1
|
Sang QY, Liao YH, Huang KX, Xie YR, Yao YH, Chen P, Liang XM. In vitro susceptibility profiles of invasive Candida bloodstream isolates to ten antifungal drugs in a southern area of China. J Med Microbiol 2025; 74:002011. [PMID: 40354110 PMCID: PMC12069814 DOI: 10.1099/jmm.0.002011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2024] [Accepted: 04/21/2025] [Indexed: 05/14/2025] Open
Abstract
Introduction. In recent years, with the increase of drug resistance of Candida, the incidence rate and mortality of candidemia have gradually increased, which has brought a huge economic and health burden to people.Gap Statement. The epidemiological characteristics and antifungal drug sensitivity patterns in different regions have varied.Aim. To analyse the distribution and antifungal susceptibility of Candida strains isolated from bloodstreams and provide a basis for the use of antifungal drugs for treatment.Methodology. A total of 115 strains of Candida were collected from the bloodstream, and 28 strains of colonized Candida albicans were collected from the upper respiratory tract. Candida species were identified using matrix-assisted laser desorption/ionization time-of-flight technology. Antifungal susceptibility was assessed using broth microdilution combined with redox methods.Results. There were eight types of Candida strains isolated from the bloodstream; C. albicans was the most common species (36.5%), followed by Candida parapsilosis (24.3%), Candida glabrata (17.4%) and Candida tropicalis (14.8%). There was no significant difference in the resistance of C. albicans to azole drugs between the bloodstream infection group and the upper respiratory tract colonization group, but there was a significant difference in the MIC values of micafungin and fluconazole, with P values of 0.017 and 0.003, respectively. Amphotericin B and echinocandins are the most susceptible drugs for all Candida species, but the MICs of echinocandins against C. parapsilosis are significantly higher than those of other Candida species. Candida (except for C. glabrata) is highly resistant to azoles, with C. parapsilosis showing resistance rates of 89.3% and 82.1% to itraconazole and posaconazole, respectively; the resistance rates of C. tropicalis are 100% and 94.1%, respectively.Conclusion. C. albicans remains the predominant pathogen responsible for candidemia. Although the resistance of Candida to antifungals is relatively stable, there are significant differences in the MICs of antifungal drugs against Candida, indicating the importance of strain identification in the treatment of candidemia. For empirical treatment, the use of echinocandin drugs is recommended.
Collapse
Affiliation(s)
- Qian-Yu Sang
- Department of Clinical Laboratory, Xiamen Hospital of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Xiamen 361000, PR China
| | - Yun-Hui Liao
- Department of Clinical Laboratory, Xiamen Hospital of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Xiamen 361000, PR China
| | - Kai-Xuan Huang
- Department of Clinical Laboratory, Xiamen Hospital of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Xiamen 361000, PR China
| | - Yin-Rong Xie
- Department of Clinical Laboratory, Xiamen Hospital of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Xiamen 361000, PR China
| | - Yi-Hui Yao
- Centre of Clinical Laboratory, Zhongshan Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen 361004, PR China
| | - Ping Chen
- Department of Clinical Laboratory, Xiamen Hospital of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Xiamen 361000, PR China
- Clinical Laboratory Branch, Xiamen Association of Integrative Chinese and Western Medicine, Xiamen 361000, PR China
| | - Xian-Ming Liang
- Department of Clinical Laboratory, Xiamen Hospital of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Xiamen 361000, PR China
- Clinical Laboratory Branch, Xiamen Association of Integrative Chinese and Western Medicine, Xiamen 361000, PR China
| |
Collapse
|
2
|
Vahedi-Shahandashti R, Lass-Flörl C. In vitro activity of SF001: a next-generation polyene versus amphotericin B. Antimicrob Agents Chemother 2025:e0032225. [PMID: 40261080 DOI: 10.1128/aac.00322-25] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2025] [Accepted: 03/26/2025] [Indexed: 04/24/2025] Open
Abstract
SF001, a next-generation polyene drug, offers broad-spectrum fungicidal activity with less potential for toxicity than classic polyene amphotericin B (AmB). This study compared the in vitro activity of SF001 and amphotericin B against Candida and Aspergillus species. SF001 demonstrated activity comparable to AmB against Candida isolates (MIC50/90 of 0.25/1 and 0.5/0.5 mg/L, respectively). However, Aspergillus isolates exhibited higher susceptibility to SF001 than AmB (MIC50/90 of 0.5/1 and 1/4 mg/L, respectively), notably including AmB-resistant species.
Collapse
Affiliation(s)
- Roya Vahedi-Shahandashti
- Institute of Hygiene and Medical Microbiology, Medical University of Innsbruck, Innsbruck, Tyrol, Austria
| | - Cornelia Lass-Flörl
- Institute of Hygiene and Medical Microbiology, Medical University of Innsbruck, Innsbruck, Tyrol, Austria
| |
Collapse
|
3
|
Gutierrez-Perez C, Cramer RA. Targeting fungal lipid synthesis for antifungal drug development and potentiation of contemporary antifungals. NPJ ANTIMICROBIALS AND RESISTANCE 2025; 3:27. [PMID: 40221522 PMCID: PMC11993586 DOI: 10.1038/s44259-025-00093-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/07/2024] [Accepted: 03/10/2025] [Indexed: 04/14/2025]
Abstract
Two of the three most commonly used classes of antifungal drugs target the fungal membrane through perturbation of sterol biosynthesis or function. In addition to these triazole and polyene antifungals, recent research is identifying new antifungal molecules that perturb lipid biosynthesis and function. Here, we review fungal lipid biosynthesis pathways and their potential as targets for antifungal drug development. An emerging goal is discovering new molecules that potentiate contemporary antifungal drugs in part through perturbation of lipid form and function.
Collapse
Affiliation(s)
- Cecilia Gutierrez-Perez
- Department of Microbiology and Immunology, Geisel School of Medicine at Dartmouth, Hanover, NH, USA
- Department of Molecular Microbiology at Washington University School of Medicine, St. Louis, MO, USA
| | - Robert A Cramer
- Department of Microbiology and Immunology, Geisel School of Medicine at Dartmouth, Hanover, NH, USA.
| |
Collapse
|
4
|
Massic L, Doorley LA, Jones SJ, Richardson I, Siao DD, Siao L, Dykema P, Hua C, Schneider E, Cuomo CA, Rogers PD, Van Hooser S, Parker JE, Kelly SL, Hess D, Rybak JM, Pandori M. Acquired Amphotericin B Resistance Attributed to a Mutated ERG3 in Candidozyma auris. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2025.03.30.646105. [PMID: 40236146 PMCID: PMC11996407 DOI: 10.1101/2025.03.30.646105] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/17/2025]
Abstract
First identified in 2009, Candidozyma auris (formerly Candida auris ) is an emerging multidrug resistant fungus that can cause invasive infections with a crude mortality rate ranging from 30-60%. Currently, 30-50% of C. auris isolates are intrinsically resistant to amphotericin B. In this work, we characterized a clinical case of acquired amphotericin B resistance using whole genome sequencing, a large-scale phenotypic screen, comprehensive sterol profiling, and genotypic reversion using CRISPR. Data obtained in this work provides evidence that a deletion resulting in a frameshift in ERG3 contributes to the observed resistant phenotype. Characterization of this isolate also revealed a fitness cost is associated with the abrogation of ergosterol production and its replacement with other late-stage sterols. This article presents a clinical case description of amphotericin B resistance from a frameshift mutation in ERG3 in C. auris and marks an advancement in the understanding of antifungal resistance in this fungal pathogen.
Collapse
|
5
|
Hanafy DM, Leaver DJ. Is a Fungal Apocalypse Inevitable or Just a Hallucination? An Overview of the Antifungal Armamentarium Used in the Fight against Pathogenic Fungi. ACS Med Chem Lett 2025; 16:379-387. [PMID: 40104801 PMCID: PMC11912285 DOI: 10.1021/acsmedchemlett.4c00568] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2024] [Revised: 12/11/2024] [Accepted: 12/17/2024] [Indexed: 03/20/2025] Open
Abstract
The World Health Organization (WHO) fungal priority pathogens list (WHO FPPL) published in 2022 highlighted the inequity and research challenges faced by researchers who study pathogenic fungi that afflict humans. Antifungal drugs are the only weapon available to treat infections; however, these drugs are old, are not effective against multidrug-resistant (MDR) fungal strains, and are associated with substantial toxicity in clinical use. This Microperspective summarizes challenges pertaining to antifungal drug discovery in addition to highlighting recent advances and antifungal agents in clinical trials.
Collapse
Affiliation(s)
- Doaa M. Hanafy
- School of Dentistry and Medical
Sciences, Charles Sturt University, Wagga Wagga, NSW 2678, Australia
| | - David J. Leaver
- School of Dentistry and Medical
Sciences, Charles Sturt University, Wagga Wagga, NSW 2678, Australia
| |
Collapse
|
6
|
Chen X, Duan HD, Hoy MJ, Koteva K, Spitzer M, Guitor AK, Puumala E, Hu G, Yiu B, Chou S, Bian Z, Guo ABY, Sun S, Robbins N, Cook MA, Truant R, MacNeil LT, Brown ED, Kronstad JW, Cowen LE, Heitman J, Li H, Wright GD. Butyrolactol A is a phospholipid flippase inhibitor that potentiates the bioactivity of caspofungin against resistant fungi. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2025.01.06.630955. [PMID: 39829750 PMCID: PMC11741340 DOI: 10.1101/2025.01.06.630955] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/22/2025]
Abstract
Fungal infections cause millions of deaths annually and are challenging to treat due to limited antifungal options and increasing drug resistance. Cryptococci are intrinsically resistant to the latest generation of antifungals, echinocandins, while Candida auris , a notorious global threat, is also increasingly resistant. We performed a natural product extract screen for rescue of the activity of the echinocandin caspofungin against Cryptococcus neoformans H99, identifying butyrolactol A, which restores echinocandin efficacy against resistant fungal pathogens, including C. auris . Mode of action studies revealed that butyrolactol A inhibits the phospholipid flippase Apt1-Cdc50, blocking phospholipid transport. Cryoelectron-microscopy analysis of the Apt1●butyrolactol A complex revealed that the flippase is locked in a dead-end state. Apt1 inhibition disrupts membrane asymmetry, vesicular trafficking, and cytoskeletal organization, thereby enhancing echinocandin uptake and potency. This study identifies flippases as promising antifungal targets and demonstrates the potential of revisiting natural products to expand the antifungal arsenal and combat resistance.
Collapse
|
7
|
Zobi C, Algul O. The Significance of Mono- and Dual-Effective Agents in the Development of New Antifungal Strategies. Chem Biol Drug Des 2025; 105:e70045. [PMID: 39841631 PMCID: PMC11753615 DOI: 10.1111/cbdd.70045] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2024] [Revised: 11/25/2024] [Accepted: 01/04/2025] [Indexed: 01/24/2025]
Abstract
Invasive fungal infections (IFIs) pose significant challenges in clinical settings, particularly due to their high morbidity and mortality rates. The rising incidence of these infections, coupled with increasing antifungal resistance, underscores the urgent need for novel therapeutic strategies. Current antifungal drugs target the fungal cell membrane, cell wall, or intracellular components, but resistance mechanisms such as altered drug-target interactions, enhanced efflux, and adaptive cellular responses have diminished their efficacy. Recent research has highlighted the potential of dual inhibitors that simultaneously target multiple pathways or enzymes involved in fungal growth and survival. Combining pharmacophores, such as lanosterol 14α-demethylase (CYP51), heat shock protein 90 (HSP90), histone deacetylase (HDAC), and squalene epoxidase (SE) inhibitors, has led to the development of compounds with enhanced antifungal activity and reduced resistance. This dual-target approach, along with novel chemical scaffolds, not only represents a promising strategy for combating antifungal resistance but is also being utilized in the development of anticancer agents. This review explores the development of new antifungal agents that employ mono-, dual-, or multi-target strategies to combat IFIs. We discuss emerging antifungal targets, resistance mechanisms, and innovative therapeutic approaches that offer hope in managing these challenging infections.
Collapse
Affiliation(s)
- Cengiz Zobi
- Department of Pharmaceutical Chemistry, Faculty of PharmacyErzincan Binali Yildirim UniversityErzincanTurkiye
- Department of İliç Dursun Yildirim MYOErzincan Binali Yildirim UniversityErzincanTurkiye
| | - Oztekin Algul
- Department of Pharmaceutical Chemistry, Faculty of PharmacyErzincan Binali Yildirim UniversityErzincanTurkiye
- Department of Pharmaceutical Chemistry, Faculty of PharmacyMersin UniversityMersinTurkiye
| |
Collapse
|
8
|
Thorn V, Xu J. From patterns to prediction: machine learning and antifungal resistance biomarker discovery. Can J Microbiol 2025; 71:1-13. [PMID: 40233418 DOI: 10.1139/cjm-2024-0248] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/17/2025]
Abstract
Fungal pathogens significantly impact human health, agriculture, and ecosystems, with infections leading to high morbidity and mortality, especially among immunocompromised individuals. The increasing prevalence of antifungal resistance (AFR) exacerbates these challenges, limiting the effectiveness of current treatments. Identifying robust biomarkers associated AFR could accelerate targeted diagnosis, shorten decision time for treatment strategies, and improve patient health. This paper examines traditional avenues of AFR biomarker detection, contrasting them with the increasingly effective role of machine learning (ML) in advancing diagnostic and therapeutic strategies. The integration of ML with technologies such as mass spectrometry, molecular dynamics, and various omics-based approaches often results in the discovery of diverse and novel resistance biomarkers. ML's capability to analyse complex data patterns enhances the identification of resistance biomarkers and potential drug targets, offering innovative solutions to AFR management. This paper highlights the importance of interdisciplinary approaches and continued innovation in leveraging ML to combat AFR, aiming for more effective and targeted treatments for fungal infections.
Collapse
Affiliation(s)
- Veronica Thorn
- Department of Biology, McMaster University, Hamilton, ON L8S 4K1, Canada
| | - Jianping Xu
- Department of Biology, McMaster University, Hamilton, ON L8S 4K1, Canada
| |
Collapse
|
9
|
Abou-Kandil A, Tröger-Görler S, Pschibul A, Krüger T, Rosin M, Schmidt F, Akbarimoghaddam P, Sarkar A, Cseresnyés Z, Shadkchan Y, Heinekamp T, Gräler MH, Barber AE, Walther G, Figge MT, Brakhage AA, Osherov N, Kniemeyer O. The proteomic response of Aspergillus fumigatus to amphotericin B (AmB) reveals the involvement of the RTA-like protein RtaA in AmB resistance. MICROLIFE 2024; 6:uqae024. [PMID: 39790482 PMCID: PMC11707875 DOI: 10.1093/femsml/uqae024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/20/2024] [Revised: 11/19/2024] [Accepted: 12/04/2024] [Indexed: 01/12/2025]
Abstract
The polyene antimycotic amphotericin B (AmB) and its liposomal formulation AmBisome belong to the treatment options of invasive aspergillosis caused by Aspergillus fumigatus. Increasing resistance to AmB in clinical isolates of Aspergillus species is a growing concern, but mechanisms of AmB resistance remain unclear. In this study, we conducted a proteomic analysis of A. fumigatus exposed to sublethal concentrations of AmB and AmBisome. Both antifungals induced significantly increased levels of proteins involved in aromatic acid metabolism, transmembrane transport, and secondary metabolite biosynthesis. One of the most upregulated proteins was RtaA, a member of the RTA-like protein family, which includes conserved fungal membrane proteins with putative functions as transporters or translocases. Accordingly, we found that RtaA is mainly located in the cytoplasmic membrane and to a minor extent in vacuolar-like structures. Deletion of rtaA led to increased polyene sensitivity and its overexpression resulted in modest resistance. Interestingly, rtaA expression was only induced by exposure to the polyenes AmB and nystatin, but not by itraconazole and caspofungin. Orthologues of rtaA were also induced by AmB exposure in A. lentulus and A. terreus. Deletion of rtaA did not significantly change the ergosterol content of A. fumigatus, but decreased fluorescence intensity of the sterol-binding stain filipin. This suggests that RtaA is involved in sterol and lipid trafficking, possibly by transporting the target ergosterol to or from lipid droplets. These findings reveal the contribution of RtaA to polyene resistance in A. fumigatus, and thus provide a new putative target for antifungal drug development.
Collapse
Affiliation(s)
- Ammar Abou-Kandil
- Tel-Aviv University, Department of Clinical Microbiology and Immunology, Faculty of Medical and Health Sciences, Ramat-Aviv, 69987 Tel-Aviv, Israel
| | - Sophie Tröger-Görler
- Department of Molecular and Applied Microbiology, Leibniz Institute for Natural Product Research and Infection Biology, Hans Knöll Institute (HKI), Adolf-Reichwein-Str. 23, 07745 Jena, Germany
| | - Annica Pschibul
- Department of Molecular and Applied Microbiology, Leibniz Institute for Natural Product Research and Infection Biology, Hans Knöll Institute (HKI), Adolf-Reichwein-Str. 23, 07745 Jena, Germany
| | - Thomas Krüger
- Department of Molecular and Applied Microbiology, Leibniz Institute for Natural Product Research and Infection Biology, Hans Knöll Institute (HKI), Adolf-Reichwein-Str. 23, 07745 Jena, Germany
| | - Maira Rosin
- Department of Molecular and Applied Microbiology, Leibniz Institute for Natural Product Research and Infection Biology, Hans Knöll Institute (HKI), Adolf-Reichwein-Str. 23, 07745 Jena, Germany
- Institute of Microbiology, Friedrich Schiller University (FSU), 07743 Jena, Germany
| | - Franziska Schmidt
- Department of Molecular and Applied Microbiology, Leibniz Institute for Natural Product Research and Infection Biology, Hans Knöll Institute (HKI), Adolf-Reichwein-Str. 23, 07745 Jena, Germany
- Institute of Microbiology, Friedrich Schiller University (FSU), 07743 Jena, Germany
| | - Parastoo Akbarimoghaddam
- Research Group Applied Systems Biology, Leibniz Institute for Natural Product Research and Infection Biology (HKI), 07745 Jena, Germany
| | - Arjun Sarkar
- Research Group Applied Systems Biology, Leibniz Institute for Natural Product Research and Infection Biology (HKI), 07745 Jena, Germany
| | - Zoltán Cseresnyés
- Research Group Applied Systems Biology, Leibniz Institute for Natural Product Research and Infection Biology (HKI), 07745 Jena, Germany
| | - Yana Shadkchan
- Tel-Aviv University, Department of Clinical Microbiology and Immunology, Faculty of Medical and Health Sciences, Ramat-Aviv, 69987 Tel-Aviv, Israel
| | - Thorsten Heinekamp
- Department of Molecular and Applied Microbiology, Leibniz Institute for Natural Product Research and Infection Biology, Hans Knöll Institute (HKI), Adolf-Reichwein-Str. 23, 07745 Jena, Germany
| | - Markus H Gräler
- Department of Anesthesiology and Intensive Care Medicine, Jena University Hospital, 07747 Jena, Germany
- Center for Molecular Biomedicine (CMB), Jena University Hospital, 07745 Jena, Germany
- Center for Sepsis Control and Care (CSCC), Jena University Hospital, 07747 Jena, Germany
| | - Amelia E Barber
- Institute of Microbiology, Friedrich Schiller University (FSU), 07743 Jena, Germany
- Junior Research Group Fungal Informatics, Friedrich Schiller University, 07745 Jena, Germany
| | - Grit Walther
- National Reference Centre for Invasive Fungal Infections (NRZMyk), 07745 Jena, Germany
| | - Marc Thilo Figge
- Institute of Microbiology, Friedrich Schiller University (FSU), 07743 Jena, Germany
- Research Group Applied Systems Biology, Leibniz Institute for Natural Product Research and Infection Biology (HKI), 07745 Jena, Germany
| | - Axel A Brakhage
- Department of Molecular and Applied Microbiology, Leibniz Institute for Natural Product Research and Infection Biology, Hans Knöll Institute (HKI), Adolf-Reichwein-Str. 23, 07745 Jena, Germany
- Institute of Microbiology, Friedrich Schiller University (FSU), 07743 Jena, Germany
| | - Nir Osherov
- Tel-Aviv University, Department of Clinical Microbiology and Immunology, Faculty of Medical and Health Sciences, Ramat-Aviv, 69987 Tel-Aviv, Israel
| | - Olaf Kniemeyer
- Department of Molecular and Applied Microbiology, Leibniz Institute for Natural Product Research and Infection Biology, Hans Knöll Institute (HKI), Adolf-Reichwein-Str. 23, 07745 Jena, Germany
| |
Collapse
|
10
|
Carolus H, Sofras D, Boccarella G, Sephton-Clark P, Biriukov V, Cauldron NC, Lobo Romero C, Vergauwen R, Yazdani S, Pierson S, Jacobs S, Vandecruys P, Wijnants S, Meis JF, Gabaldón T, van den Berg P, Rybak JM, Cuomo CA, Van Dijck P. Acquired amphotericin B resistance leads to fitness trade-offs that can be mitigated by compensatory evolution in Candida auris. Nat Microbiol 2024; 9:3304-3320. [PMID: 39567662 DOI: 10.1038/s41564-024-01854-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2023] [Accepted: 10/10/2024] [Indexed: 11/22/2024]
Abstract
Candida auris is a growing concern due to its resistance to antifungal drugs, particularly amphotericin B (AMB), detected in 30 to 60% of clinical isolates. However, the mechanisms of AMB resistance remain poorly understood. Here we investigated 441 in vitro- and in vivo-evolved C. auris lineages from 4 AMB-susceptible clinical strains of different clades. Genetic and sterol analyses revealed four major types of sterol alterations as a result of clinically rare variations in sterol biosynthesis genes ERG6, NCP1, ERG11, ERG3, HMG1, ERG10 and ERG12. In addition, aneuploidies in chromosomes 4 and 6 emerged during resistance evolution. Fitness trade-off phenotyping and mathematical modelling identified diverse strain- and mechanism-dependent fitness trade-offs. Variation in CDC25 rescued fitness trade-offs, thereby increasing the infection capacity. This possibly contributed to therapy-induced acquired AMB resistance in the clinic. Our findings highlight sterol-modulating mechanisms and fitness trade-off compensation as risks for AMB treatment failure in clinical settings.
Collapse
Affiliation(s)
- Hans Carolus
- Laboratory of Molecular Cell Biology, Department of Biology, KU Leuven, Leuven, Belgium.
| | - Dimitrios Sofras
- Laboratory of Molecular Cell Biology, Department of Biology, KU Leuven, Leuven, Belgium
| | - Giorgio Boccarella
- Evolutionary Modelling Group, Department of Microbial and Molecular Systems, KU Leuven, Leuven, Belgium
| | | | - Vladislav Biriukov
- Barcelona Supercomputing Centre (BSC-CNS), Barcelona, Spain
- Institute for Research in Biomedicine (IRB), Barcelona Institute of Science and Technology, Barcelona, Spain
| | - Nicholas C Cauldron
- Molecular Microbiology and Immunology Department, Brown University, Providence, RI, USA
| | - Celia Lobo Romero
- Laboratory of Molecular Cell Biology, Department of Biology, KU Leuven, Leuven, Belgium
| | - Rudy Vergauwen
- Laboratory of Molecular Cell Biology, Department of Biology, KU Leuven, Leuven, Belgium
| | - Saleh Yazdani
- Laboratory of Molecular Cell Biology, Department of Biology, KU Leuven, Leuven, Belgium
| | - Siebe Pierson
- Laboratory of Molecular Cell Biology, Department of Biology, KU Leuven, Leuven, Belgium
| | - Stef Jacobs
- Laboratory of Molecular Cell Biology, Department of Biology, KU Leuven, Leuven, Belgium
| | - Paul Vandecruys
- Laboratory of Molecular Cell Biology, Department of Biology, KU Leuven, Leuven, Belgium
| | - Stefanie Wijnants
- Laboratory of Molecular Cell Biology, Department of Biology, KU Leuven, Leuven, Belgium
| | - Jacques F Meis
- Centre of Expertise in Mycology, Radboudumc/CWZ, Nijmegen, The Netherlands
- Institute of Translational Research, CECAD, University of Cologne, Cologne, Germany
| | - Toni Gabaldón
- Barcelona Supercomputing Centre (BSC-CNS), Barcelona, Spain
- Institute for Research in Biomedicine (IRB), Barcelona Institute of Science and Technology, Barcelona, Spain
- Catalan Institution for Research and Advanced Studies (ICREA), Barcelona, Spain
- CIBER de Enfermedades Infecciosas, Instituto de Salud Carlos III, Madrid, Spain
| | - Pieter van den Berg
- Evolutionary Modelling Group, Department of Microbial and Molecular Systems, KU Leuven, Leuven, Belgium
- Evolutionary Modelling Group, Department of Biology, KU Leuven, Leuven, Belgium
| | | | - Christina A Cuomo
- Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Molecular Microbiology and Immunology Department, Brown University, Providence, RI, USA
| | - Patrick Van Dijck
- Laboratory of Molecular Cell Biology, Department of Biology, KU Leuven, Leuven, Belgium.
- KU Leuven One Health Institute, KU Leuven, Leuven, Belgium.
| |
Collapse
|
11
|
Tian S, Rong C, Li H, Wu Y, Wu N, Chu Y, Jiang N, Zhang J, Shang H. Genetic microevolution of clinical Candida auris with reduced Amphotericin B sensitivity in China. Emerg Microbes Infect 2024; 13:2398596. [PMID: 39234778 PMCID: PMC11385638 DOI: 10.1080/22221751.2024.2398596] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2024] [Revised: 08/16/2024] [Accepted: 08/26/2024] [Indexed: 09/06/2024]
Abstract
The global rate of Amphotericin B (AmB) resistance in Candida auris has surpassed 12%. However, there is limited data on available clinical treatments and microevolutionary analyses concerning reduced AmB sensitivity. In this study, we collected 18 C. auris isolates from five patients between 2019 and 2022. We employed clinical data mining, genomic, and transcriptomic analyses to identify genetic evolutionary features linked to reduced AmB sensitivity in these isolates during clinical treatment. We identified six isolates with a minimum inhibitory concentration (MIC) of AmB below 0.5 µg/mL (AmB0.5) and 12 isolates with an AmB-MIC of 1 µg/mL (AmB1) or ≥ 2 µg/mL (AmB2). All five patients received 24-hour AmB (5 mg/L) bladder irrigation treatment. Evolutionary analyses revealed an ERG3 (c923t) mutation in AmB1 C. auris. Additionally, AmB2 C. auris was found to contain a t2831c mutation in the RAD2 gene. In the AmB1 group, membrane lipid-related gene expression (ERG1, ERG2, ERG13, and ERG24) was upregulated, while in the AmB2 group, expression of DNA-related genes (e.g. DNA2 and PRI1) was up-regulated. In a series of C.auris strains with reduced susceptibility to AmB, five key genes were identified: two upregulated (IFF9 and PGA6) and three downregulated (HGT7, HGT13,and PRI32). In this study, we demonstrate the microevolution of reduced AmB sensitivity in vivo and further elucidate the relationship between reduced AmB sensitivity and low-concentration AmB bladder irrigation. These findings offer new insights into potential antifungal drug targets and clinical markers for the "super fungus", C. auris.
Collapse
Affiliation(s)
- Sufei Tian
- National Clinical Research Center for Laboratory Medicine, State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, Department of Laboratory Medicine, the First Hospital of China Medical University, Shenyang, People's Republic of China
| | - Chen Rong
- National Clinical Research Center for Laboratory Medicine, State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, Department of Laboratory Medicine, the First Hospital of China Medical University, Shenyang, People's Republic of China
| | - Hailong Li
- National Clinical Research Center for Laboratory Medicine, State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, Department of Laboratory Medicine, the First Hospital of China Medical University, Shenyang, People's Republic of China
- NHC Key Laboratory of AIDS Prevention and Treatment, The First Hospital of China Medical University, China Medical University, Shenyang, People's Republic of China
| | - Yusheng Wu
- National Clinical Research Center for Laboratory Medicine, State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, Department of Laboratory Medicine, the First Hospital of China Medical University, Shenyang, People's Republic of China
| | - Na Wu
- Department of Infectious Diseases, the First Hospital of China Medical University, Shenyang, People's Republic of China
| | - Yunzhuo Chu
- National Clinical Research Center for Laboratory Medicine, State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, Department of Laboratory Medicine, the First Hospital of China Medical University, Shenyang, People's Republic of China
| | - Ning Jiang
- National Clinical Research Center for Laboratory Medicine, State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, Department of Laboratory Medicine, the First Hospital of China Medical University, Shenyang, People's Republic of China
| | - Jingping Zhang
- Department of Infectious Diseases, the First Hospital of China Medical University, Shenyang, People's Republic of China
| | - Hong Shang
- National Clinical Research Center for Laboratory Medicine, State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, Department of Laboratory Medicine, the First Hospital of China Medical University, Shenyang, People's Republic of China
- NHC Key Laboratory of AIDS Prevention and Treatment, The First Hospital of China Medical University, China Medical University, Shenyang, People's Republic of China
| |
Collapse
|
12
|
Simm C, Lee TH, Weerasinghe H, Walsh D, Nakou IT, Shankar M, Tse WC, Zhang Y, Inman R, Mulder RJ, Harrison F, Aguilar MI, Challis GL, Traven A. Gladiolin produced by pathogenic Burkholderia synergizes with amphotericin B through membrane lipid rearrangements. mBio 2024; 15:e0261124. [PMID: 39422464 PMCID: PMC11559049 DOI: 10.1128/mbio.02611-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2024] [Accepted: 09/16/2024] [Indexed: 10/19/2024] Open
Abstract
Amphotericin B (AmpB) is an effective but toxic antifungal drug. Thus, improving its activity/toxicity relationship is of interest. AmpB disrupts fungal membranes by two proposed mechanisms: ergosterol sequestration from the membrane and pore formation. Whether these two mechanisms operate in conjunction and how they could be potentiated remains to be fully understood. Here, we report that gladiolin, a polyketide antibiotic produced by Burkholderia gladioli, is a strong potentiator of AmpB and acts synergistically against Cryptococcus and Candida species, including drug-resistant C. auris. Gladiolin also synergizes with AmpB against drug-resistant fungal biofilms, while exerting no mammalian cytotoxicity. To explain the mechanism of synergy, we show that gladiolin interacts with membranes via a previously unreported binding mode for polyketides. Moreover, gladiolin modulates lipid binding by AmpB and, in combination, causes faster and more pronounced lipid rearrangements relative to AmpB alone which include membrane thinning consistent with ergosterol extraction, areas of thickening, pore formation, and increased membrane destruction. These biophysical data provide evidence of a functional interaction between gladiolin and AmpB at the membrane interface. The data further indicate that the two proposed AmpB mechanisms (ergosterol sequestration and pore formation) act in conjunction to disrupt membranes, and that gladiolin synergizes by enhancing both mechanisms. Collectively, our findings shed light on AmpB's mechanism of action and characterize gladiolin as an AmpB potentiator, showing an antifungal mechanism distinct from its proposed antibiotic activity. We shed light on the synergistic mechanism at the membrane, and provide insights into potentiation strategies to improve AmpB's activity/toxicity relationship. IMPORTANCE Amphotericin B (AmpB) is one of the oldest antifungal drugs in clinical use. It is an effective therapeutic, but it comes with toxicity issues due to the similarities between its fungal target (the membrane lipid ergosterol) and its mammalian counterpart (cholesterol). One strategy to improve its activity/toxicity relationship is by combinatorial therapy with potentiators, which would enable a lower therapeutic dose of AmpB. Here, we report on the discovery of the antibiotic gladiolin as a potentiator of AmpB against several priority human fungal pathogens and fungal biofilms, with no increased toxicity against mammalian cells. We show that gladiolin potentiates AmpB by increasing and accelerating membrane damage. Our findings also provide insights into the on-going debate about the mechanism of action of AmpB by indicating that both proposed mechanisms, extraction of ergosterol from membranes and pore formation, are potentiated by gladiolin.
Collapse
Affiliation(s)
- Claudia Simm
- Department of Biochemistry and Molecular Biology and the Infection Program, Biomedicine Discovery Institute, Monash University, Clayton, Victoria, Australia
- Centre to Impact AMR, Monash University, Clayton, Victoria, Australia
| | - Tzong-Hsien Lee
- Department of Biochemistry and Molecular Biology and the Infection Program, Biomedicine Discovery Institute, Monash University, Clayton, Victoria, Australia
| | - Harshini Weerasinghe
- Department of Biochemistry and Molecular Biology and the Infection Program, Biomedicine Discovery Institute, Monash University, Clayton, Victoria, Australia
- Centre to Impact AMR, Monash University, Clayton, Victoria, Australia
| | - Dean Walsh
- School of Life Sciences, University of Warwick, Coventry, United Kingdom
| | - Ioanna T. Nakou
- Department of Chemistry, University of Warwick, Coventry, United Kingdom
| | - Madhu Shankar
- Department of Biochemistry and Molecular Biology and the Infection Program, Biomedicine Discovery Institute, Monash University, Clayton, Victoria, Australia
- Centre to Impact AMR, Monash University, Clayton, Victoria, Australia
| | - Wai Chung Tse
- School of Medicine, Monash University, Clayton, Victoria, Australia
| | - Yu Zhang
- Department of Chemistry, University of Warwick, Coventry, United Kingdom
| | - Rebecca Inman
- Medical Research Council Centre for Medical Mycology, University of Exeter, Exeter, United Kingdom
| | - Roger J. Mulder
- CSIRO Manufacturing, Research Way, Clayton, Victoria, Australia
| | - Freya Harrison
- School of Life Sciences, University of Warwick, Coventry, United Kingdom
| | - Marie-Isabel Aguilar
- Department of Biochemistry and Molecular Biology and the Infection Program, Biomedicine Discovery Institute, Monash University, Clayton, Victoria, Australia
| | - Gregory L. Challis
- Department of Biochemistry and Molecular Biology and the Infection Program, Biomedicine Discovery Institute, Monash University, Clayton, Victoria, Australia
- Department of Chemistry, University of Warwick, Coventry, United Kingdom
- ARC Centre of Excellence for Innovations in Peptide and Protein Science, Monash University, Clayton, Victoria, Australia
| | - Ana Traven
- Department of Biochemistry and Molecular Biology and the Infection Program, Biomedicine Discovery Institute, Monash University, Clayton, Victoria, Australia
- Centre to Impact AMR, Monash University, Clayton, Victoria, Australia
| |
Collapse
|
13
|
Carolus H, Sofras D, Boccarella G, Jacobs S, Biriukov V, Goossens L, Chen A, Vantyghem I, Verbeeck T, Pierson S, Lobo Romero C, Steenackers H, Lagrou K, van den Berg P, Berman J, Gabaldón T, Van Dijck P. Collateral sensitivity counteracts the evolution of antifungal drug resistance in Candida auris. Nat Microbiol 2024; 9:2954-2969. [PMID: 39472696 DOI: 10.1038/s41564-024-01811-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2023] [Accepted: 08/15/2024] [Indexed: 11/02/2024]
Abstract
Antifungal drug resistance represents a serious global health threat, necessitating new treatment strategies. Here we investigated collateral sensitivity (CS), in which resistance to one drug increases sensitivity to another, and cross-resistance (XR), in which one drug resistance mechanism reduces susceptibility to multiple drugs, since CS and XR dynamics can guide treatment design to impede resistance development, but have not been systematically explored in pathogenic fungi. We used experimental evolution and mathematical modelling of Candida auris population dynamics during cyclic and combined drug exposures and found that especially CS-based drug cycling can effectively prevent the emergence of drug resistance. In addition, we found that a CS-based treatment switch can actively select against or eradicate resistant sub-populations, highlighting the potential to consider CS in therapeutic decision-making upon resistance detection. Furthermore, we show that some CS trends are robust among different strains and resistance mechanisms. Overall, these findings provide a promising direction for improved antifungal treatment approaches.
Collapse
Affiliation(s)
- Hans Carolus
- Laboratory of Molecular Cell Biology, Department of Biology, KU Leuven, Leuven, Belgium.
| | - Dimitrios Sofras
- Laboratory of Molecular Cell Biology, Department of Biology, KU Leuven, Leuven, Belgium
| | - Giorgio Boccarella
- Evolutionary Modelling Group, Department of Biology, KU Leuven, Leuven, Belgium
- Evolutionary Modelling Group, Department of Microbial and Molecular Systems, KU Leuven, Leuven, Belgium
| | - Stef Jacobs
- Laboratory of Molecular Cell Biology, Department of Biology, KU Leuven, Leuven, Belgium
| | - Vladislav Biriukov
- Barcelona Supercomputing Centre (BSC-CNS), Barcelona, Spain
- Institute for Research in Biomedicine (IRB Barcelona), The Barcelona Institute of Science and Technology, Barcelona, Spain
| | - Louise Goossens
- Laboratory of Molecular Cell Biology, Department of Biology, KU Leuven, Leuven, Belgium
| | - Alicia Chen
- Laboratory of Molecular Cell Biology, Department of Biology, KU Leuven, Leuven, Belgium
| | - Ina Vantyghem
- Laboratory of Molecular Cell Biology, Department of Biology, KU Leuven, Leuven, Belgium
| | - Tibo Verbeeck
- Laboratory of Molecular Cell Biology, Department of Biology, KU Leuven, Leuven, Belgium
| | - Siebe Pierson
- Laboratory of Molecular Cell Biology, Department of Biology, KU Leuven, Leuven, Belgium
| | - Celia Lobo Romero
- Laboratory of Molecular Cell Biology, Department of Biology, KU Leuven, Leuven, Belgium
| | - Hans Steenackers
- Centre for Microbial and Plant Genetics, Department of Microbial and Molecular Systems, KU Leuven, Leuven, Belgium
| | - Katrien Lagrou
- Laboratory of Clinical Microbiology, KU Leuven, Leuven, Belgium
| | - Pieter van den Berg
- Evolutionary Modelling Group, Department of Biology, KU Leuven, Leuven, Belgium
- Evolutionary Modelling Group, Department of Microbial and Molecular Systems, KU Leuven, Leuven, Belgium
| | - Judith Berman
- Shmunis School of Biomedical and Cancer Research, Tel Aviv University, Tel Aviv, Israel
| | - Toni Gabaldón
- Barcelona Supercomputing Centre (BSC-CNS), Barcelona, Spain
- Institute for Research in Biomedicine (IRB Barcelona), The Barcelona Institute of Science and Technology, Barcelona, Spain
- Catalan Institution for Research and Advanced Studies (ICREA), Barcelona, Spain
- CIBER de Enfermedades Infecciosas, Instituto de Salud Carlos III, Madrid, Spain
| | - Patrick Van Dijck
- Laboratory of Molecular Cell Biology, Department of Biology, KU Leuven, Leuven, Belgium.
- KU Leuven One Health Institute, KU Leuven, Leuven, Belgium.
| |
Collapse
|
14
|
Bédard C, Gagnon-Arsenault I, Boisvert J, Plante S, Dubé AK, Pageau A, Fijarczyk A, Sharma J, Maroc L, Shapiro RS, Landry CR. Most azole resistance mutations in the Candida albicans drug target confer cross-resistance without intrinsic fitness cost. Nat Microbiol 2024; 9:3025-3040. [PMID: 39379635 DOI: 10.1038/s41564-024-01819-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2023] [Accepted: 08/27/2024] [Indexed: 10/10/2024]
Abstract
Azole antifungals are the main drugs used to treat fungal infections. Amino acid substitutions in the drug target Erg11 (Cyp51) are a common resistance mechanism in pathogenic yeasts. How many and which mutations confer resistance is, however, largely unknown. Here we measure the impact of nearly 4,000 amino acid variants of Candida albicans Erg11 on the susceptibility to six clinical azoles. This was achieved by deep mutational scanning of CaErg11 expressed in Saccharomyces cerevisiae. We find that a large fraction of mutations lead to resistance (33%), most resistance mutations confer cross-resistance (88%) and only a handful of resistance mutations show a significant fitness cost (9%). Our results reveal that resistance to azoles can arise through a large set of mutations and this will probably lead to azole pan-resistance, with little evolutionary compromise. This resource will help inform treatment choices in clinical settings and guide the development of new drugs.
Collapse
Affiliation(s)
- Camille Bédard
- Institut de Biologie Intégrative et des Systèmes (IBIS), Université Laval, Québec, Québec, Canada
- Département de Biochimie, de Microbiologie et de Bio-informatique, Faculté des Sciences et de Génie, Université Laval, Québec, Québec, Canada
- Département de Biologie, Faculté des Sciences et de Génie, Université Laval, Québec, Québec, Canada
- PROTEO, Le regroupement québécois de recherche sur la fonction, l'ingénierie et les applications des protéines, Université Laval, Québec, Québec, Canada
- Centre de Recherche sur les Données Massives (CRDM), Université Laval, Québec, Québec, Canada
| | - Isabelle Gagnon-Arsenault
- Institut de Biologie Intégrative et des Systèmes (IBIS), Université Laval, Québec, Québec, Canada
- Département de Biochimie, de Microbiologie et de Bio-informatique, Faculté des Sciences et de Génie, Université Laval, Québec, Québec, Canada
- Département de Biologie, Faculté des Sciences et de Génie, Université Laval, Québec, Québec, Canada
- PROTEO, Le regroupement québécois de recherche sur la fonction, l'ingénierie et les applications des protéines, Université Laval, Québec, Québec, Canada
- Centre de Recherche sur les Données Massives (CRDM), Université Laval, Québec, Québec, Canada
| | - Jonathan Boisvert
- Institut de Biologie Intégrative et des Systèmes (IBIS), Université Laval, Québec, Québec, Canada
- Département de Biologie, Faculté des Sciences et de Génie, Université Laval, Québec, Québec, Canada
- PROTEO, Le regroupement québécois de recherche sur la fonction, l'ingénierie et les applications des protéines, Université Laval, Québec, Québec, Canada
- Centre de Recherche sur les Données Massives (CRDM), Université Laval, Québec, Québec, Canada
| | - Samuel Plante
- Institut de Biologie Intégrative et des Systèmes (IBIS), Université Laval, Québec, Québec, Canada
- Département de Biochimie, de Microbiologie et de Bio-informatique, Faculté des Sciences et de Génie, Université Laval, Québec, Québec, Canada
- Département de Biologie, Faculté des Sciences et de Génie, Université Laval, Québec, Québec, Canada
- PROTEO, Le regroupement québécois de recherche sur la fonction, l'ingénierie et les applications des protéines, Université Laval, Québec, Québec, Canada
- Centre de Recherche sur les Données Massives (CRDM), Université Laval, Québec, Québec, Canada
| | - Alexandre K Dubé
- Institut de Biologie Intégrative et des Systèmes (IBIS), Université Laval, Québec, Québec, Canada
- Département de Biochimie, de Microbiologie et de Bio-informatique, Faculté des Sciences et de Génie, Université Laval, Québec, Québec, Canada
- Département de Biologie, Faculté des Sciences et de Génie, Université Laval, Québec, Québec, Canada
- PROTEO, Le regroupement québécois de recherche sur la fonction, l'ingénierie et les applications des protéines, Université Laval, Québec, Québec, Canada
- Centre de Recherche sur les Données Massives (CRDM), Université Laval, Québec, Québec, Canada
| | - Alicia Pageau
- Institut de Biologie Intégrative et des Systèmes (IBIS), Université Laval, Québec, Québec, Canada
- Département de Biochimie, de Microbiologie et de Bio-informatique, Faculté des Sciences et de Génie, Université Laval, Québec, Québec, Canada
- Département de Biologie, Faculté des Sciences et de Génie, Université Laval, Québec, Québec, Canada
- PROTEO, Le regroupement québécois de recherche sur la fonction, l'ingénierie et les applications des protéines, Université Laval, Québec, Québec, Canada
- Centre de Recherche sur les Données Massives (CRDM), Université Laval, Québec, Québec, Canada
| | - Anna Fijarczyk
- Institut de Biologie Intégrative et des Systèmes (IBIS), Université Laval, Québec, Québec, Canada
- Département de Biochimie, de Microbiologie et de Bio-informatique, Faculté des Sciences et de Génie, Université Laval, Québec, Québec, Canada
- Département de Biologie, Faculté des Sciences et de Génie, Université Laval, Québec, Québec, Canada
- PROTEO, Le regroupement québécois de recherche sur la fonction, l'ingénierie et les applications des protéines, Université Laval, Québec, Québec, Canada
- Centre de Recherche sur les Données Massives (CRDM), Université Laval, Québec, Québec, Canada
| | - Jehoshua Sharma
- Department of Molecular and Cellular Biology, University of Guelph, Guelph, Ontario, Canada
| | - Laetitia Maroc
- Department of Molecular and Cellular Biology, University of Guelph, Guelph, Ontario, Canada
| | - Rebecca S Shapiro
- Department of Molecular and Cellular Biology, University of Guelph, Guelph, Ontario, Canada
| | - Christian R Landry
- Institut de Biologie Intégrative et des Systèmes (IBIS), Université Laval, Québec, Québec, Canada.
- Département de Biochimie, de Microbiologie et de Bio-informatique, Faculté des Sciences et de Génie, Université Laval, Québec, Québec, Canada.
- Département de Biologie, Faculté des Sciences et de Génie, Université Laval, Québec, Québec, Canada.
- PROTEO, Le regroupement québécois de recherche sur la fonction, l'ingénierie et les applications des protéines, Université Laval, Québec, Québec, Canada.
- Centre de Recherche sur les Données Massives (CRDM), Université Laval, Québec, Québec, Canada.
| |
Collapse
|
15
|
Tanwar S, Kalra S, Bari VK. Insights into the role of sterol metabolism in antifungal drug resistance: a mini-review. Front Microbiol 2024; 15:1409085. [PMID: 39464401 PMCID: PMC11502366 DOI: 10.3389/fmicb.2024.1409085] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2024] [Accepted: 09/26/2024] [Indexed: 10/29/2024] Open
Abstract
Sterols are essential for eukaryotic cells and are crucial in cellular membranes' structure, function, fluidity, permeability, adaptability to environmental stressors, and host-pathogen interactions. Fungal sterol, such as ergosterol metabolism, involves several organelles, including the mitochondria, lipid droplets, endoplasmic reticulum, and peroxisomes that can be regulated mainly by feedback mechanisms and transcriptionally. The majority of sterol transport in yeast occurs via non-vesicular transport pathways mediated by lipid transfer proteins, which determine the quantity of sterol present in the cell membrane. Pathogenic fungi Candida, Aspergillus, and Cryptococcus species can cause a range of superficial to potentially fatal systemic and invasive infections that are more common in immunocompromised patients. There is a significant risk of morbidity and mortality from these infections, which are very difficult to cure. Several antifungal drugs with different modes of action have received clinical approval to treat fungal infections. Antifungal drugs targeting the ergosterol biosynthesis pathway are well-known for their antifungal activity; however, an imbalance in the regulation and transport of ergosterol could lead to resistance to antifungal therapy. This study summarizes how fungal sterol metabolism and regulation can modulate sterol-targeting antifungal drug resistance.
Collapse
|
16
|
Rhodes J, Jacobs J, Dennis EK, Manjari SR, Banavali NK, Marlow R, Rokebul MA, Chaturvedi S, Chaturvedi V. What makes Candida auris pan-drug resistant? Integrative insights from genomic, transcriptomic, and phenomic analysis of clinical strains resistant to all four major classes of antifungal drugs. Antimicrob Agents Chemother 2024; 68:e0091124. [PMID: 39297640 PMCID: PMC11459930 DOI: 10.1128/aac.00911-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2024] [Accepted: 07/24/2024] [Indexed: 09/25/2024] Open
Abstract
The global epidemic of drug-resistant Candida auris continues unabated. The initial report on pan-drug resistant (PDR) C. auris strains in a hospitalized patient in New York was unprecedented. PDR C. auris showed both known and unique mutations in the prominent gene targets of azoles, amphotericin B, echinocandins, and flucytosine. However, the factors that allow C. auris to acquire pan-drug resistance are not known. Therefore, we conducted a genomic, transcriptomic, and phenomic analysis to better understand PDR C. auris. Among 1,570 genetic variants in drug-resistant C. auris, 299 were unique to PDR strains. The whole-genome sequencing results suggested perturbations in genes associated with nucleotide biosynthesis, mRNA processing, and nuclear export of mRNA. Whole transcriptome sequencing of PDR C. auris revealed two genes to be significantly differentially expressed-a DNA repair protein and DNA replication-dependent chromatin assembly factor 1. Of 59 novel transcripts, 12 transcripts had no known homology. We observed no fitness defects among multi-drug resistant (MDR) and PDR C. auris strains grown in nutrient-deficient or -enriched media at different temperatures. Phenotypic profiling revealed wider adaptability to nitrogenous nutrients and increased utilization of substrates critical in upper glycolysis and tricarboxylic acid cycle. Structural modeling of a 33-amino acid deletion in the gene for uracil phosphoribosyl transferase suggested an alternate route in C. auris to generate uracil monophosphate that does not accommodate 5-fluorouracil as a substrate. Overall, we find evidence of metabolic adaptations in MDR and PDR C. auris in response to antifungal drug lethality without deleterious fitness costs.
Collapse
Affiliation(s)
- Johanna Rhodes
- Department of Medical Microbiology, Radboudumc, Nijmegen, the Netherlands
- MRC GIDA, Imperial College London, London, United Kingdom
| | - Jonathan Jacobs
- American Type Culture Collection, University Blvd, Manassas, Virginia, USA
| | - Emily K. Dennis
- Wadsworth Center, New York State Department of Health, Albany, New York, USA
| | - Swati R. Manjari
- Wadsworth Center, New York State Department of Health, Albany, New York, USA
| | - Nilesh K. Banavali
- Wadsworth Center, New York State Department of Health, Albany, New York, USA
- School of Public Health, University of Albany, Albany, New York, USA
| | - Robert Marlow
- American Type Culture Collection, University Blvd, Manassas, Virginia, USA
| | | | - Sudha Chaturvedi
- Wadsworth Center, New York State Department of Health, Albany, New York, USA
- School of Public Health, University of Albany, Albany, New York, USA
| | - Vishnu Chaturvedi
- Wadsworth Center, New York State Department of Health, Albany, New York, USA
- Westchester Medical Center/New York Medical College, Valhalla, New York, USA
| |
Collapse
|
17
|
Islam T, Danishuddin, Tamanna NT, Matin MN, Barai HR, Haque MA. Resistance Mechanisms of Plant Pathogenic Fungi to Fungicide, Environmental Impacts of Fungicides, and Sustainable Solutions. PLANTS (BASEL, SWITZERLAND) 2024; 13:2737. [PMID: 39409607 PMCID: PMC11478979 DOI: 10.3390/plants13192737] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/17/2024] [Revised: 09/19/2024] [Accepted: 09/27/2024] [Indexed: 10/20/2024]
Abstract
The significant reduction in agricultural output and the decline in product quality are two of the most glaring negative impacts caused by plant pathogenic fungi (PPF). Furthermore, contaminated food or transit might introduce mycotoxins produced by PPF directly into the food chain. Eating food tainted with mycotoxin is extremely dangerous for both human and animal health. Using fungicides is the first choice to control PPF or their toxins in food. Fungicide resistance and its effects on the environment and public health are becoming more and more of a concern, despite the fact that chemical fungicides are used to limit PPF toxicity and control growth in crops. Fungicides induce target site alteration and efflux pump activation, and mutations in PPF result in resistance. As a result, global trends are shifting away from chemically manufactured pesticides and toward managing fungal plant diseases using various biocontrol techniques, tactics, and approaches. However, surveillance programs to monitor fungicide resistance and their environmental impact are much fewer compared to bacterial antibiotic resistance surveillance programs. In this review, we discuss the PPF that contributes to disease development in plants, the fungicides used against them, factors causing the spread of PPF and the emergence of new strains, the antifungal resistance mechanisms of PPF, health, the environmental impacts of fungicides, and the use of biocontrol agents (BCAs), antimicrobial peptides (AMPs), and nanotechnologies to control PPF as a safe and eco-friendly alternative to fungicides.
Collapse
Affiliation(s)
- Tarequl Islam
- Department of Microbiology, Noakhali Science and Technology University, Noakhali 3814, Bangladesh;
| | - Danishuddin
- Department of Biotechnology, Yeungnam University, Gyeongsan 38541, Republic of Korea; (D.); (M.N.M.)
| | - Noshin Tabassum Tamanna
- Department of Pharmacy, Noakhali Science and Technology University, Noakhali 3814, Bangladesh;
| | - Muhammad Nurul Matin
- Department of Biotechnology, Yeungnam University, Gyeongsan 38541, Republic of Korea; (D.); (M.N.M.)
- Professor Joarder DNA and Chromosome Research Laboratory, Department of Genetic Engineering and Biotechnology, University of Rajshahi, Rajshahi 6205, Bangladesh
| | - Hasi Rani Barai
- School of Mechanical and IT Engineering, Yeungnam University, Gyeongsan 38541, Republic of Korea
| | - Md Azizul Haque
- Department of Biotechnology, Yeungnam University, Gyeongsan 38541, Republic of Korea; (D.); (M.N.M.)
| |
Collapse
|
18
|
Schaefer S, Corrigan N, Brunke S, Lenardon MD, Boyer C. Combatting Fungal Infections: Advances in Antifungal Polymeric Nanomaterials. Biomacromolecules 2024; 25:5670-5701. [PMID: 39177507 DOI: 10.1021/acs.biomac.4c00866] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/24/2024]
Abstract
Fungal pathogens cause over 6.5 million life-threatening systemic infections annually, with mortality rates ranging from 20 to 95%, even with medical intervention. The World Health Organization has recently emphasized the urgent need for new antifungal drugs. However, the range of effective antifungal agents remains limited and resistance is increasing. This Review explores the current landscape of fungal infections and antifungal drugs, focusing on synthetic polymeric nanomaterials like nanoparticles that enhance the physicochemical properties of existing drugs. Additionally, we examine intrinsically antifungal polymers that mimic naturally occurring peptides. Advances in polymer characterization and synthesis now allow precise design and screening for antifungal activity, biocompatibility, and drug interactions. These antifungal polymers represent a promising new class of drugs for combating fungal infections.
Collapse
Affiliation(s)
- Sebastian Schaefer
- School of Chemical Engineering, University of New South Wales (UNSW), Sydney, New South Wales 2052, Australia
- Australian Centre for NanoMedicine, UNSW, Sydney, New South Wales 2052, Australia
- School of Biotechnology and Biomolecular Sciences, UNSW, Sydney, New South Wales 2052, Australia
- Department of Microbial Pathogenicity Mechanisms, Leibniz Institute for Natural Product Research and Infection Biology, Hans Knoell Institute, 07745 Jena, Germany
| | - Nathaniel Corrigan
- School of Chemical Engineering, University of New South Wales (UNSW), Sydney, New South Wales 2052, Australia
- Australian Centre for NanoMedicine, UNSW, Sydney, New South Wales 2052, Australia
| | - Sascha Brunke
- Department of Microbial Pathogenicity Mechanisms, Leibniz Institute for Natural Product Research and Infection Biology, Hans Knoell Institute, 07745 Jena, Germany
| | - Megan D Lenardon
- School of Biotechnology and Biomolecular Sciences, UNSW, Sydney, New South Wales 2052, Australia
| | - Cyrille Boyer
- School of Chemical Engineering, University of New South Wales (UNSW), Sydney, New South Wales 2052, Australia
- Australian Centre for NanoMedicine, UNSW, Sydney, New South Wales 2052, Australia
| |
Collapse
|
19
|
Zdybel M, Pilawa B, Witoszyńska T, Wrześniok D. Changes in Electron Paramagnetic Resonance Parameters Caused by Addition of Amphotericin B to Cladosporium cladosporioides Melanin and DOPA-Melanin-Free Radical Studies. Int J Mol Sci 2024; 25:9571. [PMID: 39273518 PMCID: PMC11394738 DOI: 10.3390/ijms25179571] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2024] [Revised: 09/02/2024] [Accepted: 09/02/2024] [Indexed: 09/15/2024] Open
Abstract
Cladosporium cladosporioides are the pigmented soil fungi containing melanin. The aim of this work was to determine the influence of amphotericin B on free radicals in the natural melanin isolated from pigmented fungi Cladosporium cladosporioides and to compare it with the effect in synthetic DOPA-melanin. Electron paramagnetic resonance (EPR) spectra were measured at X-band (9.3 GHz) with microwave power in the range of 2.2-70 mW. Amplitudes, integral intensities, linewidths of the EPR spectra, and g factors, were analyzed. The concentrations of free radicals in the tested melanin samples were determined. Microwave saturation of EPR lines indicates the presence of pheomelanin in addition to eumelanin in Cladosporium cladosporioides. o-Semiquinone free radicals in concentrations ~1020 [spin/g] exist in the tested melanin samples and in their complexes with amphotericin B. Changes in concentrations of free radicals in the examined synthetic and natural melanin point out their participation in the formation of amphotericin B binding to melanin. A different influence of amphotericin B on free radical concentration in Cladosporium cladosporioides melanin and in DOPA-melanin may be caused by the occurrence of pheomelanin in addition to eumelanin in Cladosporium cladosporioides. The advanced spectral analysis in the wide range of microwave powers made it possible to compare changes in the free radical systems of different melanin polymers. This study is important for knowledge about the role of free radicals in the interactions of melanin with drugs.
Collapse
Affiliation(s)
- Magdalena Zdybel
- Department of Biophysics, Faculty of Pharmaceutical Sciences in Sosnowiec, Medical University of Silesia in Katowice, Jedności 8, 41-200 Sosnowiec, Poland
| | - Barbara Pilawa
- Department of Biophysics, Faculty of Pharmaceutical Sciences in Sosnowiec, Medical University of Silesia in Katowice, Jedności 8, 41-200 Sosnowiec, Poland
| | - Teresa Witoszyńska
- Department of Pharmaceutical Chemistry, Faculty of Pharmaceutical Sciences in Sosnowiec, Medical University of Silesia in Katowice, Jagiellońska 4, 41-200 Sosnowiec, Poland
| | - Dorota Wrześniok
- Department of Pharmaceutical Chemistry, Faculty of Pharmaceutical Sciences in Sosnowiec, Medical University of Silesia in Katowice, Jagiellońska 4, 41-200 Sosnowiec, Poland
| |
Collapse
|
20
|
Kurzyna JM, Kopiasz RJ, Paul M, Flont M, Baranowska P, Mierzejewska J, Drężek K, Tomaszewski W, Jastrzębska E, Jańczewski D. Unlocking the Potential: PEGylation and Molecular Weight Reduction of Ionenes for Enhanced Antifungal Activity and Biocompatibility. Macromol Biosci 2024; 24:e2400032. [PMID: 39018491 DOI: 10.1002/mabi.202400032] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2024] [Revised: 06/20/2024] [Indexed: 07/19/2024]
Abstract
Numerous synthetic polymers, imitating natural antimicrobial peptides, have demonstrated potent antimicrobial activity, positioning them as potential candidates for new antimicrobial drugs. However, the high activity of these molecules often comes at the cost of elevated toxicity against eukaryotic organisms. In this study, a series of cationic ionenes with varying molecular weights to assess the influence of polymer chain length on ionene activity is investigated. To enhance polymer antimicrobial activity and limit toxicity a PEG side chain is introduced into the repeating unit. The resulting molecules consistently exhibited high activity against three model organisms: E. coli, S. aureus and C. albicans. The incorporation of side PEG chain improves antifungal properties and biocompatibility, regardless of molecular weight. The most important finding of this work is that the reduction of polymer molecular mass led to increased antifungal activity and reduced cytotoxicity against HMF and MRC-5 cell lines simultaneously. As a result, the best-performing molecules reported herein displayed minimal inhibitory concentrations (MIC) as low as 2 and 0.0625 µg mL1 for C. albicans and C. tropicalis respectively, demonstrating exceptional selectivity. It is plausible that some of described herein molecules can serve as potential lead candidates for new antifungal drugs.
Collapse
Affiliation(s)
- Jan M Kurzyna
- Faculty of Chemistry, Warsaw University of Technology, Noakowskiego 3, Warsaw, 00-664, Poland
| | - Rafał J Kopiasz
- Faculty of Chemistry, Warsaw University of Technology, Noakowskiego 3, Warsaw, 00-664, Poland
- School of Pharmacy, University of Nottingham, Boots Science Building, University Park, Nottingham, NG7 2RD, UK
| | - Martyna Paul
- Faculty of Chemistry, Warsaw University of Technology, Noakowskiego 3, Warsaw, 00-664, Poland
- Laboratory of White Biotechnology, Institute of Biochemistry and Biophysics, Polish Academy of Sciences, Pawińskiego 5a, Warsaw, 02-106, Poland
| | - Magdalena Flont
- Centre for Advanced Materials and Technology (CEZAMAT), Warsaw University of Technology, Poleczki 19, Warsaw, 02-822, Poland
| | - Patrycja Baranowska
- Centre for Advanced Materials and Technology (CEZAMAT), Warsaw University of Technology, Poleczki 19, Warsaw, 02-822, Poland
| | - Jolanta Mierzejewska
- Faculty of Chemistry, Warsaw University of Technology, Noakowskiego 3, Warsaw, 00-664, Poland
| | - Karolina Drężek
- Faculty of Chemistry, Warsaw University of Technology, Noakowskiego 3, Warsaw, 00-664, Poland
| | - Waldemar Tomaszewski
- Faculty of Chemistry, Warsaw University of Technology, Noakowskiego 3, Warsaw, 00-664, Poland
| | - Elżbieta Jastrzębska
- Faculty of Chemistry, Warsaw University of Technology, Noakowskiego 3, Warsaw, 00-664, Poland
- Centre for Advanced Materials and Technology (CEZAMAT), Warsaw University of Technology, Poleczki 19, Warsaw, 02-822, Poland
| | - Dominik Jańczewski
- Faculty of Chemistry, Warsaw University of Technology, Noakowskiego 3, Warsaw, 00-664, Poland
| |
Collapse
|
21
|
Syvolos Y, Salama OE, Gerstein AC. Constraint on boric acid resistance and tolerance evolvability in Candida albicans. Can J Microbiol 2024; 70:384-393. [PMID: 38754137 DOI: 10.1139/cjm-2023-0225] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/18/2024]
Abstract
Boric acid is a broad-spectrum antimicrobial used to treat vulvovaginal candidiasis when patients relapse on the primary azole drug fluconazole. Candida albicans is the most common cause of vulvovaginal candidiasis, colloquially referred to as a "vaginal yeast infection". Little is known about the propensity of C. albicans to develop BA resistance or tolerance (the ability of a subpopulation to grow slowly in high levels of drug). We evolved 96 replicates from eight diverse C. albicans strains to increasing BA concentrations to test the evolvability of BA resistance and tolerance. Replicate growth was individually assessed daily, with replicates passaged when they had reached an optical density consistent with exponential growth. Many replicates went extinct quickly. Although some replicates could grow in much higher levels of BA than the ancestral strains, evolved populations isolated from the highest terminal BA levels (after 11 weeks of passages) surprisingly showed only modest growth improvements and only at low levels of BA. No large increases in resistance or tolerance were observed in the evolved replicates. Overall, our findings illustrate that there may be evolutionary constraints limiting the emergence of BA resistance and tolerance, which could explain why it remains an effective treatment for recurrent yeast infections.
Collapse
Affiliation(s)
- Yana Syvolos
- Department of Microbiology, Faculty of Science, University of Manitoba, Winnipeg, MB, Canada
| | - Ola E Salama
- Department of Microbiology, Faculty of Science, University of Manitoba, Winnipeg, MB, Canada
| | - Aleeza C Gerstein
- Department of Microbiology, Faculty of Science, University of Manitoba, Winnipeg, MB, Canada
- Department of Statistics, Faculty of Science, University of Manitoba, Winnipeg, MB, Canada
| |
Collapse
|
22
|
Huang Y, Su Y, Chen X, Xiao M, Xu Y. Insight into Virulence and Mechanisms of Amphotericin B Resistance in the Candida haemulonii Complex. J Fungi (Basel) 2024; 10:615. [PMID: 39330375 PMCID: PMC11433262 DOI: 10.3390/jof10090615] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2024] [Revised: 08/15/2024] [Accepted: 08/26/2024] [Indexed: 09/28/2024] Open
Abstract
The Candida haemulonii complex includes emerging opportunistic human fungal pathogens with documented multidrug-resistance profiles. It comprises Candida haemulonii sensu stricto, Candida haemulonii var. vulnera, Candida duobushaemulonii, Candida pseudohaemulonii, and Candida vulturna. In recent years, rates of clinical isolation of strains from this complex have increased in multiple countries, including China, Malaysia, and Brazil. Biofilm formation, hydrolytic enzymes, surface interaction properties, phenotype switching and cell aggregation abilities, extracellular vesicles production, stress response, and immune evasion help these fungi to infect the host and exert pathological effects. Multidrug resistance profiles also enhance the threat they pose; they exhibit low susceptibility to echinocandins and azoles and an intrinsic resistance to amphotericin B (AMB), the first fungal-specific antibiotic. AMB is commonly employed in antifungal treatments, and it acts via several known mechanisms. Given the propensity of clinical Candida species to initiate bloodstream infections, clarifying how C. haemulonii resists AMB is of critical clinical importance. This review outlines our present understanding of the C. haemulonii complex's virulence factors, the mechanisms of action of AMB, and the mechanisms underlying AMB resistance.
Collapse
Affiliation(s)
- Yuyan Huang
- Department of Laboratory Medicine, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Science and Peking Union Medical College, Beijing 100730, China
- Beijing Key Laboratory for Mechanisms Research and Precision Diagnosis of Invasive Fungal Diseases (BZ0447), Beijing 100730, China
- Graduate School, Chinese Academy of Medical Science and Peking Union Medical College, Beijing 100730, China
| | - Yanyu Su
- Department of Laboratory Medicine, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Science and Peking Union Medical College, Beijing 100730, China
- Beijing Key Laboratory for Mechanisms Research and Precision Diagnosis of Invasive Fungal Diseases (BZ0447), Beijing 100730, China
- Graduate School, Chinese Academy of Medical Science and Peking Union Medical College, Beijing 100730, China
| | - Xinfei Chen
- Department of Laboratory Medicine, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Science and Peking Union Medical College, Beijing 100730, China
- Beijing Key Laboratory for Mechanisms Research and Precision Diagnosis of Invasive Fungal Diseases (BZ0447), Beijing 100730, China
| | - Meng Xiao
- Department of Laboratory Medicine, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Science and Peking Union Medical College, Beijing 100730, China
- Beijing Key Laboratory for Mechanisms Research and Precision Diagnosis of Invasive Fungal Diseases (BZ0447), Beijing 100730, China
| | - Yingchun Xu
- Department of Laboratory Medicine, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Science and Peking Union Medical College, Beijing 100730, China
- Beijing Key Laboratory for Mechanisms Research and Precision Diagnosis of Invasive Fungal Diseases (BZ0447), Beijing 100730, China
| |
Collapse
|
23
|
Yiu B, Robbins N, Cowen LE. Interdisciplinary approaches for the discovery of novel antifungals. Trends Mol Med 2024; 30:723-735. [PMID: 38777733 PMCID: PMC11987087 DOI: 10.1016/j.molmed.2024.04.018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2024] [Revised: 04/10/2024] [Accepted: 04/26/2024] [Indexed: 05/25/2024]
Abstract
Pathogenic fungi are an increasing public health concern. The emergence of antifungal resistance coupled with the scarce antifungal arsenal highlights the need for novel therapeutics. Fortunately, the past few years have witnessed breakthroughs in antifungal development. Here, we discuss pivotal interdisciplinary approaches for the discovery of novel compounds with efficacy against diverse fungal pathogens. We highlight breakthroughs in improving current antifungal scaffolds, as well as the utility of compound combinations to extend the lifespan of antifungals. Finally, we describe efforts to refine candidate chemical scaffolds by leveraging structure-guided approaches, and the use of functional genomics to expand our knowledge of druggable antifungal targets. Overall, we emphasize the importance of interdisciplinary collaborations in the endeavor to develop innovative antifungal strategies.
Collapse
Affiliation(s)
- Bonnie Yiu
- Department of Molecular Genetics, University of Toronto, Toronto, Ontario, M5G 1M1, Canada
| | - Nicole Robbins
- Department of Molecular Genetics, University of Toronto, Toronto, Ontario, M5G 1M1, Canada
| | - Leah E Cowen
- Department of Molecular Genetics, University of Toronto, Toronto, Ontario, M5G 1M1, Canada.
| |
Collapse
|
24
|
Reitler P, Regan J, DeJarnette C, Srivastava A, Carnahan J, Tucker KM, Meibohm B, Peters BM, Palmer GE. The atypical antipsychotic aripiprazole alters the outcome of disseminated Candida albicans infections. Infect Immun 2024; 92:e0007224. [PMID: 38899880 PMCID: PMC11238555 DOI: 10.1128/iai.00072-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2024] [Accepted: 04/29/2024] [Indexed: 06/21/2024] Open
Abstract
Invasive fungal infections impose an enormous clinical, social, and economic burden on humankind. One of the most common species responsible for invasive fungal infections is Candida albicans. More than 30% of patients with disseminated candidiasis fail therapy with existing antifungal drugs, including the widely used azole class. We previously identified a collection of 13 medications that antagonize the activity of the azoles on C. albicans. Although gain-of-function mutations responsible for antifungal resistance are often associated with reduced fitness and virulence, it is currently unknown how exposure to azole antagonistic drugs impacts C. albicans physiology, fitness, or virulence. In this study, we examined how exposure to seven azole antagonists affects C. albicans phenotype and capacity to cause disease. Most of the azole antagonists appear to have little impact on fungal growth, morphology, stress tolerance, or gene transcription. However, aripiprazole had a modest impact on C. albicans hyphal growth and increased cell wall chitin content. It also aggravated the disseminated C. albicans infections in mice. This effect was abrogated in immunosuppressed mice, indicating that it is at least in part dependent upon host immune responses. Collectively, these data provide proof of principle that unanticipated drug-fungus interactions have the potential to influence the incidence and outcomes of invasive fungal disease.
Collapse
Affiliation(s)
- Parker Reitler
- Integrated Program in Biomedical Sciences, University of Tennessee Health Science Center, Memphis, Tennessee, USA
| | - Jessica Regan
- Pharmaceutical Sciences Program, College of Graduate Health Sciences, College of Pharmacy, University of Tennessee Health Sciences Center, Memphis, Tennessee, USA
| | - Christian DeJarnette
- Department of Clinical Pharmacy and Translational Science, College of Pharmacy, University of Tennessee Health Sciences Center, Memphis, Tennessee, USA
| | - Ashish Srivastava
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Tennessee Health Science Center, Memphis, Tennessee, USA
| | - Jen Carnahan
- Department of Clinical Pharmacy and Translational Science, College of Pharmacy, University of Tennessee Health Sciences Center, Memphis, Tennessee, USA
| | - Katie M. Tucker
- Department of Clinical Pharmacy and Translational Science, College of Pharmacy, University of Tennessee Health Sciences Center, Memphis, Tennessee, USA
| | - Bernd Meibohm
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Tennessee Health Science Center, Memphis, Tennessee, USA
| | - Brian M. Peters
- Department of Clinical Pharmacy and Translational Science, College of Pharmacy, University of Tennessee Health Sciences Center, Memphis, Tennessee, USA
- Department of Microbiology, Immunology, and Biochemistry, College of Medicine, University of Tennessee Health Science Center, Memphis, Tennessee, USA
| | - Glen E. Palmer
- Department of Clinical Pharmacy and Translational Science, College of Pharmacy, University of Tennessee Health Sciences Center, Memphis, Tennessee, USA
- Department of Microbiology, Immunology, and Biochemistry, College of Medicine, University of Tennessee Health Science Center, Memphis, Tennessee, USA
| |
Collapse
|
25
|
Nunes IPF, de Jesus RS, Almeida JA, Costa WLR, Malta M, Soares LGP, de Almeida PF, Pinheiro ALB. Evaluation of 1,9-Dimethyl-Methylene Blue nanoencapsulation using rhamnolipid nanoparticles to potentiate the Photodynamic Therapy technique in Candida albicans: In vitro study. JOURNAL OF PHOTOCHEMISTRY AND PHOTOBIOLOGY. B, BIOLOGY 2024; 256:112943. [PMID: 38788534 DOI: 10.1016/j.jphotobiol.2024.112943] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/11/2023] [Revised: 04/23/2024] [Accepted: 05/18/2024] [Indexed: 05/26/2024]
Abstract
With the rapid development of nanotechnology, various functional nanomaterials have shown exciting potential in biomedical areas such as drug delivery, antitumor, and antibacterial therapy. These nanomaterials improve the stability and selectivity of loaded drugs, reduce drug-induced side effects, realize controlled and targeted drug release, and increase therapeutic efficacy. The increased resistance to antifungal microbicides in medical practice and their side effects stimulate interest in new therapies, such as Photodynamic Therapy (PDT), which do not generate resistance in microorganisms and effectively control the pathology. The present study aimed to evaluate, in vitro, the efficacy of photodynamic therapy on Candida albicans using 1,9-Dimethyl-Methylene Blue (DMMB) as photosensitizer, red LED (λ630), and nanoencapsulation of DMMB (RL-NPs/DMMB) using rhamnolipids produced by Pseudomonas aeruginosa to evaluate if there is better performance of DMMB + RL particles compared to DMMB alone via the characterization of DMMB + RL and colony forming count. The tests were carried out across six experimental groups (Control, DMMB, RL-NPs, RL-NPs/DMMB, PDT and PDT + RL-NPs/DMMB) using in the groups with nanoparticles, DMMB (750 ng/mL) encapsulated with rhamnolipids in a 1:1 ratio, the light source consisted of a prototype built with a set of red LEDs with an energy density of 20 J/cm2. The results showed that applying PDT combined with encapsulation (RL-NPs/DMMB) was a more practical approach to inhibit Candida albicans (2 log reduction) than conventional applications, with a possible clinical application protocol.
Collapse
Affiliation(s)
- Iago P F Nunes
- Center of Biophotonics, School of Dentistry, Federal University of Bahia - UFBA, Av. Araújo Pinho, 62, Canela, Salvador, BA CEP: 40110-150, Brazil
| | - Romário S de Jesus
- Center of Biophotonics, School of Dentistry, Federal University of Bahia - UFBA, Av. Araújo Pinho, 62, Canela, Salvador, BA CEP: 40110-150, Brazil
| | - Jeovana Amorim Almeida
- Center of Biophotonics, School of Dentistry, Federal University of Bahia - UFBA, Av. Araújo Pinho, 62, Canela, Salvador, BA CEP: 40110-150, Brazil.
| | - Wellington L R Costa
- Center of Biophotonics, School of Dentistry, Federal University of Bahia - UFBA, Av. Araújo Pinho, 62, Canela, Salvador, BA CEP: 40110-150, Brazil.
| | - Marcos Malta
- Laboratory of Biotechnology and Chemistry of Microorganisms, Institute of Chemistry, Federal University of Bahia, Rua Barão de Geremoabo, 147, Ondina, Salvador, Bahia CEP: 40.170-115, Brazil.
| | - Luiz G P Soares
- Center of Biophotonics, School of Dentistry, Federal University of Bahia - UFBA, Av. Araújo Pinho, 62, Canela, Salvador, BA CEP: 40110-150, Brazil
| | - Paulo F de Almeida
- Laboratory of Biotechnology and Ecology of Microorganisms, Institute of Health Science, Federal University of Bahia, Reitor Miguel Calmon Ave, S/N, Salvador, BA CEP:40110-100, Brazil
| | - Antônio L B Pinheiro
- Center of Biophotonics, School of Dentistry, Federal University of Bahia - UFBA, Av. Araújo Pinho, 62, Canela, Salvador, BA CEP: 40110-150, Brazil.
| |
Collapse
|
26
|
Das S, Singh S, Tawde Y, Dutta TK, Rudramurthy SM, Kaur H, Shaw T, Ghosh A. Comparative fitness trade-offs associated with azole resistance in Candida auris clinical isolates. Heliyon 2024; 10:e32386. [PMID: 38988564 PMCID: PMC11233892 DOI: 10.1016/j.heliyon.2024.e32386] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2024] [Revised: 05/31/2024] [Accepted: 06/03/2024] [Indexed: 07/12/2024] Open
Abstract
Multidrug-resistant yeast Candida auris is a serious threat to public health with documented survival in various hospital niches. The dynamics of this survival benefit and its trade off with drug resistance are still unknown for this pathogen. In this study we investigate the oxidative stress response (OSR) in fluconazole-resistant C. auris and compare its relative fitness with fluconazole-susceptible strains. A total of 351 C. auris clinical isolates (61 fluconazole-susceptible and 290 fluconazole-resistant) were screened for stress tolerance by spot assay and 95.08 % fluconazole-susceptible isolates were hyper-resistant to oxidative stress while majority (94.5 %) fluconazole-resistant isolates had lower oxidative tolerance. Expression of Hog1 and Cta1 gene transcript levels and cellular catalase levels were significantly higher in fluconazole-susceptible isolates and a corresponding higher intracellular reactive oxygen species level (iROS) was accumulated in the fluconazole-resistant isolates. Biofilm formation and cell viability under oxidative stress revealed higher biofilm formation and better viability in fluconazole-susceptible isolates. Fluconazole-resistant isolates had higher basal cell wall chitin. On comparison of virulence, the % cytotoxicity in A549 cell line was higher in fluconazole-susceptible isolates and the median survival of the infected larvae in G. mellonella infection model was higher in fluconazole-resistant (5; IQR:4.5-5 days) vs. fluconazole-susceptible C. auris (2; IQR:1.5-2.5 days). All organisms evolve with changes in their environmental conditions, to ensure an optimal balance between proliferation and survival. Development of tolerance to a certain kind of stress example antifungal exposure in yeast can leads to a compensatory decrease in tolerance for other stresses. This study provides useful insights into the comparative fitness and antifungal susceptibility trade off in C. auris. We report a negative association between H2O2 tolerance and fluconazole susceptibility. Using in-vitro cell cytotoxicity and in-vivo survival assays we also demonstrate the higher virulence potential of fluconazole-susceptible C. auris isolates corroborating the negative correlation between susceptibility and pathogen survival or virulence. These findings could also be translated to clinical practice by investigating the possibility of using molecules targeting stress response and fitness regulating pathways for management of this serious infection.
Collapse
Affiliation(s)
- Sourav Das
- Department of Medical Microbiology. Post Graduate Institute of Medical Education and Research, Chandigarh, India
| | - Shreya Singh
- Department of Microbiology. Dr. B. R. Ambedkar State Institute of Medical Science, Mohali, Punjab, India
| | - Yamini Tawde
- Department of Medical Microbiology. Post Graduate Institute of Medical Education and Research, Chandigarh, India
| | - Tushar K. Dutta
- Division of Nematology, ICAR-Indian Agricultural Research Institute, New Delhi, India
| | - Shivaprakash M. Rudramurthy
- Department of Medical Microbiology. Post Graduate Institute of Medical Education and Research, Chandigarh, India
| | - Harsimran Kaur
- Department of Medical Microbiology. Post Graduate Institute of Medical Education and Research, Chandigarh, India
| | - Tushar Shaw
- Department of Life and Allied Health Sciences, Ramaiah university of Applied sciences, Bangalore, India
| | - Anup Ghosh
- Department of Medical Microbiology. Post Graduate Institute of Medical Education and Research, Chandigarh, India
| |
Collapse
|
27
|
Zhang ZH, Sun LL, Fu BQ, Deng J, Jia CL, Miao MX, Yang F, Cao YB, Yan TH. Aneuploidy underlies brefeldin A-induced antifungal drug resistance in Cryptococcus neoformans. Front Cell Infect Microbiol 2024; 14:1397724. [PMID: 38966251 PMCID: PMC11222406 DOI: 10.3389/fcimb.2024.1397724] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2024] [Accepted: 05/17/2024] [Indexed: 07/06/2024] Open
Abstract
Cryptococcus neoformans is at the top of the list of "most wanted" human pathogens. Only three classes of antifungal drugs are available for the treatment of cryptococcosis. Studies on antifungal resistance mechanisms are limited to the investigation of how a particular antifungal drug induces resistance to a particular drug, and the impact of stresses other than antifungals on the development of antifungal resistance and even cross-resistance is largely unexplored. The endoplasmic reticulum (ER) is a ubiquitous subcellular organelle of eukaryotic cells. Brefeldin A (BFA) is a widely used chemical inducer of ER stress. Here, we found that both weak and strong selection by BFA caused aneuploidy formation in C. neoformans, mainly disomy of chromosome 1, chromosome 3, and chromosome 7. Disomy of chromosome 1 conferred cross-resistance to two classes of antifungal drugs: fluconazole and 5-flucytosine, as well as hypersensitivity to amphotericin B. However, drug resistance was unstable, due to the intrinsic instability of aneuploidy. We found overexpression of AFR1 on Chr1 and GEA2 on Chr3 phenocopied BFA resistance conferred by chromosome disomy. Overexpression of AFR1 also caused resistance to fluconazole and hypersensitivity to amphotericin B. Furthermore, a strain with a deletion of AFR1 failed to form chromosome 1 disomy upon BFA treatment. Transcriptome analysis indicated that chromosome 1 disomy simultaneously upregulated AFR1, ERG11, and other efflux and ERG genes. Thus, we posit that BFA has the potential to drive the rapid development of drug resistance and even cross-resistance in C. neoformans, with genome plasticity as the accomplice.
Collapse
Affiliation(s)
- Zhi-hui Zhang
- Institute of Vascular Disease, Shanghai TCM-Integrated Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Liu-liu Sun
- Department of Pharmacy, Shanghai Tenth People’s Hospital, Tongji University School of Medicine, Shanghai, China
| | - Bu-qing Fu
- Laboratory Department, Jiangsu Province Hospital of Chinese Medicine, Nanjing, China
| | - Jie Deng
- Institute of Vascular Disease, Shanghai TCM-Integrated Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Cheng-lin Jia
- Institute of Vascular Disease, Shanghai TCM-Integrated Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Ming-xing Miao
- Department of Physiology and Pharmacology, School of Basic Medicine and Clinical Pharmacy, China Pharmaceutical University, Nanjing, China
| | - Feng Yang
- Institute of Vascular Disease, Shanghai TCM-Integrated Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China
- Department of Pharmacy, Shanghai Tenth People’s Hospital, Tongji University School of Medicine, Shanghai, China
| | - Yong-bing Cao
- Institute of Vascular Disease, Shanghai TCM-Integrated Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Tian-hua Yan
- Department of Physiology and Pharmacology, School of Basic Medicine and Clinical Pharmacy, China Pharmaceutical University, Nanjing, China
| |
Collapse
|
28
|
Rhodes J, Jacobs J, Dennis EK, Manjari SR, Banavali N, Marlow R, Rokebul MA, Chaturvedi S, Chaturvedi V. What makes Candida auris pan-drug resistant? Integrative insights from genomic, transcriptomic, and phenomic analysis of clinical strains resistant to all four major classes of antifungal drugs. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.06.18.599548. [PMID: 38948750 PMCID: PMC11212996 DOI: 10.1101/2024.06.18.599548] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/02/2024]
Abstract
The global epidemic of drug-resistant Candida auris continues unabated. We do not know what caused the unprecedented appearance of pan-drug resistant (PDR) Candida auris strains in a hospitalized patient in New York; the initial report highlighted both known and unique mutations in the prominent gene targets of azoles, amphotericin B, echinocandins, and flucytosine antifungal drugs. However, the factors that allow C. auris to acquire multi-drug resistance and pan-drug resistance are not known. Therefore, we conducted a comprehensive genomic, transcriptomic, and phenomic analysis to better understand PDR C. auris . Among 1,570 genetic variants in drug-resistant C. auris , 299 were unique to PDR strains. The whole genome sequencing results suggested perturbations in genes associated with nucleotide biosynthesis, mRNA processing, and nuclear export of mRNA. Whole transcriptome sequencing of PDR C. auris revealed two genes to be significantly differentially expressed - a DNA repair protein and DNA replication-dependent chromatin assembly factor 1. Of 59 novel transcripts, 12 candidate transcripts had no known homology among expressed transcripts found in other organisms. We observed no fitness defects among multi-drug resistant (MDR) and PDR C. auris strains grown in nutrient-deficient or - enriched media at different temperatures. Phenotypic profiling revealed wider adaptability to nitrogenous nutrients with an uptick in the utilization of substrates critical in upper glycolysis and tricarboxylic acid cycle. Structural modelling of 33-amino acid deletion in the gene for uracil phosphoribosyl transferase suggested an alternate route in C. auris to generate uracil monophosphate that does not accommodate 5-fluorouracil as a substrate. Overall, we find evidence of metabolic adaptations in MDR and PDR C. auris in response to antifungal drug lethality without deleterious fitness costs.
Collapse
|
29
|
Argüelles JC, Sánchez-Fresneda R, Argüelles A, Solano F. Natural Substances as Valuable Alternative for Improving Conventional Antifungal Chemotherapy: Lights and Shadows. J Fungi (Basel) 2024; 10:334. [PMID: 38786689 PMCID: PMC11122340 DOI: 10.3390/jof10050334] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2024] [Revised: 05/01/2024] [Accepted: 05/02/2024] [Indexed: 05/25/2024] Open
Abstract
Fungi are eukaryotic organisms with relatively few pathogenic members dangerous for humans, usually acting as opportunistic infections. In the last decades, several life-threatening fungal infections have risen mostly associated with the worldwide extension of chronic diseases and immunosuppression. The available antifungal therapies cannot combat this challenge because the arsenal of compounds is scarce and displays low selective action, significant adverse effects, and increasing resistance. A growing isolation of outbreaks triggered by fungal species formerly considered innocuous is being recorded. From ancient times, natural substances harvested from plants have been applied to folk medicine and some of them recently emerged as promising antifungals. The most used are briefly revised herein. Combinations of chemotherapeutic drugs with natural products to obtain more efficient and gentle treatments are also revised. Nevertheless, considerable research work is still necessary before their clinical use can be generally accepted. Many natural products have a highly complex chemical composition, with the active principles still partially unknown. Here, we survey the field underlying lights and shadows of both groups. More studies involving clinical strains are necessary, but we illustrate this matter by discussing the potential clinical applications of combined carnosic acid plus propolis formulations.
Collapse
Affiliation(s)
- Juan Carlos Argüelles
- Área de Microbiología, Facultad Biología, University Murcia, Campus Espinardo, 30100 Murcia, Spain; (J.C.A.); (R.S.-F.); (A.A.)
| | - Ruth Sánchez-Fresneda
- Área de Microbiología, Facultad Biología, University Murcia, Campus Espinardo, 30100 Murcia, Spain; (J.C.A.); (R.S.-F.); (A.A.)
| | - Alejandra Argüelles
- Área de Microbiología, Facultad Biología, University Murcia, Campus Espinardo, 30100 Murcia, Spain; (J.C.A.); (R.S.-F.); (A.A.)
| | - Francisco Solano
- Departamento Bioquímica, Biología Molecular B & Inmunología, Facultad Medicina, University Murcia, Campus El Palmar, 30112 Murcia, Spain
| |
Collapse
|
30
|
Ahmady L, Gothwal M, Mukkoli MM, Bari VK. Antifungal drug resistance in Candida: a special emphasis on amphotericin B. APMIS 2024; 132:291-316. [PMID: 38465406 DOI: 10.1111/apm.13389] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2023] [Accepted: 02/12/2024] [Indexed: 03/12/2024]
Abstract
Invasive fungal infections in humans caused by several Candida species, increased considerably in immunocompromised or critically ill patients, resulting in substantial morbidity and mortality. Candida albicans is the most prevalent species, although the frequency of these organisms varies greatly according to geographic region. Infections with C. albicans and non-albicans Candida species have become more common, especially in the past 20 years, as a result of aging, immunosuppressive medication use, endocrine disorders, malnourishment, extended use of medical equipment, and an increase in immunogenic diseases. Despite C. albicans being the species most frequently associated with human infections, C. glabrata, C. parapsilosis, C. tropicalis, and C. krusei also have been identified. Several antifungal drugs with different modes of action are approved for use in clinical settings to treat fungal infections. However, due to the common eukaryotic structure of humans and fungi, only a limited number of antifungal drugs are available for therapeutic use. Furthermore, drug resistance in Candida species has emerged as a result of the growing use of currently available antifungal drugs against fungal infections. Amphotericin B (AmB), a polyene class of antifungal drugs, is mainly used for the treatment of serious systemic fungal infections. AmB interacts with fungal plasma membrane ergosterol, triggering cellular ion leakage via pore formation, or extracting the ergosterol from the plasma membrane inducing cellular death. AmB resistance is primarily caused by changes in the content or structure of ergosterol. This review summarizes the antifungal drug resistance exhibited by Candida species, with a special focus on AmB.
Collapse
Affiliation(s)
- Lailema Ahmady
- Department of Biochemistry, School of Basic Sciences, Central University of Punjab, Bathinda, India
| | - Manisha Gothwal
- Department of Biochemistry, School of Basic Sciences, Central University of Punjab, Bathinda, India
| | | | - Vinay Kumar Bari
- Department of Biochemistry, School of Basic Sciences, Central University of Punjab, Bathinda, India
| |
Collapse
|
31
|
Yona A, Fridman M. Poacic Acid, a Plant-Derived Stilbenoid, Augments Cell Wall Chitin Production, but Its Antifungal Activity Is Hindered by This Polysaccharide and by Fungal Essential Metals. Biochemistry 2024; 63:1051-1065. [PMID: 38533731 PMCID: PMC11025111 DOI: 10.1021/acs.biochem.3c00595] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2023] [Revised: 03/17/2024] [Accepted: 03/18/2024] [Indexed: 03/28/2024]
Abstract
Climate and environmental changes have modified the habitats of fungal pathogens, inflicting devastating effects on livestock and crop production. Additionally, drug-resistant fungi are increasing worldwide, driving the urgent need to identify new molecular scaffolds for the development of antifungal agents for humans, animals, and plants. Poacic acid (PA), a plant-derived stilbenoid, was recently discovered to be a novel molecular scaffold that inhibits the growth of several fungi. Its antifungal activity has been associated with perturbation of the production/assembly of the fungal cell wall β-1,3-glucan, but its mode of action is not resolved. In this study, we investigated the antifungal activity of PA and its derivatives on a panel of yeast. PA had a fungistatic effect on S. cerevisiae and a fungicidal effect on plasma membrane-damaged Candida albicans mutants. Live cell fluorescence microscopy experiments revealed that PA increases chitin production and modifies its cell wall distribution. Chitin production and cell growth returned to normal after prolonged incubation. The antifungal activity of PA was reduced in the presence of exogenous chitin, suggesting that the potentiation of chitin production is a stress response that helps the yeast cell overcome the effect of this antifungal stilbenoid. Growth inhibition was also reduced by metal ions, indicating that PA affects the metal homeostasis. These findings suggest that PA has a complex antifungal mechanism of action that involves perturbation of the cell wall β-1,3-glucan production/assembly, chitin production, and metal homeostasis.
Collapse
Affiliation(s)
- Adi Yona
- School of Chemistry, Raymond
& Beverly Sackler Faculty of Exact Sciences, Tel Aviv University, Tel Aviv 6997801, Israel
| | - Micha Fridman
- School of Chemistry, Raymond
& Beverly Sackler Faculty of Exact Sciences, Tel Aviv University, Tel Aviv 6997801, Israel
| |
Collapse
|
32
|
Reitler P, Regan J, DeJarnette C, Srivastava A, Carnahan J, Tucker KM, Meibohm B, Peters BM, Palmer GE. The atypical antipsychotic aripiprazole alters the outcome of disseminated Candida albicans infections. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.02.13.580133. [PMID: 38405954 PMCID: PMC10888916 DOI: 10.1101/2024.02.13.580133] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/27/2024]
Abstract
Invasive fungal infections (IFIs) impose an enormous clinical, social, and economic burden on humankind. For many IFIs, ≥ 30% of patients fail therapy with existing antifungal drugs, including the widely used azole class. We previously identified a collection of 13 approved medications that antagonize azole activity. While gain-of-function mutants resulting in antifungal resistance are often associated with reduced fitness and virulence, it is currently unknown how exposure to azole antagonistic drugs impact C. albicans physiology, fitness, or virulence. In this study, we examined how exposure to azole antagonists affected C. albicans phenotype and capacity to cause disease. We discovered that most of the azole antagonists had little impact on fungal growth, morphology, stress tolerance, or gene transcription. However, aripiprazole had a modest impact on C. albicans hyphal growth and increased cell wall chitin content. It also worsened the outcome of disseminated infections in mice at human equivalent concentrations. This effect was abrogated in immunosuppressed mice, indicating an additional impact of aripiprazole on host immunity. Collectively, these data provide proof-of-principle that unanticipated drug-fungus interactions have the potential to influence the incidence and outcomes of invasive fungal disease.
Collapse
Affiliation(s)
- Parker Reitler
- Integrated Program in Biomedical Sciences, College of Graduate Health Sciences, University of Tennessee Health Science Center, Memphis, Tennessee, USA
| | - Jessica Regan
- Pharmaceutical Sciences Program, College of Graduate Health Sciences, University of Tennessee Health Sciences Center, Memphis, Tennessee, USA
| | - Christian DeJarnette
- Department of Clinical Pharmacy and Translational Science, College of Pharmacy, University of Tennessee Health Sciences Center, Memphis, Tennessee, USA
| | - Ashish Srivastava
- Department of Pharmaceutical Sciences College of Pharmacy, University of Tennessee Health Sciences Center, Memphis, Tennessee, USA
| | - Jen Carnahan
- Department of Clinical Pharmacy and Translational Science, College of Pharmacy, University of Tennessee Health Sciences Center, Memphis, Tennessee, USA
| | - Katie M. Tucker
- Department of Clinical Pharmacy and Translational Science, College of Pharmacy, University of Tennessee Health Sciences Center, Memphis, Tennessee, USA
| | - Bernd Meibohm
- Department of Pharmaceutical Sciences College of Pharmacy, University of Tennessee Health Sciences Center, Memphis, Tennessee, USA
| | - Brian M Peters
- Department of Clinical Pharmacy and Translational Science, College of Pharmacy, University of Tennessee Health Sciences Center, Memphis, Tennessee, USA
- Department of Microbiology, Immunology, and Biochemistry, College of Medicine, University of Tennessee Health Science Center, Memphis, Tennessee, USA
| | - Glen E. Palmer
- Department of Clinical Pharmacy and Translational Science, College of Pharmacy, University of Tennessee Health Sciences Center, Memphis, Tennessee, USA
- Department of Microbiology, Immunology, and Biochemistry, College of Medicine, University of Tennessee Health Science Center, Memphis, Tennessee, USA
| |
Collapse
|
33
|
Boakye-Yiadom E, Odoom A, Osman AH, Ntim OK, Kotey FCN, Ocansey BK, Donkor ES. Fungal Infections, Treatment and Antifungal Resistance: The Sub-Saharan African Context. Ther Adv Infect Dis 2024; 11:20499361241297525. [PMID: 39544852 PMCID: PMC11562003 DOI: 10.1177/20499361241297525] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2024] [Accepted: 10/16/2024] [Indexed: 11/17/2024] Open
Abstract
Fungal pathogens cause a wide range of infections in humans, from superficial to disfiguring, allergic syndromes, and life-threatening invasive infections, affecting over a billion individuals globally. With an estimated 1.5 million deaths annually attributable to them, fungal pathogens are a major cause of mortality in humans, especially people with underlying immunosuppression. The continuous increase in the population of individuals at risk of fungal infections in sub-Saharan Africa, such as HIV patients, tuberculosis patients, intensive care patients, patients with haematological malignancies, transplant (haematopoietic stem cell and organ) recipients and the growing global threat of multidrug-resistant fungal strains, raise the need for an appreciation of the region's perspective on antifungal usage and resistance. In addition, the unavailability of recently introduced novel antifungal drugs in sub-Saharan Africa further calls for regular evaluation of resistance to antifungal agents in these settings. This is critical for ensuring appropriate and optimal use of the limited available arsenal to minimise antifungal resistance. This review, therefore, elaborates on the multifaceted nature of fungal resistance to the available antifungal drugs on the market and further provides insights into the prevalence of fungal infections and the use of antifungal agents in sub-Saharan Africa.
Collapse
Affiliation(s)
- Emily Boakye-Yiadom
- Department of Medical Microbiology, University of Ghana Medical School, Accra, Ghana
- Department of Microbiology and Immunology, University of Health and Allied Sciences, Ho, Ghana
| | - Alex Odoom
- Department of Medical Microbiology, University of Ghana Medical School, Accra, Ghana
| | - Abdul-Halim Osman
- Department of Medical Microbiology, University of Ghana Medical School, Accra, Ghana
| | - Onyansaniba K. Ntim
- Department of Medical Microbiology, University of Ghana Medical School, Accra, Ghana
| | - Fleischer C. N. Kotey
- Department of Medical Microbiology, University of Ghana Medical School, Accra, Ghana
| | - Bright K. Ocansey
- Division of Evolution, Infection and Genomics, Faculty of Biology, Medicine and Health, University of Manchester, Manchester Academic Health Science Centre, Manchester, UK
| | - Eric S. Donkor
- Department of Medical Microbiology, University of Ghana Medical School, Accra, P.O. Box KB 4236, Ghana
| |
Collapse
|
34
|
Boyce KJ. The Microevolution of Antifungal Drug Resistance in Pathogenic Fungi. Microorganisms 2023; 11:2757. [PMID: 38004768 PMCID: PMC10673521 DOI: 10.3390/microorganisms11112757] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2023] [Revised: 10/30/2023] [Accepted: 10/30/2023] [Indexed: 11/26/2023] Open
Abstract
The mortality rates of invasive fungal infections remain high because of the limited number of antifungal drugs available and antifungal drug resistance, which can rapidly evolve during treatment. Mutations in key resistance genes such as ERG11 were postulated to be the predominant cause of antifungal drug resistance in the clinic. However, recent advances in whole genome sequencing have revealed that there are multiple mechanisms leading to the microevolution of resistance. In many fungal species, resistance can emerge through ERG11-independent mechanisms and through the accumulation of mutations in many genes to generate a polygenic resistance phenotype. In addition, genome sequencing has revealed that full or partial aneuploidy commonly occurs in clinical or microevolved in vitro isolates to confer antifungal resistance. This review will provide an overview of the mutations known to be selected during the adaptive microevolution of antifungal drug resistance and focus on how recent advances in genome sequencing technology have enhanced our understanding of this process.
Collapse
Affiliation(s)
- Kylie J Boyce
- School of Science, RMIT University, Melbourne, VIC 3085, Australia
| |
Collapse
|
35
|
Stover KR, Hawkins BK, Keck JM, Barber KE, Cretella DA. Antifungal resistance, combinations and pipeline: oh my! Drugs Context 2023; 12:2023-7-1. [PMID: 38021410 PMCID: PMC10653594 DOI: 10.7573/dic.2023-7-1] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2023] [Accepted: 09/26/2023] [Indexed: 12/01/2023] Open
Abstract
Invasive fungal infections are a strong contributor to healthcare costs, morbidity and mortality, especially amongst hospitalized patients. Historically, Candida was responsible for approximately 15% of all nosocomial bloodstream infections. In the past 10 years, the epidemiology of Candida species has altered, with increasing prevalence of resistant species. With rising fungal resistance, especially in Candida spp., the demand for novel antifungal therapies has exponentially increased over the last decade. Newer antifungal agents have become an attractive option for patients needing long-term therapy for infections or those requiring antifungal prophylaxis. Despite advances in coverage of non-Candida pathogens with newer agents, clinical scenarios involving multidrug-resistant fungal pathogens continue to arise in practice. Combination antifungal therapy can lead to a host of side-effects, some of which can be drug limiting. Additional antifungal therapies with enhanced fungal spectrum of activity and decreased rates of adverse effects are warranted. Fosmanogepix, ibrexafungerp, olorofim and rezafungin may help fill some of these gaps in the antifungal armamentarium. This article is part of the Challenges and strategies in the management of invasive fungal infections Special Issue: https://www.drugsincontext.com/special_issues/challenges-and-strategies-in-the-management-of-invasive-fungal-infections.
Collapse
Affiliation(s)
- Kayla R Stover
- Department of Pharmacy Practice, University of Mississippi School of Pharmacy, Jackson, MS, USA
| | - Brandon K Hawkins
- Department of Clinical Pharmacy and Translational Science, The University of Tennessee Health Science Center, Knoxville, TN, USA
| | - J Myles Keck
- Department of Pharmacy, University of Arkansas for Medical Sciences, Little Rock, AR, USA
| | - Katie E Barber
- Department of Pharmacy Practice, University of Mississippi School of Pharmacy, Jackson, MS, USA
| | - David A Cretella
- Division of Infectious Diseases, University of Mississippi Medical Center, Jackson, MS, USA
| |
Collapse
|
36
|
Miele L, Evans RML, Cunniffe NJ, Torres-Barceló C, Bevacqua D. Evolutionary Epidemiology Consequences of Trait-Dependent Control of Heterogeneous Parasites. Am Nat 2023; 202:E130-E146. [PMID: 37963120 DOI: 10.1086/726062] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2023]
Abstract
AbstractDisease control can induce both demographic and evolutionary responses in host-parasite systems. Foreseeing the outcome of control therefore requires knowledge of the eco-evolutionary feedback between control and system. Previous work has assumed that control strategies have a homogeneous effect on the parasite population. However, this is not true when control targets those traits that confer to the parasite heterogeneous levels of resistance, which can additionally be related to other key parasite traits through evolutionary trade-offs. In this work, we develop a minimal model coupling epidemiological and evolutionary dynamics to explore possible trait-dependent effects of control strategies. In particular, we consider a parasite expressing continuous levels of a trait-determining resource exploitation and a control treatment that can be either positively or negatively correlated with that trait. We demonstrate the potential of trait-dependent control by considering that the decision maker may want to minimize both the damage caused by the disease and the use of treatment, due to possible environmental or economic costs. We identify efficient strategies showing that the optimal type of treatment depends on the amount applied. Our results pave the way for the study of control strategies based on evolutionary constraints, such as collateral sensitivity and resistance costs, which are receiving increasing attention for both public health and agricultural purposes.
Collapse
|
37
|
Richards A, Lupoli TJ. Peptide-based molecules for the disruption of bacterial Hsp70 chaperones. Curr Opin Chem Biol 2023; 76:102373. [PMID: 37516006 PMCID: PMC11217992 DOI: 10.1016/j.cbpa.2023.102373] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2023] [Revised: 06/24/2023] [Accepted: 06/26/2023] [Indexed: 07/31/2023]
Abstract
DnaK is a chaperone that aids in nascent protein folding and the maintenance of proteome stability across bacteria. Due to the importance of DnaK in cellular proteostasis, there have been efforts to generate molecules that modulate its function. In nature, both protein substrates and antimicrobial peptides interact with DnaK. However, many of these ligands interact with other cellular machinery as well. Recent work has sought to modify these peptide scaffolds to create DnaK-selective and species-specific probes. Others have reported protein domain mimics of interaction partners to disrupt cellular DnaK function and high-throughput screening approaches to discover clinically-relevant peptidomimetics that inhibit DnaK. The described work provides a foundation for the design of new assays and molecules to regulate DnaK activity.
Collapse
Affiliation(s)
- Aweon Richards
- Department of Chemistry, New York University, New York, NY 10003, USA
| | - Tania J Lupoli
- Department of Chemistry, New York University, New York, NY 10003, USA.
| |
Collapse
|
38
|
Affiliation(s)
- Seána Duggan
- Medical Research Council Centre for Medical Mycology at The University of Exeter, Exeter, United Kingdom
| | - Jane Usher
- Medical Research Council Centre for Medical Mycology at The University of Exeter, Exeter, United Kingdom
| |
Collapse
|
39
|
Mehta D, Saini V, Bajaj A. Recent developments in membrane targeting antifungal agents to mitigate antifungal resistance. RSC Med Chem 2023; 14:1603-1628. [PMID: 37731690 PMCID: PMC10507810 DOI: 10.1039/d3md00151b] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2023] [Accepted: 06/22/2023] [Indexed: 09/22/2023] Open
Abstract
Fungal infections cause severe and life-threatening complications especially in immunocompromised individuals. Antifungals targeting cellular machinery and cell membranes including azoles are used in clinical practice to manage topical to systemic fungal infections. However, continuous exposure to clinically used antifungal agents in managing the fungal infections results in the development of multi-drug resistance via adapting different kinds of intrinsic and extrinsic mechanisms. The unique chemical composition of fungal membranes presents attractive targets for antifungal drug discovery as it is difficult for fungal cells to modify the membrane targets for emergence of drug resistance. Here, we discussed available antifungal drugs with their detailed mechanism of action and described different antifungal resistance mechanisms. We further emphasized structure-activity relationship studies of membrane-targeting antifungal agents, and classified membrane-targeting antifungal agents on the basis of their core scaffold with detailed pharmacological properties. This review aims to pique the interest of potential researchers who could explore this interesting and intricate fungal realm.
Collapse
Affiliation(s)
- Devashish Mehta
- Laboratory of Nanotechnology and Chemical Biology, Regional Centre for Biotechnology Faridabad-121001 Haryana India
| | - Varsha Saini
- Laboratory of Nanotechnology and Chemical Biology, Regional Centre for Biotechnology Faridabad-121001 Haryana India
| | - Avinash Bajaj
- Laboratory of Nanotechnology and Chemical Biology, Regional Centre for Biotechnology Faridabad-121001 Haryana India
| |
Collapse
|
40
|
Choy HL, Gaylord EA, Doering TL. Ergosterol distribution controls surface structure formation and fungal pathogenicity. mBio 2023; 14:e0135323. [PMID: 37409809 PMCID: PMC10470819 DOI: 10.1128/mbio.01353-23] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2023] [Accepted: 06/01/2023] [Indexed: 07/07/2023] Open
Abstract
Ergosterol, the major sterol in fungal membranes, is critical for defining membrane fluidity and regulating cellular processes. Although ergosterol synthesis has been well defined in model yeast, little is known about sterol organization in the context of fungal pathogenesis. We identified a retrograde sterol transporter, Ysp2, in the opportunistic fungal pathogen Cryptococcus neoformans. We found that the lack of Ysp2 under host-mimicking conditions leads to abnormal accumulation of ergosterol at the plasma membrane, invagination of the plasma membrane, and malformation of the cell wall, which can be functionally rescued by inhibiting ergosterol synthesis with the antifungal drug fluconazole. We also observed that cells lacking Ysp2 mislocalize the cell surface protein Pma1 and have abnormally thin and permeable capsules. As a result of perturbed ergosterol distribution and its consequences, ysp2∆ cells cannot survive in physiologically relevant environments such as host phagocytes and are dramatically attenuated in virulence. These findings expand our knowledge of cryptococcal biology and underscore the importance of sterol homeostasis in fungal pathogenesis. IMPORTANCE Cryptococcus neoformans is an opportunistic fungal pathogen that kills over 100,000 people worldwide each year. Only three drugs are available to treat cryptococcosis, and these are variously limited by toxicity, availability, cost, and resistance. Ergosterol is the most abundant sterol in fungi and a key component in modulating membrane behavior. Two of the drugs used for cryptococcal infection, amphotericin B and fluconazole, target this lipid and its synthesis, highlighting its importance as a therapeutic target. We discovered a cryptococcal ergosterol transporter, Ysp2, and demonstrated its key roles in multiple aspects of cryptococcal biology and pathogenesis. These studies demonstrate the role of ergosterol homeostasis in C. neoformans virulence, deepen our understanding of a pathway with proven therapeutic importance, and open a new area of study.
Collapse
Affiliation(s)
- Hau Lam Choy
- Department of Molecular Microbiology, Washington University School of Medicine, St. Louis, Missouri, USA
| | - Elizabeth A. Gaylord
- Department of Molecular Microbiology, Washington University School of Medicine, St. Louis, Missouri, USA
| | - Tamara L. Doering
- Department of Molecular Microbiology, Washington University School of Medicine, St. Louis, Missouri, USA
| |
Collapse
|
41
|
Shapiro RS, Gerstein AC. Powering up antifungal treatment: using small molecules to unlock the potential of existing therapies. mBio 2023; 14:e0107323. [PMID: 37530533 PMCID: PMC10470729 DOI: 10.1128/mbio.01073-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2023] [Accepted: 06/22/2023] [Indexed: 08/03/2023] Open
Abstract
Fungal pathogens are increasingly appreciated as a significant infectious disease challenge. Compared to bacteria, fungal cells are more closely related to human cells, and few classes of antifungal drugs are available. Combination therapy offers a potential solution to reduce the likelihood of resistance acquisition and extend the lifespan of existing antifungals. There has been recent interest in combining first-line drugs with small-molecule adjuvants. In a recent article, Alabi et al. identified 1,4-benzodiazepines as promising molecules to enhance azole activity in pathogenic Candida spp. (P. E. Alabi, C. Gautier, T. P. Murphy, X. Gu, M. Lepas, V. Aimanianda, J. K. Sello, I. V. Ene, 2023, mBio https://doi.org/10.1128/mbio.00479-23). These molecules have no antifungal activity on their own but exhibited significant potentiation of fluconazole in azole-susceptible and -resistant isolates. Additionally, the 1,4-benzodiazepines increased the fungicidal activity of azoles that are typically fungistatic to Candida spp., inhibited filamentation (a virulence-associated trait), and accordingly increased host survival in Galleria mellonella. This research thus provides another encouraging step on the critical pathway toward reducing mortality due to antimicrobial resistance.
Collapse
Affiliation(s)
- Rebecca S. Shapiro
- Department of Molecular and Cellular Biology, University of Guelph, Guelph, Ontario, Canada
| | - Aleeza C. Gerstein
- Department of Microbiology, University of Manitoba, Winnipeg, Manitoba, Canada
- Department of Statistics, University of Manitoba, Winnipeg, Manitoba, Canada
| |
Collapse
|
42
|
Asadzadeh M, Alfouzan W, Parker JE, Meis JF, Kelly SL, Joseph L, Ahmad S. Molecular Characterization and Sterol Profiles Identify Nonsynonymous Mutations in ERG2 as a Major Mechanism Conferring Reduced Susceptibility to Amphotericin B in Candida kefyr. Microbiol Spectr 2023; 11:e0147423. [PMID: 37358415 PMCID: PMC10434000 DOI: 10.1128/spectrum.01474-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2023] [Accepted: 06/01/2023] [Indexed: 06/27/2023] Open
Abstract
The molecular basis of reduced susceptibility to amphotericin B (rs-AMB) among any yeasts is poorly defined. Genetic alterations in genes involved in ergosterol biosynthesis and total cell sterols were investigated among clinical Candida kefyr isolates. C. kefyr isolates (n = 81) obtained from 74 patients in Kuwait and identified by phenotypic and molecular methods were analyzed. An Etest was initially used to identify isolates with rs-AMB. Specific mutations in ERG2 and ERG6 involved in ergosterol biosynthesis were detected by PCR sequencing. Twelve selected isolates were also tested by the SensiTitre Yeast One (SYO), and total cell sterols were evaluated by gas chromatography-mass spectrometry and ERG3 and ERG11 sequencing. Eight isolates from 8 patients showed rs-AMB by Etest, including 2 isolates with additional resistance to fluconazole or to all three antifungals. SYO correctly identified 8 of 8 rs-AMB isolates. A nonsynonymous mutation in ERG2 was detected in 6 of 8 rs-AMB isolates but also in 3 of 73 isolates with a wild-type AMB pattern. One rs-AMB isolate contained a deletion (frameshift) mutation in ERG2. One or more nonsynonymous mutations was detected in ERG6 in 11 of 81 isolates with the rs-AMB or wild-type AMB pattern. Among 12 selected isolates, 2 and 2 isolates contained a nonsynonymous mutation(s) in ERG3 and ERG11, respectively. Ergosterol was undetectable in 7 of 8 rs-AMB isolates, and the total cell sterol profiles were consistent with loss of ERG2 function in 6 rs-AMB isolates and loss of ERG3 activity in another rs-AMB isolate. Our data showed that ERG2 is a major target conferring rs-AMB in clinical C. kefyr isolates. IMPORTANCE Some yeast species exhibit intrinsic resistance or rapidly acquire resistance to azole antifungals. Despite >50 years of clinical use, resistance to amphotericin B (AMB) among yeast species has been extremely rarely reported until recently. Reduced susceptibility to AMB (rs-AMB) among yeast species is, therefore, a matter of serious concern due to the availability of only four classes of antifungal drugs. Recent studies in Candida glabrata, Candida lusitaniae, and Candida auris have identified ERG genes involved in ergosterol biosynthesis as the major targets conferring rs-AMB. The results of this study also show that nonsynonymous mutations in ERG2 impair its function, abolish ergosterol from C. kefyr, and confer rs-AMB. Thus, rapid detection of rs-AMB among clinical isolates will help in proper management of invasive C. kefyr infections.
Collapse
Affiliation(s)
- Mohammad Asadzadeh
- Department of Microbiology, Faculty of Medicine, Kuwait University, Safat, Kuwait
| | - Wadha Alfouzan
- Department of Microbiology, Faculty of Medicine, Kuwait University, Safat, Kuwait
| | - Josie E. Parker
- Molecular Biosciences Division, School of Biosciences, Cardiff University, Cardiff, United Kingdom
| | - Jacques F. Meis
- Department of Medical Microbiology and Infectious Diseases, Canisius-Wilhelmina Hospital, Nijmegen, the Netherlands
- Center of Expertise in Mycology, Radboudumc, Canisius-Wilhelmina Hospital, Nijmegen, the Netherlands
- Department of Internal Medicine, Excellence Center for Medical Mycology, Faculty of Medicine, University Hospital Cologne, Cologne, Germany
| | - Steven L. Kelly
- Institute of Life Science, Faculty of Health, Medicine and Life Sciences, Swansea University, Swansea, Wales, United Kingdom
| | - Leena Joseph
- Department of Microbiology, Faculty of Medicine, Kuwait University, Safat, Kuwait
| | - Suhail Ahmad
- Department of Microbiology, Faculty of Medicine, Kuwait University, Safat, Kuwait
| |
Collapse
|
43
|
Lee Y, Robbins N, Cowen LE. Molecular mechanisms governing antifungal drug resistance. NPJ ANTIMICROBIALS AND RESISTANCE 2023; 1:5. [PMID: 38686214 PMCID: PMC11057204 DOI: 10.1038/s44259-023-00007-2] [Citation(s) in RCA: 70] [Impact Index Per Article: 35.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/27/2023] [Accepted: 05/17/2023] [Indexed: 05/02/2024]
Abstract
Fungal pathogens are a severe public health problem. The leading causative agents of systemic fungal infections include species from the Candida, Cryptococcus, and Aspergillus genera. As opportunistic pathogens, these fungi are generally harmless in healthy hosts; however, they can cause significant morbidity and mortality in immunocompromised patients. Despite the profound impact of pathogenic fungi on global human health, the current antifungal armamentarium is limited to only three major classes of drugs, all of which face complications, including host toxicity, unfavourable pharmacokinetics, or limited spectrum of activity. Further exacerbating this issue is the growing prevalence of antifungal-resistant infections and the emergence of multidrug-resistant pathogens. In this review, we discuss the diverse strategies employed by leading fungal pathogens to evolve antifungal resistance, including drug target alterations, enhanced drug efflux, and induction of cellular stress response pathways. Such mechanisms of resistance occur through diverse genetic alterations, including point mutations, aneuploidy formation, and epigenetic changes given the significant plasticity observed in many fungal genomes. Additionally, we highlight recent literature surrounding the mechanisms governing resistance in emerging multidrug-resistant pathogens including Candida auris and Candida glabrata. Advancing our knowledge of the molecular mechanisms by which fungi adapt to the challenge of antifungal exposure is imperative for designing therapeutic strategies to tackle the emerging threat of antifungal resistance.
Collapse
Affiliation(s)
- Yunjin Lee
- Department of Molecular Genetics, University of Toronto, Toronto, ON M5G 1M1 Canada
| | - Nicole Robbins
- Department of Molecular Genetics, University of Toronto, Toronto, ON M5G 1M1 Canada
| | - Leah E. Cowen
- Department of Molecular Genetics, University of Toronto, Toronto, ON M5G 1M1 Canada
| |
Collapse
|
44
|
Yekani M, Azargun R, Sharifi S, Nabizadeh E, Nahand JS, Ansari NK, Memar MY, Soki J. Collateral sensitivity: An evolutionary trade-off between antibiotic resistance mechanisms, attractive for dealing with drug-resistance crisis. Health Sci Rep 2023; 6:e1418. [PMID: 37448730 PMCID: PMC10336338 DOI: 10.1002/hsr2.1418] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2023] [Revised: 06/29/2023] [Accepted: 06/29/2023] [Indexed: 07/15/2023] Open
Abstract
Background The discovery and development of antimicrobial drugs were one of the most significant advances in medicine, but the evolution of microbial resistance limited the efficiency of these drugs. Aim This paper reviews the collateral sensitivity in bacteria and its potential and limitation as a new target for treating infections. Results and Discussion Knowledge mechanisms of resistance to antimicrobial agents are useful to trace a practical approach to treat and control of resistant pathogens. The effect of a resistance mechanism to certain antibiotics on the susceptibility or resistance to other drugs is a key point that may be helpful for applying a strategy to control resistance challenges. In an evolutionary trade-off known as collateral sensitivity, the resistance mechanism to a certain drug may be mediated by the hypersensitivity to other drugs. Collateral sensitivity has been described for different drugs in various bacteria, but the molecular mechanisms affecting susceptibility are not well demonstrated. Collateral sensitivity could be studied to detect its potential in the battle against resistance crisis as well as in the treatment of pathogens adapting to antibiotics. Collateral sensitivity-based antimicrobial therapy may have the potential to limit the emergence of antibiotic resistance.
Collapse
Affiliation(s)
- Mina Yekani
- Department of Microbiology, Faculty of MedicineKashan University of Medical SciencesKashanIran
- Infectious and Tropical Diseases Research CenterTabriz University of Medical SciencesTabrizIran
- Student Research CommitteeKashan University of Medical SciencesKashanIran
| | - Robab Azargun
- Department of Microbiology, Faculty of MedicineMaragheh University of Medical ScienceMaraghehIran
| | - Simin Sharifi
- Dental and Periodontal Research CenterTabriz University of Medical SciencesTabrizIran
| | - Edris Nabizadeh
- Infectious and Tropical Diseases Research CenterTabriz University of Medical SciencesTabrizIran
| | - Javid Sadri Nahand
- Infectious and Tropical Diseases Research CenterTabriz University of Medical SciencesTabrizIran
| | - Navideh Karimi Ansari
- Department of Microbiology, Faculty of MedicineTabriz University of Medical SciencesTabrizIran
| | - Mohammad Yousef Memar
- Infectious and Tropical Diseases Research CenterTabriz University of Medical SciencesTabrizIran
| | - Jozsef' Soki
- Institute of Medical Microbiology, Albert Szent‐Györgyi Faculty of MedicineUniversity of SzegedSzegedHungary
| |
Collapse
|
45
|
Abstract
Invasive fungal infections in humans are common in people with compromised immune systems and are difficult to treat, resulting in high mortality. Amphotericin B (AmB) is one of the main antifungal drugs available to treat these infections. AmB binds with plasma membrane ergosterol, causing leakage of cellular ions and promoting cell death. The increasing use of available antifungal drugs to combat pathogenic fungal infections has led to the development of drug resistance. AmB resistance is not very common and is usually caused by changes in the amount or type of ergosterol or changes in the cell wall. Intrinsic AmB resistance occurs in the absence of AmB exposure, whereas acquired AmB resistance can develop during treatment. However, clinical resistance arises due to treatment failure with AmB and depends on multiple factors such as the pharmacokinetics of AmB, infectious fungal species, and host immune status. Candida albicans is a common opportunistic pathogen that can cause superficial infections of the skin and mucosal surfaces, thrush, to life-threatening systemic or invasive infections. In addition, immunocompromised individuals are more susceptible to systemic infections caused by Candida, Aspergillus, and Cryptococcus. Several antifungal drugs with different modes of action are used to treat systemic to invasive fungal infections and are approved for clinical use in the treatment of fungal diseases. However, C. albicans can develop a variety of defenses against antifungal medications. In fungi, plasma membrane sphingolipid molecules could interact with ergosterol, which can lead to the alteration of drug susceptibilities such as AmB. In this review, we mainly summarize the role of sphingolipid molecules and their regulators in AmB resistance.
Collapse
Affiliation(s)
- Kashish Madaan
- Department of Biochemistry, School of Basic Sciences, Central University of Punjab, Bathinda, India
| | - Vinay Kumar Bari
- Department of Biochemistry, School of Basic Sciences, Central University of Punjab, Bathinda, India
| |
Collapse
|
46
|
Osset-Trénor P, Pascual-Ahuir A, Proft M. Fungal Drug Response and Antimicrobial Resistance. J Fungi (Basel) 2023; 9:jof9050565. [PMID: 37233275 DOI: 10.3390/jof9050565] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2023] [Revised: 04/27/2023] [Accepted: 05/12/2023] [Indexed: 05/27/2023] Open
Abstract
Antifungal resistance is a growing concern as it poses a significant threat to public health. Fungal infections are a significant cause of morbidity and mortality, especially in immunocompromised individuals. The limited number of antifungal agents and the emergence of resistance have led to a critical need to understand the mechanisms of antifungal drug resistance. This review provides an overview of the importance of antifungal resistance, the classes of antifungal agents, and their mode of action. It highlights the molecular mechanisms of antifungal drug resistance, including alterations in drug modification, activation, and availability. In addition, the review discusses the response to drugs via the regulation of multidrug efflux systems and antifungal drug-target interactions. We emphasize the importance of understanding the molecular mechanisms of antifungal drug resistance to develop effective strategies to combat the emergence of resistance and highlight the need for continued research to identify new targets for antifungal drug development and explore alternative therapeutic options to overcome resistance. Overall, an understanding of antifungal drug resistance and its mechanisms will be indispensable for the field of antifungal drug development and clinical management of fungal infections.
Collapse
Affiliation(s)
- Paloma Osset-Trénor
- Department of Biotechnology, Instituto de Biología Molecular y Celular de Plantas IBMCP, Universidad Politécnica de Valencia, 46022 Valencia, Spain
| | - Amparo Pascual-Ahuir
- Department of Biotechnology, Instituto de Biología Molecular y Celular de Plantas IBMCP, Universidad Politécnica de Valencia, 46022 Valencia, Spain
| | - Markus Proft
- Department of Molecular and Cellular Pathology and Therapy, Instituto de Biomedicina de Valencia IBV-CSIC, Consejo Superior de Investigaciones Científicas CSIC, 46010 Valencia, Spain
| |
Collapse
|
47
|
Deng H, Song J, Huang Y, Yang C, Zang X, Zhou Y, Li H, Dai B, Xue X. Combating increased antifungal drug resistance in Cryptococcus, what should we do in the future? Acta Biochim Biophys Sin (Shanghai) 2023; 55:540-547. [PMID: 36815374 PMCID: PMC10195138 DOI: 10.3724/abbs.2023011] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2022] [Accepted: 12/08/2022] [Indexed: 02/05/2023] Open
Abstract
Few therapeutic drugs and increased drug resistance have aggravated the current treatment difficulties of Cryptococcus in recent years. To better understand the antifungal drug resistance mechanism and treatment strategy of cryptococcosis. In this review, by combining the fundamental features of Cryptococcus reproduction leading to changes in its genome, we review recent research into the mechanism of four current anti-cryptococcal agents, coupled with new therapeutic strategies and the application of advanced technologies WGS and CRISPR-Cas9 in this field, hoping to provide a broad idea for the future clinical therapy of cryptococcosis.
Collapse
Affiliation(s)
- Hengyu Deng
- Affiliated Hospital of Weifang Medical UniversitySchool of Clinical MedicineWeifang Medical UniversityWeifang261053China
| | - Jialin Song
- Affiliated Hospital of Weifang Medical UniversitySchool of Clinical MedicineWeifang Medical UniversityWeifang261053China
| | - Yemei Huang
- of Respiratory and Critical CareBeijing Shijitan HospitalCapital Medical University; Peking University Ninth School of Clinical MedicineBeijing100089China
| | - Chen Yang
- Department of Laboratory Medicinethe First Medical CentreChinese PLA General HospitalBeijing100853China
| | - Xuelei Zang
- of Respiratory and Critical CareBeijing Shijitan HospitalCapital Medical University; Peking University Ninth School of Clinical MedicineBeijing100089China
| | - Yangyu Zhou
- of Respiratory and Critical CareBeijing Shijitan HospitalCapital Medical University; Peking University Ninth School of Clinical MedicineBeijing100089China
| | - Hongli Li
- Affiliated Hospital of Weifang Medical UniversitySchool of Clinical MedicineWeifang Medical UniversityWeifang261053China
| | - Bin Dai
- of Respiratory and Critical CareBeijing Shijitan HospitalCapital Medical University; Peking University Ninth School of Clinical MedicineBeijing100089China
| | - Xinying Xue
- Affiliated Hospital of Weifang Medical UniversitySchool of Clinical MedicineWeifang Medical UniversityWeifang261053China
- of Respiratory and Critical CareBeijing Shijitan HospitalCapital Medical University; Peking University Ninth School of Clinical MedicineBeijing100089China
| |
Collapse
|
48
|
Grézal G, Spohn R, Méhi O, Dunai A, Lázár V, Bálint B, Nagy I, Pál C, Papp B. Plasticity and Stereotypic Rewiring of the Transcriptome Upon Bacterial Evolution of Antibiotic Resistance. Mol Biol Evol 2023; 40:7013728. [PMID: 36718533 PMCID: PMC9927579 DOI: 10.1093/molbev/msad020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2022] [Revised: 12/01/2022] [Accepted: 01/04/2023] [Indexed: 02/01/2023] Open
Abstract
Bacterial evolution of antibiotic resistance frequently has deleterious side effects on microbial growth, virulence, and susceptibility to other antimicrobial agents. However, it is unclear how these trade-offs could be utilized for manipulating antibiotic resistance in the clinic, not least because the underlying molecular mechanisms are poorly understood. Using laboratory evolution, we demonstrate that clinically relevant resistance mutations in Escherichia coli constitutively rewire a large fraction of the transcriptome in a repeatable and stereotypic manner. Strikingly, lineages adapted to functionally distinct antibiotics and having no resistance mutations in common show a wide range of parallel gene expression changes that alter oxidative stress response, iron homeostasis, and the composition of the bacterial outer membrane and cell surface. These common physiological alterations are associated with changes in cell morphology and enhanced sensitivity to antimicrobial peptides. Finally, the constitutive transcriptomic changes induced by resistance mutations are largely distinct from those induced by antibiotic stresses in the wild type. This indicates a limited role for genetic assimilation of the induced antibiotic stress response during resistance evolution. Our work suggests that diverse resistance mutations converge on similar global transcriptomic states that shape genetic susceptibility to antimicrobial compounds.
Collapse
Affiliation(s)
- Gábor Grézal
- HCEMM-BRC Metabolic Systems Biology Lab, Szeged, Hungary,Synthetic and Systems Biology Unit, Institute of Biochemistry, Biological Research Centre, Eötvös Loránd Research Network, Szeged, Hungary
| | - Réka Spohn
- Synthetic and Systems Biology Unit, Institute of Biochemistry, Biological Research Centre, Eötvös Loránd Research Network, Szeged, Hungary
| | - Orsolya Méhi
- Synthetic and Systems Biology Unit, Institute of Biochemistry, Biological Research Centre, Eötvös Loránd Research Network, Szeged, Hungary,HCEMM-BRC Translational Microbiology Research Lab, Szeged, Hungary
| | - Anett Dunai
- Synthetic and Systems Biology Unit, Institute of Biochemistry, Biological Research Centre, Eötvös Loránd Research Network, Szeged, Hungary
| | - Viktória Lázár
- Synthetic and Systems Biology Unit, Institute of Biochemistry, Biological Research Centre, Eötvös Loránd Research Network, Szeged, Hungary,HCEMM-BRC Pharmacodynamic Drug Interaction Research Group, Szeged, Hungary
| | - Balázs Bálint
- Synthetic and Systems Biology Unit, Institute of Biochemistry, Biological Research Centre, Eötvös Loránd Research Network, Szeged, Hungary,SeqOmics Biotechnology Ltd., Mórahalom, Hungary
| | - István Nagy
- SeqOmics Biotechnology Ltd., Mórahalom, Hungary,Sequencing Platform, Institute of Biochemistry, Biological Research Centre, Eötvös Loránd Research Network, Szeged, Hungary
| | - Csaba Pál
- Synthetic and Systems Biology Unit, Institute of Biochemistry, Biological Research Centre, Eötvös Loránd Research Network, Szeged, Hungary,National Laboratory of Biotechnology, Biological Research Centre, Eötvös Loránd Research Network, Szeged, Hungary
| | | |
Collapse
|
49
|
Vanreppelen G, Wuyts J, Van Dijck P, Vandecruys P. Sources of Antifungal Drugs. J Fungi (Basel) 2023; 9:jof9020171. [PMID: 36836286 PMCID: PMC9965926 DOI: 10.3390/jof9020171] [Citation(s) in RCA: 28] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2022] [Revised: 01/22/2023] [Accepted: 01/26/2023] [Indexed: 01/31/2023] Open
Abstract
Due to their eukaryotic heritage, the differences between a fungal pathogen's molecular makeup and its human host are small. Therefore, the discovery and subsequent development of novel antifungal drugs are extremely challenging. Nevertheless, since the 1940s, researchers have successfully uncovered potent candidates from natural or synthetic sources. Analogs and novel formulations of these drugs enhanced the pharmacological parameters and improved overall drug efficiency. These compounds ultimately became the founding members of novel drug classes and were successfully applied in clinical settings, offering valuable and efficient treatment of mycosis for decades. Currently, only five different antifungal drug classes exist, all characterized by a unique mode of action; these are polyenes, pyrimidine analogs, azoles, allylamines, and echinocandins. The latter, being the latest addition to the antifungal armamentarium, was introduced over two decades ago. As a result of this limited arsenal, antifungal resistance development has exponentially increased and, with it, a growing healthcare crisis. In this review, we discuss the original sources of antifungal compounds, either natural or synthetic. Additionally, we summarize the existing drug classes, potential novel candidates in the clinical pipeline, and emerging non-traditional treatment options.
Collapse
|
50
|
Systemic Antifungal Therapy for Invasive Pulmonary Infections. J Fungi (Basel) 2023; 9:jof9020144. [PMID: 36836260 PMCID: PMC9966409 DOI: 10.3390/jof9020144] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2022] [Revised: 01/13/2023] [Accepted: 01/19/2023] [Indexed: 01/24/2023] Open
Abstract
Antifungal therapy for pulmonary fungal diseases is in a state of flux. Amphotericin B, the time-honored standard of care for many years, has been replaced by agents demonstrating superior efficacy and safety, including extended-spectrum triazoles and liposomal amphotericin B. Voriconazole, which became the treatment of choice for most pulmonary mold diseases, has been compared with posaconazole and itraconazole, both of which have shown clinical efficacy similar to that of voriconazole, with fewer adverse events. With the worldwide expansion of azole-resistant Aspergillus fumigatus and infections with intrinsically resistant non-Aspergillus molds, the need for newer antifungals with novel mechanisms of action becomes ever more pressing.
Collapse
|