1
|
Sultanakhmetov G, Kato I, Asada A, Saito T, Ando K. Microtubule-affinity regulating kinase family members distinctively affect tau phosphorylation and promote its toxicity in a Drosophila model. Genes Cells 2024; 29:337-346. [PMID: 38329182 PMCID: PMC11447834 DOI: 10.1111/gtc.13101] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2024] [Revised: 01/22/2024] [Accepted: 01/23/2024] [Indexed: 02/09/2024]
Abstract
Accumulation of abnormally phosphorylated tau and its aggregation constitute a significant hallmark of Alzheimer's disease (AD). Tau phosphorylation at Ser262 and Ser356 in the KXGS motifs of microtubule-binding repeats plays a critical role in its physiological function and AD disease progression. Major tau kinases to phosphorylate tau at Ser262 and Ser356 belong to the Microtubule Affinity Regulating Kinase family (MARK1-4), which are considered one of the major contributors to tau abnormalities in AD. However, whether and how each member affects tau toxicity in vivo is unclear. We used transgenic Drosophila as a model to compare the effect on tau-induced neurodegeneration among MARKs in vivo. MARK4 specifically promotes tau accumulation and Ser396 phosphorylation, which yields more tau toxicity than was caused by other MARKs. Interestingly, MARK1, 2, and 4 increased tau phosphorylation at Ser262 and Ser356, but only MARK4 caused tau accumulation, indicating that these sites alone did not cause pathological tau accumulation. Our results revealed MARKs are different in their effect on tau toxicity, and also in tau phosphorylation at pathological sites other than Ser262 and Ser356. Understanding the implementation of each MARK into neurodegenerative disease helps to develop more target and safety therapies to overcome AD and related tauopathies.
Collapse
Affiliation(s)
- Grigorii Sultanakhmetov
- Department of Biological SciencesGraduate School of Science, Tokyo Metropolitan UniversityTokyoJapan
| | - Iori Kato
- Department of Biological SciencesGraduate School of Science, Tokyo Metropolitan UniversityTokyoJapan
| | - Akiko Asada
- Department of Biological SciencesGraduate School of Science, Tokyo Metropolitan UniversityTokyoJapan
- Department of Biological Sciences, Faculty of ScienceTokyo Metropolitan UniversityTokyoJapan
| | - Taro Saito
- Department of Biological SciencesGraduate School of Science, Tokyo Metropolitan UniversityTokyoJapan
- Department of Biological Sciences, Faculty of ScienceTokyo Metropolitan UniversityTokyoJapan
| | - Kanae Ando
- Department of Biological SciencesGraduate School of Science, Tokyo Metropolitan UniversityTokyoJapan
- Department of Biological Sciences, Faculty of ScienceTokyo Metropolitan UniversityTokyoJapan
| |
Collapse
|
2
|
Deichsel S, Gahr BM, Mastel H, Preiss A, Nagel AC. Numerous Serine/Threonine Kinases Affect Blood Cell Homeostasis in Drosophila melanogaster. Cells 2024; 13:576. [PMID: 38607015 PMCID: PMC11011202 DOI: 10.3390/cells13070576] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2024] [Revised: 03/20/2024] [Accepted: 03/25/2024] [Indexed: 04/13/2024] Open
Abstract
Blood cells in Drosophila serve primarily innate immune responses. Various stressors influence blood cell homeostasis regarding both numbers and the proportion of blood cell types. The principle molecular mechanisms governing hematopoiesis are conserved amongst species and involve major signaling pathways like Notch, Toll, JNK, JAK/Stat or RTK. Albeit signaling pathways generally rely on the activity of protein kinases, their specific contribution to hematopoiesis remains understudied. Here, we assess the role of Serine/Threonine kinases with the potential to phosphorylate the transcription factor Su(H) in crystal cell homeostasis. Su(H) is central to Notch signal transduction, and its inhibition by phosphorylation impedes crystal cell formation. Overall, nearly twenty percent of all Drosophila Serine/Threonine kinases were studied in two assays, global and hemocyte-specific overexpression and downregulation, respectively. Unexpectedly, the majority of kinases influenced crystal cell numbers, albeit only a few were related to hematopoiesis so far. Four kinases appeared essential for crystal cell formation, whereas most kinases restrained crystal cell development. This group comprises all kinase classes, indicative of the complex regulatory network underlying blood cell homeostasis. The rather indiscriminative response we observed opens the possibility that blood cells measure their overall phospho-status as a proxy for stress-signals, and activate an adaptive immune response accordingly.
Collapse
Affiliation(s)
- Sebastian Deichsel
- Department of Molecular Genetics, Institute of Biology, University of Hohenheim, 70599 Stuttgart, Germany
| | - Bernd M. Gahr
- Department of Molecular Genetics, Institute of Biology, University of Hohenheim, 70599 Stuttgart, Germany
| | - Helena Mastel
- Department of Molecular Genetics, Institute of Biology, University of Hohenheim, 70599 Stuttgart, Germany
| | - Anette Preiss
- Institute of Biology, University of Hohenheim, 70599 Stuttgart, Germany
| | - Anja C. Nagel
- Department of Molecular Genetics, Institute of Biology, University of Hohenheim, 70599 Stuttgart, Germany
| |
Collapse
|
3
|
Tokamov SA, Buiter S, Ullyot A, Scepanovic G, Williams AM, Fernandez-Gonzalez R, Horne-Badovinac S, Fehon RG. Cortical tension promotes Kibra degradation via Par-1. Mol Biol Cell 2024; 35:ar2. [PMID: 37903240 PMCID: PMC10881160 DOI: 10.1091/mbc.e23-06-0246] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2023] [Revised: 10/17/2023] [Accepted: 10/20/2023] [Indexed: 11/01/2023] Open
Abstract
The Hippo pathway is an evolutionarily conserved regulator of tissue growth. Multiple Hippo signaling components are regulated via proteolytic degradation. However, how these degradation mechanisms are themselves modulated remains unexplored. Kibra is a key upstream pathway activator that promotes its own ubiquitin-mediated degradation upon assembling a Hippo signaling complex. Here, we demonstrate that Hippo complex-dependent Kibra degradation is modulated by cortical tension. Using classical genetic, osmotic, and pharmacological manipulations of myosin activity and cortical tension, we show that increasing cortical tension leads to Kibra degradation, whereas decreasing cortical tension increases Kibra abundance. Our study also implicates Par-1 in regulating Kib abundance downstream of cortical tension. We demonstrate that Par-1 promotes ubiquitin-mediated Kib degradation in a Hippo complex-dependent manner and is required for tension-induced Kib degradation. Collectively, our results reveal a previously unknown molecular mechanism by which cortical tension affects Hippo signaling and provide novel insights into the role of mechanical forces in growth control.
Collapse
Affiliation(s)
- Sherzod A. Tokamov
- Department of Molecular Genetics and Cell Biology, The University of Chicago, Chicago, IL 60637
- Committee on Development, Regeneration, and Stem Cell Biology, The University of Chicago, Chicago, IL 60637
| | - Stephan Buiter
- Department of Molecular Genetics and Cell Biology, The University of Chicago, Chicago, IL 60637
| | - Anne Ullyot
- Department of Molecular Genetics and Cell Biology, The University of Chicago, Chicago, IL 60637
| | - Gordana Scepanovic
- Department of Cell and Systems Biology, University of Toronto, Toronto, ON M5G 1M1, Canada
| | - Audrey Miller Williams
- Department of Molecular Genetics and Cell Biology, The University of Chicago, Chicago, IL 60637
| | - Rodrigo Fernandez-Gonzalez
- Institute of Biomedical Engineering and Department of Cell and Systems Biology, University of Toronto, Toronto, ON M5G 1M1, Canada
| | - Sally Horne-Badovinac
- Department of Molecular Genetics and Cell Biology, The University of Chicago, Chicago, IL 60637
- Committee on Development, Regeneration, and Stem Cell Biology, The University of Chicago, Chicago, IL 60637
| | - Richard G. Fehon
- Department of Molecular Genetics and Cell Biology, The University of Chicago, Chicago, IL 60637
- Committee on Development, Regeneration, and Stem Cell Biology, The University of Chicago, Chicago, IL 60637
| |
Collapse
|
4
|
Zhao Y, Sheldon M, Sun Y, Ma L. New Insights into YAP/TAZ-TEAD-Mediated Gene Regulation and Biological Processes in Cancer. Cancers (Basel) 2023; 15:5497. [PMID: 38067201 PMCID: PMC10705714 DOI: 10.3390/cancers15235497] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2023] [Revised: 11/07/2023] [Accepted: 11/17/2023] [Indexed: 02/12/2024] Open
Abstract
The Hippo pathway is conserved across species. Key mammalian Hippo pathway kinases, including MST1/2 and LATS1/2, inhibit cellular growth by inactivating the TEAD coactivators, YAP, and TAZ. Extensive research has illuminated the roles of Hippo signaling in cancer, development, and regeneration. Notably, dysregulation of Hippo pathway components not only contributes to tumor growth and metastasis, but also renders tumors resistant to therapies. This review delves into recent research on YAP/TAZ-TEAD-mediated gene regulation and biological processes in cancer. We focus on several key areas: newly identified molecular patterns of YAP/TAZ activation, emerging mechanisms that contribute to metastasis and cancer therapy resistance, unexpected roles in tumor suppression, and advances in therapeutic strategies targeting this pathway. Moreover, we provide an updated view of YAP/TAZ's biological functions, discuss ongoing controversies, and offer perspectives on specific debated topics in this rapidly evolving field.
Collapse
Affiliation(s)
- Yang Zhao
- Department of Experimental Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA; (Y.Z.); (M.S.)
| | - Marisela Sheldon
- Department of Experimental Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA; (Y.Z.); (M.S.)
| | - Yutong Sun
- Department of Molecular and Cellular Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA;
| | - Li Ma
- Department of Experimental Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA; (Y.Z.); (M.S.)
- The University of Texas MD Anderson Cancer Center UTHealth Houston Graduate School of Biomedical Sciences, Houston, TX 77030, USA
| |
Collapse
|
5
|
Su D, Li Y, Zhang W, Gao H, Cheng Y, Hou Y, Li J, Ye Y, Lai Z, Li Z, Huang H, Li J, Li J, Cheng M, Nian C, Wu N, Zhou Z, Xing Y, Zhao Y, Liu H, Tang J, Chen Q, Hong L, Li W, Peng Z, Zhao B, Johnson RL, Liu P, Hong W, Chen L, Zhou D. SPTAN1/NUMB axis senses cell density to restrain cell growth and oncogenesis through Hippo signaling. J Clin Invest 2023; 133:e168888. [PMID: 37843276 PMCID: PMC10575737 DOI: 10.1172/jci168888] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2023] [Accepted: 08/22/2023] [Indexed: 10/17/2023] Open
Abstract
The loss of contact inhibition is a key step during carcinogenesis. The Hippo-Yes-associated protein (Hippo/YAP) pathway is an important regulator of cell growth in a cell density-dependent manner. However, how Hippo signaling senses cell density in this context remains elusive. Here, we report that high cell density induced the phosphorylation of spectrin α chain, nonerythrocytic 1 (SPTAN1), a plasma membrane-stabilizing protein, to recruit NUMB endocytic adaptor protein isoforms 1 and 2 (NUMB1/2), which further sequestered microtubule affinity-regulating kinases (MARKs) in the plasma membrane and rendered them inaccessible for phosphorylation and inhibition of the Hippo kinases sterile 20-like kinases MST1 and MST2 (MST1/2). WW45 interaction with MST1/2 was thereby enhanced, resulting in the activation of Hippo signaling to block YAP activity for cell contact inhibition. Importantly, low cell density led to SPTAN1 dephosphorylation and NUMB cytoplasmic location, along with MST1/2 inhibition and, consequently, YAP activation. Moreover, double KO of NUMB and WW45 in the liver led to appreciable organ enlargement and rapid tumorigenesis. Interestingly, NUMB isoforms 3 and 4, which have a truncated phosphotyrosine-binding (PTB) domain and are thus unable to interact with phosphorylated SPTAN1 and activate MST1/2, were selectively upregulated in liver cancer, which correlated with YAP activation. We have thus revealed a SPTAN1/NUMB1/2 axis that acts as a cell density sensor to restrain cell growth and oncogenesis by coupling external cell-cell contact signals to intracellular Hippo signaling.
Collapse
Affiliation(s)
- Dongxue Su
- State Key Laboratory of Cellular Stress Biology, Innovation Center for Cell Signaling Network, School of Life Sciences, Xiamen University and
| | - Yuxi Li
- State Key Laboratory of Cellular Stress Biology, Innovation Center for Cell Signaling Network, School of Life Sciences, Xiamen University and
| | - Weiji Zhang
- State Key Laboratory of Cellular Stress Biology, Innovation Center for Cell Signaling Network, School of Life Sciences, Xiamen University and
| | - Huan Gao
- State Key Laboratory of Cellular Stress Biology, Innovation Center for Cell Signaling Network, School of Life Sciences, Xiamen University and
| | - Yao Cheng
- State Key Laboratory of Cellular Stress Biology, Innovation Center for Cell Signaling Network, School of Life Sciences, Xiamen University and
| | - Yongqiang Hou
- State Key Laboratory of Cellular Stress Biology, Innovation Center for Cell Signaling Network, School of Life Sciences, Xiamen University and
| | - Junhong Li
- State Key Laboratory of Cellular Stress Biology, Innovation Center for Cell Signaling Network, School of Life Sciences, Xiamen University and
| | - Yi Ye
- State Key Laboratory of Cellular Stress Biology, Innovation Center for Cell Signaling Network, School of Life Sciences, Xiamen University and
| | - Zhangjian Lai
- State Key Laboratory of Cellular Stress Biology, Innovation Center for Cell Signaling Network, School of Life Sciences, Xiamen University and
| | - Zhe Li
- State Key Laboratory of Cellular Stress Biology, Innovation Center for Cell Signaling Network, School of Life Sciences, Xiamen University and
| | - Haitao Huang
- State Key Laboratory of Cellular Stress Biology, Innovation Center for Cell Signaling Network, School of Life Sciences, Xiamen University and
| | - Jiaxin Li
- State Key Laboratory of Cellular Stress Biology, Innovation Center for Cell Signaling Network, School of Life Sciences, Xiamen University and
| | - Jinhuan Li
- State Key Laboratory of Cellular Stress Biology, Innovation Center for Cell Signaling Network, School of Life Sciences, Xiamen University and
| | - Mengyu Cheng
- State Key Laboratory of Cellular Stress Biology, Innovation Center for Cell Signaling Network, School of Life Sciences, Xiamen University and
| | - Cheng Nian
- State Key Laboratory of Cellular Stress Biology, Innovation Center for Cell Signaling Network, School of Life Sciences, Xiamen University and
| | - Na Wu
- State Key Laboratory of Cellular Stress Biology, Innovation Center for Cell Signaling Network, School of Life Sciences, Xiamen University and
| | - Zhien Zhou
- State Key Laboratory of Cellular Stress Biology, Innovation Center for Cell Signaling Network, School of Life Sciences, Xiamen University and
| | - Yunzhi Xing
- State Key Laboratory of Cellular Stress Biology, Innovation Center for Cell Signaling Network, School of Life Sciences, Xiamen University and
| | - Yu Zhao
- State Key Laboratory of Cellular Stress Biology, Innovation Center for Cell Signaling Network, School of Life Sciences, Xiamen University and
| | - He Liu
- State Key Laboratory of Cellular Stress Biology, Innovation Center for Cell Signaling Network, School of Life Sciences, Xiamen University and
| | - Jiayu Tang
- State Key Laboratory of Cellular Stress Biology, Innovation Center for Cell Signaling Network, School of Life Sciences, Xiamen University and
| | - Qinghua Chen
- State Key Laboratory of Cellular Stress Biology, Innovation Center for Cell Signaling Network, School of Life Sciences, Xiamen University and
| | - Lixin Hong
- State Key Laboratory of Cellular Stress Biology, Innovation Center for Cell Signaling Network, School of Life Sciences, Xiamen University and
| | - Wengang Li
- Department of Hepatobiliary and Pancreatic and Organ Transplantation Surgery, Xiang’an Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen, Fujian, China
| | - Zhihai Peng
- Department of Hepatobiliary and Pancreatic and Organ Transplantation Surgery, Xiang’an Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen, Fujian, China
| | - Bin Zhao
- The MOE Key Laboratory of Biosystems Homeostasis and Protection, Zhejiang Provincial Key Laboratory for Cancer Molecular Cell Biology, and Innovation Center for Cell Signaling Network, Life Sciences Institute, Zhejiang University, Hangzhou, Zhejiang, China
| | - Randy L. Johnson
- Department of Cancer Biology, University of Texas, M.D. Anderson Cancer Center, Houston, Texas, USA
| | - Pingguo Liu
- Fujian Provincial Key Laboratory of Chronic Liver Disease and Hepatocellular Carcinoma, Department of Hepatobiliary Surgery, Zhongshan Hospital, School of Medicine, Xiamen University, Xiamen, Fujian, China
| | - Wanjin Hong
- Institute of Molecular and Cell Biology, Agency for Science, Technology, and Research (ASTAR), Singapore, Singapore
| | - Lanfen Chen
- State Key Laboratory of Cellular Stress Biology, Innovation Center for Cell Signaling Network, School of Life Sciences, Xiamen University and
- Institute of Molecular and Cell Biology, Agency for Science, Technology, and Research (ASTAR), Singapore, Singapore
| | - Dawang Zhou
- State Key Laboratory of Cellular Stress Biology, Innovation Center for Cell Signaling Network, School of Life Sciences, Xiamen University and
| |
Collapse
|
6
|
Datta I, Vassel T, Linkous B, Odum T, Drew C, Taylor A, Bangi E. A targeted genetic modifier screen in Drosophila uncovers vulnerabilities in a genetically complex model of colon cancer. G3 (BETHESDA, MD.) 2023; 13:jkad053. [PMID: 36880303 PMCID: PMC10151408 DOI: 10.1093/g3journal/jkad053] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/16/2023] [Revised: 01/16/2023] [Accepted: 02/21/2023] [Indexed: 03/08/2023]
Abstract
Received on 16 January 2023; accepted on 21 February 2023Kinases are key regulators of cellular signal transduction pathways. Many diseases, including cancer, are associated with global alterations in protein phosphorylation networks. As a result, kinases are frequent targets of drug discovery efforts. However, target identification and assessment, a critical step in targeted drug discovery that involves identifying essential genetic mediators of disease phenotypes, can be challenging in complex, heterogeneous diseases like cancer, where multiple concurrent genomic alterations are common. Drosophila is a particularly useful genetic model system to identify novel regulators of biological processes through unbiased genetic screens. Here, we report 2 classic genetic modifier screens focusing on the Drosophila kinome to identify kinase regulators in 2 different backgrounds: KRAS TP53 PTEN APC, a multigenic cancer model that targets 4 genes recurrently mutated in human colon tumors and KRAS alone, a simpler model that targets one of the most frequently altered pathways in cancer. These screens identified hits unique to each model and one shared by both, emphasizing the importance of capturing the genetic complexity of human tumor genome landscapes in experimental models. Our follow-up analysis of 2 hits from the KRAS-only screen suggests that classical genetic modifier screens in heterozygous mutant backgrounds that result in a modest, nonlethal reduction in candidate gene activity in the context of a whole animal-a key goal of systemic drug treatment-may be a particularly useful approach to identify the most rate-limiting genetic vulnerabilities in disease models as ideal candidate drug targets.
Collapse
Affiliation(s)
- Ishwaree Datta
- Department of Biological Science, Florida State University, Tallahassee, FL 32304, USA
| | - Tajah Vassel
- Department of Biological Science, Florida State University, Tallahassee, FL 32304, USA
| | - Benjamin Linkous
- Department of Biological Science, Florida State University, Tallahassee, FL 32304, USA
| | - Tyler Odum
- Department of Biological Science, Florida State University, Tallahassee, FL 32304, USA
| | - Christian Drew
- Department of Biological Science, Florida State University, Tallahassee, FL 32304, USA
| | - Andrew Taylor
- Department of Biological Science, Florida State University, Tallahassee, FL 32304, USA
| | - Erdem Bangi
- Department of Biological Science, Florida State University, Tallahassee, FL 32304, USA
| |
Collapse
|
7
|
Zeng Y, Yin L, Zhou J, Zeng R, Xiao Y, Black AR, Hu T, Singh PK, Yin F, Batra SK, Yu F, Chen Y, Dong J. MARK2 regulates chemotherapeutic responses through class IIa HDAC-YAP axis in pancreatic cancer. Oncogene 2022; 41:3859-3875. [PMID: 35780183 PMCID: PMC9339507 DOI: 10.1038/s41388-022-02399-3] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2021] [Revised: 06/17/2022] [Accepted: 06/22/2022] [Indexed: 01/04/2023]
Abstract
Despite paclitaxel's wide use in cancer treatment, patient response rate is still low and drug resistance is a major clinical obstacle. Through a Phos-tag-based kinome-wide screen, we identified MARK2 as a critical regulator for paclitaxel chemosensitivity in PDAC. We show that MARK2 is phosphorylated by CDK1 in response to antitubulin chemotherapeutics and in unperturbed mitosis. Phosphorylation is essential for MARK2 in regulating mitotic progression and paclitaxel cytotoxicity in PDAC cells. Mechanistically, our findings also suggest that MARK2 controls paclitaxel chemosensitivity by regulating class IIa HDACs. MARK2 directly phosphorylates HDAC4 specifically during antitubulin treatment. Phosphorylated HDAC4 promotes YAP activation and controls expression of YAP target genes induced by paclitaxel. Importantly, combination of HDAC inhibition and paclitaxel overcomes chemoresistance in organoid culture and preclinical PDAC animal models. The expression levels of MARK2, HDACs, and YAP are upregulated and positively correlated in PDAC patients. Inhibition of MARK2 or class IIa HDACs potentiates paclitaxel cytotoxicity by inducing mitotic abnormalities in PDAC cells. Together, our findings identify the MARK2-HDAC axis as a druggable target for overcoming chemoresistance in PDAC.
Collapse
Affiliation(s)
- Yongji Zeng
- Eppley Institute for Research in Cancer and Allied Diseases, Fred & Pamela Buffett Cancer Center, University of Nebraska Medical Center, Omaha, NE, USA
| | - Ling Yin
- Eppley Institute for Research in Cancer and Allied Diseases, Fred & Pamela Buffett Cancer Center, University of Nebraska Medical Center, Omaha, NE, USA
| | - Jiuli Zhou
- Eppley Institute for Research in Cancer and Allied Diseases, Fred & Pamela Buffett Cancer Center, University of Nebraska Medical Center, Omaha, NE, USA
- Department of Oncology, Shanghai East Hospital, Tongji University School of Medicine, Shanghai, China
| | - Renya Zeng
- Eppley Institute for Research in Cancer and Allied Diseases, Fred & Pamela Buffett Cancer Center, University of Nebraska Medical Center, Omaha, NE, USA
| | - Yi Xiao
- Eppley Institute for Research in Cancer and Allied Diseases, Fred & Pamela Buffett Cancer Center, University of Nebraska Medical Center, Omaha, NE, USA
| | - Adrian R Black
- Eppley Institute for Research in Cancer and Allied Diseases, Fred & Pamela Buffett Cancer Center, University of Nebraska Medical Center, Omaha, NE, USA
| | - Tuo Hu
- Eppley Institute for Research in Cancer and Allied Diseases, Fred & Pamela Buffett Cancer Center, University of Nebraska Medical Center, Omaha, NE, USA
| | - Pankaj K Singh
- Eppley Institute for Research in Cancer and Allied Diseases, Fred & Pamela Buffett Cancer Center, University of Nebraska Medical Center, Omaha, NE, USA
| | - Feng Yin
- Department of Pathology and Anatomic Sciences, University of Missouri, Columbia, MO, USA
| | - Surinder K Batra
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, NE, USA
| | - Fang Yu
- Department of Biostatistics, College of Public Health, University of Nebraska Medical Center, Omaha, NE, USA
| | - Yuanhong Chen
- Eppley Institute for Research in Cancer and Allied Diseases, Fred & Pamela Buffett Cancer Center, University of Nebraska Medical Center, Omaha, NE, USA
| | - Jixin Dong
- Eppley Institute for Research in Cancer and Allied Diseases, Fred & Pamela Buffett Cancer Center, University of Nebraska Medical Center, Omaha, NE, USA.
| |
Collapse
|
8
|
Kim CL, Lim SB, Kim K, Jeong HS, Mo JS. Phosphorylation analysis of the Hippo-YAP pathway using Phos-tag. J Proteomics 2022; 261:104582. [DOI: 10.1016/j.jprot.2022.104582] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2021] [Revised: 03/22/2022] [Accepted: 03/31/2022] [Indexed: 10/18/2022]
|
9
|
Yamada H, Nishida KM, Iwasaki YW, Isota Y, Negishi L, Siomi MC. Siwi cooperates with Par-1 kinase to resolve the autoinhibitory effect of Papi for Siwi-piRISC biogenesis. Nat Commun 2022; 13:1518. [PMID: 35314687 PMCID: PMC8938449 DOI: 10.1038/s41467-022-29193-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2021] [Accepted: 02/15/2022] [Indexed: 11/23/2022] Open
Abstract
Bombyx Papi acts as a scaffold for Siwi-piRISC biogenesis on the mitochondrial surface. Papi binds first to Siwi via the Tudor domain and subsequently to piRNA precursors loaded onto Siwi via the K-homology (KH) domains. This second action depends on phosphorylation of Papi. However, the underlying mechanism remains unknown. Here, we show that Siwi targets Par-1 kinase to Papi to phosphorylate Ser547 in the auxiliary domain. This modification enhances the ability of Papi to bind Siwi-bound piRNA precursors via the KH domains. The Papi S547A mutant bound to Siwi, but evaded phosphorylation by Par-1, abrogating Siwi-piRISC biogenesis. A Papi mutant that lacked the Tudor and auxiliary domains escaped coordinated regulation by Siwi and Par-1 and bound RNAs autonomously. Another Papi mutant that lacked the auxiliary domain bound Siwi but did not bind piRNA precursors. A sophisticated mechanism by which Siwi cooperates with Par-1 kinase to promote Siwi-piRISC biogenesis was uncovered. Siwi-piRISC protects the germline genome from DNA damage caused by selfish movement of transposons by suppressing their expression. Here, the authors show how molecularly Papi, which plays an important role in the production of Siwi-piRISC, cooperates with Par-1 kinase to ensure the accumulation of Siwi-piRISC in germ cells.
Collapse
|
10
|
Dong XH, Zhang MZ, Lai CZ, Li CC, Du L, Song GD, Zong XL, Jin XL. Dura cells in the etiopathogenesis of Crouzon syndrome: the effects of FGFR2 mutations in the dura cells on the proliferation of osteoblasts through the hippo/YAP mediated transcriptional regulation pathway. Am J Transl Res 2021; 13:11255-11270. [PMID: 34786056 PMCID: PMC8581865] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2021] [Accepted: 07/12/2021] [Indexed: 06/13/2023]
Abstract
BACKGROUND FGFR2 (fibroblast growth factor receptor 2) mutations are implicated in the etiopathogenesis of syndromic craniosynostosis, and C278F- or C342Y-FGFR2 mutations can lead to Crouzon syndrome. The dura mater exerts crucial effects in the regulation of cranial suture development. However, the underlying mechanisms of these biological processes are rarely studied. This research explored and analyzed the biological function of FGFR2 overexpressed by dura cells on cranial osteoblasts. METHODS Dura cells and cranial osteoblasts from C57BL/6 mice aged 6 days were obtained and cultured respectively. Lentivirus-FGFR2 constructs were engineered with C278F- and C342Y-FGFR2 mutations. The dura cells were infected with the constructs and co-cultured with osteoblasts in a trans-well system. Four experimental groups were established, namely the Oste group, the Oste+Dura-vector group, the Oste+Dura-C278F group, and the Oste+Dura-C342Y group. FACS, CCK8, and EdU assays were used to evaluate the osteoblast proliferation levels. Western blot and RT-qPCR were used to measure the expressions of the factors related to proliferation, differentiation, and apoptosis. Furthermore, the expression levels of the key factors in the Hippo/YAP-PI3K-AKT proliferation pathway were measured and analyzed. Finally, rescue experiments were performed with an RNA interfering assay. RESULTS The proliferation and differentiation levels of the osteoblasts in the Oste+Dura-C278F and Oste+Dura-C342Y groups were significantly up-regulated, but the apoptosis levels in the four groups were not significantly different. The YAP, TEADs1-4, p-PI3K, and p-AKT1 expressions in the mutant FGFR2 groups were higher than the corresponding expressions in the control groups, and the results of the rescue experiments showed a reverse expression tendency, which further confirmed the effects of the FGFR2 mutations in the dura cells on the proliferation of the osteoblasts and the underlying possible mechanisms. CONCLUSION Our studies suggest that the Crouzon mutations (C278F- and C342Y-) of FGFR2 in dura cells can enhance osteoblast proliferation and differentiation and might influence the pathogenesis of craniosynostosis by affecting the Hippo/YAP-PI3K-AKT proliferation signaling pathway.
Collapse
Affiliation(s)
- Xin-Hang Dong
- The Sixteenth Department of Plastic Surgery, Plastic Surgery Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College (CAMS & PUMC)Beijing, China
| | - Ming-Zi Zhang
- Department of Plastic Surgery, Peking Union Medical College HospitalBeijing, China
| | - Chen-Zhi Lai
- The Sixteenth Department of Plastic Surgery, Plastic Surgery Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College (CAMS & PUMC)Beijing, China
| | - Cheng-Cheng Li
- The Sixteenth Department of Plastic Surgery, Plastic Surgery Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College (CAMS & PUMC)Beijing, China
| | - Le Du
- The Sixteenth Department of Plastic Surgery, Plastic Surgery Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College (CAMS & PUMC)Beijing, China
| | - Guo-Dong Song
- The Sixteenth Department of Plastic Surgery, Plastic Surgery Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College (CAMS & PUMC)Beijing, China
| | - Xian-Lei Zong
- The Sixteenth Department of Plastic Surgery, Plastic Surgery Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College (CAMS & PUMC)Beijing, China
| | - Xiao-Lei Jin
- The Sixteenth Department of Plastic Surgery, Plastic Surgery Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College (CAMS & PUMC)Beijing, China
| |
Collapse
|
11
|
Yap1-Scribble polarization is required for hematopoietic stem cell division and fate. Blood 2021; 136:1824-1836. [PMID: 32483624 DOI: 10.1182/blood.2019004113] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2019] [Accepted: 05/13/2020] [Indexed: 02/06/2023] Open
Abstract
Yap1 and its paralogue Taz largely control epithelial tissue growth. We have identified that hematopoietic stem cell (HSC) fitness response to stress depends on Yap1 and Taz. Deletion of Yap1 and Taz induces a loss of HSC quiescence, symmetric self-renewal ability, and renders HSC more vulnerable to serial myeloablative 5-fluorouracil treatment. This effect depends on the predominant cytosolic polarization of Yap1 through a PDZ domain-mediated interaction with the scaffold Scribble. Scribble and Yap1 coordinate to control cytoplasmic Cdc42 activity and HSC fate determination in vivo. Deletion of Scribble disrupts Yap1 copolarization with Cdc42 and decreases Cdc42 activity, resulting in increased self-renewing HSC with competitive reconstitution advantages. These data suggest that Scribble/Yap1 copolarization is indispensable for Cdc42-dependent activity on HSC asymmetric division and fate. The combined loss of Scribble, Yap1, and Taz results in transcriptional upregulation of Rac-specific guanine nucleotide exchange factors, Rac activation, and HSC fitness restoration. Scribble links Cdc42 and the cytosolic functions of the Hippo signaling cascade in HSC fate determination.
Collapse
|
12
|
Abstract
The Hippo pathway is an evolutionarily conserved regulator of organ growth and tumorigenesis. In Drosophila, oncogenic RasV12 cooperates with loss-of-cell polarity to promote Hippo pathway-dependent tumor growth. To identify additional factors that modulate this signaling, we performed a genetic screen utilizing the Drosophila Ras V12 /lgl -/- in vivo tumor model and identified Rox8, a RNA-binding protein (RBP), as a positive regulator of the Hippo pathway. We found that Rox8 overexpression suppresses whereas Rox8 depletion potentiates Hippo-dependent tissue overgrowth, accompanied by altered Yki protein level and target gene expression. Mechanistically, Rox8 directly binds to a target site located in the yki 3' UTR, recruits and stabilizes the targeting of miR-8-loaded RISC, which accelerates the decay of yki messenger RNA (mRNA). Moreover, TIAR, the human ortholog of Rox8, is able to promote the degradation of yki mRNA when introduced into Drosophila and destabilizes YAP mRNA in human cells. Thus, our study provides in vivo evidence that the Hippo pathway is posttranscriptionally regulated by the collaborative action of RBP and microRNA (miRNA), which may provide an approach for modulating Hippo pathway-mediated tumorigenesis.
Collapse
|
13
|
SHANK2 is a frequently amplified oncogene with evolutionarily conserved roles in regulating Hippo signaling. Protein Cell 2020; 12:174-193. [PMID: 32661924 PMCID: PMC7895894 DOI: 10.1007/s13238-020-00742-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2019] [Accepted: 05/11/2020] [Indexed: 12/22/2022] Open
Abstract
Dysfunction of the Hippo pathway enables cells to evade contact inhibition and provides advantages for cancerous overgrowth. However, for a significant portion of human cancer, how Hippo signaling is perturbed remains unknown. To answer this question, we performed a genome-wide screening for genes that affect the Hippo pathway in Drosophila and cross-referenced the hit genes with human cancer genome. In our screen, Prosap was identified as a novel regulator of the Hippo pathway that potently affects tissue growth. Interestingly, a mammalian homolog of Prosap, SHANK2, is the most frequently amplified gene on 11q13, a major tumor amplicon in human cancer. Gene amplification profile in this 11q13 amplicon clearly indicates selective pressure for SHANK2 amplification. More importantly, across the human cancer genome, SHANK2 is the most frequently amplified gene that is not located within the Myc amplicon. Further studies in multiple human cell lines confirmed that SHANK2 overexpression causes deregulation of Hippo signaling through competitive binding for a LATS1 activator, and as a potential oncogene, SHANK2 promotes cellular transformation and tumor formation in vivo. In cancer cell lines with deregulated Hippo pathway, depletion of SHANK2 restores Hippo signaling and ceases cellular proliferation. Taken together, these results suggest that SHANK2 is an evolutionarily conserved Hippo pathway regulator, commonly amplified in human cancer and potently promotes cancer. Our study for the first time illustrated oncogenic function of SHANK2, one of the most frequently amplified gene in human cancer. Furthermore, given that in normal adult tissues, SHANK2’s expression is largely restricted to the nervous system, SHANK2 may represent an interesting target for anticancer therapy.
Collapse
|
14
|
Ooki T, Hatakeyama M. Hyaluronan Degradation Promotes Cancer via Hippo-YAP Signaling: An Intervention Point for Cancer Therapy. Bioessays 2020; 42:e2000005. [PMID: 32449813 DOI: 10.1002/bies.202000005] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2020] [Revised: 03/16/2020] [Indexed: 12/14/2022]
Abstract
High-molecular-weight hyaluronan acts as a ligand of the tumor-suppressive Hippo signal, whereas degradation of hyaluronan from a high-molecular-weight form to a low-molecular-weight forms by hyaluronidase 2 inhibits Hippo signal activation and thereby activates the pro-oncogenic transcriptional coactivator yes-associated protein (YAP), which creates a cancer-predisposing microenvironment and drives neoplastic transformation of cells through both cell-autonomous and non-cell-autonomous mechanisms. In fact, accumulation of low-molecular-weight hyaluronan in tissue stroma is observed in many types of cancers. Since inhibition of YAP activity suppresses tumor growth in vivo, pharmacological intervention of the Hippo-YAP signal is an attractive approach for future drug development. In this review, pharmacological intervention of excessive hyaluronan degradation as a novel approach for inhibition of the Hippo-YAP signal is also discussed. Development of hyaluronidase inhibitors may provide novel therapeutic strategies for human malignant tumors.
Collapse
Affiliation(s)
- Takuya Ooki
- Division of Microbiology, Graduate School of Medicine, the University of Tokyo, Tokyo, 113-0033, Japan
| | - Masanori Hatakeyama
- Division of Microbiology, Graduate School of Medicine, the University of Tokyo, Tokyo, 113-0033, Japan
| |
Collapse
|
15
|
van Soldt BJ, Cardoso WV. Hippo-Yap/Taz signaling: Complex network interactions and impact in epithelial cell behavior. WILEY INTERDISCIPLINARY REVIEWS-DEVELOPMENTAL BIOLOGY 2019; 9:e371. [PMID: 31828974 DOI: 10.1002/wdev.371] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/14/2019] [Revised: 10/29/2019] [Accepted: 11/15/2019] [Indexed: 12/16/2022]
Abstract
The Hippo pathway has emerged as a crucial integrator of signals in biological events from development to adulthood and in diseases. Although extensively studied in Drosophila and in cell cultures, major gaps of knowledge still remain on how this pathway functions in mammalian systems. The pathway consists of a growing number of components, including core kinases and adaptor proteins, which control the subcellular localization of the transcriptional co-activators Yap and Taz through phosphorylation of serines at key sites. When localized to the nucleus, Yap/Taz interact with TEAD transcription factors to induce transcriptional programs of proliferation, stemness, and growth. In the cytoplasm, Yap/Taz interact with multiple pathways to regulate a variety of cellular functions or are targeted for degradation. The Hippo pathway receives cues from diverse intracellular and extracellular inputs, including growth factor and integrin signaling, polarity complexes, and cell-cell junctions. This review highlights the mechanisms of regulation of Yap/Taz nucleocytoplasmic shuttling and their implications for epithelial cell behavior using the lung as an intriguing example of this paradigm. This article is categorized under: Gene Expression and Transcriptional Hierarchies > Regulatory Mechanisms Signaling Pathways > Cell Fate Signaling Establishment of Spatial and Temporal Patterns > Cytoplasmic Localization.
Collapse
Affiliation(s)
- Benjamin J van Soldt
- Columbia Center for Human Development, Department of Medicine, Pulmonary Allergy Critical Care Medicine, Columbia University Irving Medical Center, New York, New York.,Department of Genetics and Development, Columbia University Irving Medical Center, New York, New York
| | - Wellington V Cardoso
- Columbia Center for Human Development, Department of Medicine, Pulmonary Allergy Critical Care Medicine, Columbia University Irving Medical Center, New York, New York.,Department of Genetics and Development, Columbia University Irving Medical Center, New York, New York
| |
Collapse
|
16
|
Ansar M, Chung H, Waryah YM, Makrythanasis P, Falconnet E, Rao AR, Guipponi M, Narsani AK, Fingerhut R, Santoni FA, Ranza E, Waryah AM, Bellen HJ, Antonarakis SE. Visual impairment and progressive phthisis bulbi caused by recessive pathogenic variant in MARK3. Hum Mol Genet 2019; 27:2703-2711. [PMID: 29771303 DOI: 10.1093/hmg/ddy180] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2018] [Revised: 05/02/2018] [Accepted: 05/06/2018] [Indexed: 12/20/2022] Open
Abstract
Developmental eye defects often severely reduce vision. Despite extensive efforts, for a substantial fraction of these cases the molecular causes are unknown. Recessive eye disorders are frequent in consanguineous populations and such large families with multiple affected individuals provide an opportunity to identify recessive causative genes. We studied a Pakistani consanguineous family with three affected individuals with congenital vision loss and progressive eye degeneration. The family was analyzed by exome sequencing of one affected individual and genotyping of all family members. We have identified a non-synonymous homozygous variant (NM_001128918.2: c.1708C > G: p.Arg570Gly) in the MARK3 gene as the likely cause of the phenotype. Given that MARK3 is highly conserved in flies (I: 55%; S: 67%) we knocked down the MARK3 homologue, par-1, in the eye during development. This leads to a significant reduction in eye size, a severe loss of photoreceptors and loss of vision based on electroretinogram (ERG) recordings. Expression of the par-1 p.Arg792Gly mutation (equivalent to the MARK3 variant found in patients) in developing fly eyes also induces loss of eye tissue and reduces the ERG signals. The data in flies and human indicate that the MARK3 variant corresponds to a loss of function. We conclude that the identified mutation in MARK3 establishes a new gene-disease link, since it likely causes structural abnormalities during eye development and visual impairment in humans, and that the function of MARK3/par-1 is evolutionarily conserved in eye development.
Collapse
Affiliation(s)
- Muhammad Ansar
- Department of Genetic Medicine and Development, University of Geneva Medical School, Geneva, Switzerland
| | - Hyunglok Chung
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, USA.,Jan and Dan Duncan Neurological Research Institute, Texas Children's Hospital, Houston, TX, USA
| | - Yar M Waryah
- Molecular Biology and Genetics Department, Medical Research Center, Liaquat University of Medical and Health Sciences, Jamshoro, Pakistan
| | - Periklis Makrythanasis
- Department of Genetic Medicine and Development, University of Geneva Medical School, Geneva, Switzerland
| | - Emilie Falconnet
- Department of Genetic Medicine and Development, University of Geneva Medical School, Geneva, Switzerland
| | - Ali Raza Rao
- Molecular Biology and Genetics Department, Medical Research Center, Liaquat University of Medical and Health Sciences, Jamshoro, Pakistan
| | - Michel Guipponi
- Department of Genetic Medicine and Development, University of Geneva Medical School, Geneva, Switzerland.,Service of Genetic Medicine, University Hospitals of Geneva, Geneva, Switzerland
| | - Ashok K Narsani
- Institute of Ophthalmology, Liaquat University of Medical and Health Sciences, Jamshoro, Pakistan
| | - Ralph Fingerhut
- Swiss Newborn Screening Laboratory, University Children's Hospital, Zurich, Switzerland
| | - Federico A Santoni
- Department of Genetic Medicine and Development, University of Geneva Medical School, Geneva, Switzerland
| | - Emmanuelle Ranza
- Department of Genetic Medicine and Development, University of Geneva Medical School, Geneva, Switzerland.,Service of Genetic Medicine, University Hospitals of Geneva, Geneva, Switzerland
| | - Ali M Waryah
- Molecular Biology and Genetics Department, Medical Research Center, Liaquat University of Medical and Health Sciences, Jamshoro, Pakistan
| | - Hugo J Bellen
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, USA.,Jan and Dan Duncan Neurological Research Institute, Texas Children's Hospital, Houston, TX, USA.,Howard Hughes Medical Institute, Houston, TX, USA
| | - Stylianos E Antonarakis
- Department of Genetic Medicine and Development, University of Geneva Medical School, Geneva, Switzerland.,Service of Genetic Medicine, University Hospitals of Geneva, Geneva, Switzerland.,iGE3 Institute of Genetics and Genomics of Geneva, Geneva, Switzerland
| |
Collapse
|
17
|
Abstract
The Hippo signalling pathway and its transcriptional co-activator targets Yorkie/YAP/TAZ first came to attention because of their role in tissue growth control. Over the past 15 years, it has become clear that, like other developmental pathways (e.g. the Wnt, Hedgehog and TGFβ pathways), Hippo signalling is a 'jack of all trades' that is reiteratively used to mediate a range of cellular decision-making processes from proliferation, death and morphogenesis to cell fate determination. Here, and in the accompanying poster, we briefly outline the core pathway and its regulation, and describe the breadth of its roles in animal development.
Collapse
Affiliation(s)
- John Robert Davis
- Apoptosis and Proliferation Control Laboratory, The Francis Crick Institute, 1 Midland Road, London NW1 1AT, UK
| | - Nicolas Tapon
- Apoptosis and Proliferation Control Laboratory, The Francis Crick Institute, 1 Midland Road, London NW1 1AT, UK
| |
Collapse
|
18
|
High-Molecular-Weight Hyaluronan Is a Hippo Pathway Ligand Directing Cell Density-Dependent Growth Inhibition via PAR1b. Dev Cell 2019; 49:590-604.e9. [DOI: 10.1016/j.devcel.2019.04.018] [Citation(s) in RCA: 40] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2018] [Revised: 01/11/2019] [Accepted: 04/13/2019] [Indexed: 02/06/2023]
|
19
|
Khadilkar RJ, Tanentzapf G. Septate junction components control Drosophila hematopoiesis through the Hippo pathway. Development 2019; 146:dev.166819. [PMID: 30890573 DOI: 10.1242/dev.166819] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2018] [Accepted: 03/08/2019] [Indexed: 12/12/2022]
Abstract
Hematopoiesis requires coordinated cell signals to control the proliferation and differentiation of progenitor cells. In Drosophila, blood progenitors, called prohemocytes, which are located in a hematopoietic organ called the lymph gland, are regulated by the Salvador-Warts-Hippo pathway. In epithelial cells, the Hippo pathway integrates diverse biological inputs, such as cell polarity and cell-cell contacts, but Drosophila blood cells lack the conspicuous polarity of epithelial cells. Here, we show that the septate-junction components Cora and NrxIV promote Hippo signaling in the lymph gland. Depletion of septate-junction components in hemocytes produces similar phenotypes to those observed in Hippo pathway mutants, including increased differentiation of immune cells. Our analysis places septate-junction components as upstream regulators of the Hippo pathway where they recruit Merlin to the membrane. Finally, we show that interactions of septate-junction components with the Hippo pathway are a key functional component of the cellular immune response following infection.
Collapse
Affiliation(s)
- Rohan J Khadilkar
- Department of Cellular and Physiological Sciences, University of British Columbia, Vancouver V6T 1Z3, Canada
| | - Guy Tanentzapf
- Department of Cellular and Physiological Sciences, University of British Columbia, Vancouver V6T 1Z3, Canada
| |
Collapse
|
20
|
Abstract
YAP/TAZ activity is regulated by a complex network of signals that include the Hippo pathway, cell polarity complexes, and signaling receptors of the RTK, GPCR, and WNT pathways and by a seamlessly expanding number of intracellular cues including energy and mevalonate metabolism. Among these inputs, we here concentrate on mechanical cues embedded in the extracellular matrix (ECM) microenvironment, which are key regulators of YAP/TAZ activity. We review the techniques that have been used to study mechano-regulation of YAP/TAZ, including conceptual and practical considerations on how these experiments should be designed and controlled. Finally, we briefly review the most appropriate techniques to monitor YAP/TAZ activity in these experiments and their significance to study the mechanisms linking YAP/TAZ to mechanical cues.
Collapse
Affiliation(s)
- Sirio Dupont
- Department of Molecular Medicine, School of Medicine, University of Padova, Padova, Italy.
| |
Collapse
|
21
|
Abstract
The Hippo Pathway comprises a vast network of components that integrate diverse signals including mechanical cues and cell surface or cell-surface-associated molecules to define cellular outputs of growth, proliferation, cell fate, and cell survival on both the cellular and tissue level. Because of the importance of the regulators, core components, and targets of this pathway in human health and disease, individual components were often identified by efforts in mammalian models or for a role in a specific process such as stress response or cell death. However, multiple components were originally discovered in the Drosophila system, and the breakthrough of conceiving that these components worked together in a signaling pathway came from a series of Drosophila genetic screens and fundamental genetic and phenotypic characterization efforts. In this chapter, we will review the original discoveries leading to the conceptual framework of these components as a tumor suppressor network. We will review chronologically the early efforts that established our initial understanding of the core machinery that then launched the growing and vibrant field to be discussed throughout later chapters of this book.
Collapse
Affiliation(s)
- Rewatee Gokhale
- Department of Oncological Sciences, The Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Cathie M Pfleger
- Department of Oncological Sciences, The Icahn School of Medicine at Mount Sinai, New York, NY, USA.
- The Graduate School of Biomedical Sciences, The Icahn School of Medicine at Mount Sinai, New York, NY, USA.
- The Tisch Cancer Institute, The Icahn School of Medicine at Mount Sinai, New York, NY, USA.
| |
Collapse
|
22
|
Cheng Y, Chen D. Fruit fly research in China. J Genet Genomics 2018; 45:583-592. [PMID: 30455037 DOI: 10.1016/j.jgg.2018.09.003] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2018] [Revised: 09/21/2018] [Accepted: 09/29/2018] [Indexed: 11/19/2022]
Abstract
Served as a model organism over a century, fruit fly has significantly pushed forward the development of global scientific research, including in China. The high similarity in genomic features between fruit fly and human enables this tiny insect to benefit the biomedical studies of human diseases. In the past decades, Chinese biologists have used fruit fly to make numerous achievements on understanding the fundamental questions in many diverse areas of biology. Here, we review some of the recent fruit fly studies in China, and mainly focus on those studies in the fields of stem cell biology, cancer therapy and regeneration medicine, neurological disorders and epigenetics.
Collapse
Affiliation(s)
- Ying Cheng
- State Key Laboratory of Membrane Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China
| | - Dahua Chen
- State Key Laboratory of Membrane Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China.
| |
Collapse
|
23
|
Gill MK, Christova T, Zhang YY, Gregorieff A, Zhang L, Narimatsu M, Song S, Xiong S, Couzens AL, Tong J, Krieger JR, Moran MF, Zlotta AR, van der Kwast TH, Gingras AC, Sicheri F, Wrana JL, Attisano L. A feed forward loop enforces YAP/TAZ signaling during tumorigenesis. Nat Commun 2018; 9:3510. [PMID: 30158528 PMCID: PMC6115388 DOI: 10.1038/s41467-018-05939-2] [Citation(s) in RCA: 69] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2017] [Accepted: 07/30/2018] [Indexed: 12/13/2022] Open
Abstract
In most solid tumors, the Hippo pathway is inactivated through poorly understood mechanisms that result in the activation of the transcriptional regulators, YAP and TAZ. Here, we identify NUAK2 as a YAP/TAZ activator that directly inhibits LATS-mediated phosphorylation of YAP/TAZ and show that NUAK2 induction by YAP/TAZ and AP-1 is required for robust YAP/TAZ signaling. Pharmacological inhibition or loss of NUAK2 reduces the growth of cultured cancer cells and mammary tumors in mice. Moreover, in human patient samples, we show that NUAK2 expression is elevated in aggressive, high-grade bladder cancer and strongly correlates with a YAP/TAZ gene signature. These findings identify a positive feed forward loop in the Hippo pathway that establishes a key role for NUAK2 in enforcing the tumor-promoting activities of YAP/TAZ. Our results thus introduce a new opportunity for cancer therapeutics by delineating NUAK2 as a potential target for re-engaging the Hippo pathway. The Hippo pathway is frequently dysregulated in cancer. Here, the authors identify NUAK2 as negative regulator of the Hippo pathway from a siRNA kinome screen and show that NUAK2 promotes YAP/TAZ nuclear localisation while NUAK2 is a transcriptional target of YAP/TAZ, thus providing a feed forward loop to promote tumorigenesis.
Collapse
Affiliation(s)
- Mandeep K Gill
- Department of Biochemistry, University of Toronto, Toronto, ON, M5S 1A8, Canada.,Donnelly Centre, University of Toronto, Toronto, ON, M5S 3E1, Canada
| | - Tania Christova
- Department of Biochemistry, University of Toronto, Toronto, ON, M5S 1A8, Canada.,Donnelly Centre, University of Toronto, Toronto, ON, M5S 3E1, Canada
| | - Ying Y Zhang
- Department of Molecular Genetics, University of Toronto, Toronto, ON, M5S 1A8, Canada.,Centre for Systems Biology, Lunenfeld-Tanenbaum Research Institute, Mount Sinai Hospital, Toronto, ON, M5G 1X5, Canada
| | - Alex Gregorieff
- Centre for Systems Biology, Lunenfeld-Tanenbaum Research Institute, Mount Sinai Hospital, Toronto, ON, M5G 1X5, Canada.,Department of Pathology, McGill University and Research Institute of the McGill University Health Center, Montreal, H4A 3J1, QC, Canada
| | - Liang Zhang
- Centre for Systems Biology, Lunenfeld-Tanenbaum Research Institute, Mount Sinai Hospital, Toronto, ON, M5G 1X5, Canada.,Department of Biomedical Sciences, College of Veterinary Medicine and Life Sciences, City University of Hong Kong, 999077, Hong Kong, China.,City University of Hong Kong Shenzhen Research Institute, Shenzhen, Guangdong, 518057, China
| | - Masahiro Narimatsu
- Centre for Systems Biology, Lunenfeld-Tanenbaum Research Institute, Mount Sinai Hospital, Toronto, ON, M5G 1X5, Canada
| | - Siyuan Song
- Department of Biochemistry, University of Toronto, Toronto, ON, M5S 1A8, Canada.,Donnelly Centre, University of Toronto, Toronto, ON, M5S 3E1, Canada
| | - Shawn Xiong
- Department of Biochemistry, University of Toronto, Toronto, ON, M5S 1A8, Canada.,Centre for Systems Biology, Lunenfeld-Tanenbaum Research Institute, Mount Sinai Hospital, Toronto, ON, M5G 1X5, Canada
| | - Amber L Couzens
- Centre for Systems Biology, Lunenfeld-Tanenbaum Research Institute, Mount Sinai Hospital, Toronto, ON, M5G 1X5, Canada
| | - Jiefei Tong
- Program in Cell Biology, Hospital for Sick Children, Toronto, ON, M5G 0A4, Canada
| | - Jonathan R Krieger
- SPARC BioCentre, Hospital for Sick Children, Toronto, ON, M5G 0A4, Canada
| | - Michael F Moran
- Department of Molecular Genetics, University of Toronto, Toronto, ON, M5S 1A8, Canada.,Program in Cell Biology, Hospital for Sick Children, Toronto, ON, M5G 0A4, Canada.,SPARC BioCentre, Hospital for Sick Children, Toronto, ON, M5G 0A4, Canada
| | - Alexandre R Zlotta
- Department of Surgery, Division of Urology, University of Toronto, Mount Sinai Hospital and University Health Network, Toronto, M5G 1X5, ON, Canada
| | - Theodorus H van der Kwast
- Department of Pathology, Toronto General Hospital, University Health Network, Toronto, ON, M5G 2C4, Canada
| | - Anne-Claude Gingras
- Department of Molecular Genetics, University of Toronto, Toronto, ON, M5S 1A8, Canada.,Centre for Systems Biology, Lunenfeld-Tanenbaum Research Institute, Mount Sinai Hospital, Toronto, ON, M5G 1X5, Canada
| | - Frank Sicheri
- Department of Biochemistry, University of Toronto, Toronto, ON, M5S 1A8, Canada.,Department of Molecular Genetics, University of Toronto, Toronto, ON, M5S 1A8, Canada.,Centre for Systems Biology, Lunenfeld-Tanenbaum Research Institute, Mount Sinai Hospital, Toronto, ON, M5G 1X5, Canada
| | - Jeffrey L Wrana
- Department of Molecular Genetics, University of Toronto, Toronto, ON, M5S 1A8, Canada.,Centre for Systems Biology, Lunenfeld-Tanenbaum Research Institute, Mount Sinai Hospital, Toronto, ON, M5G 1X5, Canada
| | - Liliana Attisano
- Department of Biochemistry, University of Toronto, Toronto, ON, M5S 1A8, Canada. .,Donnelly Centre, University of Toronto, Toronto, ON, M5S 3E1, Canada.
| |
Collapse
|
24
|
Homeostatic Control of Hpo/MST Kinase Activity through Autophosphorylation-Dependent Recruitment of the STRIPAK PP2A Phosphatase Complex. Cell Rep 2018; 21:3612-3623. [PMID: 29262338 DOI: 10.1016/j.celrep.2017.11.076] [Citation(s) in RCA: 92] [Impact Index Per Article: 13.1] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2017] [Revised: 10/25/2017] [Accepted: 11/21/2017] [Indexed: 12/22/2022] Open
Abstract
The Hippo pathway controls organ size and tissue homeostasis through a kinase cascade leading from the Ste20-like kinase Hpo (MST1/2 in mammals) to the transcriptional coactivator Yki (YAP/TAZ in mammals). Whereas previous studies have uncovered positive and negative regulators of Hpo/MST, how they are integrated to maintain signaling homeostasis remains poorly understood. Here, we identify a self-restricting mechanism whereby autophosphorylation of an unstructured linker in Hpo/MST creates docking sites for the STRIPAK PP2A phosphatase complex to inactivate Hpo/MST. Mutation of the phospho-dependent docking sites in Hpo/MST or deletion of Slmap, the STRIPAK subunit recognizing these docking sites, results in constitutive activation of Hpo/MST in both Drosophila and mammalian cells. In contrast, autophosphorylation of the Hpo/MST linker at distinct sites is known to recruit Mats/MOB1 to facilitate Hippo signaling. Thus, multisite autophosphorylation of Hpo/MST linker provides an evolutionarily conserved built-in molecular platform to maintain signaling homeostasis by coupling antagonistic signaling activities.
Collapse
|
25
|
Fulford A, Tapon N, Ribeiro PS. Upstairs, downstairs: spatial regulation of Hippo signalling. Curr Opin Cell Biol 2018; 51:22-32. [PMID: 29154163 DOI: 10.1016/j.ceb.2017.10.006] [Citation(s) in RCA: 49] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2017] [Accepted: 10/13/2017] [Indexed: 12/31/2022]
Abstract
Cellular signalling lies at the heart of every decision involved in the development and homeostasis of multicellular organisms. The Hippo pathway was discovered nearly two decades ago through seminal work in Drosophila and rapidly emerged as a crucial signalling network implicated in developmental and oncogenic growth, tissue regeneration and stem cell biology. Here, we review recent advances in the field relating to the upstream regulation of Hippo signalling and the intracellular tug-of-war that tightly controls its main target, the transcriptional co-activator Yorkie/YAP.
Collapse
Affiliation(s)
- Alexander Fulford
- Centre for Tumour Biology, Barts Cancer Institute, Queen Mary University of London, Charterhouse Square, London EC1M 6BQ, UK
| | - Nicolas Tapon
- The Francis Crick Institute, 1 Midland Road, London NW1 1AT, UK.
| | - Paulo S Ribeiro
- Centre for Tumour Biology, Barts Cancer Institute, Queen Mary University of London, Charterhouse Square, London EC1M 6BQ, UK.
| |
Collapse
|
26
|
Modelling Cooperative Tumorigenesis in Drosophila. BIOMED RESEARCH INTERNATIONAL 2018; 2018:4258387. [PMID: 29693007 PMCID: PMC5859872 DOI: 10.1155/2018/4258387] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/24/2017] [Accepted: 01/21/2018] [Indexed: 12/13/2022]
Abstract
The development of human metastatic cancer is a multistep process, involving the acquisition of several genetic mutations, tumour heterogeneity, and interactions with the surrounding microenvironment. Due to the complexity of cancer development in mammals, simpler model organisms, such as the vinegar fly, Drosophila melanogaster, are being utilized to provide novel insights into the molecular mechanisms involved. In this review, we highlight recent advances in modelling tumorigenesis using the Drosophila model, focusing on the cooperation of oncogenes or tumour suppressors, and the interaction of mutant cells with the surrounding tissue in epithelial tumour initiation and progression.
Collapse
|
27
|
Kwan J, Sczaniecka A, Heidary Arash E, Nguyen L, Chen CC, Ratkovic S, Klezovitch O, Attisano L, McNeill H, Emili A, Vasioukhin V. DLG5 connects cell polarity and Hippo signaling protein networks by linking PAR-1 with MST1/2. Genes Dev 2017; 30:2696-2709. [PMID: 28087714 PMCID: PMC5238729 DOI: 10.1101/gad.284539.116] [Citation(s) in RCA: 55] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2016] [Accepted: 12/07/2016] [Indexed: 12/21/2022]
Abstract
Here, Kwan et al. investigated the mechanisms connecting cell polarity proteins with intracellular signaling pathways. They found that DLG5 functions as an evolutionarily conserved scaffold and negative regulator of Hippo signaling, demonstrating a direct connection between cell polarity proteins and Hippo that is needed for proper development of multicellular organisms. Disruption of apical–basal polarity is implicated in developmental disorders and cancer; however, the mechanisms connecting cell polarity proteins with intracellular signaling pathways are largely unknown. We determined previously that membrane-associated guanylate kinase (MAGUK) protein discs large homolog 5 (DLG5) functions in cell polarity and regulates cellular proliferation and differentiation via undefined mechanisms. We report here that DLG5 functions as an evolutionarily conserved scaffold and negative regulator of Hippo signaling, which controls organ size through the modulation of cell proliferation and differentiation. Affinity purification/mass spectrometry revealed a critical role of DLG5 in the formation of protein assemblies containing core Hippo kinases mammalian ste20 homologs 1/2 (MST1/2) and Par-1 polarity proteins microtubule affinity-regulating kinases 1/2/3 (MARK1/2/3). Consistent with this finding, Hippo signaling is markedly hyperactive in mammalian Dlg5−/− tissues and cells in vivo and ex vivo and in Drosophila upon dlg5 knockdown. Conditional deletion of Mst1/2 fully rescued the phenotypes of brain-specific Dlg5 knockout mice. Dlg5 also interacts genetically with Hippo effectors Yap1/Taz. Mechanistically, we show that DLG5 inhibits the association between MST1/2 and large tumor suppressor homologs 1/2 (LATS1/2), uses its scaffolding function to link MST1/2 with MARK3, and inhibits MST1/2 kinase activity. These data reveal a direct connection between cell polarity proteins and Hippo, which is essential for proper development of multicellular organisms.
Collapse
Affiliation(s)
- Julian Kwan
- Donnelly Centre for Cellular and Biomolecular Research, University of Toronto, Toronto, Ontario M5S 3E1, Canada.,Department of Molecular Genetics, University of Toronto, Toronto, Ontario M5S 3E1, Canada
| | - Anna Sczaniecka
- Division of Human Biology, Fred Hutchinson Cancer Research Center, Seattle, Washington 98109, USA
| | - Emad Heidary Arash
- Donnelly Centre for Cellular and Biomolecular Research, University of Toronto, Toronto, Ontario M5S 3E1, Canada.,Department of Biochemistry, University of Toronto, Toronto, Ontario M5S 1A8, Canada
| | - Liem Nguyen
- Division of Human Biology, Fred Hutchinson Cancer Research Center, Seattle, Washington 98109, USA
| | - Chia-Chun Chen
- Division of Human Biology, Fred Hutchinson Cancer Research Center, Seattle, Washington 98109, USA
| | - Srdjana Ratkovic
- Department of Molecular Genetics, University of Toronto, Toronto, Ontario M5S 3E1, Canada.,Lunenfeld-Tanenbaum Research Institute, Mt. Sinai Hospital, Toronto, Ontario M5G 1X5, Canada
| | - Olga Klezovitch
- Division of Human Biology, Fred Hutchinson Cancer Research Center, Seattle, Washington 98109, USA
| | - Liliana Attisano
- Donnelly Centre for Cellular and Biomolecular Research, University of Toronto, Toronto, Ontario M5S 3E1, Canada.,Department of Biochemistry, University of Toronto, Toronto, Ontario M5S 1A8, Canada
| | - Helen McNeill
- Department of Molecular Genetics, University of Toronto, Toronto, Ontario M5S 3E1, Canada.,Lunenfeld-Tanenbaum Research Institute, Mt. Sinai Hospital, Toronto, Ontario M5G 1X5, Canada
| | - Andrew Emili
- Donnelly Centre for Cellular and Biomolecular Research, University of Toronto, Toronto, Ontario M5S 3E1, Canada.,Department of Molecular Genetics, University of Toronto, Toronto, Ontario M5S 3E1, Canada
| | - Valeri Vasioukhin
- Division of Human Biology, Fred Hutchinson Cancer Research Center, Seattle, Washington 98109, USA.,Department of Pathology, Institute for Stem Cell and Regenerative Medicine, University of Washington, Seattle, Washington 98195, USA
| |
Collapse
|
28
|
Tissue growth and tumorigenesis in Drosophila: cell polarity and the Hippo pathway. Curr Opin Cell Biol 2017; 48:1-9. [PMID: 28364663 DOI: 10.1016/j.ceb.2017.03.006] [Citation(s) in RCA: 44] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2017] [Revised: 03/07/2017] [Accepted: 03/10/2017] [Indexed: 12/17/2022]
Abstract
Cell polarity regulation is critical for defining membrane domains required for the establishment and maintenance of the apical-basal axis in epithelial cells (apico-basal polarity), asymmetric cell divisions, planar organization of tissues (planar cell polarity), and the formation of the front-rear axis in cell migration (front-rear polarity). In the vinegar fly, Drosophila melanogaster, cell polarity regulators also interact with the Hippo tissue growth control signaling pathway. In this review we survey the recent Drosophila literature linking cell polarity regulators with the Hippo pathway in epithelial tissue growth, neural stem cell asymmetric divisions and in cell migration in physiological and tumorigenic settings.
Collapse
|
29
|
Heidary Arash E, Shiban A, Song S, Attisano L. MARK4 inhibits Hippo signaling to promote proliferation and migration of breast cancer cells. EMBO Rep 2017; 18:420-436. [PMID: 28183853 DOI: 10.15252/embr.201642455] [Citation(s) in RCA: 98] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2016] [Revised: 12/22/2016] [Accepted: 01/06/2017] [Indexed: 12/25/2022] Open
Abstract
The Hippo pathway is a critical regulator of tissue size, and aberrations in pathway regulation lead to cancer. MST1/2 and LATS1/2 kinases comprise the core of the pathway that, in association with adaptor proteins SAV and MOB, functions in a sequential manner to phosphorylate and inhibit the transcription factors YAP and TAZ. Here we identify mammalian MARK family members as activators of YAP/TAZ. We show that depletion of MARK4 in MDA-MB-231 breast cancer cells results in the loss of nuclear YAP/TAZ and decreases the expression of YAP/TAZ targets. We demonstrate that MARK4 can bind to MST and SAV, leading to their phosphorylation, and that MARK4 expression attenuates the formation of a complex between MST/SAV and LATS, which depends on the kinase activity of MARK4. Abrogation of MARK4 expression using siRNAs and CRISPR/Cas9 gene editing attenuates the proliferation and migration of MDA-MB-231 cells. Our results show that MARK4 acts as a negative regulator of the Hippo kinase cassette to promote YAP/TAZ activity and that loss of MARK4 restrains the tumorigenic properties of breast cancer cells.
Collapse
Affiliation(s)
- Emad Heidary Arash
- Department of Biochemistry, Donnelly Centre, University of Toronto, Toronto, ON, Canada
| | - Ahmed Shiban
- Department of Biochemistry, Donnelly Centre, University of Toronto, Toronto, ON, Canada
| | - Siyuan Song
- Department of Biochemistry, Donnelly Centre, University of Toronto, Toronto, ON, Canada
| | - Liliana Attisano
- Department of Biochemistry, Donnelly Centre, University of Toronto, Toronto, ON, Canada
| |
Collapse
|
30
|
Pfleger CM. The Hippo Pathway: A Master Regulatory Network Important in Development and Dysregulated in Disease. Curr Top Dev Biol 2017; 123:181-228. [PMID: 28236967 DOI: 10.1016/bs.ctdb.2016.12.001] [Citation(s) in RCA: 44] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
The Hippo Pathway is a master regulatory network that regulates proliferation, cell growth, stemness, differentiation, and cell death. Coordination of these processes by the Hippo Pathway throughout development and in mature organisms in response to diverse external and internal cues plays a role in morphogenesis, in controlling organ size, and in maintaining organ homeostasis. Given the importance of these processes, the Hippo Pathway also plays an important role in organismal health and has been implicated in a variety of diseases including eye disease, cardiovascular disease, neurodegeneration, and cancer. This review will focus on Drosophila reports that identified the core components of the Hippo Pathway revealing specific downstream biological outputs of this complicated network. A brief description of mammalian reports will complement review of the Drosophila studies. This review will also survey upstream regulation of the core components with a focus on feedback mechanisms.
Collapse
Affiliation(s)
- Cathie M Pfleger
- The Icahn School of Medicine at Mount Sinai, New York, NY, United States; The Graduate School of Biomedical Sciences, The Icahn School of Medicine at Mount Sinai, New York, NY, United States.
| |
Collapse
|
31
|
Abstract
The MST1 and MST2 protein kinases comprise the GCK-II subfamily of protein kinases. In addition to their amino-terminal kinase catalytic domain, related to that of the Saccharomyces cerevisiae protein kinase Ste20, their most characteristic feature is the presence near the carboxy terminus of a unique helical structure called a SARAH domain; this segment allows MST1/MST2 to homodimerize and to heterodimerize with the other polypeptides that contain SARAH domains, the noncatalytic polypeptides RASSF1-6 and Sav1/WW45. Early studies emphasized the potent ability of MST1/MST2 to induce apoptosis upon being overexpressed, as well as the conversion of the endogenous MST1/MST2 polypeptides to constitutively active, caspase-cleaved catalytic fragments during apoptosis initiated by any stimulus. Later, the cleaved, constitutively active form of MST1 was identified in nonapoptotic, quiescent adult hepatocytes as well as in cells undergoing terminal differentiation, where its presence is necessary to maintain those cellular states. The physiologic regulation of full length MST1/MST2 is controlled by the availability of its noncatalytic SARAH domain partners. Interaction with Sav1/WW45 recruits MST1/MST2 into a tumor suppressor pathway, wherein it phosphorylates and activates the Sav1-bound protein kinases Lats1/Lats2, potent inhibitors of the Yap1 and TAZ oncogenic transcriptional regulators. A constitutive interaction with the Rap1-GTP binding protein RASSF5B (Nore1B/RAPL) in T cells recruits MST1 (especially) and MST2 as an effector of Rap1's control of T cell adhesion and migration, a program crucial to immune surveillance and response; loss of function mutation in human MST1 results in profound immunodeficiency. MST1 and MST2 are also regulated by other protein kinases, positively by TAO1 and negatively by Par1, SIK2/3, Akt, and cRaf1. The growing list of candidate MST1/MST2 substrates suggests that the full range of MST1/MST2's physiologic programs and contributions to pathophysiology remains to be elucidated.
Collapse
Affiliation(s)
- Jacob A. Galan
- Department of Molecular Biology, Massachusetts General Hospital, Boston, Massachusetts 02114, United States
- Diabetes Unit and Medical Services, Massachusetts General Hospital, Boston, Massachusetts 02114, United States
- Department of Medicine, Harvard Medical School, Boston, Massachusetts 02115, United States
| | - Joseph Avruch
- Department of Molecular Biology, Massachusetts General Hospital, Boston, Massachusetts 02114, United States
- Diabetes Unit and Medical Services, Massachusetts General Hospital, Boston, Massachusetts 02114, United States
- Department of Medicine, Harvard Medical School, Boston, Massachusetts 02115, United States
| |
Collapse
|
32
|
Zhang Y, Wang X, Matakatsu H, Fehon R, Blair SS. The novel SH3 domain protein Dlish/CG10933 mediates fat signaling in Drosophila by binding and regulating Dachs. eLife 2016; 5. [PMID: 27692068 PMCID: PMC5047748 DOI: 10.7554/elife.16624] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2016] [Accepted: 09/15/2016] [Indexed: 01/07/2023] Open
Abstract
Much of the Hippo and planar cell polarity (PCP) signaling mediated by the Drosophila protocadherin Fat depends on its ability to change the subcellular localization, levels and activity of the unconventional myosin Dachs. To better understand this process, we have performed a structure-function analysis of Dachs, and used this to identify a novel and important mediator of Fat and Dachs activities, a Dachs-binding SH3 protein we have named Dlish. We found that Dlish is regulated by Fat and Dachs, that Dlish also binds Fat and the Dachs regulator Approximated, and that Dlish is required for Dachs localization, levels and activity in both wild type and fat mutant tissue. Our evidence supports dual roles for Dlish. Dlish tethers Dachs to the subapical cell cortex, an effect partly mediated by the palmitoyltransferase Approximated under the control of Fat. Conversely, Dlish promotes the Fat-mediated degradation of Dachs. DOI:http://dx.doi.org/10.7554/eLife.16624.001
Collapse
Affiliation(s)
- Yifei Zhang
- Department of Zoology, University of Wisconsin-Madison, Madison, United States
| | - Xing Wang
- Department of Zoology, University of Wisconsin-Madison, Madison, United States
| | - Hitoshi Matakatsu
- Department of Zoology, University of Wisconsin-Madison, Madison, United States.,Department of Molecular Genetics and Cell Biology, University of Chicago, Chicago, United States
| | - Richard Fehon
- Department of Molecular Genetics and Cell Biology, University of Chicago, Chicago, United States
| | - Seth S Blair
- Department of Zoology, University of Wisconsin-Madison, Madison, United States
| |
Collapse
|
33
|
Zhang P, Wang S, Wang S, Qiao J, Zhang L, Zhang Z, Chen Z. Dual function of partitioning-defective 3 in the regulation of YAP phosphorylation and activation. Cell Discov 2016; 2:16021. [PMID: 27462467 PMCID: PMC4932730 DOI: 10.1038/celldisc.2016.21] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2016] [Accepted: 05/22/2016] [Indexed: 12/22/2022] Open
Abstract
Partitioning-defective 3 (Par3), a key component of the evolutionarily conserved polarity PAR complex (Par3/Par6/aPKC), controls cell polarity and contributes to cell migration, proliferation and tumor development. Emerging evidence indicates that cell polarity proteins function as upstream modulators that regulate the Hippo pathway. However, little is known about Par3’s involvement in the Hippo pathway. Here, we find Par3 and YAP dynamically co-localize in different subcellular compartments; that is, the membrane, cytoplasm and nucleus, in a cell-density-dependent manner. Interestingly, Par3 knockdown promotes YAP phosphorylation, leading to a significant impairment of YAP nuclear translocation at low cell density, but not at high density, in MDCK cells. Furthermore, via its third PDZ domain, Par3 directly binds to the PDZ-binding motif of YAP. The interaction is required for regulating YAP phosphorylation and nuclear localization. Mechanistically, Par3, as a scaffold protein, associates with LATS1 and protein phosphatase 1, α subunit (PP1A) in the cytoplasm and nucleus. Par3 promotes the dephosphorylation of LATS1 and YAP, thus enhancing YAP activation and cell proliferation. Strikingly, we also find that under the condition of PP1A knockdown, Par3 expression promotes YAP hyperphosphorylation, leading to the suppression of YAP activity and its downstream targets. Par3 expression results in differential effects on YAP phosphorylation and activation in different tumor cell lines. These findings indicate that Par3 may have a dual role in regulating the activation of the Hippo pathway, in a manner possibly dependent on cellular context or cell type in response to cell–cell contact and cell polarity signals.
Collapse
Affiliation(s)
- Peng Zhang
- Key Laboratory of Systems Biology, Institute of Biochemistry and Cell Biology, Shanghai Institute for Biological Sciences, Chinese Academy of Sciences, Shanghai, China; University of Chinese Academy of Sciences, Beijing, China
| | - Shuting Wang
- Key Laboratory of Systems Biology, Institute of Biochemistry and Cell Biology, Shanghai Institute for Biological Sciences, Chinese Academy of Sciences, Shanghai, China; University of Chinese Academy of Sciences, Beijing, China
| | - Sai Wang
- Key Laboratory of Systems Biology, Institute of Biochemistry and Cell Biology, Shanghai Institute for Biological Sciences, Chinese Academy of Sciences, Shanghai, China; University of Chinese Academy of Sciences, Beijing, China
| | - Jing Qiao
- Key Laboratory of Systems Biology, Institute of Biochemistry and Cell Biology, Shanghai Institute for Biological Sciences, Chinese Academy of Sciences, Shanghai, China; University of Chinese Academy of Sciences, Beijing, China
| | - Lei Zhang
- State Key Laboratory of Cell Biology, Institute of Biochemistry and Cell Biology, Shanghai Institute for Biological Sciences, Chinese Academy of Sciences , Shanghai, China
| | - Zhe Zhang
- Key Laboratory of Systems Biology, Institute of Biochemistry and Cell Biology, Shanghai Institute for Biological Sciences, Chinese Academy of Sciences , Shanghai, China
| | - Zhengjun Chen
- Key Laboratory of Systems Biology, Institute of Biochemistry and Cell Biology, Shanghai Institute for Biological Sciences, Chinese Academy of Sciences, Shanghai, China; School of Life Science and Technology, ShanghaiTech University, Shanghai, China
| |
Collapse
|
34
|
Buglioni S, Vici P, Sergi D, Pizzuti L, Di Lauro L, Antoniani B, Sperati F, Terrenato I, Carosi M, Gamucci T, Vincenzoni C, Mariani L, Vizza E, Venuti A, Sanguineti G, Gadducci A, Barba M, Natoli C, Vitale I, Mottolese M, De Maria R, Maugeri-Saccà M. Analysis of the hippo transducers TAZ and YAP in cervical cancer and its microenvironment. Oncoimmunology 2016; 5:e1160187. [PMID: 27471633 DOI: 10.1080/2162402x.2016.1160187] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2015] [Revised: 02/12/2016] [Accepted: 02/25/2016] [Indexed: 12/14/2022] Open
Abstract
Hippo is a tumor-suppressor pathway that negatively regulates the oncoproteins TAZ and YAP. Moreover, Hippo affects the biology of a variety of non-neoplastic cells in the tumor microenvironment, even including immune cells. We herein assessed the predictive role of TAZ and YAP, assessed by immunohistochemistry, in 50 cervical cancer patients prevalently treated with neoadjuvant chemotherapy. Tumors were classified as positive or negative according to the percentage of tumor-expressing cells and cellular localization. TAZ/YAP were also evaluated in non-neoplastic cells, namely endothelial cells, non-lymphocytic stromal cells and tumor-infiltrating lymphocytes (TILs). TAZ expression in cancer cells (TAZ(pos)) was associated with a reduced pathological complete response (pCR) rate (p = 0.041). Conversely, the expression of TAZ and YAP in TILs (TAZ(TIL+) and YAP(TIL+)) seemed to be associated with increased pCRs (p = 0.083 and p = 0.018, respectively). When testing the predictive significance of the concomitant expression of TAZ in cancer cells and its absence in TILs (TAZ(pos)/TAZ(TIL-)), patients with TAZ(pos)/TAZ(TIL-) showed lower pCR rate (p = 0.001), as confirmed in multivariate analysis (TAZ(pos)/TAZ(TIL-): OR 8.67, 95% CI: 2.31-32.52, p = 0.001). Sensitivity analysis carried out in the 41 patients treated with neoadjuvant chemotherapy yielded comparable results (TAZ(pos)/TAZ(TIL-): OR 11.0, 95% CI: 2.42-49.91, p = 0.002). Internal validation carried out with two different procedures confirmed the robustness of this model. Overall, we found evidence on the association between TAZ expression in cervical cancer cells and reduced pCR rate. Conversely, the expression of the Hippo transducers in TILs may predict increased treatment efficacy, possibly mirroring the activation of a non-canonical Hippo/MST pathway necessary for T-cells activation and survival.
Collapse
Affiliation(s)
- Simonetta Buglioni
- Department of Pathology, "Regina Elena" National Cancer Institute , Rome, Italy
| | - Patrizia Vici
- Division of Medical Oncology B, "Regina Elena" National Cancer Institute , Rome, Italy
| | - Domenico Sergi
- Division of Medical Oncology B, "Regina Elena" National Cancer Institute , Rome, Italy
| | - Laura Pizzuti
- Division of Medical Oncology B, "Regina Elena" National Cancer Institute , Rome, Italy
| | - Luigi Di Lauro
- Division of Medical Oncology B, "Regina Elena" National Cancer Institute , Rome, Italy
| | - Barbara Antoniani
- Department of Pathology, "Regina Elena" National Cancer Institute , Rome, Italy
| | - Francesca Sperati
- Biostatistics-Scientific Direction, "Regina Elena" National Cancer Institute , Rome, Italy
| | - Irene Terrenato
- Biostatistics-Scientific Direction, "Regina Elena" National Cancer Institute , Rome, Italy
| | - Mariantonia Carosi
- Department of Pathology, "Regina Elena" National Cancer Institute , Rome, Italy
| | | | - Cristina Vincenzoni
- Department of Surgery, Gynecologic Oncology Unit, "Regina Elena" National Cancer Institute , Rome, Italy
| | - Luciano Mariani
- Department of Surgery, Gynecologic Oncology Unit, "Regina Elena" National Cancer Institute, Rome, Italy; HPV-UNIT, "Regina Elena" National Cancer Institute, Rome, Italy
| | - Enrico Vizza
- Department of Surgery, Gynecologic Oncology Unit, "Regina Elena" National Cancer Institute , Rome, Italy
| | - Aldo Venuti
- HPV-UNIT, "Regina Elena" National Cancer Institute , Rome, Italy
| | - Giuseppe Sanguineti
- Department of Radiotherapy, "Regina Elena" National Cancer Institute , Rome, Italy
| | - Angiolo Gadducci
- Department of Experimental and Clinical Medicine, Division of Gynecology and Obstetrics, University of Pisa , Pisa, Italy
| | - Maddalena Barba
- Division of Medical Oncology B, "Regina Elena" National Cancer Institute, Rome, Italy; Scientific Direction, "Regina Elena" National Cancer Institute, Rome, Italy
| | - Clara Natoli
- Department of Medical, Oral and Biotechnological Sciences, and CeSi-MeT, "G. d'Annunzio" University , Chieti, Italy
| | - Ilio Vitale
- Scientific Direction, "Regina Elena" National Cancer Institute, Rome, Italy; Department of Biology, University of Rome "Tor Vergata", Rome, Italy
| | - Marcella Mottolese
- Department of Pathology, "Regina Elena" National Cancer Institute , Rome, Italy
| | - Ruggero De Maria
- Scientific Direction, "Regina Elena" National Cancer Institute , Rome, Italy
| | - Marcello Maugeri-Saccà
- Division of Medical Oncology B, "Regina Elena" National Cancer Institute, Rome, Italy; Scientific Direction, "Regina Elena" National Cancer Institute, Rome, Italy
| |
Collapse
|
35
|
Maugeri-Saccà M, De Maria R. Hippo pathway and breast cancer stem cells. Crit Rev Oncol Hematol 2016; 99:115-22. [DOI: 10.1016/j.critrevonc.2015.12.004] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2015] [Revised: 11/16/2015] [Accepted: 12/14/2015] [Indexed: 12/18/2022] Open
|
36
|
Hu L, Xu J, Yin MX, Zhang L, Lu Y, Wu W, Xue Z, Ho MS, Gao G, Zhao Y, Zhang L. Ack promotes tissue growth via phosphorylation and suppression of the Hippo pathway component Expanded. Cell Discov 2016; 2:15047. [PMID: 27462444 PMCID: PMC4860957 DOI: 10.1038/celldisc.2015.47] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2015] [Accepted: 12/01/2015] [Indexed: 12/11/2022] Open
Abstract
Non-receptor tyrosine kinase activated cdc42 kinase was reported to participate in several types of cancers in mammals. It is also believed to have an anti-apoptotic function in Drosophila. Here, we report the identification of Drosophila activated cdc42 kinase as a growth promoter and a novel Hippo signaling pathway regulator. We find that activated cdc42 kinase promotes tissue growth through modulating Yorkie activity. Furthermore, we demonstrate that activated cdc42 kinase interacts with Expanded and induces tyrosine phosphorylation of Expanded on multiple sites. We propose a model that activated cdc42 kinase negatively regulates Expanded by changing its phosphorylation status to promote tissue growth. Moreover, we show that ack genetically interacts with merlin and expanded. Thus, we identify Drosophila activated cdc42 kinase as a Hippo pathway regulator.
Collapse
Affiliation(s)
- Lianxin Hu
- State Key Laboratory of Cell Biology, Innovation Center for Cell Signaling Network, Institute of Biochemistry and Cell Biology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences , Shanghai, China
| | - Jiajun Xu
- State Key Laboratory of Cell Biology, Innovation Center for Cell Signaling Network, Institute of Biochemistry and Cell Biology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences , Shanghai, China
| | - Meng-Xin Yin
- State Key Laboratory of Cell Biology, Innovation Center for Cell Signaling Network, Institute of Biochemistry and Cell Biology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences , Shanghai, China
| | - Liguo Zhang
- Department of Cell and Developmental Biology, University of Illinois at Urbana-Champaign , Urbana, IL, USA
| | - Yi Lu
- State Key Laboratory of Cell Biology, Innovation Center for Cell Signaling Network, Institute of Biochemistry and Cell Biology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences , Shanghai, China
| | - Wenqing Wu
- State Key Laboratory of Cell Biology, Innovation Center for Cell Signaling Network, Institute of Biochemistry and Cell Biology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences , Shanghai, China
| | - Zhaoyu Xue
- School of Life Sciences, Tsinghua University , Beijing, China
| | - Margaret S Ho
- Department of Anatomy and Neurobiology, School of Medicine, Tongji University , Shanghai, China
| | - Guanjun Gao
- School of Life Sciences, Tsinghua University , Beijing, China
| | - Yun Zhao
- State Key Laboratory of Cell Biology, Innovation Center for Cell Signaling Network, Institute of Biochemistry and Cell Biology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai, China; School of Life Science and Technology, ShanghaiTech University, Shanghai, China
| | - Lei Zhang
- State Key Laboratory of Cell Biology, Innovation Center for Cell Signaling Network, Institute of Biochemistry and Cell Biology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai, China; School of Life Science and Technology, ShanghaiTech University, Shanghai, China
| |
Collapse
|
37
|
Wang S, Lu Y, Yin MX, Wang C, Wu W, Li J, Wu W, Ge L, Hu L, Zhao Y, Zhang L. Importin α1 Mediates Yorkie Nuclear Import via an N-terminal Non-canonical Nuclear Localization Signal. J Biol Chem 2016; 291:7926-37. [PMID: 26887950 DOI: 10.1074/jbc.m115.700823] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2015] [Indexed: 01/13/2023] Open
Abstract
The Hippo signaling pathway controls organ size by orchestrating cell proliferation and apoptosis. When the Hippo pathway was inactivated, the transcriptional co-activator Yorkie translocates into the nucleus and forms a complex with transcription factor Scalloped to promote the expression of Hippo pathway target genes. Therefore, the nuclear translocation of Yorkie is a critical step in Hippo signaling. Here, we provide evidence that the N-terminal 1-55 amino acids of Yorkie, especially Arg-15, were essential for its nuclear localization. By mass spectrometry and biochemical analyses, we found that Importin α1 can directly interact with the Yorkie N terminus and drive Yorkie into the nucleus. Further experiments show that the upstream component Hippo can inhibit Importin α1-mediated Yorkie nuclear import. Taken together, we identified a potential nuclear localization signal at the N-terminal end of Yorkie as well as a critical role for Importin α1 in Yorkie nuclear import.
Collapse
Affiliation(s)
- Shimin Wang
- From the State Key Laboratory of Cell Biology, CAS Center for Excellence in Molecular Cell Science, Innovation Center for Cell Signaling Network, Institute of Biochemistry and Cell Biology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai 200031, China and
| | - Yi Lu
- From the State Key Laboratory of Cell Biology, CAS Center for Excellence in Molecular Cell Science, Innovation Center for Cell Signaling Network, Institute of Biochemistry and Cell Biology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai 200031, China and
| | - Meng-Xin Yin
- From the State Key Laboratory of Cell Biology, CAS Center for Excellence in Molecular Cell Science, Innovation Center for Cell Signaling Network, Institute of Biochemistry and Cell Biology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai 200031, China and
| | - Chao Wang
- From the State Key Laboratory of Cell Biology, CAS Center for Excellence in Molecular Cell Science, Innovation Center for Cell Signaling Network, Institute of Biochemistry and Cell Biology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai 200031, China and
| | - Wei Wu
- From the State Key Laboratory of Cell Biology, CAS Center for Excellence in Molecular Cell Science, Innovation Center for Cell Signaling Network, Institute of Biochemistry and Cell Biology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai 200031, China and
| | - Jinhui Li
- From the State Key Laboratory of Cell Biology, CAS Center for Excellence in Molecular Cell Science, Innovation Center for Cell Signaling Network, Institute of Biochemistry and Cell Biology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai 200031, China and
| | - Wenqing Wu
- From the State Key Laboratory of Cell Biology, CAS Center for Excellence in Molecular Cell Science, Innovation Center for Cell Signaling Network, Institute of Biochemistry and Cell Biology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai 200031, China and
| | - Ling Ge
- From the State Key Laboratory of Cell Biology, CAS Center for Excellence in Molecular Cell Science, Innovation Center for Cell Signaling Network, Institute of Biochemistry and Cell Biology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai 200031, China and
| | - Lianxin Hu
- From the State Key Laboratory of Cell Biology, CAS Center for Excellence in Molecular Cell Science, Innovation Center for Cell Signaling Network, Institute of Biochemistry and Cell Biology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai 200031, China and
| | - Yun Zhao
- From the State Key Laboratory of Cell Biology, CAS Center for Excellence in Molecular Cell Science, Innovation Center for Cell Signaling Network, Institute of Biochemistry and Cell Biology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai 200031, China and School of Life Science and Technology, ShanghaiTech University, Shanghai 201210, China
| | - Lei Zhang
- From the State Key Laboratory of Cell Biology, CAS Center for Excellence in Molecular Cell Science, Innovation Center for Cell Signaling Network, Institute of Biochemistry and Cell Biology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai 200031, China and School of Life Science and Technology, ShanghaiTech University, Shanghai 201210, China
| |
Collapse
|
38
|
Chi and dLMO function antagonistically on Notch signaling through directly regulation of fng transcription. Sci Rep 2016; 6:18937. [PMID: 26738424 PMCID: PMC4704065 DOI: 10.1038/srep18937] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2015] [Accepted: 12/01/2015] [Indexed: 11/08/2022] Open
Abstract
Gene apterous (ap), chip (chi) and beadex (bx) play important roles in the dorsal-ventral compartmentalization in Drosophila wing discs. Meanwhile, Notch signaling is essential to the same process. It has been reported that Ap and Chi function as a tetramer to regulate Notch signaling. At the same time, dLMO (the protein product of gene bx) regulates the activity of Ap by competing its binding with Chi. However, the detailed functions of Chi and dLMO on Notch signaling and the relevant mechanisms remain largely unknown. Here, we report the detailed functions of Chi and dLMO on Notch signaling. Different Chi protein levels in adjacent cells could activate Notch signaling mainly in the cells with higher level of Chi. dLMO could induce antagonistical phenotypes on Notch signaling compared to that induced by Chi. These processes depend on their direct regulation of fringe (fng) transcription.
Collapse
|
39
|
Localization of Hippo signalling complexes and Warts activation in vivo. Nat Commun 2015; 6:8402. [PMID: 26420589 PMCID: PMC4598633 DOI: 10.1038/ncomms9402] [Citation(s) in RCA: 66] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2015] [Accepted: 08/19/2015] [Indexed: 01/20/2023] Open
Abstract
Hippo signalling controls organ growth and cell fate by regulating the activity of the kinase Warts. Multiple Hippo pathway components localize to apical junctions in epithelial cells, but the spatial and functional relationships among components have not been clarified, nor is it known where Warts activation occurs. We report here that Hippo pathway components in Drosophila wing imaginal discs are organized into distinct junctional complexes, including separate distributions for Salvador, Expanded, Warts and Hippo. These complexes are reorganized on Hippo pathway activation, when Warts shifts from associating with its inhibitor Jub to its activator Expanded, and Hippo concentrates at Salvador sites. We identify mechanisms promoting Warts relocalization, and using a phospho-specific antisera and genetic manipulations, identify where Warts activation occurs: at apical junctions where Expanded, Salvador, Hippo and Warts overlap. Our observations define spatial relationships among Hippo signalling components and establish the functional importance of their localization to Warts activation. Components of the Hippo signalling pathway localize to apical junctions in epithelial cells, where they regulate growth in response to mechanical and biochemical cues. Sun et al. show that these proteins are organized into distinct junctional complexes, which reorganize up on Hippo pathway activation.
Collapse
|
40
|
Dong L, Li J, Huang H, Yin MX, Xu J, Li P, Lu Y, Wu W, Yang H, Zhao Y, Zhang L. Growth suppressor lingerer regulates bantam microRNA to restrict organ size. J Mol Cell Biol 2015; 7:415-28. [PMID: 26117838 DOI: 10.1093/jmcb/mjv045] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2014] [Accepted: 04/27/2015] [Indexed: 01/05/2023] Open
Abstract
The evolutionarily conserved Hippo signaling pathway plays an important role in organ size control by regulating cell proliferation and apoptosis. Here, we identify Lingerer (Lig) as a growth suppressor using RNAi modifying screen in Drosophila melanogaster. Loss of lig increases organ size and upregulates bantam (ban) and the expression of the Hippo pathway target genes, while overexpression of lig results in diminished ban expression and organ size reduction. We demonstrate that Lig C-terminal exhibits dominant-negative function on growth and ban expression, and thus plays an important role in organ size control and ban regulation. In addition, we provide evidence that both Yki and Mad are essential for Lig-induced ban expression. We also show that Lig regulates the expression of the Hippo pathway target genes partially via Yorkie. Moreover, we find that Lig physically interacts with and requires Salvador to restrict cell growth. Taken together, we demonstrate that Lig functions as a critical growth suppressor to control organ size via ban and Hippo signaling.
Collapse
Affiliation(s)
- Liang Dong
- State Key Laboratory of Cell Biology, Innovation Center for Cell Signaling Network, Institute of Biochemistry and Cell Biology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai 200031, China
| | - Jinhui Li
- State Key Laboratory of Cell Biology, Innovation Center for Cell Signaling Network, Institute of Biochemistry and Cell Biology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai 200031, China
| | - Hongling Huang
- State Key Laboratory of Cell Biology, Innovation Center for Cell Signaling Network, Institute of Biochemistry and Cell Biology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai 200031, China
| | - Meng-Xin Yin
- State Key Laboratory of Cell Biology, Innovation Center for Cell Signaling Network, Institute of Biochemistry and Cell Biology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai 200031, China
| | - Jinjin Xu
- State Key Laboratory of Cell Biology, Innovation Center for Cell Signaling Network, Institute of Biochemistry and Cell Biology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai 200031, China
| | - Peixue Li
- State Key Laboratory of Cell Biology, Innovation Center for Cell Signaling Network, Institute of Biochemistry and Cell Biology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai 200031, China
| | - Yi Lu
- State Key Laboratory of Cell Biology, Innovation Center for Cell Signaling Network, Institute of Biochemistry and Cell Biology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai 200031, China
| | - Wenqing Wu
- State Key Laboratory of Cell Biology, Innovation Center for Cell Signaling Network, Institute of Biochemistry and Cell Biology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai 200031, China
| | - Hang Yang
- Department of Biochemistry and Molecular Biology, USC Health Science Campus, Los Angeles, CA 90033, USA
| | - Yun Zhao
- State Key Laboratory of Cell Biology, Innovation Center for Cell Signaling Network, Institute of Biochemistry and Cell Biology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai 200031, China School of Life Science and Technology, ShanghaiTech University, Shanghai 201210, China
| | - Lei Zhang
- State Key Laboratory of Cell Biology, Innovation Center for Cell Signaling Network, Institute of Biochemistry and Cell Biology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai 200031, China School of Life Science and Technology, ShanghaiTech University, Shanghai 201210, China
| |
Collapse
|
41
|
Lv XB, Liu CY, Wang Z, Sun YP, Xiong Y, Lei QY, Guan KL. PARD3 induces TAZ activation and cell growth by promoting LATS1 and PP1 interaction. EMBO Rep 2015; 16:975-85. [PMID: 26116754 DOI: 10.15252/embr.201439951] [Citation(s) in RCA: 45] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2014] [Accepted: 05/26/2015] [Indexed: 12/22/2022] Open
Abstract
The Hippo pathway plays a major role in organ size control, and its dysregulation contributes to tumorigenesis. The major downstream effectors of the Hippo pathway are the YAP/TAZ transcription co-activators, which are phosphorylated and inhibited by the Hippo pathway kinase LATS1/2. Here, we report a novel mechanism of TAZ regulation by the tight junction protein PARD3. PARD3 promotes the interaction between PP1A and LATS1 to induce LATS1 dephosphorylation and inactivation, therefore leading to dephosphorylation and activation of TAZ. The cytoplasmic, but not the tight junction complex associated, PARD3 is responsible for TAZ regulation. Our study indicates a potential molecular basis for cell growth-promoting function of PARD3 by modulating the Hippo pathway signaling in response to cell contact and cell polarity signals.
Collapse
Affiliation(s)
- Xian-Bo Lv
- Key Laboratory of Metabolism and Molecular Medicine, Ministry of Education and Department of Biochemistry and Molecular Biology Fudan University Shanghai Medical College, Shanghai, China Molecular and Cell Biology Lab, Institutes of Biomedical Sciences, Fudan University, Shanghai, China School of Life Science, Fudan University, Shanghai, China
| | - Chen-Ying Liu
- Department of Colorectal and Anal Surgery, Shanghai Colorectal Cancer Research Center, Xinhua Hospital, School of Medicine, Shanghai Jiaotong University, Shanghai, China
| | - Zhen Wang
- Key Laboratory of Metabolism and Molecular Medicine, Ministry of Education and Department of Biochemistry and Molecular Biology Fudan University Shanghai Medical College, Shanghai, China Molecular and Cell Biology Lab, Institutes of Biomedical Sciences, Fudan University, Shanghai, China School of Life Science, Fudan University, Shanghai, China
| | - Yi-Ping Sun
- Key Laboratory of Metabolism and Molecular Medicine, Ministry of Education and Department of Biochemistry and Molecular Biology Fudan University Shanghai Medical College, Shanghai, China Molecular and Cell Biology Lab, Institutes of Biomedical Sciences, Fudan University, Shanghai, China School of Life Science, Fudan University, Shanghai, China
| | - Yue Xiong
- Key Laboratory of Metabolism and Molecular Medicine, Ministry of Education and Department of Biochemistry and Molecular Biology Fudan University Shanghai Medical College, Shanghai, China Molecular and Cell Biology Lab, Institutes of Biomedical Sciences, Fudan University, Shanghai, China Department of Biochemistry and Biophysics, Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Qun-Ying Lei
- Key Laboratory of Metabolism and Molecular Medicine, Ministry of Education and Department of Biochemistry and Molecular Biology Fudan University Shanghai Medical College, Shanghai, China Molecular and Cell Biology Lab, Institutes of Biomedical Sciences, Fudan University, Shanghai, China
| | - Kun-Liang Guan
- Key Laboratory of Metabolism and Molecular Medicine, Ministry of Education and Department of Biochemistry and Molecular Biology Fudan University Shanghai Medical College, Shanghai, China Molecular and Cell Biology Lab, Institutes of Biomedical Sciences, Fudan University, Shanghai, China Department of Pharmacology and Moores Cancer Center, University of California San Diego, La Jolla, CA, USA
| |
Collapse
|
42
|
McDonald JA. Canonical and noncanonical roles of Par-1/MARK kinases in cell migration. INTERNATIONAL REVIEW OF CELL AND MOLECULAR BIOLOGY 2015; 312:169-99. [PMID: 25262242 DOI: 10.1016/b978-0-12-800178-3.00006-3] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
The partitioning defective gene 1 (Par-1)/microtubule affinity-regulating kinase (MARK) family of serine-threonine kinases have diverse cellular roles. Primary among these roles are the establishment and maintenance of cell polarity and the promotion of microtubule dynamics. Par-1/MARK kinases also regulate a growing number of cellular functions via noncanonical protein targets. Recent studies have demonstrated that Par-1/MARK proteins are required for the migration of multiple cell types. This review outlines the current evidence for regulation of cell migration by Par-1/MARK through both canonical and noncanonical roles. Par-1/MARK canonical control of microtubules during nonneuronal and neuronal migration is described. Next, regulation of cell polarity by Par-1/MARK and its dynamic effect on the movement of migrating cells are discussed. As examples of recent research that have expanded, the roles of the Par-1/MARK in cell migration, noncanonical functions of Par-1/MARK in Wnt signaling and actomyosin dynamics are described. This review also highlights questions and current challenges to further understanding how the versatile Par-1/MARK proteins function in cell migration during development, homeostatic processes, and cancer.
Collapse
Affiliation(s)
- Jocelyn A McDonald
- Department of Molecular Genetics, Lerner Research Institute, Cleveland Clinic, Cleveland, Ohio, USA.
| |
Collapse
|
43
|
Hansen CG, Moroishi T, Guan KL. YAP and TAZ: a nexus for Hippo signaling and beyond. Trends Cell Biol 2015; 25:499-513. [PMID: 26045258 DOI: 10.1016/j.tcb.2015.05.002] [Citation(s) in RCA: 443] [Impact Index Per Article: 44.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2014] [Revised: 05/02/2015] [Accepted: 05/05/2015] [Indexed: 02/06/2023]
Abstract
The Hippo pathway is a potent regulator of cellular proliferation, differentiation, and tissue homeostasis. Here we review the regulatory mechanisms of the Hippo pathway and discuss the function of Yes-associated protein (YAP)/transcriptional coactivator with a PDZ-binding domain (TAZ), the prime mediators of the Hippo pathway, in stem cell biology and tissue regeneration. We highlight their activities in both the nucleus and the cytoplasm and discuss their role as a signaling nexus and integrator of several other prominent signaling pathways such as the Wnt, G protein-coupled receptor (GPCR), epidermal growth factor (EGF), bone morphogenetic protein (BMP)/transforming growth factor beta (TGFβ), and Notch pathways.
Collapse
Affiliation(s)
- Carsten Gram Hansen
- Department of Pharmacology, University of California, San Diego, La Jolla, CA 92093, USA.,Moores Cancer Center, University of California, San Diego, La Jolla, CA 92093, USA
| | - Toshiro Moroishi
- Department of Pharmacology, University of California, San Diego, La Jolla, CA 92093, USA.,Moores Cancer Center, University of California, San Diego, La Jolla, CA 92093, USA
| | - Kun-Liang Guan
- Department of Pharmacology, University of California, San Diego, La Jolla, CA 92093, USA.,Moores Cancer Center, University of California, San Diego, La Jolla, CA 92093, USA
| |
Collapse
|
44
|
Abstract
Over the past decade, discoveries on Hippo signaling have revealed a complex signaling network integrating various signaling pathways to modulate tissue homeostasis, organ size control, tissue repair, and regeneration. Malfunction of the Hippo pathway is associated with tumor and cancer development. Moreover, Hippo signaling has been proposed to act in numerous stem cells in a variety of organisms. Recently, more attention has been paid to define the functions of the Hippo pathway in tissue-specific stem cells, which have great potential to be used in cell-based therapies. Here we provide an overview of its roles in regulating stem cells in epithelial tissues and its potential implications in related cancers.
Collapse
Affiliation(s)
- Meng-Xin Yin
- State Key Laboratory of Cell Biology, Institute of Biochemistry and Cell Biology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai 200031, China
| | - Lei Zhang
- State Key Laboratory of Cell Biology, Institute of Biochemistry and Cell Biology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai 200031, China
| |
Collapse
|
45
|
Zhu C, Li L, Zhao B. The regulation and function of YAP transcription co-activator. Acta Biochim Biophys Sin (Shanghai) 2015; 47:16-28. [PMID: 25487920 DOI: 10.1093/abbs/gmu110] [Citation(s) in RCA: 101] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
The Hippo pathway was initially identified in Drosophila by genetic mosaic screens for tumor suppressor genes. Researches indicated that the Hippo pathway is a key regulator of organ size and is conserved during evolution. Furthermore, studies of mouse models and clinical samples demonstrated the importance of Hippo pathway dysregulation in human cancer development. In addition, the Hippo pathway contributes to progenitor cell and stem cell self-renewal and is thus involved in tissue regeneration. In the Hippo pathway, MST1/2 kinases together with the adaptor protein SAV phosphorylate LATS1/2 kinases. Interaction with an adaptor protein MOB is also important for LATS1/2 activation. Activated LATS1/2 in turn phosphorylate and inhibit Yes-associated protein (YAP). YAP is a key downstream effector of the Hippo pathway, and is a transcriptional co-activator that mainly interacts with TEAD family transcription factors to promote gene expression. Alteration of gene expression by YAP leads to cell proliferation, apoptosis evasion, and also stem cell amplification. In this review, we mainly focus on YAP, discussing its regulation and mechanisms of action in the context of organ size control, tissue regeneration and tumorigenesis.
Collapse
Affiliation(s)
- Chu Zhu
- Life Sciences Institute and Innovation Center for Cell Biology, Zhejiang University, Hangzhou 310058, China
| | - Li Li
- Institute of Aging Research, Hangzhou Normal University, Hangzhou 311121, China
| | - Bin Zhao
- Life Sciences Institute and Innovation Center for Cell Biology, Zhejiang University, Hangzhou 310058, China
| |
Collapse
|
46
|
Hu L, Huang H, Li J, Yin MX, Lu Y, Wu W, Zeng R, Jiang J, Zhao Y, Zhang L. Drosophila casein kinase 2 (CK2) promotes warts protein to suppress Yorkie protein activity for growth control. J Biol Chem 2014; 289:33598-607. [PMID: 25320084 DOI: 10.1074/jbc.m114.580456] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
Drosophila Hippo signaling regulates Wts activity to phosphorylate and inhibit Yki in order to control tissue growth. CK2 is widely expressed and involved in a variety of signaling pathways. In this study we report that Drosophila CK2 promotes Wts activity to phosphorylate and inhibit Yki activity, which is independent of Hpo-induced Wts promotion. In vivo, CK2 overexpression suppresses hpo mutant-induced expanded (Ex) up-regulation and overgrowth phenotype, whereas it cannot affect wts mutant. Consistent with this, knockdown of CK2 up-regulates Hpo pathway target expression. We also found that Drosophila CK2 is essential for tissue growth as a cell death inhibitor as knockdown of CK2 in the developing disc induces severe growth defects as well as caspase3 signals. Taken together, our results uncover a dual role of CK2; although its major role is promoting cell survive, it may potentially be a growth inhibitor as well.
Collapse
Affiliation(s)
- Lianxin Hu
- From the State Key Laboratory of Cell Biology and
| | | | - Jinhui Li
- From the State Key Laboratory of Cell Biology and
| | - Meng-Xin Yin
- From the State Key Laboratory of Cell Biology and
| | - Yi Lu
- From the State Key Laboratory of Cell Biology and
| | - Wenqing Wu
- From the State Key Laboratory of Cell Biology and
| | - Rong Zeng
- Key Laboratory of Systems Biology, Institute of Biochemistry and Cell Biology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Yue-Yang Road, Shanghai 200031, China and
| | - Jin Jiang
- Department of Developmental Biology, University of Texas Southwestern Medical Center at Dallas, Dallas, Texas 75390
| | - Yun Zhao
- From the State Key Laboratory of Cell Biology and
| | - Lei Zhang
- From the State Key Laboratory of Cell Biology and
| |
Collapse
|
47
|
Chen Y, Wang Z, Wang P, Li D, Zhou J, Wu S. CYLD negatively regulates Hippo signaling by limiting Hpo phosphorylation in Drosophila. Biochem Biophys Res Commun 2014; 452:808-12. [PMID: 25201729 DOI: 10.1016/j.bbrc.2014.09.005] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2014] [Accepted: 09/01/2014] [Indexed: 10/24/2022]
Abstract
Cylindromatosis (CYLD), a deubiquitinase and regulator of microtubule dynamics, has important roles in the regulation of inflammation, immune response, apoptosis, mitosis, cell migration and tumorigenesis. Although great progress has been made in the biochemical and cellular functions of CYLD, its role in animal development remains elusive. In this study, we identified Drosophila CYLD (dCYLD) as a negative regulator of the Hippo pathway in vivo. dCYLD associates and colocalizes with Hpo, a core component of the Hippo pathway, in the cytoplasm, and decreases Hpo activity through limiting its phosphorylation at T195. We also showed that dCYLD limits Hippo signal transduction as evidenced by decreasing phosphorylation and thereby increasing activity of Yki, the key downstream effector of the Hippo pathway. These findings uncover dCYLD as a negative regulator of the Hippo pathway and provide new insights into the physiological function of dCYLD in animal development.
Collapse
Affiliation(s)
- Yan Chen
- State Key Laboratory of Medicinal Chemical Biology and College of Life Sciences, Nankai University, Tianjin 300071, PR China
| | - Zaizhu Wang
- State Key Laboratory of Medicinal Chemical Biology and College of Life Sciences, Nankai University, Tianjin 300071, PR China
| | - Ping Wang
- State Key Laboratory of Medicinal Chemical Biology and College of Life Sciences, Nankai University, Tianjin 300071, PR China
| | - Dengwen Li
- State Key Laboratory of Medicinal Chemical Biology and College of Life Sciences, Nankai University, Tianjin 300071, PR China
| | - Jun Zhou
- State Key Laboratory of Medicinal Chemical Biology and College of Life Sciences, Nankai University, Tianjin 300071, PR China.
| | - Shian Wu
- State Key Laboratory of Medicinal Chemical Biology and College of Life Sciences, Nankai University, Tianjin 300071, PR China.
| |
Collapse
|
48
|
Abstract
The Hippo signaling pathway, consisting of a highly conserved kinase cascade (MST and Lats) and downstream transcription coactivators (YAP and TAZ), plays a key role in tissue homeostasis and organ size control by regulating tissue-specific stem cells. Moreover, this pathway plays a prominent role in tissue repair and regeneration. Dysregulation of the Hippo pathway is associated with cancer development. Recent studies have revealed a complex network of upstream inputs, including cell density, mechanical sensation, and G-protein-coupled receptor (GPCR) signaling, that modulate Hippo pathway activity. This review focuses on the role of the Hippo pathway in stem cell biology and its potential implications in tissue homeostasis and cancer.
Collapse
Affiliation(s)
- Jung-Soon Mo
- Department of Pharmacology and Moores Cancer Center, University of California, San Diego La Jolla, CA, USA
| | - Hyun Woo Park
- Department of Pharmacology and Moores Cancer Center, University of California, San Diego La Jolla, CA, USA
| | - Kun-Liang Guan
- Department of Pharmacology and Moores Cancer Center, University of California, San Diego La Jolla, CA, USA
| |
Collapse
|
49
|
Johnson R, Halder G. The two faces of Hippo: targeting the Hippo pathway for regenerative medicine and cancer treatment. Nat Rev Drug Discov 2013; 13:63-79. [PMID: 24336504 DOI: 10.1038/nrd4161] [Citation(s) in RCA: 729] [Impact Index Per Article: 60.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
The Hippo signalling pathway is an emerging growth control and tumour suppressor pathway that regulates cell proliferation and stem cell functions. Defects in Hippo signalling and hyperactivation of its downstream effectors Yes-associated protein (YAP) and transcriptional co-activator with PDZ-binding motif (TAZ) contribute to the development of cancer, which suggests that pharmacological inhibition of YAP and TAZ activity may be an effective anticancer strategy. Conversely, YAP and TAZ can also have beneficial roles in stimulating tissue repair and regeneration following injury, so their activation may be therapeutically useful in these contexts. A complex network of intracellular and extracellular signalling pathways that modulate YAP and TAZ activities have recently been identified. Here, we review the regulation of the Hippo signalling pathway, its functions in normal homeostasis and disease, and recent progress in the identification of small-molecule pathway modulators.
Collapse
Affiliation(s)
- Randy Johnson
- 1] Department of Biochemistry and Molecular Biology, University of Texas MD Anderson Cancer Center, Houston, Texas 77030, USA. [2] Genes and Development Program, and Cancer Biology Program, Graduate School for Biological Sciences, University of Texas MD Anderson Cancer Center, Houston, Texas 77030, USA. [3] Program in Developmental Biology, Baylor College of Medicine, Houston, Texas 77030, USA
| | - Georg Halder
- VIB Center for the Biology of Disease, KU Leuven Center for Human Genetics, University of Leuven 3000, Belgium
| |
Collapse
|
50
|
Abstract
The Hippo pathway is a kinase cascade, formed by Hippo, Salvador, Warts, and Mats, that regulates the subcellular distribution and transcriptional activity of Yorkie. Yorkie is a transcriptional coactivator that promotes the expression of genes that inhibit apoptosis and drive cell proliferation. We review recent studies indicating that activity of the Hippo pathway is controlled by cell-cell junctions, cell adhesion molecules, scaffolding proteins, and cytoskeletal proteins, as well as by regulators of apical-basal polarity and extracellular tension.
Collapse
Affiliation(s)
- Leonie Enderle
- 1Biozentrum, University of Basel, 4056 Basel, Switzerland
| | | |
Collapse
|