1
|
Peichl L, Meimann S, Solovei I, Gügel IL, Geiger C, Schauerte N, Goździewska-Harłajczuk K, Klećkowska-Nawrot JE, Wibbelt G, Haverkamp S. Eye features and retinal photoreceptors of the nocturnal aardvark (Orycteropus afer, Tubulidentata). PLoS One 2025; 20:e0314252. [PMID: 40127097 PMCID: PMC11932471 DOI: 10.1371/journal.pone.0314252] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2024] [Accepted: 02/12/2025] [Indexed: 03/26/2025] Open
Abstract
The nocturnal aardvark Orycteropus afer is the only extant species in the mammalian order Tubulidentata. Previous studies have claimed that it has an all-rod retina. In the retina of one aardvark, we found rod densities ranging from 124,000/mm² in peripheral retina to 214,000/mm² in central retina; the retina of another aardvark had 163,000 - 245,000 rods/mm². This is moderate in comparison to other nocturnal mammals. With opsin immunolabelling we found that the aardvark also has a small population of cone photoreceptors. Cone densities ranged from about 300 to 1,300/mm² in one animal, and from 1,100 to 1,600/mm² in a limited sample of the other animal, with a central-peripheral density gradient and some local variations. Overall, cones comprised 0.25-0.9% of the photoreceptors. Both typical mammalian cone opsins, longwave-sensitive (L) and shortwave-sensitive (S), were present. However, there was colocalization of the two opsins in many cones across the retina (35 - 96% dual pigment cones). Pure L cones and S cones formed smaller populations. This probably results in poor colour discrimination. Thyroid hormones, important regulators of cone opsin expression, showed normal blood serum levels. The relatively low rod density and hence a relatively thin retina may be related to the fact that the aardvark retina is avascular and its oxygen and nutrient supply have to come from the choriocapillaris by diffusion. In contrast to some previous studies, we found that the aardvark eye has a reflective tapetum lucidum with features of a choroidal tapetum fibrosum, in front of which the retinal pigment epithelium is unpigmented. The discussion considers these findings from a comparative perspective.
Collapse
Affiliation(s)
- Leo Peichl
- Institute for Clinical Neuroanatomy, Dr. Senckenbergische Anatomie, Goethe University, Frankfurt am Main, Germany
- Institute of Cellular and Molecular Anatomy, Dr. Senckenbergische Anatomie, Goethe University, Frankfurt am Main, Germany
| | - Sonja Meimann
- Institute of Cellular and Molecular Anatomy, Dr. Senckenbergische Anatomie, Goethe University, Frankfurt am Main, Germany
| | - Irina Solovei
- Biozentrum, Ludwig Maximilians University Munich, Planegg-Martinsried, Germany
| | - Irene L. Gügel
- Department of Computational Neuroethology, Max Planck Institute for Neurobiology of Behavior-Caesar, Bonn, Germany
| | - Christina Geiger
- Veterinary Department, Zoo Frankfurt, Frankfurt am Main, Germany
| | - Nicole Schauerte
- Veterinary Department, Zoo Frankfurt, Frankfurt am Main, Germany
| | - Karolina Goździewska-Harłajczuk
- Department of Biostructure and Animal Physiology, Faculty of Veterinary Medicine, Wrocław University of Environmental and Life Sciences, Wrocław, Poland
| | - Joanna E. Klećkowska-Nawrot
- Department of Biostructure and Animal Physiology, Faculty of Veterinary Medicine, Wrocław University of Environmental and Life Sciences, Wrocław, Poland
| | - Gudrun Wibbelt
- Department of Wildlife Diseases, Leibniz Institute for Zoo and Wildlife Research, Berlin, Germany
| | - Silke Haverkamp
- Department of Computational Neuroethology, Max Planck Institute for Neurobiology of Behavior-Caesar, Bonn, Germany
| |
Collapse
|
2
|
Stewart D, Albrecht U. Beyond vision: effects of light on the circadian clock and mood-related behaviours. NPJ BIOLOGICAL TIMING AND SLEEP 2025; 2:12. [PMID: 40092590 PMCID: PMC11906358 DOI: 10.1038/s44323-025-00029-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/12/2024] [Accepted: 02/17/2025] [Indexed: 03/19/2025]
Abstract
Light is a crucial environmental factor that influences various aspects of life, including physiological and psychological processes. While light is well-known for its role in enabling humans and other animals to perceive their surroundings, its influence extends beyond vision. Importantly, light affects our internal time-keeping system, the circadian clock, which regulates daily rhythms of biochemical and physiological processes, ultimately impacting mood and behaviour. The 24-h availability of light can have profound effects on our well-being, both physically and mentally, as seen in cases of jet lag and shift work. This review summarizes the intricate relationships between light, the circadian clock, and mood-related behaviours, exploring the underlying mechanisms and its implications for health.
Collapse
Affiliation(s)
- Dean Stewart
- Department of Biology, University of Fribourg, Fribourg, Switzerland
| | - Urs Albrecht
- Department of Biology, University of Fribourg, Fribourg, Switzerland
| |
Collapse
|
3
|
Wulf PO, Häfker NS, Hofmann K, Tessmar-Raible K. Guiding Light: Mechanisms and Adjustments of Environmental Light Interpretation with Insights from Platynereis dumerilii and Other Selected Examples. Zoolog Sci 2025; 42. [PMID: 39932759 DOI: 10.2108/zs240099] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2024] [Accepted: 12/01/2024] [Indexed: 05/08/2025]
Abstract
Animals possess many light-sensitive molecules. They exist as dedicated photoreceptors, or as byproducts of biochemical reactions. Their numbers are often high even in species that live in environments that humans would consider dark, as well as in species that are considered comparably simple (e.g., worms, cnidarians). But why are there so many photoreceptors? We provide some considerations on this question. Light conveys a significant amount of information to animals, through complex spectral and intensity changes, often specific to the spatial and temporal ecological niches a species inhabits. We discuss that the large number of opsins and cryptochromes, often also present outside the eyes and partially co-expressed, represent adaptation mechanisms to the highly complex light environment within a given niche. While theoretical, it is a plausible hypothesis given that most experimentally tested opsins and cryptochromes have been shown to be functional photoreceptors. The example of lunar and solar timing of the marine annelid Platynereis dumerilii provides insight on how animals use the biochemical and cellular properties of different photoreceptors to decode solar versus lunar light, and their different adaptations in Drosophila melanogaster. We suggest that the future understanding of biological processes will strongly benefit from comparative lab and field work on the same species, and provide a first example for such work in P. dumerilii. Finally, we point out that work on animal light detection systems and their adaptability is crucial to understand the impact of anthropogenic changes on species and ecosystems.
Collapse
Affiliation(s)
- Paul O Wulf
- Max Perutz Labs, University of Vienna, 1030 Vienna, Austria
- Vienna BioCenter PhD Program, Doctoral School of the University of Vienna, Medical University of Vienna, 1030 Vienna, Austria
- Department of Neuroscience and Developmental Biology, Faculty of Life Science, 1030 Vienna, Austria
| | - N Sören Häfker
- Alfred Wegener Institute Helmholtz Centre for Polar and Marine Research, 27570 Bremerhaven, Germany
| | - Kaelin Hofmann
- Max Perutz Labs, University of Vienna, 1030 Vienna, Austria
- Department of Neuroscience and Developmental Biology, Faculty of Life Science, 1030 Vienna, Austria
| | - Kristin Tessmar-Raible
- Max Perutz Labs, University of Vienna, 1030 Vienna, Austria,
- Alfred Wegener Institute Helmholtz Centre for Polar and Marine Research, 27570 Bremerhaven, Germany
- Institute for Chemistry and Biology of the Marine Environment (ICBM), School of Mathematics and Science, Carl von Ossietzky Universität Oldenburg, 26129 Oldenburg, Germany
- Department of Neuroscience and Developmental Biology, Faculty of Life Science, 1030 Vienna, Austria
| |
Collapse
|
4
|
Riddell N, Murphy MJ, Zahra S, Robertson-Dixon I, Crewther SG. Broadband Long Wavelength Light Promotes Myopic Eye Growth and Alters Retinal Responses to Light Offset in Chick. Invest Ophthalmol Vis Sci 2025; 66:30. [PMID: 39804628 PMCID: PMC11734760 DOI: 10.1167/iovs.66.1.30] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2024] [Accepted: 12/09/2024] [Indexed: 01/18/2025] Open
Abstract
Purpose Prolonged exposure to broadband light with a short-wavelength (blue) or long-wavelength (orange/red) bias is known to impact eye growth and refraction, but the mechanisms underlying this response are unknown. Thus, the present study investigated the effects of broadband blue and orange lights with well-differentiated spectrums on refractive development and global flash electroretinography (gfERG) measures of retinal function in the chick myopia model. Methods Chicks were raised for 4 days with monocular negative lenses, or no lens, under blue, orange, or white light. Chick weight, eye dimensions, and refraction were measured at the conclusion of rearing. In a separate cohort of chicks, the effect of 4 days of colored light rearing on retinal responses to orange, blue, or white light flashes was assessed using gfERG. Results Chicks reared under orange light for 4 days exhibited a significantly larger myopic shift in response to negative lenses compared to those reared under blue light. Orange light rearing for 4 days increased the gfERG d-wave amplitude and implicit time in response to orange light flashes but did not alter responses to white or blue flashes. Blue and white light rearing did not affect the retina's response to light flashes of any color. Conclusions Orange light rearing exacerbated defocus-induced myopia relative to blue light rearing. The gfERG recordings revealed that prolonged orange light exposure increased retinal responsivity to the offset of long wavelength light flashes, suggesting a potential role for ON/OFF pathway balance in generating the refractive response that requires further electrophysiological and molecular investigation.
Collapse
Affiliation(s)
- Nina Riddell
- School of Psychology and Public Health, La Trobe University, Melbourne, Australia
| | - Melanie J. Murphy
- School of Psychology and Public Health, La Trobe University, Melbourne, Australia
| | - Sania Zahra
- School of Psychology and Public Health, La Trobe University, Melbourne, Australia
| | | | - Sheila G. Crewther
- School of Psychology and Public Health, La Trobe University, Melbourne, Australia
| |
Collapse
|
5
|
Wang Q, Li Q, Quan T, Liang H, Li J, Li K, Ye S, Zhu S, Li B. Effects of Illumination Color on Hypothalamic Appetite-Regulating Gene Expression and Glycolipid Metabolism. Nutrients 2024; 16:4330. [PMID: 39770951 PMCID: PMC11678393 DOI: 10.3390/nu16244330] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2024] [Revised: 12/09/2024] [Accepted: 12/13/2024] [Indexed: 01/05/2025] Open
Abstract
Irregular illumination is a newly discovered ambient factor that affects dietary and metabolic processes. However, the effect of the modulation of long-term light exposure on appetite and metabolism remains elusive. Therefore, in this current study, we systematically investigated the effects of up to 8 weeks of exposure to red (RL), green (GL), and white light (WL) environments on appetite, food preferences, and glucose homeostasis in mice on both high-fat and low-fat dietary patterns. It was found that the RL group exacerbated high-fat-induced obesity in mice compared with GL- or WL-treated mice. RL-exposed mice exhibited worsened metabolic profiles, including impaired glucose tolerance/insulin sensitivity, elevated lipid levels, and reduced serum insulin levels. Serological analyses showed that RL exposure resulted in decreased leptin levels and increased levels of orexigenic and hunger hormones in mice. Further qPCR analysis showed that the expression levels of the hypothalamic appetite-related genes NPY and AgRP mRNA were upregulated in RL-treated mice, while the expression level of the appetite suppressor gene POMC mRNA was downregulated. The results of this study will be instructive for the regulation of appetite and metabolism from the perspective of illumination colors.
Collapse
Affiliation(s)
- Qi Wang
- College of Food Science and Technology, Huazhong Agricultural University, Wuhan 430070, China; (Q.W.); (Q.L.); (T.Q.); (H.L.); (J.L.); (K.L.); (S.Y.); (S.Z.)
- Key Laboratory of Environment Correlative Dietology, Ministry of Education, Huazhong Agricultural University, Wuhan 430070, China
| | - Qianru Li
- College of Food Science and Technology, Huazhong Agricultural University, Wuhan 430070, China; (Q.W.); (Q.L.); (T.Q.); (H.L.); (J.L.); (K.L.); (S.Y.); (S.Z.)
- Key Laboratory of Environment Correlative Dietology, Ministry of Education, Huazhong Agricultural University, Wuhan 430070, China
| | - Tuo Quan
- College of Food Science and Technology, Huazhong Agricultural University, Wuhan 430070, China; (Q.W.); (Q.L.); (T.Q.); (H.L.); (J.L.); (K.L.); (S.Y.); (S.Z.)
- Key Laboratory of Environment Correlative Dietology, Ministry of Education, Huazhong Agricultural University, Wuhan 430070, China
| | - Hongshan Liang
- College of Food Science and Technology, Huazhong Agricultural University, Wuhan 430070, China; (Q.W.); (Q.L.); (T.Q.); (H.L.); (J.L.); (K.L.); (S.Y.); (S.Z.)
- Key Laboratory of Environment Correlative Dietology, Ministry of Education, Huazhong Agricultural University, Wuhan 430070, China
| | - Jing Li
- College of Food Science and Technology, Huazhong Agricultural University, Wuhan 430070, China; (Q.W.); (Q.L.); (T.Q.); (H.L.); (J.L.); (K.L.); (S.Y.); (S.Z.)
- Key Laboratory of Environment Correlative Dietology, Ministry of Education, Huazhong Agricultural University, Wuhan 430070, China
| | - Kaikai Li
- College of Food Science and Technology, Huazhong Agricultural University, Wuhan 430070, China; (Q.W.); (Q.L.); (T.Q.); (H.L.); (J.L.); (K.L.); (S.Y.); (S.Z.)
- Key Laboratory of Environment Correlative Dietology, Ministry of Education, Huazhong Agricultural University, Wuhan 430070, China
| | - Shuxin Ye
- College of Food Science and Technology, Huazhong Agricultural University, Wuhan 430070, China; (Q.W.); (Q.L.); (T.Q.); (H.L.); (J.L.); (K.L.); (S.Y.); (S.Z.)
- Key Laboratory of Environment Correlative Dietology, Ministry of Education, Huazhong Agricultural University, Wuhan 430070, China
| | - Sijia Zhu
- College of Food Science and Technology, Huazhong Agricultural University, Wuhan 430070, China; (Q.W.); (Q.L.); (T.Q.); (H.L.); (J.L.); (K.L.); (S.Y.); (S.Z.)
- Key Laboratory of Environment Correlative Dietology, Ministry of Education, Huazhong Agricultural University, Wuhan 430070, China
| | - Bin Li
- College of Food Science and Technology, Huazhong Agricultural University, Wuhan 430070, China; (Q.W.); (Q.L.); (T.Q.); (H.L.); (J.L.); (K.L.); (S.Y.); (S.Z.)
- Key Laboratory of Environment Correlative Dietology, Ministry of Education, Huazhong Agricultural University, Wuhan 430070, China
| |
Collapse
|
6
|
Campbell I, Sharifpour R, Balda Aizpurua JF, Beckers E, Paparella I, Berger A, Koshmanova E, Mortazavi N, Read J, Zubkov M, Talwar P, Collette F, Sherif S, Phillips C, Lamalle L, Vandewalle G. Regional response to light illuminance across the human hypothalamus. eLife 2024; 13:RP96576. [PMID: 39466317 PMCID: PMC11517251 DOI: 10.7554/elife.96576] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/29/2024] Open
Abstract
Light exerts multiple non-image-forming biological effects on physiology including the stimulation of alertness and cognition. However, the subcortical circuitry underlying the stimulating impact of light is not established in humans. We used 7 Tesla functional magnetic resonance imaging to assess the impact of variations in light illuminance on the regional activity of the hypothalamus while healthy young adults (N=26; 16 women; 24.3±2.9 y) were completing two auditory cognitive tasks. We find that, during both the executive and emotional tasks, higher illuminance triggered an activity increase over the posterior part of the hypothalamus, which includes part of the tuberomamillary nucleus and the posterior part of the lateral hypothalamus. In contrast, increasing illuminance evoked a decrease in activity over the anterior and ventral parts of the hypothalamus, encompassing notably the suprachiasmatic nucleus and another part of the tuberomammillary nucleus. Critically, the performance of the executive task was improved under higher illuminance and was negatively correlated with the activity of the posterior hypothalamus area. These findings reveal the distinct local dynamics of different hypothalamus regions that underlie the impact of light on cognition.
Collapse
Affiliation(s)
| | | | | | - Elise Beckers
- GIGA-CRC Human Imaging, University of LiègeLiègeBelgium
- Faculty of Health, Medicine and Life Sciences, School for Mental Health and Neuroscience, Alzheimer Centre Limburg, Maastricht UniversityMaastrichtNetherlands
| | | | - Alexandre Berger
- GIGA-CRC Human Imaging, University of LiègeLiègeBelgium
- Synergia Medical SAMont-Saint-GuibertBelgium
- Institute of Neuroscience (IoNS), Department of Clinical Neuroscience, Université Catholique de Louvain (UCLouvain)Woluwe-Saint-LambertBelgium
| | | | | | - John Read
- GIGA-CRC Human Imaging, University of LiègeLiègeBelgium
| | | | - Puneet Talwar
- GIGA-CRC Human Imaging, University of LiègeLiègeBelgium
| | | | - Siya Sherif
- GIGA-CRC Human Imaging, University of LiègeLiègeBelgium
| | | | | | | |
Collapse
|
7
|
Neitz A, Rice A, Casiraghi L, Bussi IL, Buhr ED, Neitz M, Neitz J, de la Iglesia HO, Kuchenbecker JA. Toward an Indoor Lighting Solution for Social Jet Lag. J Biol Rhythms 2024; 39:502-507. [PMID: 39082441 PMCID: PMC11416324 DOI: 10.1177/07487304241262918] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/07/2024]
Abstract
There is growing interest in developing artificial lighting that stimulates intrinsically photosensitive retinal ganglion cells (ipRGCs) to entrain circadian rhythms to improve mood, sleep, and health. Efforts have focused on stimulating the intrinsic photopigment, melanopsin; however, specialized color vision circuits have been elucidated in the primate retina that transmit blue-yellow cone-opponent signals to ipRGCs. We designed a light that stimulates color-opponent inputs to ipRGCs by temporally alternating short- and long-wavelength components that strongly modulate short-wavelength sensitive (S) cones. Two-hour exposure to this S-cone modulating light produced an average circadian phase advance of 1 h and 20 min in 6 subjects (mean age = 30 years) compared to no phase advance for the subjects after exposure to a 500 lux white light equated for melanopsin effectiveness. These results are promising for developing artificial lighting that is highly effective in controlling circadian rhythms by invisibly modulating cone-opponent circuits.
Collapse
Affiliation(s)
- Alex Neitz
- Department of Biology and The Molecular and Cellular Biology graduate program, University of Washington, Seattle, Washington, USA
| | - Alicia Rice
- Department of Biology, University of Washington, Seattle, Washington, USA
| | - Leandro Casiraghi
- Department of Biology, University of Washington, Seattle, Washington, USA
| | - Ivana L. Bussi
- Department of Biology, University of Washington, Seattle, Washington, USA
| | - Ethan D. Buhr
- Department of Ophthalmology, University of Washington, Seattle, Washington, USA
| | - Maureen Neitz
- Department of Ophthalmology, University of Washington, Seattle, Washington, USA
| | - Jay Neitz
- Department of Ophthalmology, University of Washington, Seattle, Washington, USA
| | | | | |
Collapse
|
8
|
Steel LCE, Tam SKE, Brown LA, Foster RG, Peirson SN. Light sampling behaviour regulates circadian entrainment in mice. BMC Biol 2024; 22:208. [PMID: 39278902 PMCID: PMC11404008 DOI: 10.1186/s12915-024-01995-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2024] [Accepted: 08/28/2024] [Indexed: 09/18/2024] Open
Abstract
BACKGROUND The natural light environment is far more complex than that experienced by animals under laboratory conditions. As a burrowing species, wild mice are able to self-modulate their light exposure, a concept known as light environment sampling behaviour. By contrast, under laboratory conditions mice have little opportunity to exhibit this behaviour. To address this issue, here we introduce a simple nestbox paradigm to allow mice to self-modulate their light environment. Dark nestboxes fitted with passive infrared sensors were used to monitor locomotor activity, circadian entrainment, decision making and light environment sampling behaviour. RESULTS Under these conditions, mice significantly reduce their light exposure to an average of just 0.8 h across a 24 h period. In addition, mice show a distinct pattern of light environment sampling behaviour, with peaks at dawn and dusk under a ramped light dark cycle. Furthermore, we show that the timing of light environment sampling behaviour depends upon endogenous circadian rhythms and is abolished in mice lacking a circadian clock, indicating a feedback loop between light, the circadian clock and behaviour. CONCLUSIONS Our results highlight the important role of behaviour in modifying the light signals available for circadian entrainment under natural conditions.
Collapse
Affiliation(s)
- Laura C E Steel
- Sir Jules Thorn Sleep and Circadian Neuroscience Institute (SCNi), Kavli Institute for Nanoscience Discovery, Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford, UK
| | - Shu K E Tam
- Duke Kunshan University, Kunshan, Jiangsu, China
| | | | - Russell G Foster
- Sir Jules Thorn Sleep and Circadian Neuroscience Institute (SCNi), Kavli Institute for Nanoscience Discovery, Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford, UK
| | - Stuart N Peirson
- Sir Jules Thorn Sleep and Circadian Neuroscience Institute (SCNi), Kavli Institute for Nanoscience Discovery, Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford, UK.
| |
Collapse
|
9
|
Summers F, Tuske AM, Puglisi C, Wong A, Rojo A, Swierk L. Ambient light spectrum affects larval Mexican jumping bean moth (Cydia saltitans) behavior despite light obstruction from host seed. Behav Processes 2024; 221:105093. [PMID: 39191315 DOI: 10.1016/j.beproc.2024.105093] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2024] [Revised: 07/30/2024] [Accepted: 08/22/2024] [Indexed: 08/29/2024]
Abstract
Spectral differences in ambient light can affect animal behavior and convey crucial information about an individual's environment. The ability to perceive and respond to differences in ambient light varies widely by taxa and is shaped by a species' ecology. Mexican jumping bean moths, Cydia saltitans, spend their entire larval period encased in fallen host seeds and contend with potentially lethal environmental temperatures when host seeds are in direct sunlight. We investigate if and how C. saltitans larvae in host seeds respond to lighting conditions associated with these thermal risks. In a temperature-controlled experiment, we identified that larvae demonstrated distinct behavioral ("jumping") responses corresponding to four lighting treatments (white, red, green, and purple), despite extremely minimal light penetration through host seed walls. Red light induced the greatest larval activity (measured by probability of movement and by displacement from origin), suggesting that larvae have mechanisms to perceive low levels of red light and/or to detect subtle increases in heat produced by red/near infrared-biased light spectra, possibly providing them with an early-warning mechanism against thermal stress. Our findings highlight the interplay of environmental lighting, behavior, and potential thermosensory adaptations in a species with a visually constrained environment.
Collapse
Affiliation(s)
- Faith Summers
- Department of Biological Sciences, Binghamton University, State University of New York, Binghamton, NY 13902, USA
| | - Amber M Tuske
- Department of Biological Sciences, Binghamton University, State University of New York, Binghamton, NY 13902, USA
| | - Cassandra Puglisi
- Department of Biological Sciences, Binghamton University, State University of New York, Binghamton, NY 13902, USA
| | - Annie Wong
- Department of Biological Sciences, Binghamton University, State University of New York, Binghamton, NY 13902, USA
| | - Andrés Rojo
- Department of Biological Sciences, Binghamton University, State University of New York, Binghamton, NY 13902, USA
| | - Lindsey Swierk
- Department of Biological Sciences, Binghamton University, State University of New York, Binghamton, NY 13902, USA; Amazon Conservatory for Tropical Studies, Iquitos, Loreto 16001, Perú.
| |
Collapse
|
10
|
Schmal C. The seasons within: a theoretical perspective on photoperiodic entrainment and encoding. J Comp Physiol A Neuroethol Sens Neural Behav Physiol 2024; 210:549-564. [PMID: 37659985 PMCID: PMC11226496 DOI: 10.1007/s00359-023-01669-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2023] [Revised: 08/11/2023] [Accepted: 08/16/2023] [Indexed: 09/04/2023]
Abstract
Circadian clocks are internal timing devices that have evolved as an adaption to the omnipresent natural 24 h rhythmicity of daylight intensity. Properties of the circadian system are photoperiod dependent. The phase of entrainment varies systematically with season. Plastic photoperiod-dependent re-arrangements in the mammalian circadian core pacemaker yield an internal representation of season. Output pathways of the circadian clock regulate photoperiodic responses such as flowering time in plants or hibernation in mammals. Here, we review the concepts of seasonal entrainment and photoperiodic encoding. We introduce conceptual phase oscillator models as their high level of abstraction, but, yet, intuitive interpretation of underlying parameters allows for a straightforward analysis of principles that determine entrainment characteristics. Results from this class of models are related and discussed in the context of more complex conceptual amplitude-phase oscillators as well as contextual molecular models that take into account organism, tissue, and cell-type-specific details.
Collapse
Affiliation(s)
- Christoph Schmal
- Institute for Theoretical Biology, Humboldt-Universität zu Berlin, Philippstr. 13, 10115, Berlin, Germany.
| |
Collapse
|
11
|
Lloyd E, Rastogi A, Holtz N, Aaronson B, Craig Albertson R, Keene AC. Ontogeny and social context regulate the circadian activity patterns of Lake Malawi cichlids. J Comp Physiol B 2024; 194:299-313. [PMID: 37910192 PMCID: PMC11233325 DOI: 10.1007/s00360-023-01523-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2023] [Revised: 09/01/2023] [Accepted: 09/25/2023] [Indexed: 11/03/2023]
Abstract
Activity patterns tend to be highly stereotyped and critical for executing many different behaviors including foraging, social interactions, and predator avoidance. Differences in the circadian timing of locomotor activity and rest periods can facilitate habitat partitioning and the exploitation of novel niches. As a consequence, closely related species often display highly divergent activity patterns, suggesting that shifts from diurnal to nocturnal behavior, or vice versa, are critical for survival. In Africa's Lake Malawi alone, there are over 500 species of cichlids, which inhabit diverse environments and exhibit extensive phenotypic variation. We have previously identified a substantial range in activity patterns across adult Lake Malawi cichlid species, from strongly diurnal to strongly nocturnal. In many species, including fishes, ecological pressures differ dramatically across life-history stages, raising the possibility that activity patterns may change over ontogeny. To determine if rest-activity patterns change across life stages, we compared the locomotor patterns of six Lake Malawi cichlid species. While total rest and activity did not change between early juvenile and adult stages, rest-activity patterns did, with juveniles displaying distinct activity rhythms that are more robust than adults. One distinct difference between juveniles and adults is the emergence of complex social behavior. To determine whether social context is required for activity rhythms, we next measured locomotor behavior in group-housed adult fish. We found that when normal social interactions were allowed, locomotor activity patterns were restored, supporting the notion that social interactions promote circadian regulation of activity in adult fish. These findings reveal a previously unidentified link between developmental stage and social interactions in the circadian timing of cichlid activity.
Collapse
Affiliation(s)
- Evan Lloyd
- Department of Biology, Texas A&M University, College Station, TX, 77840, USA
| | - Aakriti Rastogi
- Department of Biology, Texas A&M University, College Station, TX, 77840, USA
| | - Niah Holtz
- Organismic and Evolutionary Biology Graduate Program, University of Massachusetts, Amherst, MA, 01003, USA
| | - Ben Aaronson
- Department of Biology, University of Massachusetts, Amherst, MA, 01003, USA
| | - R Craig Albertson
- Department of Biology, University of Massachusetts, Amherst, MA, 01003, USA
| | - Alex C Keene
- Department of Biology, Texas A&M University, College Station, TX, 77840, USA.
| |
Collapse
|
12
|
Du X, Butler AG, Chen HY. Cell-cell interaction in the pathogenesis of inherited retinal diseases. Front Cell Dev Biol 2024; 12:1332944. [PMID: 38500685 PMCID: PMC10944940 DOI: 10.3389/fcell.2024.1332944] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2023] [Accepted: 02/06/2024] [Indexed: 03/20/2024] Open
Abstract
The retina is part of the central nervous system specialized for vision. Inherited retinal diseases (IRD) are a group of clinically and genetically heterogenous disorders that lead to progressive vision impairment or blindness. Although each disorder is rare, IRD accumulatively cause blindness in up to 5.5 million individuals worldwide. Currently, the pathophysiological mechanisms of IRD are not fully understood and there are limited treatment options available. Most IRD are caused by degeneration of light-sensitive photoreceptors. Genetic mutations that abrogate the structure and/or function of photoreceptors lead to visual impairment followed by blindness caused by loss of photoreceptors. In healthy retina, photoreceptors structurally and functionally interact with retinal pigment epithelium (RPE) and Müller glia (MG) to maintain retinal homeostasis. Multiple IRD with photoreceptor degeneration as a major phenotype are caused by mutations of RPE- and/or MG-associated genes. Recent studies also reveal compromised MG and RPE caused by mutations in ubiquitously expressed ciliary genes. Therefore, photoreceptor degeneration could be a direct consequence of gene mutations and/or could be secondary to the dysfunction of their interaction partners in the retina. This review summarizes the mechanisms of photoreceptor-RPE/MG interaction in supporting retinal functions and discusses how the disruption of these processes could lead to photoreceptor degeneration, with an aim to provide a unique perspective of IRD pathogenesis and treatment paradigm. We will first describe the biology of retina and IRD and then discuss the interaction between photoreceptors and MG/RPE as well as their implications in disease pathogenesis. Finally, we will summarize the recent advances in IRD therapeutics targeting MG and/or RPE.
Collapse
Affiliation(s)
| | | | - Holly Y. Chen
- Department of Cell, Developmental and Integrative Biology, Heersink School of Medicine, University of Alabama at Birmingham, Birmingham, AL, United States
| |
Collapse
|
13
|
Lucas RJ, Allen AE, Brainard GC, Brown TM, Dauchy RT, Didikoglu A, Do MTH, Gaskill BN, Hattar S, Hawkins P, Hut RA, McDowell RJ, Nelson RJ, Prins JB, Schmidt TM, Takahashi JS, Verma V, Voikar V, Wells S, Peirson SN. Recommendations for measuring and standardizing light for laboratory mammals to improve welfare and reproducibility in animal research. PLoS Biol 2024; 22:e3002535. [PMID: 38470868 PMCID: PMC10931507 DOI: 10.1371/journal.pbio.3002535] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/14/2024] Open
Abstract
Light enables vision and exerts widespread effects on physiology and behavior, including regulating circadian rhythms, sleep, hormone synthesis, affective state, and cognitive processes. Appropriate lighting in animal facilities may support welfare and ensure that animals enter experiments in an appropriate physiological and behavioral state. Furthermore, proper consideration of light during experimentation is important both when it is explicitly employed as an independent variable and as a general feature of the environment. This Consensus View discusses metrics to use for the quantification of light appropriate for nonhuman mammals and their application to improve animal welfare and the quality of animal research. It provides methods for measuring these metrics, practical guidance for their implementation in husbandry and experimentation, and quantitative guidance on appropriate light exposure for laboratory mammals. The guidance provided has the potential to improve data quality and contribute to reduction and refinement, helping to ensure more ethical animal use.
Collapse
Affiliation(s)
- Robert J. Lucas
- Centre for Biological Timing, School of Biological Sciences, Faculty of Biology Medicine and Health, University of Manchester, Manchester, United Kingdom
| | - Annette E. Allen
- Centre for Biological Timing, School of Biological Sciences, Faculty of Biology Medicine and Health, University of Manchester, Manchester, United Kingdom
| | - George C. Brainard
- Department of Neurology, Thomas Jefferson University, Philadelphia, Pennsylvania, United States of America
| | - Timothy M. Brown
- Centre for Biological Timing, School of Biological Sciences, Faculty of Biology Medicine and Health, University of Manchester, Manchester, United Kingdom
| | - Robert T. Dauchy
- Department of Structural and Cellular Biology, Tulane University School of Medicine, Tulane, Louisiana, United States of America
| | - Altug Didikoglu
- Department of Neuroscience, Izmir Institute of Technology, Gülbahçe, Urla, Izmir, Turkey
| | - Michael Tri H. Do
- F.M. Kirby Neurobiology Center and Department of Neurology, Boston Children’s Hospital and Harvard Medical School, Center for Life Science, Boston, Massachusetts, United States of America
| | - Brianna N. Gaskill
- Novartis Institute for Biomedical Research, Cambridge, Massachusetts, United States of America
| | - Samer Hattar
- Section on Light and Circadian Rhythms (SLCR), National Institute of Mental Health, John Edward Porter Neuroscience Research Center, Bethesda, Maryland, United States of America
| | | | - Roelof A. Hut
- Chronobiology Unit, Groningen Institute of Evolutionary Life Sciences, University of Groningen, Groningen, the Netherlands
| | - Richard J. McDowell
- Centre for Biological Timing, School of Biological Sciences, Faculty of Biology Medicine and Health, University of Manchester, Manchester, United Kingdom
| | - Randy J. Nelson
- Department of Neuroscience, Rockefeller Neuroscience Institute, West Virginia University, Morgantown, West Virginia, United States of America
| | - Jan-Bas Prins
- The Francis Crick Institute, London, United Kingdom
- Leiden University Medical Centre, Leiden, the Netherlands
| | - Tiffany M. Schmidt
- Department of Neurobiology, Northwestern University, Evanston, Illinois, United States of America
| | - Joseph S. Takahashi
- Department of Neuroscience, Peter O’Donnell Jr Brain Institute, University of Texas Southwestern Medical Center, Dallas, Texas, United States of America
- Howard Hughes Medical Institute, University of Texas Southwestern Medical Center, Dallas, Texas, United States of America
| | - Vandana Verma
- NASA Ames Research Center, Space Biosciences Division, Moffett Field, California, United States of America
| | - Vootele Voikar
- Laboratory Animal Center and Neuroscience Center, HiLIFE, University of Helsinki, Helsinki, Finland
| | - Sara Wells
- The Mary Lyon Centre, MRC Harwell, Harwell Campus, Oxfordshire, United Kingdom
| | - Stuart N. Peirson
- Sleep and Circadian Neuroscience Institute (SCNi), Kavli Institute for Nanoscience Discovery, Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford, United Kingdom
| |
Collapse
|
14
|
Mat A, Vu HH, Wolf E, Tessmar-Raible K. All Light, Everywhere? Photoreceptors at Nonconventional Sites. Physiology (Bethesda) 2024; 39:0. [PMID: 37905983 PMCID: PMC11283901 DOI: 10.1152/physiol.00017.2023] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2023] [Revised: 10/29/2023] [Accepted: 10/29/2023] [Indexed: 11/02/2023] Open
Abstract
One of the biggest environmental alterations we have made to our species is the change in the exposure to light. During the day, we typically sit behind glass windows illuminated by artificial light that is >400 times dimmer and has a very different spectrum than natural daylight. On the opposite end are the nights that are now lit up by several orders of magnitude. This review aims to provide food for thought as to why this matters for humans and other animals. Evidence from behavioral neuroscience, physiology, chronobiology, and molecular biology is increasingly converging on the conclusions that the biological nonvisual functions of light and photosensory molecules are highly complex. The initial work of von Frisch on extraocular photoreceptors in fish, the identification of rhodopsins as the molecular light receptors in animal eyes and eye-like structures and cryptochromes as light sensors in nonmammalian chronobiology, still allowed for the impression that light reception would be a relatively restricted, localized sense in most animals. However, light-sensitive processes and/or sensory proteins have now been localized to many different cell types and tissues. It might be necessary to consider nonlight-responding cells as the exception, rather than the rule.
Collapse
Affiliation(s)
- Audrey Mat
- Max Perutz Labs, University of Vienna, Vienna BioCenter, Vienna, Austria
- VIPS2, Vienna BioCenter, Vienna, Austria
| | - Hong Ha Vu
- Institute of Molecular Physiology, Johannes Gutenberg-University, Mainz, Germany
| | - Eva Wolf
- Institute of Molecular Physiology, Johannes Gutenberg-University, Mainz, Germany
- Institute of Molecular Biology, Mainz, Germany
| | - Kristin Tessmar-Raible
- Max Perutz Labs, University of Vienna, Vienna BioCenter, Vienna, Austria
- Alfred Wegener Institute, Helmholtz Centre for Polar and Marine Research, Bremerhaven, Germany
- Carl-von-Ossietzky University, Oldenburg, Germany
| |
Collapse
|
15
|
Beute F, Aries MB. The importance of residential dusk and dawn light exposure for sleep quality, health, and well-being. Sleep Med Rev 2023; 72:101865. [PMID: 37864914 DOI: 10.1016/j.smrv.2023.101865] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2022] [Revised: 10/06/2023] [Accepted: 10/10/2023] [Indexed: 10/23/2023]
Abstract
Light exposure during twilight plays a critical role in the entrainment of the human circadian system. People are most often at home during dusk and dawn, and light exposure at home - either natural or from electric light - may therefore contribute substantially to sleep and well-being. However, very little research has focused on the effects of home lighting on sleep and well-being, and even less research has investigated the effects of light exposure during twilight. Therefore, a literature study was performed to collect studies on light exposure at home during dusk and dawn. Studies looking at light exposure during dusk and dawn have focused on either electric light intervention (i.e., dusk and dawn simulation) at home or in the laboratory or daylight exposure in the bedroom (i.e., the presence and type of curtains in the bedroom). Most research has focused on dawn simulation during the darker months of the year, often using sunrise alarms. In general, study results pointed to the importance of twilight light exposure at home for sleep and well-being. These results may depend on the characteristics of the user, such as age or chronotype.
Collapse
Affiliation(s)
| | - Myriam Bc Aries
- Jönköping University, School of Engineering, Jönköping, Sweden.
| |
Collapse
|
16
|
Hazlerigg DG, Appenroth D, Tomotani BM, West AC, Wood SH. Biological timekeeping in polar environments: lessons from terrestrial vertebrates. J Exp Biol 2023; 226:jeb246308. [PMID: 38031958 DOI: 10.1242/jeb.246308] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2023]
Abstract
The polar regions receive less solar energy than anywhere else on Earth, with the greatest year-round variation in daily light exposure; this produces highly seasonal environments, with short summers and long, cold winters. Polar environments are also characterised by a reduced daily amplitude of solar illumination. This is obvious around the solstices, when the Sun remains continuously above (polar 'day') or below (polar 'night') the horizon. Even at the solstices, however, light levels and spectral composition vary on a diel basis. These features raise interesting questions about polar biological timekeeping from the perspectives of function and causal mechanism. Functionally, to what extent are evolutionary drivers for circadian timekeeping maintained in polar environments, and how does this depend on physiology and life history? Mechanistically, how does polar solar illumination affect core daily or seasonal timekeeping and light entrainment? In birds and mammals, answers to these questions diverge widely between species, depending on physiology and bioenergetic constraints. In the high Arctic, photic cues can maintain circadian synchrony in some species, even in the polar summer. Under these conditions, timer systems may be refined to exploit polar cues. In other instances, temporal organisation may cease to be dominated by the circadian clock. Although the drive for seasonal synchronisation is strong in polar species, reliance on innate long-term (circannual) timer mechanisms varies. This variation reflects differing year-round access to photic cues. Polar chronobiology is a productive area for exploring the adaptive evolution of daily and seasonal timekeeping, with many outstanding areas for further investigation.
Collapse
Affiliation(s)
- David G Hazlerigg
- Arctic Seasonal Timekeeping Initiative (ASTI), Arctic chronobiology and physiology research group, Department of Arctic and Marine Biology, UiT - The Arctic University of Norway, Tromsø NO-9037, Norway
| | - Daniel Appenroth
- Arctic Seasonal Timekeeping Initiative (ASTI), Arctic chronobiology and physiology research group, Department of Arctic and Marine Biology, UiT - The Arctic University of Norway, Tromsø NO-9037, Norway
| | - Barbara M Tomotani
- Arctic Seasonal Timekeeping Initiative (ASTI), Arctic chronobiology and physiology research group, Department of Arctic and Marine Biology, UiT - The Arctic University of Norway, Tromsø NO-9037, Norway
| | - Alexander C West
- Arctic Seasonal Timekeeping Initiative (ASTI), Arctic chronobiology and physiology research group, Department of Arctic and Marine Biology, UiT - The Arctic University of Norway, Tromsø NO-9037, Norway
| | - Shona H Wood
- Arctic Seasonal Timekeeping Initiative (ASTI), Arctic chronobiology and physiology research group, Department of Arctic and Marine Biology, UiT - The Arctic University of Norway, Tromsø NO-9037, Norway
| |
Collapse
|
17
|
Kahan A, Mahe K, Dutta S, Kassraian P, Wang A, Gradinaru V. Immediate responses to ambient light in vivo reveal distinct subpopulations of suprachiasmatic VIP neurons. iScience 2023; 26:107865. [PMID: 37766975 PMCID: PMC10520357 DOI: 10.1016/j.isci.2023.107865] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2023] [Revised: 07/21/2023] [Accepted: 09/06/2023] [Indexed: 09/29/2023] Open
Abstract
The circadian rhythm pacemaker, the suprachiasmatic nucleus (SCN), mediates light entrainment via vasoactive intestinal peptide (VIP) neurons (SCNVIP). Yet, how these neurons uniquely respond and connect to intrinsically photosensitive retinal ganglion cells (ipRGCs) expressing melanopsin (Opn4) has not been determined functionally in freely behaving animals. To address this, we first used monosynaptic tracing from SCNVIP neurons in mice and identified two SCNVIP subpopulations. Second, we recorded calcium changes in response to ambient light, at both bulk and single-cell levels, and found two unique activity patterns in response to high- and low-intensity blue light. The activity patterns of both subpopulations could be manipulated by application of an Opn4 antagonist. These results suggest that the two SCNVIP subpopulations connect to two types of Opn4-expressing ipRGCs, likely M1 and M2, but only one is responsive to red light. These findings have important implications for our basic understanding of non-image-forming circadian light processing.
Collapse
Affiliation(s)
- Anat Kahan
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA 91125, USA
| | - Karan Mahe
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA 91125, USA
| | - Sayan Dutta
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA 91125, USA
| | - Pegah Kassraian
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA 91125, USA
| | - Alexander Wang
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA 91125, USA
| | - Viviana Gradinaru
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA 91125, USA
| |
Collapse
|
18
|
Wang Y, Beukeboom LW, Wertheim B, Hut RA. Transcriptomic Analysis of Light-Induced Genes in Nasonia vitripennis: Possible Implications for Circadian Light Entrainment Pathways. BIOLOGY 2023; 12:1215. [PMID: 37759614 PMCID: PMC10525998 DOI: 10.3390/biology12091215] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/15/2023] [Revised: 08/31/2023] [Accepted: 09/03/2023] [Indexed: 09/29/2023]
Abstract
Circadian entrainment to the environmental day-night cycle is essential for the optimal use of environmental resources. In insects, opsin-based photoreception in the compound eye and ocelli and CRYPTOCHROME1 (CRY1) in circadian clock neurons are thought to be involved in sensing photic information, but the genetic regulation of circadian light entrainment in species without light-sensitive CRY1 remains unclear. To elucidate a possible CRY1-independent light transduction cascade, we analyzed light-induced gene expression through RNA-sequencing in Nasonia vitripennis. Entrained wasps were subjected to a light pulse in the subjective night to reset the circadian clock, and light-induced changes in gene expression were characterized at four different time points in wasp heads. We used co-expression, functional annotation, and transcription factor binding motif analyses to gain insight into the molecular pathways in response to acute light stimulus and to form hypotheses about the circadian light-resetting pathway. Maximal gene induction was found after 2 h of light stimulation (1432 genes), and this included the opsin gene opblue and the core clock genes cry2 and npas2. Pathway and cluster analyses revealed light activation of glutamatergic and GABA-ergic neurotransmission, including CREB and AP-1 transcription pathway signaling. This suggests that circadian photic entrainment in Nasonia may require pathways that are similar to those in mammals. We propose a model for hymenopteran circadian light-resetting that involves opsin-based photoreception, glutamatergic neurotransmission, and gene induction of cry2 and npas2 to reset the circadian clock.
Collapse
Affiliation(s)
- Yifan Wang
- Groningen Institute for Evolutionary Life Sciences, University of Groningen, 9712 CP Groningen, The Netherlands; (L.W.B.); (R.A.H.)
| | | | - Bregje Wertheim
- Groningen Institute for Evolutionary Life Sciences, University of Groningen, 9712 CP Groningen, The Netherlands; (L.W.B.); (R.A.H.)
| | | |
Collapse
|
19
|
Berry MH, Leffler J, Allen CN, Sivyer B. Functional subtypes of rodent melanopsin ganglion cells switch roles between night and day illumination. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.08.26.554902. [PMID: 38168436 PMCID: PMC10760181 DOI: 10.1101/2023.08.26.554902] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/05/2024]
Abstract
Intrinsically photosensitive retinal ganglion cells (ipRGCs), contain the photopigment melanopsin, and influence both image and non-image forming behaviors. Despite being categorized into multiple types (M1-M6), physiological variability within these types suggests our current understanding of ipRGCs is incomplete. We used multi-electrode array (MEA) recordings and unbiased cluster analysis under synaptic blockade to identify 8 functional clusters of ipRGCs, each with distinct photosensitivity and response timing. We used Cre mice to drive the expression of channelrhodopsin in SON-ipRGCs, enabling the localization of distinct ipRGCs in the dorsal retina. Additionally, we conducted a retrospective unbiased cluster analysis of ipRGC photoresponses to light stimuli across scotopic, mesopic, and photopic intensities, aimed at activating both rod and cone inputs to ipRGCs. Our results revealed shared and distinct synaptic inputs to the identified functional clusters, demonstrating that ipRGCs encode visual information with high fidelity at low light intensities, but poorly at photopic light intensities, when melanopsin activation is highest. Collectively, our findings support a framework with at least 8 functional subtypes of ipRGCs, each encoding luminance with distinct spike outputs, highlighting the inherent functional diversity and complexity of ipRGCs and suggesting a reevaluation of their contributions to retinal function and visual perception under varying light conditions.
Collapse
Affiliation(s)
- Michael H. Berry
- Department of Ophthalmology, Casey Eye Institute, Oregon Health & Science University, Portland, OR, 97239
- Medical Scientist Training program, Oregon Health & Science University, Portland, OR, 97239
| | - Joseph Leffler
- Department of Ophthalmology, Casey Eye Institute, Oregon Health & Science University, Portland, OR, 97239
| | - Charles N. Allen
- Oregon Institute of Occupational Health Sciences, Department of Behavioral Neuroscience, Oregon Health & Science University, Portland, OR, 97239
| | - Benjamin Sivyer
- Department of Ophthalmology, Casey Eye Institute, Oregon Health & Science University, Portland, OR, 97239
| |
Collapse
|
20
|
Tamayo E, Mouland JW, Lucas RJ, Brown TM. Regulation of mouse exploratory behaviour by irradiance and cone-opponent signals. BMC Biol 2023; 21:178. [PMID: 37605163 PMCID: PMC10441731 DOI: 10.1186/s12915-023-01663-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2023] [Accepted: 07/14/2023] [Indexed: 08/23/2023] Open
Abstract
BACKGROUND Animal survival depends on the ability to adjust behaviour according to environmental conditions. The circadian system plays a key role in this capability, with diel changes in the quantity (irradiance) and spectral content ('colour') of ambient illumination providing signals of time-of-day that regulate the timing of rest and activity. Light also exerts much more immediate effects on behaviour, however, that are equally important in shaping daily activity patterns. Hence, nocturnal mammals will actively avoid light and dramatically reduce their activity when light cannot be avoided. The sensory mechanisms underlying these acute effects of light are incompletely understood, particularly the importance of colour. RESULTS To define sensory mechanisms controlling mouse behaviour, we used photoreceptor-isolating stimuli and mice with altered cone spectral sensitivity (Opn1mwR), lacking melanopsin (Opn1mwR; Opn4-/-) or cone phototransduction (Cnga3-/-) in assays of light-avoidance and activity suppression. In addition to roles for melanopsin-dependent irradiance signals, we find a major influence of spectral content in both cases. Hence, remarkably, selective increases in S-cone irradiance (producing a blue-shift in spectrum replicating twilight) drive light-seeking behaviour and promote activity. These effects are opposed by signals from longer-wavelength sensitive cones, indicating a true spectrally-opponent mechanism. Using c-Fos-mapping and multielectrode electrophysiology, we further show these effects are associated with a selective cone-opponent modulation of neural activity in the key brain site implicated in acute effects of light on behaviour, the subparaventricular zone. CONCLUSIONS Collectively, these data reveal a mechanism whereby blue-shifts in the spectrum of environmental illumination, such as during twilight, promote mouse exploratory behaviour.
Collapse
Affiliation(s)
- E Tamayo
- Centre for Biological Timing, Faculty of Biology, Medicine and Health, University of Manchester, Manchester, UK
| | - J W Mouland
- Centre for Biological Timing, Faculty of Biology, Medicine and Health, University of Manchester, Manchester, UK
| | - R J Lucas
- Centre for Biological Timing, Faculty of Biology, Medicine and Health, University of Manchester, Manchester, UK
| | - T M Brown
- Centre for Biological Timing, Faculty of Biology, Medicine and Health, University of Manchester, Manchester, UK.
| |
Collapse
|
21
|
Feord RC, Gomoliszewska A, Pienaar A, Mouland JW, Brown TM. Colour opponency is widespread across the mouse subcortical visual system and differentially targets GABAergic and non-GABAergic neurons. Sci Rep 2023; 13:9313. [PMID: 37291239 PMCID: PMC10250360 DOI: 10.1038/s41598-023-35885-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2022] [Accepted: 05/25/2023] [Indexed: 06/10/2023] Open
Abstract
Colour vision plays many important roles in animal behaviour but the brain pathways processing colour remain surprisingly poorly understood, including in the most commonly used laboratory mammal, mice. Indeed, particular features of mouse retinal organisation present challenges in defining the mechanisms underlying colour vision in mice and have led to suggestions that this may substantially rely on 'non-classical' rod-cone opponency. By contrast, studies using mice with altered cone spectral sensitivity, to facilitate application of photoreceptor-selective stimuli, have revealed widespread cone-opponency across the subcortical visual system. To determine the extent to which such findings are truly reflective of wildtype mouse colour vision, and facilitate neural circuit mapping of colour-processing pathways using intersectional genetic approaches, we here establish and validate stimuli for selectively manipulating excitation of the native mouse S- and M-cone opsin classes. We then use these to confirm the widespread appearance of cone-opponency (> 25% of neurons) across the mouse visual thalamus and pretectum. We further extend these approaches to map the occurrence of colour-opponency across optogenetically identified GABAergic (GAD2-expressing) cells in key non-image forming visual centres (pretectum and intergeniculate leaflet/ventral lateral geniculate; IGL/vLGN). Strikingly, throughout, we find S-ON/M-OFF opponency is specifically enriched in non-GABAergic cells, with identified GABAergic cells in the IGL/VLGN entirely lacking this property. Collectively, therefore, we establish an important new approach for studying cone function in mice, confirming a surprisingly extensive appearance of cone-opponent processing in the mouse visual system and providing new insight into functional specialisation of the pathways processing such signals.
Collapse
Affiliation(s)
- R C Feord
- Centre for Biological Timing, Faculty of Biology, Medicine and Health, University of Manchester, Manchester, UK
| | - A Gomoliszewska
- Centre for Biological Timing, Faculty of Biology, Medicine and Health, University of Manchester, Manchester, UK
| | - A Pienaar
- Centre for Biological Timing, Faculty of Biology, Medicine and Health, University of Manchester, Manchester, UK
| | - J W Mouland
- Centre for Biological Timing, Faculty of Biology, Medicine and Health, University of Manchester, Manchester, UK
| | - T M Brown
- Centre for Biological Timing, Faculty of Biology, Medicine and Health, University of Manchester, Manchester, UK.
| |
Collapse
|
22
|
Campbell I, Sharifpour R, Vandewalle G. Light as a Modulator of Non-Image-Forming Brain Functions—Positive and Negative Impacts of Increasing Light Availability. Clocks Sleep 2023; 5:116-140. [PMID: 36975552 PMCID: PMC10047820 DOI: 10.3390/clockssleep5010012] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2022] [Revised: 02/17/2023] [Accepted: 03/13/2023] [Indexed: 03/19/2023] Open
Abstract
Light use is rising steeply, mainly because of the advent of light-emitting diode (LED) devices. LEDs are frequently blue-enriched light sources and may have different impacts on the non-image forming (NIF) system, which is maximally sensitive to blue-wavelength light. Most importantly, the timing of LED device use is widespread, leading to novel light exposure patterns on the NIF system. The goal of this narrative review is to discuss the multiple aspects that we think should be accounted for when attempting to predict how this situation will affect the NIF impact of light on brain functions. We first cover both the image-forming and NIF pathways of the brain. We then detail our current understanding of the impact of light on human cognition, sleep, alertness, and mood. Finally, we discuss questions concerning the adoption of LED lighting and screens, which offer new opportunities to improve well-being, but also raise concerns about increasing light exposure, which may be detrimental to health, particularly in the evening.
Collapse
|
23
|
Mouland JW, Watson AJ, Martial FP, Lucas RJ, Brown TM. Colour and melanopsin mediated responses in the murine retina. Front Cell Neurosci 2023; 17:1114634. [PMID: 36993934 PMCID: PMC10040579 DOI: 10.3389/fncel.2023.1114634] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2022] [Accepted: 02/17/2023] [Indexed: 03/15/2023] Open
Abstract
Introduction: Intrinsically photosensitive retinal ganglion cells (ipRGCs) integrate melanopsin and rod/cone-mediated inputs to signal to the brain. Whilst originally identified as a cell type specialised for encoding ambient illumination, several lines of evidence indicate a strong association between colour discrimination and ipRGC-driven responses. Thus, cone-mediated colour opponent responses have been widely found across ipRGC target regions in the mouse brain and influence a key ipRGC-dependent function, circadian photoentrainment. Although ipRGCs exhibiting spectrally opponent responses have also been identified, the prevalence of such properties have not been systematically evaluated across the mouse retina or yet been found in ipRGC subtypes known to influence the circadian system. Indeed, there is still uncertainty around the overall prevalence of cone-dependent colour opponency across the mouse retina, given the strong retinal gradient in S and M-cone opsin (co)-expression and overlapping spectral sensitivities of most mouse opsins.Methods: To address this, we use photoreceptor isolating stimuli in multielectrode recordings from human red cone opsin knock-in mouse (Opn1mwR) retinas to systematically survey cone mediated responses and the occurrence of colour opponency across ganglion cell layer (GCL) neurons and identify ipRGCs based on spectral comparisons and/or the persistence of light responses under synaptic blockade.Results: Despite detecting robust cone-mediated responses across the retina, we find cone opponency is rare, especially outside of the central retina (overall ~3% of GCL neurons). In keeping with previous suggestions we also see some evidence of rod-cone opponency (albeit even more rare under our experimental conditions), but find no evidence for any enrichment of cone (or rod) opponent responses among functionally identified ipRGCs.Conclusion: In summary, these data suggest the widespread appearance of cone-opponency across the mouse early visual system and ipRGC-related responses may be an emergent feature of central visual processing mechanisms.
Collapse
Affiliation(s)
- Joshua W. Mouland
- Centre for Biological Timing, Faculty of Biology Medicine and Health, University of Manchester, Manchester, United Kingdom
- Division of Diabetes, Endocrinology and Gastroenterology, Faculty of Biology Medicine and Health, University of Manchester, Manchester, United Kingdom
- *Correspondence: Joshua W. Mouland
| | - Alex J. Watson
- Centre for Biological Timing, Faculty of Biology Medicine and Health, University of Manchester, Manchester, United Kingdom
- Division of Diabetes, Endocrinology and Gastroenterology, Faculty of Biology Medicine and Health, University of Manchester, Manchester, United Kingdom
| | - Franck P. Martial
- Centre for Biological Timing, Faculty of Biology Medicine and Health, University of Manchester, Manchester, United Kingdom
- Division of Neuroscience and Experimental Psychology, Faculty of Biology Medicine and Health, University of Manchester, Manchester, United Kingdom
| | - Robert J. Lucas
- Centre for Biological Timing, Faculty of Biology Medicine and Health, University of Manchester, Manchester, United Kingdom
- Division of Neuroscience and Experimental Psychology, Faculty of Biology Medicine and Health, University of Manchester, Manchester, United Kingdom
| | - Timothy M. Brown
- Centre for Biological Timing, Faculty of Biology Medicine and Health, University of Manchester, Manchester, United Kingdom
- Division of Diabetes, Endocrinology and Gastroenterology, Faculty of Biology Medicine and Health, University of Manchester, Manchester, United Kingdom
| |
Collapse
|
24
|
Wang Y, Belušič G, Pen I, Beukeboom LW, Wertheim B, Stavenga DG, Hut RA. Circadian rhythm entrainment of the jewel wasp, Nasonia vitripennis, by antagonistic interactions of multiple spectral inputs. Proc Biol Sci 2023; 290:20222319. [PMID: 36750184 PMCID: PMC9904953 DOI: 10.1098/rspb.2022.2319] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/09/2023] Open
Abstract
Circadian light entrainment in some insects is regulated by blue-light-sensitive cryptochrome (CRY) protein that is expressed in the clock neurons, but this is not the case in hymenopterans. The hymenopteran clock does contain CRY, but it appears to be light-insensitive. Therefore, we investigated the role of retinal photoreceptors in the photic entrainment of the jewel wasp Nasonia vitripennis. Application of monochromatic light stimuli at different light intensities caused phase shifts in the wasp's circadian activity from which an action spectrum with three distinct peaks was derived. Electrophysiological recordings from the compound eyes and ocelli revealed the presence of three photoreceptor classes, with peak sensitivities at 340 nm (ultraviolet), 450 nm (blue) and 530 nm (green). An additional photoreceptor class in the ocelli with sensitivity maximum at 560-580 nm (red) was found. Whereas a simple sum of photoreceptor spectral sensitivities could not explain the action spectrum of the circadian phase shifts, modelling of the action spectrum indicates antagonistic interactions between pairs of spectral photoreceptors, residing in the compound eyes and the ocelli. Our findings imply that the photic entrainment mechanism in N. vitripennis encompasses the neural pathways for measuring the absolute luminance as well as the circuits mediating colour opponency.
Collapse
Affiliation(s)
- Yifan Wang
- Groningen Institute for Evolutionary Life Sciences, University of Groningen, 9712 CP Groningen, the Netherlands
| | - Gregor Belušič
- Department of Biology, Biotechnical Faculty, University of Ljubljana, 1000 Ljubljana, Slovenia
| | - Ido Pen
- Groningen Institute for Evolutionary Life Sciences, University of Groningen, 9712 CP Groningen, the Netherlands
| | - Leo W. Beukeboom
- Groningen Institute for Evolutionary Life Sciences, University of Groningen, 9712 CP Groningen, the Netherlands
| | - Bregje Wertheim
- Groningen Institute for Evolutionary Life Sciences, University of Groningen, 9712 CP Groningen, the Netherlands
| | - Doekele G. Stavenga
- Groningen Institute for Evolutionary Life Sciences, University of Groningen, 9712 CP Groningen, the Netherlands
| | - Roelof A. Hut
- Groningen Institute for Evolutionary Life Sciences, University of Groningen, 9712 CP Groningen, the Netherlands
| |
Collapse
|
25
|
Canazei M, Papousek I, Weiss EM. Light Intervention Effects on Circadian Activity Rhythm Parameters and Nighttime Sleep in Dementia Assessed by Wrist Actigraphy: A Systematic Review and Meta-Analysis. THE GERONTOLOGIST 2022; 62:e614-e628. [PMID: 34788794 DOI: 10.1093/geront/gnab168] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2021] [Indexed: 12/13/2022] Open
Abstract
BACKGROUND AND OBJECTIVES Persons with dementia often show circadian rhythm disturbances and sleep problems. Timed light exposure seems to be a promising nonpharmacological treatment option. In this review, meta-analyses were run on light effects on circadian activity rhythm parameters in persons with dementia measured with wrist actimetry. Furthermore, we update a Cochrane review, published in 2014, on actigraphically measured light effects in nighttime sleep parameters in persons with dementia. RESEARCH DESIGN AND METHODS Four electronic databases were searched for randomized controlled trials. Effects in meta-analyses were summarized by using mean differences and 95% confidence intervals. We followed Preferred Reporting Items for Systematic Reviews and Meta-Analyses guidelines to assess the risk of bias and registered the review protocol (PROSPERO: CRD42020149001). RESULTS Thirteen trials met inclusion criteria, and either utilized light therapy devices, ambient room lighting systems, or dawn-dusk interventions. Eleven of these studies were subjected to meta-analyses. They did not reveal significant light effects on circadian activity parameters: amplitude (p = .62; n = 313), acrophase (p = .34; n = 313), intradaily variability (p = .51; n = 354), and interdaily stability (p = .38; n = 354). Furthermore, no light effects were found on sleep parameters: total sleep duration (p = .53; n = 594), sleep efficiency (p = .63; n = 333), wake after sleep onset (p = .95; n = 212), and sleep onset latency (p = .26; n = 156). Subgroup analyses, pooling data from 3 studies including persons with Alzheimer's dementia, also did not show light effects on circadian activity and sleep parameters. The overall risk of bias of included studies was high. DISCUSSION AND IMPLICATIONS There is insufficient evidence for actigraphically measured circadian light effects in persons with dementia. More high-quality research is needed to recommend the application of adjunctive light.
Collapse
Affiliation(s)
- Markus Canazei
- Institute of Psychology, University of Innsbruck, Innsbruck, Austria
| | - Ilona Papousek
- Institute of Psychology, University of Graz, Graz, Austria
| | - Elisabeth M Weiss
- Institute of Psychology, University of Innsbruck, Innsbruck, Austria
| |
Collapse
|
26
|
Preferences of Dairy Cattle for Supplemental Light-Emitting Diode Lighting in the Resting Area. Animals (Basel) 2022; 12:ani12151894. [PMID: 35892544 PMCID: PMC9331357 DOI: 10.3390/ani12151894] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2022] [Revised: 07/19/2022] [Accepted: 07/20/2022] [Indexed: 11/17/2022] Open
Abstract
Light from the environment is important for vision and regulating various biological processes. Providing supplemental lighting in the stall area could allow for individually targeted or group-level control of light. This study aimed to determine whether dairy cattle had preferences for short-term exposure to white (full-spectrum) light-emitting diode (LED) light or no LED light, yellow-green or white LED light, and blue or white LED light in the stall area. In total, 14 lactating cows were housed in a free-stall pen with unrestricted access to 28 stalls. LED light was controlled separately for each side of the stall platform. Two combinations of light were tested per week, and each week consisted of three adaptation days and four treatment days. Lying behaviour and video data were recorded continuously using leg-mounted pedometers and cameras, respectively. Preference was assessed by the amount of time spent lying and the number of bouts under each light treatment. No differences occurred between treatments within each week for daily lying time and number of bouts. Similarly, no differences occurred between treatments within each time period. Further controlled studies of long-term exposure to different LED wavelengths and intensities are required to determine potential benefits on metabolic processes.
Collapse
|
27
|
Dim Blue Light at Night Induces Spatial Memory Impairment in Mice by Hippocampal Neuroinflammation and Oxidative Stress. Antioxidants (Basel) 2022; 11:antiox11071218. [PMID: 35883709 PMCID: PMC9311634 DOI: 10.3390/antiox11071218] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2022] [Revised: 06/12/2022] [Accepted: 06/17/2022] [Indexed: 12/04/2022] Open
Abstract
Light pollution is one of the most serious public problems, especially the night light. However, the effect of dim blue light at night (dLAN-BL) on cognitive function is unclear. In this study, we evaluated the effects of exposure to dLAN-BL in C57BL/6J mice for 4 consecutive weeks. Our results showed dLAN-BL significantly impaired spatial learning and memory and increased plasma corticosterone level in mice. Consistent with these changes, we observed dLAN-BL significantly increased the numbers and activation of microglia and the levels of oxidative stress product MDA in the hippocampus, decreased the levels of antioxidant enzymes Glutathione peroxidase (GSH-Px), Superoxide dismutase (SOD), Gluathione reductase (Gsr), total antioxidants (T-AOC) and the number of neurons in the hippocampus, up-regulated the mRNA expression levels of IL6, TNF-α and the protein expression levels of iNOS, COX2, TLR4, p-p65, Cleaved-Caspase3 and BAX, and down-regulated the mRNA expression levels of IL4, IL10, Psd95, Snap25, Sirt1, Dcx and the protein expression level of BCL2. In vitro results further showed corticosterone (10uM)-induced BV2 cell activation and up-regulated content of IL6, TNF-α in the cell supernatant and the protein expression levels of iNOS, COX2, p-p65 in BV2 cells. Our findings suggested dLAN-BL up-regulated plasma corticosterone level and hippocampal microglia activation, which in turn caused oxidative stress and neuroinflammation, leading to neuronal loss and synaptic dysfunction, ultimately leading to spatial learning and memory dysfunction in mice.
Collapse
|
28
|
Häfker NS, Connan-McGinty S, Hobbs L, McKee D, Cohen JH, Last KS. Animal behavior is central in shaping the realized diel light niche. Commun Biol 2022; 5:562. [PMID: 35676530 PMCID: PMC9177748 DOI: 10.1038/s42003-022-03472-z] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2022] [Accepted: 05/10/2022] [Indexed: 11/09/2022] Open
Abstract
AbstractAnimal behavior in space and time is structured by the perceived day/night cycle. However, this is modified by the animals’ own movement within its habitat, creating a realized diel light niche (RDLN). To understand the RDLN, we investigated the light as experienced by zooplankton undergoing synchronized diel vertical migration (DVM) in an Arctic fjord around the spring equinox. We reveal a highly dampened light cycle with diel changes being about two orders of magnitude smaller compared to the surface or a static depth. The RDLN is further characterized by unique wavelength-specific irradiance cycles. We discuss the relevance of RDLNs for animal adaptations and interactions, as well as implications for circadian clock entrainment in the wild and laboratory.
Collapse
|
29
|
Abstract
SignificanceThe function of our biological clock is dependent on environmental light. Rodent studies have shown that there are multiple colors that affect the clock, but indirect measures in humans suggest blue light is key. We performed functional MRI studies in human subjects with unprecedented spatial resolution to investigate color sensitivity of our clock. Here, we show that narrowband blue, green, and orange light were all effective in changing neuronal activity of the clock. While the clock of nocturnal rodents is excited by light, the human clock responds with a decrease in neuronal activity as indicated by a negative BOLD response. The sensitivity of the clock to multiple colors should be integrated in light therapy aimed to strengthen our 24-h rhythms.
Collapse
|
30
|
Ashton A, Foster RG, Jagannath A. Photic Entrainment of the Circadian System. Int J Mol Sci 2022; 23:ijms23020729. [PMID: 35054913 PMCID: PMC8775994 DOI: 10.3390/ijms23020729] [Citation(s) in RCA: 29] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2021] [Revised: 12/17/2021] [Accepted: 12/22/2021] [Indexed: 01/27/2023] Open
Abstract
Circadian rhythms are essential for the survival of all organisms, enabling them to predict daily changes in the environment and time their behaviour appropriately. The molecular basis of such rhythms is the circadian clock, a self-sustaining molecular oscillator comprising a transcriptional–translational feedback loop. This must be continually readjusted to remain in alignment with the external world through a process termed entrainment, in which the phase of the master circadian clock in the suprachiasmatic nuclei (SCN) is adjusted in response to external time cues. In mammals, the primary time cue, or “zeitgeber”, is light, which inputs directly to the SCN where it is integrated with additional non-photic zeitgebers. The molecular mechanisms underlying photic entrainment are complex, comprising a number of regulatory factors. This review will outline the photoreception pathways mediating photic entrainment, and our current understanding of the molecular pathways that drive it in the SCN.
Collapse
|
31
|
Effect of pre-hatch incubator lights on the ontogeny of CNS opsins and photoreceptors in the Pekin duck. Poult Sci 2022; 101:101699. [PMID: 35176701 PMCID: PMC8857459 DOI: 10.1016/j.psj.2022.101699] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2021] [Revised: 11/30/2021] [Accepted: 01/03/2022] [Indexed: 02/02/2023] Open
Abstract
Incubated eggs with and without light had no effect on post-hatch production. Light does not influence the ontogeny of retinal rod and cone photoreceptors. Brain OPN4 mRNA is increased the later stages of embryonic development.
The Pekin duck is a valuable agricultural commodity globally and in the United States. Pekin ducks are seasonal breeders; they are sensitive to light and thus, research on the neuroendocrine and behavioral responses are needed to maximize production and to improve their welfare. There is compelling evidence that specific wavelengths of light may adversely alter the growth and welfare of meat (grow out) ducks. However, despite a birds’ dependence upon light, in commercial poultry hatcheries, incubators almost exclusively hold eggs in the dark. Therefore, our objective was to determine the effects of lighting on the expression of retina photoreceptors (RPs) and deep brain photoreceptors (DBPs) during duck embryological development. Two groups of ducks were raised with and without light over 21 d from egg laying, embryonic day 0. Brain and retinal tissues were collected at embryonic days 3, 7, 11, 16, and 21 of a 24 d incubation period. qRT-PCR was performed on RPs (OPN1LW, OPN2SW, OPN1SW, MAFA, RHO, and RBP3) and the DBP OPN4M from retinal and brain samples, respectively. We find that the presence and absence of light during pre-hatch incubation, had no influence on the expression of any retinal photoreceptor. However, a late embryological increase in DBP OPN4M expression was observed. Taken together, the impact of light during pre-hatch incubation does not impact the overall post-hatch production. However, future directions should explore how OPN4M pre-hatch activation impacts Pekin duck post-hatch development and growth.
Collapse
|
32
|
Fernandez FX. Current Insights into Optimal Lighting for Promoting Sleep and Circadian Health: Brighter Days and the Importance of Sunlight in the Built Environment. Nat Sci Sleep 2022; 14:25-39. [PMID: 35023979 PMCID: PMC8747801 DOI: 10.2147/nss.s251712] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/23/2021] [Accepted: 12/14/2021] [Indexed: 12/14/2022] Open
Abstract
This perspective considers the possibility that daytime's intrusion into night made possible by electric lighting may not be as pernicious to sleep and circadian health as the encroachment of nighttime into day wrought by 20th century architectural practices that have left many people estranged from sunlight.
Collapse
|
33
|
Seeing and sensing temporal variations in natural daylight. PROGRESS IN BRAIN RESEARCH 2022; 273:275-301. [DOI: 10.1016/bs.pbr.2022.04.013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
|
34
|
Beyond irradiance: Visual signals influencing mammalian circadian function. PROGRESS IN BRAIN RESEARCH 2022; 273:145-169. [DOI: 10.1016/bs.pbr.2022.04.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
35
|
Slow vision: Measuring melanopsin-mediated light effects in animal models. PROGRESS IN BRAIN RESEARCH 2022; 273:117-143. [DOI: 10.1016/bs.pbr.2022.04.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
36
|
The Drosophila circadian phase response curve to light: Conservation across seasonally relevant photoperiods and anchorage to sunset. Physiol Behav 2021; 245:113691. [PMID: 34958825 DOI: 10.1016/j.physbeh.2021.113691] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2021] [Revised: 09/17/2021] [Accepted: 12/23/2021] [Indexed: 12/31/2022]
Abstract
Photic history, including the relative duration of day versus night in a 24-hour cycle, is known to influence subsequent circadian responses to light in mammals. Whether such modulation is present in Drosophila is currently unknown. To date, all photic phase-response curves (PRCs) generated from Drosophila have done so with animals housed under seasonally agnostic equatorial photoperiods with alternating 12-hour segments of light and darkness. However, the genus contains thousands of species, some of which populate high and low-latitude habitats (20-50° north or south of the Equator) where seasonal variations in the light-dark schedule are pronounced. Here, we address this disconnect by constructing the first high-resolution Drosophila seasonal atlas for light-induced circadian phase-resetting. Testing the light responses of over 4,000 Drosophila at 120 timepoints across 5 seasonally-relevant rectangular photoperiods (i.e., LD 8:16, 10:14, 12:12, 14:10, and 16:8; 24 hourly intervals surveyed in each), we determined that many aspects of the fly circadian PRC waveform are conserved with increasing daylength. Surprisingly though, irrespective of LD schedule, the start of the PRCs always remained anchored to the timing of subjective sunset, creating a differential overlap of the advance zone with the morning hours after subjective sunrise that was maximized under summer photoperiods and minimized under winter photoperiods. These data suggest that there may be differences in flies versus mammals as to how the photoperiod modulates the waveform and amplitude of the circadian PRC to light. On the other hand, they support the possibility that the lights-off transition determines the phase-positioning of photic PRCs across seasons and across species. More work is necessary to test this claim and whether it might factor into the timing of seasonal light responses in humans.
Collapse
|
37
|
Fullerene-Filtered Light Spectrum and Fullerenes Modulate Emotional and Pain Processing in Mice. Symmetry (Basel) 2021. [DOI: 10.3390/sym13112004] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
The most symmetric molecule, Buckminster fullerene C60, due to its unique properties, has been intensively studied for various medical and technological advances. Minimally invasive and minimally toxic treatments hold great promise for future applications. With this in mind, this research exploited the physical properties of fullerene molecules for potential therapeutic effects. Pristine fullerenes have peak absorbance in the 380–500 nm range, making them an attractive violet-blue light filter. Since spectral quality of light can affect behavior, this research used resting state functional magnetic resonance imaging (rs fMRI) and behavioral testing to directly evaluate the effects of fullerene-filtered light on brain processing and behavior in mice. The same method was used to study if hydroxyl fullerene water complexes (3HFWC), with or without fullerene-filtered light, modulated brain processing. A month-long, daily exposure to fullerene-filtered light led to decreased activation of the brain area involved in emotional processing (amygdala). Water supplemented with 3HFWC resulted in an activation of brain areas involved in pain modulation and processing (periaqueductal gray), and decreased latency to first reaction when tested with a hot plate. The combination of fullerene-filtered light with 3HFWC in drinking water led to restored sensitivity to a hot plate and activation of brain areas involved in cognitive functions (prelimbic, anterior cingulate and retrosplenial cortex). These results uncovered the potential of fullerene-filtered light to impact emotional processing and modulate pain perception, indicating its further use in stress and pain management.
Collapse
|
38
|
Cohen JH, Last KS, Charpentier CL, Cottier F, Daase M, Hobbs L, Johnsen G, Berge J. Photophysiological cycles in Arctic krill are entrained by weak midday twilight during the Polar Night. PLoS Biol 2021; 19:e3001413. [PMID: 34665816 PMCID: PMC8525745 DOI: 10.1371/journal.pbio.3001413] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2021] [Accepted: 09/16/2021] [Indexed: 11/18/2022] Open
Abstract
Light plays a fundamental role in the ecology of organisms in nearly all habitats on Earth and is central for processes such as vision and the entrainment of the circadian clock. The poles represent extreme light regimes with an annual light cycle including periods of Midnight Sun and Polar Night. The Arctic Ocean extends to the North Pole, and marine light extremes reach their maximum extent in this habitat. During the Polar Night, traditional definitions of day and night and seasonal photoperiod become irrelevant since there are only "twilight" periods defined by the sun's elevation below the horizon at midday; we term this "midday twilight." Here, we characterize light across a latitudinal gradient (76.5° N to 81° N) during Polar Night in January. Our light measurements demonstrate that the classical solar diel light cycle dominant at lower latitudes is modulated during Arctic Polar Night by lunar and auroral components. We therefore question whether this particular ambient light environment is relevant to behavioral and visual processes. We reveal from acoustic field observations that the zooplankton community is undergoing diel vertical migration (DVM) behavior. Furthermore, using electroretinogram (ERG) recording under constant darkness, we show that the main migratory species, Arctic krill (Thysanoessa inermis) show endogenous increases in visual sensitivity during the subjective night. This change in sensitivity is comparable to that under exogenous dim light acclimations, although differences in speed of vision suggest separate mechanisms. We conclude that the extremely weak midday twilight experienced by krill at high latitudes during the darkest parts of the year has physiological and ecological relevance.
Collapse
Affiliation(s)
- Jonathan H. Cohen
- School of Marine Science & Policy, University of Delaware, Lewes, Delaware, United States of America
- * E-mail:
| | - Kim S. Last
- Scottish Association for Marine Science, Oban, United Kingdom
| | - Corie L. Charpentier
- Department of Biology, Stetson University, DeLand, Florida, United States of America
| | - Finlo Cottier
- Scottish Association for Marine Science, Oban, United Kingdom
- UiT, The Arctic University of Norway, Faculty for Biosciences, Fisheries and Economics, Department for Arctic and Marine Biology, Tromsø, Norway
| | - Malin Daase
- UiT, The Arctic University of Norway, Faculty for Biosciences, Fisheries and Economics, Department for Arctic and Marine Biology, Tromsø, Norway
| | - Laura Hobbs
- Scottish Association for Marine Science, Oban, United Kingdom
- Department of Mathematics and Statistics, University of Strathclyde, Glasgow, United Kingdom
| | - Geir Johnsen
- University Centre in Svalbard, Longyearbyen, Norway
- Centre of Autonomous Marine Operations and Systems, Department of Biology, Norwegian University of Science and Technology, Trondheim, Norway
| | - Jørgen Berge
- UiT, The Arctic University of Norway, Faculty for Biosciences, Fisheries and Economics, Department for Arctic and Marine Biology, Tromsø, Norway
- University Centre in Svalbard, Longyearbyen, Norway
- Centre of Autonomous Marine Operations and Systems, Department of Biology, Norwegian University of Science and Technology, Trondheim, Norway
| |
Collapse
|
39
|
Introduction. Vision (Basel) 2021. [DOI: 10.1017/9781108946339.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022] Open
|
40
|
Index. Vision (Basel) 2021. [DOI: 10.1017/9781108946339.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022] Open
|
41
|
|
42
|
Visions. Vision (Basel) 2021. [DOI: 10.1017/9781108946339.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
|
43
|
Visions of a Digital Future. Vision (Basel) 2021. [DOI: 10.1017/9781108946339.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022] Open
|
44
|
Science, Vision, Perspective. Vision (Basel) 2021. [DOI: 10.1017/9781108946339.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
|
45
|
The Evolution of Eyes. Vision (Basel) 2021. [DOI: 10.1017/9781108946339.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
|
46
|
Computer Vision. Vision (Basel) 2021. [DOI: 10.1017/9781108946339.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022] Open
|
47
|
Vision of the Cosmos. Vision (Basel) 2021. [DOI: 10.1017/9781108946339.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022] Open
|
48
|
Mouland JW, Pienaar A, Williams C, Watson AJ, Lucas RJ, Brown TM. Extensive cone-dependent spectral opponency within a discrete zone of the lateral geniculate nucleus supporting mouse color vision. Curr Biol 2021; 31:3391-3400.e4. [PMID: 34111401 PMCID: PMC8360768 DOI: 10.1016/j.cub.2021.05.024] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2020] [Revised: 04/23/2021] [Accepted: 05/13/2021] [Indexed: 12/15/2022]
Abstract
Color vision, originating with opponent processing of spectrally distinct photoreceptor signals, plays important roles in animal behavior.1-4 Surprisingly, however, comparatively little is understood about color processing in the brain, including in widely used laboratory mammals such as mice. The retinal gradient in S- and M-cone opsin (co-)expression has traditionally been considered an impediment to mouse color vision.5-8 However, recent data indicate that mice exhibit robust chromatic discrimination within the central-upper visual field.9 Retinal color opponency has been reported to emerge from superimposing inhibitory surround receptive fields on the cone opsin expression gradient, and by introducing opponent rod signals in retinal regions with sparse M-cone opsin expression.10-13 The relative importance of these proposed mechanisms in determining the properties of neurons at higher visual processing stages remains unknown. We address these questions using multielectrode recordings from the lateral geniculate nucleus (LGN) in mice with altered M-cone spectral sensitivity (Opn1mwR) and multispectral stimuli that allow selective modulation of signaling by individual opsin classes. Remarkably, we find many (∼25%) LGN cells are color opponent, that such cells are localized to a distinct medial LGN zone and that their properties cannot simply be explained by the proposed retinal opponent mechanisms. Opponent responses in LGN can be driven solely by cones, independent of cone-opsin expression gradients and rod input, with many cells exhibiting spatially congruent antagonistic receptive fields. Our data therefore suggest previously unidentified mechanisms may support extensive and sophisticated color processing in the mouse LGN.
Collapse
Affiliation(s)
- Josh W Mouland
- Centre for Biological Timing, Faculty of Biology, Medicine and Health, University of Manchester, Manchester M13 9PT, UK
| | - Abigail Pienaar
- Centre for Biological Timing, Faculty of Biology, Medicine and Health, University of Manchester, Manchester M13 9PT, UK
| | - Christopher Williams
- Centre for Biological Timing, Faculty of Biology, Medicine and Health, University of Manchester, Manchester M13 9PT, UK
| | - Alex J Watson
- Centre for Biological Timing, Faculty of Biology, Medicine and Health, University of Manchester, Manchester M13 9PT, UK
| | - Robert J Lucas
- Centre for Biological Timing, Faculty of Biology, Medicine and Health, University of Manchester, Manchester M13 9PT, UK
| | - Timothy M Brown
- Centre for Biological Timing, Faculty of Biology, Medicine and Health, University of Manchester, Manchester M13 9PT, UK.
| |
Collapse
|
49
|
Riddell N, Crewther SG, Murphy MJ, Tani Y. Long-Wavelength-Filtered Light Transiently Inhibits Negative Lens-Induced Axial Eye Growth in the Chick Myopia Model. Transl Vis Sci Technol 2021; 10:38. [PMID: 34459859 PMCID: PMC8411858 DOI: 10.1167/tvst.10.9.38] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Purpose Eye growth and myopia development in chicks, and some other animal models, can be suppressed by rearing under near-monochromatic, short-wavelength blue light. We aimed to determine whether similar effects could be achieved using glass filters that transmit a broader range of short and middle wavelengths. Methods On day 6 or 7 post-hatch, 169 chicks were assigned to one of three monocular lens conditions (−10 D, +10 D, plano) and reared for 7 or 10 days under one of four 201-lux lighting conditions: (1) B410 long-wavelength–filtered light, (2) B460 long-wavelength–filtered light, (3) Y48 short-wavelength–filtered light, or (4) HA50 broadband light. Results At 7 days, B410 (but not B460) long-wavelength–filtered light had significantly inhibited negative lens induced axial growth relative to Y48 short-wavelength–filtered light (mean difference in experimental eye = −0.249 mm; P = 0.006) and HA50 broadband light (mean difference = −0.139 mm; P = 0.038). B410 filters also inhibited the negative lens-induced increase in vitreous chamber depth relative to all other filter conditions. Corresponding changes in refraction did not occur, and biometric measurements in a separate cohort of chicks suggested that the axial dimension changes were transient and not maintained at 10 days. Conclusions Chromatic effects on eye growth can be achieved using filters that transmit a broad range of wavelengths even in the presence of strong cues for myopia development. Translational Relevance Broad-wavelength filters that provide a more “naturalistic” visual experience relative to monochromatic light have potential to alter myopia development, although the effects shown here were modest and transient and require exploration in further species.
Collapse
Affiliation(s)
- Nina Riddell
- Department of Psychology and Counselling, La Trobe University, Melbourne, Australia
| | - Sheila G Crewther
- Department of Psychology and Counselling, La Trobe University, Melbourne, Australia
| | - Melanie J Murphy
- Department of Psychology and Counselling, La Trobe University, Melbourne, Australia
| | - Yuki Tani
- Technical Research & Development Department, Vision Care Section, HOYA Corporation, Tokyo, Japan
| |
Collapse
|
50
|
Color vision: More than meets the eye. Curr Biol 2021; 31:R948-R950. [PMID: 34375596 DOI: 10.1016/j.cub.2021.06.044] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Mice can discriminate color, but unlike in primates, studies have so far failed to find robust cone-opponent cells in the retina. A new study shows that a sub-region of the mouse visual thalamus is specialized for processing color.
Collapse
|