1
|
Eteleeb AM, Alves SS, Buss S, Shafi M, Press D, Garcia-Cairasco N, Benitez BA. Transcriptomic analyses of human brains with Alzheimer's disease identified dysregulated epilepsy-causing genes. Epilepsy Behav 2025; 168:110421. [PMID: 40250147 DOI: 10.1016/j.yebeh.2025.110421] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/20/2024] [Revised: 02/19/2025] [Accepted: 04/02/2025] [Indexed: 04/20/2025]
Abstract
BACKGROUND & OBJECTIVE Alzheimer's Disease (AD) patients at multiple stages of disease progression have a high prevalence of seizures. However, whether AD and epilepsy share pathophysiological changes remains poorly defined. In this study, we leveraged high-throughput transcriptomic data from sporadic AD cases at different stages of cognitive impairment across multiple independent cohorts and brain regions to examine the role of epilepsy-causing genes. METHODS Epilepsy-causing genes were manually curated, and their expression levels were analyzed across bulk transcriptomic data from three AD cohorts and three brain regions. RNA-seq data from sporadic AD and control cases from the Knight ADRC, MSBB, and ROSMAP cohorts were processed and analyzed under the same analytical pipeline. An integrative clustering approach employing machine learning and multi-omics data was employed to identify molecularly defined profiles with different cognitive scores. RESULTS We found several epilepsy-associated genes/pathways significantly dysregulated in a group of AD patients with more severe cognitive impairment. We observed 15 genes consistently downregulated across the three cohorts, including sodium and potassium channels genes, suggesting that these genes play fundamental roles in cognitive function or AD progression. Notably, we found 25 of these genes dysregulated in earlier stages of AD and become worse with AD progression. CONCLUSION Our findings revealed that epilepsy-causing genes showed changes in the early and late stages of AD progression, suggesting that they might be playing a role in AD progression. We can not establish directionality or cause-effect with our findings. However, changes in the epilepsy-causing genes might underlie the presence of seizures in AD patients, which might be present before or concurrently with the initial stages of AD.
Collapse
Affiliation(s)
- Abdallah M Eteleeb
- Department of Psychiatry, Washington University, Saint Louis, St. Louis, MO, United States of America; The Charles F. and Joanne Knight Alzheimer Disease Research Center, Washington University, St. Louis, MO, United States of America
| | - Suélen Santos Alves
- Department of Neurosciences and Behavioral Sciences, Ribeirão Preto Medical School, University of São Paulo (FMRP-USP), Brazil
| | - Stephanie Buss
- Department of Neurology, Beth Israel Deaconess Medical Center, Boston, MA, United States of America; Harvard Medical School, Boston, MA, United States of America
| | - Mouhsin Shafi
- Department of Neurology, Beth Israel Deaconess Medical Center, Boston, MA, United States of America; Harvard Medical School, Boston, MA, United States of America
| | - Daniel Press
- Department of Neurology, Beth Israel Deaconess Medical Center, Boston, MA, United States of America; Harvard Medical School, Boston, MA, United States of America
| | - Norberto Garcia-Cairasco
- Department of Neurosciences and Behavioral Sciences, Ribeirão Preto Medical School, University of São Paulo (FMRP-USP), Brazil; Department of Physiology, Ribeirão Preto Medical School - University of São Paulo (FMRP-USP), Brazil
| | - Bruno A Benitez
- Department of Neurology, Beth Israel Deaconess Medical Center, Boston, MA, United States of America; Harvard Medical School, Boston, MA, United States of America.
| |
Collapse
|
2
|
Eteleeb AM, Alves SS, Buss S, Shafi M, Press D, Garcia-Cairasco N, Benitez BA. Transcriptomic analyses of human brains with Alzheimer's disease identified dysregulated epilepsy-causing genes. MEDRXIV : THE PREPRINT SERVER FOR HEALTH SCIENCES 2025:2025.01.02.25319900. [PMID: 39974070 PMCID: PMC11838929 DOI: 10.1101/2025.01.02.25319900] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 02/21/2025]
Abstract
Background & Objective Alzheimer's Disease (AD) patients at multiple stages of disease progression have a high prevalence of seizures. However, whether AD and epilepsy share pathophysiological changes remains poorly defined. In this study, we leveraged high-throughput transcriptomic data from sporadic AD cases at different stages of cognitive impairment across multiple independent cohorts and brain regions to examine the role of epilepsy-causing genes. Methods Epilepsy-causing genes were manually curated, and their expression levels were analyzed across bulk transcriptomic data from three AD cohorts and three brain regions. RNA-seq data from sporadic AD and control cases from the Knight ADRC, MSBB, and ROSMAP cohorts were processed and analyzed under the same analytical pipeline. An integrative clustering approach employing machine learning and multi-omics data was employed to identify molecularly defined profiles with different cognitive scores. Results We found several epilepsy-associated genes/pathways significantly dysregulated in a group of AD patients with more severe cognitive impairment. We observed 15 genes consistently downregulated across the three cohorts, including sodium and potassium channels, suggesting that these genes play fundamental roles in cognitive function or AD progression. Notably, we found 25 of these genes dysregulated in earlier stages of AD and become worse with AD progression. Conclusion Our findings showed that epilepsy-causing genes showed changes in the early and late stages of AD progression, suggesting that they might be playing a role in AD progression. We can not establish directionality or cause-effect with our findings. However, changes in the epilepsy-causing genes might underlie the presence of seizures in AD patients, which might be present before or concurrently with the initial stages of AD.
Collapse
Affiliation(s)
- Abdallah M. Eteleeb
- Department of Psychiatry, Washington University, Saint Louis, St. Louis, Missouri, United States of America
- The Charles F. and Joanne Knight Alzheimer Disease Research Center, Washington University, St. Louis, Missouri, United States of America
| | - Suélen Santos Alves
- Department of Neurosciences and Behavioral Sciences, Ribeirão Preto Medical School, University of São Paulo (FMRP-USP), Brazil
| | - Stephanie Buss
- Department of Neurology, Beth Israel Deaconess Medical Center, Boston, Massachusetts, United States of America
- Harvard Medical School, Boston, Massachusetts, United States of America
| | - Mouhsin Shafi
- Department of Neurology, Beth Israel Deaconess Medical Center, Boston, Massachusetts, United States of America
- Harvard Medical School, Boston, Massachusetts, United States of America
| | - Daniel Press
- Department of Neurology, Beth Israel Deaconess Medical Center, Boston, Massachusetts, United States of America
- Harvard Medical School, Boston, Massachusetts, United States of America
| | - Norberto Garcia-Cairasco
- Department of Neurosciences and Behavioral Sciences, Ribeirão Preto Medical School, University of São Paulo (FMRP-USP), Brazil
- Department of Physiology, Ribeirão Preto Medical School - University of São Paulo (FMRP-USP), Brazil
| | - Bruno A. Benitez
- Department of Neurology, Beth Israel Deaconess Medical Center, Boston, Massachusetts, United States of America
- Harvard Medical School, Boston, Massachusetts, United States of America
| |
Collapse
|
3
|
Kraus M, Pleskot R, Van Damme D. Structural and Evolutionary Aspects of Plant Endocytosis. ANNUAL REVIEW OF PLANT BIOLOGY 2024; 75:521-550. [PMID: 38237062 DOI: 10.1146/annurev-arplant-070122-023455] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/24/2024]
Abstract
Endocytosis is an essential eukaryotic process that maintains the homeostasis of the plasma membrane proteome by vesicle-mediated internalization. Its predominant mode of operation utilizes the polymerization of the scaffold protein clathrin forming a coat around the vesicle; therefore, it is termed clathrin-mediated endocytosis (CME). Throughout evolution, the machinery that mediates CME is marked by losses, multiplications, and innovations. CME employs a limited number of conserved structural domains and folds, whose assembly and connections are species dependent. In plants, many of the domains are grouped into an ancient multimeric complex, the TPLATE complex, which occupies a central position as an interaction hub for the endocytic machinery. In this review, we provide an overview of the current knowledge regarding the structural aspects of plant CME, and we draw comparisons to other model systems. To do so, we have taken advantage of recent developments with respect to artificial intelligence-based protein structure prediction.
Collapse
Affiliation(s)
- Michael Kraus
- Department of Plant Biotechnology and Bioinformatics, Ghent University, Ghent, Belgium; ,
- VIB Center for Plant Systems Biology, Ghent, Belgium
| | - Roman Pleskot
- Institute of Experimental Botany, Czech Academy of Sciences, Prague, Czech Republic;
| | - Daniël Van Damme
- Department of Plant Biotechnology and Bioinformatics, Ghent University, Ghent, Belgium; ,
- VIB Center for Plant Systems Biology, Ghent, Belgium
| |
Collapse
|
4
|
Gu X, Lin L. Spatiotemporal expression of AP-2/myosin Ⅵ in mouse cochlear IHCs and correlation with auditory function. Acta Otolaryngol 2024; 144:198-206. [PMID: 38662892 DOI: 10.1080/00016489.2024.2341126] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2024] [Accepted: 04/04/2024] [Indexed: 06/20/2024]
Abstract
BACKGROUND Recycling of synaptic vesicles plays an important role in vesicle pool replenishment, neurotransmitter release and synaptic plasticity. Clathrin-mediated endocytosis (CME) is considered to be the main mechanism for synaptic vesicle replenishment. AP-2 (adaptor-related protein complex 2) and myosin Ⅵ are known as key proteins that regulate the structure and dynamics of CME. OBJECTIVE This study aims to reveal the spatiotemporal expression of AP-2/myosin Ⅵ in inner hair cells (IHCs) of the mouse cochlea and its correlation with auditory function. MATERIAL AND METHODS Immunofluorescence was used to detect the localization and expression of AP-2 and myosin Ⅵ in cochlear hair cells (HCs) of CBA/CaJ mice of various ages. qRT-PCR was used to verify the differential expression of AP-2 and myosin Ⅵ mRNA in the mouse cochlea, and ABR tests were administered to mice of various ages. A preliminary analysis of the correlation between AP-2/myosin Ⅵ levels and auditory function was conducted. RESULTS AP-2 was located in the cytoplasmic region of IHCs and was mainly expressed in the basal region of IHCs and the area near ribbon synapses, while myosin Ⅵ was expressed in the cytoplasmic region of IHCs and OHCs. Furthermore, AP-2 and myosin Ⅵ were not significant detected in the cochleae of P7 mice; the expression level reached a peak at P35 and then decreased significantly with age. The expression patterns and expression levels of AP-2 and myosin Ⅵ in the cochleae of the mice were consistent with the development of the auditory system. CONCLUSIONS AND SIGNIFICANCE AP-2 and myosin Ⅵ protein expression may differ in mice of different ages, and this variation probably leads to a difference in the efficiency in CME; it may also cause a defect in IHC function.
Collapse
Affiliation(s)
- Xiang Gu
- Department of Otolaryngology Head and Neck Surgery, The Central Hospital of Wuhan, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Ling Lin
- Department of Otolaryngology Head and Neck Surgery, The Central Hospital of Wuhan, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| |
Collapse
|
5
|
Griffin EN, Jucius T, Sim SE, Harris BS, Heinz S, Ackerman SL. RREB1 regulates neuronal proteostasis and the microtubule network. SCIENCE ADVANCES 2024; 10:eadh3929. [PMID: 38198538 PMCID: PMC10780896 DOI: 10.1126/sciadv.adh3929] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/02/2023] [Accepted: 12/12/2023] [Indexed: 01/12/2024]
Abstract
Transcription factors play vital roles in neuron development; however, little is known about the role of these proteins in maintaining neuronal homeostasis. Here, we show that the transcription factor RREB1 (Ras-responsive element-binding protein 1) is essential for neuron survival in the mammalian brain. A spontaneous mouse mutation causing loss of a nervous system-enriched Rreb1 transcript is associated with progressive loss of cerebellar Purkinje cells and ataxia. Analysis of chromatin immunoprecipitation and sequencing, along with RNA sequencing data revealed dysregulation of RREB1 targets associated with the microtubule cytoskeleton. In agreement with the known role of microtubules in dendritic development, dendritic complexity was disrupted in Rreb1-deficient neurons. Analysis of sequencing data also suggested that RREB1 plays a role in the endomembrane system. Mutant Purkinje cells had fewer numbers of autophagosomes and lysosomes and contained P62- and ubiquitin-positive inclusions. Together, these studies demonstrate that RREB1 functions to maintain the microtubule network and proteostasis in mammalian neurons.
Collapse
Affiliation(s)
- Emily N. Griffin
- Howard Hughes Medical Institute, Department of Cellular and Molecular Medicine, Department of Neurobiology, University of California, San Diego, La Jolla, CA 92093, USA
| | - Thomas Jucius
- Howard Hughes Medical Institute, Department of Cellular and Molecular Medicine, Department of Neurobiology, University of California, San Diego, La Jolla, CA 92093, USA
| | - Su-Eon Sim
- Howard Hughes Medical Institute, Department of Cellular and Molecular Medicine, Department of Neurobiology, University of California, San Diego, La Jolla, CA 92093, USA
| | | | - Sven Heinz
- Department of Medicine, University of California, San Diego, La Jolla, CA 92093, USA
| | - Susan L. Ackerman
- Howard Hughes Medical Institute, Department of Cellular and Molecular Medicine, Department of Neurobiology, University of California, San Diego, La Jolla, CA 92093, USA
| |
Collapse
|
6
|
Zuo W, Depotter JRL, Stolze SC, Nakagami H, Doehlemann G. A transcriptional activator effector of Ustilago maydis regulates hyperplasia in maize during pathogen-induced tumor formation. Nat Commun 2023; 14:6722. [PMID: 37872143 PMCID: PMC10593772 DOI: 10.1038/s41467-023-42522-w] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2023] [Accepted: 10/13/2023] [Indexed: 10/25/2023] Open
Abstract
Ustilago maydis causes common smut in maize, which is characterized by tumor formation in aerial parts of maize. Tumors result from the de novo cell division of highly developed bundle sheath and subsequent cell enlargement. However, the molecular mechanisms underlying tumorigenesis are still largely unknown. Here, we characterize the U. maydis effector Sts2 (Small tumor on seedlings 2), which promotes the division of hyperplasia tumor cells. Upon infection, Sts2 is translocated into the maize cell nucleus, where it acts as a transcriptional activator, and the transactivation activity is crucial for its virulence function. Sts2 interacts with ZmNECAP1, a yet undescribed plant transcriptional activator, and it activates the expression of several leaf developmental regulators to potentiate tumor formation. On the contrary, fusion of a suppressive SRDX-motif to Sts2 causes dominant negative inhibition of tumor formation, underpinning the central role of Sts2 for tumorigenesis. Our results not only disclose the virulence mechanism of a tumorigenic effector, but also reveal the essential role of leaf developmental regulators in pathogen-induced tumor formation.
Collapse
Affiliation(s)
- Weiliang Zuo
- Institute for Plant Sciences and Cluster of Excellence on Plant Sciences (CEPLAS), University of Cologne, Cologne, 50674, Germany.
| | - Jasper R L Depotter
- Institute for Plant Sciences and Cluster of Excellence on Plant Sciences (CEPLAS), University of Cologne, Cologne, 50674, Germany
- Bioinformatics and Biostatistics, The Francis Crick Institute, 1 Midland Road, London, NW1 1AT, UK
| | - Sara Christina Stolze
- Protein Mass Spectrometry, Max-Planck Institute for Plant Breeding Research, Carl-von-Linné Weg 10, 50829, Cologne, Germany
| | - Hirofumi Nakagami
- Protein Mass Spectrometry, Max-Planck Institute for Plant Breeding Research, Carl-von-Linné Weg 10, 50829, Cologne, Germany
- Basic Immune System of Plants, Max Planck Institute for Plant Breeding Research, Cologne, 50829, Germany
| | - Gunther Doehlemann
- Institute for Plant Sciences and Cluster of Excellence on Plant Sciences (CEPLAS), University of Cologne, Cologne, 50674, Germany.
| |
Collapse
|
7
|
Wang X, Li Y, Liu A, Padilla R, Lee DM, Kim D, Mettlen M, Chen Z, Schmid SL, Danuser G. Endocytosis gated by emergent properties of membrane-clathrin interactions. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.08.02.551737. [PMID: 37577632 PMCID: PMC10418234 DOI: 10.1101/2023.08.02.551737] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/15/2023]
Abstract
Clathrin-mediated endocytosis (CME), the major cellular entry pathway, starts when clathrin assembles on the plasma membrane into clathrin-coated pits (CCPs). Two populations of CCPs are detected within the same cell: 'productive' CCPs that invaginate and pinch off, forming clathrin-coated vesicles (CCVs) [1, 2], and 'abortive' CCPs [3, 4, 5] that prematurely disassemble. The mechanisms of gating between these two populations and their relations to the functions of dozens of early-acting endocytic accessory proteins (EAPs) [5, 6, 7, 8, 9] have remained elusive. Here, we use experimentally-guided modeling to integrate the clathrin machinery and membrane mechanics in a single dynamical system. We show that the split between the two populations is an emergent property of this system, in which a switch between an Open state and a Closed state follows from the competition between the chemical energy of the clathrin basket and the mechanical energy of membrane bending. In silico experiments revealed an abrupt transition between the two states that acutely depends on the strength of the clathrin basket. This critical strength is lowered by membrane-bending EAPs [10, 11, 12]. Thus, CME is poised to be shifted between abortive and productive events by small changes in membrane curvature and/or coat stability. This model clarifies the workings of a putative endocytic checkpoint whose existence was previously proposed based on statistical analyses of the lifetime distributions of CCPs [4, 13]. Overall, a mechanistic framework is established to elucidate the diverse and redundant functions of EAPs in regulating CME progression.
Collapse
|
8
|
Ouyang X, Wu B, Yu H, Dong B. DYRK1-mediated phosphorylation of endocytic components is required for extracellular lumen expansion in ascidian notochord. Biol Res 2023; 56:10. [PMID: 36899423 PMCID: PMC10007804 DOI: 10.1186/s40659-023-00422-9] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2022] [Accepted: 03/01/2023] [Indexed: 03/12/2023] Open
Abstract
BACKGROUND The biological tube is a basal biology structure distributed in all multicellular animals, from worms to humans, and has diverse biological functions. Formation of tubular system is crucial for embryogenesis and adult metabolism. Ascidian Ciona notochord lumen is an excellent in vivo model for tubulogenesis. Exocytosis has been known to be essential for tubular lumen formation and expansion. The roles of endocytosis in tubular lumen expansion remain largely unclear. RESULTS In this study, we first identified a dual specificity tyrosine-phosphorylation-regulated kinase 1 (DYRK1), the protein kinase, which was upregulated and required for ascidian notochord extracellular lumen expansion. We demonstrated that DYRK1 interacted with and phosphorylated one of the endocytic components endophilin at Ser263 that was essential for notochord lumen expansion. Moreover, through phosphoproteomic sequencing, we revealed that in addition to endophilin, the phosphorylation of other endocytic components was also regulated by DYRK1. The loss of function of DYRK1 disturbed endocytosis. Then, we demonstrated that clathrin-mediated endocytosis existed and was required for notochord lumen expansion. In the meantime, the results showed that the secretion of notochord cells is vigorous in the apical membrane. CONCLUSIONS We found the co-existence of endocytosis and exocytosis activities in apical membrane during lumen formation and expansion in Ciona notochord. A novel signaling pathway is revealed that DYRK1 regulates the endocytosis by phosphorylation that is required for lumen expansion. Our finding thus indicates a dynamic balance between endocytosis and exocytosis is crucial to maintain apical membrane homeostasis that is essential for lumen growth and expansion in tubular organogenesis.
Collapse
Affiliation(s)
- Xiuke Ouyang
- Fang Zongxi Center, MoE Key Laboratory of Marine Genetics and Breeding, College of Marine Life Sciences, Ocean University of China, Qingdao, 266003, China
| | - Bingtong Wu
- Fang Zongxi Center, MoE Key Laboratory of Marine Genetics and Breeding, College of Marine Life Sciences, Ocean University of China, Qingdao, 266003, China
| | - Haiyan Yu
- Fang Zongxi Center, MoE Key Laboratory of Marine Genetics and Breeding, College of Marine Life Sciences, Ocean University of China, Qingdao, 266003, China
| | - Bo Dong
- Fang Zongxi Center, MoE Key Laboratory of Marine Genetics and Breeding, College of Marine Life Sciences, Ocean University of China, Qingdao, 266003, China. .,Laoshan Laboratory, Qingdao, 266237, China. .,Institute of Evolution & Marine Biodiversity, Ocean University of China, Qingdao, 266003, China.
| |
Collapse
|
9
|
Wang P, Siao W, Zhao X, Arora D, Wang R, Eeckhout D, Van Leene J, Kumar R, Houbaert A, De Winne N, Mylle E, Vandorpe M, Korver RA, Testerink C, Gevaert K, Vanneste S, De Jaeger G, Van Damme D, Russinova E. Adaptor protein complex interaction map in Arabidopsis identifies P34 as a common stability regulator. NATURE PLANTS 2023; 9:355-371. [PMID: 36635451 PMCID: PMC7615410 DOI: 10.1038/s41477-022-01328-2] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/21/2022] [Accepted: 12/05/2022] [Indexed: 06/17/2023]
Abstract
Adaptor protein (AP) complexes are evolutionarily conserved vesicle transport regulators that recruit coat proteins, membrane cargoes and coated vesicle accessory proteins. As in plants endocytic and post-Golgi trafficking intersect at the trans-Golgi network, unique mechanisms for sorting cargoes of overlapping vesicular routes are anticipated. The plant AP complexes are part of the sorting machinery, but despite some functional information, their cargoes, accessory proteins and regulation remain largely unknown. Here, by means of various proteomics approaches, we generated the overall interactome of the five AP and the TPLATE complexes in Arabidopsis thaliana. The interactome converged on a number of hub proteins, including the thus far unknown adaptin binding-like protein, designated P34. P34 interacted with the clathrin-associated AP complexes, controlled their stability and, subsequently, influenced clathrin-mediated endocytosis and various post-Golgi trafficking routes. Altogether, the AP interactome network offers substantial resources for further discoveries of unknown endomembrane trafficking regulators in plant cells.
Collapse
Affiliation(s)
- Peng Wang
- Department of Plant Biotechnology and Bioinformatics, Ghent University, Ghent, Belgium
- Center for Plant Systems Biology, VIB, Ghent, Belgium
| | - Wei Siao
- Department of Plant Biotechnology and Bioinformatics, Ghent University, Ghent, Belgium.
- Center for Plant Systems Biology, VIB, Ghent, Belgium.
| | - Xiuyang Zhao
- Department of Plant Biotechnology and Bioinformatics, Ghent University, Ghent, Belgium
- Center for Plant Systems Biology, VIB, Ghent, Belgium
| | - Deepanksha Arora
- Department of Plant Biotechnology and Bioinformatics, Ghent University, Ghent, Belgium
- Center for Plant Systems Biology, VIB, Ghent, Belgium
| | - Ren Wang
- Department of Plant Biotechnology and Bioinformatics, Ghent University, Ghent, Belgium
- Center for Plant Systems Biology, VIB, Ghent, Belgium
| | - Dominique Eeckhout
- Department of Plant Biotechnology and Bioinformatics, Ghent University, Ghent, Belgium
- Center for Plant Systems Biology, VIB, Ghent, Belgium
| | - Jelle Van Leene
- Department of Plant Biotechnology and Bioinformatics, Ghent University, Ghent, Belgium
- Center for Plant Systems Biology, VIB, Ghent, Belgium
| | - Rahul Kumar
- Department of Plant Biotechnology and Bioinformatics, Ghent University, Ghent, Belgium
- Center for Plant Systems Biology, VIB, Ghent, Belgium
- Department of Plant Sciences, University of Hyderabad, Hyderabad, India
| | - Anaxi Houbaert
- Department of Plant Biotechnology and Bioinformatics, Ghent University, Ghent, Belgium
- Center for Plant Systems Biology, VIB, Ghent, Belgium
- Department of Plant Molecular Biology, University of Lausanne, Lausanne, Switzerland
| | - Nancy De Winne
- Department of Plant Biotechnology and Bioinformatics, Ghent University, Ghent, Belgium
- Center for Plant Systems Biology, VIB, Ghent, Belgium
| | - Evelien Mylle
- Department of Plant Biotechnology and Bioinformatics, Ghent University, Ghent, Belgium
- Center for Plant Systems Biology, VIB, Ghent, Belgium
| | - Michael Vandorpe
- Department of Plant Biotechnology and Bioinformatics, Ghent University, Ghent, Belgium
- Center for Plant Systems Biology, VIB, Ghent, Belgium
| | - Ruud A Korver
- Plant Physiology and Cell Biology, Swammerdam Institute for Life Sciences, University of Amsterdam, Amsterdam, the Netherlands
| | - Christa Testerink
- Plant Physiology and Cell Biology, Swammerdam Institute for Life Sciences, University of Amsterdam, Amsterdam, the Netherlands
- Laboratory of Plant Physiology, Wageningen University & Research, Wageningen, the Netherlands
| | - Kris Gevaert
- Department of Biomolecular Medicine, Ghent University, Ghent, Belgium
- Center for Medical Biotechnology, VIB, Ghent, Belgium
| | - Steffen Vanneste
- Department of Plant Biotechnology and Bioinformatics, Ghent University, Ghent, Belgium
- Center for Plant Systems Biology, VIB, Ghent, Belgium
| | - Geert De Jaeger
- Department of Plant Biotechnology and Bioinformatics, Ghent University, Ghent, Belgium
- Center for Plant Systems Biology, VIB, Ghent, Belgium
| | - Daniël Van Damme
- Department of Plant Biotechnology and Bioinformatics, Ghent University, Ghent, Belgium
- Center for Plant Systems Biology, VIB, Ghent, Belgium
| | - Eugenia Russinova
- Department of Plant Biotechnology and Bioinformatics, Ghent University, Ghent, Belgium.
- Center for Plant Systems Biology, VIB, Ghent, Belgium.
| |
Collapse
|
10
|
Rahmani S, Ahmed H, Ibazebo O, Fussner-Dupas E, Wakarchuk WW, Antonescu CN. O-GlcNAc transferase modulates the cellular endocytosis machinery by controlling the formation of clathrin-coated pits. J Biol Chem 2023; 299:102963. [PMID: 36731797 PMCID: PMC9999237 DOI: 10.1016/j.jbc.2023.102963] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2022] [Revised: 01/16/2023] [Accepted: 01/19/2023] [Indexed: 02/01/2023] Open
Abstract
Clathrin-mediated endocytosis (CME) controls the internalization and function of a wide range of cell surface proteins. CME occurs by the assembly of clathrin and many other proteins on the inner leaflet of the plasma membrane into clathrin-coated pits (CCPs). These structures recruit specific cargo destined for internalization, generate membrane curvature, and in many cases undergo scission from the plasma membrane to yield intracellular vesicles. The diversity of functions of cell surface proteins controlled via internalization by CME may suggest that regulation of CCP formation could be effective to allow cellular adaptation under different contexts. Of interest is how cues derived from cellular metabolism may regulate CME, given the reciprocal role of CME in controlling cellular metabolism. The modification of proteins with O-linked β-GlcNAc (O-GlcNAc) is sensitive to nutrient availability and may allow cellular adaptation to different metabolic conditions. Here, we examined how the modification of proteins with O-GlcNAc may control CCP formation and thus CME. We used perturbation of key enzymes responsible for protein O-GlcNAc modification, as well as specific mutants of the endocytic regulator AAK1 predicted to be impaired for O-GlcNAc modification. We identify that CCP initiation and the assembly of clathrin and other proteins within CCPs are controlled by O-GlcNAc protein modification. This reveals a new dimension of regulation of CME and highlights the important reciprocal regulation of cellular metabolism and endocytosis.
Collapse
Affiliation(s)
- Sadia Rahmani
- Department of Chemistry and Biology, Toronto Metropolitan University, Toronto, Ontario, Canada; Graduate Program in Molecular Science, Toronto Metropolitan University, Toronto, Ontario, Canada
| | - Hafsa Ahmed
- Department of Chemistry and Biology, Toronto Metropolitan University, Toronto, Ontario, Canada
| | - Osemudiamen Ibazebo
- Department of Chemistry and Biology, Toronto Metropolitan University, Toronto, Ontario, Canada
| | - Eden Fussner-Dupas
- Department of Chemistry and Biology, Toronto Metropolitan University, Toronto, Ontario, Canada; Graduate Program in Molecular Science, Toronto Metropolitan University, Toronto, Ontario, Canada
| | - Warren W Wakarchuk
- Department of Biological Sciences, University of Alberta, Edmonton, Alberta, Canada.
| | - Costin N Antonescu
- Department of Chemistry and Biology, Toronto Metropolitan University, Toronto, Ontario, Canada; Graduate Program in Molecular Science, Toronto Metropolitan University, Toronto, Ontario, Canada.
| |
Collapse
|
11
|
Zhang JY, Liu XX, Lin JY, Bao XY, Peng JQ, Gong ZP, Luan X, Chen Y. Biomimetic engineered nanocarriers inspired by viruses for oral-drug delivery. Int J Pharm 2022; 624:121979. [DOI: 10.1016/j.ijpharm.2022.121979] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2022] [Revised: 06/20/2022] [Accepted: 06/30/2022] [Indexed: 10/17/2022]
|
12
|
Chouery E, Mehawej C, Sabbagh S, Bleik J, Megarbane A. Early Infantile Epileptic Encephalopathy related to NECAP1; clinical delineation of the disease and review. Eur J Neurol 2022; 29:2486-2492. [PMID: 35638367 DOI: 10.1111/ene.15424] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2022] [Revised: 05/15/2022] [Accepted: 05/22/2022] [Indexed: 11/27/2022]
Abstract
BACKGROUND Epileptic encephalopathy (EE) refers to a heterogeneous group of epilepsy syndromes characterized by seizures as well as encephalopathies, leading to cognitive and behavioral disturbances. These conditions vary in their age of onset, their severity as well as their electroencephalographic patterns. While genetic factors are involved in approximately 40% of all epilepsy cases, they contribute to 80% of infantile epileptic encephalopathies (EIEE) with around 125 genes previously linked to this disease. METHODS Whole exome sequencing (WES) was performed in a 9-month-old Lebanese girl presenting with EIEE. RESULTS WES enabled the detection of a homozygous missense mutation in the NECAP1 gene (NM_015509.3: p.Glu8Lys) in the proband. CONCLUSION Here we report the first homozygous missense mutation in the NECAP1 gene in a 9-month-old girl presenting with EIEE. Our findings allow a better characterization of the NECAP1-linked disease and enable to broaden its clinical spectrum by including, in addition to EIEE, severe generalized hypotonia, poor feeding, developmental delay, severe microcephaly, delayed myelination, abnormalities of the corpus callosum, and eye abnormalities.
Collapse
Affiliation(s)
- Eliane Chouery
- Department of Human Genetics, Gilbert and Rose-Marie Chagoury School of Medicine, Lebanese American University, Byblos, Lebanon
| | - Cybel Mehawej
- Department of Human Genetics, Gilbert and Rose-Marie Chagoury School of Medicine, Lebanese American University, Byblos, Lebanon
| | - Sandra Sabbagh
- Department of Pediatrics, Hôtel Dieu de France Hospital, Beirut, Lebanon
| | - Jamal Bleik
- Department of Ophthalmology, Lebanese American University Medical Center, Beirut, Lebanon
| | - Andre Megarbane
- Department of Human Genetics, Gilbert and Rose-Marie Chagoury School of Medicine, Lebanese American University, Byblos, Lebanon.,Institut Jérôme Lejeune, Paris, France
| |
Collapse
|
13
|
Zaccai NR, Kadlecova Z, Dickson VK, Korobchevskaya K, Kamenicky J, Kovtun O, Umasankar PK, Wrobel AG, Kaufman JGG, Gray SR, Qu K, Evans PR, Fritzsche M, Sroubek F, Höning S, Briggs JAG, Kelly BT, Owen DJ, Traub LM. FCHO controls AP2's initiating role in endocytosis through a PtdIns(4,5)P 2-dependent switch. SCIENCE ADVANCES 2022; 8:eabn2018. [PMID: 35486718 PMCID: PMC9054013 DOI: 10.1126/sciadv.abn2018] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/10/2021] [Accepted: 03/11/2022] [Indexed: 06/14/2023]
Abstract
Clathrin-mediated endocytosis (CME) is the main mechanism by which mammalian cells control their cell surface proteome. Proper operation of the pivotal CME cargo adaptor AP2 requires membrane-localized Fer/Cip4 homology domain-only proteins (FCHO). Here, live-cell enhanced total internal reflection fluorescence-structured illumination microscopy shows that FCHO marks sites of clathrin-coated pit (CCP) initiation, which mature into uniform-sized CCPs comprising a central patch of AP2 and clathrin corralled by an FCHO/Epidermal growth factor potential receptor substrate number 15 (Eps15) ring. We dissect the network of interactions between the FCHO interdomain linker and AP2, which concentrates, orients, tethers, and partially destabilizes closed AP2 at the plasma membrane. AP2's subsequent membrane deposition drives its opening, which triggers FCHO displacement through steric competition with phosphatidylinositol 4,5-bisphosphate, clathrin, cargo, and CME accessory factors. FCHO can now relocate toward a CCP's outer edge to engage and activate further AP2s to drive CCP growth/maturation.
Collapse
Affiliation(s)
- Nathan R. Zaccai
- CIMR, University of Cambridge, Biomedical Campus, Hills Road, Cambridge CB2 0XY, UK
| | - Zuzana Kadlecova
- CIMR, University of Cambridge, Biomedical Campus, Hills Road, Cambridge CB2 0XY, UK
| | | | - Kseniya Korobchevskaya
- Kennedy Institute of Rheumatology, University of Oxford, Roosevelt Drive, Oxford OX3 7FY, UK
| | - Jan Kamenicky
- Czech Academy of Sciences, Institute of Information Theory and Automation, Pod Vodarenskou vezi 4, 182 08 Prague 8, Czech Republic
| | - Oleksiy Kovtun
- MRC LMB Cambridge Biomedical Campus, Cambridge CB2 0QH, UK
| | - Perunthottathu K. Umasankar
- Intracellular Trafficking Laboratory, Transdisciplinary Biology Research Program, Rajiv Gandhi Centre for Biotechnology, Thiruvananthapuram, Kerala, India
| | - Antoni G. Wrobel
- CIMR, University of Cambridge, Biomedical Campus, Hills Road, Cambridge CB2 0XY, UK
| | | | - Sally R. Gray
- CIMR, University of Cambridge, Biomedical Campus, Hills Road, Cambridge CB2 0XY, UK
| | - Kun Qu
- MRC LMB Cambridge Biomedical Campus, Cambridge CB2 0QH, UK
| | | | - Marco Fritzsche
- Kennedy Institute of Rheumatology, University of Oxford, Roosevelt Drive, Oxford OX3 7FY, UK
- Rosalind Franklin Institute, Harwell Campus, Didcot, UK
| | - Filip Sroubek
- Czech Academy of Sciences, Institute of Information Theory and Automation, Pod Vodarenskou vezi 4, 182 08 Prague 8, Czech Republic
| | - Stefan Höning
- Institute for Biochemistry I, Medical Faculty, University of Cologne, Joseph-Stelzmann-Straße 52, 50931 Cologne, Germany
| | - John A. G. Briggs
- MRC LMB Cambridge Biomedical Campus, Cambridge CB2 0QH, UK
- Max Planck Institute of Biochemistry, 82152 Martinsried, Germany
| | - Bernard T. Kelly
- CIMR, University of Cambridge, Biomedical Campus, Hills Road, Cambridge CB2 0XY, UK
| | - David J. Owen
- CIMR, University of Cambridge, Biomedical Campus, Hills Road, Cambridge CB2 0XY, UK
| | - Linton M. Traub
- Department of Cell Biology, University of Pittsburgh School of Medicine, 3500 Terrace Street, Pittsburgh, PA, USA
| |
Collapse
|
14
|
Duan D, Hanson M, Holland DO, Johnson ME. Integrating protein copy numbers with interaction networks to quantify stoichiometry in clathrin-mediated endocytosis. Sci Rep 2022; 12:5413. [PMID: 35354856 PMCID: PMC8967901 DOI: 10.1038/s41598-022-09259-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2021] [Accepted: 03/21/2022] [Indexed: 11/25/2022] Open
Abstract
Proteins that drive processes like clathrin-mediated endocytosis (CME) are expressed at copy numbers within a cell and across cell types varying from hundreds (e.g. auxilin) to millions (e.g. clathrin). These variations contain important information about function, but without integration with the interaction network, they cannot capture how supply and demand for each protein depends on binding to shared and distinct partners. Here we construct the interface-resolved network of 82 proteins involved in CME and establish a metric, a stoichiometric balance ratio (SBR), that quantifies whether each protein in the network has an abundance that is sub- or super-stoichiometric dependent on the global competition for binding. We find that highly abundant proteins (like clathrin) are super-stoichiometric, but that not all super-stoichiometric proteins are highly abundant, across three cell populations (HeLa, fibroblast, and neuronal synaptosomes). Most strikingly, within all cells there is significant competition to bind shared sites on clathrin and the central AP-2 adaptor by other adaptor proteins, resulting in most being in excess supply. Our network and systematic analysis, including response to perturbations of network components, show how competition for shared binding sites results in functionally similar proteins having widely varying stoichiometries, due to variations in both abundance and their unique network of binding partners.
Collapse
Affiliation(s)
- Daisy Duan
- TC Jenkins Department of Biophysics, Johns Hopkins University, 3400 N Charles St, Baltimore, MD, 21218, USA
| | - Meretta Hanson
- TC Jenkins Department of Biophysics, Johns Hopkins University, 3400 N Charles St, Baltimore, MD, 21218, USA
| | | | - Margaret E Johnson
- TC Jenkins Department of Biophysics, Johns Hopkins University, 3400 N Charles St, Baltimore, MD, 21218, USA.
| |
Collapse
|
15
|
Li L, Liu H, Krout M, Richmond JE, Wang Y, Bai J, Weeratunga S, Collins BM, Ventimiglia D, Yu Y, Xia J, Tang J, Liu J, Hu Z. A novel dual Ca2+ sensor system regulates Ca2+-dependent neurotransmitter release. J Cell Biol 2021; 220:211787. [PMID: 33570571 PMCID: PMC7883739 DOI: 10.1083/jcb.202008121] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2020] [Revised: 12/19/2020] [Accepted: 01/15/2021] [Indexed: 02/08/2023] Open
Abstract
Ca2+-dependent neurotransmitter release requires synaptotagmins as Ca2+ sensors to trigger synaptic vesicle (SV) exocytosis via binding of their tandem C2 domains—C2A and C2B—to Ca2+. We have previously demonstrated that SNT-1, a mouse synaptotagmin-1 (Syt1) homologue, functions as the fast Ca2+ sensor in Caenorhabditis elegans. Here, we report a new Ca2+ sensor, SNT-3, which triggers delayed Ca2+-dependent neurotransmitter release. snt-1;snt-3 double mutants abolish evoked synaptic transmission, demonstrating that C. elegans NMJs use a dual Ca2+ sensor system. SNT-3 possesses canonical aspartate residues in both C2 domains, but lacks an N-terminal transmembrane (TM) domain. Biochemical evidence demonstrates that SNT-3 binds both Ca2+ and the plasma membrane. Functional analysis shows that SNT-3 is activated when SNT-1 function is impaired, triggering SV release that is loosely coupled to Ca2+ entry. Compared with SNT-1, which is tethered to SVs, SNT-3 is not associated with SV. Eliminating the SV tethering of SNT-1 by removing the TM domain or the whole N terminus rescues fast release kinetics, demonstrating that cytoplasmic SNT-1 is still functional and triggers fast neurotransmitter release, but also exhibits decreased evoked amplitude and release probability. These results suggest that the fast and slow properties of SV release are determined by the intrinsically different C2 domains in SNT-1 and SNT-3, rather than their N-termini–mediated membrane tethering. Our findings therefore reveal a novel dual Ca2+ sensor system in C. elegans and provide significant insights into Ca2+-regulated exocytosis.
Collapse
Affiliation(s)
- Lei Li
- Queensland Brain Institute, Clem Jones Centre for Ageing Dementia Research, The University of Queensland, Brisbane, Queensland, Australia
| | - Haowen Liu
- Queensland Brain Institute, Clem Jones Centre for Ageing Dementia Research, The University of Queensland, Brisbane, Queensland, Australia
| | - Mia Krout
- Department of Biological Sciences, University of Illinois at Chicago, Chicago, IL
| | - Janet E Richmond
- Department of Biological Sciences, University of Illinois at Chicago, Chicago, IL
| | - Yu Wang
- Division of Basic Sciences, Fred Hutchinson Cancer Research Center, Seattle, WA
| | - Jihong Bai
- Division of Basic Sciences, Fred Hutchinson Cancer Research Center, Seattle, WA
| | - Saroja Weeratunga
- Institute for Molecular Bioscience, The University of Queensland, Brisbane, Queensland, Australia
| | - Brett M Collins
- Institute for Molecular Bioscience, The University of Queensland, Brisbane, Queensland, Australia
| | - Donovan Ventimiglia
- Lulu and Anthony Wang Laboratory of Neural Circuits and Behavior, The Rockefeller University, New York, NY
| | - Yi Yu
- Queensland Brain Institute, Clem Jones Centre for Ageing Dementia Research, The University of Queensland, Brisbane, Queensland, Australia
| | - Jingyao Xia
- Queensland Brain Institute, Clem Jones Centre for Ageing Dementia Research, The University of Queensland, Brisbane, Queensland, Australia
| | - Jing Tang
- Queensland Brain Institute, Clem Jones Centre for Ageing Dementia Research, The University of Queensland, Brisbane, Queensland, Australia
| | - Jie Liu
- Neuroscience Program, Monash Biomedicine Discovery Institute and Department of Anatomy and Developmental Biology, Monash University, Melbourne, Victoria, Australia
| | - Zhitao Hu
- Queensland Brain Institute, Clem Jones Centre for Ageing Dementia Research, The University of Queensland, Brisbane, Queensland, Australia
| |
Collapse
|
16
|
Ramesh ST, Navyasree KV, Sah S, Ashok AB, Qathoon N, Mohanty S, Swain RK, Umasankar PK. BMP2K phosphorylates AP-2 and regulates clathrin-mediated endocytosis. Traffic 2021; 22:377-396. [PMID: 34480404 DOI: 10.1111/tra.12814] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2021] [Revised: 08/31/2021] [Accepted: 09/01/2021] [Indexed: 01/29/2023]
Abstract
Phosphorylation of the central adaptor protein complex, AP-2 is pivotal for clathrin-mediated endocytosis (CME). Here, we uncover the role of an uncharacterized kinase (BMP-2 inducible kinase-BMP2K) in AP-2 phosphorylation. We demonstrate that BMP2K can phosphorylate AP-2 in vitro and in vivo. Functional impairment of BMP2K impedes AP-2 phosphorylation leading to defects in clathrin-coated pit (CCP) morphology and cargo internalization. BMP2K engages AP-2 via its extended C-terminus and this interaction is important for its CCP localization and function. Notably, endogenous BMP2K levels decline upon functional impairment of AP-2 indicating AP-2 dependent BMP2K stabilization in cells. Further, functional inactivation of BMP2K in zebrafish embryos yields gastrulation phenotypes which mirror AP-2 loss-of-function suggesting physiological relevance of BMP2K in vertebrates. Together, our findings propose involvement of a novel kinase in AP-2 phosphorylation and in the operation of CME.
Collapse
Affiliation(s)
- Shikha T Ramesh
- Intracellular Trafficking Laboratory, Transdisciplinary Biology Research Program, Rajiv Gandhi Centre for Biotechnology, Thiruvananthapuram, Kerala, India.,Centre for Doctoral Studies, Manipal Academy of Higher Education, Manipal, Karnataka, India
| | - Kolaparamba V Navyasree
- Intracellular Trafficking Laboratory, Transdisciplinary Biology Research Program, Rajiv Gandhi Centre for Biotechnology, Thiruvananthapuram, Kerala, India.,Centre for Doctoral Studies, Manipal Academy of Higher Education, Manipal, Karnataka, India
| | - Sneha Sah
- Intracellular Trafficking Laboratory, Transdisciplinary Biology Research Program, Rajiv Gandhi Centre for Biotechnology, Thiruvananthapuram, Kerala, India
| | - Anjitha B Ashok
- Intracellular Trafficking Laboratory, Transdisciplinary Biology Research Program, Rajiv Gandhi Centre for Biotechnology, Thiruvananthapuram, Kerala, India
| | - Nishada Qathoon
- Intracellular Trafficking Laboratory, Transdisciplinary Biology Research Program, Rajiv Gandhi Centre for Biotechnology, Thiruvananthapuram, Kerala, India
| | | | | | - Perunthottathu K Umasankar
- Intracellular Trafficking Laboratory, Transdisciplinary Biology Research Program, Rajiv Gandhi Centre for Biotechnology, Thiruvananthapuram, Kerala, India
| |
Collapse
|
17
|
Harper CB, Smillie KJ. Current molecular approaches to investigate pre-synaptic dysfunction. J Neurochem 2021; 157:107-129. [PMID: 33544872 DOI: 10.1111/jnc.15316] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2020] [Revised: 01/29/2021] [Accepted: 02/01/2021] [Indexed: 12/19/2022]
Abstract
Over the course of the last few decades it has become clear that many neurodevelopmental and neurodegenerative disorders have a synaptic defect, which contributes to pathogenicity. A rise in new techniques, and in particular '-omics'-based methods providing large datasets, has led to an increase in potential proteins and pathways implicated in synaptic function and related disorders. Additionally, advancements in imaging techniques have led to the recent discovery of alternative modes of synaptic vesicle recycling. This has resulted in a lack of clarity over the precise role of different pathways in maintaining synaptic function and whether these new pathways are dysfunctional in neurodevelopmental and neurodegenerative disorders. A greater understanding of the molecular detail of pre-synaptic function in health and disease is key to targeting new proteins and pathways for novel treatments and the variety of new techniques currently available provides an ideal opportunity to investigate these functions. This review focuses on techniques to interrogate pre-synaptic function, concentrating mainly on synaptic vesicle recycling. It further examines techniques to determine the underlying molecular mechanism of pre-synaptic dysfunction and discusses methods to identify molecular targets, along with protein-protein interactions and cellular localization. In combination, these techniques will provide an expanding and more complete picture of pre-synaptic function. With the application of recent technological advances, we are able to resolve events with higher spatial and temporal resolution, leading research towards a greater understanding of dysfunction at the presynapse and the role it plays in pathogenicity.
Collapse
Affiliation(s)
- Callista B Harper
- Centre for Discovery Brain Sciences, University of Edinburgh, Scotland, UK
| | - Karen J Smillie
- Centre for Discovery Brain Sciences, University of Edinburgh, Scotland, UK
| |
Collapse
|
18
|
Bhave M, Mino RE, Wang X, Lee J, Grossman HM, Lakoduk AM, Danuser G, Schmid SL, Mettlen M. Functional characterization of 67 endocytic accessory proteins using multiparametric quantitative analysis of CCP dynamics. Proc Natl Acad Sci U S A 2020; 117:31591-31602. [PMID: 33257546 PMCID: PMC7749282 DOI: 10.1073/pnas.2020346117] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Clathrin-mediated endocytosis (CME) begins with the nucleation of clathrin assembly on the plasma membrane, followed by stabilization and growth/maturation of clathrin-coated pits (CCPs) that eventually pinch off and internalize as clathrin-coated vesicles. This highly regulated process involves a myriad of endocytic accessory proteins (EAPs), many of which are multidomain proteins that encode a wide range of biochemical activities. Although domain-specific activities of EAPs have been extensively studied, their precise stage-specific functions have been identified in only a few cases. Using single-guide RNA (sgRNA)/dCas9 and small interfering RNA (siRNA)-mediated protein knockdown, combined with an image-based analysis pipeline, we have determined the phenotypic signature of 67 EAPs throughout the maturation process of CCPs. Based on these data, we show that EAPs can be partitioned into phenotypic clusters, which differentially affect CCP maturation and dynamics. Importantly, these clusters do not correlate with functional modules based on biochemical activities. Furthermore, we discover a critical role for SNARE proteins and their adaptors during early stages of CCP nucleation and stabilization and highlight the importance of GAK throughout CCP maturation that is consistent with GAK's multifunctional domain architecture. Together, these findings provide systematic, mechanistic insights into the plasticity and robustness of CME.
Collapse
Affiliation(s)
- Madhura Bhave
- Department of Cell Biology, University of Texas Southwestern Medical Center, Dallas, TX 75390
| | - Rosa E Mino
- Department of Cell Biology, University of Texas Southwestern Medical Center, Dallas, TX 75390
| | - Xinxin Wang
- Department of Cell Biology, University of Texas Southwestern Medical Center, Dallas, TX 75390
- Lyda Hill Department of Bioinformatics, University of Texas Southwestern Medical Center, Dallas, TX 75390
| | - Jeon Lee
- Lyda Hill Department of Bioinformatics, University of Texas Southwestern Medical Center, Dallas, TX 75390
| | - Heather M Grossman
- Department of Cell Biology, University of Texas Southwestern Medical Center, Dallas, TX 75390
- Lyda Hill Department of Bioinformatics, University of Texas Southwestern Medical Center, Dallas, TX 75390
| | - Ashley M Lakoduk
- Department of Cell Biology, University of Texas Southwestern Medical Center, Dallas, TX 75390
| | - Gaudenz Danuser
- Department of Cell Biology, University of Texas Southwestern Medical Center, Dallas, TX 75390
- Lyda Hill Department of Bioinformatics, University of Texas Southwestern Medical Center, Dallas, TX 75390
| | - Sandra L Schmid
- Department of Cell Biology, University of Texas Southwestern Medical Center, Dallas, TX 75390;
| | - Marcel Mettlen
- Department of Cell Biology, University of Texas Southwestern Medical Center, Dallas, TX 75390;
| |
Collapse
|
19
|
Adapted nano-carriers for gastrointestinal defense components: surface strategies and challenges. NANOMEDICINE-NANOTECHNOLOGY BIOLOGY AND MEDICINE 2020; 29:102277. [DOI: 10.1016/j.nano.2020.102277] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/12/2020] [Revised: 06/18/2020] [Accepted: 07/18/2020] [Indexed: 12/21/2022]
|
20
|
Chen Z, Schmid SL. Evolving models for assembling and shaping clathrin-coated pits. J Cell Biol 2020; 219:e202005126. [PMID: 32770195 PMCID: PMC7480099 DOI: 10.1083/jcb.202005126] [Citation(s) in RCA: 45] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2020] [Revised: 07/13/2020] [Accepted: 07/13/2020] [Indexed: 01/01/2023] Open
Abstract
Clathrin-mediated endocytosis occurs via the assembly of clathrin-coated pits (CCPs) that invaginate and pinch off to form clathrin-coated vesicles (CCVs). It is well known that adaptor protein 2 (AP2) complexes trigger clathrin assembly on the plasma membrane, and biochemical and structural studies have revealed the nature of these interactions. Numerous endocytic accessory proteins collaborate with clathrin and AP2 to drive CCV formation. However, many questions remain as to the molecular events involved in CCP initiation, stabilization, and curvature generation. Indeed, a plethora of recent evidence derived from cell perturbation, correlative light and EM tomography, live-cell imaging, modeling, and high-resolution structural analyses has revealed more complexity and promiscuity in the protein interactions driving CCP maturation than anticipated. After briefly reviewing the evidence supporting prevailing models, we integrate these new lines of evidence to develop a more dynamic and flexible model for how redundant, dynamic, and competing protein interactions can drive endocytic CCV formation and suggest new approaches to test emerging models.
Collapse
Affiliation(s)
| | - Sandra L. Schmid
- Department of Cell Biology, University of Texas Southwestern Medical Center, Dallas, TX
| |
Collapse
|
21
|
Brod J, Hellwig A, Wieland FT. Epsin but not AP-2 supports reconstitution of endocytic clathrin-coated vesicles. FEBS Lett 2020; 594:2227-2239. [PMID: 32337703 DOI: 10.1002/1873-3468.13801] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2020] [Revised: 04/05/2020] [Accepted: 04/10/2020] [Indexed: 12/12/2022]
Abstract
Formation of clathrin-coated vesicles (CCVs) in receptor-mediated endocytosis is a mechanistically well-established process, in which clathrin, the adaptor protein complex AP-2, and the large GTPase dynamin play crucial roles. In order to obtain more mechanistic insight into this process, here we established a giant unilamellar vesicle (GUV)-based in vitro CCV reconstitution system with chemically defined components and the full-length recombinant proteins clathrin, AP-2, epsin-1, and dynamin-2. Our results support the predominant model in which hydrolysis of GTP by dynamin is a prerequisite to generate CCVs. Strikingly, in this system at near physiological concentrations of reagents, epsin-1 alone does not have the propensity for scission but is required for bud formation, whereas AP-2 and clathrin are not sufficient. Thus, our study reveals that epsin-1 is an important factor for the maturation of clathrin coated buds, a prerequisite for vesicle generation.
Collapse
Affiliation(s)
- Jan Brod
- Heidelberg University Biochemistry Center (BZH), University of Heidelberg, Germany
| | - Andrea Hellwig
- Interdisciplinary Center for Neurosciences (IZN), University of Heidelberg, Germany
| | - Felix T Wieland
- Heidelberg University Biochemistry Center (BZH), University of Heidelberg, Germany
| |
Collapse
|
22
|
Wang X, Chen Z, Mettlen M, Noh J, Schmid SL, Danuser G. DASC, a sensitive classifier for measuring discrete early stages in clathrin-mediated endocytosis. eLife 2020; 9:53686. [PMID: 32352376 PMCID: PMC7192580 DOI: 10.7554/elife.53686] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2019] [Accepted: 04/06/2020] [Indexed: 12/13/2022] Open
Abstract
Clathrin-mediated endocytosis (CME) in mammalian cells is driven by resilient machinery that includes >70 endocytic accessory proteins (EAP). Accordingly, perturbation of individual EAPs often results in minor effects on biochemical measurements of CME, thus providing inconclusive/misleading information regarding EAP function. Live-cell imaging can detect earlier roles of EAPs preceding cargo internalization; however, this approach has been limited because unambiguously distinguishing abortive coats (ACs) from bona fide clathrin-coated pits (CCPs) is required but unaccomplished. Here, we develop a thermodynamics-inspired method, “disassembly asymmetry score classification (DASC)”, that resolves ACs from CCPs based on single channel fluorescent movies. After extensive verification, we use DASC-resolved ACs and CCPs to quantify CME progression in 11 EAP knockdown conditions. We show that DASC is a sensitive detector of phenotypic variation in CCP dynamics that is uncorrelated to the variation in biochemical measurements of CME. Thus, DASC is an essential tool for uncovering EAP function.
Collapse
Affiliation(s)
- Xinxin Wang
- Lyda Hill Department of Bioinformatics, University of Texas Southwestern Medical Center, Dallas, United States.,Department of Cell Biology, University of Texas Southwestern Medical Center, Dallas, United States
| | - Zhiming Chen
- Department of Cell Biology, University of Texas Southwestern Medical Center, Dallas, United States
| | - Marcel Mettlen
- Department of Cell Biology, University of Texas Southwestern Medical Center, Dallas, United States
| | - Jungsik Noh
- Lyda Hill Department of Bioinformatics, University of Texas Southwestern Medical Center, Dallas, United States.,Department of Cell Biology, University of Texas Southwestern Medical Center, Dallas, United States
| | - Sandra L Schmid
- Department of Cell Biology, University of Texas Southwestern Medical Center, Dallas, United States
| | - Gaudenz Danuser
- Lyda Hill Department of Bioinformatics, University of Texas Southwestern Medical Center, Dallas, United States.,Department of Cell Biology, University of Texas Southwestern Medical Center, Dallas, United States
| |
Collapse
|
23
|
Cernikova L, Faso C, Hehl AB. Phosphoinositide-binding proteins mark, shape and functionally modulate highly-diverged endocytic compartments in the parasitic protist Giardia lamblia. PLoS Pathog 2020; 16:e1008317. [PMID: 32092130 PMCID: PMC7058353 DOI: 10.1371/journal.ppat.1008317] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2019] [Revised: 03/05/2020] [Accepted: 01/14/2020] [Indexed: 12/18/2022] Open
Abstract
Phosphorylated derivatives of phosphatidylinositol (PIPs) are key membrane lipid residues involved in clathrin-mediated endocytosis (CME). CME relies on PIP species PI(4,5)P2 to mark endocytic sites at the plasma membrane (PM) associated to clathrin-coated vesicle (CCV) formation. The highly diverged parasitic protist Giardia lamblia presents disordered and static clathrin assemblies at PM invaginations, contacting specialized endocytic organelles called peripheral vacuoles (PVs). The role for clathrin assemblies in fluid phase uptake and their link to internal membranes via PIP-binding adaptors is unknown. Here we provide evidence for a robust link between clathrin assemblies and fluid-phase uptake in G. lamblia mediated by proteins carrying predicted PX, FYVE and NECAP1 PIP-binding modules. We show that chemical and genetic perturbation of PIP-residue binding and turnover elicits novel uptake and organelle-morphology phenotypes. A combination of co-immunoprecipitation and in silico analysis techniques expands the initial PIP-binding network with addition of new members. Our data indicate that, despite the partial conservation of lipid markers and protein cohorts known to play important roles in dynamic endocytic events in well-characterized model systems, the Giardia lineage presents a strikingly divergent clathrin-centered network. This includes several PIP-binding modules, often associated to domains of currently unknown function that shape and modulate fluid-phase uptake at PVs. In well-characterized model eukaryotes, clathrin-mediated endocytosis is a key process for uptake of extracellular material and is regulated by more than 50 known proteins. A large number of these carry phosphoinositide (PIP)-binding domains and play a central role in the regulation of endocytosis. Here, we report on the detailed functional characterization of PIP-binding proteins in the intestinal parasitic protist Giardia lamblia. We show evidence that proteins carrying specific PIP-binding domains are directly involved in fluid-phase uptake. Furthermore, using co-immunoprecipitation assays, we confirm these proteins’ association to G. lamblia’s clathrin assemblies. In addition, using state-of-the-art imaging strategies, we demonstrate a previously unappreciated level of complexity involving PIPs and their partner proteins in marking and shaping G. lamblia’s unique endocytic compartments. Our data contribute substantially to an updated working model for G. lamblia’s host-parasite interface, demonstrating how uptake in this parasite is directly regulated by a variety of PIP residues and PIP-binding modules, which have been re-routed from conserved pathways, likely as a result of host-parasite co-evolution.
Collapse
Affiliation(s)
- Lenka Cernikova
- Institute of Parasitology, University of Zurich, Zurich, Switzerland
| | - Carmen Faso
- Institute of Parasitology, University of Zurich, Zurich, Switzerland
- Institute of Cell Biology, University of Bern, Bern, Switzerland
- * E-mail: (CF); (AH)
| | - Adrian B. Hehl
- Institute of Parasitology, University of Zurich, Zurich, Switzerland
- * E-mail: (CF); (AH)
| |
Collapse
|
24
|
Joseph BB, Wang Y, Edeen P, Lažetić V, Grant BD, Fay DS. Control of clathrin-mediated endocytosis by NIMA family kinases. PLoS Genet 2020; 16:e1008633. [PMID: 32069276 PMCID: PMC7048319 DOI: 10.1371/journal.pgen.1008633] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2019] [Revised: 02/28/2020] [Accepted: 01/28/2020] [Indexed: 12/16/2022] Open
Abstract
Endocytosis, the process by which cells internalize plasma membrane and associated cargo, is regulated extensively by posttranslational modifications. Previous studies suggested the potential involvement of scores of protein kinases in endocytic control, of which only a few have been validated in vivo. Here we show that the conserved NIMA-related kinases NEKL-2/NEK8/9 and NEKL-3/NEK6/7 (the NEKLs) control clathrin-mediated endocytosis in C. elegans. Loss of NEKL-2 or NEKL-3 activities leads to penetrant larval molting defects and to the abnormal localization of trafficking markers in arrested larvae. Using an auxin-based degron system, we also find that depletion of NEKLs in adult-stage C. elegans leads to gross clathrin mislocalization and to a dramatic reduction in clathrin mobility at the apical membrane. Using a non-biased genetic screen to identify suppressors of nekl molting defects, we identified several components and regulators of AP2, the major clathrin adapter complex acting at the plasma membrane. Strikingly, reduced AP2 activity rescues both nekl mutant molting defects as well as associated trafficking phenotypes, whereas increased levels of active AP2 exacerbate nekl defects. Moreover, in a unique example of mutual suppression, NEKL inhibition alleviates defects associated with reduced AP2 activity, attesting to the tight link between NEKL and AP2 functions. We also show that NEKLs are required for the clustering and internalization of membrane cargo required for molting. Notably, we find that human NEKs can rescue molting and trafficking defects in nekl mutant worms, suggesting that the control of intracellular trafficking is an evolutionarily conserved function of NEK family kinases. In order to function properly, cells must continually import materials from the outside. This process, termed endocytosis, is necessary for the uptake of nutrients and for interpreting signals coming from the external environment or from within the body. These signals are critical during animal development but also affect many types of cell behaviors throughout life. In our current work, we show that several highly conserved proteins in the nematode Caenorhabditis elegans, NEKL-2 and NEKL-3, regulate endocytosis. The human counterparts of NEKL-2 and NEKL-3 have been implicated in cardiovascular and renal diseases as well as many types of cancers. However, their specific functions within cells is incompletely understood and very little is known about their role in endocytosis or how this role might impact disease processes. Here we use several complementary approaches to characterize the specific functions of C. elegans NEKL-2 and NEKL-3 in endocytosis and show that their human counterparts likely have very similar functions. This work paves the way to a better understanding of fundamental biological processes and to determining the cellular functions of proteins connected to human diseases.
Collapse
Affiliation(s)
- Braveen B. Joseph
- Department of Molecular Biology, College of Agriculture and Natural Resources, University of Wyoming, Laramie, Wyoming, United States of America
| | - Yu Wang
- Department of Molecular Biology and Biochemistry, Rutgers University, Piscataway, New Jersey, United States of America
- Department of Biochemistry and Molecular Biology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Phil Edeen
- Department of Molecular Biology, College of Agriculture and Natural Resources, University of Wyoming, Laramie, Wyoming, United States of America
| | - Vladimir Lažetić
- Department of Molecular Biology, College of Agriculture and Natural Resources, University of Wyoming, Laramie, Wyoming, United States of America
| | - Barth D. Grant
- Department of Molecular Biology and Biochemistry, Rutgers University, Piscataway, New Jersey, United States of America
| | - David S. Fay
- Department of Molecular Biology, College of Agriculture and Natural Resources, University of Wyoming, Laramie, Wyoming, United States of America
- * E-mail:
| |
Collapse
|
25
|
Single-Step Genome-Wide Association Study for Resistance to Piscirickettsia salmonis in Rainbow Trout ( Oncorhynchus mykiss). G3-GENES GENOMES GENETICS 2019; 9:3833-3841. [PMID: 31690599 PMCID: PMC6829148 DOI: 10.1534/g3.119.400204] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Abstract
One of the main pathogens affecting rainbow trout (Oncorhynchus mykiss) farming is the facultative intracellular bacteria Piscirickettsia salmonis Current treatments, such as antibiotics and vaccines, have not had the expected effectiveness in field conditions. Genetic improvement by means of selection for resistance is proposed as a viable alternative for control. Genomic information can be used to identify the genomic regions associated with resistance and enhance the genetic evaluation methods to speed up the genetic improvement for the trait. The objectives of this study were to i) identify the genomic regions associated with resistance to P. salmonis; and ii) identify candidate genes associated with the trait in rainbow trout. We experimentally challenged 2,130 rainbow trout with P. salmonis and genotyped them with a 57 K single nucleotide polymorphism (SNP) array. Resistance to P. salmonis was defined as time to death (TD) and as binary survival (BS). Significant heritabilities were estimated for TD and BS (0.48 ± 0.04 and 0.34 ± 0.04, respectively). A total of 2,047 fish and 26,068 SNPs passed quality control for samples and genotypes. Using a single-step genome wide association analysis (ssGWAS) we identified four genomic regions explaining over 1% of the genetic variance for TD and three for BS. Interestingly, the same genomic region located on Omy27 was found to explain the highest proportion of genetic variance for both traits (2.4 and 1.5% for TD and BS, respectively). The identified SNP in this region is located within an exon of a gene related with actin cytoskeletal organization, a protein exploited by P. salmonis during infection. Other important candidate genes identified are related with innate immune response and oxidative stress. The moderate heritability values estimated in the present study show it is possible to improve resistance to P. salmonis through artificial selection in the rainbow trout population studied here. Furthermore, our results suggest a polygenic genetic architecture for the trait and provide novel insights into the candidate genes underpinning resistance to P. salmonis in O. mykiss.
Collapse
|
26
|
Partlow EA, Baker RW, Beacham GM, Chappie JS, Leschziner AE, Hollopeter G. A structural mechanism for phosphorylation-dependent inactivation of the AP2 complex. eLife 2019; 8:e50003. [PMID: 31464684 PMCID: PMC6739873 DOI: 10.7554/elife.50003] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2019] [Accepted: 08/28/2019] [Indexed: 01/05/2023] Open
Abstract
Endocytosis of transmembrane proteins is orchestrated by the AP2 clathrin adaptor complex. AP2 dwells in a closed, inactive state in the cytosol, but adopts an open, active conformation on the plasma membrane. Membrane-activated complexes are also phosphorylated, but the significance of this mark is debated. We recently proposed that NECAP negatively regulates AP2 by binding open and phosphorylated complexes (Beacham et al., 2018). Here, we report high-resolution cryo-EM structures of NECAP bound to phosphorylated AP2. The site of AP2 phosphorylation is directly coordinated by residues of the NECAP PHear domain that are predicted from genetic screens in C. elegans. Using membrane mimetics to generate conformationally open AP2, we find that a second domain of NECAP binds these complexes and cryo-EM reveals both domains of NECAP engaging closed, inactive AP2. Assays in vitro and in vivo confirm these domains cooperate to inactivate AP2. We propose that phosphorylation marks adaptors for inactivation.
Collapse
Affiliation(s)
- Edward A Partlow
- Department of Molecular MedicineCornell UniversityNew YorkUnited States
| | - Richard W Baker
- Department of Cellular and Molecular MedicineSchool of Medicine, University of California, San DiegoLa JollaUnited States
| | | | - Joshua S Chappie
- Department of Molecular MedicineCornell UniversityNew YorkUnited States
| | - Andres E Leschziner
- Department of Cellular and Molecular MedicineSchool of Medicine, University of California, San DiegoLa JollaUnited States
- Section of Molecular Biology, Division of Biological SciencesUniversity of California, San DiegoLa JollaUnited States
| | | |
Collapse
|
27
|
Wrobel AG, Kadlecova Z, Kamenicky J, Yang JC, Herrmann T, Kelly BT, McCoy AJ, Evans PR, Martin S, Müller S, Salomon S, Sroubek F, Neuhaus D, Höning S, Owen DJ. Temporal Ordering in Endocytic Clathrin-Coated Vesicle Formation via AP2 Phosphorylation. Dev Cell 2019; 50:494-508.e11. [PMID: 31430451 PMCID: PMC6706699 DOI: 10.1016/j.devcel.2019.07.017] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2019] [Revised: 04/18/2019] [Accepted: 07/15/2019] [Indexed: 11/23/2022]
Abstract
Clathrin-mediated endocytosis (CME) is key to maintaining the transmembrane protein composition of cells' limiting membranes. During mammalian CME, a reversible phosphorylation event occurs on Thr156 of the μ2 subunit of the main endocytic clathrin adaptor, AP2. We show that this phosphorylation event starts during clathrin-coated pit (CCP) initiation and increases throughout CCP lifetime. μ2Thr156 phosphorylation favors a new, cargo-bound conformation of AP2 and simultaneously creates a binding platform for the endocytic NECAP proteins but without significantly altering AP2's cargo affinity in vitro. We describe the structural bases of both. NECAP arrival at CCPs parallels that of clathrin and increases with μ2Thr156 phosphorylation. In turn, NECAP recruits drivers of late stages of CCP formation, including SNX9, via a site distinct from where NECAP binds AP2. Disruption of the different modules of this phosphorylation-based temporal regulatory system results in CCP maturation being delayed and/or stalled, hence impairing global rates of CME.
Collapse
Affiliation(s)
| | | | - Jan Kamenicky
- Czech Academy of Sciences, Institute of Information Theory and Automation, Pod Vodarenskou vezi 4, 182 08 Prague 8, Czech Republic
| | - Ji-Chun Yang
- MRC Laboratory of Molecular Biology, Cambridge Biomedical Campus, Francis Crick Avenue, Cambridge CB2 0QH, UK
| | - Torsten Herrmann
- University of Grenoble Alpes, CNRS, CEA, IBS, 38000 Grenoble, France
| | | | - Airlie J McCoy
- CIMR, WT/MRC Building, Hills Road, Cambridge CB2 0QQ, UK
| | - Philip R Evans
- MRC Laboratory of Molecular Biology, Cambridge Biomedical Campus, Francis Crick Avenue, Cambridge CB2 0QH, UK
| | - Stephen Martin
- The Francis Crick Institute, 1 Midland Road, London NW1 1ST, UK
| | - Stefan Müller
- Center for Molecular Medicine (CMMC), University of Cologne, Robert-Koch-Straße 21, 50931 Cologne, Germany
| | - Susanne Salomon
- Institute for Biochemistry I, Medical Faulty, University of Cologne, Joseph-Stelzmann-Straße 52, 50931 Cologne, Germany
| | - Filip Sroubek
- Czech Academy of Sciences, Institute of Information Theory and Automation, Pod Vodarenskou vezi 4, 182 08 Prague 8, Czech Republic
| | - David Neuhaus
- MRC Laboratory of Molecular Biology, Cambridge Biomedical Campus, Francis Crick Avenue, Cambridge CB2 0QH, UK
| | - Stefan Höning
- Institute for Biochemistry I, Medical Faulty, University of Cologne, Joseph-Stelzmann-Straße 52, 50931 Cologne, Germany.
| | - David J Owen
- CIMR, WT/MRC Building, Hills Road, Cambridge CB2 0QQ, UK
| |
Collapse
|
28
|
Beacham GM, Partlow EA, Hollopeter G. Conformational regulation of AP1 and AP2 clathrin adaptor complexes. Traffic 2019; 20:741-751. [PMID: 31313456 DOI: 10.1111/tra.12677] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2019] [Revised: 07/09/2019] [Accepted: 07/12/2019] [Indexed: 12/15/2022]
Abstract
Heterotetrameric clathrin adaptor protein complexes (APs) orchestrate the formation of coated vesicles for transport among organelles of the cell periphery. AP1 binds membranes enriched for phosphatidylinositol 4-phosphate, such as the trans Golgi network, while AP2 associates with phosphatidylinositol 4,5-bisphosphate of the plasma membrane. At their respective membranes, AP1 and AP2 bind the cytoplasmic tails of transmembrane protein cargo and clathrin triskelions, thereby coupling cargo recruitment to coat polymerization. Structural, biochemical and genetic studies have revealed that APs undergo conformational rearrangements and reversible phosphorylation to cycle between different activity states. While membrane, cargo and clathrin have been demonstrated to promote AP activation, growing evidence supports that membrane-associated proteins such as Arf1 and FCHo also stimulate this transition. APs may be returned to the inactive state via a regulated process involving phosphorylation and a protein called NECAP. Finally, because antiviral mechanisms often rely on appropriate trafficking of membrane proteins, viruses have evolved novel strategies to evade host defenses by influencing the conformation of APs. This review will cover recent advances in our understanding of the molecular inputs that stimulate AP1 and AP2 to adopt structurally and functionally distinct configurations.
Collapse
Affiliation(s)
| | - Edward A Partlow
- Department of Molecular Medicine, Cornell University, Ithaca, New York
| | | |
Collapse
|
29
|
Wang T, Luo Y. Biological fate of ingested lipid-based nanoparticles: current understanding and future directions. NANOSCALE 2019; 11:11048-11063. [PMID: 31149694 DOI: 10.1039/c9nr03025e] [Citation(s) in RCA: 56] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
In recent decades, lipid-based nanoparticles (LN) have received considerable attention as nanoscale delivery systems to improve oral bioavailability of poorly absorbed bioactive compounds for health promotion and disease prevention. However, scientific studies on the biological fate of orally administered LN are very limited and the molecular mechanisms by which they are absorbed through the intestinal lumen into the circulation remain unclear. This paper aims to provide an overview of the biological fate of orally administered LN by reviewing recent studies on both cell and animal models. In general, the biological fate of ingested LN in the gastrointestinal tract is primarily determined by their initial physicochemical characteristics (such as the particle size, surface properties, composition and structure), and their absorption mainly occurs within the small intestine. In particular, depending upon the composition, LN can be either digestible or indigestible, with two distinct biological fates for each type of LN. The detailed absorption mechanisms and uptake pathways at molecular, cellular and whole body levels for each type of LN are discussed in detail. Limitations of current research and our vision for future directions to study the biological fate of ingested LN are also provided in this critical review.
Collapse
Affiliation(s)
- Taoran Wang
- Department of Nutritional Sciences, University of Connecticut, Storrs, CT 06269, USA.
| | - Yangchao Luo
- Department of Nutritional Sciences, University of Connecticut, Storrs, CT 06269, USA.
| |
Collapse
|
30
|
Rivero-Ríos P, Romo-Lozano M, Madero-Pérez J, Thomas AP, Biosa A, Greggio E, Hilfiker S. The G2019S variant of leucine-rich repeat kinase 2 (LRRK2) alters endolysosomal trafficking by impairing the function of the GTPase RAB8A. J Biol Chem 2019; 294:4738-4758. [PMID: 30709905 PMCID: PMC6442034 DOI: 10.1074/jbc.ra118.005008] [Citation(s) in RCA: 52] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2018] [Revised: 01/30/2019] [Indexed: 12/25/2022] Open
Abstract
Mutations in the gene encoding for leucine-rich repeat kinase 2 (LRRK2) are a common cause of hereditary Parkinson's disease. LRRK2 regulates various intracellular vesicular trafficking pathways, including endolysosomal degradative events such as epidermal growth factor receptor (EGFR) degradation. Recent studies have revealed that a subset of RAB proteins involved in secretory and endocytic recycling are LRRK2 kinase substrates in vivo. However, the effects of LRRK2-mediated phosphorylation of these substrates on membrane trafficking remain unknown. Here, using an array of immunofluorescence and pulldown assays, we report that expression of active or phosphodeficient RAB8A variants rescues the G2019S LRRK2–mediated effects on endolysosomal membrane trafficking. Similarly, up-regulation of the RAB11–Rabin8–RAB8A cascade, which activates RAB8A, also reverted these trafficking deficits. Loss of RAB8A mimicked the effects of G2019S LRRK2 on endolysosomal trafficking and decreased RAB7A activity. Expression of pathogenic G2019S LRRK2 or loss of RAB8A interfered with EGFR degradation by causing its accumulation in a RAB4-positive endocytic compartment, which was accompanied by a deficit in EGFR recycling and was rescued upon expression of active RAB7A. Dominant-negative RAB7A expression resulted in similar deficits in EGF degradation, accumulation in a RAB4 compartment, and deficits in EGFR recycling, which were all rescued upon expression of active RAB8A. Taken together, these findings suggest that, by impairing RAB8A function, pathogenic G2019S LRRK2 deregulates endolysosomal transport and endocytic recycling events.
Collapse
Affiliation(s)
- Pilar Rivero-Ríos
- From the Institute of Parasitology and Biomedicine "López-Neyra," Consejo Superior de Investigaciones Científicas (CSIC), Avda del Conocimiento s/n, 18016 Granada, Spain
| | - María Romo-Lozano
- From the Institute of Parasitology and Biomedicine "López-Neyra," Consejo Superior de Investigaciones Científicas (CSIC), Avda del Conocimiento s/n, 18016 Granada, Spain
| | - Jesús Madero-Pérez
- From the Institute of Parasitology and Biomedicine "López-Neyra," Consejo Superior de Investigaciones Científicas (CSIC), Avda del Conocimiento s/n, 18016 Granada, Spain
| | - Andrew P Thomas
- the Department of Pharmacology, Physiology and Neuroscience, New Jersey Medical School, Rutgers, The State University of New Jersey, Newark, New Jersey 07103, and
| | - Alice Biosa
- the Department of Biology, University of Padova, Padova 35121, Italy
| | - Elisa Greggio
- the Department of Biology, University of Padova, Padova 35121, Italy
| | - Sabine Hilfiker
- From the Institute of Parasitology and Biomedicine "López-Neyra," Consejo Superior de Investigaciones Científicas (CSIC), Avda del Conocimiento s/n, 18016 Granada, Spain,
| |
Collapse
|
31
|
Mizuguchi T, Nakashima M, Moey LH, Ch’ng GS, Khoo TB, Mitsuhashi S, Miyatake S, Takata A, Miyake N, Saitsu H, Matsumoto N. A novel homozygous truncating variant of NECAP1 in early infantile epileptic encephalopathy: the second case report of EIEE21. J Hum Genet 2019; 64:347-350. [DOI: 10.1038/s10038-018-0556-2] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2018] [Revised: 12/17/2018] [Accepted: 12/18/2018] [Indexed: 11/09/2022]
|
32
|
Alsahli S, Al-Twaijri W, Al Mutairi F. Confirming the pathogenicity of NECAP1 in early onset epileptic encephalopathy. Epilepsia Open 2018; 3:524-527. [PMID: 30525121 PMCID: PMC6276780 DOI: 10.1002/epi4.12263] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/18/2018] [Indexed: 12/17/2022] Open
Abstract
Early onset epileptic encephalopathy (EOEE) has been used to encompass Ohtahara syndrome (early infantile epileptic encephalopathy [EIEE]), early myoclonic epilepsy, and many others. Multiple genes have been established to cause epileptic encephalopathy in the immature brain, and next‐generation sequencing has accelerated the process of novel gene discovery. Many of the previously published candidate genes are still pending confirmatory reports or functional studies. Although most of the genes involved are ion channels (channelopathies), multiple other pathways have been implicated as well. NECAP1 is a key element in clathrin‐mediated endocytosis and has been reported previously to cause EOEE in a Saudi family. We report another family with the same variant confirming the pathogenicity of this variant as a Saudi founder mutation, further delineate its phenotype, and propose that it causes EOEE instead of EIEE.
Collapse
Affiliation(s)
- Saud Alsahli
- Division of Pediatric Neurology Department of Pediatrics King Abdulaziz Medical City Ministry of National Guard-Health Affairs (MNGHA) Riyadh Saudi Arabia.,King Abdullah International Medical Research Center (KAIMRC) Riyadh Saudi Arabia.,College of Medicine King Saud bin Abdulaziz University for Health Sciences Riyadh Saudi Arabia
| | - Waleed Al-Twaijri
- Division of Pediatric Neurology Department of Pediatrics King Abdulaziz Medical City Ministry of National Guard-Health Affairs (MNGHA) Riyadh Saudi Arabia.,King Abdullah International Medical Research Center (KAIMRC) Riyadh Saudi Arabia.,College of Medicine King Saud bin Abdulaziz University for Health Sciences Riyadh Saudi Arabia
| | - Fuad Al Mutairi
- King Abdullah International Medical Research Center (KAIMRC) Riyadh Saudi Arabia.,College of Medicine King Saud bin Abdulaziz University for Health Sciences Riyadh Saudi Arabia.,Division of Genetics Department of Pediatrics King Abdulaziz Medical City Ministry of National Guard-Health Affairs (MNGHA) Riyadh Saudi Arabia
| |
Collapse
|
33
|
Okamoto M, Gray JD, Larson CS, Kazim SF, Soya H, McEwen BS, Pereira AC. Riluzole reduces amyloid beta pathology, improves memory, and restores gene expression changes in a transgenic mouse model of early-onset Alzheimer's disease. Transl Psychiatry 2018; 8:153. [PMID: 30108205 PMCID: PMC6092426 DOI: 10.1038/s41398-018-0201-z] [Citation(s) in RCA: 50] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/09/2018] [Accepted: 06/08/2018] [Indexed: 01/21/2023] Open
Abstract
Alzheimer's disease (AD) represents a major healthcare burden with no effective treatment. The glutamate modulator, riluzole, was shown to reverse many AD-related gene expression changes and improve cognition in aged rats. However, riluzole's effect on amyloid beta (Aβ) pathology, a major histopathological hallmark of AD, remains unclear. 5XFAD transgenic mice, which harbor amyloid β precursor protein (APP) and presenilin mutations and exhibit early Aβ accumulation, were treated with riluzole from 1 to 6 months of age. Riluzole significantly enhanced cognition and reduced Aβ42, Aβ40, Aβ oligomers levels, and Aβ plaque load in 5XFAD mice. RNA-Sequencing showed that riluzole reversed many gene expression changes observed in the hippocampus of 5XFAD mice, predominantly in expression of canonical gene markers for microglia, specifically disease-associated microglia (DAM), as well as neurons and astrocytes. Central to the cognitive improvements observed, riluzole reversed alterations in NMDA receptor subunits gene expression, which are essential for learning and memory. These data demonstrate that riluzole exerts a disease modifying effect in an Aβ mouse model of early-onset familial AD.
Collapse
Affiliation(s)
- Masahiro Okamoto
- Laboratory of Neuroendocrinology, The Rockefeller University, New York, NY, 10065, USA
- Laboratory of Exercise Biochemistry and Neuroendocrinology, Faculty of Health and Sports Sciences, University of Tsukuba, Tsukuba, Ibaraki, 305-8574, Japan
| | - Jason D Gray
- Laboratory of Neuroendocrinology, The Rockefeller University, New York, NY, 10065, USA
| | - Chloe S Larson
- Laboratory of Neuroendocrinology, The Rockefeller University, New York, NY, 10065, USA
- Department of Neurology, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
- Fishberg Department of Neuroscience, Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
| | - Syed Faraz Kazim
- Department of Neurology, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
- Fishberg Department of Neuroscience, Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
| | - Hideaki Soya
- Laboratory of Exercise Biochemistry and Neuroendocrinology, Faculty of Health and Sports Sciences, University of Tsukuba, Tsukuba, Ibaraki, 305-8574, Japan
| | - Bruce S McEwen
- Laboratory of Neuroendocrinology, The Rockefeller University, New York, NY, 10065, USA
| | - Ana C Pereira
- Department of Neurology, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA.
- Fishberg Department of Neuroscience, Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA.
| |
Collapse
|
34
|
Abstract
Clathrin-mediated endocytosis (CME) is the major endocytic pathway in mammalian cells. It is responsible for the uptake of transmembrane receptors and transporters, for remodeling plasma membrane composition in response to environmental changes, and for regulating cell surface signaling. CME occurs via the assembly and maturation of clathrin-coated pits that concentrate cargo as they invaginate and pinch off to form clathrin-coated vesicles. In addition to the major coat proteins, clathrin triskelia and adaptor protein complexes, CME requires a myriad of endocytic accessory proteins and phosphatidylinositol lipids. CME is regulated at multiple steps-initiation, cargo selection, maturation, and fission-and is monitored by an endocytic checkpoint that induces disassembly of defective pits. Regulation occurs via posttranslational modifications, allosteric conformational changes, and isoform and splice-variant differences among components of the CME machinery, including the GTPase dynamin. This review summarizes recent findings on the regulation of CME and the evolution of this complex process.
Collapse
Affiliation(s)
- Marcel Mettlen
- Department of Cell Biology, University of Texas Southwestern Medical Center, Dallas, Texas 75390, USA; , , , ,
| | - Ping-Hung Chen
- Department of Cell Biology, University of Texas Southwestern Medical Center, Dallas, Texas 75390, USA; , , , ,
| | - Saipraveen Srinivasan
- Department of Cell Biology, University of Texas Southwestern Medical Center, Dallas, Texas 75390, USA; , , , ,
| | - Gaudenz Danuser
- Department of Cell Biology, University of Texas Southwestern Medical Center, Dallas, Texas 75390, USA; , , , , .,Lyda Hill Department of Bioinformatics, University of Texas Southwestern Medical Center, Dallas, Texas 75235, USA
| | - Sandra L Schmid
- Department of Cell Biology, University of Texas Southwestern Medical Center, Dallas, Texas 75390, USA; , , , ,
| |
Collapse
|
35
|
Bucher D, Frey F, Sochacki KA, Kummer S, Bergeest JP, Godinez WJ, Kräusslich HG, Rohr K, Taraska JW, Schwarz US, Boulant S. Clathrin-adaptor ratio and membrane tension regulate the flat-to-curved transition of the clathrin coat during endocytosis. Nat Commun 2018; 9:1109. [PMID: 29549258 PMCID: PMC5856840 DOI: 10.1038/s41467-018-03533-0] [Citation(s) in RCA: 91] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2017] [Accepted: 02/15/2018] [Indexed: 12/03/2022] Open
Abstract
Although essential for many cellular processes, the sequence of structural and molecular events during clathrin-mediated endocytosis remains elusive. While it was long believed that clathrin-coated pits grow with a constant curvature, it was recently suggested that clathrin first assembles to form flat structures that then bend while maintaining a constant surface area. Here, we combine correlative electron and light microscopy and mathematical growth laws to study the ultrastructural rearrangements of the clathrin coat during endocytosis in BSC-1 mammalian cells. We confirm that clathrin coats initially grow flat and demonstrate that curvature begins when around 70% of the final clathrin content is acquired. We find that this transition is marked by a change in the clathrin to clathrin-adaptor protein AP2 ratio and that membrane tension suppresses this transition. Our results support the notion that BSC-1 mammalian cells dynamically regulate the flat-to-curved transition in clathrin-mediated endocytosis by both biochemical and mechanical factors. The sequence of structural and molecular events during clathrin-mediated endocytosis is unclear. Here the authors combine correlative microscopy and simple mathematical growth laws to demonstrate that the flat patch starts to curve when around 70% of the final clathrin content is reached.
Collapse
Affiliation(s)
- Delia Bucher
- Department of Infectious Diseases, Virology, University Hospital Heidelberg, Im Neuenheimer Feld 324, 69120, Heidelberg, Germany.,German Cancer Research Center (DKFZ), Im Neuenheimer Feld 581, 69120, Heidelberg, Germany
| | - Felix Frey
- BioQuant Center, Im Neuenheimer Feld 267, 69120, Heidelberg, Germany.,Institute for Theoretical Physics, Heidelberg University, Philosophenweg 19, 69120, Heidelberg, Germany
| | - Kem A Sochacki
- National Heart Lung and Blood Institute, National Institutes of Health, Bethesda, MD, 20892, USA
| | - Susann Kummer
- Department of Infectious Diseases, Virology, University Hospital Heidelberg, Im Neuenheimer Feld 324, 69120, Heidelberg, Germany
| | - Jan-Philip Bergeest
- German Cancer Research Center (DKFZ), Im Neuenheimer Feld 581, 69120, Heidelberg, Germany.,BioQuant Center, Im Neuenheimer Feld 267, 69120, Heidelberg, Germany.,Institute of Pharmacy and Molecular Biotechnology (IPMB), Department of Bioinformatics and Functional Genomics, Heidelberg University, Im Neuenheimer Feld 267, 69120, Heidelberg, Germany
| | - William J Godinez
- German Cancer Research Center (DKFZ), Im Neuenheimer Feld 581, 69120, Heidelberg, Germany.,BioQuant Center, Im Neuenheimer Feld 267, 69120, Heidelberg, Germany.,Institute of Pharmacy and Molecular Biotechnology (IPMB), Department of Bioinformatics and Functional Genomics, Heidelberg University, Im Neuenheimer Feld 267, 69120, Heidelberg, Germany
| | - Hans-Georg Kräusslich
- Department of Infectious Diseases, Virology, University Hospital Heidelberg, Im Neuenheimer Feld 324, 69120, Heidelberg, Germany
| | - Karl Rohr
- German Cancer Research Center (DKFZ), Im Neuenheimer Feld 581, 69120, Heidelberg, Germany.,BioQuant Center, Im Neuenheimer Feld 267, 69120, Heidelberg, Germany.,Institute of Pharmacy and Molecular Biotechnology (IPMB), Department of Bioinformatics and Functional Genomics, Heidelberg University, Im Neuenheimer Feld 267, 69120, Heidelberg, Germany
| | - Justin W Taraska
- National Heart Lung and Blood Institute, National Institutes of Health, Bethesda, MD, 20892, USA
| | - Ulrich S Schwarz
- BioQuant Center, Im Neuenheimer Feld 267, 69120, Heidelberg, Germany. .,Institute for Theoretical Physics, Heidelberg University, Philosophenweg 19, 69120, Heidelberg, Germany.
| | - Steeve Boulant
- Department of Infectious Diseases, Virology, University Hospital Heidelberg, Im Neuenheimer Feld 324, 69120, Heidelberg, Germany. .,German Cancer Research Center (DKFZ), Im Neuenheimer Feld 581, 69120, Heidelberg, Germany.
| |
Collapse
|
36
|
|
37
|
Beacham GM, Partlow EA, Lange JJ, Hollopeter G. NECAPs are negative regulators of the AP2 clathrin adaptor complex. eLife 2018; 7:32242. [PMID: 29345618 PMCID: PMC5785209 DOI: 10.7554/elife.32242] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2017] [Accepted: 01/17/2018] [Indexed: 12/27/2022] Open
Abstract
Eukaryotic cells internalize transmembrane receptors via clathrin-mediated endocytosis, but it remains unclear how the machinery underpinning this process is regulated. We recently discovered that membrane-associated muniscin proteins such as FCHo and SGIP initiate endocytosis by converting the AP2 clathrin adaptor complex to an open, active conformation that is then phosphorylated (Hollopeter et al., 2014). Here we report that loss of ncap-1, the sole C. elegans gene encoding an adaptiN Ear-binding Coat-Associated Protein (NECAP), bypasses the requirement for FCHO-1. Biochemical analyses reveal AP2 accumulates in an open, phosphorylated state in ncap-1 mutant worms, suggesting NECAPs promote the closed, inactive conformation of AP2. Consistent with this model, NECAPs preferentially bind open and phosphorylated forms of AP2 in vitro and localize with constitutively open AP2 mutants in vivo. NECAPs do not associate with phosphorylation-defective AP2 mutants, implying that phosphorylation precedes NECAP recruitment. We propose NECAPs function late in endocytosis to inactivate AP2.
Collapse
Affiliation(s)
| | - Edward A Partlow
- Department of Molecular Medicine, Cornell University, Ithaca, United States
| | - Jeffrey J Lange
- Stowers Institute for Medical Research, Kansas City, United States
| | - Gunther Hollopeter
- Department of Molecular Medicine, Cornell University, Ithaca, United States
| |
Collapse
|
38
|
Ritter B, Ferguson SM, De Camilli P, McPherson PS. A lentiviral system for efficient knockdown of proteins in neuronal cultures [version 1; referees: 2 approved]. ACTA ACUST UNITED AC 2017; 1. [PMID: 29355247 PMCID: PMC5771425 DOI: 10.12688/mniopenres.12766.1] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
We have devised a protocol for highly efficient and specific knockdown of proteins in neuronal cultures. Small hairpin RNAs (shRNAs) are embedded into a microRNA (miRNA) context by oligo annealing to create shRNAmiRs, which are expressed from within the 3′-UTR of a reporter protein. This reporter protein/synthetic miRNA cassette is transferred to a targeting vector and lentivirus is produced in HEK-293-T cells following co-transfection of the targeting vector with three additional vectors encoding essential lentiviral proteins. Mature virus is harvested by collecting culture medium from transfected HEK-293-T cells, the virus is purified by centrifugation, and virus titers are determined prior to addition to neuronal cultures. Near 100% transduction efficiency of cultured hippocampal neurons is routinely observed and allows for the population-wide inhibition of target protein expression and the simultaneous knockdown of multiple proteins with little or no toxicity. The lentivirus generated can be used for protein knockdown in multiple neuronal culture models and at a variety of developmental stages. The steps from shRNAmiR design to ready-to-use virus stocks can be completed in as little as two weeks.
Collapse
Affiliation(s)
- Brigitte Ritter
- Department of Biochemistry, Boston University School of Medicine, Boston, MA, 02118, USA.,Department of Neurology and Neurosurgery, Montreal Neurological Institute, McGill University, Montreal, H3A 2B4, Canada
| | - Shawn M Ferguson
- Department of Cell Biology, Program in Cellular Neuroscience, Neurodegeneration and Repair, Department of Cell Biology, Yale University School of Medicine, New Haven, CT, 06510, USA
| | - Pietro De Camilli
- Department of Cell Biology, Department of Neuroscience, Kavli Institute for Neurosciences, Howard Hughes Medical Institute, Yale University School of Medicine, New Haven, CT, 06510, USA
| | - Peter S McPherson
- Department of Neurology and Neurosurgery, Montreal Neurological Institute, McGill University, Montreal, H3A 2B4, Canada
| |
Collapse
|
39
|
Candiello E, Mishra R, Schmidt B, Jahn O, Schu P. Differential regulation of synaptic AP-2/clathrin vesicle uncoating in synaptic plasticity. Sci Rep 2017; 7:15781. [PMID: 29150658 PMCID: PMC5694008 DOI: 10.1038/s41598-017-16055-4] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2017] [Accepted: 10/24/2017] [Indexed: 11/09/2022] Open
Abstract
AP-1/σ1B-deficiency causes X-linked intellectual disability. AP-1/σ1B -/- mice have impaired synaptic vesicle recycling, fewer synaptic vesicles and enhanced endosome maturation mediated by AP-1/σ1A. Despite defects in synaptic vesicle recycling synapses contain two times more endocytic AP-2 clathrin-coated vesicles. We demonstrate increased formation of two classes of AP-2/clathrin coated vesicles. One which uncoats readily and a second with a stabilised clathrin coat. Coat stabilisation is mediated by three molecular mechanisms: reduced recruitment of Hsc70 and synaptojanin1 and enhanced μ2/AP-2 phosphorylation and activation. Stabilised AP-2 vesicles are enriched in the structural active zone proteins Git1 and stonin2 and synapses contain more Git1. Endocytosis of the synaptic vesicle exocytosis regulating Munc13 isoforms are differentially effected. Regulation of synaptic protein endocytosis by the differential stability of AP-2/clathrin coats is a novel molecular mechanism of synaptic plasticity.
Collapse
Affiliation(s)
- Ermes Candiello
- Department of Cellular Biochemistry, University Medical Center Goettingen, Georg-August-University Göttingen, Humboldtallee 23, 37073, Göttingen, Germany
| | - Ratnakar Mishra
- Department of Cellular Biochemistry, University Medical Center Goettingen, Georg-August-University Göttingen, Humboldtallee 23, 37073, Göttingen, Germany
| | - Bernhard Schmidt
- Department of Cellular Biochemistry, University Medical Center Goettingen, Georg-August-University Göttingen, Humboldtallee 23, 37073, Göttingen, Germany
| | - Olaf Jahn
- The Max-Planck-Institute for Experimental Medicine, Proteomics, Hermann-Rein-Str. 3, 37073, Göttingen, Germany
| | - Peter Schu
- Department of Cellular Biochemistry, University Medical Center Goettingen, Georg-August-University Göttingen, Humboldtallee 23, 37073, Göttingen, Germany.
| |
Collapse
|
40
|
Evergren E, Cobbe N, McMahon HT. Eps15R and clathrin regulate EphB2-mediated cell repulsion. Traffic 2017; 19:44-57. [PMID: 28972287 PMCID: PMC5836524 DOI: 10.1111/tra.12531] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2017] [Revised: 09/26/2017] [Accepted: 09/26/2017] [Indexed: 12/15/2022]
Abstract
Expression of Eph receptors and their ligands, the ephrins, have important functions in boundary formation and morphogenesis in both adult and embryonic tissue. The EphB receptors and ephrinB ligands are transmembrane proteins that are expressed in different cells and their interaction drives cell repulsion. For cell repulsion to occur, trans‐endocytosis of the inter‐cellular receptor‐ligand EphB‐ephrinB complex is required. The molecular mechanism underlying trans‐endocytosis is poorly defined. Here we show that the process is clathrin‐ and Eps15R‐mediated using Co115 colorectal cell lines stably expressing EphB2 and ephrinB1. Cell repulsion in co‐cultures of EphB2‐ and ephrinB1‐expressing cells is significantly reduced by knockdown of Eps15R but not Eps15. A novel interaction motif in Eps15R, DPFxxLDPF, is shown to bind directly to the clathrin terminal domain in vitro. Moreover, the interaction between Eps15R and clathrin is required for EphB2‐mediated cell repulsion as shown in a rescue experiment in the EphB2 co‐culture assay where wild type Eps15R but not the clathrin‐binding mutant rescues cell repulsion. These results provide the first evidence that Eps15R together with clathrin control EphB/ephrinB trans‐endocytosis and thereby cell repulsion.
Collapse
Affiliation(s)
- Emma Evergren
- Medical Research Council Laboratory of Molecular Biology, Cambridge, UK.,Centre for Cancer Research and Cell Biology, Queen's University Belfast, Belfast, UK
| | - Neville Cobbe
- Centre for Cancer Research and Cell Biology, Queen's University Belfast, Belfast, UK
| | - Harvey T McMahon
- Medical Research Council Laboratory of Molecular Biology, Cambridge, UK
| |
Collapse
|
41
|
Sochacki KA, Dickey AM, Strub MP, Taraska JW. Endocytic proteins are partitioned at the edge of the clathrin lattice in mammalian cells. Nat Cell Biol 2017; 19:352-361. [PMID: 28346440 DOI: 10.1038/ncb3498] [Citation(s) in RCA: 142] [Impact Index Per Article: 17.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2016] [Accepted: 02/23/2017] [Indexed: 12/15/2022]
Abstract
Dozens of proteins capture, polymerize and reshape the clathrin lattice during clathrin-mediated endocytosis (CME). How or if this ensemble of proteins is organized in relation to the clathrin coat is unknown. Here, we map key molecules involved in CME at the nanoscale using correlative super-resolution light and transmission electron microscopy. We localize 19 different endocytic proteins (amphiphysin1, AP2, β2-arrestin, CALM, clathrin, DAB2, dynamin2, EPS15, epsin1, epsin2, FCHO2, HIP1R, intersectin, NECAP, SNX9, stonin2, syndapin2, transferrin receptor, VAMP2) on thousands of individual clathrin structures, generating a comprehensive molecular architecture of endocytosis with nanoscale precision. We discover that endocytic proteins distribute into distinct spatial zones in relation to the edge of the clathrin lattice. The presence or concentrations of proteins within these zones vary at distinct stages of organelle development. We propose that endocytosis is driven by the recruitment, reorganization and loss of proteins within these partitioned nanoscale zones.
Collapse
Affiliation(s)
- Kem A Sochacki
- National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, Maryland 20892, USA
| | - Andrea M Dickey
- National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, Maryland 20892, USA
| | - Marie-Paule Strub
- National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, Maryland 20892, USA
| | - Justin W Taraska
- National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, Maryland 20892, USA
| |
Collapse
|
42
|
Han C, Alkhater R, Froukh T, Minassian AG, Galati M, Liu RH, Fotouhi M, Sommerfeld J, Alfrook AJ, Marshall C, Walker S, Bauer P, Scherer SW, Riess O, Buchert R, Minassian BA, McPherson PS. Epileptic Encephalopathy Caused by Mutations in the Guanine Nucleotide Exchange Factor DENND5A. Am J Hum Genet 2016; 99:1359-1367. [PMID: 27866705 DOI: 10.1016/j.ajhg.2016.10.006] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2016] [Accepted: 10/10/2016] [Indexed: 12/21/2022] Open
Abstract
Epileptic encephalopathies are a catastrophic group of epilepsies characterized by refractory seizures and cognitive arrest, often resulting from abnormal brain development. Here, we have identified an epileptic encephalopathy additionally featuring cerebral calcifications and coarse facial features caused by recessive loss-of-function mutations in DENND5A. DENND5A contains a DENN domain, an evolutionarily ancient enzymatic module conferring guanine nucleotide exchange factor (GEF) activity to multiple proteins serving as GEFs for Rabs, which are key regulators of membrane trafficking. DENND5A is detected predominantly in neuronal tissues, and its highest levels occur during development. Knockdown of DENND5A leads to striking alterations in neuronal development. Mechanistically, these changes appear to result from upregulation of neurotrophin receptors, leading to enhanced downstream signaling. Thus, we have identified a link between a DENN domain protein and neuronal development, dysfunction of which is responsible for a form of epileptic encephalopathy.
Collapse
Affiliation(s)
- Chanshuai Han
- Department of Neurology and Neurosurgery, Montreal Neurological Institute, McGill University, Montreal, QC H3A 2B4, Canada
| | - Reem Alkhater
- Johns Hopkins Aramco Healthcare, Dhahran 34465, Saudi Arabia
| | - Tawfiq Froukh
- Department of Biotechnology and Genetic Engineering, Faculty of Science, Philadelphia University, Amman 11118, Jordan
| | - Arakel G Minassian
- Centre for Applied Genomics, Genetics, and Genome Biology, Hospital for Sick Children, Toronto, ON M5G 0A4, Canada
| | - Melissa Galati
- Department of Neurology and Neurosurgery, Montreal Neurological Institute, McGill University, Montreal, QC H3A 2B4, Canada
| | - Rui Han Liu
- Department of Neurology and Neurosurgery, Montreal Neurological Institute, McGill University, Montreal, QC H3A 2B4, Canada
| | - Maryam Fotouhi
- Department of Neurology and Neurosurgery, Montreal Neurological Institute, McGill University, Montreal, QC H3A 2B4, Canada
| | - Julia Sommerfeld
- Institute of Medical Genetics and Applied Genomics, Rare Disease Center, University of Tübingen, Tübingen 72076, Germany
| | | | - Christian Marshall
- Centre for Applied Genomics, Genetics, and Genome Biology, Hospital for Sick Children, Toronto, ON M5G 0A4, Canada
| | - Susan Walker
- Centre for Applied Genomics, Genetics, and Genome Biology, Hospital for Sick Children, Toronto, ON M5G 0A4, Canada
| | - Peter Bauer
- Institute of Medical Genetics and Applied Genomics, Rare Disease Center, University of Tübingen, Tübingen 72076, Germany
| | - Stephen W Scherer
- Centre for Applied Genomics, Genetics, and Genome Biology, Hospital for Sick Children, Toronto, ON M5G 0A4, Canada; Department of Molecular Genetics and McLaughlin Centre, University of Toronto, Toronto, ON M5G 0A4, Canada
| | - Olaf Riess
- Institute of Medical Genetics and Applied Genomics, Rare Disease Center, University of Tübingen, Tübingen 72076, Germany
| | - Rebecca Buchert
- Institute of Medical Genetics and Applied Genomics, Rare Disease Center, University of Tübingen, Tübingen 72076, Germany
| | - Berge A Minassian
- Program in Genetics and Genome Biology, Department of Pediatrics (Neurology), Hospital for Sick Children and University of Toronto, Toronto, ON M5G 0A4, Canada
| | - Peter S McPherson
- Department of Neurology and Neurosurgery, Montreal Neurological Institute, McGill University, Montreal, QC H3A 2B4, Canada.
| |
Collapse
|
43
|
Lundquist P, Artursson P. Oral absorption of peptides and nanoparticles across the human intestine: Opportunities, limitations and studies in human tissues. Adv Drug Deliv Rev 2016; 106:256-276. [PMID: 27496705 DOI: 10.1016/j.addr.2016.07.007] [Citation(s) in RCA: 328] [Impact Index Per Article: 36.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2016] [Revised: 07/02/2016] [Accepted: 07/08/2016] [Indexed: 12/23/2022]
Abstract
In this contribution, we review the molecular and physiological barriers to oral delivery of peptides and nanoparticles. We discuss the opportunities and predictivity of various in vitro systems with special emphasis on human intestine in Ussing chambers. First, the molecular constraints to peptide absorption are discussed. Then the physiological barriers to peptide delivery are examined. These include the gastric and intestinal environment, the mucus barrier, tight junctions between epithelial cells, the enterocytes of the intestinal epithelium, and the subepithelial tissue. Recent data from human proteome studies are used to provide information about the protein expression profiles of the different physiological barriers to peptide and nanoparticle absorption. Strategies that have been employed to increase peptide absorption across each of the barriers are discussed. Special consideration is given to attempts at utilizing endogenous transcytotic pathways. To reliably translate in vitro data on peptide or nanoparticle permeability to the in vivo situation in a human subject, the in vitro experimental system needs to realistically capture the central aspects of the mentioned barriers. Therefore, characteristics of common in vitro cell culture systems are discussed and compared to those of human intestinal tissues. Attempts to use the cell and tissue models for in vitro-in vivo extrapolation are reviewed.
Collapse
Affiliation(s)
- P Lundquist
- Department of Pharmacy, Uppsala University, Box 580, SE-752 37 Uppsala, Sweden.
| | - P Artursson
- Department of Pharmacy, Uppsala University, Box 580, SE-752 37 Uppsala, Sweden.
| |
Collapse
|
44
|
Chamberland JP, Antonow LT, Dias Santos M, Ritter B. NECAP2 controls clathrin coat recruitment to early endosomes for fast endocytic recycling. J Cell Sci 2016; 129:2625-37. [PMID: 27206861 DOI: 10.1242/jcs.173708] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2015] [Accepted: 05/19/2016] [Indexed: 01/04/2023] Open
Abstract
Endocytic recycling returns receptors to the plasma membrane following internalization and is essential to maintain receptor levels on the cell surface, re-sensitize cells to extracellular ligands and for continued nutrient uptake. Yet, the protein machineries and mechanisms that drive endocytic recycling remain ill-defined. Here, we establish that NECAP2 regulates the endocytic recycling of EGFR and transferrin receptor. Our analysis of the recycling dynamics revealed that NECAP2 functions in the fast recycling pathway that directly returns cargo from early endosomes to the cell surface. In contrast, NECAP2 does not regulate the clathrin-mediated endocytosis of these cargos, the degradation of EGFR or the recycling of transferrin along the slow, Rab11-dependent recycling pathway. We show that protein knockdown of NECAP2 leads to enlarged early endosomes and causes the loss of the clathrin adapter AP-1 from the organelle. Through structure-function analysis, we define the protein-binding interfaces in NECAP2 that are crucial for AP-1 recruitment to early endosomes. Together, our data identify NECAP2 as a pathway-specific regulator of clathrin coat formation on early endosomes for fast endocytic recycling.
Collapse
Affiliation(s)
- John P Chamberland
- Boston University School of Medicine, Biochemistry Department, Boston, MA 02118, USA
| | - Lauren T Antonow
- Boston University School of Medicine, Biochemistry Department, Boston, MA 02118, USA
| | - Michel Dias Santos
- Boston University School of Medicine, Biochemistry Department, Boston, MA 02118, USA
| | - Brigitte Ritter
- Boston University School of Medicine, Biochemistry Department, Boston, MA 02118, USA
| |
Collapse
|
45
|
Miller SE, Mathiasen S, Bright NA, Pierre F, Kelly BT, Kladt N, Schauss A, Merrifield CJ, Stamou D, Höning S, Owen DJ. CALM regulates clathrin-coated vesicle size and maturation by directly sensing and driving membrane curvature. Dev Cell 2015; 33:163-75. [PMID: 25898166 PMCID: PMC4406947 DOI: 10.1016/j.devcel.2015.03.002] [Citation(s) in RCA: 157] [Impact Index Per Article: 15.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2014] [Revised: 01/23/2015] [Accepted: 03/01/2015] [Indexed: 02/06/2023]
Abstract
The size of endocytic clathrin-coated vesicles (CCVs) is remarkably uniform, suggesting that it is optimized to achieve the appropriate levels of cargo and lipid internalization. The three most abundant proteins in mammalian endocytic CCVs are clathrin and the two cargo-selecting, clathrin adaptors, CALM and AP2. Here we demonstrate that depletion of CALM causes a substantial increase in the ratio of “open” clathrin-coated pits (CCPs) to “necked”/“closed” CCVs and a doubling of CCP/CCV diameter, whereas AP2 depletion has opposite effects. Depletion of either adaptor, however, significantly inhibits endocytosis of transferrin and epidermal growth factor. The phenotypic effects of CALM depletion can be rescued by re-expression of wild-type CALM, but not with CALM that lacks a functional N-terminal, membrane-inserting, curvature-sensing/driving amphipathic helix, the existence and properties of which are demonstrated. CALM is thus a major factor in controlling CCV size and maturation and hence in determining the rates of endocytic cargo uptake. CALM loss increases size and frequency of early endocytic clathrin-coated structures Depletion of CALM slows endocytic clathrin-coated pit maturation and endocytic rate CALM possesses an N-terminal, membrane-curvature-sensing/driving amphipathic helix Clathrin-coated pit maturation is regulated by CALM’s N-terminal amphipathic helix
Collapse
Affiliation(s)
- Sharon E Miller
- Cambridge Institute for Medical Research and Department of Clinical Biochemistry, University of Cambridge, Cambridge Biomedical Campus, Wellcome Trust/MRC Building, Hills Road, Cambridge CB2 0XY, UK.
| | - Signe Mathiasen
- Bionanotechnology and Nanomedicine Laboratory, Department of Chemistry, University of Copenhagen, Universitetsparken 5, 2100 Copenhagen, Denmark
| | - Nicholas A Bright
- Cambridge Institute for Medical Research and Department of Clinical Biochemistry, University of Cambridge, Cambridge Biomedical Campus, Wellcome Trust/MRC Building, Hills Road, Cambridge CB2 0XY, UK
| | - Fabienne Pierre
- Laboratoire d'Enzymologie et Biochimie Structurales, UPR3082 CNRS - Bat 34, Avenue de la Terrasse, 91198 Gif-sur-Yvette, France
| | - Bernard T Kelly
- Cambridge Institute for Medical Research and Department of Clinical Biochemistry, University of Cambridge, Cambridge Biomedical Campus, Wellcome Trust/MRC Building, Hills Road, Cambridge CB2 0XY, UK
| | - Nikolay Kladt
- Cologne Excellence Cluster on Cellular Stress Responses in Aging-Associated Diseases (CECAD), Joseph-Stelzmann-Str. 26, 50931 Cologne, Germany
| | - Astrid Schauss
- Cologne Excellence Cluster on Cellular Stress Responses in Aging-Associated Diseases (CECAD), Joseph-Stelzmann-Str. 26, 50931 Cologne, Germany
| | - Christien J Merrifield
- Laboratoire d'Enzymologie et Biochimie Structurales, UPR3082 CNRS - Bat 34, Avenue de la Terrasse, 91198 Gif-sur-Yvette, France
| | - Dimitrios Stamou
- Bionanotechnology and Nanomedicine Laboratory, Department of Chemistry, University of Copenhagen, Universitetsparken 5, 2100 Copenhagen, Denmark
| | - Stefan Höning
- Institute of Biochemistry I and Center for Molecular Medicine Cologne, University of Cologne, Joseph-Stelzmann-Str. 52, 50931 Cologne, Germany
| | - David J Owen
- Cambridge Institute for Medical Research and Department of Clinical Biochemistry, University of Cambridge, Cambridge Biomedical Campus, Wellcome Trust/MRC Building, Hills Road, Cambridge CB2 0XY, UK.
| |
Collapse
|
46
|
McAdam RL, Varga KT, Jiang Z, Young FB, Blandford V, McPherson PS, Gong LW, Sossin WS. The juxtamembrane region of synaptotagmin 1 interacts with dynamin 1 and regulates vesicle fission during compensatory endocytosis in endocrine cells. J Cell Sci 2015; 128:2229-35. [PMID: 25964652 DOI: 10.1242/jcs.161505] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2014] [Accepted: 04/30/2015] [Indexed: 12/25/2022] Open
Abstract
Synaptotagmin 1 (Syt1) is a synaptic vesicle protein that is important for the kinetics of both exocytosis and endocytosis, and is thus a candidate molecule to link these two processes. Although the tandem Ca(2+)-binding C2 domains of Syt1 have important roles in exocytosis and endocytosis, the function of the conserved juxtamembrane (jxm) linker region has yet to be determined. We now demonstrate that the jxm region of Syt1 interacts directly with the pleckstrin homology (PH) domain of the endocytic protein dynamin 1. By using cell-attached capacitance recordings with millisecond time resolution to monitor clathrin-mediated endocytosis of single vesicles in neuroendocrine chromaffin cells, we find that loss of this interaction prolongs the lifetime of the fission pore leading to defects in the dynamics of vesicle fission. These results indicate a previously undescribed interaction between two major regulatory proteins in the secretory vesicle cycle and that this interaction regulates endocytosis.
Collapse
Affiliation(s)
- Robyn L McAdam
- Department of Neurology and Neurosurgery, Montreal Neurological Institute, McGill University, Montreal, Quebec, H3A 2B4, Canada
| | - Kelly T Varga
- Department of Biological Sciences, University of Illinois at Chicago, Chicago, IL 60607, USA
| | - Zhongjiao Jiang
- Department of Biological Sciences, University of Illinois at Chicago, Chicago, IL 60607, USA
| | - Fiona B Young
- Department of Neurology and Neurosurgery, Montreal Neurological Institute, McGill University, Montreal, Quebec, H3A 2B4, Canada
| | - Vanessa Blandford
- Department of Neurology and Neurosurgery, Montreal Neurological Institute, McGill University, Montreal, Quebec, H3A 2B4, Canada
| | - Peter S McPherson
- Department of Neurology and Neurosurgery, Montreal Neurological Institute, McGill University, Montreal, Quebec, H3A 2B4, Canada
| | - Liang-Wei Gong
- Department of Biological Sciences, University of Illinois at Chicago, Chicago, IL 60607, USA
| | - Wayne S Sossin
- Department of Neurology and Neurosurgery, Montreal Neurological Institute, McGill University, Montreal, Quebec, H3A 2B4, Canada
| |
Collapse
|
47
|
Ioannou MS, Bell ES, Girard M, Chaineau M, Hamlin JNR, Daubaras M, Monast A, Park M, Hodgson L, McPherson PS. DENND2B activates Rab13 at the leading edge of migrating cells and promotes metastatic behavior. ACTA ACUST UNITED AC 2015; 208:629-48. [PMID: 25713415 PMCID: PMC4347646 DOI: 10.1083/jcb.201407068] [Citation(s) in RCA: 65] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
DENND2B, in a complex with the Rab13 effector MICAL-L2, activates Rab13 at the cell periphery, promoting the dynamic remodeling of the cell’s leading edge during tumor cell migration both in vitro and in vivo. The small guanosine triphosphatase Rab13 functions in exocytic vesicle trafficking in epithelial cells. Alterations in Rab13 activity have been observed in human cancers, yet the mechanism of Rab13 activation and its role in cancer progression remain unclear. In this paper, we identify the DENN domain protein DENND2B as the guanine nucleotide exchange factor for Rab13 and develop a novel Förster resonance energy transfer–based Rab biosensor to reveal activation of Rab13 by DENND2B at the leading edge of migrating cells. DENND2B interacts with the Rab13 effector MICAL-L2 at the cell periphery, and this interaction is required for the dynamic remodeling of the cell’s leading edge. Disruption of Rab13-mediated trafficking dramatically limits the invasive behavior of epithelial cells in vitro and the growth and migration of highly invasive cancer cells in vivo. Thus, blocking Rab13 activation by DENND2B may provide a novel target to limit the spread of epithelial cancers.
Collapse
Affiliation(s)
- Maria S Ioannou
- Department of Neurology and Neurosurgery, Montreal Neurological Institute; and Department of Biochemistry, Goodman Cancer Centre; McGill University, Montreal, Quebec H3A 0G4, Canada
| | - Emily S Bell
- Department of Neurology and Neurosurgery, Montreal Neurological Institute; and Department of Biochemistry, Goodman Cancer Centre; McGill University, Montreal, Quebec H3A 0G4, Canada
| | - Martine Girard
- Department of Neurology and Neurosurgery, Montreal Neurological Institute; and Department of Biochemistry, Goodman Cancer Centre; McGill University, Montreal, Quebec H3A 0G4, Canada
| | - Mathilde Chaineau
- Department of Neurology and Neurosurgery, Montreal Neurological Institute; and Department of Biochemistry, Goodman Cancer Centre; McGill University, Montreal, Quebec H3A 0G4, Canada
| | - Jason N R Hamlin
- Department of Neurology and Neurosurgery, Montreal Neurological Institute; and Department of Biochemistry, Goodman Cancer Centre; McGill University, Montreal, Quebec H3A 0G4, Canada
| | - Mark Daubaras
- Department of Neurology and Neurosurgery, Montreal Neurological Institute; and Department of Biochemistry, Goodman Cancer Centre; McGill University, Montreal, Quebec H3A 0G4, Canada
| | - Anie Monast
- Department of Neurology and Neurosurgery, Montreal Neurological Institute; and Department of Biochemistry, Goodman Cancer Centre; McGill University, Montreal, Quebec H3A 0G4, Canada
| | - Morag Park
- Department of Neurology and Neurosurgery, Montreal Neurological Institute; and Department of Biochemistry, Goodman Cancer Centre; McGill University, Montreal, Quebec H3A 0G4, Canada
| | - Louis Hodgson
- Department of Anatomy and Structural Biology, Gruss-Lipper Biophotonics Center, Albert Einstein College of Medicine, New York, NY 10461
| | - Peter S McPherson
- Department of Neurology and Neurosurgery, Montreal Neurological Institute; and Department of Biochemistry, Goodman Cancer Centre; McGill University, Montreal, Quebec H3A 0G4, Canada
| |
Collapse
|
48
|
Schreij AMA, Chaineau M, Ruan W, Lin S, Barker PA, Fon EA, McPherson PS. LRRK2 localizes to endosomes and interacts with clathrin-light chains to limit Rac1 activation. EMBO Rep 2014; 16:79-86. [PMID: 25427558 DOI: 10.15252/embr.201438714] [Citation(s) in RCA: 46] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
Abstract
Mutations in leucine-rich repeat kinase 2 (LRRK2) are the most common cause of dominant-inherited Parkinson's disease (PD), and yet we do not fully understand the physiological function(s) of LRRK2. Various components of the clathrin machinery have been recently found mutated in familial forms of PD. Here, we provide molecular insight into the association of LRRK2 with the clathrin machinery. We report that through its GTPase domain, LRRK2 binds directly to clathrin-light chains (CLCs). Using genome-edited HA-LRRK2 cells, we localize LRRK2 to endosomes on the degradative pathway, where it partially co-localizes with CLCs. Knockdown of CLCs and/or LRRK2 enhances the activation of the small GTPase Rac1, leading to alterations in cell morphology, including the disruption of neuronal dendritic spines. In Drosphila, a minimal rough eye phenotype caused by overexpression of Rac1, is dramatically enhanced by loss of function of CLC and LRRK2 homologues, confirming the importance of this pathway in vivo. Our data identify a new pathway in which CLCs function with LRRK2 to control Rac1 activation on endosomes, providing a new link between the clathrin machinery, the cytoskeleton and PD.
Collapse
Affiliation(s)
- Andrea M A Schreij
- Department of Neurology and Neurosurgery and McGill Parkinson Program, Montreal Neurological Institute McGill University, Montreal, Quebec, Canada
| | - Mathilde Chaineau
- Department of Neurology and Neurosurgery and McGill Parkinson Program, Montreal Neurological Institute McGill University, Montreal, Quebec, Canada
| | - Wenjing Ruan
- Department of Neurology and Neurosurgery and McGill Parkinson Program, Montreal Neurological Institute McGill University, Montreal, Quebec, Canada
| | - Susan Lin
- Department of Neurology and Neurosurgery and McGill Parkinson Program, Montreal Neurological Institute McGill University, Montreal, Quebec, Canada
| | - Philip A Barker
- Department of Neurology and Neurosurgery and McGill Parkinson Program, Montreal Neurological Institute McGill University, Montreal, Quebec, Canada
| | - Edward A Fon
- Department of Neurology and Neurosurgery and McGill Parkinson Program, Montreal Neurological Institute McGill University, Montreal, Quebec, Canada
| | - Peter S McPherson
- Department of Neurology and Neurosurgery and McGill Parkinson Program, Montreal Neurological Institute McGill University, Montreal, Quebec, Canada
| |
Collapse
|
49
|
Umasankar PK, Ma L, Thieman JR, Jha A, Doray B, Watkins SC, Traub LM. A clathrin coat assembly role for the muniscin protein central linker revealed by TALEN-mediated gene editing. eLife 2014; 3. [PMID: 25303365 PMCID: PMC4215538 DOI: 10.7554/elife.04137] [Citation(s) in RCA: 54] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2014] [Accepted: 10/08/2014] [Indexed: 12/12/2022] Open
Abstract
Clathrin-mediated endocytosis is an evolutionarily ancient membrane transport system regulating cellular receptivity and responsiveness. Plasmalemma clathrin-coated structures range from unitary domed assemblies to expansive planar constructions with internal or flanking invaginated buds. Precisely how these morphologically-distinct coats are formed, and whether all are functionally equivalent for selective cargo internalization is still disputed. We have disrupted the genes encoding a set of early arriving clathrin-coat constituents, FCHO1 and FCHO2, in HeLa cells. Endocytic coats do not disappear in this genetic background; rather clustered planar lattices predominate and endocytosis slows, but does not cease. The central linker of FCHO proteins acts as an allosteric regulator of the prime endocytic adaptor, AP-2. By loading AP-2 onto the plasma membrane, FCHO proteins provide a parallel pathway for AP-2 activation and clathrin-coat fabrication. Further, the steady-state morphology of clathrin-coated structures appears to be a manifestation of the availability of the muniscin linker during lattice polymerization. DOI:http://dx.doi.org/10.7554/eLife.04137.001 Cells can take proteins and other molecules that are either embedded in, or attached to, their surface membrane and move them inside via a process called endocytosis. This process often involves a protein called clathrin working together with numerous other proteins. Early on, a complex of four proteins, called the adaptor protein-2 complex, interacts with both the ‘cargo’ molecules that are to be taken into the cell, and the cell membrane. Clathrin molecules then assemble into an ordered lattice-like coat, on top of the adaptor protein complex layer. This deforms a small patch of the cell membrane and curves it inwards. The clathrin molecules coat this pocket as it grows in size, until it engulfs the cargo. The pocket quickly pinches off from the membrane to form a bubble-like structure called a vesicle, which is brought into the cell. A family of proteins termed Muniscins were thought to be involved in the early stages of endocytosis and have to arrive at the membrane before the adaptor protein-2 complex and clathrin. But experiments to test this idea—that reduced, or ‘knocked-down’, the production of Muniscins—had given conflicting results. As such, it remained unclear how the small patches of membrane carrying cargo molecules are marked as being destined to become clathrin-coated vesicles. Now Umasankar et al. have studied the role that these proteins play in the early stages of endocytosis in human cells grown in a laboratory. A gene-editing approach was used to precisely disrupt a gene that codes for a Muniscin protein called FCHO2. Umasankar et al. observed that these ‘edited’ cells formed clathrin coats that were more irregular compared with those that form in normal cells. Nevertheless, clathrin-mediated vesicles still formed when this protein was absent, though the process of endocytosis was slower. Similar results were seen when Umasankar et al. used the same approach to disrupt the gene for a related protein called FCHO1 in the same cells. A short fragment of the Muniscin proteins, called the linker, was shown to bind to, and activate, the adaptor protein-2 complex. The linker then recruits this complex to the specific regions of the cell membrane where clathrin-coated vesicles will form. Several dozen other proteins also accumulate where clathrin pockets form; as such, one of the next challenges will be to investigate if this mechanism of locally activating the cargo-gathering machinery is common in living cells. DOI:http://dx.doi.org/10.7554/eLife.04137.002
Collapse
Affiliation(s)
| | - Li Ma
- Department of Cell Biology, University of Pittsburgh School of Medicine, Pittsburgh, United States
| | - James R Thieman
- Department of Cell Biology, University of Pittsburgh School of Medicine, Pittsburgh, United States
| | - Anupma Jha
- Department of Cell Biology, University of Pittsburgh School of Medicine, Pittsburgh, United States
| | - Balraj Doray
- Department of Medicine, Washington University School of Medicine, St. Louis, United States
| | - Simon C Watkins
- Department of Cell Biology, University of Pittsburgh School of Medicine, Pittsburgh, United States
| | - Linton M Traub
- Department of Cell Biology, University of Pittsburgh School of Medicine, Pittsburgh, United States
| |
Collapse
|
50
|
Grove J, Metcalf DJ, Knight AE, Wavre-Shapton ST, Sun T, Protonotarios ED, Griffin LD, Lippincott-Schwartz J, Marsh M. Flat clathrin lattices: stable features of the plasma membrane. Mol Biol Cell 2014; 25:3581-94. [PMID: 25165141 PMCID: PMC4230618 DOI: 10.1091/mbc.e14-06-1154] [Citation(s) in RCA: 78] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
Abstract
Clathrin-mediated endocytosis (CME) is a fundamental property of eukaryotic cells. Classical CME proceeds via the formation of clathrin-coated pits (CCPs) at the plasma membrane, which invaginate to form clathrin-coated vesicles, a process that is well understood. However, clathrin also assembles into flat clathrin lattices (FCLs); these structures remain poorly described, and their contribution to cell biology is unclear. We used quantitative imaging to provide the first comprehensive description of FCLs and explore their influence on plasma membrane organization. Ultrastructural analysis by electron and superresolution microscopy revealed two discrete populations of clathrin structures. CCPs were typified by their sphericity, small size, and homogeneity. FCLs were planar, large, and heterogeneous and present on both the dorsal and ventral surfaces of cells. Live microscopy demonstrated that CCPs are short lived and culminate in a peak of dynamin recruitment, consistent with classical CME. In contrast, FCLs were long lived, with sustained association with dynamin. We investigated the biological relevance of FCLs using the chemokine receptor CCR5 as a model system. Agonist activation leads to sustained recruitment of CCR5 to FCLs. Quantitative molecular imaging indicated that FCLs partitioned receptors at the cell surface. Our observations suggest that FCLs provide stable platforms for the recruitment of endocytic cargo.
Collapse
Affiliation(s)
- Joe Grove
- MRC Laboratory for Molecular Cell Biology, London WC1E 6BT, United Kingdom Institute of Immunity and Transplantation, University College London, London NW3 2PF, United Kingdom
| | - Daniel J Metcalf
- Biophysics and Diagnostics, National Physical Laboratory, Teddington TW11 0LW, United Kingdom
| | - Alex E Knight
- Biophysics and Diagnostics, National Physical Laboratory, Teddington TW11 0LW, United Kingdom
| | | | - Tony Sun
- MRC Laboratory for Molecular Cell Biology, London WC1E 6BT, United Kingdom
| | | | - Lewis D Griffin
- CoMPLEX, University College London, London WC1E 6BT, United Kingdom
| | - Jennifer Lippincott-Schwartz
- Cell Biology and Metabolism Program, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD 20892
| | - Mark Marsh
- MRC Laboratory for Molecular Cell Biology, London WC1E 6BT, United Kingdom
| |
Collapse
|