Irvine, Irvine, California, USA
| | - Anna Couhet
- Unité Mixte de Recherche Maladies Infectieuses et Vecteurs: Ecologie, Génétique, Evolution et Contrôle, University of Montpellier, CNRS, Montpellier, IRD, France
| | - Karine Mouline
- Unité Mixte de Recherche Maladies Infectieuses et Vecteurs: Ecologie, Génétique, Evolution et Contrôle, University of Montpellier, CNRS, Montpellier, IRD, France
| | - Abdoulaye Diabaté
- Institut de Recherche en Sciences de la Santé, Bobo-Dioulasso, Burkina Faso
| | - Roch Dabiré
- Institut de Recherche en Sciences de la Santé, Bobo-Dioulasso, Burkina Faso
| | - Diego Ayala
- Unité Mixte de Recherche Maladies Infectieuses et Vecteurs: Ecologie, Génétique, Evolution et Contrôle, University of Montpellier, CNRS, Montpellier, IRD, France
| | - José M Ranz
- Department of Ecology and Evolutionary Biology, University of California Irvine, Irvine, California, USA
| |
Collapse
|
28
|
Kulkarni A, Pandey A, Trainor P, Carlisle S, Chhilar JS, Yu W, Moon A, Xu J. Trained Immunity in Anopheles gambiae: Antibacterial Immunity Is Enhanced by Priming via Sugar Meal Supplemented With a Single Gut Symbiotic Bacterial Strain. Front Microbiol 2021; 12:649213. [PMID: 33995307 PMCID: PMC8121176 DOI: 10.3389/fmicb.2021.649213] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2021] [Accepted: 03/29/2021] [Indexed: 01/18/2023] Open
Abstract
Mosquitoes have evolved an effective innate immune system. The mosquito gut accommodates various microbes, which play a crucial role in shaping the mosquito immune system during evolution. The resident bacteria in the gut microbiota play an essential role in priming basal immunity. In this study, we show that antibacterial immunity in Anopheles gambiae can be enhanced by priming via a sugar meal supplemented with bacteria. Serratia fonticola S1 and Enterobacter sp. Ag1 are gut bacteria in mosquitoes. The intrathoracic injection of the two bacteria can result in an acute hemocoelic infection in the naïve mosquitoes with mortality of ∼40% at 24 h post-infection. However, the Enterobacter orSerratia primed mosquitoes showed a better 24 h survival upon the bacterial challenge. The priming confers the protection with a certain degree of specificity, the Enterobacter primed mosquitoes had a better survival upon the Enterobacter but not Serratia challenge, and the Serratia primed mosquitoes had a better survival upon the Serratia but not Enterobacter challenge. To understand the priming-mediated immune enhancement, the transcriptomes were characterized in the mosquitoes of priming as well as priming plus challenges. The RNA-seq was conducted to profile 10 transcriptomes including three samples of priming conditions (native microbiota, Serratia priming, and Enterobacter priming), six samples of priming plus challenges with the two bacteria, and one sample of injury control. The three priming regimes resulted in distinctive transcriptomic profiles with about 60% of genes affected by both bacteria. Upon challenges, different primed mosquitoes displayed different transcriptomic patterns in response to different bacteria. When a primed cohort was challenged with a heterogenous bacterium, more responsive genes were observed than when challenged with a homogenous bacterium. As expected, many canonical immune genes were responsive to the priming and challenge, but much more non-immune genes with various functions were also responsive in the contexts, which implies that the prior priming triggers a delicately coordinated systemic regulation that results in an enhanced immunity against the subsequent challenge. Besides the participation of typical immune pathways, the transcriptome data suggest the involvement of lysosome and metabolism in the context. Overall, this study demonstrated a trained immunity via priming with bacteria in diet.
Collapse
Affiliation(s)
- Aditi Kulkarni
- Department of Biology, New Mexico State University, Las Cruces, NM, United States
| | - Ashmita Pandey
- Department of Biology, New Mexico State University, Las Cruces, NM, United States
| | - Patrick Trainor
- Department of Economics, Applied Statistics and International Business, New Mexico State University, Las Cruces, NM, United States
| | - Samantha Carlisle
- Department of Chemistry and Biochemistry, New Mexico State University, Las Cruces, NM, United States
| | - Jainder S. Chhilar
- Department of Biology, New Mexico State University, Las Cruces, NM, United States
| | - Wanqin Yu
- Department of Biology, New Mexico State University, Las Cruces, NM, United States
| | - Alex Moon
- Department of Biology, New Mexico State University, Las Cruces, NM, United States
| | - Jiannong Xu
- Department of Biology, New Mexico State University, Las Cruces, NM, United States
| |
Collapse
|
29
|
Additional Feeding Reveals Differences in Immune Recognition and Growth of Plasmodium Parasites in the Mosquito Host. mSphere 2021; 6:6/2/e00136-21. [PMID: 33789941 PMCID: PMC8546690 DOI: 10.1128/msphere.00136-21] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Mosquitoes may feed multiple times during their life span in addition to those times needed to acquire and transmit malaria. To determine the impact of subsequent blood feeding on parasite development in Anopheles gambiae, we examined Plasmodium parasite infection with or without an additional noninfected blood meal. We found that an additional blood meal significantly reduced Plasmodium berghei immature oocyst numbers, yet had no effect on the human parasite Plasmodium falciparum. These observations were reproduced when mosquitoes were fed an artificial protein meal, suggesting that parasite losses are independent of blood ingestion. We found that feeding with either a blood or protein meal compromises midgut basal lamina integrity as a result of the physical distention of the midgut, enabling the recognition and lysis of immature P. berghei oocysts by mosquito complement. Moreover, we demonstrate that additional feeding promotes P. falciparum oocyst growth, suggesting that human malaria parasites exploit host resources provided with blood feeding to accelerate their growth. This is in contrast to experiments with P. berghei, where the size of surviving oocysts is independent of an additional blood meal. Together, these data demonstrate distinct differences in Plasmodium species in evading immune detection and utilizing host resources at the oocyst stage, representing an additional, yet unexplored component of vectorial capacity that has important implications for the transmission of malaria. IMPORTANCE Mosquitoes must blood feed multiple times to acquire and transmit malaria. However, the impact of an additional mosquito blood meal following malaria parasite infection has not been closely examined. Here, we demonstrate that additional feeding affects mosquito vector competence; namely, additional feeding significantly limits Plasmodium berghei infection, yet has no effect on infection of the human parasite P. falciparum. Our experiments support that these killing responses are mediated by the physical distension of the midgut and by temporary damage to the midgut basal lamina that exposes immature P. berghei oocysts to mosquito complement, while human malaria parasites are able to evade these killing mechanisms. In addition, we provide evidence that additional feeding promotes P. falciparum oocyst growth. This is in contrast to P. berghei, where oocyst size is independent of an additional blood meal. This suggests that human malaria parasites are able to exploit host resources provided by an additional feeding to accelerate their growth. In summary, our data highlight distinct differences in malaria parasite species in evading immune recognition and adapting to mosquito blood feeding. These observations have important, yet previously unexplored, implications for the impact of multiple blood meals on the transmission of malaria.
Collapse
|
30
|
Kirti A, Sharma M, Rani K, Bansal A. CRISPRing protozoan parasites to better understand the biology of diseases. PROGRESS IN MOLECULAR BIOLOGY AND TRANSLATIONAL SCIENCE 2021; 180:21-68. [PMID: 33934837 DOI: 10.1016/bs.pmbts.2021.01.004] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Precise gene editing techniques are paramount to gain deeper insights into the biological processes such as host-parasite interactions, drug resistance mechanisms, and gene-function relationships. Discovery of CRISPR-Cas9 system has spearheaded mechanistic understanding of protozoan parasite biology as evident from the number of reports in the last decade. Here, we have described the use of CRISPR-Cas9 in understanding the biology of medically important protozoan parasites such as Plasmodium, Leishmania, Trypanosoma, Babesia and Trichomonas. In spite of intrinsic difficulties in genome editing in these protozoan parasites, CRISPR-Cas9 has acted as a catalyst for faster generation of desired transgenic parasites. Modifications in the CRISPR-Cas9 system for improving the efficiency have been useful in better understanding the molecular mechanisms associated with repair of double strand breaks in the parasites. Moreover, improvement in reagents used for CRISPR mediated gene editing have been instrumental in addressing the issue of non-specificity and toxicity for therapeutic use. These application-based modifications may help in further increasing the efficiency of gene editing in protozoan parasites.
Collapse
Affiliation(s)
- Apurva Kirti
- School of Life Sciences, Jawaharlal Nehru University, New Delhi, India
| | - Manish Sharma
- School of Life Sciences, Jawaharlal Nehru University, New Delhi, India
| | - Komal Rani
- School of Life Sciences, Jawaharlal Nehru University, New Delhi, India
| | - Abhisheka Bansal
- School of Life Sciences, Jawaharlal Nehru University, New Delhi, India.
| |
Collapse
|
31
|
Talyuli OAC, Bottino-Rojas V, Polycarpo CR, Oliveira PL, Paiva-Silva GO. Non-immune Traits Triggered by Blood Intake Impact Vectorial Competence. Front Physiol 2021; 12:638033. [PMID: 33737885 PMCID: PMC7960658 DOI: 10.3389/fphys.2021.638033] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2020] [Accepted: 02/08/2021] [Indexed: 11/13/2022] Open
Abstract
Blood-feeding arthropods are considered an enormous public health threat. They are vectors of a plethora of infectious agents that cause potentially fatal diseases like Malaria, Dengue fever, Leishmaniasis, and Lyme disease. These vectors shine due to their own physiological idiosyncrasies, but one biological aspect brings them all together: the requirement of blood intake for development and reproduction. It is through blood-feeding that they acquire pathogens and during blood digestion that they summon a collection of multisystemic events critical for vector competence. The literature is focused on how classical immune pathways (Toll, IMD, and JAK/Stat) are elicited throughout the course of vector infection. Still, they are not the sole determinants of host permissiveness. The dramatic changes that are the hallmark of the insect physiology after a blood meal intake are the landscape where a successful infection takes place. Dominant processes that occur in response to a blood meal are not canonical immunological traits yet are critical in establishing vector competence. These include hormonal circuitries and reproductive physiology, midgut permeability barriers, midgut homeostasis, energy metabolism, and proteolytic activity. On the other hand, the parasites themselves have a role in the outcome of these blood triggered physiological events, consistently using them in their favor. Here, to enlighten the knowledge on vector-pathogen interaction beyond the immune pathways, we will explore different aspects of the vector physiology, discussing how they give support to these long-dated host-parasite relationships.
Collapse
Affiliation(s)
- Octavio A C Talyuli
- Instituto de Bioquímica Médica Leopoldo de Meis, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Vanessa Bottino-Rojas
- Instituto de Bioquímica Médica Leopoldo de Meis, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Carla R Polycarpo
- Instituto de Bioquímica Médica Leopoldo de Meis, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil.,Instituto Nacional de Ciência e Tecnologia em Entomologia Molecular, Rio de Janeiro, Brazil
| | - Pedro L Oliveira
- Instituto de Bioquímica Médica Leopoldo de Meis, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil.,Instituto Nacional de Ciência e Tecnologia em Entomologia Molecular, Rio de Janeiro, Brazil
| | - Gabriela O Paiva-Silva
- Instituto de Bioquímica Médica Leopoldo de Meis, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil.,Instituto Nacional de Ciência e Tecnologia em Entomologia Molecular, Rio de Janeiro, Brazil
| |
Collapse
|
32
|
Plasmodium oocysts respond with dormancy to crowding and nutritional stress. Sci Rep 2021; 11:3090. [PMID: 33542254 PMCID: PMC7862253 DOI: 10.1038/s41598-021-81574-0] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2020] [Accepted: 01/08/2021] [Indexed: 12/13/2022] Open
Abstract
Malaria parasites develop as oocysts in the mosquito for several days before they are able to infect a human host. During this time, mosquitoes take bloodmeals to replenish their nutrient and energy reserves needed for flight and reproduction. We hypothesized that these bloodmeals are critical for oocyst growth and that experimental infection protocols, typically involving a single bloodmeal at the time of infection, cause nutritional stress to the developing oocysts. Therefore, enumerating oocysts disregarding their growth and differentiation state may lead to erroneous conclusions about the efficacy of transmission blocking interventions. Here, we examine this hypothesis in Anopheles coluzzii mosquitoes infected with the human and rodent parasites Plasmodium falciparum and Plasmodium berghei, respectively. We show that oocyst growth and maturation rates decrease at late developmental stages as infection intensities increase; an effect exacerbated at very high infection intensities but fully restored with post infection bloodmeals. High infection intensities and starvation conditions reduce RNA Polymerase III activity in oocysts unless supplemental bloodmeals are provided. Our results suggest that oocysts respond to crowding and nutritional stress with a dormancy-like strategy, which urges the development of alternative methods to assess the efficacy of transmission blocking interventions.
Collapse
|
33
|
Feng Y, Chen L, Gao L, Dong L, Wen H, Song X, Luo F, Cheng G, Wang J. Rapamycin inhibits pathogen transmission in mosquitoes by promoting immune activation. PLoS Pathog 2021; 17:e1009353. [PMID: 33626094 PMCID: PMC7939355 DOI: 10.1371/journal.ppat.1009353] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2020] [Revised: 03/08/2021] [Accepted: 02/02/2021] [Indexed: 11/18/2022] Open
Abstract
Repeated blood meals provide essential nutrients for mosquito egg development and routes for pathogen transmission. The target of rapamycin, the TOR pathway, is essential for vitellogenesis. However, its influence on pathogen transmission remains to be elucidated. Here, we show that rapamycin, an inhibitor of the TOR pathway, effectively suppresses Plasmodium berghei infection in Anopheles stephensi. An. stephensi injected with rapamycin or feeding on rapamycin-treated mice showed increased resistance to P. berghei infection. Exposing An. stephensi to a rapamycin-coated surface not only decreased the numbers of both oocysts and sporozoites but also impaired mosquito survival and fecundity. Transcriptome analysis revealed that the inhibitory effect of rapamycin on parasite infection was through the enhanced activation of immune responses, especially the NF-κB transcription factor REL2, a regulator of the immune pathway and complement system. Knockdown of REL2 in rapamycin-treated mosquitoes abrogated the induction of the complement-like proteins TEP1 and SPCLIP1 and abolished rapamycin-mediated refractoriness to Plasmodium infection. Together, these findings demonstrate a key role of the TOR pathway in regulating mosquito immune responses, thereby influencing vector competence.
Collapse
Affiliation(s)
- Yuebiao Feng
- The State Key Laboratory of Genetic Engineering, School of Life Sciences, Fudan University, Shanghai, China
- Ministry of Education Key Laboratory of Contemporary Anthropology, School of Life Sciences, Fudan University, Shanghai, China
| | - Lu Chen
- Tsinghua-Peking Joint Center for Life Sciences, Beijing Advanced Innovation Center for Structural Biology, School of Medicine, Tsinghua University, Beijing, China
| | - Li Gao
- The State Key Laboratory of Genetic Engineering, School of Life Sciences, Fudan University, Shanghai, China
- Ministry of Education Key Laboratory of Contemporary Anthropology, School of Life Sciences, Fudan University, Shanghai, China
| | - Li Dong
- The State Key Laboratory of Genetic Engineering, School of Life Sciences, Fudan University, Shanghai, China
- Ministry of Education Key Laboratory of Contemporary Anthropology, School of Life Sciences, Fudan University, Shanghai, China
| | - Han Wen
- The State Key Laboratory of Genetic Engineering, School of Life Sciences, Fudan University, Shanghai, China
- Ministry of Education Key Laboratory of Contemporary Anthropology, School of Life Sciences, Fudan University, Shanghai, China
| | - Xiumei Song
- The State Key Laboratory of Genetic Engineering, School of Life Sciences, Fudan University, Shanghai, China
- Ministry of Education Key Laboratory of Contemporary Anthropology, School of Life Sciences, Fudan University, Shanghai, China
| | - Fang Luo
- The State Key Laboratory of Genetic Engineering, School of Life Sciences, Fudan University, Shanghai, China
- Ministry of Education Key Laboratory of Contemporary Anthropology, School of Life Sciences, Fudan University, Shanghai, China
| | - Gong Cheng
- Tsinghua-Peking Joint Center for Life Sciences, Beijing Advanced Innovation Center for Structural Biology, School of Medicine, Tsinghua University, Beijing, China
| | - Jingwen Wang
- The State Key Laboratory of Genetic Engineering, School of Life Sciences, Fudan University, Shanghai, China
- Ministry of Education Key Laboratory of Contemporary Anthropology, School of Life Sciences, Fudan University, Shanghai, China
| |
Collapse
|
34
|
Brent CS. Diapause Termination and Postdiapause in Lygus hesperus (Heteroptera: Miridae). JOURNAL OF INSECT SCIENCE (ONLINE) 2021; 21:4. [PMID: 33400796 PMCID: PMC7785046 DOI: 10.1093/jisesa/ieaa142] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/29/2020] [Indexed: 06/12/2023]
Abstract
The western tarnished plant bug, Lygus hesperus Knight, overwinters as a diapausing adult in response to short day lengths. Once environmental conditions are favorable, the bugs revert to an active reproductive state. To determine the impact on life-history traits of diverting resources toward diapause rather than oogenesis during early adulthood, diapausing and nondiapausing L. hesperus females were reared from the same cohorts. Body mass, ovarian maturation, ovipositional activity, and survivorship were monitored starting either at the time of release from diapause-inducing conditions or at adult eclosion for diapausers and nondiapausers, respectively. Females that had gone through 2 wk of diapause were larger and able to mobilize the resources necessary for oogenesis faster than nondiapausers, initiating oogenesis and ovipositing sooner and at a faster initial rate. However, lifetime egg production and average daily rates were similar for both groups. Postdiapausers lived longer than nondiapausers by an average of 19 d, which is five more than the 2-wk period when they were reproductively senescent. Overall, the results indicate that short-term diapause does not have a negative impact on life history. Furthermore, the extra endogenous resources stored during diapause may be able to enhance the alacrity with which the female can take advantage of improved environmental conditions and may prolong life by shielding the females against environmental stressors such as temperature extremes, oxidative agents, or food deficits.
Collapse
Affiliation(s)
- Colin S Brent
- USDA-ARS, Arid Land Agricultural Research Center, Maricopa, AZ
| |
Collapse
|
35
|
Sun W, Li H, Zhao Y, Bai L, Qin Y, Wang Q, Li W. Distinct vitellogenin domains differentially regulate immunological outcomes in invertebrates. J Biol Chem 2021; 296:100060. [PMID: 33177064 PMCID: PMC7949091 DOI: 10.1074/jbc.ra120.015686] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2020] [Revised: 11/05/2020] [Accepted: 11/11/2020] [Indexed: 11/19/2022] Open
Abstract
The classical role of Vitellogenin (Vg) is providing energy reserves for developing embryos, but its roles appear to extend beyond this nutritional function, and its importance in host immune defense is garnering increasing research attention. However, Vg-regulated immunological functions are dependent on three different domains within different species and remain poorly understood. In the present study, we confirmed three conserved VG domains-LPD_N, DUF1943, and VWD-in the Chinese mitten crab (Eriocheir sinensis), highlighting functional similarities of Vg in vertebrates and invertebrates. Of these three domains, DUF1943 and VWD showed definitive bacterial binding activity via interaction with the signature components on microbial surfaces, but this activity was not exhibited by the LPD_N domain. Antibacterial assays indicated that only the VWD domain inhibits bacterial proliferation, and this function may be conserved between different species due to the conserved amino acid residues. To further explore the relationship between Vg and polymeric immunoglobulin receptor (pIgR), we expressed EspIgR and the three E. sinensis Vg (EsVg) domains in HEK293T cells, and coimmunoprecipitation assay demonstrated that only the DUF1943 domain interacts with EspIgR. Subsequent experiments demonstrated that EsVg regulates hemocyte phagocytosis by binding with EspIgR through the DUF1943 domain, thus promoting bacterial clearance and protecting the host from bacterial infection. To the best of our knowledge, our work is the first to report distinct domains in Vg inducing different immunological outcomes in invertebrates, providing new evidence that pIgR acts as a phagocytic receptor for Vg.
Collapse
Affiliation(s)
- Weikang Sun
- Laboratory of Invertebrate Immunological Defense and Reproductive Biology, School of Life Sciences, East China Normal University, Shanghai, China
| | - Hao Li
- Laboratory of Invertebrate Immunological Defense and Reproductive Biology, School of Life Sciences, East China Normal University, Shanghai, China
| | - Yuehong Zhao
- Laboratory of Invertebrate Immunological Defense and Reproductive Biology, School of Life Sciences, East China Normal University, Shanghai, China
| | - Longwei Bai
- Laboratory of Invertebrate Immunological Defense and Reproductive Biology, School of Life Sciences, East China Normal University, Shanghai, China
| | - Yukai Qin
- Laboratory of Invertebrate Immunological Defense and Reproductive Biology, School of Life Sciences, East China Normal University, Shanghai, China
| | - Qun Wang
- Laboratory of Invertebrate Immunological Defense and Reproductive Biology, School of Life Sciences, East China Normal University, Shanghai, China
| | - Weiwei Li
- Laboratory of Invertebrate Immunological Defense and Reproductive Biology, School of Life Sciences, East China Normal University, Shanghai, China.
| |
Collapse
|
36
|
A mating-induced reproductive gene promotes Anopheles tolerance to Plasmodium falciparum infection. PLoS Pathog 2020; 16:e1008908. [PMID: 33347501 PMCID: PMC7785212 DOI: 10.1371/journal.ppat.1008908] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2020] [Revised: 01/05/2021] [Accepted: 11/11/2020] [Indexed: 01/03/2023] Open
Abstract
Anopheles mosquitoes have transmitted Plasmodium parasites for millions of years, yet it remains unclear whether they suffer fitness costs to infection. Here we report that the fecundity of virgin and mated females of two important vectors—Anopheles gambiae and Anopheles stephensi—is not affected by infection with Plasmodium falciparum, demonstrating that these human malaria parasites do not inflict this reproductive cost on their natural mosquito hosts. Additionally, parasite development is not impacted by mating status. However, in field studies using different P. falciparum isolates in Anopheles coluzzii, we find that Mating-Induced Stimulator of Oogenesis (MISO), a female reproductive gene strongly induced after mating by the sexual transfer of the steroid hormone 20-hydroxyecdysone (20E), protects females from incurring fecundity costs to infection. MISO-silenced females produce fewer eggs as they become increasingly infected with P. falciparum, while parasite development is not impacted by this gene silencing. Interestingly, previous work had shown that sexual transfer of 20E has specifically evolved in Cellia species of the Anopheles genus, driving the co-adaptation of MISO. Our data therefore suggest that evolution of male-female sexual interactions may have promoted Anopheles tolerance to P. falciparum infection in the Cellia subgenus, which comprises the most important malaria vectors. Plasmodium falciparum, the deadliest form of human malaria, is transmitted when female Anopheles mosquitoes bite people and take a blood meal in order to develop eggs. To date, it is still poorly understood whether Anopheles mosquitoes that get infected with P. falciparum suffer fitness costs. Here, we find that the number of eggs produced by Anopheles gambiae and Anopheles stephensi females is not affected by P. falciparum infection, and that the mating status of the mosquitoes does not impact the parasite. However, in field experiments infecting a related species, Anopheles coluzzii, with P. falciparum using blood from donors in Burkina Faso, we find that interfering with the expression of a gene normally triggered by the sexual transfer of the steroid hormone 20-hydroxyecdysone induces increasing costs to egg development as females become more infected with P. falciparum, with no impacts on the parasite. The results of our study suggest that pathways triggered by mating may help Anopheles prevent reproductive costs associated with P. falciparum infection, providing new insights into evolutionary strategies adopted by anophelines in the face of a longstanding association with Plasmodium parasites.
Collapse
|
37
|
Shaw WR, Holmdahl IE, Itoe MA, Werling K, Marquette M, Paton DG, Singh N, Buckee CO, Childs LM, Catteruccia F. Multiple blood feeding in mosquitoes shortens the Plasmodium falciparum incubation period and increases malaria transmission potential. PLoS Pathog 2020; 16:e1009131. [PMID: 33382824 PMCID: PMC7774842 DOI: 10.1371/journal.ppat.1009131] [Citation(s) in RCA: 52] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2020] [Accepted: 11/08/2020] [Indexed: 12/15/2022] Open
Abstract
Many mosquito species, including the major malaria vector Anopheles gambiae, naturally undergo multiple reproductive cycles of blood feeding, egg development and egg laying in their lifespan. Such complex mosquito behavior is regularly overlooked when mosquitoes are experimentally infected with malaria parasites, limiting our ability to accurately describe potential effects on transmission. Here, we examine how Plasmodium falciparum development and transmission potential is impacted when infected mosquitoes feed an additional time. We measured P. falciparum oocyst size and performed sporozoite time course analyses to determine the parasite's extrinsic incubation period (EIP), i.e. the time required by parasites to reach infectious sporozoite stages, in An. gambiae females blood fed either once or twice. An additional blood feed at 3 days post infection drastically accelerates oocyst growth rates, causing earlier sporozoite accumulation in the salivary glands, thereby shortening the EIP (reduction of 2.3 ± 0.4 days). Moreover, parasite growth is further accelerated in transgenic mosquitoes with reduced reproductive capacity, which mimic genetic modifications currently proposed in population suppression gene drives. We incorporate our shortened EIP values into a measure of transmission potential, the basic reproduction number R0, and find the average R0 is higher (range: 10.1%-12.1% increase) across sub-Saharan Africa than when using traditional EIP measurements. These data suggest that malaria elimination may be substantially more challenging and that younger mosquitoes or those with reduced reproductive ability may provide a larger contribution to infection than currently believed. Our findings have profound implications for current and future mosquito control interventions.
Collapse
Affiliation(s)
- W. Robert Shaw
- Department of Immunology and Infectious Diseases, Harvard T.H. Chan School of Public Health, Boston, Massachusetts, United States of America
| | - Inga E. Holmdahl
- Department of Epidemiology, Harvard T.H. Chan School of Public Health, Boston, Massachusetts, United States of America
- Center for Communicable Disease Dynamics, Harvard T.H. Chan School of Public Health, Boston, Massachusetts, United States of America
| | - Maurice A. Itoe
- Department of Immunology and Infectious Diseases, Harvard T.H. Chan School of Public Health, Boston, Massachusetts, United States of America
| | - Kristine Werling
- Department of Immunology and Infectious Diseases, Harvard T.H. Chan School of Public Health, Boston, Massachusetts, United States of America
| | - Meghan Marquette
- Department of Immunology and Infectious Diseases, Harvard T.H. Chan School of Public Health, Boston, Massachusetts, United States of America
| | - Douglas G. Paton
- Department of Immunology and Infectious Diseases, Harvard T.H. Chan School of Public Health, Boston, Massachusetts, United States of America
| | - Naresh Singh
- Department of Immunology and Infectious Diseases, Harvard T.H. Chan School of Public Health, Boston, Massachusetts, United States of America
| | - Caroline O. Buckee
- Department of Epidemiology, Harvard T.H. Chan School of Public Health, Boston, Massachusetts, United States of America
- Center for Communicable Disease Dynamics, Harvard T.H. Chan School of Public Health, Boston, Massachusetts, United States of America
| | - Lauren M. Childs
- Department of Mathematics, Virginia Tech, Blacksburg, Virginia, United States of America
| | - Flaminia Catteruccia
- Department of Immunology and Infectious Diseases, Harvard T.H. Chan School of Public Health, Boston, Massachusetts, United States of America
| |
Collapse
|
38
|
Taylor DM, Haney RS, Luckhart S. Aquatic Exposure to Abscisic Acid Transstadially Enhances Anopheles stephensi Resistance to Malaria Parasite Infection. Genes (Basel) 2020; 11:E1393. [PMID: 33255333 PMCID: PMC7761407 DOI: 10.3390/genes11121393] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2020] [Revised: 11/21/2020] [Accepted: 11/22/2020] [Indexed: 12/13/2022] Open
Abstract
The ancient stress signaling molecule abscisic acid (ABA) is ubiquitous in animals and plants but is perhaps most well-known from its early discovery as a plant hormone. ABA can be released into water by plants and is found in nectar, but is also present in mammalian blood, three key contexts for mosquito biology. We previously established that addition of ABA to Anopheles stephensi larval rearing water altered immature development and life history traits of females derived from treated larvae, while addition of ABA to an infected bloodmeal increased resistance of adult female A. stephensi to human malaria parasite infection. Here we sought to determine whether larval treatment with ABA could similarly impact resistance to parasite infection in females derived from treated larvae and, if so, whether resistance could be extended to another parasite species. We examined nutrient levels and gene expression to demonstrate that ABA can transstadially alter resistance to a rodent malaria parasite with hallmarks of previously observed mechanisms of resistance following provision of ABA in blood to A. stephensi.
Collapse
Affiliation(s)
- Dean M. Taylor
- Department of Entomology, Plant Pathology and Nematology, University of Idaho, Moscow, ID 83844, USA; (D.M.T.); (R.S.H.)
| | - Reagan S. Haney
- Department of Entomology, Plant Pathology and Nematology, University of Idaho, Moscow, ID 83844, USA; (D.M.T.); (R.S.H.)
| | - Shirley Luckhart
- Department of Entomology, Plant Pathology and Nematology, University of Idaho, Moscow, ID 83844, USA; (D.M.T.); (R.S.H.)
- Department of Biological Sciences, University of Idaho, Moscow, ID 83844, USA
| |
Collapse
|
39
|
Adedeji EO, Ogunlana OO, Fatumo S, Beder T, Ajamma Y, Koenig R, Adebiyi E. Anopheles metabolic proteins in malaria transmission, prevention and control: a review. Parasit Vectors 2020; 13:465. [PMID: 32912275 PMCID: PMC7488410 DOI: 10.1186/s13071-020-04342-5] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2020] [Accepted: 09/01/2020] [Indexed: 12/21/2022] Open
Abstract
The increasing resistance to currently available insecticides in the malaria vector, Anopheles mosquitoes, hampers their use as an effective vector control strategy for the prevention of malaria transmission. Therefore, there is need for new insecticides and/or alternative vector control strategies, the development of which relies on the identification of possible targets in Anopheles. Some known and promising targets for the prevention or control of malaria transmission exist among Anopheles metabolic proteins. This review aims to elucidate the current and potential contribution of Anopheles metabolic proteins to malaria transmission and control. Highlighted are the roles of metabolic proteins as insecticide targets, in blood digestion and immune response as well as their contribution to insecticide resistance and Plasmodium parasite development. Furthermore, strategies by which these metabolic proteins can be utilized for vector control are described. Inhibitors of Anopheles metabolic proteins that are designed based on target specificity can yield insecticides with no significant toxicity to non-target species. These metabolic modulators combined with each other or with synergists, sterilants, and transmission-blocking agents in a single product, can yield potent malaria intervention strategies. These combinations can provide multiple means of controlling the vector. Also, they can help to slow down the development of insecticide resistance. Moreover, some metabolic proteins can be modulated for mosquito population replacement or suppression strategies, which will significantly help to curb malaria transmission.
Collapse
Affiliation(s)
- Eunice Oluwatobiloba Adedeji
- Covenant University Bioinformatics Research (CUBRe), Covenant University, Ota, Ogun State Nigeria
- Department of Biochemistry, Covenant University, Ota, Ogun State Nigeria
| | - Olubanke Olujoke Ogunlana
- Covenant University Bioinformatics Research (CUBRe), Covenant University, Ota, Ogun State Nigeria
- Department of Biochemistry, Covenant University, Ota, Ogun State Nigeria
| | - Segun Fatumo
- Department of Non-Communicable Disease Epidemiology, London School of Hygiene & Tropical Medicine, Keppel St, Bloomsbury, London, UK
| | - Thomas Beder
- Integrated Research and Treatment Center, Center for Sepsis Control and Care (CSCC), Jena University Hospital, Am Klinikum 1, 07747 Jena, Germany
| | - Yvonne Ajamma
- Covenant University Bioinformatics Research (CUBRe), Covenant University, Ota, Ogun State Nigeria
| | - Rainer Koenig
- Integrated Research and Treatment Center, Center for Sepsis Control and Care (CSCC), Jena University Hospital, Am Klinikum 1, 07747 Jena, Germany
| | - Ezekiel Adebiyi
- Covenant University Bioinformatics Research (CUBRe), Covenant University, Ota, Ogun State Nigeria
- Computer and Information Sciences, Covenant University, Ota, Ogun State Nigeria
- Division of Applied Bioinformatics, German Cancer Research Center (DKFZ), G200, Im Neuenheimer Feld 280, 69120 Heidelberg, Germany
| |
Collapse
|
40
|
Feng J, Zhang L, Xia X, Hu W, Zhou P. Effect of geographic variation on the proteome of sea cucumber (Stichopus japonicus). Food Res Int 2020; 136:109498. [PMID: 32846579 DOI: 10.1016/j.foodres.2020.109498] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2020] [Revised: 06/09/2020] [Accepted: 06/24/2020] [Indexed: 12/26/2022]
Abstract
Sea cucumber is a sensitive organism that is easily challenged by environmental change. The aim of this study was to characterize the proteome of sea cucumbers from 5 main Chinese origins, including Xiamen (XM), Dalian (DL), Weihai (WH), Yantai (YT) and Qingdao (QD). In this work, a tandem mass tag (TMT) labeling proteomic approach was applied to identify and quantify the proteome of sea cucumber. A total of 5051 proteins were identified in the body wall; among those proteins, 1594 proteins (31.6%) were identified as enzyme proteins, and 33 proteins belonged to collagen. In addition, the 10 most highly abundant proteins were further discussed. Among all quantified proteins, 2266 were significantly differentially expressed proteins (SDEPs) across the 5 origins. These SDEPs were related to pigmentation (5 proteins), antioxidant activity (13 proteins), and immune system processes (29 proteins). Based on SDEPs, DL differed the most from QD and XM, as well as WH and YT, as shown in principal component analysis (PCA) and hierarchical clustering. In conclusion, one-fourth of the significantly different proteins found in the sea cucumber body wall among the 5 main Chinese locations indicated the sensitivity of sea cucumber to variations in temperature, environment, and feeding.
Collapse
Affiliation(s)
- Jianhui Feng
- State Key Laboratory of Food Science & Technology, Jiangnan University, Wuxi, Jiangsu Province 214122, China
| | - Lina Zhang
- State Key Laboratory of Food Science & Technology, Jiangnan University, Wuxi, Jiangsu Province 214122, China.
| | - Xubin Xia
- Shandong Homey Aquatic Development CO., Rongcheng, Shandong Province 264000, China
| | - Wei Hu
- Shandong Homey Aquatic Development CO., Rongcheng, Shandong Province 264000, China
| | - Peng Zhou
- State Key Laboratory of Food Science & Technology, Jiangnan University, Wuxi, Jiangsu Province 214122, China.
| |
Collapse
|
41
|
20-Hydroxyecdysone Primes Innate Immune Responses That Limit Bacterial and Malarial Parasite Survival in Anopheles gambiae. mSphere 2020; 5:5/2/e00983-19. [PMID: 32295874 PMCID: PMC7160685 DOI: 10.1128/msphere.00983-19] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
Blood feeding is an integral behavior of mosquitoes to acquire nutritional resources needed for reproduction. This requirement also enables mosquitoes to serve as efficient vectors to acquire and potentially transmit a multitude of mosquito-borne diseases, most notably malaria. Recent studies suggest that mosquito immunity is stimulated following a blood meal, independent of infection status. Since blood feeding promotes production of the hormone 20-hydroxyecdysone (20E), we hypothesized that 20E plays an important role in priming the immune response for pathogen challenge. Here, we examine the immunological effects of priming Anopheles gambiae with 20E prior to pathogen infection, demonstrating a significant reduction in bacteria and Plasmodium berghei survival in the mosquito host. Transcriptome sequencing (RNA-seq) analysis following 20E treatment identifies several known 20E-regulated genes, as well as several immune genes with previously reported function in antipathogen defense. Together, these data demonstrate that 20E influences cellular immune function and antipathogen immunity following mosquito blood feeding, arguing the importance of hormones in the regulation of mosquito innate immune function.IMPORTANCE Blood feeding is required to provide nutrients for mosquito egg production and serves as a mechanism to acquire and transmit pathogens. Shortly after a blood meal is taken, there is a peak in the production of 20-hydroxyecdysone (20E), a mosquito hormone that initiates physiological changes, including yolk protein production and mating refractoriness. Here, we examine additional roles of 20E in the regulation of mosquito immunity, demonstrating that priming the immune system with 20E increases mosquito resistance to pathogens. We identify differentially expressed genes in response to 20E treatment, including several involved in innate immune function as well as lipid metabolism and transport. Together, these data argue that 20E stimulates mosquito cellular immune function and innate immunity shortly after blood feeding.
Collapse
|
42
|
Dieme C, Zmarlak NM, Brito-Fravallo E, Travaillé C, Pain A, Cherrier F, Genève C, Calvo-Alvarez E, Riehle MM, Vernick KD, Rotureau B, Mitri C. Exposure of Anopheles mosquitoes to trypanosomes reduces reproductive fitness and enhances susceptibility to Plasmodium. PLoS Negl Trop Dis 2020; 14:e0008059. [PMID: 32032359 PMCID: PMC7032731 DOI: 10.1371/journal.pntd.0008059] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2019] [Revised: 02/20/2020] [Accepted: 01/15/2020] [Indexed: 12/17/2022] Open
Abstract
During a blood meal, female Anopheles mosquitoes are potentially exposed to diverse microbes in addition to the malaria parasite, Plasmodium. Human and animal African trypanosomiases are frequently co-endemic with malaria in Africa. It is not known whether exposure of Anopheles to trypanosomes influences their fitness or ability to transmit Plasmodium. Using cell and molecular biology approaches, we found that Trypanosoma brucei brucei parasites survive for at least 48h after infectious blood meal in the midgut of the major malaria vector, Anopheles coluzzii before being cleared. This transient survival of trypanosomes in the midgut is correlated with a dysbiosis, an alteration in the abundance of the enteric bacterial flora in Anopheles coluzzii. Using a developmental biology approach, we found that the presence of live trypanosomes in mosquito midguts also reduces their reproductive fitness, as it impairs the viability of laid eggs by affecting their hatching. Furthermore, we found that Anopheles exposure to trypanosomes enhances their vector competence for Plasmodium, as it increases their infection prevalence. A transcriptomic analysis revealed that expression of only two Anopheles immune genes are modulated during trypanosome exposure and that the increased susceptibility to Plasmodium was microbiome-dependent, while the reproductive fitness cost was dependent only on the presence of live trypanosomes but was microbiome independent. Taken together, these results demonstrate multiple effects upon Anopheles vector competence for Plasmodium caused by eukaryotic microbes interacting with the host and its microbiome, which may in turn have implications for malaria control strategies in co-endemic areas. In nature, females Anopheles mosquitoes that transmit the malaria parasites Plasmodium, take successive blood meals to maximize their offspring. During these blood meals, mosquitoes are exposed to a variety of microbes present in the host blood in addition to Plasmodium, the obligate parasite that causes malaria. The Trypanosoma parasites, causing trypanosomiases, are sympatric with the malaria parasites in numerous African regions, therefore, a single female mosquito could be in contact with both pathogens concurrently or through successive blood meals. In this work, we showed that exposure of females Anopheles mosquitoes to Trypanosoma enhanced their susceptibility to malaria parasites, reduced their reproductive fitness and modulated their bacterial gut flora. While the effect of trypanosomes ingestion on Plasmodium infection is microbiome dependent, the phenotype on the reproductive fitness is microbiome independent. These results highlight the need for considering the effect of eukaryotic microbes on Anopheles biology for malaria control strategies.
Collapse
Affiliation(s)
- Constentin Dieme
- Genetics and Genomics of Insect Vectors Unit, Department of Parasites and Insect Vectors, Institut Pasteur, Paris, France
- Centre National de la Recherche Scientifique, UMR2000, Paris, France
- Trypanosome Transmission Group, Trypanosome Cell Biology Unit, Department of Parasites and Insect Vectors, INSERM U1201, Institut Pasteur, Paris, France
| | - Natalia Marta Zmarlak
- Genetics and Genomics of Insect Vectors Unit, Department of Parasites and Insect Vectors, Institut Pasteur, Paris, France
- Centre National de la Recherche Scientifique, UMR2000, Paris, France
- Graduate School of Life Sciences ED515, Sorbonne Universities, UPMC Paris VI, Paris, France
| | - Emma Brito-Fravallo
- Genetics and Genomics of Insect Vectors Unit, Department of Parasites and Insect Vectors, Institut Pasteur, Paris, France
- Centre National de la Recherche Scientifique, UMR2000, Paris, France
| | - Christelle Travaillé
- Trypanosome Transmission Group, Trypanosome Cell Biology Unit, Department of Parasites and Insect Vectors, INSERM U1201, Institut Pasteur, Paris, France
| | - Adrien Pain
- Genetics and Genomics of Insect Vectors Unit, Department of Parasites and Insect Vectors, Institut Pasteur, Paris, France
- Centre National de la Recherche Scientifique, UMR2000, Paris, France
- Institut Pasteur–Bioinformatics and Biostatistics Hub–C3BI, USR 3756 IP CNRS–Paris, France
| | - Floriane Cherrier
- Genetics and Genomics of Insect Vectors Unit, Department of Parasites and Insect Vectors, Institut Pasteur, Paris, France
- Centre National de la Recherche Scientifique, UMR2000, Paris, France
| | - Corinne Genève
- Genetics and Genomics of Insect Vectors Unit, Department of Parasites and Insect Vectors, Institut Pasteur, Paris, France
- Centre National de la Recherche Scientifique, UMR2000, Paris, France
| | - Estefanía Calvo-Alvarez
- Trypanosome Transmission Group, Trypanosome Cell Biology Unit, Department of Parasites and Insect Vectors, INSERM U1201, Institut Pasteur, Paris, France
| | - Michelle M. Riehle
- Department of Microbiology and Immunology, Medical College of Wisconsin, Milwaukee, Wisconsin, United States of America
| | - Kenneth D. Vernick
- Genetics and Genomics of Insect Vectors Unit, Department of Parasites and Insect Vectors, Institut Pasteur, Paris, France
- Centre National de la Recherche Scientifique, UMR2000, Paris, France
| | - Brice Rotureau
- Trypanosome Transmission Group, Trypanosome Cell Biology Unit, Department of Parasites and Insect Vectors, INSERM U1201, Institut Pasteur, Paris, France
- * E-mail: (BR); (CM)
| | - Christian Mitri
- Genetics and Genomics of Insect Vectors Unit, Department of Parasites and Insect Vectors, Institut Pasteur, Paris, France
- Centre National de la Recherche Scientifique, UMR2000, Paris, France
- * E-mail: (BR); (CM)
| |
Collapse
|
43
|
Albuquerque Tomilhero Frias A, Ibanez F, Mendoza A, de Carvalho Nunes WM, Tamborindeguy C. Effects of "Candidatus Liberibacter solanacearum" (haplotype B) on Bactericera cockerelli fitness and vitellogenesis. INSECT SCIENCE 2020; 27:58-68. [PMID: 29676854 DOI: 10.1111/1744-7917.12599] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/06/2017] [Revised: 04/04/2018] [Accepted: 04/08/2018] [Indexed: 06/08/2023]
Abstract
"Candidatus Liberibacter solanacearum" (Lso) are phloem-restricted and unculturable Gram-negative bacteria. Presently five haplotypes have been identified worldwide; but only haplotypes A and B are associated with the vector Bactericera cockerelli (Šulc.) in the Americas. Previous studies showed that Lso-infection reduces B. cockerelli reproductive output and that Lso haplotype B is more pathogenic than Lso haplotype A. To understand the interaction of Lso haplotype B and B. cockerelli, the fitness of Lso-free and Lso B-infected insects, and the expression of vitellogenin (BcVg1-like), a gene involved directly in the insect reproduction were analyzed. Statistical differences in the number of eggs oviposited, and the total number of progeny nymphs and adults were found among crosses of insects with or without Lso. Significant differences in sex proportions were found between Lso B-infected and Lso-free crosses: a higher proportion of F1 adult females were obtained from Lso B-infected mothers. A significant reduction of BcVg1-like was observed in crosses performed with Lso B-infected females compared to the Lso-free insects. In female cohorts of different age, a significant reduction of BcVg1-like expression was measured in 7-d-old Lso B-infected females (virgin and mated) compared with 7-d-old Lso-free females (virgin and mated), respectively. The reduction of BcVg1-like transcript was associated with a lower number of developing oocytes observed in female's reproductive systems. Overall, this study represents the first step to understand the interaction of Lso B with B. cockerelli, highlighting the effect of Lso B infection on egg production, BcVg1-like expression, and oocyte development.
Collapse
Affiliation(s)
- Angélica Albuquerque Tomilhero Frias
- Department of Entomology, Texas A&M University, 412 Heep Center, College Station, Texas, USA
- UEM-Depto. de Agronomia, Núcleo de Pesquisa em Biotecnologia Aplicada, Maringá, Brazil
| | - Freddy Ibanez
- Department of Entomology, Texas A&M University, 412 Heep Center, College Station, Texas, USA
| | - Azucena Mendoza
- Department of Entomology, Texas A&M University, 412 Heep Center, College Station, Texas, USA
| | | | - Cecilia Tamborindeguy
- Department of Entomology, Texas A&M University, 412 Heep Center, College Station, Texas, USA
| |
Collapse
|
44
|
Taylor DM, Olds CL, Haney RS, Torrevillas BK, Luckhart S. Comprehensive and Durable Modulation of Growth, Development, Lifespan and Fecundity in Anopheles stephensi Following Larval Treatment With the Stress Signaling Molecule and Novel Antimalarial Abscisic Acid. Front Microbiol 2020; 10:3024. [PMID: 32010091 PMCID: PMC6979008 DOI: 10.3389/fmicb.2019.03024] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2019] [Accepted: 12/17/2019] [Indexed: 12/19/2022] Open
Abstract
The larval environment of holometabolous insects determines many adult life history traits including, but not limited to, rate and success of development and adult lifespan and fecundity. The ancient stress signaling hormone abscisic acid (ABA), released by plants inundated with water and by leaf and root fragments in water, is likely ubiquitous in the mosquito larval environment and is well known for its wide ranging effects on invertebrate biology. Accordingly, ABA is a relevant stimulus and signal for mosquito development. In our studies, the addition of ABA at biologically relevant levels to larval rearing containers accelerated the time to pupation and increased death of A. stephensi pupae. We could not attribute these effects, however, to ABA-dependent changes in JH biosynthesis-associated gene expression, 20E titers or transcript patterns of insulin-like peptide genes. Adult females derived from ABA-treated larvae had reduced total protein content and significantly reduced post blood meal transcript expression of vitellogenin, effects that were consistent with variably reduced egg clutch sizes and oviposition success from the first through the third gonotrophic cycles. Adult female A. stephensi derived from ABA-treated larvae also exhibited reduced lifespans relative to controls. Collectively, these effects of ABA on A. stephensi life history traits are robust, durable and predictive of multiple impacts of an important malaria vector spreading to new malaria endemic regions.
Collapse
Affiliation(s)
- Dean M Taylor
- Department of Entomology, Plant Pathology and Nematology, University of Idaho, Moscow, ID, United States
| | - Cassandra L Olds
- Department of Entomology, Plant Pathology and Nematology, University of Idaho, Moscow, ID, United States
| | - Reagan S Haney
- Department of Entomology, Plant Pathology and Nematology, University of Idaho, Moscow, ID, United States
| | - Brandi K Torrevillas
- Department of Entomology, Plant Pathology and Nematology, University of Idaho, Moscow, ID, United States
| | - Shirley Luckhart
- Department of Entomology, Plant Pathology and Nematology, University of Idaho, Moscow, ID, United States.,Department of Biological Sciences, University of Idaho, Moscow, ID, United States
| |
Collapse
|
45
|
Yang J, Schleicher TR, Dong Y, Park HB, Lan J, Cresswell P, Crawford J, Dimopoulos G, Fikrig E. Disruption of mosGILT in Anopheles gambiae impairs ovarian development and Plasmodium infection. J Exp Med 2020; 217:e20190682. [PMID: 31658986 PMCID: PMC7037243 DOI: 10.1084/jem.20190682] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2019] [Revised: 08/06/2019] [Accepted: 10/25/2019] [Indexed: 11/04/2022] Open
Abstract
Plasmodium infection in Anopheles is influenced by mosquito-derived factors. We previously showed that a protein in saliva from infected Anopheles, mosquito gamma-interferon-inducible lysosomal thiol reductase (mosGILT), inhibits the ability of sporozoites to traverse cells and readily establish infection of the vertebrate host. To determine whether mosGILT influences Plasmodium within the mosquito, we generated Anopheles gambiae mosquitoes carrying mosaic mutations in the mosGILT gene using CRISPR/CRISPR associated protein 9 (Cas9). Here, we show that female mosaic mosGILT mutant mosquitoes display defects in ovarian development and refractoriness to Plasmodium. Following infection by either Plasmodium berghei or Plasmodium falciparum, mutant mosquitoes have significantly reduced oocyst numbers as a result of increased thioester-containing protein 1 (TEP1)-dependent parasite killing. Expression of vitellogenin (Vg), the major yolk protein that can reduce the parasite-killing efficiency of TEP1, is severely impaired in mutant mosquitoes. MosGILT is a mosquito factor that is essential for ovarian development and indirectly protects both human and rodent Plasmodium species from mosquito immunity.
Collapse
Affiliation(s)
- Jing Yang
- Section of Infectious Diseases, Department of Internal Medicine, Yale University School of Medicine, New Haven, CT
| | - Tyler R. Schleicher
- Section of Infectious Diseases, Department of Internal Medicine, Yale University School of Medicine, New Haven, CT
| | - Yuemei Dong
- Department of Molecular Microbiology and Immunology, Bloomberg School of Public Health, Johns Hopkins University, Baltimore, MD
| | - Hyun Bong Park
- Department of Chemistry, Yale University, New Haven, CT
- Chemical Biology Institute, Yale University, West Haven, CT
| | - Jiangfeng Lan
- College of Fisheries, Huazhong Agricultural University, Wuhan, China
| | - Peter Cresswell
- Department of Immunobiology, Yale University School of Medicine, New Haven, CT
- Department of Cell Biology, Yale University School of Medicine, New Haven, CT
| | - Jason Crawford
- Department of Chemistry, Yale University, New Haven, CT
- Chemical Biology Institute, Yale University, West Haven, CT
- Department of Microbial Pathogenesis, Yale University School of Medicine, New Haven, CT
| | - George Dimopoulos
- Department of Molecular Microbiology and Immunology, Bloomberg School of Public Health, Johns Hopkins University, Baltimore, MD
| | - Erol Fikrig
- Section of Infectious Diseases, Department of Internal Medicine, Yale University School of Medicine, New Haven, CT
- Howard Hughes Medical Institute, Chevy Chase, MD
| |
Collapse
|
46
|
Abstract
The composition of insect hemolymph can change depending on many factors, e.g. access to nutrients, stress conditions, and current needs of the insect. In this chapter, insect immune-related polypeptides, which can be permanently or occasionally present in the hemolymph, are described. Their division into peptides or low-molecular weight proteins is not always determined by the length or secondary structure of a given molecule but also depends on the mode of action in insect immunity and, therefore, it is rather arbitrary. Antimicrobial peptides (AMPs) with their role in immunity, modes of action, and classification are presented in the chapter, followed by a short description of some examples: cecropins, moricins, defensins, proline- and glycine-rich peptides. Further, we will describe selected immune-related proteins that may participate in immune recognition, may possess direct antimicrobial properties, or can be involved in the modulation of insect immunity by both abiotic and biotic factors. We briefly cover Fibrinogen-Related Proteins (FREPs), Down Syndrome Cell Adhesion Molecules (Dscam), Hemolin, Lipophorins, Lysozyme, Insect Metalloproteinase Inhibitor (IMPI), and Heat Shock Proteins. The reader will obtain a partial picture presenting molecules participating in one of the most efficient immune strategies found in the animal world, which allow insects to inhabit all ecological land niches in the world.
Collapse
Affiliation(s)
- Iwona Wojda
- Department of Immunobiology, Institute of Biological Sciences, Maria Curie-Skłodowska University, Lublin, Poland.
| | - Małgorzata Cytryńska
- Department of Immunobiology, Institute of Biological Sciences, Maria Curie-Skłodowska University, Lublin, Poland
| | - Agnieszka Zdybicka-Barabas
- Department of Immunobiology, Institute of Biological Sciences, Maria Curie-Skłodowska University, Lublin, Poland
| | - Jakub Kordaczuk
- Department of Immunobiology, Institute of Biological Sciences, Maria Curie-Skłodowska University, Lublin, Poland
| |
Collapse
|
47
|
Lampe L, Jentzsch M, Kierszniowska S, Levashina EA. Metabolic balancing by miR-276 shapes the mosquito reproductive cycle and Plasmodium falciparum development. Nat Commun 2019; 10:5634. [PMID: 31822677 PMCID: PMC6904670 DOI: 10.1038/s41467-019-13627-y] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2019] [Accepted: 11/14/2019] [Indexed: 12/21/2022] Open
Abstract
The blood-feeding behavior of Anopheles females delivers essential nutrients for egg development and drives parasite transmission between humans. Plasmodium growth is adapted to the vector reproductive cycle, but how changes in the reproductive cycle impact parasite development remains unclear. Here, we show that the bloodmeal-induced miR-276-5p fine-tunes the expression of branched-chain amino acid transferase to terminate the reproductive cycle. Silencing of miR-276 prolongs high rates of amino acid (AA) catabolism and increases female fertility, suggesting that timely termination of AA catabolism restricts mosquito investment into reproduction. Prolongation of AA catabolism in P. falciparum-infected females also compromises the development of the transmissible sporozoite forms. Our results suggest that Plasmodium sporogony exploits the surplus mosquito resources available after reproductive investment and demonstrate the crucial role of the mosquito AA metabolism in within-vector parasite proliferation and malaria transmission. Plasmodium growth is adapted to the reproductive cycle of mosquitoes, but underlying mechanisms are unclear. Here, Lampe et al. show that the blood-meal induced miR-276 balances the termination of the mosquito amino acid catabolism and egg development, providing nutrients for Plasmodium sporozoite development.
Collapse
Affiliation(s)
- Lena Lampe
- Vector Biology Unit, Max Planck Institute for Infection Biology, Charitéplatz 1, 10117, Berlin, Germany.,Physiology and Metabolism Laboratory, Francis Crick Institute, 1 Midland Road, NW1 1AT, London, UK
| | - Marius Jentzsch
- Vector Biology Unit, Max Planck Institute for Infection Biology, Charitéplatz 1, 10117, Berlin, Germany
| | | | - Elena A Levashina
- Vector Biology Unit, Max Planck Institute for Infection Biology, Charitéplatz 1, 10117, Berlin, Germany.
| |
Collapse
|
48
|
Dahalan FA, Churcher TS, Windbichler N, Lawniczak MKN. The male mosquito contribution towards malaria transmission: Mating influences the Anopheles female midgut transcriptome and increases female susceptibility to human malaria parasites. PLoS Pathog 2019; 15:e1008063. [PMID: 31697788 PMCID: PMC6837289 DOI: 10.1371/journal.ppat.1008063] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2019] [Accepted: 09/02/2019] [Indexed: 12/25/2022] Open
Abstract
Mating causes dramatic changes in female physiology, behaviour, and immunity in many insects, inducing oogenesis, oviposition, and refractoriness to further mating. Females from the Anopheles gambiae species complex typically mate only once in their lifetime during which they receive sperm and seminal fluid proteins as well as a mating plug that contains the steroid hormone 20-hydroxyecdysone. This hormone, which is also induced by blood-feeding, plays a major role in activating vitellogenesis for egg production. Here we show that female Anopheles coluzzii susceptibility to Plasmodium falciparum infection is significantly higher in mated females compared to virgins. We also find that mating status has a major impact on the midgut transcriptome, detectable only under sugar-fed conditions: once females have blood-fed, the transcriptional changes that are induced by mating are likely masked by the widespread effects of blood-feeding on gene expression. To determine whether increased susceptibility to parasites could be driven by the additional 20E that mated females receive from males, we mimicked mating by injecting virgin females with 20E, finding that these females are significantly more susceptible to human malaria parasites than virgin females injected with the control 20E carrier. Further RNAseq was carried out to examine whether the genes that change upon 20E injection in the midgut are similar to those that change upon mating. We find that 79 midgut-expressed genes are regulated in common by both mating and 20E, and 96% (n = 76) of these are regulated in the same direction (up vs down in 20E/mated). Together, these findings show that male Anopheles mosquitoes induce changes in the female midgut that can affect female susceptibility to P. falciparum. This implies that in nature, males might contribute to malaria transmission in previously unappreciated ways, and that vector control strategies that target males may have additional benefits towards reducing transmission. Malaria mosquitoes must successfully mate and bloodfeed in order to reproduce. The impact of bloodfeeding on malaria transmission is clear given that all transmission is caused by female mosquitoes that have fed at least twice: once leading to an initial infection, and again 10–14 days later resulting in parasite transmission. The impact of mating on malaria transmission is less clear. Here we show that mating status significantly enhances transmission, such that mated females are more likely to transmit malaria parasites than virgin females. We further examine whether a hormone transferred by mating might cause this enhanced susceptibility, and we find that indeed the receipt of this hormone is also correlated with enhanced susceptibility. The results of this study imply that efforts to target male mosquitoes might not only suppress mosquito populations, but also act to decrease vector competence among residual females.
Collapse
Affiliation(s)
| | - Thomas S. Churcher
- MRC Centre for Outbreak Analysis and Modelling, Department of Infectious Disease Epidemiology, Imperial College London, London, United Kingdom
| | | | - Mara K. N. Lawniczak
- Imperial College London, South Kensington, United Kingdom
- Wellcome Sanger Institute, Wellcome Genome Campus, Hinxton, United Kingdom
- * E-mail:
| |
Collapse
|
49
|
Shen Y, Chen YZ, Lou YH, Zhang CX. Vitellogenin and Vitellogenin-Like Genes in the Brown Planthopper. Front Physiol 2019; 10:1181. [PMID: 31620015 PMCID: PMC6759490 DOI: 10.3389/fphys.2019.01181] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2019] [Accepted: 09/02/2019] [Indexed: 12/14/2022] Open
Abstract
Vitellogenin (Vg) is precursor of vitellin. Here, we identified a Vg (NlVg) and two Vg-likes (NlVg-like1 and NlVg-like2) in the brown planthopper, Nilaparvata lugens. Phylogenetic analyses showed that NlVg-like1 and NlVg-like2 are not clustered with the conventional insect Vgs associated with vitellogenesis. Temporo-spatial expression analyses showed that the NlVg and NlVg-like2 transcript levels increased significantly 24 h after emergence and were primarily expressed in female adults. However, NlVg-like1 was expressed during all stages, and in both genders. Tissue-specific analyses showed that all three genes were most highly expressed in the fat body. The injection of double-stranded RNA targeting NlVg showed that NlVg is essential not only for oocyte development but also for nymph development. The knockdown of NlVg-like1 in female adults resulted in failure to hatch or death before eggshell emergence in 18% of offspring embryos, suggesting that NlVg-like1 plays an important role during late embryogenesis. Approximately 65% of eggs laid by females that were treated with double-stranded RNA targeting NlVg-like2 failed to hatch, indicating that NlVg-like2 plays a role in nutrition absorption during oocyte, or embryonic development. Our results illustrate the structural and functional differences among the Vg and Vg-like genes and provide potential targets for RNA-interference-based insect pest management strategies.
Collapse
Affiliation(s)
- Yan Shen
- State Key Laboratory of Rice Biology, Ministry of Agriculture Key Lab of Molecular Biology of Crop Pathogens and Insects, Institute of Insect Science, Zhejiang University, Hangzhou, China
| | - Yuan-Zhi Chen
- State Key Laboratory of Rice Biology, Ministry of Agriculture Key Lab of Molecular Biology of Crop Pathogens and Insects, Institute of Insect Science, Zhejiang University, Hangzhou, China
| | - Yi-Han Lou
- State Key Laboratory of Rice Biology, Ministry of Agriculture Key Lab of Molecular Biology of Crop Pathogens and Insects, Institute of Insect Science, Zhejiang University, Hangzhou, China
| | - Chuan-Xi Zhang
- State Key Laboratory of Rice Biology, Ministry of Agriculture Key Lab of Molecular Biology of Crop Pathogens and Insects, Institute of Insect Science, Zhejiang University, Hangzhou, China
| |
Collapse
|
50
|
O’Donnell AJ, Rund SSC, Reece SE. Time-of-day of blood-feeding: effects on mosquito life history and malaria transmission. Parasit Vectors 2019; 12:301. [PMID: 31262362 PMCID: PMC6604169 DOI: 10.1186/s13071-019-3513-9] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2019] [Accepted: 05/17/2019] [Indexed: 12/21/2022] Open
Abstract
BACKGROUND Biological rhythms allow organisms to compartmentalise and coordinate behaviours, physiologies, and cellular processes with the predictable daily rhythms of their environment. There is increasing recognition that the biological rhythms of mosquitoes that vector parasites are important for global health. For example, whether perturbations in blood foraging rhythms as a consequence of vector control measures can undermine disease control. To address this, we explore the impacts of altered timing of blood-feeding on mosquito life history traits and malaria transmission. METHODS We present three experiments in which Anopheles stephensi mosquitoes were fed in the morning or evening on blood that had different qualities, including: (i) chemical-induced or (ii) Plasmodium chabaudi infection-induced anaemia; (iii) Plasmodium berghei infection but no anaemia; or (iv) stemming from hosts at different times of day. We then compared whether time-of-day variation in blood meal characteristics influences mosquito fitness proxies relating to survival and reproduction, and malaria transmission proxies. RESULTS Mosquito lifespan is not influenced by the time-of-day they received a blood meal, but several reproductive metrics are affected, depending on other blood characteristics. Overall, our data suggest that receiving a blood meal in the morning makes mosquitoes more likely to lay eggs, lay slightly sooner and have a larger clutch size. In keeping with previous work, P. berghei infection reduces mosquito lifespan and the likelihood of laying eggs, but time-of-day of blood-feeding does not impact upon these metrics nor on transmission of this parasite. CONCLUSION The time-of-day of blood-feeding does not appear to have major consequences for mosquito fitness or transmission of asynchronous malaria species. If our results from a laboratory colony of mosquitoes living in benign conditions hold for wild mosquitoes, it suggests that mosquitoes have sufficient flexibility in their physiology to cope with changes in biting time induced by evading insecticide-treated bed nets. Future work should consider the impact of multiple feeding cycles and the abiotic stresses imposed by the need to forage for blood during times of day when hosts are not protected by bed nets.
Collapse
Affiliation(s)
- Aidan J. O’Donnell
- Institute of Evolutionary Biology, and Institute of Immunology and Infection Research, School of Biological Sciences, University of Edinburgh, Edinburgh, UK
| | - Samuel S. C. Rund
- Department of Biological Sciences, University of Notre Dame, Notre Dame, IN 46556 USA
| | - Sarah E. Reece
- Institute of Evolutionary Biology, and Institute of Immunology and Infection Research, School of Biological Sciences, University of Edinburgh, Edinburgh, UK
| |
Collapse
|