1
|
Serneels PJ, De Schutter JD, De Groef L, Moons L, Bergmans S. Oligodendroglial heterogeneity in health, disease, and recovery: deeper insights into myelin dynamics. Neural Regen Res 2025; 20:3179-3192. [PMID: 39665821 PMCID: PMC11881716 DOI: 10.4103/nrr.nrr-d-24-00694] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2024] [Revised: 09/19/2024] [Accepted: 10/17/2024] [Indexed: 12/13/2024] Open
Abstract
Decades of research asserted that the oligodendroglial lineage comprises two cell types: oligodendrocyte precursor cells and oligodendrocytes. However, recent studies employing single-cell RNA sequencing techniques have uncovered novel cell states, prompting a revision of the existing terminology. Going forward, the oligodendroglial lineage should be delineated into five distinct cell states: oligodendrocyte precursor cells, committed oligodendrocyte precursor cells, newly formed oligodendrocytes, myelin-forming oligodendrocytes, and mature oligodendrocytes. This new classification system enables a deeper understanding of the oligodendroglia in both physiological and pathological contexts. Adopting this uniform terminology will facilitate comparison and integration of data across studies. This, including the consolidation of findings from various demyelinating models, is essential to better understand the pathogenesis of demyelinating diseases. Additionally, comparing injury models across species with varying regenerative capacities can provide insights that may lead to new therapeutic strategies to overcome remyelination failure. Thus, by standardizing terminology and synthesizing data from diverse studies across different animal models, we can enhance our understanding of myelin pathology in central nervous system disorders such as multiple sclerosis, Alzheimer's disease, and amyotrophic lateral sclerosis, all of which involve oligodendroglial and myelin dysfunction.
Collapse
Affiliation(s)
- Pieter-Jan Serneels
- KU Leuven, Leuven Brain Institute, Department of Biology, Animal Physiology and Neurobiology Division, Neural Circuit Development & Regeneration Research Group, Leuven, Belgium
| | - Julie D. De Schutter
- KU Leuven, Leuven Brain Institute, Department of Biology, Animal Physiology and Neurobiology Division, Neural Circuit Development & Regeneration Research Group, Leuven, Belgium
| | - Lies De Groef
- KU Leuven, Leuven Brain Institute, Department of Biology, Animal Physiology and Neurobiology Division, Cellular Communication & Neurodegeneration Research Group, Leuven, Belgium
| | - Lieve Moons
- KU Leuven, Leuven Brain Institute, Department of Biology, Animal Physiology and Neurobiology Division, Neural Circuit Development & Regeneration Research Group, Leuven, Belgium
| | - Steven Bergmans
- KU Leuven, Leuven Brain Institute, Department of Biology, Animal Physiology and Neurobiology Division, Neural Circuit Development & Regeneration Research Group, Leuven, Belgium
| |
Collapse
|
2
|
Hodebourg R, Scofield MD, Kalivas PW, Kuhn BN. Nonneuronal contributions to synaptic function. Neuron 2025:S0896-6273(25)00260-0. [PMID: 40311612 DOI: 10.1016/j.neuron.2025.04.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2025] [Revised: 03/09/2025] [Accepted: 04/04/2025] [Indexed: 05/03/2025]
Abstract
Synapses are elegantly integrated signaling hubs containing the canonical synaptic elements, neuronal pre- and postsynapses, along with other components of the neuropil, including perisynaptic astroglia and extracellular matrix proteins, as well as microglia and oligodendrocytes. Signaling within these multipartite hubs is essential for synaptic function and is often disrupted in neuropsychiatric disorders. We review data that have refined our understanding of how environmental stimuli shape signaling and synaptic plasticity within synapses. We propose working models that integrate what is known about how different cell types within the perisynaptic neuropil regulate synaptic functions and dysfunctions that are elicited by addictive drugs. While these working models integrate existing findings, they are constrained by a need for new technology. Accordingly, we propose directions for improving reagents and experimental approaches to better probe how signaling between cell types within perisynaptic ecosystems creates the synaptic plasticity necessary to establish and maintain adaptive and maladaptive behaviors.
Collapse
Affiliation(s)
- Ritchy Hodebourg
- Department of Neuroscience, Medical University of South Carolina, Charleston, SC 29425, USA
| | - Michael D Scofield
- Department of Neuroscience, Medical University of South Carolina, Charleston, SC 29425, USA; Department of Anesthesiology, Medical University of South Carolina, Charleston, SC 29425, USA
| | - Peter W Kalivas
- Department of Neuroscience, Medical University of South Carolina, Charleston, SC 29425, USA; Ralph H. Johnson Department of Veterans Affairs Medical Center, Charleston, SC 29401, USA.
| | - Brittany N Kuhn
- Department of Neuroscience, Medical University of South Carolina, Charleston, SC 29425, USA.
| |
Collapse
|
3
|
Nishimura H, Kerever A, Kato K, Ono T, Nakayama S, Tanaka T, Abe R, Arikawa-Hirasawa E. Oligodendrocyte differentiation on murine decellularized brain tissue. Neurosci Lett 2025; 846:138079. [PMID: 39662773 DOI: 10.1016/j.neulet.2024.138079] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2024] [Revised: 11/19/2024] [Accepted: 12/04/2024] [Indexed: 12/13/2024]
Abstract
Loss of oligodendrocytes causes severe neurological damage. Oligodendrogenesis is the production of new oligodendrocytes throughout life and includes several developmental stages starting from oligodendrocyte precursor cells (OPCs). The GPR17-expressing cell population, an important intermediate stage in oligodendrocyte development, acts as a reservoir responding to brain injury and ischemia. GPR17 plays a complex role in oligodendrocyte maturation and response to injury; its activation promotes differentiation into more mature phenotypes. However, our understanding of GPR17-expressing oligodendrocytes in vitro remains limited. No methods have been elucidated for studying these short-lived and changeable cell populations using culture systems. The extracellular matrix (ECM) plays an important role in regulating the proliferation and differentiation of these cells; however, conventional two-dimensional culture systems cannot reproduce the complex structure and environmental conditions of the ECM in vivo. Herein, a culture system with decellularized brain tissue that retains organized ECM scaffolds was introduced to better mimic the in vivo environment. This system enabled the study of interactions between OPCs, ECM, and other cell types. Neurospheres containing progenitor cells that differentiate into oligodendrocyte lineage cells, neurons, and astrocytes were transplanted into decellularized brain slices. The results showed that this method not only promoted stem cell differentiation but also significantly enhanced differentiation into oligodendrocytes when supplemented with oligo buffer. This model system provides a better understanding of the interaction between OPCs and the ECM and a novel approach for studying the differentiation of GPR17-expressing cells, which may be useful for future therapeutic strategies for promoting remyelination and central nervous system repair.
Collapse
Affiliation(s)
- Hinata Nishimura
- Research Institute for Diseases of Old Age, Juntendo University Graduate School of Medicine, Tokyo, Japan
| | - Aurelien Kerever
- Research Institute for Diseases of Old Age, Juntendo University Graduate School of Medicine, Tokyo, Japan
| | - Kana Kato
- Research Institute for Diseases of Old Age, Juntendo University Graduate School of Medicine, Tokyo, Japan
| | - Tatsuki Ono
- Research Institute for Diseases of Old Age, Juntendo University Graduate School of Medicine, Tokyo, Japan
| | - Shiomi Nakayama
- Research Institute for Diseases of Old Age, Juntendo University Graduate School of Medicine, Tokyo, Japan
| | - Takahiro Tanaka
- Research Institute for Diseases of Old Age, Juntendo University Graduate School of Medicine, Tokyo, Japan
| | - Ryusei Abe
- Research Institute for Diseases of Old Age, Juntendo University Graduate School of Medicine, Tokyo, Japan
| | - Eri Arikawa-Hirasawa
- Research Institute for Diseases of Old Age, Juntendo University Graduate School of Medicine, Tokyo, Japan; Department of Neurology, Juntendo University Graduate School of Medicine, Tokyo, Japan.
| |
Collapse
|
4
|
Milan M, Maiullari F, Chirivì M, Ceraolo MG, Zigiotto R, Soluri A, Maiullari S, Landoni E, Silvestre DD, Brambilla F, Mauri P, De Paolis V, Fratini N, Crosti MC, Cordiglieri C, Parisi C, Calogero A, Seliktar D, Torrente Y, Lanzuolo C, Dotti G, Toccafondi M, Bombaci M, De Falco E, Bearzi C, Rizzi R. Macrophages producing chondroitin sulfate proteoglycan-4 induce neuro-cardiac junction impairment in Duchenne muscular dystrophy. J Pathol 2025; 265:1-13. [PMID: 39523812 PMCID: PMC11638662 DOI: 10.1002/path.6362] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2024] [Revised: 08/12/2024] [Accepted: 10/01/2024] [Indexed: 11/16/2024]
Abstract
Duchenne muscular dystrophy (DMD) is caused by the absence of the full form of the dystrophin protein, which is essential for maintaining the structural integrity of muscle cells, including those in the heart and respiratory system. Despite progress in understanding the molecular mechanisms associated with DMD, myocardial insufficiency persists as the primary cause of mortality, and existing therapeutic strategies remain limited. This study investigates the hypothesis that a dysregulation of the biological communication between infiltrating macrophages (MPs) and neurocardiac junctions exists in dystrophic cardiac tissue. In a mouse model of DMD (mdx), this phenomenon is influenced by the over-release of chondroitin sulfate proteoglycan-4 (CSPG4), a key inhibitor of nerve sprouting and a modulator of the neural function, by MPs infiltrating the cardiac tissue and associated with dilated cardiomyopathy, a hallmark of DMD. Givinostat, the histone deacetylase inhibitor under current development as a clinical treatment for DMD, is effective at both restoring a physiological microenvironment at the neuro-cardiac junction and cardiac function in mdx mice in addition to a reduction in cardiac fibrosis, MP-mediated inflammation, and tissue CSPG4 content. This study provides novel insight into the pathophysiology of DMD in the heart, identifying potential new biological targets. © 2024 The Author(s). The Journal of Pathology published by John Wiley & Sons Ltd on behalf of The Pathological Society of Great Britain and Ireland.
Collapse
Affiliation(s)
- Marika Milan
- Neurology Unit, Fondazione IRCCS Ca' Granda Ospedale Maggiore PoliclinicoMilanItaly
- Fondazione Istituto Nazionale di Genetica Molecolare (INGM) ‘Romeo ed Enrica Invernizzi’MilanItaly
| | - Fabio Maiullari
- Fondazione Istituto Nazionale di Genetica Molecolare (INGM) ‘Romeo ed Enrica Invernizzi’MilanItaly
- PhD Program in Cellular and Molecular Biology, Department of BiologyUniversity of Rome ‘Tor Vergata’RomeItaly
| | - Maila Chirivì
- Neurology Unit, Fondazione IRCCS Ca' Granda Ospedale Maggiore PoliclinicoMilanItaly
- Department of Molecular MedicineSapienza UniversityRomeItaly
| | - Maria Grazia Ceraolo
- Neurology Unit, Fondazione IRCCS Ca' Granda Ospedale Maggiore PoliclinicoMilanItaly
- Fondazione Istituto Nazionale di Genetica Molecolare (INGM) ‘Romeo ed Enrica Invernizzi’MilanItaly
| | - Rebecca Zigiotto
- Fondazione Istituto Nazionale di Genetica Molecolare (INGM) ‘Romeo ed Enrica Invernizzi’MilanItaly
| | - Andrea Soluri
- Unit of Molecular NeurosciencesUniversity Campus Bio‐Medico, RomeRomeItaly
- Institute of Biochemistry and Cell BiologyNational Research CouncilRomeItaly
| | - Silvia Maiullari
- Institute of Biochemistry and Cell BiologyNational Research CouncilRomeItaly
| | - Elisa Landoni
- Lineberger Comprehensive Cancer CenterUniversity of North Carolina at Chapel HillChapel HillNCUSA
| | | | | | - Pierluigi Mauri
- Institute of Biomedical TechnologiesNational Research CouncilMilanItaly
| | - Veronica De Paolis
- Institute of Biochemistry and Cell BiologyNational Research CouncilRomeItaly
| | - Nicole Fratini
- Department of Molecular MedicineSapienza UniversityRomeItaly
| | - Maria Cristina Crosti
- Fondazione Istituto Nazionale di Genetica Molecolare (INGM) ‘Romeo ed Enrica Invernizzi’MilanItaly
| | - Chiara Cordiglieri
- Fondazione Istituto Nazionale di Genetica Molecolare (INGM) ‘Romeo ed Enrica Invernizzi’MilanItaly
| | - Chiara Parisi
- Institute of Biochemistry and Cell BiologyNational Research CouncilRomeItaly
| | - Antonella Calogero
- Department of Medical‐Surgical Sciences and BiotechnologiesSapienza University of RomeLatinaItaly
| | - Dror Seliktar
- Department of Biomedical EngineeringTechnion InstituteHaifaIsrael
| | - Yvan Torrente
- Neurology Unit, Fondazione IRCCS Ca' Granda Ospedale Maggiore PoliclinicoMilanItaly
| | - Chiara Lanzuolo
- Fondazione Istituto Nazionale di Genetica Molecolare (INGM) ‘Romeo ed Enrica Invernizzi’MilanItaly
- Institute of Biomedical TechnologiesNational Research CouncilMilanItaly
| | - Gianpietro Dotti
- Lineberger Comprehensive Cancer CenterUniversity of North Carolina at Chapel HillChapel HillNCUSA
| | - Mirco Toccafondi
- Fondazione Istituto Nazionale di Genetica Molecolare (INGM) ‘Romeo ed Enrica Invernizzi’MilanItaly
| | - Mauro Bombaci
- Fondazione Istituto Nazionale di Genetica Molecolare (INGM) ‘Romeo ed Enrica Invernizzi’MilanItaly
| | - Elena De Falco
- Department of Medical‐Surgical Sciences and BiotechnologiesSapienza University of RomeLatinaItaly
| | - Claudia Bearzi
- Fondazione Istituto Nazionale di Genetica Molecolare (INGM) ‘Romeo ed Enrica Invernizzi’MilanItaly
- Institute of Biomedical TechnologiesNational Research CouncilMilanItaly
| | - Roberto Rizzi
- Fondazione Istituto Nazionale di Genetica Molecolare (INGM) ‘Romeo ed Enrica Invernizzi’MilanItaly
- Department of Medical‐Surgical Sciences and BiotechnologiesSapienza University of RomeLatinaItaly
| |
Collapse
|
5
|
Calligaris M, Spanò DP, Puccio MC, Müller SA, Bonelli S, Lo Pinto M, Zito G, Blobel CP, Lichtenthaler SF, Troeberg L, Scilabra SD. Development of a Proteomic Workflow for the Identification of Heparan Sulphate Proteoglycan-Binding Substrates of ADAM17. Proteomics 2024; 24:e202400076. [PMID: 39318062 DOI: 10.1002/pmic.202400076] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2024] [Revised: 08/29/2024] [Accepted: 08/29/2024] [Indexed: 09/26/2024]
Abstract
Ectodomain shedding, which is the proteolytic release of transmembrane proteins from the cell surface, is crucial for cell-to-cell communication and other biological processes. The metalloproteinase ADAM17 mediates ectodomain shedding of over 50 transmembrane proteins ranging from cytokines and growth factors, such as TNF and EGFR ligands, to signalling receptors and adhesion molecules. Yet, the ADAM17 sheddome is only partly defined and biological functions of the protease have not been fully characterized. Some ADAM17 substrates (e.g., HB-EGF) are known to bind to heparan sulphate proteoglycans (HSPG), and we hypothesised that such substrates would be under-represented in traditional secretome analyses, due to their binding to cell surface or pericellular HSPGs. Thus, to identify novel HSPG-binding ADAM17 substrates, we developed a proteomic workflow that involves addition of heparin to solubilize HSPG-binding proteins from the cell layer, thereby allowing their mass spectrometry detection by heparin-treated secretome (HEP-SEC) analysis. Applying this methodology to murine embryonic fibroblasts stimulated with an ADAM17 activator enabled us to identify 47 transmembrane proteins that were shed in response to ADAM17 activation. This included known HSPG-binding ADAM17 substrates (i.e., HB-EGF, CX3CL1) and 14 novel HSPG-binding putative ADAM17 substrates. Two of these, MHC-I and IL1RL1, were validated as ADAM17 substrates by immunoblotting.
Collapse
Affiliation(s)
- Matteo Calligaris
- Department of Research IRCCS ISMETT (Istituto Mediterraneo per i Trapianti e Terapie ad Alta Specializzazione), Proteomics Group of Ri.MED Foundation, Palermo, Italy
- Department of Pharmacy, University of Pisa, Pisa, Italy
| | - Donatella Pia Spanò
- Department of Research IRCCS ISMETT (Istituto Mediterraneo per i Trapianti e Terapie ad Alta Specializzazione), Proteomics Group of Ri.MED Foundation, Palermo, Italy
- STEBICEF (Dipartimento di Scienze e Tecnologie Biologiche Chimiche e Farmaceutiche), Università degli Studi di Palermo, Palermo, Italy
| | - Maria Chiara Puccio
- Department of Research IRCCS ISMETT (Istituto Mediterraneo per i Trapianti e Terapie ad Alta Specializzazione), Proteomics Group of Ri.MED Foundation, Palermo, Italy
| | - Stephan A Müller
- Neuroproteomics Department, German Center for Neurodegenerative Diseases (DZNE), Munich, Germany
| | - Simone Bonelli
- Department of Research IRCCS ISMETT (Istituto Mediterraneo per i Trapianti e Terapie ad Alta Specializzazione), Proteomics Group of Ri.MED Foundation, Palermo, Italy
- STEBICEF (Dipartimento di Scienze e Tecnologie Biologiche Chimiche e Farmaceutiche), Università degli Studi di Palermo, Palermo, Italy
| | - Margot Lo Pinto
- Department of Research IRCCS ISMETT (Istituto Mediterraneo per i Trapianti e Terapie ad Alta Specializzazione), Proteomics Group of Ri.MED Foundation, Palermo, Italy
| | - Giovanni Zito
- Department of Research, IRCCS ISMETT (Istituto Mediterraneo per i Trapianti e Terapie ad Alta Specializzazione), Palermo, Italy
| | - Carl P Blobel
- Arthritis and Tissue Degeneration Program, Hospital for Special Surgery, New York, USA
- School of Medicine, Technical University Munich, Munich, Germany
- Department of Biochemistry, Cell and Molecular Biology, Weill Cornell Medicine, New York, USA
| | - Stefan F Lichtenthaler
- Neuroproteomics Department, German Center for Neurodegenerative Diseases (DZNE), Munich, Germany
- School of Medicine, Technical University Munich, Munich, Germany
- Neuroproteomics, School of Medicine, Klinikum rechts der Isar, Technische Universität München, Munich, Germany
- Munich Cluster for Systems Neurology (SyNergy), Munich, Germany
| | - Linda Troeberg
- Norwich Medical School, University of East Anglia, Norwich, UK
| | - Simone Dario Scilabra
- Department of Research IRCCS ISMETT (Istituto Mediterraneo per i Trapianti e Terapie ad Alta Specializzazione), Proteomics Group of Ri.MED Foundation, Palermo, Italy
| |
Collapse
|
6
|
Pivoňková H, Sitnikov S, Kamen Y, Vanhaesebrouck A, Matthey M, Spitzer SO, Ng YT, Tao C, de Faria O, Varga BV, Káradóttir RT. Heterogeneity in oligodendrocyte precursor cell proliferation is dynamic and driven by passive bioelectrical properties. Cell Rep 2024; 43:114873. [PMID: 39423130 PMCID: PMC11602547 DOI: 10.1016/j.celrep.2024.114873] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2023] [Revised: 07/12/2024] [Accepted: 09/27/2024] [Indexed: 10/21/2024] Open
Abstract
Oligodendrocyte precursor cells (OPCs) generate myelinating oligodendrocytes and are the main proliferative cells in the adult central nervous system. OPCs are a heterogeneous population, with proliferation and differentiation capacity varying with brain region and age. We demonstrate that during early postnatal maturation, cortical, but not callosal, OPCs begin to show altered passive bioelectrical properties, particularly increased inward potassium (K+) conductance, which correlates with G1 cell cycle stage and affects their proliferation potential. Neuronal activity-evoked transient K+ currents in OPCs with high inward K+ conductance potentially release OPCs from cell cycle arrest. Eventually, OPCs in all regions acquire high inward K+ conductance, the magnitude of which may underlie differences in OPC proliferation between regions, with cells being pushed into a dormant state as they acquire high inward K+ conductance and released from dormancy by synchronous neuronal activity. Age-related accumulation of OPCs with high inward K+ conductance might contribute to differentiation failure.
Collapse
Affiliation(s)
- Helena Pivoňková
- Cambridge Stem Cell Institute and Department of Veterinary Medicine, University of Cambridge, Cambridge CB2 0AW, UK
| | - Sergey Sitnikov
- Cambridge Stem Cell Institute and Department of Veterinary Medicine, University of Cambridge, Cambridge CB2 0AW, UK
| | - Yasmine Kamen
- Cambridge Stem Cell Institute and Department of Veterinary Medicine, University of Cambridge, Cambridge CB2 0AW, UK
| | - An Vanhaesebrouck
- Cambridge Stem Cell Institute and Department of Veterinary Medicine, University of Cambridge, Cambridge CB2 0AW, UK
| | - Moritz Matthey
- Cambridge Stem Cell Institute and Department of Veterinary Medicine, University of Cambridge, Cambridge CB2 0AW, UK
| | - Sonia Olivia Spitzer
- Cambridge Stem Cell Institute and Department of Veterinary Medicine, University of Cambridge, Cambridge CB2 0AW, UK
| | - Yan Ting Ng
- Cambridge Stem Cell Institute and Department of Veterinary Medicine, University of Cambridge, Cambridge CB2 0AW, UK
| | - Chenyue Tao
- Cambridge Stem Cell Institute and Department of Veterinary Medicine, University of Cambridge, Cambridge CB2 0AW, UK
| | - Omar de Faria
- Cambridge Stem Cell Institute and Department of Veterinary Medicine, University of Cambridge, Cambridge CB2 0AW, UK
| | - Balazs Viktor Varga
- Cambridge Stem Cell Institute and Department of Veterinary Medicine, University of Cambridge, Cambridge CB2 0AW, UK
| | - Ragnhildur Thóra Káradóttir
- Cambridge Stem Cell Institute and Department of Veterinary Medicine, University of Cambridge, Cambridge CB2 0AW, UK; Department of Physiology, BioMedical Center, Faculty of Medicine, University of Iceland, 101 Reykjavík, Iceland.
| |
Collapse
|
7
|
Bromley-Coolidge S, Iruegas D, Appel B. Cspg4 sculpts oligodendrocyte precursor cell morphology. Differentiation 2024; 140:100819. [PMID: 39566199 PMCID: PMC11637897 DOI: 10.1016/j.diff.2024.100819] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2024] [Revised: 11/05/2024] [Accepted: 11/07/2024] [Indexed: 11/22/2024]
Abstract
The extracellular matrix (ECM) provides critical biochemical and structural cues that regulate neural development. Chondroitin sulfate proteoglycans (CSPGs), a major ECM component, have been implicated in modulating oligodendrocyte precursor cell (OPC) proliferation, migration, and maturation, but their specific roles in oligodendrocyte lineage cell (OLC) development and myelination in vivo remain poorly understood. Here, we use zebrafish as a model system to investigate the spatiotemporal dynamics of ECM deposition and CSPG localization during central nervous system (CNS) development, with a focus on their relationship to OLCs. We demonstrate that ECM components, including CSPGs, are dynamically expressed in distinct spatiotemporal patterns coinciding with OLC development and myelination. We found that zebrafish lacking cspg4 function produced normal numbers of OLCs, which appeared to undergo proper differentiation. However, OPC morphology in mutant larvae was aberrant. Nevertheless, the number and length of myelin sheaths produced by mature oligodendrocytes were unaffected. These data indicate that Cspg4 regulates OPC morphogenesis in vivo, supporting the role of the ECM in neural development.
Collapse
Affiliation(s)
- Samantha Bromley-Coolidge
- Section of Developmental Biology, Department of Pediatrics, University of Colorado Anschutz Medical Campus, Aurora, CO, 80445, USA
| | - Diego Iruegas
- Section of Developmental Biology, Department of Pediatrics, University of Colorado Anschutz Medical Campus, Aurora, CO, 80445, USA
| | - Bruce Appel
- Section of Developmental Biology, Department of Pediatrics, University of Colorado Anschutz Medical Campus, Aurora, CO, 80445, USA.
| |
Collapse
|
8
|
Cheung HW, Schouw AD, Altunay ZM, Maddox JW, Kresic LC, McAllister BC, Caro K, Alam S, Huang A, Pijewski RS, Lee A, Martinelli DC. Creation of a novel CRISPR-generated allele to express HA epitope-tagged C1QL1 and improved methods for its detection at synapses. FEBS Lett 2024; 598:2417-2437. [PMID: 38858133 PMCID: PMC11479844 DOI: 10.1002/1873-3468.14946] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2024] [Revised: 05/17/2024] [Accepted: 05/25/2024] [Indexed: 06/12/2024]
Abstract
C1QL1 is expressed in a subset of cells in the brain and likely has pleiotropic functions, including the regulation of neuron-to-neuron synapses. Research progress on C1QL proteins has been slowed by a dearth of available antibodies. Therefore, we created a novel knock-in mouse line in which an HA-tag is inserted into the endogenous C1ql1 locus. We examined the entire brain, identifying previously unappreciated nuclei expressing C1QL1, presumably in neurons. By total numbers, however, the large majority of C1QL1-expressing cells are of the oligodendrocyte lineage. Subcellular immunolocalization of synaptic cleft proteins is challenging, so we developed a new protocol to improve signal at synapses. Lastly, we compared various anti-HA antibodies to assist future investigations using this and likely other HA epitope-tagged alleles.
Collapse
Affiliation(s)
- Hiu W. Cheung
- Department of Neuroscience, University of Connecticut Health, Farmington, CT 06030, USA
| | - Alexander D. Schouw
- Department of Neuroscience, University of Connecticut Health, Farmington, CT 06030, USA
| | - Zeynep M. Altunay
- Department of Neuroscience, University of Connecticut Health, Farmington, CT 06030, USA
| | - J. Wesley Maddox
- Department of Neuroscience, University of Texas-Austin, Austin, TX 78712, USA
| | - Lyndsay C. Kresic
- Department of Neuroscience, University of Connecticut Health, Farmington, CT 06030, USA
| | - Brenna C. McAllister
- Department of Neuroscience, University of Connecticut Health, Farmington, CT 06030, USA
| | - Keaven Caro
- Department of Neuroscience, University of Connecticut Health, Farmington, CT 06030, USA
| | - Shahnawaz Alam
- Department of Neuroscience, University of Connecticut Health, Farmington, CT 06030, USA
| | - Angie Huang
- Department of Neuroscience, University of Texas-Austin, Austin, TX 78712, USA
| | - Robert S. Pijewski
- Department of Neuroscience, University of Connecticut Health, Farmington, CT 06030, USA
- Department of Biology, Anna Maria College, Paxton, MA 01612, USA
| | - Amy Lee
- Department of Neuroscience, University of Texas-Austin, Austin, TX 78712, USA
| | - David C. Martinelli
- Department of Neuroscience, University of Connecticut Health, Farmington, CT 06030, USA
- The Connecticut Institute for the Brain and Cognitive Sciences (IBACS), 06269, USA
| |
Collapse
|
9
|
Chen X, Habib S, Alexandru M, Chauhan J, Evan T, Troka JM, Rahimi A, Esapa B, Tull TJ, Ng WZ, Fitzpatrick A, Wu Y, Geh JLC, Lloyd-Hughes H, Palhares LCGF, Adams R, Bax HJ, Whittaker S, Jacków-Malinowska J, Karagiannis SN. Chondroitin Sulfate Proteoglycan 4 (CSPG4) as an Emerging Target for Immunotherapy to Treat Melanoma. Cancers (Basel) 2024; 16:3260. [PMID: 39409881 PMCID: PMC11476251 DOI: 10.3390/cancers16193260] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2024] [Revised: 09/18/2024] [Accepted: 09/20/2024] [Indexed: 10/20/2024] Open
Abstract
Immunotherapies, including checkpoint inhibitor antibodies, have precipitated significant improvements in clinical outcomes for melanoma. However, approximately half of patients do not benefit from approved treatments. Additionally, apart from Tebentafusp, which is approved for the treatment of uveal melanoma, there is a lack of immunotherapies directly focused on melanoma cells. This is partly due to few available targets, especially those expressed on the cancer cell surface. Chondroitin sulfate proteoglycan 4 (CSPG4) is a cell surface molecule overexpressed in human melanoma, with restricted distribution and low expression in non-malignant tissues and involved in several cancer-promoting and dissemination pathways. Here, we summarize the current understanding of the expression and functional significance of CSPG4 in health and melanoma, and we outline immunotherapeutic strategies. These include monoclonal antibodies, antibody-drug conjugates (ADCs), chimeric-antigen receptor (CAR) T cells, and other strategies such as anti-idiotypic and mimotope vaccines to raise immune responses against CSPG4-expressing melanomas. Several showed promising functions in preclinical models of melanoma, yet few have reached clinical testing, and none are approved for therapeutic use. Obstacles preventing that progress include limited knowledge of CSPG4 function in human cancer and a lack of in vivo models that adequately represent patient immune responses and human melanoma biology. Despite several challenges, immunotherapy directed to CSPG4-expressing melanoma harbors significant potential to transform the treatment landscape.
Collapse
Affiliation(s)
- Xinyi Chen
- St. John’s Institute of Dermatology, School of Basic & Medical Biosciences & KHP Centre for Translational Medicine, King’s College London, London SE1 9RT, UK (J.M.T.); (A.R.); (H.J.B.)
| | - Shabana Habib
- St. John’s Institute of Dermatology, School of Basic & Medical Biosciences & KHP Centre for Translational Medicine, King’s College London, London SE1 9RT, UK (J.M.T.); (A.R.); (H.J.B.)
| | - Madalina Alexandru
- St. John’s Institute of Dermatology, School of Basic & Medical Biosciences & KHP Centre for Translational Medicine, King’s College London, London SE1 9RT, UK (J.M.T.); (A.R.); (H.J.B.)
| | - Jitesh Chauhan
- St. John’s Institute of Dermatology, School of Basic & Medical Biosciences & KHP Centre for Translational Medicine, King’s College London, London SE1 9RT, UK (J.M.T.); (A.R.); (H.J.B.)
| | - Theodore Evan
- St. John’s Institute of Dermatology, School of Basic & Medical Biosciences & KHP Centre for Translational Medicine, King’s College London, London SE1 9RT, UK (J.M.T.); (A.R.); (H.J.B.)
| | - Joanna M. Troka
- St. John’s Institute of Dermatology, School of Basic & Medical Biosciences & KHP Centre for Translational Medicine, King’s College London, London SE1 9RT, UK (J.M.T.); (A.R.); (H.J.B.)
| | - Avigail Rahimi
- St. John’s Institute of Dermatology, School of Basic & Medical Biosciences & KHP Centre for Translational Medicine, King’s College London, London SE1 9RT, UK (J.M.T.); (A.R.); (H.J.B.)
| | - Benjamina Esapa
- St. John’s Institute of Dermatology, School of Basic & Medical Biosciences & KHP Centre for Translational Medicine, King’s College London, London SE1 9RT, UK (J.M.T.); (A.R.); (H.J.B.)
| | - Thomas J. Tull
- St. John’s Institute of Dermatology, School of Basic & Medical Biosciences & KHP Centre for Translational Medicine, King’s College London, London SE1 9RT, UK (J.M.T.); (A.R.); (H.J.B.)
| | - Wen Zhe Ng
- St. John’s Institute of Dermatology, School of Basic & Medical Biosciences & KHP Centre for Translational Medicine, King’s College London, London SE1 9RT, UK (J.M.T.); (A.R.); (H.J.B.)
| | - Amanda Fitzpatrick
- St. John’s Institute of Dermatology, School of Basic & Medical Biosciences & KHP Centre for Translational Medicine, King’s College London, London SE1 9RT, UK (J.M.T.); (A.R.); (H.J.B.)
- Oncology Department, Guy’s and St Thomas’ Hospitals, London SE1 9RT, UK
- Breast Cancer Now Research Unit, School of Cancer & Pharmaceutical Sciences, King’s College London, Innovation Hub, Guy’s Hospital, London SE1 9RT, UK
| | - Yin Wu
- St. John’s Institute of Dermatology, School of Basic & Medical Biosciences & KHP Centre for Translational Medicine, King’s College London, London SE1 9RT, UK (J.M.T.); (A.R.); (H.J.B.)
- Breast Cancer Now Research Unit, School of Cancer & Pharmaceutical Sciences, King’s College London, Innovation Hub, Guy’s Hospital, London SE1 9RT, UK
- Peter Gorer Department of Immunobiology, Centre for Inflammation Biology and Cancer Immunology, School of Immunology and Microbial Sciences, King’s College London, London SE1 9RT, UK
| | - Jenny L. C. Geh
- St John’s Institute of Dermatology, Guy’s, King’s and St. Thomas’ Hospitals NHS Foundation Trust, London SE1 9RT, UK
- Department of Plastic Surgery, Guy’s, King’s and St. Thomas’ Hospitals, London SE1 9RT, UK
| | - Hawys Lloyd-Hughes
- Department of Plastic Surgery, Guy’s, King’s and St. Thomas’ Hospitals, London SE1 9RT, UK
| | - Lais C. G. F. Palhares
- St. John’s Institute of Dermatology, School of Basic & Medical Biosciences & KHP Centre for Translational Medicine, King’s College London, London SE1 9RT, UK (J.M.T.); (A.R.); (H.J.B.)
| | - Rebecca Adams
- St. John’s Institute of Dermatology, School of Basic & Medical Biosciences & KHP Centre for Translational Medicine, King’s College London, London SE1 9RT, UK (J.M.T.); (A.R.); (H.J.B.)
| | - Heather J. Bax
- St. John’s Institute of Dermatology, School of Basic & Medical Biosciences & KHP Centre for Translational Medicine, King’s College London, London SE1 9RT, UK (J.M.T.); (A.R.); (H.J.B.)
| | - Sean Whittaker
- St. John’s Institute of Dermatology, School of Basic & Medical Biosciences & KHP Centre for Translational Medicine, King’s College London, London SE1 9RT, UK (J.M.T.); (A.R.); (H.J.B.)
| | - Joanna Jacków-Malinowska
- St. John’s Institute of Dermatology, School of Basic & Medical Biosciences & KHP Centre for Translational Medicine, King’s College London, London SE1 9RT, UK (J.M.T.); (A.R.); (H.J.B.)
| | - Sophia N. Karagiannis
- St. John’s Institute of Dermatology, School of Basic & Medical Biosciences & KHP Centre for Translational Medicine, King’s College London, London SE1 9RT, UK (J.M.T.); (A.R.); (H.J.B.)
- Breast Cancer Now Research Unit, School of Cancer & Pharmaceutical Sciences, King’s College London, Innovation Hub, Guy’s Hospital, London SE1 9RT, UK
| |
Collapse
|
10
|
Hourani S, Pouladi MA. Oligodendroglia and myelin pathology in fragile X syndrome. J Neurochem 2024; 168:2214-2226. [PMID: 38898700 DOI: 10.1111/jnc.16144] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2024] [Revised: 05/27/2024] [Accepted: 05/27/2024] [Indexed: 06/21/2024]
Abstract
Studies of the pathophysiology of fragile X syndrome (FXS) have predominantly focused on synaptic and neuronal disruptions in the disease. However, emerging studies highlight the consistency of white matter abnormalities in the disorder. Recent investigations using animal models of FXS have suggested a role for the fragile X translational regulator 1 protein (FMRP) in the development and function of oligodendrocytes, the myelinating cells of the central nervous system. These studies are starting to uncover FMRP's involvement in the regulation of myelin-related genes, such as myelin basic protein, and its influence on the maturation and functionality of oligodendrocyte precursor cells and oligodendrocytes. Here, we consider evidence of white matter abnormalities in FXS, review our current understanding of FMRP's role in oligodendrocyte development and function, and highlight gaps in our knowledge of the pathogenic mechanisms that may contribute to white matter abnormalities in FXS. Addressing these gaps may help identify new therapeutic strategies aimed at enhancing outcomes for individuals affected by FXS.
Collapse
Affiliation(s)
- Shaima Hourani
- Department of Medical Genetics, Vancouver, British Columbia, Canada
- Centre for Molecular Medicine and Therapeutics, Vancouver, British Columbia, Canada
- Djavad Mowafaghian Centre for Brain Health, Vancouver, British Columbia, Canada
- Edwin S.H. Leong Centre for Healthy Aging, Faculty of Medicine, University of British Columbia, Vancouver, British Columbia, Canada
- British Columbia Children's Hospital Research Institute, Vancouver, British Columbia, Canada
| | - Mahmoud A Pouladi
- Department of Medical Genetics, Vancouver, British Columbia, Canada
- Centre for Molecular Medicine and Therapeutics, Vancouver, British Columbia, Canada
- Djavad Mowafaghian Centre for Brain Health, Vancouver, British Columbia, Canada
- Edwin S.H. Leong Centre for Healthy Aging, Faculty of Medicine, University of British Columbia, Vancouver, British Columbia, Canada
- British Columbia Children's Hospital Research Institute, Vancouver, British Columbia, Canada
| |
Collapse
|
11
|
Bromley-Coolidge S, Iruegas D, Appel B. Cspg4 sculpts oligodendrocyte precursor cell morphology. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.08.08.607226. [PMID: 39149260 PMCID: PMC11326215 DOI: 10.1101/2024.08.08.607226] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 08/17/2024]
Abstract
The extracellular matrix (ECM) provides critical biochemical and structural cues that regulate neural development. Chondroitin sulfate proteoglycans (CSPGs), a major ECM component, have been implicated in modulating oligodendrocyte precursor cell (OPC) proliferation, migration, and maturation, but their specific roles in oligodendrocyte lineage cell (OLC) development and myelination in vivo remain poorly understood. Here, we use zebrafish as a model system to investigate the spatiotemporal dynamics of ECM deposition and CSPG localization during central nervous system (CNS) development, with a focus on their relationship to OLCs. We demonstrate that ECM components, including CSPGs, are dynamically expressed in distinct spatiotemporal patterns coinciding with OLC development and myelination. We found that zebrafish lacking cspg4 function produced normal numbers of OLCs, which appeared to undergo proper differentiation. However, OPC morphology in mutant larvae was aberrant. Nevertheless, the number and length of myelin sheaths produced by mature oligodendrocytes were unaffected. These data indicate that Cspg4 regulates OPC morphogenesis in vivo, supporting the role of the ECM in neural development.
Collapse
Affiliation(s)
- Samantha Bromley-Coolidge
- Section of Developmental Biology, Department of Pediatrics, University of Colorado Anschutz Medical Campus, Aurora, Colorado, USA, 80445
| | - Diego Iruegas
- Section of Developmental Biology, Department of Pediatrics, University of Colorado Anschutz Medical Campus, Aurora, Colorado, USA, 80445
| | - Bruce Appel
- Section of Developmental Biology, Department of Pediatrics, University of Colorado Anschutz Medical Campus, Aurora, Colorado, USA, 80445
| |
Collapse
|
12
|
Bottero M, Pessina G, Bason C, Vigo T, Uccelli A, Ferrara G. Nerve-Glial antigen 2: unmasking the enigmatic cellular identity in the central nervous system. Front Immunol 2024; 15:1393842. [PMID: 39136008 PMCID: PMC11317297 DOI: 10.3389/fimmu.2024.1393842] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2024] [Accepted: 07/05/2024] [Indexed: 08/15/2024] Open
Abstract
Chondroitin sulfate proteoglycans (CSPGs) are fundamental components of the extracellular matrix in the central nervous system (CNS). Among these, the Nerve-Glial antigen 2 (NG2) stands out as a transmembrane CSPG exclusively expressed in a different population of cells collectively termed NG2-expressing cells. These enigmatic cells, found throughout the developing and adult CNS, have been indicated with various names, including NG2 progenitor cells, polydendrocytes, synantocytes, NG2 cells, and NG2-Glia, but are more commonly referred to as oligodendrocyte progenitor cells. Characterized by high proliferation rates and unique morphology, NG2-expressing cells stand apart from neurons, astrocytes, and oligodendrocytes. Intriguingly, some NG2-expressing cells form functional glutamatergic synapses with neurons, challenging the long-held belief that only neurons possess the intricate machinery required for neurotransmission. In the CNS, the complexity surrounding NG2-expressing cells extends to their classification. Additionally, NG2 expression has been documented in pericytes and immune cells, suggesting a role in regulating brain innate immunity and neuro-immune crosstalk in homeostasis. Ongoing debates revolve around their heterogeneity, potential as progenitors for various cell types, responses to neuroinflammation, and the role of NG2. Therefore, this review aims to shed light on the enigma of NG2-expressing cells by delving into their structure, functions, and signaling pathways. We will critically evaluate the literature on NG2 expression across the CNS, and address the contentious issues surrounding their classification and roles in neuroinflammation and neurodegeneration. By unraveling the intricacies of NG2-expressing cells, we hope to pave the way for a more comprehensive understanding of their contributions to CNS health and during neurological disorders.
Collapse
Affiliation(s)
- Marta Bottero
- IRCCS Ospedale Policlinico San Martino, Genoa, Italy
| | - Giada Pessina
- Department of Experimental Medicine, University of Genoa, Genoa, Italy
| | | | - Tiziana Vigo
- IRCCS Ospedale Policlinico San Martino, Genoa, Italy
| | - Antonio Uccelli
- IRCCS Ospedale Policlinico San Martino, Genoa, Italy
- Department of Neurology, Rehabilitation, Ophthalmology, Genetics, Maternal and Child Health, University of Genoa, Genoa, Italy
| | | |
Collapse
|
13
|
Padilla-Ferrer A, Carrete A, Simon A, Meffre D, Jafarian-Tehrani M. A Disintegrin And Metalloprotease 10 expression within the murine central nervous system. Brain Res 2024; 1834:148888. [PMID: 38548249 DOI: 10.1016/j.brainres.2024.148888] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2023] [Revised: 03/12/2024] [Accepted: 03/23/2024] [Indexed: 04/08/2024]
Abstract
A Disintegrin And Metalloprotease 10 (ADAM10), is able to control several important physiopathological processes through the shedding of a large number of protein substrates. Although ADAM10 plays a crucial role in the central nervous system (CNS) development and function, its protein distribution in the CNS has not been fully addressed. Here, we described the regional and cellular ADAM10 protein expression in C57BL/6 mice examined by immunofluorescence 1) throughout the adult mouse brain, cerebellum and spinal cord in vivo and 2) in different cell types as neurons, astrocytes, oligodendrocytes and microglia in vitro. We observed ADAM10 expression through the whole CNS, with a strong expression in the hippocampus, in the hypothalamus and in the cerebral and piriform cortex in the brain, in the Purkinje and in granular cell layers in the cerebellum and in the spinal cord to a lower extent. In vivo, ADAM10 protein expression was mainly found in neurons and in some oligodendroglial cell populations. However, in primary cultures we observed ADAM10 expression in neurons, oligodendrocytes, astrocytes and microglia. Interestingly, ADAM10 was not only found in the membrane but also in cytoplasmic vesicles and in the nucleus of primary cultured cells. Overall, this work highlights a wide distribution of ADAM10 throughout the CNS. The nuclear localization of ADAM10, probably due to its intracellular domain, emphasizes its role in cell signalling in physiological and pathological conditions. Further investigations are required to better elucidate the role of ADAM10 in glial cells.
Collapse
Affiliation(s)
| | - Alex Carrete
- Université Paris Cité and Inserm, UMR-S 1124, Paris, France
| | - Anne Simon
- Université Paris Cité and Inserm, UMR-S 1124, Paris, France
| | | | | |
Collapse
|
14
|
Deng Q, Parker E, Wu C, Zhu L, Liu TCY, Duan R, Yang L. Repurposing Ketamine in the Therapy of Depression and Depression-Related Disorders: Recent Advances and Future Potential. Aging Dis 2024; 16:804-840. [PMID: 38916735 PMCID: PMC11964445 DOI: 10.14336/ad.2024.0239] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2024] [Accepted: 04/29/2024] [Indexed: 06/26/2024] Open
Abstract
Depression represents a prevalent and enduring mental disorder of significant concern within the clinical domain. Extensive research indicates that depression is very complex, with many interconnected pathways involved. Most research related to depression focuses on monoamines, neurotrophic factors, the hypothalamic-pituitary-adrenal axis, tryptophan metabolism, energy metabolism, mitochondrial function, the gut-brain axis, glial cell-mediated inflammation, myelination, homeostasis, and brain neural networks. However, recently, Ketamine, an ionotropic N-methyl-D-aspartate (NMDA) receptor antagonist, has been discovered to have rapid antidepressant effects in patients, leading to novel and successful treatment approaches for mood disorders. This review aims to summarize the latest findings and insights into various signaling pathways and systems observed in depression patients and animal models, providing a more comprehensive view of the neurobiology of anxious-depressive-like behavior. Specifically, it highlights the key mechanisms of ketamine as a rapid-acting antidepressant, aiming to enhance the treatment of neuropsychiatric disorders. Moreover, we discuss the potential of ketamine as a prophylactic or therapeutic intervention for stress-related psychiatric disorders.
Collapse
Affiliation(s)
- Qianting Deng
- College of Physical Education and Sport Science, South China Normal University, Guangzhou, China.
| | - Emily Parker
- Medical College of Georgia at Augusta University, Augusta, GA 30912, USA.
| | - Chongyun Wu
- College of Physical Education and Sport Science, South China Normal University, Guangzhou, China.
| | - Ling Zhu
- College of Physical Education and Sport Science, South China Normal University, Guangzhou, China.
| | - Timon Cheng-Yi Liu
- College of Physical Education and Sport Science, South China Normal University, Guangzhou, China.
| | - Rui Duan
- College of Physical Education and Sport Science, South China Normal University, Guangzhou, China.
| | - Luodan Yang
- College of Physical Education and Sport Science, South China Normal University, Guangzhou, China.
| |
Collapse
|
15
|
Yu Y, Chen R, Mao K, Deng M, Li Z. The Role of Glial Cells in Synaptic Dysfunction: Insights into Alzheimer's Disease Mechanisms. Aging Dis 2024; 15:459-479. [PMID: 37548934 PMCID: PMC10917533 DOI: 10.14336/ad.2023.0718] [Citation(s) in RCA: 15] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2023] [Accepted: 07/18/2023] [Indexed: 08/08/2023] Open
Abstract
Alzheimer's disease (AD) is a devastating neurodegenerative disorder that impacts a substantial number of individuals globally. Despite its widespread prevalence, there is currently no cure for AD. It is widely acknowledged that normal synaptic function holds a key role in memory, cognitive abilities, and the interneuronal transfer of information. As AD advances, symptoms including synaptic impairment, decreased synaptic density, and cognitive decline become increasingly noticeable. The importance of glial cells in the formation of synapses, the growth of neurons, brain maturation, and safeguarding the microenvironment of the central nervous system is well recognized. However, during AD progression, overactive glial cells can cause synaptic dysfunction, neuronal death, and abnormal neuroinflammation. Both neuroinflammation and synaptic dysfunction are present in the early stages of AD. Therefore, focusing on the changes in glia-synapse communication could provide insights into the mechanisms behind AD. In this review, we aim to provide a summary of the role of various glial cells, including microglia, astrocytes, oligodendrocytes, and oligodendrocyte precursor cells, in regulating synaptic dysfunction. This may offer a new perspective on investigating the underlying mechanisms of AD.
Collapse
Affiliation(s)
- Yang Yu
- Scientific Research Center, The Seventh Affiliated Hospital, Sun Yat-sen University, Shenzhen, China.
| | - Ran Chen
- Scientific Research Center, The Seventh Affiliated Hospital, Sun Yat-sen University, Shenzhen, China.
- School of Medicine, Sun Yat-sen University, Shenzhen, China.
| | - Kaiyue Mao
- Scientific Research Center, The Seventh Affiliated Hospital, Sun Yat-sen University, Shenzhen, China.
- School of Medicine, Sun Yat-sen University, Shenzhen, China.
| | - Maoyan Deng
- Scientific Research Center, The Seventh Affiliated Hospital, Sun Yat-sen University, Shenzhen, China.
- School of Medicine, Sun Yat-sen University, Shenzhen, China.
| | - Zhigang Li
- Scientific Research Center, The Seventh Affiliated Hospital, Sun Yat-sen University, Shenzhen, China.
- Shenzhen Key Laboratory of Chinese Medicine Active Substance Screening and Translational Research, Shenzhen, China.
| |
Collapse
|
16
|
Choi AS, Jenkins-Lane LM, Barton W, Kumari A, Lancaster C, Raulerson C, Ji H, Altomare D, Starr MD, Whitaker R, Phaeton R, Arend R, Shtutman M, Nixon AB, Hempel N, Lee NY, Mythreye K. Glycosaminoglycan modifications of betaglycan regulate ectodomain shedding to fine-tune TGF-β signaling responses in ovarian cancer. Cell Commun Signal 2024; 22:128. [PMID: 38360757 PMCID: PMC10870443 DOI: 10.1186/s12964-024-01496-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2023] [Accepted: 01/21/2024] [Indexed: 02/17/2024] Open
Abstract
In pathologies including cancer, aberrant Transforming Growth Factor-β (TGF-β) signaling exerts profound tumor intrinsic and extrinsic consequences. Intense clinical endeavors are underway to target this pathway. Central to the success of these interventions is pinpointing factors that decisively modulate the TGF-β responses. Betaglycan/type III TGF-β receptor (TβRIII), is an established co-receptor for the TGF-β superfamily known to bind directly to TGF-βs 1-3 and inhibin A/B. Betaglycan can be membrane-bound and also undergo ectodomain cleavage to produce soluble-betaglycan that can sequester its ligands. Its extracellular domain undergoes heparan sulfate and chondroitin sulfate glycosaminoglycan modifications, transforming betaglycan into a proteoglycan. We report the unexpected discovery that the heparan sulfate glycosaminoglycan chains on betaglycan are critical for the ectodomain shedding. In the absence of such glycosaminoglycan chains betaglycan is not shed, a feature indispensable for the ability of betaglycan to suppress TGF-β signaling and the cells' responses to exogenous TGF-β ligands. Using unbiased transcriptomics, we identified TIMP3 as a key inhibitor of betaglycan shedding thereby influencing TGF-β signaling. Our results bear significant clinical relevance as modified betaglycan is present in the ascites of patients with ovarian cancer and can serve as a marker for predicting patient outcomes and TGF-β signaling responses. These studies are the first to demonstrate a unique reliance on the glycosaminoglycan chains of betaglycan for shedding and influence on TGF-β signaling responses. Dysregulated shedding of TGF-β receptors plays a vital role in determining the response and availability of TGF-βs', which is crucial for prognostic predictions and understanding of TGF-β signaling dynamics.
Collapse
Affiliation(s)
- Alex S Choi
- Department of Pathology and O'Neal Comprehensive Cancer Center, Heersink School of Medicine, University of Alabama at Birmingham, Birmingham, AL, 35233, USA
- Department of Chemistry and Biochemistry, University of South Carolina, Columbia, SC, 29208, USA
| | - Laura M Jenkins-Lane
- Department of Chemistry and Biochemistry, University of South Carolina, Columbia, SC, 29208, USA
| | - Wade Barton
- Department of Gynecology Oncology, Heersink School of Medicine, University of Alabama School of Medicine, Birmingham, AL, 35233, USA
| | - Asha Kumari
- Department of Pathology and O'Neal Comprehensive Cancer Center, Heersink School of Medicine, University of Alabama at Birmingham, Birmingham, AL, 35233, USA
| | - Carly Lancaster
- Department of Chemistry and Biochemistry, University of South Carolina, Columbia, SC, 29208, USA
| | - Calen Raulerson
- Department of Chemistry and Biochemistry, University of South Carolina, Columbia, SC, 29208, USA
| | - Hao Ji
- Department of Drug Discovery & Biomedical Sciences, College of Pharmacy, University of South Carolina, Columbia, SC, 29208, USA
| | - Diego Altomare
- Department of Drug Discovery & Biomedical Sciences, College of Pharmacy, University of South Carolina, Columbia, SC, 29208, USA
| | - Mark D Starr
- Department of Medicine and Duke Cancer Institute, Duke University Medical Center, Durham, NC, 27710, USA
| | - Regina Whitaker
- Department of Obstetrics and Gynecology, Duke University Medical Center, Durham, NC, USA
| | - Rebecca Phaeton
- Department of Obstetrics and Gynecology, and Microbiology and Immunology, College of Medicine, Pennsylvania State University, Hershey, PA, 17033, USA
| | - Rebecca Arend
- Department of Gynecology Oncology, Heersink School of Medicine, University of Alabama School of Medicine, Birmingham, AL, 35233, USA
| | - Michael Shtutman
- Department of Drug Discovery & Biomedical Sciences, College of Pharmacy, University of South Carolina, Columbia, SC, 29208, USA
| | - Andrew B Nixon
- Department of Medicine and Duke Cancer Institute, Duke University Medical Center, Durham, NC, 27710, USA
| | - Nadine Hempel
- Department of Medicine, Division of Hematology-Oncology, Hillman Cancer Center, University of Pittsburgh School of Medicine, Pittsburgh, PA, 15213, USA
| | - Nam Y Lee
- Division of Pharmacology, Chemistry and Biochemistry, College of Medicine, University of Arizona, Tucson, AZ, 85721, USA
| | - Karthikeyan Mythreye
- Department of Pathology and O'Neal Comprehensive Cancer Center, Heersink School of Medicine, University of Alabama at Birmingham, Birmingham, AL, 35233, USA.
- Department of Chemistry and Biochemistry, University of South Carolina, Columbia, SC, 29208, USA.
| |
Collapse
|
17
|
Brousse B, Mercier O, Magalon K, Gubellini P, Malapert P, Cayre M, Durbec P. Characterization of a new mouse line triggering transient oligodendrocyte progenitor depletion. Sci Rep 2023; 13:21959. [PMID: 38081969 PMCID: PMC10713661 DOI: 10.1038/s41598-023-48926-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2023] [Accepted: 12/01/2023] [Indexed: 12/18/2023] Open
Abstract
Oligodendrocyte progenitor cells (OPC) are the main proliferative cells in the healthy adult brain. They produce new myelinating oligodendrocytes to ensure physiological myelin remodeling and regeneration after various pathological insults. Growing evidence suggests that OPC have other functions. Here, we aimed to develop an experimental model that allows the specific ablation of OPC at the adult stage to unravel possible new functions. We generated a transgenic mouse expressing a floxed human diphtheria toxin receptor under the control of the PDGFRa promoter, crossed with an Olig2Cre mouse to limit the recombination to the oligodendrocyte lineage in the central nervous system. We determined a diphtheria toxin dose to substantially decrease OPC density in the cortex and the corpus callosum without triggering side toxicity after a few daily injections. OPC density was normalized 7 days post-treatment, showing high repopulation capacity from few surviving OPC. We took advantage of this strong but transient depletion to show that OPC loss was associated with behavioral impairment, which was restored by OPC recovery, as well as disruption of the excitation/inhibition balance in the sensorimotor cortex, reinforcing the hypothesis of a neuromodulatory role of OPC in the adult brain.
Collapse
Affiliation(s)
- B Brousse
- Aix Marseille Univ, CNRS, IBDM UMR7288, Case 907, Parc Scientifique de Luminy, 13288, Marseille Cedex 09, France
| | - O Mercier
- Aix Marseille Univ, CNRS, IBDM UMR7288, Case 907, Parc Scientifique de Luminy, 13288, Marseille Cedex 09, France
| | - K Magalon
- Aix Marseille Univ, CNRS, IBDM UMR7288, Case 907, Parc Scientifique de Luminy, 13288, Marseille Cedex 09, France
| | - P Gubellini
- Aix Marseille Univ, CNRS, IBDM UMR7288, Case 907, Parc Scientifique de Luminy, 13288, Marseille Cedex 09, France
- Aix Marseille Univ, CNRS, LNC UMR7291, 3 Place Victor Hugo, 13331, Marseille Cedex 3, France
| | - P Malapert
- Aix Marseille Univ, CNRS, IBDM UMR7288, Case 907, Parc Scientifique de Luminy, 13288, Marseille Cedex 09, France
| | - M Cayre
- Aix Marseille Univ, CNRS, IBDM UMR7288, Case 907, Parc Scientifique de Luminy, 13288, Marseille Cedex 09, France
- Aix Marseille Univ, CNRS, LNC UMR7291, 3 Place Victor Hugo, 13331, Marseille Cedex 3, France
| | - P Durbec
- Aix Marseille Univ, CNRS, IBDM UMR7288, Case 907, Parc Scientifique de Luminy, 13288, Marseille Cedex 09, France.
| |
Collapse
|
18
|
Benarroch E. What Are the Roles of Oligodendrocyte Precursor Cells in Normal and Pathologic Conditions? Neurology 2023; 101:958-965. [PMID: 37985182 PMCID: PMC10663025 DOI: 10.1212/wnl.0000000000208000] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2023] [Accepted: 09/25/2023] [Indexed: 11/22/2023] Open
|
19
|
Xiao Y, Czopka T. Myelination-independent functions of oligodendrocyte precursor cells in health and disease. Nat Neurosci 2023; 26:1663-1669. [PMID: 37653126 DOI: 10.1038/s41593-023-01423-3] [Citation(s) in RCA: 29] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2023] [Accepted: 07/27/2023] [Indexed: 09/02/2023]
Abstract
Oligodendrocyte precursor cells (OPCs) are a population of tissue-resident glial cells found throughout the CNS, constituting approximately 5% of all CNS cells and persisting from development to adulthood and aging. The canonical role of OPCs is to give rise to myelinating oligodendrocytes. However, additional functions of OPCs beyond this traditional role as precursors have been suggested for a long time. In this Perspective, we provide an overview of the multiple myelination-independent functions that have been described for OPCs in the context of neuron development, angiogenesis, inflammatory response, axon regeneration and their recently discovered roles in neural circuit remodeling.
Collapse
Affiliation(s)
- Yan Xiao
- Institute of Neuronal Cell Biology, Technical University of Munich, Munich, Germany
| | - Tim Czopka
- Centre for Clinical Brain Sciences, University of Edinburgh, Edinburgh, UK.
| |
Collapse
|
20
|
Takasugi M, Ohtani N, Takemura K, Emmrich S, Zakusilo FT, Yoshida Y, Kutsukake N, Mariani JN, Windrem MS, Chandler-Militello D, Goldman SA, Satoh J, Ito S, Seluanov A, Gorbunova V. CD44 correlates with longevity and enhances basal ATF6 activity and ER stress resistance. Cell Rep 2023; 42:113130. [PMID: 37708026 PMCID: PMC10591879 DOI: 10.1016/j.celrep.2023.113130] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2022] [Revised: 07/14/2023] [Accepted: 08/28/2023] [Indexed: 09/16/2023] Open
Abstract
The naked mole rat (NMR) is the longest-lived rodent, resistant to multiple age-related diseases including neurodegeneration. However, the mechanisms underlying the NMR's resistance to neurodegenerative diseases remain elusive. Here, we isolated oligodendrocyte progenitor cells (OPCs) from NMRs and compared their transcriptome with that of other mammals. Extracellular matrix (ECM) genes best distinguish OPCs of long- and short-lived species. Notably, expression levels of CD44, an ECM-binding protein that has been suggested to contribute to NMR longevity by mediating the effect of hyaluronan (HA), are not only high in OPCs of long-lived species but also positively correlate with longevity in multiple cell types/tissues. We found that CD44 localizes to the endoplasmic reticulum (ER) and enhances basal ATF6 activity. CD44 modifies proteome and membrane properties of the ER and enhances ER stress resistance in a manner dependent on unfolded protein response regulators without the requirement of HA. HA-independent role of CD44 in proteostasis regulation may contribute to mammalian longevity.
Collapse
Affiliation(s)
- Masaki Takasugi
- Department of Biology, University of Rochester, Rochester, NY 14627, USA; Department of Pathophysiology, Osaka Metropolitan University, Graduate School of Medicine, Osaka, Japan.
| | - Naoko Ohtani
- Department of Pathophysiology, Osaka Metropolitan University, Graduate School of Medicine, Osaka, Japan.
| | - Kazuaki Takemura
- Department of Pathophysiology, Osaka Metropolitan University, Graduate School of Medicine, Osaka, Japan
| | - Stephan Emmrich
- Department of Biology, University of Rochester, Rochester, NY 14627, USA
| | - Frances T Zakusilo
- Department of Biology, University of Rochester, Rochester, NY 14627, USA
| | - Yuya Yoshida
- Department of Pathophysiology, Osaka Metropolitan University, Graduate School of Medicine, Osaka, Japan
| | - Nobuyuki Kutsukake
- Research Center for Integrative Evolutionary Science, SOKENDAI, The Graduate University for Advanced Studies, Kanagawa, Japan
| | - John N Mariani
- Center for Translational Neuromedicine and the Department of Neurology, University of Rochester Medical Center, Rochester, NY 14642, USA
| | - Martha S Windrem
- Center for Translational Neuromedicine and the Department of Neurology, University of Rochester Medical Center, Rochester, NY 14642, USA
| | - Devin Chandler-Militello
- Center for Translational Neuromedicine and the Department of Neurology, University of Rochester Medical Center, Rochester, NY 14642, USA
| | - Steven A Goldman
- Center for Translational Neuromedicine and the Department of Neurology, University of Rochester Medical Center, Rochester, NY 14642, USA
| | - Junko Satoh
- Medical Research Support Center, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Shinji Ito
- Medical Research Support Center, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Andrei Seluanov
- Department of Biology, University of Rochester, Rochester, NY 14627, USA; Department of Medicine, University of Rochester Medical Center, Rochester, NY 14642 USA.
| | - Vera Gorbunova
- Department of Biology, University of Rochester, Rochester, NY 14627, USA; Department of Medicine, University of Rochester Medical Center, Rochester, NY 14642 USA.
| |
Collapse
|
21
|
Sokol DK, Lahiri DK. APPlications of amyloid-β precursor protein metabolites in macrocephaly and autism spectrum disorder. Front Mol Neurosci 2023; 16:1201744. [PMID: 37799731 PMCID: PMC10548831 DOI: 10.3389/fnmol.2023.1201744] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2023] [Accepted: 07/17/2023] [Indexed: 10/07/2023] Open
Abstract
Metabolites of the Amyloid-β precursor protein (APP) proteolysis may underlie brain overgrowth in Autism Spectrum Disorder (ASD). We have found elevated APP metabolites (total APP, secreted (s) APPα, and α-secretase adamalysins in the plasma and brain tissue of children with ASD). In this review, we highlight several lines of evidence supporting APP metabolites' potential contribution to macrocephaly in ASD. First, APP appears early in corticogenesis, placing APP in a prime position to accelerate growth in neurons and glia. APP metabolites are upregulated in neuroinflammation, another potential contributor to excessive brain growth in ASD. APP metabolites appear to directly affect translational signaling pathways, which have been linked to single gene forms of syndromic ASD (Fragile X Syndrome, PTEN, Tuberous Sclerosis Complex). Finally, APP metabolites, and microRNA, which regulates APP expression, may contribute to ASD brain overgrowth, particularly increased white matter, through ERK receptor activation on the PI3K/Akt/mTOR/Rho GTPase pathway, favoring myelination.
Collapse
Affiliation(s)
- Deborah K. Sokol
- Department of Neurology, Section of Pediatrics, Indiana University School of Medicine, Indianapolis, IN, United States
| | - Debomoy K. Lahiri
- Department of Psychiatry, Indiana University School of Medicine, Indianapolis, IN, United States
- Department of Medical and Molecular Genetics, Indiana University School of Medicine, Indianapolis, IN, United States
- Indiana Alzheimer Disease Research Center, Indiana University School of Medicine, Indianapolis, IN, United States
| |
Collapse
|
22
|
Fang LP, Bai X. Oligodendrocyte precursor cells: the multitaskers in the brain. Pflugers Arch 2023; 475:1035-1044. [PMID: 37401986 PMCID: PMC10409806 DOI: 10.1007/s00424-023-02837-5] [Citation(s) in RCA: 21] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2023] [Revised: 06/19/2023] [Accepted: 06/27/2023] [Indexed: 07/05/2023]
Abstract
In the central nervous system, oligodendrocyte precursor cells (OPCs) are recognized as the progenitors responsible for the generation of oligodendrocytes, which play a critical role in myelination. Extensive research has shed light on the mechanisms underlying OPC proliferation and differentiation into mature myelin-forming oligodendrocytes. However, recent advances in the field have revealed that OPCs have multiple functions beyond their role as progenitors, exerting control over neural circuits and brain function through distinct pathways. This review aims to provide a comprehensive understanding of OPCs by first introducing their well-established features. Subsequently, we delve into the emerging roles of OPCs in modulating brain function in both healthy and diseased states. Unraveling the cellular and molecular mechanisms by which OPCs influence brain function holds great promise for identifying novel therapeutic targets for central nervous system diseases.
Collapse
Affiliation(s)
- Li-Pao Fang
- Molecular Physiology, Center for Integrative Physiology and Molecular Medicine, University of Saarland, 66421 Homburg, Germany
| | - Xianshu Bai
- Molecular Physiology, Center for Integrative Physiology and Molecular Medicine, University of Saarland, 66421 Homburg, Germany
| |
Collapse
|
23
|
Choi AS, Jenkins-Lane LM, Barton W, Kumari A, Lancaster C, Raulerson C, Ji H, Altomare D, Starr MD, Whitaker R, Phaeton R, Arend R, Shtutman M, Nixon AB, Hempel N, Lee NY, Mythreye K. Heparan sulfate modifications of betaglycan promote TIMP3-dependent ectodomain shedding to fine-tune TGF-β signaling. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.08.29.555364. [PMID: 37693479 PMCID: PMC10491198 DOI: 10.1101/2023.08.29.555364] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/12/2023]
Abstract
In pathologies such as cancer, aberrant Transforming Growth Factor-β (TGF-β) signaling exerts profound tumor intrinsic and extrinsic consequences. Intense clinical endeavors are underway to target this pivotal pathway. Central to the success of these interventions is pinpointing factors that decisively modulate the TGF-β responses. Betaglycan/type III TGF-β receptor (TβRIII), is an established co-receptor for the TGF-β superfamily known to bind directly to TGF-βs 1-3 and inhibin A/B. While betaglycan can be membrane-bound, it can also undergo ectodomain cleavage to produce soluble-betaglycan that can sequester its ligands. The extracellular domain of betaglycan undergoes heparan sulfate and chondroitin sulfate glycosaminoglycan modifications, transforming betaglycan into a proteoglycan. Here we report the unexpected discovery that the heparan sulfate modifications are critical for the ectodomain shedding of betaglycan. In the absence of such modifications, betaglycan is not shed. Such shedding is indispensable for the ability of betaglycan to suppress TGF-β signaling and the cells' responses to exogenous TGF-β ligands. Using unbiased transcriptomics, we identified TIMP3 as a key regulator of betaglycan shedding and thereby TGF-β signaling. Our results bear significant clinical relevance as modified betaglycan is present in the ascites of patients with ovarian cancer and can serve as a marker for predicting patient outcomes and TGF-β signaling responses. These studies are the first to demonstrate a unique reliance on the glycosaminoglycan modifications of betaglycan for shedding and influence on TGF-β signaling responses. Dysregulated shedding of TGF-β receptors plays a vital role in determining the response and availability of TGF-βs', which is crucial for prognostic predictions and understanding of TGF-β signaling dynamics.
Collapse
|
24
|
Buchanan J, da Costa NM, Cheadle L. Emerging roles of oligodendrocyte precursor cells in neural circuit development and remodeling. Trends Neurosci 2023; 46:628-639. [PMID: 37286422 PMCID: PMC10524797 DOI: 10.1016/j.tins.2023.05.007] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2023] [Revised: 04/26/2023] [Accepted: 05/17/2023] [Indexed: 06/09/2023]
Abstract
Oligodendrocyte precursor cells (OPCs) are non-neuronal brain cells that give rise to oligodendrocytes, glia that myelinate the axons of neurons in the brain. Classically known for their contributions to myelination via oligodendrogenesis, OPCs are increasingly appreciated to play diverse roles in the nervous system, ranging from blood vessel formation to antigen presentation. Here, we review emerging literature suggesting that OPCs may be essential for the establishment and remodeling of neural circuits in the developing and adult brain via mechanisms that are distinct from the production of oligodendrocytes. We discuss the specialized features of OPCs that position these cells to integrate activity-dependent and molecular cues to shape brain wiring. Finally, we place OPCs within the context of a growing field focused on understanding the importance of communication between neurons and glia in the contexts of both health and disease.
Collapse
Affiliation(s)
- JoAnn Buchanan
- Allen Institute for Brain Science, Seattle, WA 98109, USA
| | | | - Lucas Cheadle
- Cold Spring Harbor Laboratory, Cold Spring Harbor, NY 11724, USA.
| |
Collapse
|
25
|
KATO KANA, NISHIMURA HINATA, SUZUKI YUJI, TANAKA TAKAHASHI, ABE RYUSEI, KEREVER AURELIEN, ARIKAWA-HIRASAWA ERI. Oligodendrocyte Cell Line OLP6 Successfully Differentiates on Decellularized Brain Tissue. JUNTENDO IJI ZASSHI = JUNTENDO MEDICAL JOURNAL 2023; 69:300-306. [PMID: 38846634 PMCID: PMC10984364 DOI: 10.14789/jmj.jmj23-0007-oa] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/14/2023] [Accepted: 05/08/2023] [Indexed: 06/09/2024]
Abstract
Objectives The mechanisms of mental and neurological diseases have been proposed to be related not only to disorders of the neurons but also to the environment surrounding neurons, such as glial cells and the extracellular matrix (ECM). The chondroitin sulfate (CS) chain, which comprises CS proteoglycans (CSPGs), is one of the major sulfated glycosaminoglycans in the brain. CSPGs play an important role in the development, aging, and pathological conditions of the central nervous system. In particular, CSPGs play critical roles in oligodendrocyte differentiation and cell activity. Conventional two-dimensional culture in a glass chamber hardly replicates the complexity of the ECM structure or mimics in vivo conditions. Therefore, to solve this issue, this study aimed to use a culture system with decellularized tissue as a scaffold of organized ECM, thereby enabling the observation of cell differentiation and interactions between cells and the surrounding ECM. Materials and Methods We investigated the differentiation potential of the OLP6 cell line using decellularized brain tissue as the substrate. Results We observed that OLP6 differentiated faster on decellularized brain tissues than on conventional 2D-coated surfaces. The relative mRNA expression levels of CNP, PNP, and MBP as well as CSPGs were increased under 3D culture conditions. Conclusions Our study provides the first evidence of the advantages of cell culture on decellularized tissues for the investigation of oligodendrocyte differentiation and cell/ECM interactions.
Collapse
Affiliation(s)
| | | | | | | | | | | | - ERI ARIKAWA-HIRASAWA
- Corresponding author: Eri Arikawa-Hirasawa, Research Institute for Diseases of Old Age and Department of Neurology, Juntendo University Graduate School of Medicine, 2-1-1 Hongo, Bunkyo-ku, Tokyo 113-8421, Japan, TEL: +81-3-3813-3111 E-mail:
| |
Collapse
|
26
|
Bagheri Varzaneh M, Zhao Y, Rozynek J, Han M, Reed DA. Disrupting mechanical homeostasis promotes matrix metalloproteinase-13 mediated processing of neuron glial antigen 2 in mandibular condylar cartilage. Eur Cell Mater 2023; 45:113-130. [PMID: 37154195 PMCID: PMC10405277 DOI: 10.22203/ecm.v045a08] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 05/10/2023] Open
Abstract
Post-traumatic osteoarthritis in the temporomandibular joint (TMJ OA) is associated dysfunctional cellmatrix mediated signalling resulting from changes in the pericellular microenvironment after injury. Matrix metalloproteinase (MMP)-13 is a critical enzyme in biomineralisation and the progression of OA that can both degrade the extracellular matrix and modify extracellular receptors. This study focused on MMP-13 mediated changes in a transmembrane proteoglycan, Neuron Glial antigen 2 (NG2/CSPG4). NG2/CSPG4 is a receptor for type VI collagen and a known substrate for MMP-13. In healthy articular layer chondrocytes, NG2/CSPG4 is membrane bound but becomes internalised during TMJ OA. The objective of this study was to determine if MMP-13 contributed to the cleavage and internalisation of NG2/CSPG4 during mechanical loading and OA progression. Using preclinical and clinical samples, it was shown that MMP-13 was present in a spatiotemporally consistent pattern with NG2/CSPG4 internalisation during TMJ OA. In vitro, it was illustrated that inhibiting MMP-13 prevented retention of the NG2/CSPG4 ectodomain in the extracellular matrix. Inhibiting MMP-13 promoted the accumulation of membrane-associated NG2/CSPG4 but did not affect the formation of mechanical-loading dependent variant specific fragments of the ectodomain. MMP- 13 mediated cleavage of NG2/CSPG4 is necessary to initiate clathrin-mediated internalisation of the NG2/ CSPG4 intracellular domain following mechanical loading. This mechanically sensitive MMP-13-NG2/CSPG4 axis affected the expression of key mineralisation and OA genes including bone morphogenetic protein 2, and parathyroid hormone-related protein. Together, these findings implicated MMP-13 mediated cleavage of NG2/CSPG4 in the mechanical homeostasis of mandibular condylar cartilage during the progression of degenerative arthropathies such as OA.
Collapse
Affiliation(s)
| | | | | | | | - D A Reed
- 801 South Paulina Street, Room 431, Chicago, IL 60612,
| |
Collapse
|
27
|
Nigro P, Vamvini M, Yang J, Caputo T, Ho LL, Carbone NP, Papadopoulos D, Conlin R, He J, Hirshman MF, White JD, Robidoux J, Hickner RC, Nielsen S, Pedersen BK, Kellis M, Middelbeek RJW, Goodyear LJ. Exercise training remodels inguinal white adipose tissue through adaptations in innervation, vascularization, and the extracellular matrix. Cell Rep 2023; 42:112392. [PMID: 37058410 PMCID: PMC10374102 DOI: 10.1016/j.celrep.2023.112392] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2022] [Revised: 02/13/2023] [Accepted: 03/30/2023] [Indexed: 04/15/2023] Open
Abstract
Inguinal white adipose tissue (iWAT) is essential for the beneficial effects of exercise training on metabolic health. The underlying mechanisms for these effects are not fully understood, and here, we test the hypothesis that exercise training results in a more favorable iWAT structural phenotype. Using biochemical, imaging, and multi-omics analyses, we find that 11 days of wheel running in male mice causes profound iWAT remodeling including decreased extracellular matrix (ECM) deposition and increased vascularization and innervation. We identify adipose stem cells as one of the main contributors to training-induced ECM remodeling, show that the PRDM16 transcriptional complex is necessary for iWAT remodeling and beiging, and discover neuronal growth regulator 1 (NEGR1) as a link between PRDM16 and neuritogenesis. Moreover, we find that training causes a shift from hypertrophic to insulin-sensitive adipocyte subpopulations. Exercise training leads to remarkable adaptations to iWAT structure and cell-type composition that can confer beneficial changes in tissue metabolism.
Collapse
Affiliation(s)
- Pasquale Nigro
- Section on Integrative Physiology and Metabolism, Joslin Diabetes Center, Harvard Medical School, Boston, MA, USA
| | - Maria Vamvini
- Section on Integrative Physiology and Metabolism, Joslin Diabetes Center, Harvard Medical School, Boston, MA, USA; Division of Endocrinology, Diabetes and Metabolism, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA
| | - Jiekun Yang
- Computational Science and Artificial Intelligence Laboratory, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Tiziana Caputo
- Section on Integrative Physiology and Metabolism, Joslin Diabetes Center, Harvard Medical School, Boston, MA, USA; Computational Science and Artificial Intelligence Laboratory, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Li-Lun Ho
- Computational Science and Artificial Intelligence Laboratory, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Nicholas P Carbone
- Section on Integrative Physiology and Metabolism, Joslin Diabetes Center, Harvard Medical School, Boston, MA, USA
| | - Danae Papadopoulos
- Computational Science and Artificial Intelligence Laboratory, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Royce Conlin
- Section on Integrative Physiology and Metabolism, Joslin Diabetes Center, Harvard Medical School, Boston, MA, USA
| | - Jie He
- Section on Integrative Physiology and Metabolism, Joslin Diabetes Center, Harvard Medical School, Boston, MA, USA
| | - Michael F Hirshman
- Section on Integrative Physiology and Metabolism, Joslin Diabetes Center, Harvard Medical School, Boston, MA, USA
| | - Joseph D White
- Department of Pharmacology and Toxicology, East Carolina University, Greenville, NC, USA
| | - Jacques Robidoux
- Department of Pharmacology and Toxicology, East Carolina University, Greenville, NC, USA
| | - Robert C Hickner
- Department of Pharmacology and Toxicology, East Carolina University, Greenville, NC, USA; Department of Nutrition and Integrative Physiology, Florida State University, Tallahassee, FL, USA
| | - Søren Nielsen
- The Centre of Inflammation and Metabolism and the Centre for Physical Activity Research, Rigshospitalet, University of Copenhagen, Copenhagen, Denmark
| | - Bente K Pedersen
- The Centre of Inflammation and Metabolism and the Centre for Physical Activity Research, Rigshospitalet, University of Copenhagen, Copenhagen, Denmark
| | - Manolis Kellis
- Computational Science and Artificial Intelligence Laboratory, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Roeland J W Middelbeek
- Section on Integrative Physiology and Metabolism, Joslin Diabetes Center, Harvard Medical School, Boston, MA, USA; Division of Endocrinology, Diabetes and Metabolism, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA
| | - Laurie J Goodyear
- Section on Integrative Physiology and Metabolism, Joslin Diabetes Center, Harvard Medical School, Boston, MA, USA.
| |
Collapse
|
28
|
Petrosyan HA, Alessi V, Lasek K, Gumudavelli S, Muffaletto R, Liang L, Collins WF, Levine J, Arvanian VL. AAV Vector Mediated Delivery of NG2 Function Neutralizing Antibody and Neurotrophin NT-3 Improves Synaptic Transmission, Locomotion, and Urinary Tract Function after Spinal Cord Contusion Injury in Adult Rats. J Neurosci 2023; 43:1492-1508. [PMID: 36653191 PMCID: PMC10008066 DOI: 10.1523/jneurosci.1276-22.2023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2022] [Revised: 01/06/2023] [Accepted: 01/10/2023] [Indexed: 01/20/2023] Open
Abstract
NG2 is a structurally unique transmembrane chondroitin sulfate proteoglycan (CSPG). Its role in damaged spinal cord is dual. NG2 is considered one of key inhibitory factors restricting axonal growth following spinal injury. Additionally, we have recently detected its novel function as a blocker of axonal conduction. Some studies, however, indicate the importance of NG2 presence in the formation of synaptic contacts. We hypothesized that the optimal treatment would be neutralization of inhibitory functions of NG2 without its physical removal. Acute intraspinal injections of anti-NG2 monoclonal antibodies reportedly prevented an acute block of axonal conduction by exogenous NG2. For prolonged delivery of NG2 function neutralizing antibody, we have developed a novel gene therapy: adeno-associated vector (AAV) construct expressing recombinant single-chain variable fragment anti-NG2 antibody (AAV-NG2Ab). We examined effects of AAV-NG2Ab alone or in combination with neurotrophin NT-3 in adult female rats with thoracic T10 contusion injuries. A battery of behavioral tests was used to evaluate locomotor function. In vivo single-cell electrophysiology was used to evaluate synaptic transmission. Lower urinary tract function was assessed during the survival period using metabolic chambers. Terminal cystometry, with acquisition of external urethral sphincter activity and bladder pressure, was used to evaluate bladder function. Both the AAV-NG2Ab and AAV-NG2Ab combined with AAV-NT3 treatment groups demonstrated significant improvements in transmission, locomotion, and bladder function compared with the control (AAV-GFP) group. These functional improvements associated with improved remyelination and plasticity of 5-HT fibers. The best results were observed in the group that received combinational AAV-NG2Ab+AAV-NT3 treatment.SIGNIFICANCE STATEMENT We recently demonstrated beneficial, but transient, effects of neutralization of the NG2 proteoglycan using monoclonal antibodies delivered intrathecally via osmotic mini-pumps after spinal cord injury. Currently, we have developed a novel gene therapy tool for prolonged and clinically relevant delivery of a recombinant single-chain variable fragment anti-NG2 antibody: AAV-rh10 serotype expressing scFv-NG2 (AAV-NG2Ab). Here, we examined effects of AAV-NG2Ab combined with transgene delivery of Neurotrophin-3 (AAV-NT3) in adult rats with thoracic contusion injuries. The AAV-NG2Ab and AAV-NG2Ab+AAV-NT3 treatment groups demonstrated significant improvements of locomotor function and lower urinary tract function. Beneficial effects of this novel gene therapy on locomotion and bladder function associated with improved transmission to motoneurons and plasticity of axons in damaged spinal cord.
Collapse
Affiliation(s)
- Hayk A Petrosyan
- Northport Veterans Affairs Medical Center, Northport, New York 11768
- Department of Neurobiology and Behavior, Stony Brook University, Stony Brook, New York 11794
| | - Valentina Alessi
- Northport Veterans Affairs Medical Center, Northport, New York 11768
- Department of Neurobiology and Behavior, Stony Brook University, Stony Brook, New York 11794
| | - Kristin Lasek
- Northport Veterans Affairs Medical Center, Northport, New York 11768
- Department of Neurobiology and Behavior, Stony Brook University, Stony Brook, New York 11794
| | - Sricharan Gumudavelli
- Department of Neurobiology and Behavior, Stony Brook University, Stony Brook, New York 11794
| | - Robert Muffaletto
- Department of Neurobiology and Behavior, Stony Brook University, Stony Brook, New York 11794
| | - Li Liang
- Northport Veterans Affairs Medical Center, Northport, New York 11768
| | - William F Collins
- Department of Neurobiology and Behavior, Stony Brook University, Stony Brook, New York 11794
| | - Joel Levine
- Department of Neurobiology and Behavior, Stony Brook University, Stony Brook, New York 11794
| | - Victor L Arvanian
- Northport Veterans Affairs Medical Center, Northport, New York 11768
- Department of Neurobiology and Behavior, Stony Brook University, Stony Brook, New York 11794
| |
Collapse
|
29
|
Osorio MJ, Mariani JN, Zou L, Schanz SJ, Heffernan K, Cornwell A, Goldman SA. Glial progenitor cells of the adult human white and grey matter are contextually distinct. Glia 2023; 71:524-540. [PMID: 36334067 PMCID: PMC10100527 DOI: 10.1002/glia.24291] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2021] [Revised: 09/19/2022] [Accepted: 10/18/2022] [Indexed: 11/07/2022]
Abstract
Genomic analyses have revealed heterogeneity among glial progenitor cells (GPCs), but the compartment selectivity of human GPCs (hGPCs) is unclear. Here, we asked if GPCs of human grey and white brain matter are distinct in their architecture and associated gene expression. RNA profiling of NG2-defined hGPCs derived from adult human neocortex and white matter differed in their expression of genes involved in Wnt, NOTCH, BMP and TGFβ signaling, suggesting compartment-selective biases in fate and self-renewal. White matter hGPCs over-expressed the BMP antagonists BAMBI and CHRDL1, suggesting their tonic suppression of astrocytic fate relative to cortical hGPCs, whose relative enrichment of cytoskeletal genes presaged their greater morphological complexity. In human glial chimeric mice, cortical hGPCs assumed larger and more complex morphologies than white matter hGPCs, and both were more complex than their mouse counterparts. These findings suggest that human grey and white matter GPCs comprise context-specific pools with distinct functional biases.
Collapse
Affiliation(s)
- Maria Joana Osorio
- Center for Translational Neuromedicine, University of Rochester Medical Center, Rochester, New York, USA.,Center for Translational Neuromedicine, University of Copenhagen, Copenhagen, Denmark
| | - John N Mariani
- Center for Translational Neuromedicine, University of Rochester Medical Center, Rochester, New York, USA
| | - Lisa Zou
- Center for Translational Neuromedicine, University of Rochester Medical Center, Rochester, New York, USA
| | - Steven J Schanz
- Center for Translational Neuromedicine, University of Rochester Medical Center, Rochester, New York, USA
| | - Kate Heffernan
- Center for Translational Neuromedicine, University of Rochester Medical Center, Rochester, New York, USA
| | - Adam Cornwell
- Center for Translational Neuromedicine, University of Rochester Medical Center, Rochester, New York, USA
| | - Steven A Goldman
- Center for Translational Neuromedicine, University of Rochester Medical Center, Rochester, New York, USA.,Center for Translational Neuromedicine, University of Copenhagen, Copenhagen, Denmark
| |
Collapse
|
30
|
Timmermann A, Tascio D, Jabs R, Boehlen A, Domingos C, Skubal M, Huang W, Kirchhoff F, Henneberger C, Bilkei-Gorzo A, Seifert G, Steinhäuser C. Dysfunction of NG2 glial cells affects neuronal plasticity and behavior. Glia 2023; 71:1481-1501. [PMID: 36802096 DOI: 10.1002/glia.24352] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2022] [Revised: 01/18/2023] [Accepted: 01/19/2023] [Indexed: 02/20/2023]
Abstract
NG2 glia represents a distinct type of macroglial cells in the CNS and is unique among glia because they receive synaptic input from neurons. They are abundantly present in white and gray matter. While the majority of white matter NG2 glia differentiates into oligodendrocytes, the physiological impact of gray matter NG2 glia and their synaptic input are still ill defined. Here, we asked whether dysfunctional NG2 glia affect neuronal signaling and behavior. We generated mice with inducible deletion of the K+ channel Kir4.1 in NG2 glia and performed comparative electrophysiological, immunohistochemical, molecular and behavioral analyses. Kir4.1 was deleted at postnatal day 23-26 (recombination efficiency about 75%) and mice were investigated 3-8 weeks later. Notably, these mice with dysfunctional NG2 glia demonstrated improved spatial memory as revealed by testing new object location recognition while working and social memory remained unaffected. Focussing on the hippocampus, we found that loss of Kir4.1 potentiated synaptic depolarizations of NG2 glia and stimulated the expression of myelin basic protein while proliferation and differentiation of hippocampal NG2 glia remained largely unaffected. Mice with targeted deletion of the K+ channel in NG2 glia showed impaired long-term potentiation at CA3-CA1 synapses, which could be fully rescued by extracellular application of a TrkB receptor agonist. Our data demonstrate that proper NG2 glia function is important for normal brain function and behavior.
Collapse
Affiliation(s)
- Aline Timmermann
- Institute of Cellular Neurosciences, Medical Faculty, University of Bonn, Bonn, Germany
| | - Dario Tascio
- Institute of Cellular Neurosciences, Medical Faculty, University of Bonn, Bonn, Germany
| | - Ronald Jabs
- Institute of Cellular Neurosciences, Medical Faculty, University of Bonn, Bonn, Germany
| | - Anne Boehlen
- Institute of Cellular Neurosciences, Medical Faculty, University of Bonn, Bonn, Germany
| | - Catia Domingos
- Institute of Cellular Neurosciences, Medical Faculty, University of Bonn, Bonn, Germany
| | - Magdalena Skubal
- Institute of Cellular Neurosciences, Medical Faculty, University of Bonn, Bonn, Germany
| | - Wenhui Huang
- Molecular Physiology, Center for Integrative Physiology and Molecular Medicine (CIPMM), University of Saarland, Homburg, Germany
| | - Frank Kirchhoff
- Molecular Physiology, Center for Integrative Physiology and Molecular Medicine (CIPMM), University of Saarland, Homburg, Germany
| | - Christian Henneberger
- Institute of Cellular Neurosciences, Medical Faculty, University of Bonn, Bonn, Germany.,German Center for Neurodegenerative Diseases (DZNE), Bonn, Germany.,Institute of Neurology, University College London, London, UK
| | - Andras Bilkei-Gorzo
- Institute of Molecular Psychiatry, Medical Faculty, University of Bonn, Bonn, Germany
| | - Gerald Seifert
- Institute of Cellular Neurosciences, Medical Faculty, University of Bonn, Bonn, Germany
| | - Christian Steinhäuser
- Institute of Cellular Neurosciences, Medical Faculty, University of Bonn, Bonn, Germany
| |
Collapse
|
31
|
Rasia-Filho AA, Calcagnotto ME, von Bohlen Und Halbach O. Glial Cell Modulation of Dendritic Spine Structure and Synaptic Function. ADVANCES IN NEUROBIOLOGY 2023; 34:255-310. [PMID: 37962798 DOI: 10.1007/978-3-031-36159-3_6] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/15/2023]
Abstract
Glia comprise a heterogeneous group of cells involved in the structure and function of the central and peripheral nervous system. Glial cells are found from invertebrates to humans with morphological specializations related to the neural circuits in which they are embedded. Glial cells modulate neuronal functions, brain wiring and myelination, and information processing. For example, astrocytes send processes to the synaptic cleft, actively participate in the metabolism of neurotransmitters, and release gliotransmitters, whose multiple effects depend on the targeting cells. Human astrocytes are larger and more complex than their mice and rats counterparts. Astrocytes and microglia participate in the development and plasticity of neural circuits by modulating dendritic spines. Spines enhance neuronal connectivity, integrate most postsynaptic excitatory potentials, and balance the strength of each input. Not all central synapses are engulfed by astrocytic processes. When that relationship occurs, a different pattern for thin and large spines reflects an activity-dependent remodeling of motile astrocytic processes around presynaptic and postsynaptic elements. Microglia are equally relevant for synaptic processing, and both glial cells modulate the switch of neuroendocrine secretion and behavioral display needed for reproduction. In this chapter, we provide an overview of the structure, function, and plasticity of glial cells and relate them to synaptic maturation and modulation, also involving neurotrophic factors. Together, neurons and glia coordinate synaptic transmission in both normal and abnormal conditions. Neglected over decades, this exciting research field can unravel the complexity of species-specific neural cytoarchitecture as well as the dynamic region-specific functional interactions between diverse neurons and glial subtypes.
Collapse
Affiliation(s)
- Alberto A Rasia-Filho
- Department of Basic Sciences/Physiology and Graduate Program in Biosciences, Universidade Federal de Ciências da Saúde de Porto Alegre, Porto Alegre, RS, Brazil
- Graduate Program in Neuroscience, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brazil
| | - Maria Elisa Calcagnotto
- Graduate Program in Neuroscience, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brazil
- Department of Biochemistry, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brazil
- Graduate Program in Biochemistry, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brazil
- Graduate Program in Psychiatry and Behavioral Science, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brazil
| | | |
Collapse
|
32
|
Oligodendroglia are emerging players in several forms of learning and memory. Commun Biol 2022; 5:1148. [PMID: 36309567 PMCID: PMC9617857 DOI: 10.1038/s42003-022-04116-y] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2022] [Accepted: 10/14/2022] [Indexed: 11/15/2022] Open
Abstract
Synaptic plasticity is the fundamental cellular mechanism of learning and memory, but recent research reveals that myelin-forming glia, oligodendrocytes (OL), are also involved. They contribute in ways that synaptic plasticity cannot, and the findings have not been integrated into the established conceptual framework used in the field of learning and memory. OLs and their progenitors are involved in long-term memory, memory consolidation, working memory, and recall in associative learning. They also contribute to short-term memory and non-associative learning by affecting synaptic transmission, intrinsic excitability of axons, and neural oscillations. Oligodendroglial involvement expands the field beyond synaptic plasticity to system-wide network function, where precise spike time arrival and neural oscillations are critical in information processing, storage, and retrieval. A Perspective highlights current evidence that supports oligodendrocytes and their progenitors’ involvement in cognition and proposes that our understanding of learning and memory can be expanded beyond the classic view of synaptic plasticity to a system-wide network function.
Collapse
|
33
|
Busch L, Eggert S, Endres K, Bufe B. The Hidden Role of Non-Canonical Amyloid β Isoforms in Alzheimer's Disease. Cells 2022; 11:3421. [PMID: 36359817 PMCID: PMC9654995 DOI: 10.3390/cells11213421] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2022] [Revised: 10/18/2022] [Accepted: 10/20/2022] [Indexed: 09/08/2024] Open
Abstract
Recent advances have placed the pro-inflammatory activity of amyloid β (Aβ) on microglia cells as the focus of research on Alzheimer's Disease (AD). Researchers are confronted with an astonishing spectrum of over 100 different Aβ variants with variable length and chemical modifications. With the exception of Aβ1-42 and Aβ1-40, the biological significance of most peptides for AD is as yet insufficiently understood. We therefore aim to provide a comprehensive overview of the contributions of these neglected Aβ variants to microglia activation. First, the impact of Aβ receptors, signaling cascades, scavenger mechanisms, and genetic variations on the physiological responses towards various Aβ species is described. Furthermore, we discuss the importance of different types of amyloid precursor protein processing for the generation of these Aβ variants in microglia, astrocytes, oligodendrocytes, and neurons, and highlight how alterations in secondary structures and oligomerization affect Aβ neurotoxicity. In sum, the data indicate that gene polymorphisms in Aβ-driven signaling pathways in combination with the production and activity of different Aβ variants might be crucial factors for the initiation and progression of different forms of AD. A deeper assessment of their interplay with glial cells may pave the way towards novel therapeutic strategies for individualized medicine.
Collapse
Affiliation(s)
- Lukas Busch
- Department of Informatics and Microsystems Technology, University of Applied Sciences Kaiserslautern, D-66482 Zweibruecken, Germany
| | - Simone Eggert
- Department of Neurogenetics, Max Planck Institute for Multidisciplinary Sciences, D-37075 Goettingen, Germany
| | - Kristina Endres
- Department of Psychiatry and Psychotherapy, University Medical Centre of the Johannes Gutenberg University, D-55131 Mainz, Germany
| | - Bernd Bufe
- Department of Informatics and Microsystems Technology, University of Applied Sciences Kaiserslautern, D-66482 Zweibruecken, Germany
| |
Collapse
|
34
|
Manterola A, Chara JC, Aguado T, Palazuelos J, Matute C, Mato S. Cannabinoid CB1 receptor expression in oligodendrocyte progenitors of the hippocampus revealed by the NG2-EYFP-knockin mouse. Front Neuroanat 2022; 16:1030060. [DOI: 10.3389/fnana.2022.1030060] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2022] [Accepted: 09/29/2022] [Indexed: 11/13/2022] Open
Abstract
Adult oligodendrocyte progenitor cells (OPCs) give rise to myelinating oligodendrocytes through life and play crucial roles in brain homeostasis and plasticity during health and disease. Cannabinoid compounds acting through CB1 receptors promote the proliferation and differentiation of OPCs in vitro and facilitate developmental myelination and myelin repair in vivo. However, CB1 receptor expression in adult OPCs in situ has not been corroborated by anatomical studies and the contribution of this receptor population to the (re)myelination effects of cannabinoids remains a matter of debate. Using electron microscopy methods applied to NG2-EYFP reporter mice we assessed the localization of CB1 receptors in OPCs of the adult mouse hippocampus. To control for the specificity of CB1 receptor immunostaining we generated transgenic mice bearing EYFP expression in NG2 glia and wild-type (NG2-EYFP-CB1+/+) and knockout (NG2-EYFP-CB1–/–) for CB1 receptors. Double immunogold and immunoperoxidase labeling for CB1 and EYFP, respectively, revealed that CB1 receptors are present in a low proportion of NG2 positive profiles within hippocampal stratum radiatum of NG2-EYFP-CB1+/+ mice. Quantitative analysis of immunogold particles in synaptic structures and NG2 profiles showed that CB1 receptors are expressed at lower density in adult OPCs than in glutamatergic cells of the rodent hippocampus. These results highlight the presence of CB1 receptors in adult OPCs thus providing an anatomical substrate for the remyelination promoting effects of cannabinoids and open a novel perspective on the roles of the endocannabinoid system in brain physiology through the modulation of NG2 glia.
Collapse
|
35
|
Mead TJ, Bhutada S, Martin DR, Apte SS. Proteolysis: a key post-translational modification regulating proteoglycans. Am J Physiol Cell Physiol 2022; 323:C651-C665. [PMID: 35785985 PMCID: PMC9448339 DOI: 10.1152/ajpcell.00215.2022] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2022] [Revised: 06/28/2022] [Accepted: 06/28/2022] [Indexed: 11/22/2022]
Abstract
Proteoglycans are composite molecules comprising a protein backbone, i.e., the core protein, with covalently attached glycosaminoglycan chains of distinct chemical types. Most proteoglycans are secreted or attached to the cell membrane. Their specialized structures, binding properties, and biophysical attributes underlie diverse biological roles, which include modulation of tissue mechanics, cell adhesion, and the sequestration and regulated release of morphogens, growth factors, and cytokines. As an irreversible post-translational modification, proteolysis has a profound impact on proteoglycan function, abundance, and localization. Proteolysis is required for molecular maturation of some proteoglycans, clearance of extracellular matrix proteoglycans during tissue remodeling, generation of bioactive fragments from proteoglycans, and ectodomain shedding of cell-surface proteoglycans. Genetic evidence shows that proteoglycan core protein proteolysis is essential for diverse morphogenetic events during embryonic development. In contrast, dysregulated proteoglycan proteolysis contributes to osteoarthritis, cardiovascular disorders, cancer, and inflammation. Proteolytic fragments of perlecan, versican, aggrecan, brevican, collagen XVIII, and other proteoglycans are associated with independent biological activities as so-called matrikines. Yet, proteoglycan proteolysis has been investigated to only a limited extent to date. Here, we review the actions of proteases on proteoglycans and illustrate their functional impact with several examples. We discuss the applications and limitations of strategies used to define cleavage sites in proteoglycans and explain how proteoglycanome-wide proteolytic mapping, which is desirable to fully understand the impact of proteolysis on proteoglycans, can be facilitated by integrating classical proteoglycan isolation methods with mass spectrometry-based proteomics.
Collapse
Affiliation(s)
- Timothy J Mead
- Department of Biomedical Engineering, Cleveland Clinic Lerner Research Institute, Cleveland, Ohio
| | - Sumit Bhutada
- Department of Biomedical Engineering, Cleveland Clinic Lerner Research Institute, Cleveland, Ohio
| | - Daniel R Martin
- Department of Biomedical Engineering, Cleveland Clinic Lerner Research Institute, Cleveland, Ohio
| | - Suneel S Apte
- Department of Biomedical Engineering, Cleveland Clinic Lerner Research Institute, Cleveland, Ohio
| |
Collapse
|
36
|
Neuroimmune Mechanisms Underlying Neuropathic Pain: The Potential Role of TNF-α-Necroptosis Pathway. Int J Mol Sci 2022; 23:ijms23137191. [PMID: 35806192 PMCID: PMC9266916 DOI: 10.3390/ijms23137191] [Citation(s) in RCA: 36] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2022] [Revised: 06/24/2022] [Accepted: 06/27/2022] [Indexed: 02/05/2023] Open
Abstract
The neuroimmune mechanism underlying neuropathic pain has been extensively studied. Tumor necrosis factor-alpha (TNF-α), a key pro-inflammatory cytokine that drives cytokine storm and stimulates a cascade of other cytokines in pain-related pathways, induces and modulates neuropathic pain by facilitating peripheral (primary afferents) and central (spinal cord) sensitization. Functionally, TNF-α controls the balance between cell survival and death by inducing an inflammatory response and two programmed cell death mechanisms (apoptosis and necroptosis). Necroptosis, a novel form of programmed cell death, is receiving increasing attraction and may trigger neuroinflammation to promote neuropathic pain. Chronic pain is often accompanied by adverse pain-associated emotional reactions and cognitive disorders. Overproduction of TNF-α in supraspinal structures such as the anterior cingulate cortex (ACC) and hippocampus plays an important role in pain-associated emotional disorders and memory deficits and also participates in the modulation of pain transduction. At present, studies reporting on the role of the TNF-α–necroptosis pathway in pain-related disorders are lacking. This review indicates the important research prospects of this pathway in pain modulation based on its role in anxiety, depression and memory deficits associated with other neurodegenerative diseases. In addition, we have summarized studies related to the underlying mechanisms of neuropathic pain mediated by TNF-α and discussed the role of the TNF-α–necroptosis pathway in detail, which may represent an avenue for future therapeutic intervention.
Collapse
|
37
|
Li Y, Su P, Chen Y, Nie J, Yuan TF, Wong AH, Liu F. The Eph receptor A4 plays a role in demyelination and depression-related behavior. J Clin Invest 2022; 132:e152187. [PMID: 35271507 PMCID: PMC9012277 DOI: 10.1172/jci152187] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2021] [Accepted: 03/08/2022] [Indexed: 11/22/2022] Open
Abstract
Proper myelination of axons is crucial for normal sensory, motor, and cognitive function. Abnormal myelination is seen in brain disorders such as major depressive disorder (MDD), but the molecular mechanisms connecting demyelination with the pathobiology remain largely unknown. We observed demyelination and synaptic deficits in mice exposed to either chronic, unpredictable mild stress (CUMS) or LPS, 2 paradigms for inducing depression-like states. Pharmacological restoration of myelination normalized both synaptic deficits and depression-related behaviors. Furthermore, we found increased ephrin A4 receptor (EphA4) expression in the excitatory neurons of mice subjected to CUMS, and shRNA knockdown of EphA4 prevented demyelination and depression-like behaviors. These animal data are consistent with the decrease in myelin basic protein and the increase in EphA4 levels we observed in postmortem brain samples from patients with MDD. Our results provide insights into the etiology of depressive symptoms in some patients and suggest that inhibition of EphA4 or the promotion of myelination could be a promising strategy for treating depression.
Collapse
Affiliation(s)
- Yuan Li
- Shanghai Mental Health Center, Shanghai Jiaotong University, School of Medicine, Shanghai, China
| | - Ping Su
- Campbell Family Mental Health Research Institute, Centre for Addiction and Mental Health
| | - Yuxiang Chen
- Shanghai Mental Health Center, Shanghai Jiaotong University, School of Medicine, Shanghai, China
| | - Jing Nie
- Shanghai Mental Health Center, Shanghai Jiaotong University, School of Medicine, Shanghai, China
| | - Ti-Fei Yuan
- Shanghai Mental Health Center, Shanghai Jiaotong University, School of Medicine, Shanghai, China
| | - Albert H.C. Wong
- Campbell Family Mental Health Research Institute, Centre for Addiction and Mental Health
- Departments of Psychiatry
- Institutes of Medical Science
- Pharmacology and Toxicology, and
| | - Fang Liu
- Shanghai Mental Health Center, Shanghai Jiaotong University, School of Medicine, Shanghai, China
- Campbell Family Mental Health Research Institute, Centre for Addiction and Mental Health
- Departments of Psychiatry
- Institutes of Medical Science
- Physiology at the University of Toronto, Toronto, Ontario, Canada
| |
Collapse
|
38
|
Lee RX, Tang FR. Radiation-induced neuropathological changes in the oligodendrocyte lineage with relevant clinical manifestations and therapeutic strategies. Int J Radiat Biol 2022; 98:1519-1531. [PMID: 35311621 DOI: 10.1080/09553002.2022.2055804] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
PURPOSE With technological advancements in radiation therapy for tumors of the central nervous system (CNS), high doses of ionizing radiation can be delivered to the tumors with improved accuracy. Despite the reduction of ionizing radiation-induced toxicity to surrounding tissues of the CNS, a wide array of side effects still occurs, particularly late-delayed changes. These alterations, such as white matter damages and neurocognitive impairments, are often debilitative and untreatable, significantly affecting the quality of life of these patients, especially children. Oligodendrocytes, a major class of glial cells, have been identified to be one of the targets of radiation toxicity and are recognized be involved in late-delayed radiation-induced neuropathological changes. These cells are responsible for forming the myelin sheaths that surround and insulate axons within the CNS. Here, the effects of ionizing radiation on the oligodendrocyte lineage as well as the common clinical manifestations resulting from radiation-induced damage to oligodendrocytes will be discussed. Potential prophylactic and therapeutic strategies against radiation-induced oligodendrocyte damage will also be considered. CONCLUSION Oligodendrocytes and oligodendrocyte progenitor cells (OPCs) are radiosensitive cells of the CNS. Here, general responses of these cells to radiation exposure have been outlined. However, several findings have not been consistent across various studies. For instance, cognitive decline in irradiated animals was observed to be accompanied by obvious demyelination or white matter changes in several studies but not in others. Hence, further studies have to be conducted to elucidate the level of contribution of the oligodendrocyte lineage to the development of late-delayed effects of radiation exposure, as well as to classify the dose and brain region-specific responses of the oligodendrocyte lineage to radiation. Several potential therapeutic approaches against late-delayed changes have been discussed, such as the transplantation of OPCs into irradiated regions and implementation of exercise. Many of these approaches show promising results. Further elucidation of the mechanisms involved in radiation-induced death of oligodendrocytes and OPCs would certainly aid in the development of novel protective and therapeutic strategies against the late-delayed effects of radiation.
Collapse
Affiliation(s)
- Rui Xue Lee
- Radiation Physiology Laboratory, Singapore Nuclear Research and Safety Initiative, National University of Singapore, Singapore, Singapore
| | - Feng Ru Tang
- Radiation Physiology Laboratory, Singapore Nuclear Research and Safety Initiative, National University of Singapore, Singapore, Singapore
| |
Collapse
|
39
|
Chelyshev YA, Kabdesh IM, Mukhamedshina YO. Extracellular Matrix in Neural Plasticity and Regeneration. Cell Mol Neurobiol 2022; 42:647-664. [PMID: 33128689 PMCID: PMC11441266 DOI: 10.1007/s10571-020-00986-0] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2020] [Accepted: 10/22/2020] [Indexed: 12/19/2022]
Abstract
The extracellular matrix (ECM) is a fundamental component of biological tissues. The ECM in the central nervous system (CNS) is unique in both composition and function. Functions such as learning, memory, synaptogenesis, and plasticity are regulated by numerous ECM molecules. The neural ECM acts as a non-specific physical barrier that modulates neuronal plasticity and axon regeneration. There are two specialized types of ECM in the CNS, diffuse perisynaptic ECM and condensed ECM, which selectively surround the perikaryon and initial part of dendritic trees in subtypes of neurons, forming perineuronal nets. This review presents the current knowledge about the role of important neuronal ECM molecules in maintaining the basic functions of a neuron, including electrogenesis and the ability to form neural circuits. The review mainly focuses on the role of ECM components that participate in the control of key events such as cell survival, axonal growth, and synaptic remodeling. Particular attention is drawn to the numerous molecular partners of the main ECM components. These regulatory molecules are integrated into the cell membrane or disposed into the matrix itself in solid or soluble form. The interaction of the main matrix components with molecular partners seems essential in molecular mechanisms controlling neuronal functions. Special attention is paid to the chondroitin sulfate proteoglycan 4, type 1 transmembrane protein, neural-glial antigen 2 (NG2/CSPG4), whose cleaved extracellular domain is such a molecular partner that it not only acts directly on neural and vascular cells, but also exerts its influence indirectly by binding to resident ECM molecules.
Collapse
Affiliation(s)
- Yurii A Chelyshev
- Department of Histology, Cytology and Embryology, Kazan State Medical University, Kazan, Russia
| | - Ilyas M Kabdesh
- OpenLab Gene and Cell Technologies, Institute of Fundamental Medicine and Biology, Kazan (Volga Region) Federal University, Kremlevskaya St 18, Kazan, Tatarstan, Russia, 420008
| | - Yana O Mukhamedshina
- Department of Histology, Cytology and Embryology, Kazan State Medical University, Kazan, Russia.
- OpenLab Gene and Cell Technologies, Institute of Fundamental Medicine and Biology, Kazan (Volga Region) Federal University, Kremlevskaya St 18, Kazan, Tatarstan, Russia, 420008.
| |
Collapse
|
40
|
Xiao Y, Petrucco L, Hoodless LJ, Portugues R, Czopka T. Oligodendrocyte precursor cells sculpt the visual system by regulating axonal remodeling. Nat Neurosci 2022; 25:280-284. [PMID: 35241802 PMCID: PMC8904260 DOI: 10.1038/s41593-022-01023-7] [Citation(s) in RCA: 37] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2021] [Accepted: 01/25/2022] [Indexed: 12/29/2022]
Abstract
Many oligodendrocyte precursor cells (OPCs) do not differentiate to form myelin, suggesting additional roles of this cell population. The zebrafish optic tectum contains OPCs in regions devoid of myelin. Elimination of these OPCs impaired precise control of retinal ganglion cell axon arbor size during formation and maturation of retinotectal connectivity and degraded functional processing of visual stimuli. Therefore, OPCs fine-tune neural circuits independently of their canonical role to make myelin.
Collapse
Affiliation(s)
- Yan Xiao
- Institute of Neuronal Cell Biology, Technical University of Munich, Munich, Germany
| | - Luigi Petrucco
- Max Planck Institute of Neurobiology, Sensorimotor Control Research Group, Martinsried, Germany
- Institute of Neuroscience, Technical University of Munich, Munich, Germany
| | - Laura J Hoodless
- Centre for Clinical Brain Sciences, University of Edinburgh, Edinburgh, UK
| | - Ruben Portugues
- Max Planck Institute of Neurobiology, Sensorimotor Control Research Group, Martinsried, Germany
- Institute of Neuroscience, Technical University of Munich, Munich, Germany
- Munich Cluster for Systems Neurology (SyNergy), Munich, Germany
| | - Tim Czopka
- Institute of Neuronal Cell Biology, Technical University of Munich, Munich, Germany.
- Centre for Clinical Brain Sciences, University of Edinburgh, Edinburgh, UK.
- Munich Cluster for Systems Neurology (SyNergy), Munich, Germany.
| |
Collapse
|
41
|
Barak M, Fedorova V, Pospisilova V, Raska J, Vochyanova S, Sedmik J, Hribkova H, Klimova H, Vanova T, Bohaciakova D. Human iPSC-Derived Neural Models for Studying Alzheimer's Disease: from Neural Stem Cells to Cerebral Organoids. Stem Cell Rev Rep 2022; 18:792-820. [PMID: 35107767 PMCID: PMC8930932 DOI: 10.1007/s12015-021-10254-3] [Citation(s) in RCA: 33] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/28/2021] [Indexed: 12/05/2022]
Abstract
During the past two decades, induced pluripotent stem cells (iPSCs) have been widely used to study mechanisms of human neural development, disease modeling, and drug discovery in vitro. Especially in the field of Alzheimer’s disease (AD), where this treatment is lacking, tremendous effort has been put into the investigation of molecular mechanisms behind this disease using induced pluripotent stem cell-based models. Numerous of these studies have found either novel regulatory mechanisms that could be exploited to develop relevant drugs for AD treatment or have already tested small molecules on in vitro cultures, directly demonstrating their effect on amelioration of AD-associated pathology. This review thus summarizes currently used differentiation strategies of induced pluripotent stem cells towards neuronal and glial cell types and cerebral organoids and their utilization in modeling AD and potential drug discovery.
Collapse
Affiliation(s)
- Martin Barak
- Department of Histology and Embryology, Faculty of Medicine, Masaryk University Brno, Brno, Czech Republic
| | - Veronika Fedorova
- Department of Histology and Embryology, Faculty of Medicine, Masaryk University Brno, Brno, Czech Republic
| | - Veronika Pospisilova
- Department of Histology and Embryology, Faculty of Medicine, Masaryk University Brno, Brno, Czech Republic
| | - Jan Raska
- Department of Histology and Embryology, Faculty of Medicine, Masaryk University Brno, Brno, Czech Republic
| | - Simona Vochyanova
- Department of Histology and Embryology, Faculty of Medicine, Masaryk University Brno, Brno, Czech Republic
| | - Jiri Sedmik
- Department of Histology and Embryology, Faculty of Medicine, Masaryk University Brno, Brno, Czech Republic
- International Clinical Research Center, St. Anne's Faculty Hospital Brno, Brno, Czech Republic
| | - Hana Hribkova
- Department of Histology and Embryology, Faculty of Medicine, Masaryk University Brno, Brno, Czech Republic
| | - Hana Klimova
- Department of Histology and Embryology, Faculty of Medicine, Masaryk University Brno, Brno, Czech Republic
| | - Tereza Vanova
- Department of Histology and Embryology, Faculty of Medicine, Masaryk University Brno, Brno, Czech Republic
- International Clinical Research Center, St. Anne's Faculty Hospital Brno, Brno, Czech Republic
| | - Dasa Bohaciakova
- Department of Histology and Embryology, Faculty of Medicine, Masaryk University Brno, Brno, Czech Republic.
- International Clinical Research Center, St. Anne's Faculty Hospital Brno, Brno, Czech Republic.
| |
Collapse
|
42
|
Eggert S, Kins S, Endres K, Brigadski T. Brothers in arms: proBDNF/BDNF and sAPPα/Aβ-signaling and their common interplay with ADAM10, TrkB, p75NTR, sortilin, and sorLA in the progression of Alzheimer's disease. Biol Chem 2022; 403:43-71. [PMID: 34619027 DOI: 10.1515/hsz-2021-0330] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2021] [Accepted: 09/16/2021] [Indexed: 12/22/2022]
Abstract
Brain-derived neurotrophic factor (BDNF) is an important modulator for a variety of functions in the central nervous system (CNS). A wealth of evidence, such as reduced mRNA and protein level in the brain, cerebrospinal fluid (CSF), and blood samples of Alzheimer's disease (AD) patients implicates a crucial role of BDNF in the progression of this disease. Especially, processing and subcellular localization of BDNF and its receptors TrkB and p75 are critical determinants for survival and death in neuronal cells. Similarly, the amyloid precursor protein (APP), a key player in Alzheimer's disease, and its cleavage fragments sAPPα and Aβ are known for their respective roles in neuroprotection and neuronal death. Common features of APP- and BDNF-signaling indicate a causal relationship in their mode of action. However, the interconnections of APP- and BDNF-signaling are not well understood. Therefore, we here discuss dimerization properties, localization, processing by α- and γ-secretase, relevance of the common interaction partners TrkB, p75, sorLA, and sortilin as well as shared signaling pathways of BDNF and sAPPα.
Collapse
Affiliation(s)
- Simone Eggert
- Department of Human Biology and Human Genetics, University of Kaiserslautern, Erwin-Schrödinger-Str. 13, D-67663 Kaiserslautern, Germany
| | - Stefan Kins
- Department of Human Biology and Human Genetics, University of Kaiserslautern, Erwin-Schrödinger-Str. 13, D-67663 Kaiserslautern, Germany
| | - Kristina Endres
- Department of Psychiatry and Psychotherapy, University Medical Center, Johannes Gutenberg-University Mainz, D-55131 Mainz, Germany
| | - Tanja Brigadski
- Department of Informatics and Microsystem Technology, University of Applied Sciences Kaiserslautern, D-66482 Zweibrücken, Germany
| |
Collapse
|
43
|
Pena-Ortiz MA, Shafiq S, Rowland ME, Bérubé NG. Selective isolation of mouse glial nuclei optimized for reliable downstream omics analyses. J Neurosci Methods 2022; 369:109480. [PMID: 35026308 DOI: 10.1016/j.jneumeth.2022.109480] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2021] [Revised: 01/06/2022] [Accepted: 01/07/2022] [Indexed: 01/08/2023]
Abstract
BACKGROUND Isolation of cell types of interest from the brain for molecular applications presents several challenges, including cellular damage during tissue dissociation or enrichment procedures, and low cell number in the tissue in some cases. Techniques have been developed to enrich distinct cell populations using immunopanning or fluorescence activated cell/nuclei sorting. However, these techniques often involve fixation, immunolabeling and DNA staining steps, which could potentially influence downstream omics applications. NEW METHOD Taking advantage of readily available genetically modified mice with fluorescent-tagged nuclei, we describe a technique for the purification of cell-type specific brain nuclei, optimized to decrease sample preparation time and to limit potential artefacts for downstream omics applications. We demonstrate the applicability of this approach for the purification of glial cell nuclei and show that the resulting cell-type specific nuclei obtained can be used effectively for omics applications, including ATAC-seq and RNA-seq. RESULTS We demonstrate excellent enrichment of fluorescently-tagged glial nuclei, yielding high quality RNA and chromatin. We identify several critical steps during nuclei isolation that help limit nuclei rupture and clumping, including quick homogenization, dilution before filtration and loosening of the pellet before resuspension, thus improving yield. Sorting of fluorescent nuclei can be achieved without fixation, antibody labelling, or DAPI staining, reducing potential artifactual results in RNA-seq and ATAC-seq analyses. We show that reproducible glial cell type-specific profiles can be obtained in transcriptomic and chromatin accessibility assays using this rapid protocol. COMPARISON WITH EXISTING METHODS Our method allows for rapid enrichment of glial nuclei populations from the mouse brain with minimal processing steps, while still providing high quality RNA and chromatin required for reliable omics analyses. CONCLUSIONS We provide a reproducible method to obtain nucleic material from glial cells in the mouse brain with a quick and limited sample preparation.
Collapse
Affiliation(s)
- Miguel A Pena-Ortiz
- Departments of Anatomy and Cell Biology, Paediatrics, and Oncology, Schulich School of Medicine and Dentistry, Western University, London, ON, Canada; Division of Genetics and Development, Children's Health Research Institute, London, ON, Canada
| | - Sarfraz Shafiq
- Departments of Anatomy and Cell Biology, Paediatrics, and Oncology, Schulich School of Medicine and Dentistry, Western University, London, ON, Canada; Division of Genetics and Development, Children's Health Research Institute, London, ON, Canada
| | - Megan E Rowland
- Department of Biochemistry and Molecular Biology, The University of British Columbia, Vancouver, BC, Canada
| | - Nathalie G Bérubé
- Departments of Anatomy and Cell Biology, Paediatrics, and Oncology, Schulich School of Medicine and Dentistry, Western University, London, ON, Canada; Division of Genetics and Development, Children's Health Research Institute, London, ON, Canada.
| |
Collapse
|
44
|
Luhmann HJ. Neurophysiology of the Developing Cerebral Cortex: What We Have Learned and What We Need to Know. Front Cell Neurosci 2022; 15:814012. [PMID: 35046777 PMCID: PMC8761895 DOI: 10.3389/fncel.2021.814012] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2021] [Accepted: 12/09/2021] [Indexed: 11/15/2022] Open
Abstract
This review article aims to give a brief summary on the novel technologies, the challenges, our current understanding, and the open questions in the field of the neurophysiology of the developing cerebral cortex in rodents. In the past, in vitro electrophysiological and calcium imaging studies on single neurons provided important insights into the function of cellular and subcellular mechanism during early postnatal development. In the past decade, neuronal activity in large cortical networks was recorded in pre- and neonatal rodents in vivo by the use of novel high-density multi-electrode arrays and genetically encoded calcium indicators. These studies demonstrated a surprisingly rich repertoire of spontaneous cortical and subcortical activity patterns, which are currently not completely understood in their functional roles in early development and their impact on cortical maturation. Technological progress in targeted genetic manipulations, optogenetics, and chemogenetics now allow the experimental manipulation of specific neuronal cell types to elucidate the function of early (transient) cortical circuits and their role in the generation of spontaneous and sensory evoked cortical activity patterns. Large-scale interactions between different cortical areas and subcortical regions, characterization of developmental shifts from synchronized to desynchronized activity patterns, identification of transient circuits and hub neurons, role of electrical activity in the control of glial cell differentiation and function are future key tasks to gain further insights into the neurophysiology of the developing cerebral cortex.
Collapse
Affiliation(s)
- Heiko J. Luhmann
- Institute of Physiology, University Medical Center Mainz, Mainz, Germany
| |
Collapse
|
45
|
Sun Y, Chen X, Ou Z, Wang Y, Chen W, Zhao T, Liu C, Chen Y. Dysmyelination by Oligodendrocyte-Specific Ablation of Ninj2 Contributes to Depressive-Like Behaviors. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2022; 9:e2103065. [PMID: 34787377 PMCID: PMC8787401 DOI: 10.1002/advs.202103065] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/16/2021] [Revised: 10/21/2021] [Indexed: 05/04/2023]
Abstract
Depression is a mental disorder affecting more than 300 million people in the world. Abnormalities in white matter are associated with the development of depression. Here, the authors show that mice with oligodendrocyte-specific deletion of Nerve injury-induced protein 2 (Ninj2) exhibit depressive-like behaviors. Loss of Ninj2 in oligodendrocytes inhibits oligodendrocyte development and myelination, and impairs neuronal structure and activities. Ninj2 competitively inhibits TNFα/TNFR1 signaling pathway by directly binding to TNFR1 in oligodendrocytes. Loss of Ninj2 activates TNFα-induced necroptosis, and increases C-C Motif Chemokine Ligand 2 (Ccl2) production, which might mediate the signal transduction from oligodendrocyte to neurons. Inhibition of necroptosis by Nec-1s administration synchronously restores oligodendrocyte development, improves neuronal excitability, and alleviates depressive-like behaviors. This study thus illustrates the role of Ninj2 in the development of depression and myelination, reveals the relationship between oligodendrocytes and neurons, and provides a potential therapeutic target for depression.
Collapse
Affiliation(s)
- Yuxia Sun
- State Key Laboratory of Cellular Stress BiologySchool of Life SciencesXiamen UniversityXiamenFujian361005China
| | - Xiang Chen
- State Key Laboratory of Cellular Stress BiologySchool of Life SciencesXiamen UniversityXiamenFujian361005China
| | - Zhimin Ou
- State Key Laboratory of Cellular Stress BiologySchool of Life SciencesXiamen UniversityXiamenFujian361005China
| | - Yue Wang
- State Key Laboratory of Cellular Stress BiologySchool of Life SciencesXiamen UniversityXiamenFujian361005China
| | - Wenjing Chen
- State Key Laboratory of Cellular Stress BiologySchool of Life SciencesXiamen UniversityXiamenFujian361005China
| | - Tongjin Zhao
- Shanghai Key Laboratory of Metabolic Remodeling and HealthInstitute of Metabolism and Integrative BiologyZhongshan HospitalFudan UniversityShanghai200438China
| | - Changqin Liu
- Department of Endocrinology and DiabetesThe First Affiliated Hospital of Xiamen UniversityFujian Province Key Laboratory of Diabetes Translational MedicineXiamenFujian361101China
| | - Ying Chen
- State Key Laboratory of Cellular Stress BiologySchool of Life SciencesXiamen UniversityXiamenFujian361005China
| |
Collapse
|
46
|
DePaula-Silva AB, Bell LA, Wallis GJ, Wilcox KS. Inflammation Unleashed in Viral-Induced Epileptogenesis. Epilepsy Curr 2021; 21:433-440. [PMID: 34924851 PMCID: PMC8652320 DOI: 10.1177/15357597211040939] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
Viral infection of the central nervous system increasingly places people at risk of developing life-threatening and treatment-resistant acute and chronic seizures (epilepsy). The emergence of new human viruses due to ongoing social, political, and ecological changes places people at risk more than ever before. The development of new preventative or curative strategies is critical to address this burden. However, our understanding of the complex relationship between viruses and the brain has been hindered by the lack of animal models that survive the initial infection and are amenable for long-term mechanistic, behavioral, and pharmacological studies in the process of viral-induced epileptogenesis. In this review, we focus on the Theiler’s murine encephalomyelitis virus (TMEV) mouse model of viral infection–induced epilepsy. The TMEV model has a number of important advantages to address the quintessential processes underlying the development of epilepsy following a viral infection, as well as fuel new therapeutic development. In this review, we highlight the contributions of the TMEV model to our current understanding of the relationship between viral infection, inflammation, and seizures.
Collapse
Affiliation(s)
| | - Laura A. Bell
- Department of Pharmacology and Toxicology, University of Utah, Salt Lake City, UT, USA
- Interdepartmental Program in Neuroscience, University of Utah, Salt Lake City, UT, USA
| | - Glenna J. Wallis
- Department of Pharmacology and Toxicology, University of Utah, Salt Lake City, UT, USA
| | - Karen S. Wilcox
- Department of Pharmacology and Toxicology, University of Utah, Salt Lake City, UT, USA
- Interdepartmental Program in Neuroscience, University of Utah, Salt Lake City, UT, USA
- Karen S. Wilcox, PhD, Department of Pharmacology and Toxicology, University of Utah, Salt Lake City, UT 84112, USA.
| |
Collapse
|
47
|
Abstract
Bipolar disorder (BD) is a complex group of neuropsychiatric disorders, typically comprising both manic and depressive episodes. The underlying neuropathology of BD is not established, but a consistent feature is progressive thinning of cortical grey matter (GM) and white matter (WM) in specific pathways, due to loss of subpopulations of neurons and astrocytes, with accompanying disturbance of connectivity. Dysregulation of astrocyte homeostatic functions are implicated in BD, notably regulation of glutamate, calcium signalling, circadian rhythms and metabolism. Furthermore, the beneficial therapeutic effects of the frontline treatments for BD are due at least in part to their positive actions on astrocytes, notably lithium, valproic acid (VPA) and carbamazepine (CBZ), as well as antidepressants and antipsychotics that are used in the management of this disorder. Treatments for BD are ineffective in a large proportion of cases, and astrocytes represent new therapeutic targets that can also serve as biomarkers of illness progression and treatment responsiveness in BD.
Collapse
|
48
|
Neely SA, Lyons DA. Insights Into Central Nervous System Glial Cell Formation and Function From Zebrafish. Front Cell Dev Biol 2021; 9:754606. [PMID: 34912801 PMCID: PMC8666443 DOI: 10.3389/fcell.2021.754606] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2021] [Accepted: 10/05/2021] [Indexed: 12/23/2022] Open
Abstract
The term glia describes a heterogenous collection of distinct cell types that make up a large proportion of our nervous system. Although once considered the glue of the nervous system, the study of glial cells has evolved significantly in recent years, with a large body of literature now highlighting their complex and diverse roles in development and throughout life. This progress is due, in part, to advances in animal models in which the molecular and cellular mechanisms of glial cell development and function as well as neuron-glial cell interactions can be directly studied in vivo in real time, in intact neural circuits. In this review we highlight the instrumental role that zebrafish have played as a vertebrate model system for the study of glial cells, and discuss how the experimental advantages of the zebrafish lend themselves to investigate glial cell interactions and diversity. We focus in particular on recent studies that have provided insight into the formation and function of the major glial cell types in the central nervous system in zebrafish.
Collapse
Affiliation(s)
- Sarah A. Neely
- Centre for Discovery Brain Sciences, University of Edinburgh, Edinburgh, United Kingdom
| | - David A. Lyons
- Centre for Discovery Brain Sciences, University of Edinburgh, Edinburgh, United Kingdom
| |
Collapse
|
49
|
Bonetto G, Belin D, Káradóttir RT. Myelin: A gatekeeper of activity-dependent circuit plasticity? Science 2021; 374:eaba6905. [PMID: 34618550 DOI: 10.1126/science.aba6905] [Citation(s) in RCA: 78] [Impact Index Per Article: 19.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
[Figure: see text].
Collapse
Affiliation(s)
- Giulia Bonetto
- Wellcome-Medical Research Council Cambridge Stem Cell Institute and Department of Veterinary Medicine, University of Cambridge, Cambridge, UK
| | - David Belin
- Department of Psychology, University of Cambridge, Cambridge, UK
| | - Ragnhildur Thóra Káradóttir
- Wellcome-Medical Research Council Cambridge Stem Cell Institute and Department of Veterinary Medicine, University of Cambridge, Cambridge, UK.,Department of Physiology, Biomedical Centre, Faculty of Medicine, University of Iceland, Reykjavik, Iceland
| |
Collapse
|
50
|
Zhao N, Huang W, Cãtãlin B, Scheller A, Kirchhoff F. L-Type Ca 2+ Channels of NG2 Glia Determine Proliferation and NMDA Receptor-Dependent Plasticity. Front Cell Dev Biol 2021; 9:759477. [PMID: 34746151 PMCID: PMC8567174 DOI: 10.3389/fcell.2021.759477] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2021] [Accepted: 09/16/2021] [Indexed: 12/25/2022] Open
Abstract
NG2 (nerve/glial antigen 2) glia are uniformly distributed in the gray and white matter of the central nervous system (CNS). They are the major proliferating cells in the brain and can differentiate into oligodendrocytes. NG2 glia do not only receive synaptic input from excitatory and inhibitory neurons, but also secrete growth factors and cytokines, modulating CNS homeostasis. They express several receptors and ion channels that play a role in rapidly responding upon synaptic signals and generating fast feedback, potentially regulating their own properties. Ca2+ influx via voltage-gated Ca2+ channels (VGCCs) induces an intracellular Ca2+ rise initiating a series of cellular activities. We confirmed that NG2 glia express L-type VGCCs in the white and gray matter during CNS development, particularly in the early postnatal stage. However, the function of L-type VGCCs in NG2 glia remains elusive. Therefore, we deleted L-type VGCC subtypes Cav1.2 and Cav1.3 genes conditionally in NG2 glia by crossbreeding NG2-CreERT2 knock-in mice to floxed Cav1.2 and flexed Cav1.3 transgenic mice. Our results showed that ablation of Cav1.2 and Cav1.3 strongly inhibited the proliferation of cortical NG2 glia, while differentiation in white and gray matter was not affected. As a consequence, no difference on myelination could be detected in various brain regions. In addition, we observed morphological alterations of the nodes of Ranvier induced by VGCC-deficient NG2 glia, i.e., shortened paired paranodes in the corpus callosum. Furthermore, deletion of Cav1.2 and Cav1.3 largely eliminated N-methyl-D-aspartate (NMDA)-dependent long-term depression (LTD) and potentiation in the hippocampus while the synaptic input to NG2 glia from axons remained unaltered. We conclude that L-type VGCCs of NG2 glia are essential for cell proliferation and proper structural organization of nodes of Ranvier, but not for differentiation and myelin compaction. In addition, L-type VGCCs of NG2 glia contribute to the regulation of long-term neuronal plasticity.
Collapse
Affiliation(s)
- Na Zhao
- Molecular Physiology, Center for Integrative Physiology and Molecular Medicine (CIPMM), University of Saarland, Homburg, Germany
| | - Wenhui Huang
- Molecular Physiology, Center for Integrative Physiology and Molecular Medicine (CIPMM), University of Saarland, Homburg, Germany
| | - Bogdan Cãtãlin
- Molecular Physiology, Center for Integrative Physiology and Molecular Medicine (CIPMM), University of Saarland, Homburg, Germany.,Experimental Research Center for Normal and Pathological Aging, University of Medicine and Pharmacy of Craiova, Craiova, Romania
| | - Anja Scheller
- Molecular Physiology, Center for Integrative Physiology and Molecular Medicine (CIPMM), University of Saarland, Homburg, Germany
| | - Frank Kirchhoff
- Molecular Physiology, Center for Integrative Physiology and Molecular Medicine (CIPMM), University of Saarland, Homburg, Germany.,Experimental Research Center for Normal and Pathological Aging, University of Medicine and Pharmacy of Craiova, Craiova, Romania
| |
Collapse
|