1
|
Wu D, Seshadri R, Kyrpides NC, Ivanova NN. A metagenomic perspective on the microbial prokaryotic genome census. SCIENCE ADVANCES 2025; 11:eadq2166. [PMID: 39823337 PMCID: PMC11740963 DOI: 10.1126/sciadv.adq2166] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/02/2024] [Accepted: 12/17/2024] [Indexed: 01/19/2025]
Abstract
Following 30 years of sequencing, we assessed the phylogenetic diversity (PD) of >1.5 million microbial genomes in public databases, including metagenome-assembled genomes (MAGs) of uncultivated microbes. As compared to the vast diversity uncovered by metagenomic sequences, cultivated taxa account for a modest portion of the overall diversity, 9.73% in bacteria and 6.55% in archaea, while MAGs contribute 48.54% and 57.05%, respectively. Therefore, a substantial fraction of bacterial (41.73%) and archaeal PD (36.39%) still lacks any genomic representation. This unrepresented diversity manifests primarily at lower taxonomic ranks, exemplified by 134,966 species identified in 18,087 metagenomic samples. Our study exposes diversity hotspots in freshwater, marine subsurface, sediment, soil, and other environments, whereas human samples yielded minimal novelty within the context of existing datasets. These results offer a roadmap for future genome recovery efforts, delineating uncaptured taxa in underexplored environments and underscoring the necessity for renewed isolation and sequencing.
Collapse
Affiliation(s)
- Dongying Wu
- DOE Joint Genome Institute, Lawrence Berkeley National Laboratory, Berkeley, CA, USA
| | - Rekha Seshadri
- DOE Joint Genome Institute, Lawrence Berkeley National Laboratory, Berkeley, CA, USA
| | - Nikos C. Kyrpides
- DOE Joint Genome Institute, Lawrence Berkeley National Laboratory, Berkeley, CA, USA
| | - Natalia N. Ivanova
- DOE Joint Genome Institute, Lawrence Berkeley National Laboratory, Berkeley, CA, USA
| |
Collapse
|
2
|
Tarracchini C, Fontana F, Petraro S, Lugli GA, Mancabelli L, Turroni F, Ventura M, Milani C. Optimal Representative Strain selector-a comprehensive pipeline for selecting next-generation reference strains of bacterial species. NAR Genom Bioinform 2024; 6:lqae173. [PMID: 39703421 PMCID: PMC11655286 DOI: 10.1093/nargab/lqae173] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2024] [Revised: 11/11/2024] [Accepted: 12/13/2024] [Indexed: 12/21/2024] Open
Abstract
Although it is common practice to use historically established 'reference strains' or 'type strains' for laboratory experiments, this approach often overlooks how effectively these strains represent the full ecological, genetic and functional diversity of the species within a specific ecological niche. In this context, this study proposes the Optimal Representative Strain (ORS) selector tool (https://zenodo.org/doi/10.5281/zenodo.13772191), an innovative bioinformatic pipeline capable of evaluating how a strain represents its whole species from a genetic and functional perspective, in addition to considering its ecological distribution in a particular ecological niche. Based on publicly available genomes, the strain that best fits all these three microbiological aspects is designated as an optimal representative strain. Moreover, a user-friendly software called Local Alternative Optimal Representative Strain selector was developed to allow researchers to screen their local library of bacterial strains for an optimal available alternative based on the reference optimal representative strain. Five different bacterial species, i.e. Lacticaseibacillus paracasei, Lactobacillus delbrueckii, Streptococcus thermophilus, Bacteroides thetaiotaomicron and Lactococcus lactis, were tested in three different environments to evaluate the performance of the bioinformatic pipeline in selecting optimal representative strains.
Collapse
Affiliation(s)
- Chiara Tarracchini
- Laboratory of Probiogenomics, Department of Chemistry, Life Sciences, and Environmental Sustainability, University of Parma, Parco Area delle Scienze 11A, 43124, Parma, Italy
| | - Federico Fontana
- Laboratory of Probiogenomics, Department of Chemistry, Life Sciences, and Environmental Sustainability, University of Parma, Parco Area delle Scienze 11A, 43124, Parma, Italy
| | - Silvia Petraro
- Laboratory of Probiogenomics, Department of Chemistry, Life Sciences, and Environmental Sustainability, University of Parma, Parco Area delle Scienze 11A, 43124, Parma, Italy
| | - Gabriele Andrea Lugli
- Laboratory of Probiogenomics, Department of Chemistry, Life Sciences, and Environmental Sustainability, University of Parma, Parco Area delle Scienze 11A, 43124, Parma, Italy
- Microbiome Research Hub, University of Parma, Parco Area delle Scienze, 43124, Parma, Italy
| | - Leonardo Mancabelli
- Microbiome Research Hub, University of Parma, Parco Area delle Scienze, 43124, Parma, Italy
- Department of Medicine and Surgery, University of Parma, University Hospital complex Via Gramsci 14, 43126, Parma, Italy
| | - Francesca Turroni
- Laboratory of Probiogenomics, Department of Chemistry, Life Sciences, and Environmental Sustainability, University of Parma, Parco Area delle Scienze 11A, 43124, Parma, Italy
- Microbiome Research Hub, University of Parma, Parco Area delle Scienze, 43124, Parma, Italy
| | - Marco Ventura
- Laboratory of Probiogenomics, Department of Chemistry, Life Sciences, and Environmental Sustainability, University of Parma, Parco Area delle Scienze 11A, 43124, Parma, Italy
- Microbiome Research Hub, University of Parma, Parco Area delle Scienze, 43124, Parma, Italy
| | - Christian Milani
- Laboratory of Probiogenomics, Department of Chemistry, Life Sciences, and Environmental Sustainability, University of Parma, Parco Area delle Scienze 11A, 43124, Parma, Italy
- Microbiome Research Hub, University of Parma, Parco Area delle Scienze, 43124, Parma, Italy
| |
Collapse
|
3
|
van Bavel B, Berrang-Ford L, Moon K, Gudda F, Thornton AJ, Robinson RFS, King R. Intersections between climate change and antimicrobial resistance: a systematic scoping review. Lancet Planet Health 2024; 8:e1118-e1128. [PMID: 39674199 DOI: 10.1016/s2542-5196(24)00273-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2023] [Revised: 10/18/2024] [Accepted: 10/18/2024] [Indexed: 12/16/2024]
Abstract
Climate change and antimicrobial resistance (AMR) present crucial challenges for the health and wellbeing of people, animals, plants, and ecosystems worldwide, yet the two are largely treated as separate and unrelated challenges. The aim of this systematic scoping Review is to understand the nature of the growing evidence base linking AMR and climate change and to identify knowledge gaps and areas for further research. We conducted a systematic search of the peer-reviewed literature in Scopus, Web of Science, and PubMed on 27 June, 2022. Our search strategy identified and screened 1687 unique results. Data were extracted and analysed from 574 records meeting our inclusion criteria. 222 (39%) of these reviewed articles discussed harmful synergies in which both climate change and AMR exist independently and can interact synergistically, resulting in negative outcomes. Just over a quarter (n=163; 28%) of the literature contained general or broad references to AMR and climate change, whereas a fifth (n=111; 19%) of articles referred to climate change influencing the emergence and evolution of AMR. 12% of articles (n=70) presented positive synergies between approaches aimed at addressing climate change and interventions targeting the management and control of AMR. The remaining literature focused on the shared drivers of AMR and climate change, the trade-offs between climate actions that have unanticipated negative outcomes for AMR (or vice versa), and, finally, the pathways through which AMR can negatively influence climate change. Our findings indicate multiple intersections through which climate change and AMR can and do connect. Research in this area is still nascent, disciplinarily isolated, and only beginning to converge, with few documents primarily focused on the equal intersection of both topics. Greater empirical and evidence-based attention is needed to investigate knowledge gaps related to specific climate change hazards and antimicrobial resistant fungi, helminths, protists, and viruses.
Collapse
Affiliation(s)
- Bianca van Bavel
- Priestley Centre for Climate Futures, School of Earth and Environment, University of Leeds, Leeds, UK; School of Health Sciences, Insight SFI Research Centre for Data Analytics, University of Galway, Galway, Ireland.
| | - Lea Berrang-Ford
- Priestley Centre for Climate Futures, School of Earth and Environment, University of Leeds, Leeds, UK; Centre for Climate and Health Security, UK Health Security Agency, London, UK
| | - Kelly Moon
- Priestley Centre for Climate Futures, School of Earth and Environment, University of Leeds, Leeds, UK; Nuffield Centre for International Health and Development, University of Leeds, Leeds, UK
| | - Fredrick Gudda
- International Livestock Research Institute, Nairobi, Kenya
| | | | | | - Rebecca King
- Nuffield Centre for International Health and Development, University of Leeds, Leeds, UK
| |
Collapse
|
4
|
Villanueva CD, Bohunická M, Johansen JR. We are doing it wrong: Putting homology before phylogeny in cyanobacterial taxonomy. JOURNAL OF PHYCOLOGY 2024; 60:1071-1089. [PMID: 39152777 DOI: 10.1111/jpy.13491] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/12/2024] [Revised: 07/11/2024] [Accepted: 07/18/2024] [Indexed: 08/19/2024]
Abstract
The rapid expansion of whole genome sequencing in bacterial taxonomy has revealed deep evolutionary relationships and speciation signals, but assembly methods often miss true nucleotide diversity in the ribosomal operons. Though it lacks sufficient phylogenetic signal at the species level, the 16S ribosomal RNA gene is still much used in bacterial taxonomy. In cyanobacterial taxonomy, comparisons of 16S-23S Internal Transcribed Spacer (ITS) regions are used to bridge this information gap. Although ITS rRNA region analyses are routinely being used to identify species, researchers often do not identify orthologous operons, which leads to improper comparisons. No method for delineating orthologous operon copies from paralogous ones has been established. A new method for recognizing orthologous ribosomal operons by quantifying the conserved paired nucleotides in a helical domain of the ITS, has been developed. The D1' Index quantifies differences in the ratio of pyrimidines to purines in paired nucleotide sequences of this helix. Comparing 111 operon sequences from 89 strains of Brasilonema, four orthologous operon types were identified. Plotting D1' Index values against the length of helices produced clear separation of orthologs. Most orthologous operons in this study were observed both with and without tRNA genes present. We hypothesize that genomic rearrangement, not gene duplication, is responsible for the variation among orthologs. This new method will allow cyanobacterial taxonomists to utilize ITS rRNA region data more correctly, preventing erroneous taxonomic hypotheses. Moreover, this work could assist genomicists in identifying and preserving evident sequence variability in ribosomal operons, which is an important proxy for evolution in prokaryotes.
Collapse
Affiliation(s)
- Chelsea D Villanueva
- Department of Biological, Geological, & Environmental Sciences, Cleveland State University, Cleveland, Ohio, USA
- Department of Biology, John Carroll University, University Heights, Ohio, USA
| | - Markéta Bohunická
- Department of Biology, Faculty of Science, University of Hradec Králové, Hradec Králové, Czech Republic
| | - Jeffrey R Johansen
- Department of Biology, John Carroll University, University Heights, Ohio, USA
| |
Collapse
|
5
|
Jiménez-Venegas J, Zamora-Leiva L, Univaso L, Soto J, Tapia Y, Paneque M. Profile of Bacterial Communities in Copper Mine Tailings Revealed through High-Throughput Sequencing. Microorganisms 2024; 12:1820. [PMID: 39338494 PMCID: PMC11433839 DOI: 10.3390/microorganisms12091820] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2024] [Revised: 08/27/2024] [Accepted: 08/28/2024] [Indexed: 09/30/2024] Open
Abstract
Mine-tailing dumps are one of the leading sources of environmental degradation, often with public health and ecological consequences. Due to the complex ecosystems generated, they are ideal sites for exploring the bacterial diversity of specially adapted microorganisms. We investigated the concentrations of trace metals in solid copper (Cu) mine tailings from the Ovejería Tailings Dam of the National Copper Corporation of Chile and used high-throughput sequencing techniques to determine the microbial community diversity of the tailings using 16S rRNA gene-based amplicon sequence analysis. The concentrations of the detected metals were highest in the following order: iron (Fe) > Cu > manganese (Mn) > molybdenum (Mo) > lead (Pb) > chromium (Cr) > cadmium (Cd). Furthermore, 16S rRNA gene-based sequence analysis identified 12 phyla, 18 classes, 43 orders, 82 families, and 154 genera at the three sampling points. The phylum Proteobacteria was the most dominant, followed by Chlamydiota, Bacteroidetes, Actinobacteria, and Firmicutes. Genera, such as Bradyrhizobium, Aquabacterium, Paracoccus, Caulobacter, Azospira, and Neochlamydia, showed high relative abundance. These genera are known to possess adaptation mechanisms in high concentrations of metals, such as Cd, Cu, and Pb, along with nitrogen-fixation capacity. In addition to their tolerance to various metals, some of these genera may represent pathogens of amoeba or humans, which contributes to the complexity and resilience of bacterial communities in the studied Cu mining tailings. This study highlights the unique microbial diversity in the Ovejería Tailings Dam, including the discovery of the genus Neochlamydia, reported for the first time for heavy metal resistance. This underscores the importance of characterizing mining sites, particularly in Chile, to uncover novel bacterial mechanisms for potential biotechnological applications.
Collapse
Affiliation(s)
- Joseline Jiménez-Venegas
- Faculty of Agricultural Sciences, University of Chile, Santa Rosa 11315, La Pintana, Santiago 8820808, Chile; (J.J.-V.); (Y.T.)
- Master Program in Territorial Management of Natural Resources, University of Chile, Santa Rosa 11315, La Pintana, Santiago 8820808, Chile
| | - Leonardo Zamora-Leiva
- Fundación Bionostra Chile Research, Almirante Lynch 1179, San Miguel, Santiago 8920033, Chile; (L.Z.-L.); (L.U.); (J.S.)
| | - Luciano Univaso
- Fundación Bionostra Chile Research, Almirante Lynch 1179, San Miguel, Santiago 8920033, Chile; (L.Z.-L.); (L.U.); (J.S.)
| | - Jorge Soto
- Fundación Bionostra Chile Research, Almirante Lynch 1179, San Miguel, Santiago 8920033, Chile; (L.Z.-L.); (L.U.); (J.S.)
| | - Yasna Tapia
- Faculty of Agricultural Sciences, University of Chile, Santa Rosa 11315, La Pintana, Santiago 8820808, Chile; (J.J.-V.); (Y.T.)
| | - Manuel Paneque
- Faculty of Agricultural Sciences, University of Chile, Santa Rosa 11315, La Pintana, Santiago 8820808, Chile; (J.J.-V.); (Y.T.)
| |
Collapse
|
6
|
Gingras L, Piché LC, Saucier L, Vincent AT. The complete genomic sequence of the type strain Brochothrix thermosphacta DSM 20171 highlights a diversity of prophages in this species. Microbiol Resour Announc 2024; 13:e0023924. [PMID: 38953337 PMCID: PMC11321008 DOI: 10.1128/mra.00239-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2024] [Accepted: 06/18/2024] [Indexed: 07/04/2024] Open
Abstract
The bacterium Brochothrix thermosphacta is a known muscle food spoiler. Here, the complete genome sequence of the B. thermosphacta type strain, DSM 20171, is reported. Prediction of prophages and genomic islands reveals an unsuspected diversity in this bacterial species that deserves further investigation.
Collapse
Affiliation(s)
- Loic Gingras
- Département des Sciences Animales, Faculté des Sciences de l'Agriculture et de l'Alimentation, Université Laval, Quebec City, Quebec, Canada
- Institut de Biologie Intégrative et des Systèmes, Pavillon Charles-Eugène-Marchand, Université Laval, Quebec City, Quebec, Canada
| | - Laurie C. Piché
- Département des Sciences Animales, Faculté des Sciences de l'Agriculture et de l'Alimentation, Université Laval, Quebec City, Quebec, Canada
- Institut de Biologie Intégrative et des Systèmes, Pavillon Charles-Eugène-Marchand, Université Laval, Quebec City, Quebec, Canada
| | - Linda Saucier
- Département des Sciences Animales, Faculté des Sciences de l'Agriculture et de l'Alimentation, Université Laval, Quebec City, Quebec, Canada
- Institut sur la Nutrition et les Aliments Fonctionnels, Faculté des Sciences de L'agriculture et de l'Alimentation, Université Laval, Quebec City, Quebec, Canada
- Centre de recherche en infectiologie porcine et avicole, Faculté de médecine vétérinaire, Université de Montréal, Saint-Hyacinthe, Quebec, Canada
| | - Antony T. Vincent
- Département des Sciences Animales, Faculté des Sciences de l'Agriculture et de l'Alimentation, Université Laval, Quebec City, Quebec, Canada
- Institut de Biologie Intégrative et des Systèmes, Pavillon Charles-Eugène-Marchand, Université Laval, Quebec City, Quebec, Canada
- Institut sur la Nutrition et les Aliments Fonctionnels, Faculté des Sciences de L'agriculture et de l'Alimentation, Université Laval, Quebec City, Quebec, Canada
- Centre de recherche en infectiologie porcine et avicole, Faculté de médecine vétérinaire, Université de Montréal, Saint-Hyacinthe, Quebec, Canada
| |
Collapse
|
7
|
Dhondge HV, Barvkar VT, Dastager SG, Dharne MS, Rajput V, Pable AA, Henry RJ, Nadaf AB. Genome sequencing and protein modeling unraveled the 2AP biosynthesis in Bacillus cereus DB25. Int J Food Microbiol 2024; 413:110600. [PMID: 38281435 DOI: 10.1016/j.ijfoodmicro.2024.110600] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2023] [Revised: 11/24/2023] [Accepted: 01/20/2024] [Indexed: 01/30/2024]
Abstract
2-Acetyl-1-pyrroline (2AP) is an important and major flavor aroma compound responsible for the fragrance of basmati rice, cheese, wine, and several other food products. Biosynthesis of 2AP in aromatic rice and a few other plant species is associated with a recessive Betaine aldehyde dehydrogenase 2 (BADH2) gene. However, the literature is scant on the relationship between the functional BADH2 gene and 2AP biosynthesis in prokaryotic systems. Therefore, in the present study, we aimed to explore the functionality of the BADH2 gene for 2AP biosynthesis in 2AP synthesizing rice rhizobacterial isolate Bacillus cereus DB25 isolated from the rhizosphere of basmati rice (Oryza sativa L.). Full-length BcBADH2 sequence was obtained through whole genome sequencing (WGS) and further confirmed through traditional PCR and Sanger sequencing. Then the functionality of the BcBADH2 gene was evaluated in-silico through bioinformatics analysis and protein docking studies and further experimentally validated through enzyme assay. The sequencing and bioinformatics analysis results revealed a full-length 1485 bp BcBADH2 coding sequence without any deletion or premature stop codons. Full-length BcBADH2 was found to encode a fully functional protein of 54.08 kDa with pI of 5.22 and showed the presence of the conserved amino acids responsible for enzyme activity. The docking studies confirmed a good affinity between the protein and its substrate whereas the presence of BcBADH2 enzyme activity confirmed the functionality of BADH2 enzyme in B. cereus DB25. In conclusion, the findings of the present study suggest that B. cereus DB25 is able to synthesize 2AP despite a functional BADH2 gene and there may be a different molecular mechanism responsible for 2AP biosynthesis in bacterial systems, unlike that found in aromatic rice and other eukaryotic plant species.
Collapse
Affiliation(s)
- Harshal V Dhondge
- Department of Botany, Savitribai Phule Pune University, Pune 411 007, India
| | - Vitthal T Barvkar
- Department of Botany, Savitribai Phule Pune University, Pune 411 007, India.
| | - Syed G Dastager
- NCIM Resource Center, Biochemical Sciences Division, CSIR-National Chemical Laboratory (CSIR-NCL), Pune 411 008, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, India
| | - Mahesh S Dharne
- NCIM Resource Center, Biochemical Sciences Division, CSIR-National Chemical Laboratory (CSIR-NCL), Pune 411 008, India
| | - Vinay Rajput
- NCIM Resource Center, Biochemical Sciences Division, CSIR-National Chemical Laboratory (CSIR-NCL), Pune 411 008, India
| | - Anupama A Pable
- Department of Microbiology, Savitribai Phule Pune University, Pune 411 007, India
| | - Robert J Henry
- Queensland Alliance for Agriculture and Food Innovation (QAAFI), The University of Queensland, St Lucia, QLD 4072, Australia.
| | - Altafhusain B Nadaf
- Department of Botany, Savitribai Phule Pune University, Pune 411 007, India.
| |
Collapse
|
8
|
Whitman WB, Chuvochina M, Hedlund BP, Konstantinidis KT, Palmer M, Rodriguez‐R LM, Sutcliffe I, Wang F. Why and how to use the SeqCode. MLIFE 2024; 3:1-13. [PMID: 38827511 PMCID: PMC11139209 DOI: 10.1002/mlf2.12092] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/31/2023] [Revised: 10/16/2023] [Accepted: 11/01/2023] [Indexed: 06/04/2024]
Abstract
The SeqCode, formally called the Code of Nomenclature of Prokaryotes Described from Sequence Data, is a new code of nomenclature in which genome sequences are the nomenclatural types for the names of prokaryotic species. While similar to the International Code of Nomenclature of Prokaryotes (ICNP) in structure and rules of priority, it does not require the deposition of type strains in international culture collections. Thus, it allows for the formation of permanent names for uncultured prokaryotes whose nearly complete genome sequences have been obtained directly from environmental DNA as well as other prokaryotes that cannot be deposited in culture collections. Because the diversity of uncultured prokaryotes greatly exceeds that of readily culturable prokaryotes, the SeqCode is the only code suitable for naming the majority of prokaryotic species. The start date of the SeqCode was January 1, 2022, and the online Registry (https://seqco.de/) was created to ensure valid publication of names. The SeqCode recognizes all names validly published under the ICNP before 2022. After that date, names validly published under the SeqCode compete with ICNP names for priority. As a result, species can have only one name, either from the SeqCode or ICNP, enabling effective communication and the creation of unified taxonomies of uncultured and cultured prokaryotes. The SeqCode is administered by the SeqCode Committee, which is comprised of the SeqCode Community and elected administrative components. Anyone with an interest in the systematics of prokaryotes is encouraged to join the SeqCode Community and participate in the development of this resource.
Collapse
Affiliation(s)
| | - Maria Chuvochina
- School of Chemistry and Molecular Biosciences, Australian Centre for EcogenomicsThe University of QueenslandSt LuciaAustralia
| | | | - Konstantinos T. Konstantinidis
- School of Civil and Environmental Engineering, and School of Biological Sciences, Georgia Institute of TechnologyAtlantaGeorgiaUSA
| | - Marike Palmer
- Department of MicrobiologyUniversity of ManitobaWinnipegManitobaCanada
- School of Life SciencesUniversity of Nevada Las VegasLas VegasNevadaUSA
| | - Luis M. Rodriguez‐R
- Department of Microbiology and Digital Science Center (DiSC)University of InnsbruckInnsbruckAustria
| | - Iain Sutcliffe
- Faculty of Health & Life SciencesNorthumbria UniversityNewcastle upon TyneUK
| | - Fengping Wang
- School of Oceanography, International Center for Deep Life InvestigationShanghai Jiao Tong UniversityShanghaiChina
| |
Collapse
|
9
|
Nikolaidis M, Oliver SG, Amoutzias GD. pyPGCF: A Python Software for Phylogenomic Analysis, Species Demarcation, Identification of Core, and Fingerprint Proteins of Bacterial Genomes That Are Important for Plants. Methods Mol Biol 2024; 2788:139-155. [PMID: 38656512 DOI: 10.1007/978-1-0716-3782-1_8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/26/2024]
Abstract
This computational protocol describes how to use pyPGCF, a python software package that runs in the linux environment, in order to analyze bacterial genomes and perform: (i) phylogenomic analysis, (ii) species demarcation, (iii) identification of the core proteins of a bacterial genus and its individual species, (iv) identification of species-specific fingerprint proteins that are found in all strains of a species and, at the same time, are absent from all other species of the genus, (v) functional annotation of the core and fingerprint proteins with eggNOG, and (vi) identification of secondary metabolite biosynthetic gene clusters (smBGCs) with antiSMASH. This software has already been implemented to analyze bacterial genera and species that are important for plants (e.g., Pseudomonas, Bacillus, Streptomyces). In addition, we provide a test dataset and example commands showing how to analyze 165 genomes from 55 species of the genus Bacillus. The main advantages of pyPGCF are that: (i) it uses adjustable orthology cut-offs, (ii) it identifies species-specific fingerprints, and (iii) its computational cost scales linearly with the number of genomes being analyzed. Therefore, pyPGCF is able to deal with a very large number of bacterial genomes, in reasonable timescales, using widely available levels of computing power.
Collapse
Affiliation(s)
- Marios Nikolaidis
- Bioinformatics Laboratory, Department of Biochemistry and Biotechnology, University of Thessaly, Biopolis, Greece
| | - Stephen G Oliver
- Department of Biochemistry, University of Cambridge, Cambridge, UK
| | - Grigorios D Amoutzias
- Bioinformatics Laboratory, Department of Biochemistry and Biotechnology, University of Thessaly, Biopolis, Greece.
| |
Collapse
|
10
|
Song YC, Holland SI, Lee M, Chen G, Löffler FE, Manefield MJ, Hugenholtz P, Kappler U. A comparative genome analysis of the Bacillota ( Firmicutes) class Dehalobacteriia. Microb Genom 2023; 9:mgen001039. [PMID: 37294008 PMCID: PMC10327494 DOI: 10.1099/mgen.0.001039] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2023] [Accepted: 04/25/2023] [Indexed: 06/10/2023] Open
Abstract
Dehalobacterium formicoaceticum is recognized for its ability to anaerobically ferment dichloromethane (DCM), and a catabolic model has recently been proposed. D. formicoaceticum is currently the only axenic representative of its class, the Dehalobacteriia, according to the Genome Taxonomy Database. However, substantial additional diversity has been revealed in this lineage through culture-independent exploration of anoxic habitats. Here we performed a comparative analysis of 10 members of the Dehalobacteriia, representing three orders, and infer that anaerobic DCM degradation appears to be a recently acquired trait only present in some members of the order Dehalobacteriales. Inferred traits common to the class include the use of amino acids as carbon and energy sources for growth, energy generation via a remarkable range of putative electron-bifurcating protein complexes and the presence of S-layers. The ability of D. formicoaceticum to grow on serine without DCM was experimentally confirmed and a high abundance of the electron-bifurcating protein complexes and S-layer proteins was noted when this organism was grown on DCM. We suggest that members of the Dehalobacteriia are low-abundance fermentative scavengers in anoxic habitats.
Collapse
Affiliation(s)
- Young C. Song
- The University of Queensland, School of Chemistry and Molecular Biosciences, Australian Centre for Ecogenomics, St Lucia, Queensland, 4072, Australia
| | - Sophie I. Holland
- School of Civil and Environmental Engineering, UNSW Sydney, Sydney, NSW, 2052, Australia
- Present address: School of Engineering & Physical Sciences, Heriot-Watt University, Edinburgh, UK
| | - Matthew Lee
- School of Civil and Environmental Engineering, UNSW Sydney, Sydney, NSW, 2052, Australia
| | - Gao Chen
- Center for Environmental Biotechnology, Department of Civil and Environmental Engineering, University of Tennessee, Knoxville, Tennessee, USA
| | - Frank E. Löffler
- Center for Environmental Biotechnology, Department of Civil and Environmental Engineering, University of Tennessee, Knoxville, Tennessee, USA
- Department of Microbiology, Department of Bioengineering and Soil Science, University of Tennessee, Knoxville, Tennessee, USA
- Oak Ridge National Laboratory, Biosciences Division, Oak Ridge, Tennessee, USA
| | - Michael J. Manefield
- School of Civil and Environmental Engineering, UNSW Sydney, Sydney, NSW, 2052, Australia
| | - Philip Hugenholtz
- The University of Queensland, School of Chemistry and Molecular Biosciences, Australian Centre for Ecogenomics, St Lucia, Queensland, 4072, Australia
| | - Ulrike Kappler
- The University of Queensland, School of Chemistry and Molecular Biosciences, St Lucia, Queensland, 4072, Australia
| |
Collapse
|
11
|
Kim R. Advanced Organotypic In Vitro Model Systems for Host-Microbial Coculture. BIOCHIP JOURNAL 2023; 17:1-27. [PMID: 37363268 PMCID: PMC10201494 DOI: 10.1007/s13206-023-00103-5] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/23/2023] [Revised: 04/18/2023] [Accepted: 04/23/2023] [Indexed: 06/28/2023]
Abstract
In vitro model systems have been advanced to recapitulate important physiological features of the target organ in vivo more closely than the conventional cell line cultures on a petri dish. The advanced organotypic model systems can be used as a complementary or alternative tool for various testing and screening. Numerous data from germ-free animal studies and genome sequencings of clinical samples indicate that human microbiota is an essential part of the human body, but current in vitro model systems rarely include them, which can be one of the reasons for the discrepancy in the tissue phenotypes and outcome of therapeutic intervention between in vivo and in vitro tissues. A coculture model system with appropriate microbes and host cells may have great potential to bridge the gap between the in vitro model and the in vivo counterpart. However, successfully integrating two species in one system introduces new variables to consider and poses new challenges to overcome. This review aims to provide perspectives on the important factors that should be considered for developing organotypic bacterial coculture models. Recent advances in various organotypic bacterial coculture models are highlighted. Finally, challenges and opportunities in developing organotypic microbial coculture models are also discussed.
Collapse
Affiliation(s)
- Raehyun Kim
- Department of Biological and Chemical Engineering, Hongik University, Sejong, Republic of Korea
| |
Collapse
|
12
|
Thermophilic Carboxylesterases from Hydrothermal Vents of the Volcanic Island of Ischia Active on Synthetic and Biobased Polymers and Mycotoxins. Appl Environ Microbiol 2023; 89:e0170422. [PMID: 36719236 PMCID: PMC9972953 DOI: 10.1128/aem.01704-22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023] Open
Abstract
Hydrothermal vents are geographically widespread and host microorganisms with robust enzymes useful in various industrial applications. We examined microbial communities and carboxylesterases of two terrestrial hydrothermal vents of the volcanic island of Ischia (Italy) predominantly composed of Firmicutes, Proteobacteria, and Bacteroidota. High-temperature enrichment cultures with the polyester plastics polyhydroxybutyrate and polylactic acid (PLA) resulted in an increase of Thermus and Geobacillus species and to some extent Fontimonas and Schleiferia species. The screening at 37 to 70°C of metagenomic fosmid libraries from above enrichment cultures identified three hydrolases (IS10, IS11, and IS12), all derived from yet-uncultured Chloroflexota and showing low sequence identity (33 to 56%) to characterized enzymes. Enzymes expressed in Escherichia coli exhibited maximal esterase activity at 70 to 90°C, with IS11 showing the highest thermostability (90% activity after 20-min incubation at 80°C). IS10 and IS12 were highly substrate promiscuous and hydrolyzed all 51 monoester substrates tested. Enzymes were active with PLA, polyethylene terephthalate model substrate, and mycotoxin T-2 (IS12). IS10 and IS12 had a classical α/β-hydrolase core domain with a serine hydrolase catalytic triad (Ser155, His280, and Asp250) in their hydrophobic active sites. The crystal structure of IS11 resolved at 2.92 Å revealed the presence of a N-terminal β-lactamase-like domain and C-terminal lipocalin domain. The catalytic cleft of IS11 included catalytic Ser68, Lys71, Tyr160, and Asn162, whereas the lipocalin domain enclosed the catalytic cleft like a lid and contributed to substrate binding. Our study identified novel thermotolerant carboxylesterases with a broad substrate range, including polyesters and mycotoxins, for potential applications in biotechnology. IMPORTANCE High-temperature-active microbial enzymes are important biocatalysts for many industrial applications, including recycling of synthetic and biobased polyesters increasingly used in textiles, fibers, coatings and adhesives. Here, we identified three novel thermotolerant carboxylesterases (IS10, IS11, and IS12) from high-temperature enrichment cultures from Ischia hydrothermal vents and incubated with biobased polymers. The identified metagenomic enzymes originated from uncultured Chloroflexota and showed low sequence similarity to known carboxylesterases. Active sites of IS10 and IS12 had the largest effective volumes among the characterized prokaryotic carboxylesterases and exhibited high substrate promiscuity, including hydrolysis of polyesters and mycotoxin T-2 (IS12). Though less promiscuous than IS10 and IS12, IS11 had a higher thermostability with a high temperature optimum (80 to 90°C) for activity and hydrolyzed polyesters, and its crystal structure revealed an unusual lipocalin domain likely involved in substrate binding. The polyesterase activity of these enzymes makes them attractive candidates for further optimization and potential application in plastics recycling.
Collapse
|
13
|
Fontana F, Alessandri G, Tarracchini C, Bianchi MG, Rizzo SM, Mancabelli L, Lugli GA, Argentini C, Vergna LM, Anzalone R, Longhi G, Viappiani A, Taurino G, Chiu M, Turroni F, Bussolati O, van Sinderen D, Milani C, Ventura M. Designation of optimal reference strains representing the infant gut bifidobacterial species through a comprehensive multi-omics approach. Environ Microbiol 2022; 24:5825-5839. [PMID: 36123315 PMCID: PMC10092070 DOI: 10.1111/1462-2920.16205] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2022] [Accepted: 09/10/2022] [Indexed: 01/12/2023]
Abstract
The genomic era has resulted in the generation of a massive amount of genetic data concerning the genomic diversity of bacterial taxa. As a result, the microbiological community is increasingly looking for ways to define reference bacterial strains to perform experiments that are representative of the entire bacterial species. Despite this, there is currently no established approach allowing a reliable identification of reference strains based on a comprehensive genomic, ecological, and functional context. In the current study, we developed a comprehensive multi-omics approach that will allow the identification of the optimal reference strains using the Bifidobacterium genus as test case. Strain tracking analysis based on 1664 shotgun metagenomics datasets of healthy infant faecal samples were employed to identify bifidobacterial strains suitable for in silico and in vitro analyses. Subsequently, an ad hoc bioinformatic tool was developed to screen local strain collections for the most suitable species-representative strain alternative. The here presented approach was validated using in vitro trials followed by metagenomics and metatranscriptomics analyses. Altogether, these results demonstrated the validity of the proposed model for reference strain selection, thus allowing improved in silico and in vitro investigations both in terms of cross-laboratory reproducibility and relevance of research findings.
Collapse
Affiliation(s)
- Federico Fontana
- Laboratory of Probiogenomics, Department of Chemistry, Life Sciences, and Environmental SustainabilityUniversity of ParmaParmaItaly
- GenProbio srlParmaItaly
| | - Giulia Alessandri
- Laboratory of Probiogenomics, Department of Chemistry, Life Sciences, and Environmental SustainabilityUniversity of ParmaParmaItaly
| | - Chiara Tarracchini
- Laboratory of Probiogenomics, Department of Chemistry, Life Sciences, and Environmental SustainabilityUniversity of ParmaParmaItaly
| | | | - Sonia Mirjam Rizzo
- Laboratory of Probiogenomics, Department of Chemistry, Life Sciences, and Environmental SustainabilityUniversity of ParmaParmaItaly
| | - Leonardo Mancabelli
- Laboratory of Probiogenomics, Department of Chemistry, Life Sciences, and Environmental SustainabilityUniversity of ParmaParmaItaly
| | - Gabriele Andrea Lugli
- Laboratory of Probiogenomics, Department of Chemistry, Life Sciences, and Environmental SustainabilityUniversity of ParmaParmaItaly
| | - Chiara Argentini
- Laboratory of Probiogenomics, Department of Chemistry, Life Sciences, and Environmental SustainabilityUniversity of ParmaParmaItaly
| | - Laura Maria Vergna
- Laboratory of Probiogenomics, Department of Chemistry, Life Sciences, and Environmental SustainabilityUniversity of ParmaParmaItaly
| | | | - Giulia Longhi
- Laboratory of Probiogenomics, Department of Chemistry, Life Sciences, and Environmental SustainabilityUniversity of ParmaParmaItaly
- GenProbio srlParmaItaly
| | | | - Giuseppe Taurino
- Laboratory of General Pathology, Department of Medicine and SurgeryUniversity of ParmaParmaItaly
- Microbiome Research HubUniversity of ParmaParmaItaly
| | - Martina Chiu
- Laboratory of General Pathology, Department of Medicine and SurgeryUniversity of ParmaParmaItaly
| | - Francesca Turroni
- Laboratory of Probiogenomics, Department of Chemistry, Life Sciences, and Environmental SustainabilityUniversity of ParmaParmaItaly
- Microbiome Research HubUniversity of ParmaParmaItaly
| | - Ovidio Bussolati
- Laboratory of General Pathology, Department of Medicine and SurgeryUniversity of ParmaParmaItaly
- Microbiome Research HubUniversity of ParmaParmaItaly
| | - Douwe van Sinderen
- APC Microbiome Institute and School of Microbiology, Bioscience InstituteNational University of IrelandCorkIreland
| | - Christian Milani
- Laboratory of Probiogenomics, Department of Chemistry, Life Sciences, and Environmental SustainabilityUniversity of ParmaParmaItaly
- Microbiome Research HubUniversity of ParmaParmaItaly
| | - Marco Ventura
- Laboratory of Probiogenomics, Department of Chemistry, Life Sciences, and Environmental SustainabilityUniversity of ParmaParmaItaly
- Microbiome Research HubUniversity of ParmaParmaItaly
| |
Collapse
|
14
|
Seshadri R, Roux S, Huber KJ, Wu D, Yu S, Udwary D, Call L, Nayfach S, Hahnke RL, Pukall R, White JR, Varghese NJ, Webb C, Palaniappan K, Reimer LC, Sardà J, Bertsch J, Mukherjee S, Reddy T, Hajek PP, Huntemann M, Chen IMA, Spunde A, Clum A, Shapiro N, Wu ZY, Zhao Z, Zhou Y, Evtushenko L, Thijs S, Stevens V, Eloe-Fadrosh EA, Mouncey NJ, Yoshikuni Y, Whitman WB, Klenk HP, Woyke T, Göker M, Kyrpides NC, Ivanova NN. Expanding the genomic encyclopedia of Actinobacteria with 824 isolate reference genomes. CELL GENOMICS 2022; 2:100213. [PMID: 36778052 PMCID: PMC9903846 DOI: 10.1016/j.xgen.2022.100213] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/14/2022] [Revised: 07/19/2022] [Accepted: 10/16/2022] [Indexed: 11/13/2022]
Abstract
The phylum Actinobacteria includes important human pathogens like Mycobacterium tuberculosis and Corynebacterium diphtheriae and renowned producers of secondary metabolites of commercial interest, yet only a small part of its diversity is represented by sequenced genomes. Here, we present 824 actinobacterial isolate genomes in the context of a phylum-wide analysis of 6,700 genomes including public isolates and metagenome-assembled genomes (MAGs). We estimate that only 30%-50% of projected actinobacterial phylogenetic diversity possesses genomic representation via isolates and MAGs. A comparison of gene functions reveals novel determinants of host-microbe interaction as well as environment-specific adaptations such as potential antimicrobial peptides. We identify plasmids and prophages across isolates and uncover extensive prophage diversity structured mainly by host taxonomy. Analysis of >80,000 biosynthetic gene clusters reveals that horizontal gene transfer and gene loss shape secondary metabolite repertoire across taxa. Our observations illustrate the essential role of and need for high-quality isolate genome sequences.
Collapse
Affiliation(s)
- Rekha Seshadri
- US Department of Energy Joint Genome Institute, Berkeley, CA, USA,Corresponding author
| | - Simon Roux
- US Department of Energy Joint Genome Institute, Berkeley, CA, USA
| | - Katharina J. Huber
- Leibniz Institute DSMZ - German Collection of Microorganisms and Cell Cultures, Braunschweig, Germany
| | - Dongying Wu
- US Department of Energy Joint Genome Institute, Berkeley, CA, USA
| | - Sora Yu
- Environmental Genomics and Systems Biology Division, Lawrence Berkeley National Laboratory, Berkeley, CA, USA
| | - Dan Udwary
- US Department of Energy Joint Genome Institute, Berkeley, CA, USA,Environmental Genomics and Systems Biology Division, Lawrence Berkeley National Laboratory, Berkeley, CA, USA
| | - Lee Call
- US Department of Energy Joint Genome Institute, Berkeley, CA, USA
| | - Stephen Nayfach
- US Department of Energy Joint Genome Institute, Berkeley, CA, USA
| | - Richard L. Hahnke
- Leibniz Institute DSMZ - German Collection of Microorganisms and Cell Cultures, Braunschweig, Germany
| | - Rüdiger Pukall
- Leibniz Institute DSMZ - German Collection of Microorganisms and Cell Cultures, Braunschweig, Germany
| | | | - Neha J. Varghese
- US Department of Energy Joint Genome Institute, Berkeley, CA, USA
| | - Cody Webb
- US Department of Energy Joint Genome Institute, Berkeley, CA, USA
| | | | - Lorenz C. Reimer
- Leibniz Institute DSMZ - German Collection of Microorganisms and Cell Cultures, Braunschweig, Germany
| | - Joaquim Sardà
- Leibniz Institute DSMZ - German Collection of Microorganisms and Cell Cultures, Braunschweig, Germany
| | - Jonathon Bertsch
- US Department of Energy Joint Genome Institute, Berkeley, CA, USA
| | | | - T.B.K. Reddy
- US Department of Energy Joint Genome Institute, Berkeley, CA, USA
| | - Patrick P. Hajek
- US Department of Energy Joint Genome Institute, Berkeley, CA, USA
| | - Marcel Huntemann
- US Department of Energy Joint Genome Institute, Berkeley, CA, USA
| | - I-Min A. Chen
- US Department of Energy Joint Genome Institute, Berkeley, CA, USA
| | - Alex Spunde
- US Department of Energy Joint Genome Institute, Berkeley, CA, USA
| | - Alicia Clum
- US Department of Energy Joint Genome Institute, Berkeley, CA, USA
| | - Nicole Shapiro
- US Department of Energy Joint Genome Institute, Berkeley, CA, USA
| | - Zong-Yen Wu
- Environmental Genomics and Systems Biology Division, Lawrence Berkeley National Laboratory, Berkeley, CA, USA
| | - Zhiying Zhao
- US Department of Energy Joint Genome Institute, Berkeley, CA, USA
| | - Yuguang Zhou
- China General Microbiological Culture Collection Center, Beijing, China
| | - Lyudmila Evtushenko
- Pushchino Scientific Center for Biological Research of the Russian Academy of Sciences, All-Russian Collection of Microorganisms (VKM), Pushchino, Russia
| | - Sofie Thijs
- Center for Environmental Sciences, Environmental Biology, Hasselt University, Diepenbeek, Belgium
| | - Vincent Stevens
- Center for Environmental Sciences, Environmental Biology, Hasselt University, Diepenbeek, Belgium
| | - Emiley A. Eloe-Fadrosh
- US Department of Energy Joint Genome Institute, Berkeley, CA, USA,Environmental Genomics and Systems Biology Division, Lawrence Berkeley National Laboratory, Berkeley, CA, USA
| | - Nigel J. Mouncey
- US Department of Energy Joint Genome Institute, Berkeley, CA, USA,Environmental Genomics and Systems Biology Division, Lawrence Berkeley National Laboratory, Berkeley, CA, USA
| | - Yasuo Yoshikuni
- US Department of Energy Joint Genome Institute, Berkeley, CA, USA,Environmental Genomics and Systems Biology Division, Lawrence Berkeley National Laboratory, Berkeley, CA, USA,Biological Systems and Engineering Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA,Center for Advanced Bioenergy and Bioproducts Innovation, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA,Global Institution for Collaborative Research and Education, Hokkaido University, Hokkaido 060-8589, Japan
| | | | - Hans-Peter Klenk
- School of Biology, Newcastle University, Newcastle upon Tyne, UK
| | - Tanja Woyke
- US Department of Energy Joint Genome Institute, Berkeley, CA, USA,Environmental Genomics and Systems Biology Division, Lawrence Berkeley National Laboratory, Berkeley, CA, USA
| | - Markus Göker
- Leibniz Institute DSMZ - German Collection of Microorganisms and Cell Cultures, Braunschweig, Germany,Corresponding author
| | - Nikos C. Kyrpides
- US Department of Energy Joint Genome Institute, Berkeley, CA, USA,Environmental Genomics and Systems Biology Division, Lawrence Berkeley National Laboratory, Berkeley, CA, USA
| | - Natalia N. Ivanova
- US Department of Energy Joint Genome Institute, Berkeley, CA, USA,Environmental Genomics and Systems Biology Division, Lawrence Berkeley National Laboratory, Berkeley, CA, USA,Corresponding author
| |
Collapse
|
15
|
Montero-Calasanz MDC, Yaramis A, Rohde M, Schumann P, Klenk HP, Meier-Kolthoff JP. Genotype-phenotype correlations within the Geodermatophilaceae. Front Microbiol 2022; 13:975365. [PMID: 36439792 PMCID: PMC9686282 DOI: 10.3389/fmicb.2022.975365] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2022] [Accepted: 10/11/2022] [Indexed: 11/11/2022] Open
Abstract
The integration of genomic information into microbial systematics along with physiological and chemotaxonomic parameters provides for a reliable classification of prokaryotes. In silico analysis of chemotaxonomic traits is now being introduced to replace characteristics traditionally determined in the laboratory with the dual goal of both increasing the speed of the description of taxa and the accuracy and consistency of taxonomic reports. Genomics has already successfully been applied in the taxonomic rearrangement of Geodermatophilaceae (Actinomycetota) but in the light of new genomic data the taxonomy of the family needs to be revisited. In conjunction with the taxonomic characterisation of four strains phylogenetically located within the family, we conducted a phylogenetic analysis of the whole proteomes of the sequenced type strains and established genotype-phenotype correlations for traits related to chemotaxonomy, cell morphology and metabolism. Results indicated that the four isolates under study represent four novel species within the genus Blastococcus. Additionally, the genera Blastococcus, Geodermatophilus and Modestobacter were shown to be paraphyletic. Consequently, the new genera Trujillonella, Pleomorpha and Goekera were proposed within the Geodermatophilaceae and Blastococcus endophyticus was reclassified as Trujillonella endophytica comb. nov., Geodermatophilus daqingensis as Pleomorpha daqingensis comb. nov. and Modestobacter deserti as Goekera deserti comb. nov. Accordingly, we also proposed emended descriptions of Blastococcus aggregatus, Blastococcus jejuensis, Blastococcus saxobsidens and Blastococcus xanthilyniticus. In silico chemotaxonomic results were overall consistent with wet-lab results. Even though in silico discriminatory levels varied depending on the respective chemotaxonomic trait, this approach is promising for effectively replacing and/or complementing chemotaxonomic analyses at taxonomic ranks above the species level. Finally, interesting but previously overlooked insights regarding morphology and ecology were revealed by the presence of a repertoire of genes related to flagellum synthesis, chemotaxis, spore production and pilus assembly in all representatives of the family. A rich carbon metabolism including four different CO2 fixation pathways and a battery of enzymes able to degrade complex carbohydrates were also identified in Blastococcus genomes.
Collapse
Affiliation(s)
- Maria del Carmen Montero-Calasanz
- IFAPA Las Torres-Andalusian Institute of Agricultural and Fisheries Research and Training, Junta de Andalucía, Seville, Spain
- School of Natural and Environmental Sciences, Newcastle University, Newcastle upon Tyne, United Kingdom
| | - Adnan Yaramis
- School of Natural and Environmental Sciences, Newcastle University, Newcastle upon Tyne, United Kingdom
| | - Manfred Rohde
- Central Facility for Microscopy, HZI – Helmholtz Centre for Infection Research, Braunschweig, Germany
| | - Peter Schumann
- Leibniz Institute DSMZ – German Collection of Microorganisms and Cell Cultures, Braunschweig, Germany
| | - Hans-Peter Klenk
- School of Natural and Environmental Sciences, Newcastle University, Newcastle upon Tyne, United Kingdom
| | - Jan P. Meier-Kolthoff
- Department Bioinformatics and Databases, Leibniz Institute DSMZ – German Collection of Microorganisms and Cell Cultures, Braunschweig, Germany
| |
Collapse
|
16
|
A Comparative Analysis of the Core Proteomes within and among the Bacillus subtilis and Bacillus cereus Evolutionary Groups Reveals the Patterns of Lineage- and Species-Specific Adaptations. Microorganisms 2022; 10:microorganisms10091720. [PMID: 36144322 PMCID: PMC9505155 DOI: 10.3390/microorganisms10091720] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2022] [Revised: 08/19/2022] [Accepted: 08/23/2022] [Indexed: 11/17/2022] Open
Abstract
By integrating phylogenomic and comparative analyses of 1104 high-quality genome sequences, we identify the core proteins and the lineage-specific fingerprint proteins of the various evolutionary clusters (clades/groups/species) of the Bacillus genus. As fingerprints, we denote those core proteins of a certain lineage that are present only in that particular lineage and absent in any other Bacillus lineage. Thus, these lineage-specific fingerprints are expected to be involved in particular adaptations of that lineage. Intriguingly, with a few notable exceptions, the majority of the Bacillus species demonstrate a rather low number of species-specific fingerprints, with the majority of them being of unknown function. Therefore, species-specific adaptations are mostly attributed to highly unstable (in evolutionary terms) accessory proteomes and possibly to changes at the gene regulation level. A series of comparative analyses consistently demonstrated that the progenitor of the Cereus Clade underwent an extensive genomic expansion of chromosomal protein-coding genes. In addition, the majority (76–82%) of the B. subtilis proteins that are essential or play a significant role in sporulation have close homologs in most species of both the Subtilis and the Cereus Clades. Finally, the identification of lineage-specific fingerprints by this study may allow for the future development of highly specific vaccines, therapeutic molecules, or rapid and low-cost molecular tests for species identification.
Collapse
|
17
|
Louati M, Hezbri K, Montero-Calasanz MDC, Rohde M, Göker M, Ghodhbane-Gtari F, Klenk HP, Nouioui I, Gtari M. Blastococcus tunisiensis sp. nov., isolated from limestone collected in Tunisia. Int J Syst Evol Microbiol 2022; 72. [DOI: 10.1099/ijsem.0.005441] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
A new actinobacterium strain, designated BMG 823T, was isolated from a limestone sample collected in Tunisia. Its taxonomic position was scrutinized using a polyphasic approach. Colonies of strain BMG 823T were pink orange-coloured, regular and had a moist surface. Cells are Gram-stain-positive, catalase-negative and oxidase-negative. The strain grew at pH 5.5–9, 10–40 °C and in presence of up to 4 % NaCl (w/v). Chemotaxonomically, strain BMG 823T was characterized by cell-wall type III containing meso-diaminopimelic acid as diamino acid, glucose, ribose and rhamnose as whole-cell sugars, MK-9(H4) as predominant menaquinone, and phosphatidylcholine, diphosphadidylglycerol, phosphatidethanolamine, phosphatidylcholine, phosphatidylinositol, unidentified glycolipid, unidentified aminophospholipids and unidentified glycophospholipid as major polar lipids. The fatty acid profile consisted of iso-C16 : 0 and iso-C17 : 1
ω9. Phylogenetic trees based on 16S rRNA gene and genome sequences placed strain BMG 823T within the genus
Blastococcus
and separated it from all type strains of validly published species. Comparison of 16S rRNA gene sequence similarity, digital DNA–DNA hybridization and average nucleotide identity indicated that strain BMG 823T was most closely related to
Blastococcus litoris
DSM 106127T and
Blastococcus colisei
BMG 822T with pairwise values well below the species differentiation thresholds. The distinct phenotypic and genotypic features of strain BMG 823T (=DSM 46838T=CECT 8881T) within the genus
Blastococcus
warrant its recognition as the type strain for the new species for which we propose the name Blastococcus tunisiensis sp. nov.
Collapse
Affiliation(s)
- Moussa Louati
- Université de Carthage, Institut National des Sciences Appliquées et de Technologie, USCR Bactériologie Moléculaire & génomique, 1080 Tunis Cedex, Tunisia
| | - Karima Hezbri
- Université de Carthage, Institut National des Sciences Appliquées et de Technologie, USCR Bactériologie Moléculaire & génomique, 1080 Tunis Cedex, Tunisia
| | - Maria del Carmen Montero-Calasanz
- Leibniz Institute DSMZ – German Collection of Microorganisms and Cell Cultures, Inhoffenstraße 7B, 38124 Braunschweig, Germany
- IFAPA Las Torres- Andalusian Institute of Agricultural and Fisheries Research and Training, Junta de Andalucía, Cra. Sevilla-Cazalla, km 12.2., 41200, Alcalá del Río, Seville, Spain
| | - Manfred Rohde
- Central Facility for Microscopy, HZI – Helmholtz Centre for Infection Research Inhoffenstraße 7, 38124 Braunschweig, Germany
| | - Markus Göker
- Leibniz Institute DSMZ – German Collection of Microorganisms and Cell Cultures, Inhoffenstraße 7B, 38124 Braunschweig, Germany
| | - Faten Ghodhbane-Gtari
- Université de Carthage, Institut National des Sciences Appliquées et de Technologie, USCR Bactériologie Moléculaire & génomique, 1080 Tunis Cedex, Tunisia
| | - Hans-Peter Klenk
- School of Natural and Environmental Sciences, Newcastle University, Ridley Building 2, Newcastle upon Tyne, NE1 7RU, UK
| | - Imen Nouioui
- Leibniz Institute DSMZ – German Collection of Microorganisms and Cell Cultures, Inhoffenstraße 7B, 38124 Braunschweig, Germany
| | - Maher Gtari
- Université de Carthage, Institut National des Sciences Appliquées et de Technologie, USCR Bactériologie Moléculaire & génomique, 1080 Tunis Cedex, Tunisia
| |
Collapse
|
18
|
Dashora K, Gattupalli M, Javed Z, Tripathi GD, Sharma R, Mishra M, Bhargava A, Srivastava S. Leveraging multiomics approaches for producing lignocellulose degrading enzymes. Cell Mol Life Sci 2022; 79:132. [PMID: 35152331 PMCID: PMC11072819 DOI: 10.1007/s00018-022-04176-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2021] [Revised: 12/16/2021] [Accepted: 01/25/2022] [Indexed: 11/03/2022]
Abstract
Lignocellulosic materials form the building block of 50% of plant biomass comprising non-chewable agri-components like wheat straw, rice stubbles, wood shavings and other crop residues. The degradation of lignin, cellulose and hemicellulose is complicated and presently being done by chemical process for industrial application through a very energy intensive process. Lignin degradation is primarily an oxidative process where the enzyme lignin peroxidase digests the polymer into smaller fragments. Being a recalcitrant component, higher lignin content poses a challenge of lower recovery of product for industrial use. Globally, the scientists are working on leveraging fungal biotechnology for using the lignocellulose degrading enzymes secreted by actinomycetes and basidiomycetes fungal groups. Enzymes contributing to degradation of lignin are mainly performing the function of modifying the lignin and degrading the lignin. Ligninolytic enzymes do not act as an independent reaction but are vital to complete the degradation process. Microbial enzyme technology is an emerging green tool in industrial biotechnology for commercial application. Bioprocessing of lignocellulosic biomass is challenged by limitations in enzymatic and conversion process where pretreatment and separation steps are done to remove lignin and hydrolyze carbohydrate into fermentable sugars. This review highlights recent advances in molecular biotechnology, lignin valorization, sequencing, decipher microbial membership, and characterize enzyme diversity through 'omics' techniques. Emerging techniques to characterize the interwoven metabolism and spatial interactions between anaerobes are also reviewed, which will prove critical to developing a predictive understanding of anaerobic communities to guide in microbiome engineering This requires more synergistic collaborations from microbial biotechnologists, bioprocess engineers, enzymologists, and other biotechnological fields.
Collapse
Affiliation(s)
- Kavya Dashora
- Centre for Rural Development and Technology, Indian Institute of Technology, Delhi, India.
| | - Meghana Gattupalli
- Centre for Rural Development and Technology, Indian Institute of Technology, Delhi, India
| | - Zoya Javed
- Centre for Rural Development and Technology, Indian Institute of Technology, Delhi, India
| | - Gyan Datta Tripathi
- Centre for Rural Development and Technology, Indian Institute of Technology, Delhi, India
| | - Ruchi Sharma
- Centre for Rural Development and Technology, Indian Institute of Technology, Delhi, India
| | - Mansi Mishra
- Centre for Rural Development and Technology, Indian Institute of Technology, Delhi, India
| | - Atul Bhargava
- Department of Botany, Mahatma Gandhi Central University, Bihar, India
| | - Shilpi Srivastava
- Amity Institute of Biotechnology, Amity University Uttar Pradesh, Lucknow Campus, Lucknow, India
| |
Collapse
|
19
|
Saati-Santamaría Z, Selem-Mojica N, Peral-Aranega E, Rivas R, García-Fraile P. Unveiling the genomic potential of Pseudomonas type strains for discovering new natural products. Microb Genom 2022; 8:000758. [PMID: 35195510 PMCID: PMC8942027 DOI: 10.1099/mgen.0.000758] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2021] [Accepted: 12/07/2021] [Indexed: 12/20/2022] Open
Abstract
Microbes host a huge variety of biosynthetic gene clusters that produce an immeasurable array of secondary metabolites with many different biological activities such as antimicrobial, anticarcinogenic and antiviral. Despite the complex task of isolating and characterizing novel natural products, microbial genomic strategies can be useful for carrying out these types of studies. However, although genomic-based research on secondary metabolism is on the increase, there is still a lack of reports focusing specifically on the genus Pseudomonas. In this work, we aimed (i) to unveil the main biosynthetic systems related to secondary metabolism in Pseudomonas type strains, (ii) to study the evolutionary processes that drive the diversification of their coding regions and (iii) to select Pseudomonas strains showing promising results in the search for useful natural products. We performed a comparative genomic study on 194 Pseudomonas species, paying special attention to the evolution and distribution of different classes of biosynthetic gene clusters and the coding features of antimicrobial peptides. Using EvoMining, a bioinformatic approach for studying evolutionary processes related to secondary metabolism, we sought to decipher the protein expansion of enzymes related to the lipid metabolism, which may have evolved toward the biosynthesis of novel secondary metabolites in Pseudomonas. The types of metabolites encoded in Pseudomonas type strains were predominantly non-ribosomal peptide synthetases, bacteriocins, N-acetylglutaminylglutamine amides and ß-lactones. Also, the evolution of genes related to secondary metabolites was found to coincide with Pseudomonas species diversification. Interestingly, only a few Pseudomonas species encode polyketide synthases, which are related to the lipid metabolism broadly distributed among bacteria. Thus, our EvoMining-based search may help to discover new types of secondary metabolite gene clusters in which lipid-related enzymes are involved. This work provides information about uncharacterized metabolites produced by Pseudomonas type strains, whose gene clusters have evolved in a species-specific way. Our results provide novel insight into the secondary metabolism of Pseudomonas and will serve as a basis for the prioritization of the isolated strains. This article contains data hosted by Microreact.
Collapse
Affiliation(s)
- Zaki Saati-Santamaría
- Microbiology and Genetics Department, University of Salamanca, 37007 Salamanca, Spain
- Institute for Agribiotechnology Research (CIALE), 37185 Salamanca, Spain
| | | | - Ezequiel Peral-Aranega
- Microbiology and Genetics Department, University of Salamanca, 37007 Salamanca, Spain
- Institute for Agribiotechnology Research (CIALE), 37185 Salamanca, Spain
| | - Raúl Rivas
- Microbiology and Genetics Department, University of Salamanca, 37007 Salamanca, Spain
- Institute for Agribiotechnology Research (CIALE), 37185 Salamanca, Spain
- Associated Research Unit of Plant-Microorganism Interaction, University of Salamanca-IRNASA-CSIC, 37008 Salamanca, Spain
| | - Paula García-Fraile
- Microbiology and Genetics Department, University of Salamanca, 37007 Salamanca, Spain
- Institute for Agribiotechnology Research (CIALE), 37185 Salamanca, Spain
- Associated Research Unit of Plant-Microorganism Interaction, University of Salamanca-IRNASA-CSIC, 37008 Salamanca, Spain
| |
Collapse
|
20
|
Wijers CDM, Pham L, Menon S, Boyd KL, Noel HR, Skaar EP, Gaddy JA, Palmer LD, Noto MJ. Identification of Two Variants of Acinetobacter baumannii Strain ATCC 17978 with Distinct Genotypes and Phenotypes. Infect Immun 2021; 89:e0045421. [PMID: 34460288 PMCID: PMC8594612 DOI: 10.1128/iai.00454-21] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2021] [Accepted: 08/19/2021] [Indexed: 01/11/2023] Open
Abstract
Acinetobacter baumannii is a nosocomial pathogen that exhibits substantial genomic plasticity. Here, the identification of two variants of A. baumannii ATCC 17978 that differ based on the presence of a 44-kb accessory locus, named AbaAL44 (A. baumannii accessory locus 44 kb), is described. Analyses of existing deposited data suggest that both variants are found in published studies of A. baumannii ATCC 17978 and that American Type Culture Collection (ATCC)-derived laboratory stocks comprise a mix of these two variants. Yet, each variant exhibits distinct interactions with the host in vitro and in vivo. Infection with the variant that harbors AbaAL44 (A. baumannii 17978 UN) results in decreased bacterial burdens and increased neutrophilic lung inflammation in a mouse model of pneumonia, and affects the production of interleukin 1 beta (IL-1β) and IL-10 by infected macrophages. AbaAL44 harbors putative pathogenesis genes, including those predicted to encode a type I pilus cluster, a catalase, and a cardiolipin synthase. The accessory catalase increases A. baumannii resistance to oxidative stress and neutrophil-mediated killing in vitro. The accessory cardiolipin synthase plays a dichotomous role by promoting bacterial uptake and increasing IL-1β production by macrophages, but also by enhancing bacterial resistance to cell envelope stress. Collectively, these findings highlight the phenotypic consequences of the genomic dynamism of A. baumannii through the evolution of two variants of a common type strain with distinct infection-related attributes.
Collapse
Affiliation(s)
- Christiaan D. M. Wijers
- Department of Pathology, Microbiology, and Immunology, Vanderbilt University Medical Center, Nashville, Tennessee, USA
- Vanderbilt Institute for Infection, Immunology, and Inflammation, Vanderbilt University Medical Center, Nashville, Tennessee, USA
| | - Ly Pham
- Department of Pathology, Microbiology, and Immunology, Vanderbilt University Medical Center, Nashville, Tennessee, USA
- Vanderbilt Institute for Infection, Immunology, and Inflammation, Vanderbilt University Medical Center, Nashville, Tennessee, USA
| | - Swapna Menon
- AnalyzeDat Consulting Services, Ernakulam, Kerala, India
| | - Kelli L. Boyd
- Department of Pathology, Microbiology, and Immunology, Vanderbilt University Medical Center, Nashville, Tennessee, USA
- Vanderbilt Institute for Infection, Immunology, and Inflammation, Vanderbilt University Medical Center, Nashville, Tennessee, USA
| | - Hannah R. Noel
- Department of Microbiology and Immunology, University of Illinois Chicago, Chicago, Illinois, USA
| | - Eric P. Skaar
- Department of Pathology, Microbiology, and Immunology, Vanderbilt University Medical Center, Nashville, Tennessee, USA
- Vanderbilt Institute for Infection, Immunology, and Inflammation, Vanderbilt University Medical Center, Nashville, Tennessee, USA
| | - Jennifer A. Gaddy
- Department of Pathology, Microbiology, and Immunology, Vanderbilt University Medical Center, Nashville, Tennessee, USA
- Vanderbilt Institute for Infection, Immunology, and Inflammation, Vanderbilt University Medical Center, Nashville, Tennessee, USA
- Department of Medicine, Vanderbilt University Medical Center, Nashville, Tennessee, USA
- Department of Veterans Affairs, Tennessee Valley Healthcare Systems, Nashville, Tennessee, USA
| | - Lauren D. Palmer
- Department of Microbiology and Immunology, University of Illinois Chicago, Chicago, Illinois, USA
| | - Michael J. Noto
- Department of Pathology, Microbiology, and Immunology, Vanderbilt University Medical Center, Nashville, Tennessee, USA
- Vanderbilt Institute for Infection, Immunology, and Inflammation, Vanderbilt University Medical Center, Nashville, Tennessee, USA
- Department of Medicine, Vanderbilt University Medical Center, Nashville, Tennessee, USA
| |
Collapse
|
21
|
Qaiser H, Kaleem A, Abdullah R, Iqtedar M, Hoessli DC. Overview of lignocellulolytic enzyme systems with special reference to valorization of lignocellulosic biomass. Protein Pept Lett 2021; 28:1349-1364. [PMID: 34749601 DOI: 10.2174/0929866528666211105110643] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2021] [Revised: 09/03/2021] [Accepted: 09/03/2021] [Indexed: 11/22/2022]
Abstract
Lignocellulosic biomass, one of the most valuable natural resources, is abundantly present on earth. Being a renewable feedstock, it harbors a great potential to be exploited as a raw material, to produce various value-added products. Lignocellulolytic microorganisms hold a unique position regarding the valorization of lignocellulosic biomass as they contain efficient enzyme systems capable of degrading this biomass. The ubiquitous nature of these microorganisms and their survival under extreme conditions have enabled their use as an effective producer of lignocellulolytic enzymes with improved biochemical features crucial to industrial bioconversion processes. These enzymes can prove to be an exquisite tool when it comes to the eco-friendly manufacturing of value-added products using waste material. This review focuses on highlighting the significance of lignocellulosic biomass, microbial sources of lignocellulolytic enzymes and their use in the formation of useful products.
Collapse
Affiliation(s)
- Hina Qaiser
- Department of Biology, Lahore Garrison University, Lahore. Pakistan
| | - Afshan Kaleem
- Department of Biotechnology, Lahore College for Women University, Lahore. Pakistan
| | - Roheena Abdullah
- Department of Biotechnology, Lahore College for Women University, Lahore. Pakistan
| | - Mehwish Iqtedar
- Department of Biotechnology, Lahore College for Women University, Lahore. Pakistan
| | - Daniel C Hoessli
- Dr. Panjwani Center for Molecular Medicine and Drug Research, International Center for Chemical and Biological Sciences, University of Karachi, Karachi. Pakistan
| |
Collapse
|
22
|
Abstract
Reconstructing microbial genomes from metagenomic short-read data can be challenging due to the unknown and uneven complexity of microbial communities. This complexity encompasses highly diverse populations, which often includes strain variants. Reconstructing high-quality genomes is a crucial part of the metagenomic workflow, as subsequent ecological and metabolic inferences depend on their accuracy, quality, and completeness. In contrast to microbial communities in other ecosystems, there has been no systematic assessment of genome-centric metagenomic workflows for drinking water microbiomes. In this study, we assessed the performance of a combination of assembly and binning strategies for time series drinking water metagenomes that were collected over 6 months. The goal of this study was to identify the combination of assembly and binning approaches that result in high-quality and -quantity metagenome-assembled genomes (MAGs), representing most of the sequenced metagenome. Our findings suggest that the metaSPAdes coassembly strategies had the best performance, as they resulted in larger and less fragmented assemblies, with at least 85% of the sequence data mapping to contigs greater than 1 kbp. Furthermore, a combination of metaSPAdes coassembly strategies and MetaBAT2 produced the highest number of medium-quality MAGs while capturing at least 70% of the metagenomes based on read recruitment. Utilizing different assembly/binning approaches also assists in the reconstruction of unique MAGs from closely related species that would have otherwise collapsed into a single MAG using a single workflow. Overall, our study suggests that leveraging multiple binning approaches with different metaSPAdes coassembly strategies may be required to maximize the recovery of good-quality MAGs. IMPORTANCE Drinking water contains phylogenetic diverse groups of bacteria, archaea, and eukarya that affect the esthetic quality of water, water infrastructure, and public health. Taxonomic, metabolic, and ecological inferences of the drinking water microbiome depend on the accuracy, quality, and completeness of genomes that are reconstructed through the application of genome-resolved metagenomics. Using time series metagenomic data, we present reproducible genome-centric metagenomic workflows that result in high-quality and -quantity genomes, which more accurately signifies the sequenced drinking water microbiome. These genome-centric metagenomic workflows will allow for improved taxonomic and functional potential analysis that offers enhanced insights into the stability and dynamics of drinking water microbial communities.
Collapse
|
23
|
Menes RJ, Machin EV, Roldán DM, Kyrpides N, Woyke T, Whitman WB, Busse HJ. Frigoriflavimonas asaccharolytica gen. nov., sp. nov., a novel psychrophilic esterase and protease producing bacterium isolated from Antarctica. Antonie van Leeuwenhoek 2021; 114:1991-2002. [PMID: 34541621 DOI: 10.1007/s10482-021-01656-x] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/10/2021] [Accepted: 09/04/2021] [Indexed: 11/24/2022]
Abstract
The rod-shaped and Gram-stain-negative bacterial strain 16FT, isolated from an air sample collected at King George Island, maritime Antarctica, was investigated to determine its taxonomic status. Strain 16FT is strictly aerobic, catalase positive, oxidase positive and non-motile. Strain 16FT hydrolyses casein, lecithin, Tween 20, 60 and 80, but not aesculin, gelatin and starch. Growth of strain 16FT is observed at 0-20 °C (optimum 10 °C), pH 5.0-8.0 (optimum pH 6.0), and in the presence of 0-2.0% NaCl (optimum 0.5%). The predominant menaquinone is MK-6, and the major fatty acids comprise anteiso-C15:0 and iso-C15:0. The major polar lipids are phosphatidylethanolamine, ornithine lipid OL2, unidentified phospholipid PL1 and the unidentified lipids L3 and L6 lacking functional groups. The DNA G + C content based on the draft genome sequence is 32.3 mol%. Sequence analysis of the 16S rRNA gene indicates the highest similarity to Kaistella palustris 3A10T (95.4%), Kaistella chaponensis Sa 1147-06 T (95.2%), Kaistella antarctica AT1013T (95.1%), Kaistella carnis NCTC 13525 T (95.1%) and below 95.0% to other species with validly published names. Phylogenetic analysis based on 16S rRNA gene and whole-genome sequences places strain 16FT in a distinct branch, indicating a separate lineage within the family Weeksellaceae. Based on the data from our polyphasic approach, 16FT represents a novel species of a new genus, for which the name Frigoriflavimonas asaccharolytica gen. nov, sp. nov. is proposed. The type strain is 16FT (= CCM 8975 T = CGMCC No.1.16844 T).
Collapse
Affiliation(s)
- Rodolfo Javier Menes
- Laboratorio de Ecología Microbiana Medioambiental, Facultad de Química, Universidad de la República, Montevideo, Uruguay. .,Laboratorio de Microbiología, Facultad de Ciencias, Unidad Asociada del Instituto de Química Biológica, Universidad de la República, Montevideo, Uruguay.
| | - Eliana V Machin
- Laboratorio de Ecología Microbiana Medioambiental, Facultad de Química, Universidad de la República, Montevideo, Uruguay
| | - Diego M Roldán
- Laboratorio de Ecología Microbiana Medioambiental, Facultad de Química, Universidad de la República, Montevideo, Uruguay
| | | | | | | | - Hans-Jürgen Busse
- Institut Für Mikrobiologie, Veterinärmedizinische Universität Wien, Wien, Austria
| |
Collapse
|
24
|
Khadivzadeh T, Rahmati R, Esmaily H. Effect of education on knowledge of fertility counseling and attitudes toward fertility control. JOURNAL OF EDUCATION AND HEALTH PROMOTION 2021; 10:319. [PMID: 34667819 PMCID: PMC8459845 DOI: 10.4103/jehp.jehp_76_21] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/16/2021] [Accepted: 03/08/2021] [Indexed: 06/13/2023]
Abstract
BACKGROUND The development of any society depends on proper planning in various fields such as population and birth control. Fertility control is designed to create a level of population growth appropriate to the resources available and to ensure a good life. Receiving information and education is one of the basic strategies to change the attitude toward fertility and awareness in most people in society. Therefore, this study was conducted to determine the effect of education on knowledge of fertility counseling and attitudes toward fertility control in health workers. MATERIALS AND METHODS The present study was a randomized clinical trial with a control group that was conducted in the presence of 107 health workers of health centers and community health centers working in Mashhad in 2017. The research units were randomly divided into three groups (webinar training, group discussion training, and control). Research tools were researcher-made questionnaires on attitudes toward fertility and measuring healthy reproductive awareness that all study participants completed at the beginning of the study and 2 weeks after the intervention. Data analysis was performed by the Chi-square, one-way analysis of variance, and independent t-test using the SPSS software version 16. RESULTS The results of this study showed that at the beginning of the study, all three groups were homogeneous in terms of quantitative and qualitative demographic variables including age, education, work experience, type of employment, and number of family members. The results of Kruskal-Wallis test showed that before the intervention, the three groups did not have a statistically significant difference in terms of mean scores of awareness about fertility counseling (P = 0.77) and attitude toward fertility control (P = 0.523), but this relationship was significant after the interventions. Furthermore, the results of Mann-Whitney intragroup test showed that the scores before and after the intervention were significant in both educational groups (P = 0.001). CONCLUSION Considering the importance of healthy fertility counseling and the important place of education in promoting awareness and attitude toward healthy fertility, it is recommended to use active educational methods to promote the awareness and attitude of health workers to provide healthy fertility services to couples.
Collapse
Affiliation(s)
- Talat Khadivzadeh
- Nursing and Midwifery Care Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
- Department of Midwifery, School of Nursing and Midwifery, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Raziyeh Rahmati
- MSc of Midwifery, School of Nursing and Midwifery, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Habibollah Esmaily
- Social Determinants of Health Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
- Department of Epidemiology and Biostatistics, School of Health, Mashhad University Medical of Medical Sciences, Mashhad, Iran
| |
Collapse
|
25
|
Tan MH, Loke S, Croft LJ, Gleason FH, Lange L, Pilgaard B, Trevathan-Tackett SM. First Genome of Labyrinthula sp., an Opportunistic Seagrass Pathogen, Reveals Novel Insight into Marine Protist Phylogeny, Ecology and CAZyme Cell-Wall Degradation. MICROBIAL ECOLOGY 2021; 82:498-511. [PMID: 33410934 DOI: 10.1007/s00248-020-01647-x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/15/2020] [Accepted: 11/15/2020] [Indexed: 06/12/2023]
Abstract
Labyrinthula spp. are saprobic, marine protists that also act as opportunistic pathogens and are the causative agents of seagrass wasting disease (SWD). Despite the threat of local- and large-scale SWD outbreaks, there are currently gaps in our understanding of the drivers of SWD, particularly surrounding Labyrinthula spp. virulence and ecology. Given these uncertainties, we investigated the Labyrinthula genus from a novel genomic perspective by presenting the first draft genome and predicted proteome of a pathogenic isolate Labyrinthula SR_Ha_C, generated from a hybrid assembly of Nanopore and Illumina sequences. Phylogenetic and cross-phyla comparisons revealed insights into the evolutionary history of Stramenopiles. Genome annotation showed evidence of glideosome-type machinery and an apicoplast protein typically found in protist pathogens and parasites. Proteins involved in Labyrinthula SR_Ha_C's actin-myosin mode of transport, as well as carbohydrate degradation were also prevalent. Further, CAZyme functional predictions revealed a repertoire of enzymes involved in breakdown of cell-wall and carbohydrate storage compounds common to seagrasses. The relatively low number of CAZymes annotated from the genome of Labyrinthula SR_Ha_C compared to other Labyrinthulea species may reflect the conservative annotation parameters, a specialized substrate affinity and the scarcity of characterized protist enzymes. Inherently, there is high probability for finding both unique and novel enzymes from Labyrinthula spp. This study provides resources for further exploration of Labyrinthula spp. ecology and evolution, and will hopefully be the catalyst for new hypothesis-driven SWD research revealing more details of molecular interactions between the Labyrinthula genus and its host substrate.
Collapse
Affiliation(s)
- Mun Hua Tan
- Centre of Integrative Ecology, School of Life and Environmental Sciences, Deakin University, Geelong, Victoria, Australia
- Deakin Genomics Centre, Deakin University, Geelong, Victoria, Australia
- School of BioSciences, Bio21 Institute, University of Melbourne, Parkville, Victoria, Australia
- Department of Microbiology and Immunology, University of Melbourne, Bio21 Institute, Melbourne, Victoria, Australia
| | - Stella Loke
- Centre of Integrative Ecology, School of Life and Environmental Sciences, Deakin University, Geelong, Victoria, Australia
- Deakin Genomics Centre, Deakin University, Geelong, Victoria, Australia
| | - Laurence J Croft
- Centre of Integrative Ecology, School of Life and Environmental Sciences, Deakin University, Geelong, Victoria, Australia
- Deakin Genomics Centre, Deakin University, Geelong, Victoria, Australia
| | - Frank H Gleason
- School of Life and Environmental Sciences, University of Sydney, Sydney, New South Wales, Australia
| | - Lene Lange
- BioEconomy, Research & Advisory, Valby, Copenhagen, Denmark
| | - Bo Pilgaard
- Protein Chemistry and Enzyme Technology, Department of Bioengineering, Technical University of Denmark, Kgs. Lyngby, Denmark
| | - Stacey M Trevathan-Tackett
- Centre of Integrative Ecology, School of Life and Environmental Sciences, Deakin University, Geelong, Victoria, Australia.
| |
Collapse
|
26
|
Suitability Analysis of 17 Probiotic Type Strains of Lactic Acid Bacteria as Starter for Kimchi Fermentation. Foods 2021; 10:foods10061435. [PMID: 34205741 PMCID: PMC8234146 DOI: 10.3390/foods10061435] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2021] [Revised: 06/10/2021] [Accepted: 06/16/2021] [Indexed: 11/17/2022] Open
Abstract
The use of probiotic starters can improve the sensory and health-promoting properties of fermented foods. This study aimed to evaluate the suitability of probiotic lactic acid bacteria (LAB) as a starter for kimchi fermentation. Seventeen probiotic type strains were tested for their growth rates, volatile aroma compounds, metabolites, and sensory characteristics of kimchi, and their characteristics were compared to those of Leuconostoc (Le.) mesenteroides DRC 1506, a commercial kimchi starter. Among the tested strains, Limosilactobacillus fermentum, Limosilactobacillus reuteri, Lacticaseibacillus rhamnosus, Lacticaseibacillus paracasei, and Ligilactobacillus salivarius exhibited high or moderate growth rates in simulated kimchi juice (SKJ) at 37 °C and 15 °C. When these five strains were inoculated in kimchi and metabolite profiles were analyzed during fermentation using GC/MS and 1H-NMR, data from the principal component analysis (PCA) showed that L. fermentum and L. reuteri were highly correlated with Le. mesenteroides in concentrations of sugar, mannitol, lactate, acetate, and total volatile compounds. Sensory test results also indicated that these three strains showed similar sensory preferences. In conclusion, L. fermentum and L. reuteri can be considered potential candidates as probiotic starters or cocultures to develop health-promoting kimchi products.
Collapse
|
27
|
Garrido-Sanz D, Redondo-Nieto M, Martin M, Rivilla R. Comparative genomics of the Pseudomonas corrugata subgroup reveals high species diversity and allows the description of Pseudomonas ogarae sp. nov. Microb Genom 2021; 7:000593. [PMID: 34184980 PMCID: PMC8461476 DOI: 10.1099/mgen.0.000593] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2021] [Accepted: 04/26/2021] [Indexed: 12/29/2022] Open
Abstract
Pseudomonas corrugata constitute one of the phylogenomic subgroups within the Pseudomonas fluorescens species complex and include both plant growth-promoting rhizobacteria (PGPR) and plant pathogenic bacteria. Previous studies suggest that the species diversity of this group remains largely unexplored together with frequent misclassification of strains. Using more than 1800 sequenced Pseudomonas genomes we identified 121 genomes belonging to the P. corrugata subgroup. Intergenomic distances obtained using the genome-to-genome blast distance (GBDP) algorithm and the determination of digital DNA-DNA hybridization values were further used for phylogenomic and clustering analyses, which revealed 29 putative species clusters, of which only five correspond to currently named species within the subgroup. Comparative and functional genome-scale analyses also support the species status of these clusters. The search for PGPR and plant pathogenic determinants showed that approximately half of the genomes analysed could have a pathogenic behaviour based on the presence of a pathogenicity genetic island, while all analysed genomes possess PGPR traits. Finally, this information together with the characterization of phenotypic traits, allows the reclassification proposal of Pseudomonas fluorescens F113 as Pseudomonas ogarae sp. nov., nom rev., type strain F113T (=DSM 112162T=CECT 30235T), which is substantiated by genomic, functional genomics and phenotypic differences with their closest type strains.
Collapse
Affiliation(s)
- Daniel Garrido-Sanz
- Departamento de Biología, Facultad de Ciencias, Universidad Autónoma de Madrid, Darwin 2, 28049 Madrid, Spain
- Department of Fundamental Microbiology, University of Lausanne, CH-1015 Lausanne, Switzerland
| | - Miguel Redondo-Nieto
- Departamento de Biología, Facultad de Ciencias, Universidad Autónoma de Madrid, Darwin 2, 28049 Madrid, Spain
| | - Marta Martin
- Departamento de Biología, Facultad de Ciencias, Universidad Autónoma de Madrid, Darwin 2, 28049 Madrid, Spain
| | - Rafael Rivilla
- Departamento de Biología, Facultad de Ciencias, Universidad Autónoma de Madrid, Darwin 2, 28049 Madrid, Spain
| |
Collapse
|
28
|
Liu B, Thippabhotla S, Zhang J, Zhong C. DRAGoM: Classification and Quantification of Noncoding RNA in Metagenomic Data. Front Genet 2021; 12:669495. [PMID: 34025724 PMCID: PMC8131839 DOI: 10.3389/fgene.2021.669495] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2021] [Accepted: 03/23/2021] [Indexed: 12/21/2022] Open
Abstract
Noncoding RNAs (ncRNAs) play important regulatory and functional roles in microorganisms, such as regulation of gene expression, signaling, protein synthesis, and RNA processing. Hence, their classification and quantification are central tasks toward the understanding of the function of the microbial community. However, the majority of the current metagenomic sequencing technologies generate short reads, which may contain only a partial secondary structure that complicates ncRNA homology detection. Meanwhile, de novo assembly of the metagenomic sequencing data remains challenging for complex communities. To tackle these challenges, we developed a novel algorithm called DRAGoM (Detection of RNA using Assembly Graph from Metagenomic data). DRAGoM first constructs a hybrid graph by merging an assembly string graph and an assembly de Bruijn graph. Then, it classifies paths in the hybrid graph and their constituent readsinto differentncRNA families based on both sequence and structural homology. Our benchmark experiments show that DRAGoMcan improve the performance and robustness over traditional approaches on the classification and quantification of a wide class of ncRNA families.
Collapse
Affiliation(s)
- Ben Liu
- Department of Electrical Engineering and Computer Science, The University of Kansas, Lawrence, KS, United States
| | - Sirisha Thippabhotla
- Department of Electrical Engineering and Computer Science, The University of Kansas, Lawrence, KS, United States
| | - Jun Zhang
- Division of Medical Oncology, Department of Internal Medicine, University of Kansas Medical Center, Kansas City, KS, United States.,Department of Cancer Biology, University of Kansas Medical Center, Kansas City, KS, United States
| | - Cuncong Zhong
- Department of Electrical Engineering and Computer Science, The University of Kansas, Lawrence, KS, United States.,Bioengineering Program, The University of Kansas, Lawrence, KS, United States.,Center for Computational Biology, The University of Kansas, Lawrence, KS, United States
| |
Collapse
|
29
|
Stevens V, Thijs S, Vangronsveld J. Diversity and plant growth-promoting potential of (un)culturable bacteria in the Hedera helix phylloplane. BMC Microbiol 2021; 21:66. [PMID: 33639859 PMCID: PMC7912551 DOI: 10.1186/s12866-021-02119-z] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2020] [Accepted: 02/09/2021] [Indexed: 01/04/2023] Open
Abstract
Background A diverse community of microbes naturally exists on the phylloplane, the surface of leaves. It is one of the most prevalent microbial habitats on earth and bacteria are the most abundant members, living in communities that are highly dynamic. Today, one of the key challenges for microbiologists is to develop strategies to culture the vast diversity of microorganisms that have been detected in metagenomic surveys. Results We isolated bacteria from the phylloplane of Hedera helix (common ivy), a widespread evergreen, using five growth media: Luria–Bertani (LB), LB01, yeast extract–mannitol (YMA), yeast extract–flour (YFlour), and YEx. We also included a comparison with the uncultured phylloplane, which we showed to be dominated by Proteobacteria, Actinobacteria, Bacteroidetes, and Firmicutes. Inter-sample (beta) diversity shifted from LB and LB01 containing the highest amount of resources to YEx, YMA, and YFlour which are more selective. All growth media equally favoured Actinobacteria and Gammaproteobacteria, whereas Bacteroidetes could only be found on LB01, YEx, and YMA. LB and LB01 favoured Firmicutes and YFlour was most selective for Betaproteobacteria. At the genus level, LB favoured the growth of Bacillus and Stenotrophomonas, while YFlour was most selective for Burkholderia and Curtobacterium. The in vitro plant growth promotion (PGP) profile of 200 isolates obtained in this study indicates that previously uncultured bacteria from the phylloplane may have potential applications in phytoremediation and other plant-based biotechnologies. Conclusions This study gives first insights into the total bacterial community of the H. helix phylloplane, including an evaluation of its culturability using five different growth media. We further provide a collection of 200 bacterial isolates underrepresented in current databases, including the characterization of PGP profiles. Here we highlight the potential of simple strategies to obtain higher microbial diversity from environmental samples and the use of high-throughput sequencing to guide isolate selection from a variety of growth media. Supplementary Information The online version contains supplementary material available at 10.1186/s12866-021-02119-z.
Collapse
Affiliation(s)
- Vincent Stevens
- Center for Environmental Sciences, Environmental Biology, Hasselt University, Diepenbeek, Belgium.
| | - Sofie Thijs
- Center for Environmental Sciences, Environmental Biology, Hasselt University, Diepenbeek, Belgium
| | - Jaco Vangronsveld
- Center for Environmental Sciences, Environmental Biology, Hasselt University, Diepenbeek, Belgium. .,Department of Plant Physiology, Faculty of Biology and Biotechnology, Maria Curie-Skłodowska University, Lublin, Poland.
| |
Collapse
|
30
|
Chen C, Zhou Y, Fu H, Xiong X, Fang S, Jiang H, Wu J, Yang H, Gao J, Huang L. Expanded catalog of microbial genes and metagenome-assembled genomes from the pig gut microbiome. Nat Commun 2021; 12:1106. [PMID: 33597514 PMCID: PMC7889623 DOI: 10.1038/s41467-021-21295-0] [Citation(s) in RCA: 122] [Impact Index Per Article: 30.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2020] [Accepted: 01/15/2021] [Indexed: 02/08/2023] Open
Abstract
Gut microbiota plays an important role in pig health and production. Still, availability of sequenced genomes and functional information for most pig gut microbes remains limited. Here we perform a landscape survey of the swine gut microbiome, spanning extensive sample sources by deep metagenomic sequencing resulting in an expanded gene catalog named pig integrated gene catalog (PIGC), containing 17,237,052 complete genes clustered at 90% protein identity from 787 gut metagenomes, of which 28% are unknown proteins. Using binning analysis, 6339 metagenome-assembled genomes (MAGs) were obtained, which were clustered to 2673 species-level genome bins (SGBs), among which 86% (2309) SGBs are unknown based on current databases. Using the present gene catalog and MAGs, we identified several strain-level differences between the gut microbiome of wild boars and commercial Duroc pigs. PIGC and MAGs provide expanded resources for swine gut microbiome-related research.
Collapse
Affiliation(s)
- Congying Chen
- State Key Laboratory of Pig Genetic Improvement and Production Technology, Jiangxi Agricultural University, Nanchang, 330045, China.
| | - Yunyan Zhou
- State Key Laboratory of Pig Genetic Improvement and Production Technology, Jiangxi Agricultural University, Nanchang, 330045, China
| | - Hao Fu
- State Key Laboratory of Pig Genetic Improvement and Production Technology, Jiangxi Agricultural University, Nanchang, 330045, China
| | - Xinwei Xiong
- State Key Laboratory of Pig Genetic Improvement and Production Technology, Jiangxi Agricultural University, Nanchang, 330045, China
| | - Shaoming Fang
- State Key Laboratory of Pig Genetic Improvement and Production Technology, Jiangxi Agricultural University, Nanchang, 330045, China
| | - Hui Jiang
- State Key Laboratory of Pig Genetic Improvement and Production Technology, Jiangxi Agricultural University, Nanchang, 330045, China
| | - Jinyuan Wu
- State Key Laboratory of Pig Genetic Improvement and Production Technology, Jiangxi Agricultural University, Nanchang, 330045, China
| | - Hui Yang
- State Key Laboratory of Pig Genetic Improvement and Production Technology, Jiangxi Agricultural University, Nanchang, 330045, China
| | - Jun Gao
- State Key Laboratory of Pig Genetic Improvement and Production Technology, Jiangxi Agricultural University, Nanchang, 330045, China
| | - Lusheng Huang
- State Key Laboratory of Pig Genetic Improvement and Production Technology, Jiangxi Agricultural University, Nanchang, 330045, China.
| |
Collapse
|
31
|
Beck KL, Haiminen N, Chambliss D, Edlund S, Kunitomi M, Huang BC, Kong N, Ganesan B, Baker R, Markwell P, Kawas B, Davis M, Prill RJ, Krishnareddy H, Seabolt E, Marlowe CH, Pierre S, Quintanar A, Parida L, Dubois G, Kaufman J, Weimer BC. Monitoring the microbiome for food safety and quality using deep shotgun sequencing. NPJ Sci Food 2021; 5:3. [PMID: 33558514 PMCID: PMC7870667 DOI: 10.1038/s41538-020-00083-y] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2020] [Accepted: 11/24/2020] [Indexed: 01/30/2023] Open
Abstract
In this work, we hypothesized that shifts in the food microbiome can be used as an indicator of unexpected contaminants or environmental changes. To test this hypothesis, we sequenced the total RNA of 31 high protein powder (HPP) samples of poultry meal pet food ingredients. We developed a microbiome analysis pipeline employing a key eukaryotic matrix filtering step that improved microbe detection specificity to >99.96% during in silico validation. The pipeline identified 119 microbial genera per HPP sample on average with 65 genera present in all samples. The most abundant of these were Bacteroides, Clostridium, Lactococcus, Aeromonas, and Citrobacter. We also observed shifts in the microbial community corresponding to ingredient composition differences. When comparing culture-based results for Salmonella with total RNA sequencing, we found that Salmonella growth did not correlate with multiple sequence analyses. We conclude that microbiome sequencing is useful to characterize complex food microbial communities, while additional work is required for predicting specific species' viability from total RNA sequencing.
Collapse
Affiliation(s)
- Kristen L. Beck
- Consortium for Sequencing the Food Supply Chain, San Jose, CA USA ,grid.481551.cIBM Almaden Research Center, San Jose, CA USA
| | - Niina Haiminen
- Consortium for Sequencing the Food Supply Chain, San Jose, CA USA ,grid.481554.9IBM T.J. Watson Research Center, Yorktown Heights, Ossining, NY USA
| | - David Chambliss
- Consortium for Sequencing the Food Supply Chain, San Jose, CA USA ,grid.481551.cIBM Almaden Research Center, San Jose, CA USA
| | - Stefan Edlund
- Consortium for Sequencing the Food Supply Chain, San Jose, CA USA ,grid.481551.cIBM Almaden Research Center, San Jose, CA USA
| | - Mark Kunitomi
- Consortium for Sequencing the Food Supply Chain, San Jose, CA USA ,grid.481551.cIBM Almaden Research Center, San Jose, CA USA
| | - B. Carol Huang
- Consortium for Sequencing the Food Supply Chain, San Jose, CA USA ,grid.27860.3b0000 0004 1936 9684University of California Davis, School of Veterinary Medicine, 100 K Pathogen Genome Project, Davis, CA 95616 USA
| | - Nguyet Kong
- Consortium for Sequencing the Food Supply Chain, San Jose, CA USA ,grid.27860.3b0000 0004 1936 9684University of California Davis, School of Veterinary Medicine, 100 K Pathogen Genome Project, Davis, CA 95616 USA
| | - Balasubramanian Ganesan
- Consortium for Sequencing the Food Supply Chain, San Jose, CA USA ,Mars Global Food Safety Center, Beijing, China ,grid.507690.dWisdom Health, A Division of Mars Petcare, Vancouver, WA USA
| | - Robert Baker
- Consortium for Sequencing the Food Supply Chain, San Jose, CA USA ,Mars Global Food Safety Center, Beijing, China
| | - Peter Markwell
- Consortium for Sequencing the Food Supply Chain, San Jose, CA USA ,Mars Global Food Safety Center, Beijing, China
| | - Ban Kawas
- Consortium for Sequencing the Food Supply Chain, San Jose, CA USA ,grid.481551.cIBM Almaden Research Center, San Jose, CA USA
| | - Matthew Davis
- Consortium for Sequencing the Food Supply Chain, San Jose, CA USA ,grid.481551.cIBM Almaden Research Center, San Jose, CA USA
| | - Robert J. Prill
- Consortium for Sequencing the Food Supply Chain, San Jose, CA USA ,grid.481551.cIBM Almaden Research Center, San Jose, CA USA
| | - Harsha Krishnareddy
- Consortium for Sequencing the Food Supply Chain, San Jose, CA USA ,grid.481551.cIBM Almaden Research Center, San Jose, CA USA
| | - Ed Seabolt
- Consortium for Sequencing the Food Supply Chain, San Jose, CA USA ,grid.481551.cIBM Almaden Research Center, San Jose, CA USA
| | - Carl H. Marlowe
- Consortium for Sequencing the Food Supply Chain, San Jose, CA USA ,grid.418312.d0000 0001 2187 1663Bio-Rad Laboratories, Hercules, CA USA
| | - Sophie Pierre
- Consortium for Sequencing the Food Supply Chain, San Jose, CA USA ,grid.481801.40000 0004 0623 3323Bio-Rad, Food Science Division, MArnes-La-Coquette, France
| | - André Quintanar
- Consortium for Sequencing the Food Supply Chain, San Jose, CA USA ,grid.481801.40000 0004 0623 3323Bio-Rad, Food Science Division, MArnes-La-Coquette, France
| | - Laxmi Parida
- Consortium for Sequencing the Food Supply Chain, San Jose, CA USA ,grid.481554.9IBM T.J. Watson Research Center, Yorktown Heights, Ossining, NY USA
| | - Geraud Dubois
- Consortium for Sequencing the Food Supply Chain, San Jose, CA USA ,grid.481551.cIBM Almaden Research Center, San Jose, CA USA
| | - James Kaufman
- Consortium for Sequencing the Food Supply Chain, San Jose, CA USA ,grid.481551.cIBM Almaden Research Center, San Jose, CA USA
| | - Bart C. Weimer
- Consortium for Sequencing the Food Supply Chain, San Jose, CA USA ,grid.27860.3b0000 0004 1936 9684University of California Davis, School of Veterinary Medicine, 100 K Pathogen Genome Project, Davis, CA 95616 USA
| |
Collapse
|
32
|
Probiotic consumption relieved human stress and anxiety symptoms possibly via modulating the neuroactive potential of the gut microbiota. Neurobiol Stress 2021; 14:100294. [PMID: 33511258 PMCID: PMC7816019 DOI: 10.1016/j.ynstr.2021.100294] [Citation(s) in RCA: 81] [Impact Index Per Article: 20.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2020] [Revised: 01/02/2021] [Accepted: 01/03/2021] [Indexed: 02/08/2023] Open
Abstract
Stress has been shown to disturb the balance of human intestinal microbiota and subsequently causes mental health problems like anxiety and depression. Our previous study showed that ingesting the probiotic strain, Lactobacillus (L.) plantarum P-8, for 12 weeks could alleviate stress and anxiety of stressed adults. The current study was a follow-up work aiming to investigate the functional role of the gut metagenomes in the observed beneficial effects. The fecal metagenomes of the probiotic (n = 43) and placebo (n = 36) receivers were analyzed in depth. The gut microbiomes of the placebo group at weeks 0 and 12 showed a significantly greater Aitchison distance (P < 0.001) compared with the probiotic group. Meanwhile, the Shannon diversity index of the placebo group (P < 0.05) but not the probiotic group decreased significantly at week 12. Additionally, significantly more species-level genome bins (SGBs) of Bifidobacterium adolescentis, Bifidobacterium longum, and Fecalibacterium prausnitzii (P < 0.01) were identified in the fecal metagenomes of the probiotic group, while the abundances of SGBs representing the species Roseburia faecis and Fusicatenibacter saccharivorans decreased significantly (P < 0.05). Furthermore, the 12-week probiotic supplementation enhanced the diversity of neurotransmitter-synthesizing/consuming SGBs and the levels of some predicted microbial neuroactive metabolites (e.g., short-chain fatty acids, gamma-aminobutyric acid, arachidonic acid, and sphingomyelin). Our results showed a potential link between probiotic-induced gut microbiota modulation and stress/anxiety alleviation in stressed adults, supporting that the gut-brain axis was involved in relieving stress-related symptoms. The beneficial effect relied not only on microbial diversity changes but more importantly gut metagenome modulations at the SGB and functional gene levels. Stress and anxiety are related to gut dysbiosis. Ingesting Lactobacillus plantarum P-8 (P-8) improved stress/anxiety symptoms. Symptoms were relieved by modulating gut microbiota and neuroactive potential.
Collapse
|
33
|
Dorman MJ, Thomson NR. 'Community evolution' - laboratory strains and pedigrees in the age of genomics. MICROBIOLOGY-SGM 2020; 166:233-238. [PMID: 31958052 PMCID: PMC7376263 DOI: 10.1099/mic.0.000869] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Molecular microbiologists depend heavily on laboratory strains of bacteria, which are ubiquitous across the community of research groups working on a common organism. However, this presumes that strains present in different laboratories are in fact identical. Work on a culture of Vibrio cholerae preserved from 1916 provoked us to consider recent studies, which have used both classical genetics and next-generation sequencing to study the heterogeneity of laboratory strains. Here, we review and discuss mutations and phenotypic variation in supposedlyisogenic reference strains of V. cholerae and Escherichia coli, and we propose that by virtue of the dissemination of laboratory strains across the world, a large ‘community evolution’ experiment is currently ongoing.
Collapse
Affiliation(s)
- Matthew J Dorman
- Wellcome Sanger Institute, Wellcome Genome Campus, Hinxton, Cambridgeshire, CB10 1SA, UK
| | - Nicholas R Thomson
- Wellcome Sanger Institute, Wellcome Genome Campus, Hinxton, Cambridgeshire, CB10 1SA, UK.,London School of Hygiene and Tropical Medicine, Keppel St, Bloomsbury, London WC1E 7HT, UK
| |
Collapse
|
34
|
Zhao Z, Cristian A, Rosen G. Keeping up with the genomes: efficient learning of our increasing knowledge of the tree of life. BMC Bioinformatics 2020; 21:412. [PMID: 32957925 PMCID: PMC7507296 DOI: 10.1186/s12859-020-03744-7] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2020] [Accepted: 09/08/2020] [Indexed: 11/26/2022] Open
Abstract
BACKGROUND It is a computational challenge for current metagenomic classifiers to keep up with the pace of training data generated from genome sequencing projects, such as the exponentially-growing NCBI RefSeq bacterial genome database. When new reference sequences are added to training data, statically trained classifiers must be rerun on all data, resulting in a highly inefficient process. The rich literature of "incremental learning" addresses the need to update an existing classifier to accommodate new data without sacrificing much accuracy compared to retraining the classifier with all data. RESULTS We demonstrate how classification improves over time by incrementally training a classifier on progressive RefSeq snapshots and testing it on: (a) all known current genomes (as a ground truth set) and (b) a real experimental metagenomic gut sample. We demonstrate that as a classifier model's knowledge of genomes grows, classification accuracy increases. The proof-of-concept naïve Bayes implementation, when updated yearly, now runs in 1/4th of the non-incremental time with no accuracy loss. CONCLUSIONS It is evident that classification improves by having the most current knowledge at its disposal. Therefore, it is of utmost importance to make classifiers computationally tractable to keep up with the data deluge. The incremental learning classifier can be efficiently updated without the cost of reprocessing nor the access to the existing database and therefore save storage as well as computation resources.
Collapse
Affiliation(s)
- Zhengqiao Zhao
- Ecological and Evolutionary Signal-process and Informatics (EESI) Lab, Department of Electrical and Computer Engineering, Drexel University, Market Street, Philadelphia, US
| | - Alexandru Cristian
- Department of Computer Science, Drexel University, Market Street, Philadelphia, US
| | - Gail Rosen
- Ecological and Evolutionary Signal-process and Informatics (EESI) Lab, Department of Electrical and Computer Engineering, Drexel University, Market Street, Philadelphia, US
| |
Collapse
|
35
|
Comparative Analysis of the Core Proteomes among the Pseudomonas Major Evolutionary Groups Reveals Species-Specific Adaptations for Pseudomonas aeruginosa and Pseudomonas chlororaphis. DIVERSITY 2020. [DOI: 10.3390/d12080289] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
The Pseudomonas genus includes many species living in diverse environments and hosts. It is important to understand which are the major evolutionary groups and what are the genomic/proteomic components they have in common or are unique. Towards this goal, we analyzed 494 complete Pseudomonas proteomes and identified 297 core-orthologues. The subsequent phylogenomic analysis revealed two well-defined species (Pseudomonas aeruginosa and Pseudomonas chlororaphis) and four wider phylogenetic groups (Pseudomonas fluorescens, Pseudomonas stutzeri, Pseudomonas syringae, Pseudomonas putida) with a sufficient number of proteomes. As expected, the genus-level core proteome was highly enriched for proteins involved in metabolism, translation, and transcription. In addition, between 39–70% of the core proteins in each group had a significant presence in each of all the other groups. Group-specific core proteins were also identified, with P. aeruginosa having the highest number of these and P. fluorescens having none. We identified several P. aeruginosa-specific core proteins (such as CntL, CntM, PlcB, Acp1, MucE, SrfA, Tse1, Tsi2, Tse3, and EsrC) that are known to play an important role in its pathogenicity. Finally, a holin family bacteriocin and a mitomycin-like biosynthetic protein were found to be core-specific for P. cholororaphis and we hypothesize that these proteins may confer a competitive advantage against other root-colonizers.
Collapse
|
36
|
Wiese J, Imhoff JF, Horn H, Borchert E, Kyrpides NC, Göker M, Klenk HP, Woyke T, Hentschel U. Genome analysis of the marine bacterium Kiloniella laminariae and first insights into comparative genomics with related Kiloniella species. Arch Microbiol 2020; 202:815-824. [PMID: 31844948 DOI: 10.1007/s00203-019-01791-0] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2019] [Revised: 11/27/2019] [Accepted: 12/03/2019] [Indexed: 10/25/2022]
Abstract
Kiloniella laminariae is a true marine bacterium and the first member of the family and order, the Kiloniellaceae and Kiloniellales. K. laminariae LD81T (= DSM 19542T) was isolated from the marine macroalga Saccharina latissima and is a mesophilic, typical marine chemoheterotrophic aerobic bacterium with antifungal activity. Phylogenetic analysis of 16S rRNA gene sequence revealed the similarity of K. laminariae LD81T not only with three validly described species of the genus Kiloniella, but also with undescribed isolates and clone sequences from marine samples in the range of 93.6-96.7%. We report on the analysis of the draft genome of this alphaproteobacterium and describe some selected features. The 4.4 Mb genome has a G + C content of 51.4%, contains 4213 coding sequences including 51 RNA genes as well as 4162 protein-coding genes, and is a part of the Genomic Encyclopaedia of Bacteria and Archaea (GEBA) project. The genome provides insights into a number of metabolic properties, such as carbon and sulfur metabolism, and indicates the potential for denitrification and the biosynthesis of secondary metabolites. Comparative genome analysis was performed with K. laminariae LD81T and the animal-associated species Kiloniella majae M56.1T from a spider crab, Kiloniella spongiae MEBiC09566T from a sponge as well as Kiloniella litopenai P1-1 from a white shrimp, which all inhabit quite different marine habitats. The analysis revealed that the K. laminariae LD81T contains 1397 unique genes, more than twice the amount of the other species. Unique among others is a mixed PKS/NRPS biosynthetic gene cluster with similarity to the biosynthetic gene cluster responsible for the production of syringomycin.
Collapse
Affiliation(s)
- Jutta Wiese
- GEOMAR Helmholtz Centre for Ocean Research Kiel, RD3 Marine Symbioses, Düsternbrooker Weg 20, 24105, Kiel, Germany.
| | - Johannes F Imhoff
- GEOMAR Helmholtz Centre for Ocean Research Kiel, RD3 Marine Symbioses, Düsternbrooker Weg 20, 24105, Kiel, Germany
| | - Hannes Horn
- GEOMAR Helmholtz Centre for Ocean Research Kiel, RD3 Marine Symbioses, Düsternbrooker Weg 20, 24105, Kiel, Germany
| | - Erik Borchert
- GEOMAR Helmholtz Centre for Ocean Research Kiel, RD3 Marine Symbioses, Düsternbrooker Weg 20, 24105, Kiel, Germany
| | - Nikos C Kyrpides
- DOE Joint Genome Institute, 2800 Mitchell Drive, Walnut Creek, CA, 94598, USA
| | - Markus Göker
- Leibniz Institute DSMZ-German Collection of Microorganisms and Cell Cultures, Inhoffenstraße 7B, 38124, Braunschweig, Germany
| | - Hans-Peter Klenk
- School of Natural and Environmental Sciences, Newcastle University, Ridley Building 2, Newcastle upon Tyne, NE1 7RU, UK
| | - Tanja Woyke
- DOE Joint Genome Institute, 2800 Mitchell Drive, Walnut Creek, CA, 94598, USA
| | - Ute Hentschel
- GEOMAR Helmholtz Centre for Ocean Research Kiel, RD3 Marine Symbioses, Düsternbrooker Weg 20, 24105, Kiel, Germany
- Christian-Albrechts-University (CAU) of Kiel, Kiel, Germany
| |
Collapse
|
37
|
Parks DH, Chuvochina M, Chaumeil PA, Rinke C, Mussig AJ, Hugenholtz P. A complete domain-to-species taxonomy for Bacteria and Archaea. Nat Biotechnol 2020; 38:1079-1086. [DOI: 10.1038/s41587-020-0501-8] [Citation(s) in RCA: 789] [Impact Index Per Article: 157.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2019] [Accepted: 03/26/2020] [Indexed: 12/30/2022]
|
38
|
Salam N, Jiao JY, Zhang XT, Li WJ. Update on the classification of higher ranks in the phylum Actinobacteria. Int J Syst Evol Microbiol 2020; 70:1331-1355. [PMID: 31808738 DOI: 10.1099/ijsem.0.003920] [Citation(s) in RCA: 102] [Impact Index Per Article: 20.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Genome analysis is one of the main criteria for description of new taxa. Availability of genome sequences for all the actinobacteria with a valid nomenclature will, however, require another decade's works of sequencing. This paper describes the rearrangement of the higher taxonomic ranks of the members of the phylum 'Actinobacteria', using the phylogeny of 16S rRNA gene sequences and supported by the phylogeny of the available genome sequences. Based on the refined phylogeny of the 16S rRNA gene sequences, we could arrange all the members of the 425 genera of the phylum 'Actinobacteria' with validly published names currently in use into six classes, 46 orders and 79 families, including 16 new orders and 10 new families. The order Micrococcales Prévot 1940 (Approved Lists 1980) emend. Nouioui et al. 2018 is now split into 11 monophyletic orders: the emended order Micrococcales and ten proposed new orders Aquipuribacterales, Beutenbergiales, Bogoriellales, Brevibacteriales, Cellulomonadales, Demequinales, Dermabacterales, Dermatophilales, Microbacteriales and Ruaniales. Further, the class 'Actinobacteria' Stackebrandt et al. 1997 emend. Nouioui et al. 2018 was described without any nomenclature type, and therefore the name 'Actinobacteria' is deemed illegitimate. In accordance to Rule 8 of the International Code of Nomenclature of Prokaryotes, Parker et al. 2019, we proposed the name Actinomycetia which is formed by using the stem of the name Actinomycetales Buchanan 1917 (Approved Lists 1980) emend. Zhi et al. 2009, to replace the name 'Actinobacteria'. The nomenclature type of the proposed new class Actinomycetia is the order Actinomycetales Buchanan 1917 (Approved Lists 1980) emend. Zhi et al. 2009.
Collapse
Affiliation(s)
- Nimaichand Salam
- Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Zhuhai, 519000, PR China.,State Key Laboratory of Biocontrol and Guangdong Provincial Key Laboratory of Plant Resources, School of Life Sciences, Sun Yat-Sen University, Guangzhou, 510275, PR China
| | - Jian-Yu Jiao
- Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Zhuhai, 519000, PR China.,State Key Laboratory of Biocontrol and Guangdong Provincial Key Laboratory of Plant Resources, School of Life Sciences, Sun Yat-Sen University, Guangzhou, 510275, PR China
| | - Xiao-Tong Zhang
- Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Zhuhai, 519000, PR China.,State Key Laboratory of Biocontrol and Guangdong Provincial Key Laboratory of Plant Resources, School of Life Sciences, Sun Yat-Sen University, Guangzhou, 510275, PR China
| | - Wen-Jun Li
- Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Zhuhai, 519000, PR China.,CAS Key Laboratory of Biogeography and Bioresource in Arid Land, Xinjiang Institute of Ecology and Geography, Urumqi, 830011, PR China.,State Key Laboratory of Biocontrol and Guangdong Provincial Key Laboratory of Plant Resources, School of Life Sciences, Sun Yat-Sen University, Guangzhou, 510275, PR China
| |
Collapse
|
39
|
Varadarajan AR, Goetze S, Pavlou MP, Grosboillot V, Shen Y, Loessner MJ, Ahrens CH, Wollscheid B. A Proteogenomic Resource Enabling Integrated Analysis of Listeria Genotype-Proteotype-Phenotype Relationships. J Proteome Res 2020; 19:1647-1662. [PMID: 32091902 DOI: 10.1021/acs.jproteome.9b00842] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Listeria monocytogenes is an opportunistic foodborne pathogen responsible for listeriosis, a potentially fatal foodborne disease. Many different Listeria strains and serotypes exist, but a proteogenomic resource that bridges the gap in our molecular understanding of the relationships between the Listeria genotypes and phenotypes via proteotypes is still missing. Here, we devised a next-generation proteogenomics strategy that enables the community to rapidly proteotype Listeria strains and relate this information back to the genotype. Based on sequencing and de novo assembly of the two most commonly used Listeria model strains, EGD-e and ScottA, we established two comprehensive Listeria proteogenomic databases. A genome comparison established core- and strain-specific genes potentially responsible for virulence differences. Next, we established a DIA/SWATH-based proteotyping strategy, including a new and robust sample preparation workflow, that enables the reproducible, sensitive, and relative quantitative measurement of Listeria proteotypes. This reusable and publicly available DIA/SWATH library covers 70% of open reading frames of Listeria and represents the most extensive spectral library for Listeria proteotype analysis to date. We used these two new resources to investigate the Listeria proteotype in states mimicking the upper gastrointestinal passage. Exposure of Listeria to bile salts at 37 °C, which simulates conditions encountered in the duodenum, showed significant proteotype perturbations including an increase of FlaA, the structural protein of flagella. Given that Listeria is known to lose its flagella above 30 °C, this was an unexpected finding. The formation of flagella, which might have implications on infectivity, was validated by parallel reaction monitoring and light and scanning electron microscopy. flaA transcript levels did not change significantly upon exposure to bile salts at 37 °C, suggesting regulation at the post-transcriptional level. Together, these analyses provide a comprehensive proteogenomic resource and toolbox for the Listeria community enabling the analysis of Listeria genotype-proteotype-phenotype relationships.
Collapse
Affiliation(s)
- Adithi R Varadarajan
- Department of Health Sciences and Technology (D-HEST), ETH Zürich, 8092 Zürich, Switzerland.,Agroscope, Molecular Diagnostics, Genomics & Bioinformatics, 8820 Wädenswil, Switzerland.,Swiss Institute of Bioinformatics (SIB), 1015 Lausanne, Switzerland
| | - Sandra Goetze
- Department of Health Sciences and Technology (D-HEST), ETH Zürich, 8092 Zürich, Switzerland.,Swiss Institute of Bioinformatics (SIB), 1015 Lausanne, Switzerland.,Institute of Translational Medicine (ITM), ETH Zürich, 8093 Zürich, Switzerland
| | - Maria P Pavlou
- Department of Health Sciences and Technology (D-HEST), ETH Zürich, 8092 Zürich, Switzerland.,Institute of Translational Medicine (ITM), ETH Zürich, 8093 Zürich, Switzerland
| | - Virginie Grosboillot
- Department of Health Sciences and Technology (D-HEST), ETH Zürich, 8092 Zürich, Switzerland.,Institute of Food, Nutrition and Health (IFNH), ETH Zürich, 8092 Zürich, Switzerland
| | - Yang Shen
- Department of Health Sciences and Technology (D-HEST), ETH Zürich, 8092 Zürich, Switzerland.,Institute of Food, Nutrition and Health (IFNH), ETH Zürich, 8092 Zürich, Switzerland
| | - Martin J Loessner
- Department of Health Sciences and Technology (D-HEST), ETH Zürich, 8092 Zürich, Switzerland.,Institute of Food, Nutrition and Health (IFNH), ETH Zürich, 8092 Zürich, Switzerland
| | - Christian H Ahrens
- Agroscope, Molecular Diagnostics, Genomics & Bioinformatics, 8820 Wädenswil, Switzerland.,Swiss Institute of Bioinformatics (SIB), 1015 Lausanne, Switzerland
| | - Bernd Wollscheid
- Department of Health Sciences and Technology (D-HEST), ETH Zürich, 8092 Zürich, Switzerland.,Swiss Institute of Bioinformatics (SIB), 1015 Lausanne, Switzerland.,Institute of Translational Medicine (ITM), ETH Zürich, 8093 Zürich, Switzerland
| |
Collapse
|
40
|
Chasapi A, Aivaliotis M, Angelis L, Chanalaris A, Iliopoulos I, Kappas I, Karapiperis C, Kyrpides NC, Pafilis E, Panteris E, Topalis P, Tsiamis G, Vizirianakis IS, Vlassi M, Promponas VJ, Ouzounis CA. Establishment of computational biology in Greece and Cyprus: Past, present, and future. PLoS Comput Biol 2019; 15:e1007532. [PMID: 31856214 PMCID: PMC6922331 DOI: 10.1371/journal.pcbi.1007532] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Affiliation(s)
- Anastasia Chasapi
- Biological Computation & Process Lab, Chemical Process & Energy Resources Institute, Centre for Research & Technology Hellas, Thessalonica, Greece
| | - Michalis Aivaliotis
- School of Medicine, Faculty of Health Sciences, Aristotle University of Thessaloniki, Thessalonica, Greece
- Institute of Molecular Biology and Biotechnology, Foundation for Research and Technology Hellas, Heraklion, Greece
| | - Lefteris Angelis
- School of Informatics, Aristotle University of Thessaloniki, Thessalonica, Greece
| | - Anastasios Chanalaris
- Botnar Research Centre, NDORMS, Medical Sciences Division, University of Oxford, Oxford, United Kingdom
| | - Ioannis Iliopoulos
- Division of Basic Sciences, School of Medicine, University of Crete, Heraklion, Greece
| | - Ilias Kappas
- School of Biology, Aristotle University of Thessaloniki, Thessalonica, Greece
| | - Christos Karapiperis
- School of Informatics, Aristotle University of Thessaloniki, Thessalonica, Greece
| | - Nikos C. Kyrpides
- Department of Energy, Joint Genome Institute, Walnut Creek, California, United States of America
| | - Evangelos Pafilis
- Institute of Marine Biology Biotechnology and Aquaculture, Hellenic Centre for Marine Research, Heraklion, Greece
| | - Eleftherios Panteris
- First Psychiatric Clinic, Papageorgiou General Hospital, Aristotle University of Thessaloniki, Thessalonica, Greece
| | - Pantelis Topalis
- Institute of Molecular Biology and Biotechnology, Foundation for Research and Technology Hellas, Heraklion, Greece
| | - George Tsiamis
- Department of Environmental Engineering, School of Engineering, University of Patras, Patras, Greece
| | - Ioannis S. Vizirianakis
- Department of Pharmacology, School of Pharmacy, Aristotle University of Thessaloniki, Thessalonica, Greece
| | - Metaxia Vlassi
- Institute of Biosciences & Applications, National Centre for Scientific Research Demokritos, Athens, Greece
| | - Vasilis J. Promponas
- Bioinformatics Research Laboratory, Department of Biological Sciences, University of Cyprus, Nicosia, Cyprus
- * E-mail: (VJP); (CAO)
| | - Christos A. Ouzounis
- Biological Computation & Process Lab, Chemical Process & Energy Resources Institute, Centre for Research & Technology Hellas, Thessalonica, Greece
- * E-mail: (VJP); (CAO)
| |
Collapse
|
41
|
Ha SM, Kim CK, Roh J, Byun JH, Yang SJ, Choi SB, Chun J, Yong D. Application of the Whole Genome-Based Bacterial Identification System, TrueBac ID, Using Clinical Isolates That Were Not Identified With Three Matrix-Assisted Laser Desorption/Ionization Time-of-Flight Mass Spectrometry (MALDI-TOF MS) Systems. Ann Lab Med 2019; 39:530-536. [PMID: 31240880 PMCID: PMC6660342 DOI: 10.3343/alm.2019.39.6.530] [Citation(s) in RCA: 80] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2018] [Revised: 01/08/2019] [Accepted: 05/22/2019] [Indexed: 11/19/2022] Open
Abstract
BACKGROUND Next-generation sequencing is increasingly used for taxonomic identification of pathogenic bacterial isolates. We evaluated the performance of a newly introduced whole genome-based bacterial identification system, TrueBac ID (ChunLab Inc., Seoul, Korea), using clinical isolates that were not identified by three matrix-assisted laser desorption/ionization time-of-flight mass spectrometry (MALDI-TOF MS) systems and 16S rRNA gene sequencing. METHODS Thirty-six bacterial isolates were selected from a university-affiliated hospital and a commercial clinical laboratory. Species was identified by three MALDI-TOF MS systems: Bruker Biotyper MS (Bruker Daltonics, Billerica, MA, USA), VITEK MS (bioMérieux, Marcy l'Étoile, France), and ASTA MicroIDSys (ASTA Inc., Suwon, Korea). Whole genome sequencing was conducted using the Illumina MiSeq system (Illumina, San Diego, CA, USA), and genome-based identification was performed using the TrueBac ID cloud system (www.truebacid.com). RESULTS TrueBac ID assigned 94% (34/36) of the isolates to known (N=25) or novel (N=4) species, genomospecies (N=3), or species group (N=2). The remaining two were identified at the genus level. CONCLUSIONS TrueBac ID successfully identified the majority of isolates that MALDI-TOF MS failed to identify. Genome-based identification can be a useful tool in clinical laboratories, with its superior accuracy and database-driven operations.
Collapse
Affiliation(s)
- Sung Min Ha
- ChunLab, Inc., Seoul, Korea.,School of Biological Sciences & Institute of Molecular Biology and Genetics, Seoul National University, Seoul, Korea
| | - Chang Ki Kim
- Seoul Clinical Laboratories, Yongin, Korea.,Research Institute of Bacterial Resistance, Yonsei University College of Medicine, Seoul, Korea
| | - Juhye Roh
- Department of Laboratory Medicine, Yonsei University College of Medicine, Seoul, Korea
| | - Jung Hyun Byun
- Research Institute of Bacterial Resistance, Yonsei University College of Medicine, Seoul, Korea.,Department of Laboratory Medicine, Yonsei University College of Medicine, Seoul, Korea.,Department of Laboratory Medicine, Gyeongsang National University Hospital, and Gyeongsang National University College of Medicine, Jinju, Korea
| | | | | | - Jongsik Chun
- ChunLab, Inc., Seoul, Korea.,School of Biological Sciences & Institute of Molecular Biology and Genetics, Seoul National University, Seoul, Korea
| | - Dongeun Yong
- Research Institute of Bacterial Resistance, Yonsei University College of Medicine, Seoul, Korea.,Department of Laboratory Medicine, Yonsei University College of Medicine, Seoul, Korea.,Brain Korea 21 PLUS Project for Medical Science, Yonsei University College of Medicine, Seoul, Korea.
| |
Collapse
|
42
|
Tambong JT. Taxogenomics and Systematics of the Genus Pantoea. Front Microbiol 2019; 10:2463. [PMID: 31736906 PMCID: PMC6831937 DOI: 10.3389/fmicb.2019.02463] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2019] [Accepted: 10/14/2019] [Indexed: 11/28/2022] Open
Abstract
Members of the genus Pantoea are Gram-negative bacteria isolated from various environments. Taxonomic affiliation based on multilocus sequence analysis (MLSA) is used routinely for inferring accurate phylogeny and identification of bacterial species and genera. Partial sequences of five housekeeping genes (fusA, gyrB, leuS, rpoB, and pyrG) were extracted from 206 draft or complete genomes of Pantoea strains publicly available in databases and analyzed together with the representative sequences of the 25 validly published Pantoea type strains to verify and assess their phylogenetic assignations. Of a total of 159 strains assigned to species level, 11.3% of the non-type strains were incorrectly assigned within suitable Pantoea species. The highest proportion of misidentified strains was recorded in Pantoea vagans, 8 out of 15 (53.3%) inaccurate assignations at the species level. One probable reason for this incorrect classification could be the method previously used for strain identification. Forty-seven (22.8%) genome sequences were from strains identified at the genus level only (Pantoea sp.). A combination of MLSA, average nucleotide identities [ANI and MuMmer-based ANI (ANIm)], tetranucleotide usage pattern (TETRA), and genome-based DNA-DNA hybridization (gDDH) data was used to accurately assign 25 of the 47 strains to validly published Pantoea species, while 17 strains could be assigned as putative novel species within the genus Pantoea. Four genomes designed as Pantoea sp. were identified as Mixta calida. Positive and significant correlation coefficients were computed between MLSA and all the indices derived from whole-genome sequences being proposed for species delimitation. gDDH exhibited the best correlation with MLSA while TETRA was the worst. Accurate species-level identification is key to a better understanding of bacterial diversity and evolution. The MLSA scheme used here could be instrumental to determine the correct taxonomic status of new whole-genome sequenced Pantoea strains, especially non-type strains, before depositing into public databases.
Collapse
Affiliation(s)
- James T Tambong
- Ottawa Research and Development Centre, Agriculture and Agri-Food Canada, Ottawa, ON, Canada
| |
Collapse
|
43
|
Bhushan A, Egli PJ, Peters EE, Freeman MF, Piel J. Genome mining- and synthetic biology-enabled production of hypermodified peptides. Nat Chem 2019; 11:931-939. [PMID: 31501509 PMCID: PMC6763334 DOI: 10.1038/s41557-019-0323-9] [Citation(s) in RCA: 48] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2019] [Accepted: 08/01/2019] [Indexed: 12/12/2022]
Abstract
The polytheonamides are among the most complex and biosynthetically distinctive natural products known to date. These potent peptide cytotoxins are derived from a ribosomal precursor processed by 49 mostly non-canonical posttranslational modifications. As the producer is a 'microbial dark matter' bacterium only distantly related to any cultivated organism, >70-step chemical syntheses have been developed to access these unique compounds. Here, we mined prokaryotic diversity to establish a synthetic platform based on the new host Microvirgula aerodenitrificans that produces hypermodified peptides within two days. Using this system, we generated the aeronamides, new polytheonamide-type compounds with near-picomolar cytotoxicity. Aeronamides, as well as the polygeonamides produced from deep-rock biosphere DNA, contain the highest numbers of D-amino acids in known biomolecules. With increasing bacterial genomes being sequenced, similar host mining strategies might become feasible to access further elusive natural products from uncultivated life.
Collapse
Affiliation(s)
- Agneya Bhushan
- Institute of Microbiology, Eidgenössische Technische Hochschule (ETH) Zurich, Zurich, Switzerland
| | | | - Eike E Peters
- Institute of Microbiology, Eidgenössische Technische Hochschule (ETH) Zurich, Zurich, Switzerland
| | - Michael F Freeman
- Department of Biochemistry, Molecular Biology, and Biophysics and BioTechnology Institute, University of Minnesota-Twin Cities, St Paul, MN, USA
| | - Jörn Piel
- Institute of Microbiology, Eidgenössische Technische Hochschule (ETH) Zurich, Zurich, Switzerland.
| |
Collapse
|
44
|
Schmid M, Frei D, Patrignani A, Schlapbach R, Frey JE, Remus-Emsermann MNP, Ahrens CH. Pushing the limits of de novo genome assembly for complex prokaryotic genomes harboring very long, near identical repeats. Nucleic Acids Res 2019; 46:8953-8965. [PMID: 30137508 PMCID: PMC6158609 DOI: 10.1093/nar/gky726] [Citation(s) in RCA: 63] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2018] [Accepted: 08/15/2018] [Indexed: 12/16/2022] Open
Abstract
Generating a complete, de novo genome assembly for prokaryotes is often considered a solved problem. However, we here show that Pseudomonas koreensis P19E3 harbors multiple, near identical repeat pairs up to 70 kilobase pairs in length, which contained several genes that may confer fitness advantages to the strain. Its complex genome, which also included a variable shufflon region, could not be de novo assembled with long reads produced by Pacific Biosciences’ technology, but required very long reads from Oxford Nanopore Technologies. Importantly, a repeat analysis, whose results we release for over 9600 prokaryotes, indicated that very complex bacterial genomes represent a general phenomenon beyond Pseudomonas. Roughly 10% of 9331 complete bacterial and a handful of 293 complete archaeal genomes represented this ‘dark matter’ for de novo genome assembly of prokaryotes. Several of these ‘dark matter’ genome assemblies contained repeats far beyond the resolution of the sequencing technology employed and likely contain errors, other genomes were closed employing labor-intense steps like cosmid libraries, primer walking or optical mapping. Using very long sequencing reads in combination with assembly algorithms capable of resolving long, near identical repeats will bring most prokaryotic genomes within reach of fast and complete de novo genome assembly.
Collapse
Affiliation(s)
- Michael Schmid
- Agroscope, Molecular Diagnostics, Genomics & Bioinformatics, Wädenswil CH-8820, Switzerland.,SIB Swiss Institute of Bioinformatics, Wädenswil CH-8820, Switzerland
| | - Daniel Frei
- Agroscope, Molecular Diagnostics, Genomics & Bioinformatics, Wädenswil CH-8820, Switzerland
| | - Andrea Patrignani
- Functional Genomics Center Zurich, University of Zurich & ETH Zurich, Zurich CH-8057, Switzerland
| | - Ralph Schlapbach
- Functional Genomics Center Zurich, University of Zurich & ETH Zurich, Zurich CH-8057, Switzerland
| | - Jürg E Frey
- Agroscope, Molecular Diagnostics, Genomics & Bioinformatics, Wädenswil CH-8820, Switzerland
| | - Mitja N P Remus-Emsermann
- School of Biological Sciences, University of Canterbury, Christchurch 8140, New Zealand.,Biomolecular Interaction Centre, University of Canterbury, Christchurch, 8140, New Zealand
| | - Christian H Ahrens
- Agroscope, Molecular Diagnostics, Genomics & Bioinformatics, Wädenswil CH-8820, Switzerland.,SIB Swiss Institute of Bioinformatics, Wädenswil CH-8820, Switzerland
| |
Collapse
|
45
|
Parera-Valadez Y, Yam-Puc A, López-Aguiar LK, Borges-Argáez R, Figueroa-Saldivar MA, Cáceres-Farfán M, Márquez-Velázquez NA, Prieto-Davó A. Ecological Strategies Behind the Selection of Cultivable Actinomycete Strains from the Yucatan Peninsula for the Discovery of Secondary Metabolites with Antibiotic Activity. MICROBIAL ECOLOGY 2019; 77:839-851. [PMID: 30761424 DOI: 10.1007/s00248-019-01329-3] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/26/2018] [Accepted: 01/16/2019] [Indexed: 06/09/2023]
Abstract
The quest for novel natural products has recently focused on the marine environment as a source for novel microorganisms. Although isolation of marine-derived actinomycete strains is now common, understanding their distribution in the oceans and their adaptation to this environment can be helpful in the selection of isolates for further novel secondary metabolite discovery. This study explores the taxonomic diversity of marine-derived actinomycetes from distinct environments in the coastal areas of the Yucatan Peninsula and their adaptation to the marine environment as a first step towards novel natural product discovery. The use of simple ecological principles, for example, phylogenetic relatedness to previously characterized actinomycetes or seawater requirements for growth, to recognize isolates with adaptations to the ocean in an effort to select for marine-derived actinomycete to be used for further chemical studies. Marine microbial environments are an important source of novel bioactive natural products and, together with methods such as genome mining for detection of strains with biotechnological potential, ecological strategies can bring useful insights in the selection and identification of marine-derived actinomycetes for novel natural product discovery.
Collapse
Affiliation(s)
- Yessica Parera-Valadez
- Laboratorio de Ecología Microbiana y Productos Naturales Marinos, Unidad de Química en Sisal, Facultad de Química, Universidad Nacional Autónoma de México, Sisal, Yucatán, Mexico
| | - Alejandro Yam-Puc
- Laboratorio de Ecología Microbiana y Productos Naturales Marinos, Unidad de Química en Sisal, Facultad de Química, Universidad Nacional Autónoma de México, Sisal, Yucatán, Mexico
| | - Lluvia Korynthia López-Aguiar
- Laboratorio de Ecología Microbiana y Productos Naturales Marinos, Unidad de Química en Sisal, Facultad de Química, Universidad Nacional Autónoma de México, Sisal, Yucatán, Mexico
| | - Rocío Borges-Argáez
- CICY - Centro de Investigación Científica de Yucatán, A.C., Calle 43 No. 130, Colonia Chuburná de Hidalgo, Mérida, Yucatán, Mexico
| | - Mario Alberto Figueroa-Saldivar
- Departamento de Farmacia, Facultad de Química, Universidad Nacional Autónoma de México, Av. Universidad 3000, Conjunto E., 04510, Mexico City, Mexico
| | - Mirbella Cáceres-Farfán
- CICY - Centro de Investigación Científica de Yucatán, A.C., Calle 43 No. 130, Colonia Chuburná de Hidalgo, Mérida, Yucatán, Mexico
| | - Norma Angélica Márquez-Velázquez
- Laboratorio de Ecología Microbiana y Productos Naturales Marinos, Unidad de Química en Sisal, Facultad de Química, Universidad Nacional Autónoma de México, Sisal, Yucatán, Mexico
| | - Alejandra Prieto-Davó
- Laboratorio de Ecología Microbiana y Productos Naturales Marinos, Unidad de Química en Sisal, Facultad de Química, Universidad Nacional Autónoma de México, Sisal, Yucatán, Mexico.
| |
Collapse
|
46
|
Spring S, Sorokin DY, Verbarg S, Rohde M, Woyke T, Kyrpides NC. Sulfate-Reducing Bacteria That Produce Exopolymers Thrive in the Calcifying Zone of a Hypersaline Cyanobacterial Mat. Front Microbiol 2019; 10:862. [PMID: 31068923 PMCID: PMC6491731 DOI: 10.3389/fmicb.2019.00862] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2018] [Accepted: 04/04/2019] [Indexed: 12/31/2022] Open
Abstract
Calcifying microbial mats in hypersaline environments are important model systems for the study of the earliest ecosystems on Earth that started to appear more than three billion years ago and have been preserved in the fossil record as laminated lithified structures known as stromatolites. It is believed that sulfate-reducing bacteria play a pivotal role in the lithification process by increasing the saturation index of calcium minerals within the mat. Strain L21-Syr-ABT was isolated from anoxic samples of a several centimeters-thick microbialite-forming cyanobacterial mat of a hypersaline lake on the Kiritimati Atoll (Kiribati, Central Pacific). The novel isolate was assigned to the family Desulfovibrionaceae within the Deltaproteobacteria. Available 16S rRNA-based population surveys obtained from discrete layers of the mat indicate that the occurrence of a species-level clade represented by strain L21-Syr-ABT is restricted to a specific layer of the suboxic zone, which is characterized by the presence of aragonitic spherulites. To elucidate a possible function of this sulfate-reducing bacterium in the mineral formation within the mat a comprehensive phenotypic characterization was combined with the results of a comparative genome analysis. Among the determined traits of strain L21-Syr-ABT, several features were identified that could play a role in the precipitation of calcium carbonate: (i) the potential deacetylation of polysaccharides and consumption of substrates such as lactate and sulfate could mobilize free calcium; (ii) under conditions that favor the utilization of formate and hydrogen, the alkalinity engine within the mat is stimulated, thereby increasing the availability of carbonate; (iii) the production of extracellular polysaccharides could provide nucleation sites for calcium mineralization. In addition, our data suggest the proposal of the novel species and genus Desulfohalovibrio reitneri represented by the type strain L21-Syr-ABT (=DSM 26903T = JCM 18662T).
Collapse
Affiliation(s)
- Stefan Spring
- Department Microorganisms, Leibniz Institute DSMZ-German Collection of Microorganisms and Cell Cultures, Braunschweig, Germany
| | - Dimitry Y Sorokin
- Winogradsky Institute of Microbiology, Research Centre of Biotechnology, Moscow, Russia.,Department of Biotechnology, Delft University of Technology, Delft, Netherlands
| | - Susanne Verbarg
- Department Services Microorganisms, Leibniz Institute DSMZ-German Collection of Microorganisms and Cell Cultures, Braunschweig, Germany
| | - Manfred Rohde
- Central Facility for Microscopy, Helmholtz Centre for Infection Research, Braunschweig, Germany
| | - Tanja Woyke
- DOE Joint Genome Institute, Walnut Creek, CA, United States
| | | |
Collapse
|
47
|
Avontuur JR, Palmer M, Beukes CW, Chan WY, Coetzee MPA, Blom J, Stępkowski T, Kyrpides NC, Woyke T, Shapiro N, Whitman WB, Venter SN, Steenkamp ET. Genome-informed Bradyrhizobium taxonomy: where to from here? Syst Appl Microbiol 2019; 42:427-439. [PMID: 31031014 DOI: 10.1016/j.syapm.2019.03.006] [Citation(s) in RCA: 53] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2019] [Revised: 03/26/2019] [Accepted: 03/26/2019] [Indexed: 02/06/2023]
Abstract
Bradyrhizobium is thought to be the largest and most diverse rhizobial genus, but this is not reflected in the number of described species. Although it was one of the first rhizobial genera recognised, its taxonomy remains complex. Various contemporary studies are showing that genome sequence information may simplify taxonomic decisions. Therefore, the growing availability of genomes for Bradyrhizobium will likely aid in the delineation and characterization of new species. In this study, we addressed two aims: first, we reviewed the availability and quality of available genomic resources for Bradyrhizobium. This was achieved by comparing genome sequences in terms of sequencing technologies used and estimated level of completeness for inclusion in genome-based phylogenetic analyses. Secondly, we utilized these genomes to investigate the taxonomic standing of Bradyrhizobium in light of its diverse lifestyles. Although genome sequences differed in terms of their quality and completeness, our data indicate that the use of these genome sequences is adequate for taxonomic purposes. By using these resources, we inferred a fully resolved, well-supported phylogeny. It separated Bradyrhizobium into seven lineages, three of which corresponded to the so-called supergroups known for the genus. Wide distribution of key lifestyle traits such as nodulation, nitrogen fixation and photosynthesis revealed that these traits have complicated evolutionary histories. We present the first robust Bradyrhizobium species phylogeny based on genome sequence information for investigating the evolution of this important assemblage of bacteria. Furthermore, this study provides the basis for using genome sequence information as a resource to make important taxonomic decisions, particularly at the species and genus levels.
Collapse
Affiliation(s)
- Juanita R Avontuur
- Department of Biochemistry, Genetics and Microbiology, Forestry and Agricultural Biotechnology Institute (FABI), University of Pretoria, Pretoria, South Africa
| | - Marike Palmer
- Department of Biochemistry, Genetics and Microbiology, Forestry and Agricultural Biotechnology Institute (FABI), University of Pretoria, Pretoria, South Africa
| | - Chrizelle W Beukes
- Department of Biochemistry, Genetics and Microbiology, Forestry and Agricultural Biotechnology Institute (FABI), University of Pretoria, Pretoria, South Africa
| | - Wai Y Chan
- Department of Biochemistry, Genetics and Microbiology, Forestry and Agricultural Biotechnology Institute (FABI), University of Pretoria, Pretoria, South Africa; Biotechnology Platform, Agricultural Research Council Onderstepoort Veterinary Institute (ARC-OVI), Onderstepoort 0110, South Africa
| | - Martin P A Coetzee
- Department of Biochemistry, Genetics and Microbiology, Forestry and Agricultural Biotechnology Institute (FABI), University of Pretoria, Pretoria, South Africa
| | - Jochen Blom
- Bioinformatics and Systems Biology, Justus-Liebig-University Giessen, Giessen, Germany
| | - Tomasz Stępkowski
- Autonomous Department of Microbial Biology, Faculty of Agriculture and Biology, Warsaw University of Life Sciences (SGGW), Poland
| | | | - Tanja Woyke
- DOE Joint Genome Institute, Walnut Creek, CA, United States
| | - Nicole Shapiro
- DOE Joint Genome Institute, Walnut Creek, CA, United States
| | - William B Whitman
- Department of Microbiology, University of Georgia, Athens, GA, United States
| | - Stephanus N Venter
- Department of Biochemistry, Genetics and Microbiology, Forestry and Agricultural Biotechnology Institute (FABI), University of Pretoria, Pretoria, South Africa
| | - Emma T Steenkamp
- Department of Biochemistry, Genetics and Microbiology, Forestry and Agricultural Biotechnology Institute (FABI), University of Pretoria, Pretoria, South Africa. http://emma.steenkamp.up.ac.za
| |
Collapse
|
48
|
Nayfach S, Shi ZJ, Seshadri R, Pollard KS, Kyrpides NC. New insights from uncultivated genomes of the global human gut microbiome. Nature 2019; 568:505-510. [PMID: 30867587 PMCID: PMC6784871 DOI: 10.1038/s41586-019-1058-x] [Citation(s) in RCA: 440] [Impact Index Per Article: 73.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2018] [Accepted: 03/06/2019] [Indexed: 12/22/2022]
Abstract
The genome sequences of many species of the human gut microbiome remain unknown, largely owing to challenges in cultivating microorganisms under laboratory conditions. Here we address this problem by reconstructing 60,664 draft prokaryotic genomes from 3,810 faecal metagenomes, from geographically and phenotypically diverse humans. These genomes provide reference points for 2,058 newly identified species-level operational taxonomic units (OTUs), which represents a 50% increase over the previously known phylogenetic diversity of sequenced gut bacteria. On average, the newly identified OTUs comprise 33% of richness and 28% of species abundance per individual, and are enriched in humans from rural populations. A meta-analysis of clinical gut-microbiome studies pinpointed numerous disease associations for the newly identified OTUs, which have the potential to improve predictive models. Finally, our analysis revealed that uncultured gut species have undergone genome reduction that has resulted in the loss of certain biosynthetic pathways, which may offer clues for improving cultivation strategies in the future.
Collapse
Affiliation(s)
- Stephen Nayfach
- United States Department of Energy Joint Genome Institute, Walnut Creek, CA, USA.
- Environmental Genomics and Systems Biology Division, Lawrence Berkeley National Laboratory, Berkeley, CA, USA.
| | - Zhou Jason Shi
- Gladstone Institutes, San Francisco, CA, USA
- Chan-Zuckerberg Biohub, San Francisco, CA, USA
| | - Rekha Seshadri
- United States Department of Energy Joint Genome Institute, Walnut Creek, CA, USA
- Environmental Genomics and Systems Biology Division, Lawrence Berkeley National Laboratory, Berkeley, CA, USA
| | - Katherine S Pollard
- Gladstone Institutes, San Francisco, CA, USA
- Chan-Zuckerberg Biohub, San Francisco, CA, USA
- Institute for Human Genetics, University of California San Francisco, San Francisco, CA, USA
- Institute for Computational Health Sciences, University of California San Francisco, San Francisco, CA, USA
- Quantitative Biology Institute, University of California San Francisco, San Francisco, CA, USA
- Department of Epidemiology and Biostatistics, University of California San Francisco, San Francisco, CA, USA
| | - Nikos C Kyrpides
- United States Department of Energy Joint Genome Institute, Walnut Creek, CA, USA.
- Environmental Genomics and Systems Biology Division, Lawrence Berkeley National Laboratory, Berkeley, CA, USA.
| |
Collapse
|
49
|
Herbst FA, Gonçalves SCL, Behr T, McIlroy SJ, Nielsen PH. Proteogenomic Refinement of the Neomegalonema perideroedes T Genome Annotation. Proteomics 2019; 19:e1800330. [PMID: 30865376 DOI: 10.1002/pmic.201800330] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2018] [Revised: 02/10/2019] [Indexed: 12/14/2022]
Abstract
Neomegalonema perideroedes (formerly Meganema perideroedes) str. G1 is the type strain and only described isolate of the genus Neomegalonema (formerly Meganema) which belongs to the Alphaproteobacteria. N. perideroedes is distinguished by the ability to accumulate high amounts of polyhydroxyalkanoates and has been associated with bulking problems in wastewater treatment plants due to its filamentous morphology. In 2013, its genome was sequenced as part of the Genomic Encyclopedia of Bacteria and Archaea (GEBA), which aims to improve the sequencing coverage of the poorly represented regions of the bacterial and archaeal branches of the tree of life. As N. perideroedes str. G1 is relatively distantly related to well described species-being the only sequenced member of its proposed family-the in silico prediction of genes by nucleotide homology to reference genes might be less reliable. Here, a proteomic dataset for the refinement of the N. perideroedes genome annotations is generated which clearly indicates the shortcomings of high-throughput in silico genome annotation.
Collapse
Affiliation(s)
- Florian-Alexander Herbst
- Center for Microbial Communities, Department of Chemistry and Bioscience, Aalborg University, Aalborg, 9220, Aalborg East, Denmark
| | - Sandra Cristina Lopes Gonçalves
- Center for Microbial Communities, Department of Chemistry and Bioscience, Aalborg University, Aalborg, 9220, Aalborg East, Denmark
| | - Tobias Behr
- Center for Microbial Communities, Department of Chemistry and Bioscience, Aalborg University, Aalborg, 9220, Aalborg East, Denmark
| | - Simon Jon McIlroy
- Center for Microbial Communities, Department of Chemistry and Bioscience, Aalborg University, Aalborg, 9220, Aalborg East, Denmark
| | - Per Halkjaer Nielsen
- Center for Microbial Communities, Department of Chemistry and Bioscience, Aalborg University, Aalborg, 9220, Aalborg East, Denmark
| |
Collapse
|
50
|
Bortniak VL, Pelletier DA, Newman JD. Chryseobacterium populi sp. nov., isolated from Populus deltoides endosphere. Int J Syst Evol Microbiol 2019; 69:356-362. [DOI: 10.1099/ijsem.0.003140] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023] Open
Affiliation(s)
- Victoria L. Bortniak
- 1Biology Department, Lycoming College, Williamsport PA 17701, USA
- †Present address: Trivergent Health Alliance, MSO, Meritus Medical Center, Hagerstown, MD 21742, USA
| | - Dale A. Pelletier
- 2Biosciences Division, Oak Ridge National Laboratory, 1 Bethyl Valley Rd. MS-6036, Oak Ridge, TN 37831, USA
| | - Jeffrey D. Newman
- 3Department of Microbial, Biochemical and Food Biotechnology, University of the Free State, Bloemfontein 9300, Republic of South Africa
- 1Biology Department, Lycoming College, Williamsport PA 17701, USA
| |
Collapse
|