1
|
Worthy SJ, Ashlock SR, Miller A, Maloof JN, Strauss SY, Gremer JR, Schmitt J. Accelerated Phenology Fails to Buffer Fitness Loss from Delayed Rain Onset in a Clade of Wildflowers. Am Nat 2025; 205:485-501. [PMID: 40258285 DOI: 10.1086/735012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/23/2025]
Abstract
AbstractThe timing of early life cycle events has cascading effects on phenology and fitness. These effects may be critical for climate resilience of plant populations, especially in Mediterranean environments, where delayed rainfall onset causes delayed germination. To examine impacts of germination timing on 10 species of the Streptanthus/Caulanthus clade, we induced germination across a range of dates in ambient seasonal conditions and recorded phenological and fitness traits. Later-germinating cohorts accelerated flowering, partially stabilizing flowering date, but the degree of this compensatory plasticity differed across species. Fitness declined with later germination; the magnitude of this decline depended on the balance between direct negative effects of later germination and compensatory positive effects of accelerated flowering. The resulting species' differences in fitness responses suggest differential vulnerability to climate change. Species from wetter, cooler, less variable habitats exhibited greater phenological plasticity, accelerating flowering more and declining less in seed set with later germination than desert species. However, other fitness responses to germination timing, such as first-year fitness, were evolutionarily labile across the clade and unrelated to climate. Although compensatory phenological plasticity may buffer the impacts of delayed germination, it cannot prevent long-term declines in population fitness as fall rains come later with climate change.
Collapse
|
2
|
Chevin LM, Bridle J. Impacts of limits to adaptation on population and community persistence in a changing environment. Philos Trans R Soc Lond B Biol Sci 2025; 380:20230322. [PMID: 39780591 PMCID: PMC11712278 DOI: 10.1098/rstb.2023.0322] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2024] [Revised: 10/04/2024] [Accepted: 10/18/2024] [Indexed: 01/11/2025] Open
Abstract
A key issue in predicting how ecosystems will respond to environmental change is understanding why populations and communities are able to live and reproduce in some parts of ecological and geographical space, but not in others. The limits to adaptation that cause ecological niches to vary in position and width across taxa and environmental contexts determine how communities and ecosystems emerge from selection on phenotypes and genomes. Ecological trade-offs mean that phenotypes can only be optimal in some environments unless these trade-offs can be reshaped through evolution. However, the amount and rate of evolution are limited by genetic architectures, developmental systems (including phenotypic plasticity) and the legacies of recent evolutionary history. Here, we summarize adaptive limits and their ecological consequences in time (evolutionary rescue) and space (species' range limits), relating theoretical predictions to empirical tests. We then highlight key avenues for future research in this area, from better connections between evolution and demography to analysing the genomic architecture of adaptation, the dynamics of plasticity and interactions between the biotic and abiotic environment. Progress on these questions will help us understand when and where evolution and phenotypic plasticity will allow species and communities to persist in the face of rapid environmental change.This article is part of the discussion meeting issue 'Bending the curve towards nature recovery: building on Georgina Mace's legacy for a biodiverse future'.
Collapse
Affiliation(s)
| | - Jon Bridle
- Department of Genetics, Evolution and Environment, University College London, London, UK
| |
Collapse
|
3
|
Chaturvedi N, Chatterjee P. Evolutionary Adaptation in Heterogeneous and Changing Environments. Evolution 2024; 79:119-133. [PMID: 39382343 DOI: 10.1093/evolut/qpae144] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2024] [Revised: 09/26/2024] [Accepted: 10/05/2024] [Indexed: 10/10/2024]
Abstract
Organisms that are adapting to long-term environmental change almost always deal with multiple environments and trade-offs that affect their optimal phenotypic strategy. Here, we combine the idea of repeated variation or heterogeneity, like seasonal shifts, with long-term directional dynamics. Using the framework of fitness sets, we determine the dynamics of the optimal phenotype in two competing environments encountered with different frequencies, one of which changes with time. When such an optimal strategy is selected for in simulations of evolving populations, we observe rich behavior that is qualitatively different from and more complex than adaptation to long-term change in a single environment. The probability of survival and the critical rate of environmental change above which populations go extinct depend crucially on the relative frequency of the two environments and the strength and asymmetry of their selection pressures. We identify a critical frequency for the stationary environment, above which populations can escape the pressure to constantly evolve by adapting to the stationary optimum. In the neighborhood of this critical frequency, we also find the counter-intuitive possibility of a lower bound on the rate of environmental change, below which populations go extinct, and above which a process of evolutionary rescue is possible.
Collapse
Affiliation(s)
- Nandita Chaturvedi
- National Centre for Biological Sciences, Tata Institute of Fundamental Research, Bangalore, Karnataka 560065, India
| | - Purba Chatterjee
- Department of Physics and Astronomy, University of Pennsylvania, Philadelphia, PA 19104, United States
| |
Collapse
|
4
|
Kirk MA, Lackey ACR, Reider KE, Thomas SA, Whiteman HH. Climate mediates the trade-offs associated with phenotypic plasticity in an amphibian polyphenism. J Anim Ecol 2024; 93:1747-1757. [PMID: 39340187 DOI: 10.1111/1365-2656.14187] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2024] [Accepted: 08/11/2024] [Indexed: 09/30/2024]
Abstract
Polyphenisms occur when phenotypic plasticity produces morphologically distinct phenotypes from the same genotype. Plasticity is maintained through fitness trade-offs which are conferred to different phenotypes under specific environmental contexts. Predicting the impacts of contemporary climate change on phenotypic plasticity is critical for climate-sensitive animals like amphibians, but elucidating the selective pressures maintaining polyphenisms requires a framework to control for all mechanistic drivers of plasticity. Using a 32-year dataset documenting the larval and adult histories of 717 Arizona tiger salamanders (Ambystoma mavortium nebulosum), we determined how annual variation in climate and density dependence explained the maintenance of two distinct morphs (terrestrial metamorph vs. aquatic paedomorph) in a high-elevation polyphenism. The effects of climate and conspecific density on morph development were evaluated with piecewise structural equation models (SEM) to tease apart the direct and indirect pathways by which these two mechanisms affect phenotypic plasticity. Climate had a direct effect on morph outcome whereby longer growing seasons favoured metamorphic outcomes. Also, climate had indirect effects on morph outcome as mediated through density-dependent effects, such as long overwintering coldspells corresponding to high cannibal densities and light snowpacks corresponding to high larval densities, both of which promoted paedomorphic outcomes. Both climate and density dependence serve as important proxies for growth and resource limitation, which are important underlying drivers of the phenotypic plasticity in animal polyphenisms. Our findings motivate new studies to determine how contemporary climate change will alter the selective pressures maintaining phenotypic plasticity and polyphenisms.
Collapse
Affiliation(s)
- Mark A Kirk
- Department of Biological Sciences, Watershed Studies Institute, Murray State University, Murray, Kentucky, USA
- Environmental Science and Sustainability Department, Allegheny College, Meadville, Pennsylvania, USA
| | - Alycia C R Lackey
- Department of Biology, University of Louisville, Louisville, Kentucky, USA
| | - Kelsey E Reider
- Department of Biology, James Madison University, Harrisonburg, Virginia, USA
| | - Scott A Thomas
- Department of Biological Sciences, Watershed Studies Institute, Murray State University, Murray, Kentucky, USA
- Rocky Mountain Biological Laboratory, Gothic, Colorado, USA
| | - Howard H Whiteman
- Department of Biological Sciences, Watershed Studies Institute, Murray State University, Murray, Kentucky, USA
- Rocky Mountain Biological Laboratory, Gothic, Colorado, USA
| |
Collapse
|
5
|
Smith LH, Fraser KC. Arrival-breeding interval is flexible in a songbird and is not constrained by migration carry-over effects. J Anim Ecol 2024; 93:1799-1810. [PMID: 39308204 DOI: 10.1111/1365-2656.14175] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2023] [Accepted: 08/08/2024] [Indexed: 11/07/2024]
Abstract
As spring phenology advances with climate change, so too must the timing of life cycle events. Breeding at the right time is critical in many species as it maximizes fitness. For long-distance migratory birds, flexibility in the duration of the arrival-breeding interval (pre-breeding period) may allow populations to adjust their timing of breeding. However, whether first egg-lay dates are flexible to local environmental conditions after arrival, and if they are constrained by the time needed to replenish energy lost during migration, remains unclear. We investigated the regional flexibility of the arrival-breeding interval in an avian migrant, the purple martin, Progne subis, across their breeding range. We evaluated whether the duration of the arrival-breeding interval was flexible to temperature and precipitation at breeding sites, and if timing was limited by migration rate and stopover duration. We also tested if longer interval durations were associated with higher fledging success. To address our hypotheses, we used a combination of migration tracking, weather and breeding data collected from four regions across eastern North America (26.1° N to 52.4° N latitude). We found the arrival-breeding interval to be shortest in the north and longest in the south. Across all regions, warmer temperatures encountered at breeding grounds were associated with shorter intervals, and faster migration rates led to longer intervals. The length of the interval was not influenced by precipitation or stopover duration. Finally, longer intervals were not associated with higher fledge success. Currently, the longer arrival-breeding intervals in this study system, on average 28.3 days, may provide both early and late-arriving birds with ample time for recovery so birds can lay eggs according to temperature. Any negative effects of faster migration may have been buffered by longer arrival-breeding intervals, as interval length did not determine fledge success. With ongoing climate change, further research is needed to examine if arrival-breeding intervals become constrained by migration timing, which may limit opportunities for migrants to match the timing of breeding with key resources.
Collapse
Affiliation(s)
- Lakesha H Smith
- Department of Biological Sciences, University of Manitoba, Winnipeg, Manitoba, Canada
| | - Kevin C Fraser
- Department of Biological Sciences, University of Manitoba, Winnipeg, Manitoba, Canada
| |
Collapse
|
6
|
Fox JA, Hunt DAGA, Hendry AP, Chapman LJ, Barrett RDH. Counter-gradient variation in gene expression between fish populations facilitates colonization of low-dissolved oxygen environments. Mol Ecol 2024; 33:e17419. [PMID: 38808559 DOI: 10.1111/mec.17419] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2023] [Revised: 05/10/2024] [Accepted: 05/16/2024] [Indexed: 05/30/2024]
Abstract
The role of phenotypic plasticity during colonization remains unclear due to the shifting importance of plasticity across timescales. In the early stages of colonization, plasticity can facilitate persistence in a novel environment; but over evolutionary time, processes such as genetic assimilation may reduce variation in plastic traits such that species with a longer evolutionary history in an environment can show lower levels of plasticity than recent invaders. Therefore, comparing species in the early stages of colonization to long-established species provides a powerful approach for uncovering the role of phenotypic plasticity during different stages of colonization. We compared gene expression between low-dissolved oxygen (DO) and high-DO populations of two cyprinid fish: Enteromius apleurogramma, a species that has undergone a recent range expansion, and E. neumayeri, a long-established native species in the same region. We sampled tissue either immediately after capture from the field or after a 2-week acclimation under high-DO conditions, allowing us to test for both evolved and plastic differences in low-DO vs high-DO populations of each species. We found that most genes showing candidate-evolved differences in gene expression did not overlap with those showing plastic differences in gene expression. However, in the genes that did overlap, there was counter-gradient variation such that plastic and evolved gene expression responses were in opposite directions in both species. Additionally, E. apleurogramma had higher levels of plasticity and evolved divergence in gene expression between field populations. We suggest that the higher level of plasticity and counter-gradient variation may have allowed rapid genetic adaptation in E. apleurogramma and facilitated colonization. This study shows how counter-gradient variation may impact the colonization of divergent oxygen environments.
Collapse
Affiliation(s)
- Janay A Fox
- Department of Biology, McGill University, Montreal, Quebec, Canada
| | - David A G A Hunt
- Department of Biology, McGill University, Montreal, Quebec, Canada
| | - Andrew P Hendry
- Department of Biology, McGill University, Montreal, Quebec, Canada
| | - Lauren J Chapman
- Department of Biology, McGill University, Montreal, Quebec, Canada
| | | |
Collapse
|
7
|
Zettlemoyer MA, Conner RJ, Seaver MM, Waddle E, DeMarche ML. A Long-Lived Alpine Perennial Advances Flowering under Warmer Conditions but Not Enough to Maintain Reproductive Success. Am Nat 2024; 203:E157-E174. [PMID: 38635358 DOI: 10.1086/729438] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/20/2024]
Abstract
AbstractAssessing whether phenological shifts in response to climate change confer a fitness advantage requires investigating the relationships among phenology, fitness, and environmental drivers of selection. Despite widely documented advancements in phenology with warming climate, we lack empirical estimates of how selection on phenology varies in response to continuous climate drivers or how phenological shifts in response to warming conditions affect fitness. We leverage an unusual long-term dataset with repeated, individual measurements of phenology and reproduction in a long-lived alpine plant. We analyze phenotypic plasticity in flowering phenology in relation to two climate drivers, snowmelt timing and growing degree days (GDDs). Plants flower earlier with increased GDDs and earlier snowmelt, and directional selection also favors earlier flowering under these conditions. However, reproduction still declines with warming and early snowmelt, even when flowering is early. Furthermore, the steepness of this reproductive decline increases dramatically with warming conditions, resulting in very little fruit production regardless of flowering time once GDDs exceed approximately 225 degree days or snowmelt occurs before May 15. Even though advancing phenology confers a fitness advantage relative to stasis, these shifts are insufficient to maintain reproduction under warming, highlighting limits to the potential benefits of phenological plasticity under climate change.
Collapse
|
8
|
Weir JC, Phillimore AB. Buffering and phenological mismatch: A change of perspective. GLOBAL CHANGE BIOLOGY 2024; 30:e17294. [PMID: 38738554 DOI: 10.1111/gcb.17294] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/07/2023] [Revised: 03/26/2024] [Accepted: 04/03/2024] [Indexed: 05/14/2024]
Abstract
The potential for climate change to disrupt phenology-mediated interactions in interaction networks has attracted considerable attention in recent decades. Frequently, studies emphasize the fragility of ephemeral seasonal interactions, and the risks posed by phenological asynchrony. Here, we argue that the fitness consequences of asynchrony in phenological interactions may often be more buffered than is typically acknowledged. We identify three main forms that buffering may take: (i) mechanisms that reduce asynchrony between consumer and resource; (ii) mechanisms that reduce the costs of being asynchronous; and (iii) mechanisms that dampen interannual variance in performance across higher organizational units. Using synchrony between the hatching of winter moth caterpillars and the leafing of their host-plants as a case study, we identify a wide variety of buffers that reduce the detrimental consequences of phenological asynchrony on caterpillar individuals, populations, and meta-populations. We follow this by drawing on examples across a breadth of taxa, and demonstrate that these buffering mechanisms may be quite general. We conclude by identifying key gaps in our knowledge of the fitness and demographic consequences of buffering, in the context of phenological mismatch. Buffering has the potential to substantially alter our understanding of the biotic impacts of future climate change-a greater recognition of the contribution of these mechanisms may reveal that many trophic interactions are surprisingly resilient, and also serve to shift research emphasis to those systems with fewer buffers and towards identifying the limits of those buffers.
Collapse
Affiliation(s)
- Jamie C Weir
- Institute for Ecology and Evolution, University of Edinburgh, Edinburgh, UK
| | | |
Collapse
|
9
|
Moiron M, Teplitsky C, Haest B, Charmantier A, Bouwhuis S. Micro-evolutionary response of spring migration timing in a wild seabird. Evol Lett 2024; 8:8-17. [PMID: 38370547 PMCID: PMC10872114 DOI: 10.1093/evlett/qrad014] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2022] [Revised: 02/06/2023] [Accepted: 04/17/2023] [Indexed: 02/20/2024] Open
Abstract
In the context of rapid climate change, phenological advance is a key adaptation for which evidence is accumulating across taxa. Among vertebrates, phenotypic plasticity is known to underlie most of this phenological change, while evidence for micro-evolution is very limited and challenging to obtain. In this study, we quantified phenotypic and genetic trends in timing of spring migration using 8,032 dates of arrival at the breeding grounds obtained from observations on 1,715 individual common terns (Sterna hirundo) monitored across 27 years, and tested whether these trends were consistent with predictions of a micro-evolutionary response to selection. We observed a strong phenotypic advance of 9.3 days in arrival date, of which c. 5% was accounted for by an advance in breeding values. The Breeder's equation and Robertson's Secondary Theorem of Selection predicted qualitatively similar evolutionary responses to selection, and these theoretical predictions were largely consistent with our estimated genetic pattern. Overall, our study provides rare evidence for micro-evolution underlying (part of) an adaptive response to climate change in the wild, and illustrates how a combination of adaptive micro-evolution and phenotypic plasticity facilitated a shift towards earlier spring migration in this free-living population of common terns.
Collapse
Affiliation(s)
- Maria Moiron
- Life-history Biology Department, Institute of Avian Research, Wilhelmshaven, Germany
- CEFE, Univ Montpellier, CNRS, EPHE, IRD, Montpellier, France
| | | | - Birgen Haest
- Department of Bird Migration, Swiss Ornithological Institute, Sempach, Switzerland
| | | | - Sandra Bouwhuis
- Life-history Biology Department, Institute of Avian Research, Wilhelmshaven, Germany
| |
Collapse
|
10
|
Murray M, Wright J, Araya-Ajoy YG. Evolutionary rescue from climate change: male indirect genetic effects on lay-dates and their consequences for population persistence. Evol Lett 2024; 8:137-148. [PMID: 38487362 PMCID: PMC10939382 DOI: 10.1093/evlett/qrad022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2022] [Revised: 04/15/2023] [Accepted: 05/03/2023] [Indexed: 03/17/2024] Open
Abstract
Changes in avian breeding phenology are among the most apparent responses to climate change in free-ranging populations. A key question is whether populations will be able to keep up with the expected rates of environmental change. There is a large body of research on the mechanisms by which avian lay-dates track temperature change and the consequences of (mal)adaptation on population persistence. Often overlooked is the role of males, which can influence the lay-date of their mate through their effect on the prelaying environment. We explore how social plasticity causing male indirect genetic effects can help or hinder population persistence when female genes underpinning lay-date and male genes influencing female's timing of reproduction both respond to climate-mediated selection. We extend quantitative genetic moving optimum models to predict the consequences of social plasticity on the maximum sustainable rate of temperature change, and evaluate our model using a combination of simulated data and empirical estimates from the literature. Our results suggest that predictions for population persistence may be biased if indirect genetic effects and cross-sex genetic correlations are not considered and that the extent of this bias depends on sex differences in how environmental change affects the optimal timing of reproduction. Our model highlights that more empirical work is needed to understand sex-specific effects of environmental change on phenology and the fitness consequences for population dynamics. While we discuss our results exclusively in the context of avian breeding phenology, the approach we take here can be generalized to many different contexts and types of social interaction.
Collapse
Affiliation(s)
- Myranda Murray
- Centre for Biodiversity Dynamics (CBD), Department of Biology, Norwegian University of Science and Technology (NTNU), N-7491 Trondheim, Norway
| | - Jonathan Wright
- Centre for Biodiversity Dynamics (CBD), Department of Biology, Norwegian University of Science and Technology (NTNU), N-7491 Trondheim, Norway
| | - Yimen G Araya-Ajoy
- Centre for Biodiversity Dynamics (CBD), Department of Biology, Norwegian University of Science and Technology (NTNU), N-7491 Trondheim, Norway
| |
Collapse
|
11
|
Sheldon BC, Kruuk LEB, Alberts SC. The expanding value of long-term studies of individuals in the wild. Nat Ecol Evol 2022; 6:1799-1801. [DOI: 10.1038/s41559-022-01940-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
12
|
Plaistow SJ, Brunner FS, O’Connor M. Quantifying population and clone-specific non-linear reaction norms to food gradients in Daphnia magna. Front Ecol Evol 2022. [DOI: 10.3389/fevo.2022.982697] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Phenotypic plasticity is normally quantified as a reaction norm which details how trait expression changes across an environmental gradient. Sometime reaction norms are linear, but often reaction norms are assumed to be linear because plasticity is typically quantified as the difference in trait expression measured in two environments. This simplification limits how plastic responses vary between genotypes and may also bias the predictions of models investigating how plasticity influences a population’s ability to adapt to a changing environment. Consequently, there is a pressing need to characterize the real shape of reaction norms and their genetic variability across ecologically relevant environmental gradients. To address this knowledge gap we measured the multi-trait plastic response of 7 Daphnia magna clones from the same population across a broad resource gradient. We used a Random Regression Mixed Model approach to characterize and quantify average and clone-specific responses to resource variation. Our results demonstrate that non-linear models outperformed a linear model for all 4 of the life-history traits we measured. The plastic reaction norms of all 4 traits were similar in shape and were often best described by a non-linear asymptotic model. Clonal variation in non-linear plastic responses was detectable for 3 out of the 4 traits that we measured although the nature and magnitude of variation across the resource gradient was trait-specific. We interpret our findings with respect to the impact that plasticity has on the evolutionary potential of a population in different resource environments.
Collapse
|
13
|
Aubry LM, Williams CT. Vertebrate Phenological Plasticity: from Molecular Mechanisms to Ecological and Evolutionary Implications. Integr Comp Biol 2022; 62:958-971. [PMID: 35867980 DOI: 10.1093/icb/icac121] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2022] [Revised: 03/28/2022] [Accepted: 04/04/2022] [Indexed: 11/12/2022] Open
Abstract
Seasonal variation in the availability of essential resources is one of the most important drivers of natural selection on the phasing and duration of annually recurring life-cycle events. Shifts in seasonal timing are among the most commonly reported responses to climate change and the capacity of organisms to adjust their timing, either through phenotypic plasticity or evolution, is a critical component of resilience. Despite growing interest in documenting and forecasting the impacts of climate change on phenology, our ability to predict how individuals, populations, and species might alter their seasonal timing in response to their changing environments is constrained by limited knowledge regarding the cues animals use to adjust timing, the endogenous genetic and molecular mechanisms that transduce cues into neural and endocrine signals, and the inherent capacity of animals to alter their timing and phasing within annual cycles. Further, the fitness consequences of phenological responses are often due to biotic interactions within and across trophic levels, rather than being simple outcomes of responses to changes in the abiotic environment. Here, we review the current state of knowledge regarding the mechanisms that control seasonal timing in vertebrates, as well as the ecological and evolutionary consequences of individual, population, and species-level variation in phenological responsiveness. Understanding the causes and consequences of climate-driven phenological shifts requires combining ecological, evolutionary, and mechanistic approaches at individual, populational, and community scales. Thus, to make progress in forecasting phenological responses and demographic consequences, we need to further develop interdisciplinary networks focused on climate change science.
Collapse
Affiliation(s)
- Lise M Aubry
- Department of Fish, Wildlife, and Conservation Biology, Colorado State University, 1474 Campus Delivery, Fort Collins, CO, 80523, USA
| | - Cory T Williams
- Department of Biology, Colorado State University, 1878 Campus Delivery Fort Collins, CO 80523, USA
| |
Collapse
|
14
|
McCloy MWD, Andringa RK, Grace JK. Resilience of Avian Communities to Urbanization and Climate Change: an Integrative Review. FRONTIERS IN CONSERVATION SCIENCE 2022. [DOI: 10.3389/fcosc.2022.918873] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
The concept of ecological resilience is widely used to assess how species and ecosystems respond to external stressors but is applied infrequently at the level of the community or to chronic, ongoing disturbances. In this review, we first discuss the concept of ecological resilience and methods for quantifying resilience in ecological studies. We then synthesize existing evidence for the resilience of avian communities to climate change and urbanization, two chronic disturbances that are driving global biodiversity loss, and conclude with recommendations for future directions. We only briefly discuss the theoretical framework behind ecological resilience and species-specific responses to these two major disturbances, because numerous reviews already exist on these topics. Current research suggests strong heterogeneity in the responses and resilience of bird communities to urbanization and climate change, although community disassembly and reassembly is high following both disturbances. To advance our understanding of community resilience to these disturbances, we recommend five areas of future study (1) the development of a standardized, comprehensive community resilience index that incorporates both adaptive capacity and measures of functional diversity, (2) measurement/modeling of both community resistance and recovery in response to disturbance, (3) multi-scale and/or multi-taxa studies that include three-way interactions between plants, animals, and climate, (4) studies that incorporate interactions between disturbances, and (5) increased understanding of interactions between ecological resilience and socio-ecological dynamics. Advancement in these areas will enhance our ability to predict and respond to the rapidly accelerating effects of climate change and urbanization.
Collapse
|
15
|
Climate Change in Africa and Vegetation Response: A Bibliometric and Spatially Based Information Assessment. SUSTAINABILITY 2022. [DOI: 10.3390/su14094974] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
The impact of climate change over the coming decades will increase the likelihood of many species undergoing genetic alterations or even becoming extinct. Vegetation and belowground organisms are more vulnerable to the intensified impact of climate change due to a possible lack of genetic plasticity and limited mobility. Organisms are inter-dependable in ecosystems; hence, this study focused on the impact of climate change, examining the soil condition in Africa, vegetation responses and the overview of species’ responses to climate change through a bibliometric study and an analysis of remote sensing information. The bibliometric study examines climate change-related literature published from 1999 to 2019, collected from the Web of Science and Scopus database platforms, and this reveals an overall rapid increase in the number of climate change publications in Africa, with South Africa occupying a leading position in all the studied parameters. The spatially based information on soil moisture, temperature and the photosynthetic activities of vegetation affirmed that there is increasing amount of drought in Africa with more impact in northern, southern and eastern Africa. African countries, especially in the above-mentioned regions, need to urgently invest in support programs that will ease the impact of climate change, particularly on food security.
Collapse
|
16
|
Goldberg EE, Price T. Effects of plasticity on elevational range size and species richness. Am Nat 2022; 200:316-329. [DOI: 10.1086/720412] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
|
17
|
Hadfield JD, Reed TE. Directional selection and the evolution of breeding date in birds, revisited: Hard selection and the evolution of plasticity. Evol Lett 2022; 6:178-188. [PMID: 35386830 PMCID: PMC8966488 DOI: 10.1002/evl3.279] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2021] [Revised: 12/30/2021] [Accepted: 01/07/2022] [Indexed: 11/23/2022] Open
Abstract
The mismatch between when individuals breed and when we think they should breed has been a long-standing problem in evolutionary ecology. Price et al. is a classic theory paper in this field and is mainly cited for its most obvious result: if individuals with high nutritional condition breed early, then the advantage of breeding early may be overestimated when information on nutritional condition is absent. Price at al.'s less obvious result is that individuals, on average, are expected to breed later than the optimum. Here, we provide an explanation of their non-intuitive result in terms of hard selection, and go on to show that neither of their results are expected to hold if the relationship between breeding date and nutrition is allowed to evolve. By introducing the assumption that the advantage of breeding early is greater for individuals in high nutritional condition, we show that their most cited result can be salvaged. However, individuals, on average, are expected to breed earlier than the optimum, not later. More generally, we also show that the hard selection mechanisms that underpin these results have major implications for the evolution of plasticity: when environmental heterogeneity becomes too great, plasticity is selected against, prohibiting the evolution of generalists.
Collapse
Affiliation(s)
- Jarrod D. Hadfield
- Institute of Evolutionary Biology, School of Biological SciencesUniversity of EdinburghEdinburghEH9 3JTUK
| | - Thomas E. Reed
- School of Biological, Earth and Environmental SciencesUniversity College Cork, Distillery FieldsNorth MallCorkT23 N73KIreland
| |
Collapse
|
18
|
Stuart KC, Sherwin WB, Cardilini AP, Rollins LA. Genetics and Plasticity Are Responsible for Ecogeographical Patterns in a Recent Invasion. Front Genet 2022; 13:824424. [PMID: 35360868 PMCID: PMC8963341 DOI: 10.3389/fgene.2022.824424] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2021] [Accepted: 02/02/2022] [Indexed: 12/02/2022] Open
Abstract
Patterns of covariation between phenotype and environment are presumed to be reflective of local adaptation, and therefore translate to a meaningful influence on an individual's overall fitness within that specific environment. However, these environmentally driven patterns may be the result of numerous and interacting processes, such as genetic variation, epigenetic variation, or plastic non-heritable variation. Understanding the relative importance of different environmental variables on underlying genetic patterns and resulting phenotypes is fundamental to understanding adaptation. Invasive systems are excellent models for such investigations, given their propensity for rapid evolution. This study uses reduced representation sequencing data paired with phenotypic data to examine whether important phenotypic traits in invasive starlings (Sturnus vulgaris) within Australia appear to be highly heritable (presumably genetic) or appear to vary with environmental gradients despite underlying genetics (presumably non-heritable plasticity). We also sought to determine which environmental variables, if any, play the strongest role shaping genetic and phenotypic patterns. We determined that environmental variables-particularly elevation-play an important role in shaping allelic trends in Australian starlings and may also reinforce neutral genetic patterns resulting from historic introduction regime. We examined a range of phenotypic traits that appear to be heritable (body mass and spleen mass) or negligibly heritable (e.g. beak surface area and wing length) across the starlings' Australian range. Using SNP variants associated with each of these phenotypes, we identify key environmental variables that correlate with genetic patterns, specifically that temperature and precipitation putatively play important roles shaping phenotype in this species. Finally, we determine that overall phenotypic variation is correlated with underlying genetic variation, and that these interact positively with the level of vegetation variation within a region, suggesting that ground cover plays an important role in shaping selection and plasticity of phenotypic traits within the starlings of Australia.
Collapse
Affiliation(s)
- Katarina C. Stuart
- Evolution and Ecology Research Centre, School of Biological, Earth and Environmental Sciences, UNSW Sydney, Sydney, NSW, Australia
| | - William B. Sherwin
- Evolution and Ecology Research Centre, School of Biological, Earth and Environmental Sciences, UNSW Sydney, Sydney, NSW, Australia
| | - Adam P.A. Cardilini
- School of Life and Environmental Sciences, Deakin University, Waurn Ponds, VIC, Australia
| | - Lee A. Rollins
- Evolution and Ecology Research Centre, School of Biological, Earth and Environmental Sciences, UNSW Sydney, Sydney, NSW, Australia
| |
Collapse
|
19
|
Tempel DJ, Kramer HA, Jones GM, Gutiérrez RJ, Sawyer SC, Koltunov A, Slaton M, Tanner R, Hobart BK, Peery MZ. Population decline in California spotted owls near their southern range boundary. J Wildl Manage 2022. [DOI: 10.1002/jwmg.22168] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Douglas J. Tempel
- University of Wisconsin‐Madison 1630 Linden Drive Madison WI 53706 USA
| | - H. Anu Kramer
- University of Wisconsin‐Madison 1630 Linden Drive Madison WI 53706 USA
| | - Gavin M. Jones
- U.S. Forest Service Rocky Mountain Research Station 333 Broadway Boulevard SE Albuquerque NM 87102 USA
| | - R. J. Gutiérrez
- University of Minnesota‐St. Paul 2003 Upper Buford Circle St. Paul MN 55108 USA
| | - Sarah C. Sawyer
- U.S. Forest Service Region 5 1323 Club Drive Vallejo CA 94592 USA
| | - Alexander Koltunov
- University of California‐Davis Center for Spatial Technologies and Remote Sensing (CSTARS) Davis CA 95616 USA
| | - Michèle Slaton
- U.S. Forest Service Region 5, Remote Sensing Laboratory 3237 Peacekeeper Way, Suite 201 McClellan CA 95652 USA
| | - Richard Tanner
- Tanner Environmental Services PO Box 1254 Alameda CA 94501 USA
| | - Brendan K. Hobart
- University of Wisconsin‐Madison 1630 Linden Drive Madison WI 53706 USA
| | | |
Collapse
|
20
|
Machida WS, Tidon R, Klaczko J. Wing plastic response to temperature variation in two distantly related Neotropical Drosophila species (Diptera, Drosophilidae). CAN J ZOOL 2022. [DOI: 10.1139/cjz-2021-0099] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Phenotypic plasticity has been described for morphological and life-history traits in many organisms. In Drosophila, temperature drives phenotypic change in several traits, but few Neotropical species have been studied and whether the phenotypic variation associated with plasticity is adaptive remains unclear. Here, we studied the phenotypic response to temperature variation in the distantly related Neotropical species Drosophila mercatorum Patterson and Wheeler, 1942 and Drosophila willistoni Sturtevant, 1916. We evaluate if wing shape variation follows that observed in the Neotropical species Drosophila cardini Sturtevant, 1916: round wings at lower temperatures and narrower wings at higher temperatures. The variation in egg–adult development time and in wing size, shape, and allometry was described using reaction norms and geometric morphometrics. In both species, development time and wing size decreased with increasing temperature and wing allometry showed that size explained ≈10% of the shape variation. Wing shape, however, exhibited contrasting responses. At higher temperatures, D. mercatorum developed slightly slender wings, following the pattern previously found for D. cardini, whereas D. willistoni developed plumper and shorter wings, supporting previous studies on Drosophila melanogaster Meigen, 1830. We conclude that all traits studied here were influenced by temperature, and that wing shape seems also to be influenced by phylogeny.
Collapse
Affiliation(s)
- Waira S. Machida
- Graduate Program on Ecology, Instituto de Ciências Biológicas, Universidade de Brasília, 70910-900, Brasília, Federal District, Brazil
| | - Rosana Tidon
- Departamento de Genética e Morfologia, Universidade de Brasília, 70910-900, Brasília, Federal District, Brazil
| | - Julia Klaczko
- Departamento de Ciências Fisiológicas, Universidade de Brasília, 70910-900, Brasília, Federal District, Brazil
| |
Collapse
|
21
|
Swift K, Williams E, Marzluff J. An observational analysis of Canada Jay (Perisoreus canadensis) foraging and caching ecology in Denali National Park and Preserve, Alaska, USA. CAN J ZOOL 2022. [DOI: 10.1139/cjz-2021-0053] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Arctic and subarctic wildlife are among the most vulnerable species to climate change. Canada Jays (Perisoreus canadensis (Linnaeus, 1776)) are generalist residents of northern boreal forests and scatter-hoard food to insulate against food scarcity during winter. Unlike most scatter-hoarders, however, Canada Jays primarily cache perishable food, rendering their caches more susceptible to climate change induced degradation and loss. Here we use a mostly noninvasive approach to document Canada Jay foraging ecology among a population in interior Alaska, USA, including the types of food acquired, foraging and caching rates, and cache longevity and loss. We also tested for associations between foraging and caching rates with reproductive metrics to assess possible relationships among food and productivity. We found that Canada Jays have a varied diet that changed seasonally, and responded to a record-setting warm spring by directing foraging efforts away from cache recovery and towards the emergence of fresh food. We did not find evidence for relationships between foraging and caching rate with reproductive output, possibly owing to small sample sizes. We found that caches were recovered quickly (<4 weeks) and frequently lost to conspecific and heterospecific competitors. Our study suggests that Canada Jays may be better poised to respond to changes in cache integrity and food availability than has been previously recognized.
Collapse
Affiliation(s)
- K.N. Swift
- School of Environmental and Forest Sciences, University of Washington, Box 352100, Seattle, WA 98195, USA
| | - E.J. Williams
- Department of Biology, Georgetown University, 37th and O Streets, NW, Washington, DC 20057, USA
| | - J.M. Marzluff
- School of Environmental and Forest Sciences, University of Washington, Box 352100, Seattle, WA 98195, USA
| |
Collapse
|
22
|
Chevin L, Gompert Z, Nosil P. Frequency dependence and the predictability of evolution in a changing environment. Evol Lett 2021; 6:21-33. [PMID: 35127135 PMCID: PMC8802243 DOI: 10.1002/evl3.266] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2021] [Revised: 10/28/2021] [Accepted: 11/22/2021] [Indexed: 11/09/2022] Open
Abstract
Frequency‐dependent (FD) selection, whereby fitness and selection depend on the genetic or phenotypic composition of the population, arises in numerous ecological contexts (competition, mate choice, crypsis, mimicry, etc.) and can strongly impact evolutionary dynamics. In particular, negative frequency‐dependent selection (NFDS) is well known for its ability to potentially maintain stable polymorphisms, but it has also been invoked as a source of persistent, predictable frequency fluctuations. However, the conditions under which such fluctuations persist are not entirely clear. In particular, previous work rarely considered that FD is unlikely to be the sole driver of evolutionary dynamics when it occurs, because most environments are not static but instead change dynamically over time. Here, we investigate how FD interacts with a temporally fluctuating environment to shape the dynamics of population genetic change. We show that a simple metric introduced by Lewontin, the slope of frequency change against frequency near equilibrium, works as a key criterion for distinguishing microevolutionary outcomes, even in a changing environment. When this slope D is between 0 and –2 (consistent with the empirical examples we review), substantial fluctuations would not persist on their own in a large population occupying a constant environment, but they can still be maintained indefinitely as quasi‐cycles fueled by environmental noise or genetic drift. However, such moderate NFDS buffers and temporally shifts evolutionary responses to periodic environments (e.g., seasonality). Stronger FD, with slope D < –2, can produce self‐sustained cycles that may overwhelm responses to a changing environment, or even chaos that fundamentally limits predictability. This diversity of expected outcomes, together with the empirical evidence for both FD and environment‐dependent selection, suggests that the interplay of internal dynamics with external forcing should be investigated more systematically to reach a better understanding and prediction of evolution.
Collapse
Affiliation(s)
| | | | - Patrik Nosil
- CEFE, Univ Montpellier, CNRS, EPHE, IRD Montpellier 34090 France
- Department of Biology Utah State University Logan Utah 84322 USA
| |
Collapse
|
23
|
Nägeli M, Scherler P, Witczak S, Catitti B, Aebischer A, van Bergen V, Kormann U, Grüebler MU. Weather and food availability additively affect reproductive output in an expanding raptor population. Oecologia 2021; 198:125-138. [PMID: 34797425 PMCID: PMC8803806 DOI: 10.1007/s00442-021-05076-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2021] [Accepted: 11/01/2021] [Indexed: 11/24/2022]
Abstract
The joint effects of interacting environmental factors on key demographic parameters can exacerbate or mitigate the separate factors’ effects on population dynamics. Given ongoing changes in climate and land use, assessing interactions between weather and food availability on reproductive performance is crucial to understand and forecast population dynamics. By conducting a feeding experiment in 4 years with different weather conditions, we were able to disentangle the effects of weather, food availability and their interactions on reproductive parameters in an expanding population of the red kite (Milvus milvus), a conservation-relevant raptor known to be supported by anthropogenic feeding. Brood loss occurred mainly during the incubation phase, and was associated with rainfall and low food availability. In contrast, brood loss during the nestling phase occurred mostly due to low temperatures. Survival of last-hatched nestlings and nestling development was enhanced by food supplementation and reduced by adverse weather conditions. However, we found no support for interactive effects of weather and food availability, suggesting that these factors affect reproduction of red kites additively. The results not only suggest that food-weather interactions are prevented by parental life-history trade-offs, but that food availability and weather conditions are crucial separate determinants of reproductive output, and thus population productivity. Overall, our results suggest that the observed increase in spring temperatures and enhanced anthropogenic food resources have contributed to the elevational expansion and the growth of the study population during the last decades.
Collapse
Affiliation(s)
- Melanie Nägeli
- Swiss Ornithological Institute, Seerose 1, 6204, Sempach, Switzerland.,Department of Evolutionary Biology and Environmental Studies, University of Zurich, Wintherthurerstrasse 190, 8057, Zurich, Switzerland
| | - Patrick Scherler
- Swiss Ornithological Institute, Seerose 1, 6204, Sempach, Switzerland. .,Department of Evolutionary Biology and Environmental Studies, University of Zurich, Wintherthurerstrasse 190, 8057, Zurich, Switzerland.
| | - Stephanie Witczak
- Swiss Ornithological Institute, Seerose 1, 6204, Sempach, Switzerland.,Department of Evolutionary Biology and Environmental Studies, University of Zurich, Wintherthurerstrasse 190, 8057, Zurich, Switzerland
| | - Benedetta Catitti
- Swiss Ornithological Institute, Seerose 1, 6204, Sempach, Switzerland.,Department of Evolutionary Biology and Environmental Studies, University of Zurich, Wintherthurerstrasse 190, 8057, Zurich, Switzerland
| | | | | | - Urs Kormann
- Swiss Ornithological Institute, Seerose 1, 6204, Sempach, Switzerland
| | - Martin U Grüebler
- Swiss Ornithological Institute, Seerose 1, 6204, Sempach, Switzerland
| |
Collapse
|
24
|
Birnie‐Gauvin K, Koed A, Aarestrup K. Repeatability of migratory behaviour suggests trade‐off between size and survival in a wild iteroparous salmonid. Funct Ecol 2021. [DOI: 10.1111/1365-2435.13917] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Kim Birnie‐Gauvin
- Section for Freshwater Fisheries and Ecology National Institute of Aquatic ResourcesTechnical University of Denmark Silkeborg Denmark
| | - Anders Koed
- Section for Freshwater Fisheries and Ecology National Institute of Aquatic ResourcesTechnical University of Denmark Silkeborg Denmark
| | - Kim Aarestrup
- Section for Freshwater Fisheries and Ecology National Institute of Aquatic ResourcesTechnical University of Denmark Silkeborg Denmark
| |
Collapse
|
25
|
Individual Nest Site Preferences Do Not Explain Upslope Population Shifts of a Secondary Cavity-Nesting Species. Animals (Basel) 2021; 11:ani11082457. [PMID: 34438914 PMCID: PMC8388740 DOI: 10.3390/ani11082457] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2021] [Revised: 08/18/2021] [Accepted: 08/19/2021] [Indexed: 11/28/2022] Open
Abstract
Simple Summary Environmental changes such as climate change have affected wildlife species behavior and geographic ranges globally. We analyzed nesting data of western bluebirds to determine whether the link between geographic range shifts of a western bluebird population in New Mexico, USA is due to individual adaptations or changes occurring at a larger scale. We looked at location data of marked and recaptured nestlings and adults that nested within our study area. We found that individual choices have no impact on the geographic range shift being observed in this population, suggesting that population-level processes, such as emigration and immigration, may be the main cause of these shifts. Abstract Geographic ranges of plants and animals are shifting due to environmental change. While some species are shifting towards the poles and upslope in elevation, the processes leading to these patterns are not well known. We analyzed 22 years of western bluebird (Sialia mexicana) data from a large nest box network in northern New Mexico at elevations between 1860 m and 2750 m. This population has shifted to higher elevations over time, but whether this is due to changes in nesting behavior and preference for higher elevation within the population or driven by immigration is unclear. We banded adults and nestlings from nest boxes and examined nesting location and elevation for individual birds captured two or more times. Most recaptured birds nested at the same nest boxes in subsequent years, and the number of birds that moved upslope did not significantly differ from the number that moved downslope. Fledglings moved greater distances and elevations than adults, but these movements were not upslope specific. Female fledglings showed greater changes in elevation and distance compared to male fledglings, but again, movements were not consistently upslope. The upslope shift in this population may be due to birds immigrating into the population and not from changes in individual nesting behavior.
Collapse
|
26
|
Advancement in long-distance bird migration through individual plasticity in departure. Nat Commun 2021; 12:4780. [PMID: 34362899 PMCID: PMC8346503 DOI: 10.1038/s41467-021-25022-7] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2020] [Accepted: 07/08/2021] [Indexed: 11/09/2022] Open
Abstract
Globally, bird migration is occurring earlier in the year, consistent with climate-related changes in breeding resources. Although often attributed to phenotypic plasticity, there is no clear demonstration of long-term population advancement in avian migration through individual plasticity. Using direct observations of bar-tailed godwits (Limosa lapponica) departing New Zealand on a 16,000-km journey to Alaska, we show that migration advanced by six days during 2008-2020, and that within-individual advancement was sufficient to explain this population-level change. However, in individuals tracked for the entire migration (50 total tracks of 36 individuals), earlier departure did not lead to earlier arrival or breeding in Alaska, due to prolonged stopovers in Asia. Moreover, changes in breeding-site phenology varied across Alaska, but were not reflected in within-population differences in advancement of migratory departure. We demonstrate that plastic responses can drive population-level changes in timing of long-distance migration, but also that behavioral and environmental constraints en route may yet limit adaptive responses to global change.
Collapse
|
27
|
Corregidor‐Castro A, Jones OR. The effect of nest temperature on growth and survival in juvenile Great Tits Parus major. Ecol Evol 2021; 11:7346-7353. [PMID: 34188817 PMCID: PMC8216922 DOI: 10.1002/ece3.7565] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2021] [Revised: 03/22/2021] [Accepted: 03/29/2021] [Indexed: 11/10/2022] Open
Abstract
For birds, maintaining an optimal nest temperature is critical for early-life growth and development. Temperatures deviating from this optimum can affect nestling growth and fledging success with potential consequences on survival and lifetime reproductive success. It is therefore particularly important to understand these effects in relation to projected temperature changes associated with climate change.Targets set by the 2015 Paris Agreement aim to limit temperature increases to 2°C, and, with this in mind, we carried out an experiment in 2017 and 2018 where we applied a treatment that increased Great Tit Parus major nest temperature by approximately this magnitude (achieving an increase of 1.6°C, relative to the control) during the period from hatching to fledging to estimate how small temperature differences might affect nestling body size and weight at fledging and fledging success.We recorded hatching and fledging success and measured skeletal size (tarsus length) and body mass at days 5, 7, 10, and 15 posthatch in nestlings from two groups of nest boxes: control and heated (+1.6°C).Our results show that nestlings in heated nest boxes were 1.6% smaller in skeletal size at fledging than those in the cooler control nests, indicating lower growth rates in heated boxes, and that their weight was, in addition, 3.3% lower.These results suggest that even fairly small changes in temperature can influence phenotype and postfledging survival in cavity-nesting birds. This has the potential to affect the population dynamics of these birds in the face of ongoing climatic change, as individuals of reduced size in colder winters may suffer from decreased fitness.
Collapse
Affiliation(s)
| | - Owen R. Jones
- Department of BiologyUniversity of Southern DenmarkOdense MDenmark
- Interdisciplinary Center on Population Dynamics (CPop)University of Southern DenmarkOdense MDenmark
| |
Collapse
|
28
|
Keogan K, Lewis S, Howells RJ, Newell MA, Harris MP, Burthe S, Phillips RA, Wanless S, Phillimore AB, Daunt F. No evidence for fitness signatures consistent with increasing trophic mismatch over 30 years in a population of European shag Phalacrocorax aristotelis. J Anim Ecol 2021; 90:432-446. [PMID: 33070317 PMCID: PMC7894563 DOI: 10.1111/1365-2656.13376] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2019] [Accepted: 08/10/2020] [Indexed: 02/06/2023]
Abstract
As temperatures rise, timing of reproduction is changing at different rates across trophic levels, potentially resulting in asynchrony between consumers and their resources. The match-mismatch hypothesis (MMH) suggests that trophic asynchrony will have negative impacts on average productivity of consumers. It is also thought to lead to selection on timing of breeding, as the most asynchronous individuals will show the greatest reductions in fitness. Using a 30-year individual-level dataset of breeding phenology and success from a population of European shags on the Isle of May, Scotland, we tested a series of predictions consistent with the hypothesis that fitness impacts of trophic asynchrony are increasing. These predictions quantified changes in average annual breeding success and strength of selection on timing of breeding, over time and in relation to rising sea surface temperature (SST) and diet composition. Annual average (population) breeding success was negatively correlated with average lay date yet showed no trend over time, or in relation to increasing SST or the proportion of principal prey in the diet, as would be expected if trophic mismatch was increasing. At the individual level, we found evidence for stabilising selection and directional selection for earlier breeding, although the earliest birds were not the most productive. However, selection for earlier laying did not strengthen over time, or in relation to SST or slope of the seasonal shift in diet from principal to secondary prey. We found that the optimum lay date advanced by almost 4 weeks during the study, and that the population mean lay date tracked this shift. Our results indicate that average performance correlates with absolute timing of breeding of the population, and there is selection for earlier laying at the individual level. However, we found no fitness signatures of a change in the impact of climate-induced trophic mismatch, and evidence that shags are tracking long-term shifts in optimum timing. This suggests that if asynchrony is present in this system, breeding success is not impacted. Our approach highlights the advantages of examining variation at both population and individual levels when assessing evidence for fitness impacts of trophic asynchrony.
Collapse
Affiliation(s)
- Katharine Keogan
- Institute of Evolutionary BiologyUniversity of EdinburghAshworth LaboratoriesEdinburghUK
- Marine Scotland ScienceMarine LaboratoryAberdeenUK
| | - Sue Lewis
- Institute of Evolutionary BiologyUniversity of EdinburghAshworth LaboratoriesEdinburghUK
- UK Centre for Ecology & HydrologyPenicuikUK
| | - Richard J. Howells
- Marine Scotland ScienceMarine LaboratoryAberdeenUK
- UK Centre for Ecology & HydrologyPenicuikUK
| | | | | | | | | | | | - Albert B. Phillimore
- Institute of Evolutionary BiologyUniversity of EdinburghAshworth LaboratoriesEdinburghUK
| | | |
Collapse
|
29
|
Sauve D, Friesen VL, Charmantier A. The Effects of Weather on Avian Growth and Implications for Adaptation to Climate Change. Front Ecol Evol 2021. [DOI: 10.3389/fevo.2021.569741] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
Climate change is forecasted to generate a range of evolutionary changes and plastic responses. One important aspect of avian responses to climate change is how weather conditions may change nestling growth and development. Early life growth is sensitive to environmental effects and can potentially have long-lasting effects on adult phenotypes and fitness. A detailed understanding of both how and when weather conditions affect the entire growth trajectory of a nestling may help predict population changes in phenotypes and demography under climate change. This review covers three main topics on the impacts of weather variation (air temperature, rainfall, wind speed, solar radiation) on nestling growth. Firstly, we highlight why understanding the effects of weather on nestling growth might be important in understanding adaptation to, and population persistence in, environments altered by climate change. Secondly, we review the documented effects of weather variation on nestling growth curves. We investigate both altricial and precocial species, but we find a limited number of studies on precocial species in the wild. Increasing temperatures and rainfall have mixed effects on nestling growth, while increasing windspeeds tend to have negative impacts on the growth rate of open cup nesting species. Thirdly, we discuss how weather variation might affect the evolution of nestling growth traits and suggest that more estimates of the inheritance of and selection acting on growth traits in natural settings are needed to make evolutionary predictions. We suggest that predictions will be improved by considering concurrently changing selection pressures like urbanization. The importance of adaptive plastic or evolutionary changes in growth may depend on where a species or population is located geographically and the species’ life-history. Detailed characterization of the effects of weather on growth patterns will help answer whether variation in avian growth frequently plays a role in adaption to climate change.
Collapse
|
30
|
Samplonius JM, Atkinson A, Hassall C, Keogan K, Thackeray SJ, Assmann JJ, Burgess MD, Johansson J, Macphie KH, Pearce-Higgins JW, Simmonds EG, Varpe Ø, Weir JC, Childs DZ, Cole EF, Daunt F, Hart T, Lewis OT, Pettorelli N, Sheldon BC, Phillimore AB. Strengthening the evidence base for temperature-mediated phenological asynchrony and its impacts. Nat Ecol Evol 2020; 5:155-164. [PMID: 33318690 DOI: 10.1038/s41559-020-01357-0] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2020] [Accepted: 10/23/2020] [Indexed: 11/10/2022]
Abstract
Climate warming has caused the seasonal timing of many components of ecological food chains to advance. In the context of trophic interactions, the match-mismatch hypothesis postulates that differential shifts can lead to phenological asynchrony with negative impacts for consumers. However, at present there has been no consistent analysis of the links between temperature change, phenological asynchrony and individual-to-population-level impacts across taxa, trophic levels and biomes at a global scale. Here, we propose five criteria that all need to be met to demonstrate that temperature-mediated trophic asynchrony poses a growing risk to consumers. We conduct a literature review of 109 papers studying 129 taxa, and find that all five criteria are assessed for only two taxa, with the majority of taxa only having one or two criteria assessed. Crucially, nearly every study was conducted in Europe or North America, and most studies were on terrestrial secondary consumers. We thus lack a robust evidence base from which to draw general conclusions about the risk that climate-mediated trophic asynchrony may pose to populations worldwide.
Collapse
Affiliation(s)
- Jelmer M Samplonius
- Institute for Evolutionary Biology, The University of Edinburgh, Edinburgh, UK.
| | | | - Christopher Hassall
- School of Biology, Faculty of Biological Sciences, University of Leeds, Leeds, UK
| | - Katharine Keogan
- Institute for Evolutionary Biology, The University of Edinburgh, Edinburgh, UK.,Marine Scotland Science, Marine Laboratory, Aberdeen, UK
| | | | | | - Malcolm D Burgess
- RSPB Centre for Conservation Science, Sandy, UK.,Centre for Research in Animal Behaviour, University of Exeter, Exeter, UK
| | | | - Kirsty H Macphie
- Institute for Evolutionary Biology, The University of Edinburgh, Edinburgh, UK
| | - James W Pearce-Higgins
- British Trust for Ornithology, Thetford, UK.,Conservation Science Group, Department of Zoology, University of Cambridge, Cambridge, UK
| | - Emily G Simmonds
- Department of Mathematical Sciences and Centre for Biodiversity Dynamics, Norwegian University of Science and Technology (NTNU), Trondheim, Norway
| | - Øystein Varpe
- Department of Biological Sciences, University of Bergen, Bergen, Norway.,Norwegian Institute for Nature Research, Bergen, Norway
| | - Jamie C Weir
- Institute for Evolutionary Biology, The University of Edinburgh, Edinburgh, UK
| | - Dylan Z Childs
- Department of Animal and Plant Sciences, University of Sheffield, Sheffield, UK
| | - Ella F Cole
- Department of Zoology, University of Oxford, Oxford, UK
| | | | - Tom Hart
- Department of Zoology, University of Oxford, Oxford, UK
| | - Owen T Lewis
- Department of Zoology, University of Oxford, Oxford, UK
| | | | - Ben C Sheldon
- Department of Zoology, University of Oxford, Oxford, UK
| | - Albert B Phillimore
- Institute for Evolutionary Biology, The University of Edinburgh, Edinburgh, UK
| |
Collapse
|
31
|
Klausmeier CA, Osmond MM, Kremer CT, Litchman E. Ecological limits to evolutionary rescue. Philos Trans R Soc Lond B Biol Sci 2020; 375:20190453. [PMID: 33131439 DOI: 10.1098/rstb.2019.0453] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Environments change, for both natural and anthropogenic reasons, which can threaten species persistence. Evolutionary adaptation is a potentially powerful mechanism to allow species to persist in these changing environments. To determine the conditions under which adaptation will prevent extinction (evolutionary rescue), classic quantitative genetics models have assumed a constantly changing environment. They predict that species traits will track a moving environmental optimum with a lag that approaches a constant. If fitness is negative at this lag, the species will go extinct. There have been many elaborations of these models incorporating increased genetic realism. Here, we review and explore the consequences of four ecological complications: non-quadratic fitness functions, interacting density- and trait-dependence, species interactions and fundamental limits to adaptation. We show that non-quadratic fitness functions can result in evolutionary tipping points and existential crises, as can the interaction between density- and trait-dependent mortality. We then review the literature on how interspecific interactions affect adaptation and persistence. Finally, we suggest an alternative theoretical framework that considers bounded environmental change and fundamental limits to adaptation. A research programme that combines theory and experiments and integrates across organizational scales will be needed to predict whether adaptation will prevent species extinction in changing environments. This article is part of the theme issue 'Integrative research perspectives on marine conservation'.
Collapse
Affiliation(s)
- Christopher A Klausmeier
- W. K. Kellogg Biological Station, Michigan State University, 3700 East Gull Lake Drive, Hickory Corners, MI 49060, USA.,Department of Plant Biology, Michigan State University, East Lansing, MI, USA.,Department of Integrative Biology, Michigan State University, East Lansing, MI, USA.,Program in Ecology, Evolution and Behavior, Michigan State University, East Lansing, MI, USA
| | - Matthew M Osmond
- Center for Population Biology, University of California - Davis, Davis, CA, USA
| | - Colin T Kremer
- W. K. Kellogg Biological Station, Michigan State University, 3700 East Gull Lake Drive, Hickory Corners, MI 49060, USA
| | - Elena Litchman
- W. K. Kellogg Biological Station, Michigan State University, 3700 East Gull Lake Drive, Hickory Corners, MI 49060, USA.,Department of Integrative Biology, Michigan State University, East Lansing, MI, USA.,Program in Ecology, Evolution and Behavior, Michigan State University, East Lansing, MI, USA
| |
Collapse
|
32
|
Gangoso L, Viana DS, Dokter AM, Shamoun‐Baranes J, Figuerola J, Barbosa SA, Bouten W. Cascading effects of climate variability on the breeding success of an edge population of an apex predator. J Anim Ecol 2020; 89:2631-2643. [PMID: 33439490 PMCID: PMC7692887 DOI: 10.1111/1365-2656.13304] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2019] [Accepted: 06/16/2020] [Indexed: 01/13/2023]
Abstract
Large-scale environmental forces can influence biodiversity at different levels of biological organization. Climate, in particular, is often associated with species distributions and diversity gradients. However, its mechanistic link to population dynamics is still poorly understood. Here, we unravelled the full mechanistic path by which a climatic driver, the Atlantic trade winds, determines the viability of a bird population. We monitored the breeding population of Eleonora's falcons in the Canary Islands for over a decade (2007-2017) and integrated different methods and data to reconstruct how the availability of their prey (migratory birds) is regulated by trade winds. We tracked foraging movements of breeding adults using GPS, monitored departure of migratory birds using weather radar and simulated their migration trajectories using an individual-based, spatially explicit model. We demonstrate that regional easterly winds regulate the flux of migratory birds that is available to hunting falcons, determining food availability for their chicks and consequent breeding success. By reconstructing how migratory birds are pushed towards the Canary Islands by trade winds, we explain most of the variation (up to 86%) in annual productivity for over a decade. This study unequivocally illustrates how a climatic driver can influence local-scale demographic processes while providing novel evidence of wind as a major determinant of population fitness in a top predator.
Collapse
Affiliation(s)
- Laura Gangoso
- Institute for Biodiversity and Ecosystem DynamicsUniversity of AmsterdamAmsterdamThe Netherlands
- Estación Biológica de DoñanaCSICSevillaSpain
| | - Duarte S. Viana
- German Center for Integrative Biodiversity Research (iDiv)Halle‐Jena‐LeipzigLeipzigGermany
| | | | - Judy Shamoun‐Baranes
- Institute for Biodiversity and Ecosystem DynamicsUniversity of AmsterdamAmsterdamThe Netherlands
| | | | | | - Willem Bouten
- Institute for Biodiversity and Ecosystem DynamicsUniversity of AmsterdamAmsterdamThe Netherlands
| |
Collapse
|
33
|
Bonamour S, Chevin LM, Réale D, Teplitsky C, Charmantier A. Age-dependent phenological plasticity in a wild bird. J Anim Ecol 2020; 89:2733-2741. [PMID: 32896921 DOI: 10.1111/1365-2656.13337] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2019] [Accepted: 07/27/2020] [Indexed: 12/13/2022]
Abstract
Life-history traits are often plastic in response to environmental factors such as temperature or precipitation, and they also vary with age in many species. Trait variation during the lifetime could thus be partly driven by age-dependent plasticity in these traits. We study whether plasticity of a phenological trait-the egg-laying date-with respect to spring temperature, varies with age, and explore whether this variation relates to changes in breeding success throughout the life cycle. We use data from a four-decade long-term monitoring of a wild population of blue tits in Corsica, to estimate age-dependent plasticity of reproductive phenology and annual reproductive success. We show that both laying date plasticity and annual reproductive success vary with age: young and old females are less plastic, and fledge fewer offspring, than middle-age females. Furthermore, in contrast to young and prime-age females, in old females fledging success does not depend on laying date. Phenological plasticity is a major mechanism for coping with rapid environmental variation. Our results suggest that understanding its role in adaptation to climate change and population persistence requires integrating the age structure of the population.
Collapse
Affiliation(s)
- Suzanne Bonamour
- CEFE, Univ Montpellier, CNRS, EPHE, IRD, Univ Paul Valéry Montpellier 3, Montpellier, France
| | - Luis-Miguel Chevin
- CEFE, Univ Montpellier, CNRS, EPHE, IRD, Univ Paul Valéry Montpellier 3, Montpellier, France
| | - Denis Réale
- Département des Sciences Biologiques, Université du Québec à Montréal, Montreal, QC, Canada
| | - Céline Teplitsky
- CEFE, Univ Montpellier, CNRS, EPHE, IRD, Univ Paul Valéry Montpellier 3, Montpellier, France
| | - Anne Charmantier
- CEFE, Univ Montpellier, CNRS, EPHE, IRD, Univ Paul Valéry Montpellier 3, Montpellier, France
| |
Collapse
|
34
|
Simmonds EG, Cole EF, Sheldon BC, Coulson T. Phenological asynchrony: a ticking time‐bomb for seemingly stable populations? Ecol Lett 2020; 23:1766-1775. [DOI: 10.1111/ele.13603] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2020] [Revised: 06/29/2020] [Accepted: 08/11/2020] [Indexed: 01/02/2023]
Affiliation(s)
- Emily G. Simmonds
- Department of Zoology Edward Grey InstituteUniversity of Oxford OxfordOX1 3SZUK
- Department of Mathematical Sciences and Centre for Biodiversity Dynamics Norwegian University of Science and Technology (NTNU) Trondheim Norway
| | - Ella F. Cole
- Department of Zoology Edward Grey InstituteUniversity of Oxford OxfordOX1 3SZUK
| | - Ben C. Sheldon
- Department of Zoology Edward Grey InstituteUniversity of Oxford OxfordOX1 3SZUK
| | - Tim Coulson
- Department of Zoology Edward Grey InstituteUniversity of Oxford OxfordOX1 3SZUK
| |
Collapse
|
35
|
Anderson J, Song BH. Plant adaptation to climate change - Where are we? JOURNAL OF SYSTEMATICS AND EVOLUTION 2020; 58:533-545. [PMID: 33584833 PMCID: PMC7875155 DOI: 10.1111/jse.12649] [Citation(s) in RCA: 59] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/08/2023]
Abstract
Climate change poses critical challenges for population persistence in natural communities, agriculture and environmental sustainability, and food security. In this review, we discuss recent progress in climatic adaptation in plants. We evaluate whether climate change exerts novel selection and disrupts local adaptation, whether gene flow can facilitate adaptive responses to climate change, and if adaptive phenotypic plasticity could sustain populations in the short term. Furthermore, we discuss how climate change influences species interactions. Through a more in-depth understanding of these eco-evolutionary dynamics, we will increase our capacity to predict the adaptive potential of plants under climate change. In addition, we review studies that dissect the genetic basis of plant adaptation to climate change. Finally, we highlight key research gaps, ranging from validating gene function, to elucidating molecular mechanisms, expanding research systems from model species to other natural species, testing the fitness consequences of alleles in natural environments, and designing multifactorial studies that more closely reflect the complex and interactive effects of multiple climate change factors. By leveraging interdisciplinary tools (e.g., cutting-edge omics toolkits, novel ecological strategies, newly-developed genome editing technology), researchers can more accurately predict the probability that species can persist through this rapid and intense period of environmental change, as well as cultivate crops to withstand climate change, and conserve biodiversity in natural systems.
Collapse
Affiliation(s)
- Jill Anderson
- Department of Genetics, University of Georgia, Athens, GA 30602, USA
- Authors for correspondence. Bao-Hua Song. ; Jill Anderson.
| | - Bao-Hua Song
- Department of Biological Sciences, University of North Carolina at Charlotte, Charlotte, NC 28223, USA
- Authors for correspondence. Bao-Hua Song. ; Jill Anderson.
| |
Collapse
|
36
|
Leung C, Rescan M, Grulois D, Chevin LM. Reduced phenotypic plasticity evolves in less predictable environments. Ecol Lett 2020; 23:1664-1672. [PMID: 32869431 PMCID: PMC7754491 DOI: 10.1111/ele.13598] [Citation(s) in RCA: 48] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2020] [Revised: 07/22/2020] [Accepted: 08/06/2020] [Indexed: 01/16/2023]
Abstract
Phenotypic plasticity is a prominent mechanism for coping with variable environments, and a key determinant of extinction risk. Evolutionary theory predicts that phenotypic plasticity should evolve to lower levels in environments that fluctuate less predictably, because they induce mismatches between plastic responses and selective pressures. However, this prediction is difficult to test in nature, where environmental predictability is not controlled. Here, we exposed 32 lines of the halotolerant microalga Dunaliella salina to ecologically realistic, randomly fluctuating salinity, with varying levels of predictability, for 500 generations. We found that morphological plasticity evolved to lower degrees in lines that experienced less predictable environments. Evolution of plasticity mostly concerned phases with slow population growth, rather than the exponential phase where microbes are typically phenotyped. This study underlines that long‐term experiments with complex patterns of environmental change are needed to test theories about population responses to altered environmental predictability, as currently observed under climate change.
Collapse
Affiliation(s)
- Christelle Leung
- CEFE, Université de Montpellier, CNRS, EPHE, IRD, Université Paul Valéry Montpellier 3, Montpellier, France
| | - Marie Rescan
- CEFE, Université de Montpellier, CNRS, EPHE, IRD, Université Paul Valéry Montpellier 3, Montpellier, France
| | - Daphné Grulois
- CEFE, Université de Montpellier, CNRS, EPHE, IRD, Université Paul Valéry Montpellier 3, Montpellier, France
| | - Luis-Miguel Chevin
- CEFE, Université de Montpellier, CNRS, EPHE, IRD, Université Paul Valéry Montpellier 3, Montpellier, France
| |
Collapse
|
37
|
Bright Ross JG, Newman C, Buesching CD, Macdonald DW. What lies beneath? Population dynamics conceal pace-of-life and sex ratio variation, with implications for resilience to environmental change. GLOBAL CHANGE BIOLOGY 2020; 26:3307-3324. [PMID: 32243650 DOI: 10.1111/gcb.15106] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/13/2020] [Accepted: 03/07/2020] [Indexed: 06/11/2023]
Abstract
Life-history and pace-of-life syndrome theory predict that populations are comprised of individuals exhibiting different reproductive schedules and associated behavioural and physiological traits, optimized to prevailing social and environmental factors. Changing weather and social conditions provide in situ cues altering this life-history optimality; nevertheless, few studies have considered how tactical, sex-specific plasticity over an individual's lifespan varies in wild populations and influences population resilience. We examined the drivers of individual life-history schedules using 31 years of trapping data and 28 years of pedigree for the European badger (Meles meles L.), a long-lived, iteroparous, polygynandrous mammal that exhibits heterochrony in the timing of endocrinological puberty in male cubs. Our top model for the effects of environmental (social and weather) conditions during a badger's first year on pace-of-life explained <10% of variance in the ratio of fertility to age at first reproduction (F/α) and lifetime reproductive success. Conversely, sex ratio (SR) and sex-specific density explained 52.8% (males) and 91.0% (females) of variance in adult F/α ratios relative to the long-term population median F/α. Weather primarily affected the sexes at different life-history stages, with energy constraints limiting the onset of male reproduction but playing a large role in female strategic energy allocation, particularly in relation to ongoing mean temperature increases. Furthermore, the effects of social factors on age of first reproduction and year-to-year reproductive success covaried differently with sex, likely due to sex-specific responses to potential mate availability. For females, low same-sex densities favoured early primiparity; for males, instead, up to 10% of yearlings successfully mated at high same-sex densities. We observed substantial SR dynamism relating to differential mortality of life-history strategists within the population, and propose that shifting ratios of 'fast' and 'slow' life-history strategists contribute substantially to population dynamics and resilience to changing conditions.
Collapse
Affiliation(s)
- Julius G Bright Ross
- Wildlife Conservation Research Unit, The Recanati-Kaplan Centre, Department of Zoology, University of Oxford, Oxford, UK
| | - Chris Newman
- Wildlife Conservation Research Unit, The Recanati-Kaplan Centre, Department of Zoology, University of Oxford, Oxford, UK
| | - Christina D Buesching
- Wildlife Conservation Research Unit, The Recanati-Kaplan Centre, Department of Zoology, University of Oxford, Oxford, UK
| | - David W Macdonald
- Wildlife Conservation Research Unit, The Recanati-Kaplan Centre, Department of Zoology, University of Oxford, Oxford, UK
| |
Collapse
|
38
|
Gauzere J, Teuf B, Davi H, Chevin LM, Caignard T, Leys B, Delzon S, Ronce O, Chuine I. Where is the optimum? Predicting the variation of selection along climatic gradients and the adaptive value of plasticity. A case study on tree phenology. Evol Lett 2020; 4:109-123. [PMID: 32313687 PMCID: PMC7156102 DOI: 10.1002/evl3.160] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022] Open
Abstract
Many theoretical models predict when genetic evolution and phenotypic plasticity allow adaptation to changing environmental conditions. These models generally assume stabilizing selection around some optimal phenotype. We however often ignore how optimal phenotypes change with the environment, which limit our understanding of the adaptive value of phenotypic plasticity. Here, we propose an approach based on our knowledge of the causal relationships between climate, adaptive traits, and fitness to further these questions. This approach relies on a sensitivity analysis of the process‐based model phenofit, which mathematically formalizes these causal relationships, to predict fitness landscapes and optimal budburst dates along elevation gradients in three major European tree species. Variation in the overall shape of the fitness landscape and resulting directional selection gradients were found to be mainly driven by temperature variation. The optimal budburst date was delayed with elevation, while the range of dates allowing high fitness narrowed and the maximal fitness at the optimum decreased. We also found that the plasticity of the budburst date should allow tracking the spatial variation in the optimal date, but with variable mismatch depending on the species, ranging from negligible mismatch in fir, moderate in beech, to large in oak. Phenotypic plasticity would therefore be more adaptive in fir and beech than in oak. In all species, we predicted stronger directional selection for earlier budburst date at higher elevation. The weak selection on budburst date in fir should result in the evolution of negligible genetic divergence, while beech and oak would evolve counter‐gradient variation, where genetic and environmental effects are in opposite directions. Our study suggests that theoretical models should consider how whole fitness landscapes change with the environment. The approach introduced here has the potential to be developed for other traits and species to explore how populations will adapt to climate change.
Collapse
Affiliation(s)
- Julie Gauzere
- CEFE, CNRS, Univ Montpellier, Univ Paul Valéry Montpellier 3, EPHE IRD Montpellier France.,Institut des Sciences de l'Évolution, Université de Montpellier, CNRS, IRD EPHE Montpellier France.,Institute of Evolutionary Biology, School of Biological Sciences University of Edinburgh Edinburgh EH9 3JT United Kingdom
| | - Bertrand Teuf
- CEFE, CNRS, Univ Montpellier, Univ Paul Valéry Montpellier 3, EPHE IRD Montpellier France
| | | | - Luis-Miguel Chevin
- CEFE, CNRS, Univ Montpellier, Univ Paul Valéry Montpellier 3, EPHE IRD Montpellier France
| | | | - Bérangère Leys
- CEFE, CNRS, Univ Montpellier, Univ Paul Valéry Montpellier 3, EPHE IRD Montpellier France.,Université Bourgogne Franche-Comté UMR 6249 Chrono-environnement 16 route de Gray, F-25030 Besançon Cedex France
| | | | - Ophélie Ronce
- Institut des Sciences de l'Évolution, Université de Montpellier, CNRS, IRD EPHE Montpellier France.,CNRS, Biodiversity Research Center University of British Columbia Vancouver Canada
| | - Isabelle Chuine
- CEFE, CNRS, Univ Montpellier, Univ Paul Valéry Montpellier 3, EPHE IRD Montpellier France
| |
Collapse
|
39
|
Postuma M, Schmid M, Guillaume F, Ozgul A, Paniw M. The effect of temporal environmental autocorrelation on eco‐evolutionary dynamics across life histories. Ecosphere 2020. [DOI: 10.1002/ecs2.3029] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023] Open
Affiliation(s)
- Maarten Postuma
- Department of Evolutionary Biology and Environmental Studies University of Zurich Zurich 8057 Switzerland
- Department of Animal Ecology & Physiology Radboud University Nijmegen The Netherlands
- Plant Ecology and Nature Conservation Group Wageningen University Wageningen 6700 AA The Netherlands
| | - Max Schmid
- Department of Evolutionary Biology and Environmental Studies University of Zurich Zurich 8057 Switzerland
| | - Frédéric Guillaume
- Department of Evolutionary Biology and Environmental Studies University of Zurich Zurich 8057 Switzerland
| | - Arpat Ozgul
- Department of Evolutionary Biology and Environmental Studies University of Zurich Zurich 8057 Switzerland
| | - Maria Paniw
- Department of Evolutionary Biology and Environmental Studies University of Zurich Zurich 8057 Switzerland
- Ecological and Forestry Applications Research Centre (CREAF) Campus de Bellaterra (UAB) Edifici C Cerdanyola del Valles ES‐08193 Spain
| |
Collapse
|
40
|
Bonamour S, Chevin LM, Charmantier A, Teplitsky C. Phenotypic plasticity in response to climate change: the importance of cue variation. Philos Trans R Soc Lond B Biol Sci 2020; 374:20180178. [PMID: 30966957 DOI: 10.1098/rstb.2018.0178] [Citation(s) in RCA: 127] [Impact Index Per Article: 25.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Phenotypic plasticity is a major mechanism of response to global change. However, current plastic responses will only remain adaptive under future conditions if informative environmental cues are still available. We briefly summarize current knowledge of the evolutionary origin and mechanistic underpinnings of environmental cues for phenotypic plasticity, before highlighting the potentially complex effects of global change on cue availability and reliability. We then illustrate some of these aspects with a case study, comparing plasticity of blue tit breeding phenology in two contrasted habitats: evergreen and deciduous forests. Using long-term datasets, we investigate the climatic factors linked to the breeding phenology of the birds and their main food source. Blue tits occupying different habitats differ extensively in the cues affecting laying date plasticity, as well as in the reliability of these cues as predictors of the putative driver of selective pressure, the date of caterpillar peak. The temporal trend for earlier laying date, detected only in the evergreen populations, is explained by increased temperature during their cue windows. Our results highlight the importance of integrating ecological mechanisms shaping variation in plasticity if we are to understand how global change will affect plasticity and its consequences for population biology. This article is part of the theme issue 'The role of plasticity in phenotypic adaptation to rapid environmental change'.
Collapse
Affiliation(s)
- Suzanne Bonamour
- CEFE UMR 5175, CNRS - Université de Montpellier - Université Paul-Valéry Montpellier - EPHE , Campus CNRS, 1919 Route de Mende, 34293 Montpellier 5 , France
| | - Luis-Miguel Chevin
- CEFE UMR 5175, CNRS - Université de Montpellier - Université Paul-Valéry Montpellier - EPHE , Campus CNRS, 1919 Route de Mende, 34293 Montpellier 5 , France
| | - Anne Charmantier
- CEFE UMR 5175, CNRS - Université de Montpellier - Université Paul-Valéry Montpellier - EPHE , Campus CNRS, 1919 Route de Mende, 34293 Montpellier 5 , France
| | - Céline Teplitsky
- CEFE UMR 5175, CNRS - Université de Montpellier - Université Paul-Valéry Montpellier - EPHE , Campus CNRS, 1919 Route de Mende, 34293 Montpellier 5 , France
| |
Collapse
|
41
|
Kelly M. Adaptation to climate change through genetic accommodation and assimilation of plastic phenotypes. Philos Trans R Soc Lond B Biol Sci 2020; 374:20180176. [PMID: 30966963 DOI: 10.1098/rstb.2018.0176] [Citation(s) in RCA: 183] [Impact Index Per Article: 36.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Theory suggests that evolutionary changes in phenotypic plasticity could either hinder or facilitate evolutionary rescue in a changing climate. Nevertheless, the actual role of evolving plasticity in the responses of natural populations to climate change remains unresolved. Direct observations of evolutionary change in nature are rare, making it difficult to assess the relative contributions of changes in trait means versus changes in plasticity to climate change responses. To address this gap, this review explores several proxies that can be used to understand evolving plasticity in the context of climate change, including space for time substitutions, experimental evolution and tests for genomic divergence at environmentally responsive loci. Comparisons among populations indicate a prominent role for divergence in environmentally responsive traits in local adaptation to climatic gradients. Moreover, genomic comparisons among such populations have identified pervasive divergence in the regulatory regions of environmentally responsive loci. Taken together, these lines of evidence suggest that divergence in plasticity plays a prominent role in adaptation to climatic gradients over space, indicating that evolving plasticity is also likely to play a key role in adaptive responses to climate change through time. This suggests that genetic variation in plastic responses to the environment (G × E) might be an important predictor of species' vulnerabilities to climate-driven decline or extinction. This article is part of the theme issue 'The role of plasticity in phenotypic adaptation to rapid environmental change'.
Collapse
Affiliation(s)
- Morgan Kelly
- Biological Sciences, Louisiana State University , Baton Rouge, LA 70808 , USA
| |
Collapse
|
42
|
Simmonds EG, Cole EF, Sheldon BC, Coulson T. Testing the effect of quantitative genetic inheritance in structured models on projections of population dynamics. OIKOS 2020. [DOI: 10.1111/oik.06985] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Affiliation(s)
- Emily G. Simmonds
- Dept of Zoology, Univ. of Oxford, OX1 3PS UK
- Dept of Mathematical Sciences and Centre for Biodiversity Dynamics, Norwegian Univ. of Science and Technology (NTNU) Norway
| | | | | | - Tim Coulson
- Dept of Zoology, Univ. of Oxford, OX1 3PS UK
| |
Collapse
|
43
|
Marshall MM, Remington DL, Lacey EP. Two reproductive traits show contrasting genetic architectures in Plantago lanceolata. Mol Ecol 2019; 29:272-291. [PMID: 31793079 DOI: 10.1111/mec.15320] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2019] [Revised: 11/25/2019] [Accepted: 11/28/2019] [Indexed: 12/25/2022]
Abstract
In many species, temperature-sensitive phenotypic plasticity (i.e., an individual's phenotypic response to temperature) displays a positive correlation with latitude, a pattern presumed to reflect local adaptation. This geographical pattern raises two general questions: (a) Do a few large-effect genes contribute to latitudinal variation in a trait? (b) Is the thermal plasticity of different traits regulated pleiotropically? To address the questions, we crossed individuals of Plantago lanceolata derived from northern and southern European populations. Individuals naturally exhibited high and low thermal plasticity in floral reflectance and flowering time. We grew parents and offspring in controlled cool- and warm-temperature environments, mimicking what plants would encounter in nature. We obtained genetic markers via genotype-by-sequencing, produced the first recombination map for this ecologically important nonmodel species, and performed quantitative trait locus (QTL) mapping of thermal plasticity and single-environment values for both traits. We identified a large-effect QTL that largely explained the reflectance plasticity differences between northern and southern populations. We identified multiple smaller-effect QTLs affecting aspects of flowering time, one of which affected flowering time plasticity. The results indicate that the genetic architecture of thermal plasticity in flowering is more complex than for reflectance. One flowering time QTL showed strong cytonuclear interactions under cool temperatures. Reflectance and flowering plasticity QTLs did not colocalize, suggesting little pleiotropic genetic control and freedom for independent trait evolution. Such genetic information about the architecture of plasticity is environmentally important because it informs us about the potential for plasticity to offset negative effects of climate change.
Collapse
Affiliation(s)
- Matthew M Marshall
- Department of Biology, University of North Carolina at Greensboro, Greensboro, NC, USA
| | - David L Remington
- Department of Biology, University of North Carolina at Greensboro, Greensboro, NC, USA
| | - Elizabeth P Lacey
- Department of Biology, University of North Carolina at Greensboro, Greensboro, NC, USA
| |
Collapse
|
44
|
Lundblad CG, Conway CJ. Variation in selective regimes drives intraspecific variation in life-history traits and migratory behaviour along an elevational gradient. J Anim Ecol 2019; 89:397-411. [PMID: 31671204 DOI: 10.1111/1365-2656.13134] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2019] [Accepted: 09/29/2019] [Indexed: 11/30/2022]
Abstract
Comparative studies, across and within taxa, have made important contributions to our understanding of the evolutionary processes that promote phenotypic diversity. Trait variation along geographic gradients provides a convenient heuristic for understanding what drives and maintains diversity. Intraspecific trait variation along latitudinal gradients is well-known, but elevational variation in the same traits is rarely documented. Trait variation along continuous elevational gradients, however, provides compelling evidence that individuals within a breeding population may experience different selective pressures. Our objectives were to quantify variation in a suite of traits along a continuous elevational gradient, evaluate whether individuals in the population experience different selective pressures along that gradient and quantify variation in migratory tendency along that gradient. We examined variation in a suite of 14 life-history, morphological and behavioural traits, including migratory tendency, of yellow-eyed juncos along a continuous 1000-m elevational gradient in the Santa Catalina Mountains of Arizona. Many traits we examined varied along the elevational gradient. Nest survival and nestling growth rates increased, while breeding season length, renesting propensity and adult survival declined, with increasing elevation. We documented the migratory phenotype of juncos (partial altitudinal migrants) and show that individual migratory tendency is higher among females than males and increases with breeding elevation. Our data support the paradigm that variation in breeding season length is a major selective pressure driving life-history variation along elevational gradients and that individuals breeding at high elevation pursue strategies that favour offspring quality over offspring quantity. Furthermore, a negative association between adult survival and breeding elevation and a positive association between nest survival and breeding elevation help explain both the downslope and reciprocal upslope seasonal migratory movements that characterize altitudinal migration in many birds. Our results demonstrate how detailed studies of intraspecific variation in suites of traits along environmental gradients can lend new insights into the evolutionary processes that promote diversification and speciation, the causes of migratory behaviour, and how animal populations will likely respond to climate change.
Collapse
Affiliation(s)
- Carl G Lundblad
- Arizona Cooperative Fish and Wildlife Research Unit, School of Natural Resources and the Environment, University of Arizona, Tucson, AZ, USA
| | - Courtney J Conway
- U.S. Geological Survey, Idaho Cooperative Fish and Wildlife Research Unit, University of Idaho, Moscow, ID, USA
| |
Collapse
|
45
|
Aubry LM. Fishing in hot waters threatens phenotypic diversity. J Anim Ecol 2019; 88:1642-1644. [PMID: 31691275 DOI: 10.1111/1365-2656.13066] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2019] [Accepted: 07/01/2019] [Indexed: 11/27/2022]
Abstract
In Focus: Morrongiello, J. R., Sweetman, P. C., & Thresher, R. E. (2019). Fishing constrains phenotypic responses of marine fish to climate variability. Journal of Animal Ecology, 88, 1645-1656. Forces of unnatural selection, such as climate change and harvest, are rarely studied in concert, yet hold the great potential to act synergistically on individual performance, susceptibility to harvest, tolerance to warming temperatures, and ultimately population persistence and resilience. In this paper, Morrongiello et al. (2019) used long-term monitoring of a site-attached temperate reef fish, the purple wrasse (Notolabrus fucicola), to test novel predictions about how fisheries management and climate variability could alter individual growth rates and thermal reaction norms within and across stocks. Otolith growth increments were collected from three south-east Australian populations between 1980 and 1999, pre- and post-harvest, throughout an intensive warming spell. Using hierarchical models to partition variation in growth within and between individuals and populations, Morrongiello et al. detected increased average growth rate with warming, a release from density dependence post-harvest, and a fishing-by-warming interaction that decreased diversity in thermal growth reaction norms because large individuals that tend to better tolerate warm temperatures were effectively culled from the population. This study outlines the importance of determining which phenotypes are more resilient to increasing temperatures, how fisheries should manage for them, and how such collective knowledge could help preserve and even promote resilience of managed populations to increasing temperatures in ecosystems threatened by climate change.
Collapse
Affiliation(s)
- Lise M Aubry
- Fish, Wildlife and Conservation Biology Department, Colorado State University, Fort Collins, CO, USA
| |
Collapse
|
46
|
Bouwhuis S. On the ecological insights provided by a long-term study on an even longer-lived bird. J Anim Ecol 2019; 87:891-892. [PMID: 29931771 DOI: 10.1111/1365-2656.12836] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2018] [Accepted: 04/12/2018] [Indexed: 11/30/2022]
Abstract
In Focus: Weimerskirch, H. (2018). Linking demographic processes and foraging ecology in wandering albatross-Conservation implications. Journal of Animal Ecology, 87, 945-955. https://doi.org/10.1111/1365-2656.12817 Long-term individual-based studies are extremely valuable resources to study how life histories are shaped by selection on between-individual variation in the acquisition and allocation of resources. In this issue, Weimerskirch (2018) synthesises a 50-year study, uniquely including 20 years of individual-based movement tracking, of the majestic wandering albatross. The synthesis shows how variation in foraging distribution and efficiency in relation to sex and age is reflected in physiology, fitness and population dynamics, and how understanding of such patterns and processes can aid conservation efforts. It thereby exemplifies why long-term individual-based studies are especially productive and informative and require maintenance and safeguarding.
Collapse
|
47
|
Shutt JD, Cabello IB, Keogan K, Leech DI, Samplonius JM, Whittle L, Burgess MD, Phillimore AB. The environmental predictors of spatio-temporal variation in the breeding phenology of a passerine bird. Proc Biol Sci 2019; 286:20190952. [PMID: 31409248 DOI: 10.1098/rspb.2019.0952] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Establishing the cues or constraints that influence avian timing of breeding is the key to accurate prediction of future phenology. This study aims to identify the aspects of the environment that predict the timing of two measures of breeding phenology (nest initiation and egg laying date) in an insectivorous woodland passerine, the blue tit (Cyanistes caeruleus). We analyse data collected from a 220 km, 40-site transect over 3 years and consider spring temperatures, tree leafing phenology, invertebrate availability and photoperiod as predictors of breeding phenology. We find that mean night-time temperature in early spring is the strongest predictor of both nest initiation and lay date and suggest this finding is most consistent with temperature acting as a constraint on breeding activity. Birch budburst phenology significantly predicts lay date additionally to temperature, either as a direct cue or indirectly via a correlated variable. We use cross-validation to show that our model accurately predicts lay date in two further years and find that similar variables predict lay date well across the UK national nest record scheme. This work refines our understanding of the principal factors influencing the timing of tit reproductive phenology and suggests that temperature may have both a direct and indirect effect.
Collapse
Affiliation(s)
- Jack D Shutt
- Institute of Evolutionary Biology, The University of Edinburgh, The King's Buildings, Edinburgh EH9 3FL, UK
| | - Irene Benedicto Cabello
- Institute of Evolutionary Biology, The University of Edinburgh, The King's Buildings, Edinburgh EH9 3FL, UK
| | - Katharine Keogan
- Institute of Evolutionary Biology, The University of Edinburgh, The King's Buildings, Edinburgh EH9 3FL, UK
| | - David I Leech
- British Trust for Ornithology, The Nunnery, Thetford, Norfolk IP24 2PU, UK
| | - Jelmer M Samplonius
- Institute of Evolutionary Biology, The University of Edinburgh, The King's Buildings, Edinburgh EH9 3FL, UK
| | - Lorienne Whittle
- Woodland Trust, Kempton Way, Grantham, Lincolnshire NG31 6LL, UK
| | - Malcolm D Burgess
- RSPB Centre for Conservation Science, The Lodge, Sandy, Bedfordshire SG19 2DL, UK.,Centre for Research in Animal Behaviour, The University of Exeter, Exeter, Devon EX4 4QG, UK
| | - Albert B Phillimore
- Institute of Evolutionary Biology, The University of Edinburgh, The King's Buildings, Edinburgh EH9 3FL, UK
| |
Collapse
|
48
|
Radchuk V, Reed T, Teplitsky C, van de Pol M, Charmantier A, Hassall C, Adamík P, Adriaensen F, Ahola MP, Arcese P, Miguel Avilés J, Balbontin J, Berg KS, Borras A, Burthe S, Clobert J, Dehnhard N, de Lope F, Dhondt AA, Dingemanse NJ, Doi H, Eeva T, Fickel J, Filella I, Fossøy F, Goodenough AE, Hall SJG, Hansson B, Harris M, Hasselquist D, Hickler T, Joshi J, Kharouba H, Martínez JG, Mihoub JB, Mills JA, Molina-Morales M, Moksnes A, Ozgul A, Parejo D, Pilard P, Poisbleau M, Rousset F, Rödel MO, Scott D, Senar JC, Stefanescu C, Stokke BG, Kusano T, Tarka M, Tarwater CE, Thonicke K, Thorley J, Wilting A, Tryjanowski P, Merilä J, Sheldon BC, Pape Møller A, Matthysen E, Janzen F, Dobson FS, Visser ME, Beissinger SR, Courtiol A, Kramer-Schadt S. Adaptive responses of animals to climate change are most likely insufficient. Nat Commun 2019; 10:3109. [PMID: 31337752 PMCID: PMC6650445 DOI: 10.1038/s41467-019-10924-4] [Citation(s) in RCA: 214] [Impact Index Per Article: 35.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2018] [Accepted: 05/15/2019] [Indexed: 12/11/2022] Open
Abstract
Biological responses to climate change have been widely documented across taxa and regions, but it remains unclear whether species are maintaining a good match between phenotype and environment, i.e. whether observed trait changes are adaptive. Here we reviewed 10,090 abstracts and extracted data from 71 studies reported in 58 relevant publications, to assess quantitatively whether phenotypic trait changes associated with climate change are adaptive in animals. A meta-analysis focussing on birds, the taxon best represented in our dataset, suggests that global warming has not systematically affected morphological traits, but has advanced phenological traits. We demonstrate that these advances are adaptive for some species, but imperfect as evidenced by the observed consistent selection for earlier timing. Application of a theoretical model indicates that the evolutionary load imposed by incomplete adaptive responses to ongoing climate change may already be threatening the persistence of species. It is unclear whether species’ responses to climate change tend to be adaptive or sufficient to keep up with climate change. Here, Radchuk et al. perform a meta-analysis showing that in birds phenology has advanced adaptively in some species, though not all the way to the new optima.
Collapse
Affiliation(s)
- Viktoriia Radchuk
- Leibniz Institute for Zoo and Wildlife Research (IZW), Alfred-Kowalke-Straße 17, 10315, Berlin, Germany.
| | - Thomas Reed
- School of Biological, Earth and Environmental Sciences, University College Cork, Cork, T23 N73K, Ireland
| | - Céline Teplitsky
- CEFE UMR 5175, CNRS - Université de Montpellier - Université Paul-Valéry Montpellier - EPHE, 1919 route de Mende, 34293, Montpellier Cedex 5, France
| | - Martijn van de Pol
- Department of Animal Ecology, Netherlands Institute of Ecology (NIOO-KNAW), P.O. Box 50, 6700 AB, Wageningen, The Netherlands
| | - Anne Charmantier
- CEFE UMR 5175, CNRS - Université de Montpellier - Université Paul-Valéry Montpellier - EPHE, 1919 route de Mende, 34293, Montpellier Cedex 5, France
| | - Christopher Hassall
- School of Biology, Faculty of Biological Sciences, University of Leeds, Leeds, LS2 9JT, UK
| | - Peter Adamík
- Department of Zoology, Palacký University, tř. 17. listopadu 50, 771 46, Olomouc, Czech Republic
| | - Frank Adriaensen
- Evolutionary Ecology Group, University of Antwerp, Universiteitsplein 1, 2610, Wilrijk, Belgium
| | - Markus P Ahola
- Swedish Museum of Natural History, P.O. Box 50007, 10405, Stockholm, Sweden
| | - Peter Arcese
- Department of Forest and Conservation Sciences, 2424 Main Mall, Vancouver, V6T 1Z4, BC, Canada
| | - Jesús Miguel Avilés
- Department of Functional and Evolutionary Ecology, Experimental Station of Arid Zones (EEZA-CSIC), Ctra de Sacramento s/n, 04120, Almería, Spain
| | - Javier Balbontin
- Department of Zoology, Faculty of Biology, University of Seville, Avenue Reina Mercedes, 41012, Seville, Spain
| | - Karl S Berg
- Department of Biological Sciences, University of Texas Rio Grande Valley, Brownsville, 78520, TX, USA
| | - Antoni Borras
- Museu de Ciències Naturals de Barcelona, P° Picasso s/n, Parc Ciutadella, 08003, Barcelona, Spain
| | - Sarah Burthe
- Centre for Ecology and Hydrology, Bush Estate, Penicuik, EH26 0QB, UK
| | - Jean Clobert
- Station of Experimental and Theoretical Ecology (SETE), UMR 5321, CNRS and University Paul Sabatier, 2 route du CNRS, 09200, Moulis, France
| | - Nina Dehnhard
- Behavioural Ecology and Ecophysiology Group, University of Antwerp, Universiteitsplein 1, 2610, Wilrijk (Antwerp), Belgium
| | - Florentino de Lope
- Department of Anatomy, Cellular Biology and Zoology, University of Extremadura, 06006, Badajoz, Spain
| | - André A Dhondt
- Lab of Ornithology, Cornell University, Ithaca, NY, 14850, USA
| | - Niels J Dingemanse
- Behavioural Ecology, Department of Biology, Ludwig-Maximilians University of Munich, Großhaderner Str. 2, Planegg-Martinsried, 82152, Germany
| | - Hideyuki Doi
- Graduate School of Simulation Studies, University of Hyogo, 7-1-28 Minatojima-minamimachi, Kobe, 650-0047, Japan
| | - Tapio Eeva
- Department of Biology, University of Turku, Turku, FI-20014, Finland
| | - Joerns Fickel
- Leibniz Institute for Zoo and Wildlife Research (IZW), Alfred-Kowalke-Straße 17, 10315, Berlin, Germany.,Institute for Biochemistry and Biology, Potsdam University, Karl-Liebknecht-Strasse 24-25, 14476, Potsdam, Germany
| | - Iolanda Filella
- CREAF, 08193, Cerdanyola del Vallès, Spain.,CSIC, Global Ecology Unit CREAF-CSIC-UAB, Bellaterra, 08193, Spain
| | - Frode Fossøy
- Norwegian Institute for Nature Research (NINA), P.O. Box 5685 Torgarden, 7485, Trondheim, Norway.,Department of Biology, Norwegian University of Science and Technology (NTNU), Høgskoleringen 5, 7491, Trondheim, Norway
| | - Anne E Goodenough
- School of Natural and Social Sciences, University of Gloucestershire, Swindon Road, Cheltenham, GL50 4AZ, UK
| | - Stephen J G Hall
- Estonian University of Life Sciences, Kreutzwaldi 5, 51014, Tartu, Estonia
| | - Bengt Hansson
- Department of Biology, Lund University, 22362, Lund, Sweden
| | - Michael Harris
- Centre for Ecology and Hydrology, Bush Estate, Penicuik, EH26 0QB, UK
| | | | - Thomas Hickler
- Senckenberg Biodiversity and Climate Research Center (BiK-F), Senckenberganlage 25, 60325, Frankfurt/Main, Germany
| | - Jasmin Joshi
- Biodiversity research/Systematic Botany, University of Potsdam, Maulbeerallee 1, Berlin, 14469, Germany.,Institute for Landscape and Open Space, HSR Hochschule für Technik, Oberseestrasse 10, Rapperswil, 8640, Switzerland
| | - Heather Kharouba
- Department of Biology, University of Ottawa, Ontario, K1N 6N5, Canada
| | - Juan Gabriel Martínez
- Departamento de Zoologia, Facultad de Ciencias, Universidad de Granada, 18071, Granada, Spain
| | - Jean-Baptiste Mihoub
- Sorbonne Université, Muséum National d'Histoire Naturelle, CNRS, CESCO, UMR 7204, 61 rue Buffon, 75005, Paris, France
| | - James A Mills
- 10527A Skyline Drive, Corning, NY, 14830, USA.,3 Miromiro Drive, Kaikoura, 7300, New Zealand
| | - Mercedes Molina-Morales
- Department of Anatomy, Cellular Biology and Zoology, University of Extremadura, 06006, Badajoz, Spain
| | - Arne Moksnes
- CSIC, Global Ecology Unit CREAF-CSIC-UAB, Bellaterra, 08193, Spain
| | - Arpat Ozgul
- Department of Evolutionary Biology and Environmental Studies, University of Zurich, Zurich, 8057, Switzerland
| | - Deseada Parejo
- Department of Anatomy, Cellular Biology and Zoology, University of Extremadura, 06006, Badajoz, Spain
| | - Philippe Pilard
- LPO Mission Rapaces, 26 avenue Alain Guigue, 13104, Mas-Thibert, France
| | - Maud Poisbleau
- Behavioural Ecology and Ecophysiology Group, University of Antwerp, Universiteitsplein 1, 2610, Wilrijk (Antwerp), Belgium
| | - Francois Rousset
- ISEM, Université de Montpellier, CNRS, IRD, EPHE, Montpellier, 34095, France
| | - Mark-Oliver Rödel
- Leibniz Institute for Evolution and Biodiversity Science, Museum für Naturkunde, Invalidenstrasse 43, 10115, Berlin, Germany
| | - David Scott
- Savannah River Ecology Laboratory, University of Georgia, Aiken, SC, 29802, USA
| | - Juan Carlos Senar
- Museu de Ciències Naturals de Barcelona, P° Picasso s/n, Parc Ciutadella, 08003, Barcelona, Spain
| | - Constanti Stefanescu
- CREAF, 08193, Cerdanyola del Vallès, Spain.,Natural History Museum of Granollers, Francesc Macià, 52, 08401, Granollers, Spain
| | - Bård G Stokke
- CSIC, Global Ecology Unit CREAF-CSIC-UAB, Bellaterra, 08193, Spain.,Norwegian Institute for Nature Research (NINA), P.O. Box 5685 Torgarden, 7485, Trondheim, Norway
| | - Tamotsu Kusano
- Department of Biological Sciences, Tokyo Metropolitan University, 1-1 Minami-Osawa, Hachioji-shi, Tokyo, 192-0397, Japan
| | - Maja Tarka
- Department of Biology, Lund University, 22362, Lund, Sweden
| | - Corey E Tarwater
- Department of Zoology and Physiology, University of Wyoming, 1000 E University Avenue, Laramie, WY, 82071, USA
| | - Kirsten Thonicke
- Research Domain 1 'Earth System Analysis', Potsdam Institute for Climate Impact Research (PIK), P.O. Box 60 12 03, Telegrafenberg A31, Potsdam, D-14412, Germany
| | - Jack Thorley
- Imperial College London, Silwood Park Campus, Buckurst Road, Ascot, SL5 7PY, UK.,Department of Zoology, University of Cambridge, Downing Street, Cambridge, CB2 3EJ, UK
| | - Andreas Wilting
- Leibniz Institute for Zoo and Wildlife Research (IZW), Alfred-Kowalke-Straße 17, 10315, Berlin, Germany
| | - Piotr Tryjanowski
- Institute of Zoology, Poznan University of Life Sciences, Wojska Polskiego 71C, 60-625, Poznań, Poland
| | - Juha Merilä
- Organismal and Evolutionary Biology Research Programme, Ecological Genetics Research Unit, Faculty Biological and Environmental Sciences, University of Helsinki, 00014, Helsinki, Finland
| | - Ben C Sheldon
- Edward Grey Institute, Department of Zoology, University of Oxford, Oxford, OX1 3PS, UK
| | - Anders Pape Møller
- Ecologie Systématique Evolution, Université Paris-Sud, CNRS, AgroParisTech, Université Paris-Saclay, 91405, Orsay Cedex, France
| | - Erik Matthysen
- Evolutionary Ecology Group, University of Antwerp, Universiteitsplein 1, 2610, Wilrijk, Belgium
| | - Fredric Janzen
- Department of Ecology, Evolution, and Organismal Biology, Iowa State University, Ames, IA, 50011, USA
| | - F Stephen Dobson
- Department of Biological Sciences, Auburn University, Auburn, AL, 36849, USA
| | - Marcel E Visser
- Department of Animal Ecology, Netherlands Institute of Ecology (NIOO-KNAW), P.O. Box 50, 6700 AB, Wageningen, The Netherlands
| | - Steven R Beissinger
- Department of Environmental Science, Policy and Management and Museum of Vertebrate Zoology, University of California, Berkeley, 94720, CA, USA
| | - Alexandre Courtiol
- Leibniz Institute for Zoo and Wildlife Research (IZW), Alfred-Kowalke-Straße 17, 10315, Berlin, Germany
| | - Stephanie Kramer-Schadt
- Leibniz Institute for Zoo and Wildlife Research (IZW), Alfred-Kowalke-Straße 17, 10315, Berlin, Germany.,Department of Ecology, Technische Universität Berlin, 12165, Berlin, Germany
| |
Collapse
|
49
|
Niemelä PT, Niehoff PP, Gasparini C, Dingemanse NJ, Tuni C. Crickets become behaviourally more stable when raised under higher temperatures. Behav Ecol Sociobiol 2019. [DOI: 10.1007/s00265-019-2689-5] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
|
50
|
Inouye BD, Ehrlén J, Underwood N. Phenology as a process rather than an event: from individual reaction norms to community metrics. ECOL MONOGR 2019. [DOI: 10.1002/ecm.1352] [Citation(s) in RCA: 40] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Brian D. Inouye
- Biological Science Florida State University Tallahassee Florida 32306 USA
- Department of Ecology, Environment and Plant Sciences Stockholm University Stockholm 106 91 Sweden
- Rocky Mountain Biological Lab Gothic Colorado 81224 USA
| | - Johan Ehrlén
- Department of Ecology, Environment and Plant Sciences Stockholm University Stockholm 106 91 Sweden
- Bolin Centre for Climate Research Stockholm University Stockholm 106 91 Sweden
| | - Nora Underwood
- Biological Science Florida State University Tallahassee Florida 32306 USA
- Department of Ecology, Environment and Plant Sciences Stockholm University Stockholm 106 91 Sweden
- Rocky Mountain Biological Lab Gothic Colorado 81224 USA
| |
Collapse
|