1
|
da Silva Ribeiro T, Lollar MJ, Sprengelmeyer QD, Huang Y, Benson DM, Orr MS, Johnson ZC, Corbett-Detig RB, Pool JE. Recombinant inbred line panels inform the genetic architecture and interactions of adaptive traits in Drosophila melanogaster. G3 (BETHESDA, MD.) 2025; 15:jkaf051. [PMID: 40053834 PMCID: PMC12060232 DOI: 10.1093/g3journal/jkaf051] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/26/2024] [Accepted: 02/25/2025] [Indexed: 03/09/2025]
Abstract
The distribution of allelic effects on traits, along with their gene-by-gene and gene-by-environment interactions, contributes to the phenotypes available for selection and the trajectories of adaptive variants. Nonetheless, uncertainty persists regarding the effect sizes underlying adaptations and the importance of genetic interactions. Herein, we aimed to investigate the genetic architecture and the epistatic and environmental interactions involving loci that contribute to multiple adaptive traits using 2 new panels of Drosophila melanogaster recombinant inbred lines (RILs). To better fit our data, we re-implemented functions from R/qtl using additive genetic models. We found 14 quantitative trait loci (QTLs) underlying melanism, wing size, song pattern, and ethanol resistance. By combining our mapping results with population genetic statistics, we identified potential new genes related to these traits. None of the detected QTLs showed clear evidence of epistasis, and our power analysis indicated that we should have seen at least 1 significant interaction if sign epistasis or strong positive epistasis played a pervasive role in trait evolution. In contrast, we did find roles for gene-by-environment interactions involving pigmentation traits. Overall, our data suggest that the genetic architecture of adaptive traits often involves alleles of detectable effect, that strong epistasis does not always play a role in adaptation, and that environmental interactions can modulate the effect size of adaptive alleles.
Collapse
Affiliation(s)
- Tiago da Silva Ribeiro
- Laboratory of Genetics, University of Wisconsin–Madison, Madison, WI 53706, USA
- Department of Integrative Biology, University of Wisconsin–Madison, Madison, WI 53706, USA
| | - Matthew J Lollar
- Laboratory of Genetics, University of Wisconsin–Madison, Madison, WI 53706, USA
| | | | - Yuheng Huang
- Laboratory of Genetics, University of Wisconsin–Madison, Madison, WI 53706, USA
| | - Derek M Benson
- Laboratory of Genetics, University of Wisconsin–Madison, Madison, WI 53706, USA
| | - Megan S Orr
- Laboratory of Genetics, University of Wisconsin–Madison, Madison, WI 53706, USA
| | - Zachary C Johnson
- Laboratory of Genetics, University of Wisconsin–Madison, Madison, WI 53706, USA
| | - Russell B Corbett-Detig
- Genomics Institute, University of California, Santa Cruz, Santa Cruz, CA 95064, USA
- Department of Biomolecular Engineering, University of California, Santa Cruz, Santa Cruz, CA 95064, USA
| | - John E Pool
- Laboratory of Genetics, University of Wisconsin–Madison, Madison, WI 53706, USA
- Department of Integrative Biology, University of Wisconsin–Madison, Madison, WI 53706, USA
| |
Collapse
|
2
|
da Silva Ribeiro T, Lollar MJ, Sprengelmeyer QD, Huang Y, Benson DM, Orr MS, Johnson ZC, Corbett-Detig RB, Pool JE. Recombinant inbred line panels inform the genetic architecture and interactions of adaptive traits in Drosophila melanogaster. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2024.05.14.594228. [PMID: 38798433 PMCID: PMC11118405 DOI: 10.1101/2024.05.14.594228] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/29/2024]
Abstract
The distribution of allelic effects on traits, along with their gene-by-gene and gene-by-environment interactions, contributes to the phenotypes available for selection and the trajectories of adaptive variants. Nonetheless, uncertainty persists regarding the effect sizes underlying adaptations and the importance of genetic interactions. Herein, we aimed to investigate the genetic architecture and the epistatic and environmental interactions involving loci that contribute to multiple adaptive traits using two new panels of Drosophila melanogaster recombinant inbred lines (RILs). To better fit our data, we re-implemented functions from R/qtl (Broman et al. 2003) using additive genetic models. We found 14 quantitative trait loci (QTL) underlying melanism, wing size, song pattern, and ethanol resistance. By combining our mapping results with population genetic statistics, we identified potential new genes related to these traits. None of the detected QTLs showed clear evidence of epistasis, and our power analysis indicated that we should have seen at least one significant interaction if sign epistasis or strong positive epistasis played a pervasive role in trait evolution. In contrast, we did find roles for gene-by-environment interactions involving pigmentation traits. Overall, our data suggest that the genetic architecture of adaptive traits often involves alleles of detectable effect, that strong epistasis does not always play a role in adaptation, and that environmental interactions can modulate the effect size of adaptive alleles.
Collapse
Affiliation(s)
- Tiago da Silva Ribeiro
- Laboratory of Genetics, University of Wisconsin-Madison, Madison, WI, 53706, USA
- Department of Integrative Biology, University of Wisconsin-Madison, Madison, WI, 53706, USA
| | - Matthew J. Lollar
- Laboratory of Genetics, University of Wisconsin-Madison, Madison, WI, 53706, USA
| | | | - Yuheng Huang
- Laboratory of Genetics, University of Wisconsin-Madison, Madison, WI, 53706, USA
| | - Derek M. Benson
- Laboratory of Genetics, University of Wisconsin-Madison, Madison, WI, 53706, USA
| | - Megan S. Orr
- Laboratory of Genetics, University of Wisconsin-Madison, Madison, WI, 53706, USA
| | - Zachary C. Johnson
- Laboratory of Genetics, University of Wisconsin-Madison, Madison, WI, 53706, USA
| | - Russell B. Corbett-Detig
- Genomics Institute, University of California, Santa Cruz, Santa Cruz, CA, 95064, USA
- Department of Biomolecular Engineering, University of California, Santa Cruz, Santa Cruz, CA, 95064, USA
| | - John E. Pool
- Laboratory of Genetics, University of Wisconsin-Madison, Madison, WI, 53706, USA
- Department of Integrative Biology, University of Wisconsin-Madison, Madison, WI, 53706, USA
| |
Collapse
|
3
|
Tang X, Liu H, Wang X, Chang L, Liu Q, Xia Q, Zhao P. BmSLC7A5 is essential for silk protein synthesis and larval development in Bombyx mori. INSECT SCIENCE 2024; 31:1425-1439. [PMID: 38284747 DOI: 10.1111/1744-7917.13314] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/10/2023] [Revised: 11/10/2023] [Accepted: 11/14/2023] [Indexed: 01/30/2024]
Abstract
Insects produce silk to form cocoons, nests, and webs, which are important for their survival and reproduction. However, little is known about the molecular mechanism of silk protein synthesis at the translation level. The solute carrier family 7 (SLC7) genes are involved in activating the target of rapamycin complex 1 (TORC1) signaling pathway and protein translation process, but the physiological roles of SLC7 genes in silk-producing insects have not been reported. Here, we found that amino acid signaling regulates silk protein synthesis and larval development via the L-type amino acid transporter 1 (LAT1; also known as SLC7A5) in Bombyx mori. A total of 12 SLC7 homologs were identified in the silkworm genome, among which BmSLC7A5 was found to be a silk gland-enriched gene and may be involved in leucine transport. Bioinformatics analysis indicated that SLC7A5 displays high homology and a close phylogenetic relationship in silk-producing insects. Subsequently, we found that leucine treatment significantly increased silk protein synthesis by improving the transcription and protein levels of silk genes. Furthermore, systemic and silk gland-specific knockout of BmSLC7A5 led to decreased silk protein synthesis by inhibiting TORC1 signaling, and somatic mutation also resulted in arrested development from the 5th instar to the early pupal stage. Altogether, our study reveals that BmSLC7A5 is involved in regulating silk protein synthesis and larval development by affecting the TORC1 signaling pathway, which provides a new strategy and target for improving silk yield.
Collapse
Affiliation(s)
- Xin Tang
- Integrative Science Center of Germplasm Creation in Western China (CHONGQING) Science City, Biological Science Research Center, Southwest University, Chongqing, China
- Chongqing Key Laboratory of Chinese Medicine & Health Science, Chongqing Academy of Chinese Materia Medica, Chongqing College of Traditional Chinese Medicine, Chongqing, China
| | - Huawei Liu
- Integrative Science Center of Germplasm Creation in Western China (CHONGQING) Science City, Biological Science Research Center, Southwest University, Chongqing, China
- Key Laboratory for Germplasm Creation in Upper Reaches of the Yangtze River, Ministry of Agriculture and Rural Affairs, Chongqing, China
| | - Xin Wang
- Integrative Science Center of Germplasm Creation in Western China (CHONGQING) Science City, Biological Science Research Center, Southwest University, Chongqing, China
- Key Laboratory for Germplasm Creation in Upper Reaches of the Yangtze River, Ministry of Agriculture and Rural Affairs, Chongqing, China
| | - Li Chang
- Integrative Science Center of Germplasm Creation in Western China (CHONGQING) Science City, Biological Science Research Center, Southwest University, Chongqing, China
- Key Laboratory for Germplasm Creation in Upper Reaches of the Yangtze River, Ministry of Agriculture and Rural Affairs, Chongqing, China
| | - Qingsong Liu
- Integrative Science Center of Germplasm Creation in Western China (CHONGQING) Science City, Biological Science Research Center, Southwest University, Chongqing, China
- Key Laboratory for Germplasm Creation in Upper Reaches of the Yangtze River, Ministry of Agriculture and Rural Affairs, Chongqing, China
| | - Qingyou Xia
- Integrative Science Center of Germplasm Creation in Western China (CHONGQING) Science City, Biological Science Research Center, Southwest University, Chongqing, China
- Key Laboratory for Germplasm Creation in Upper Reaches of the Yangtze River, Ministry of Agriculture and Rural Affairs, Chongqing, China
| | - Ping Zhao
- Integrative Science Center of Germplasm Creation in Western China (CHONGQING) Science City, Biological Science Research Center, Southwest University, Chongqing, China
- Key Laboratory for Germplasm Creation in Upper Reaches of the Yangtze River, Ministry of Agriculture and Rural Affairs, Chongqing, China
| |
Collapse
|
4
|
Bhattacharya R, Kumari J, Banerjee S, Tripathi J, Parihar SS, Mohan N, Sinha P. Hippo effector, Yorkie, is a tumor suppressor in select Drosophila squamous epithelia. Proc Natl Acad Sci U S A 2024; 121:e2319666121. [PMID: 39288176 PMCID: PMC11441523 DOI: 10.1073/pnas.2319666121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2023] [Accepted: 08/20/2024] [Indexed: 09/19/2024] Open
Abstract
Mammalian Yes-associated protein (YAP) and transcriptional coactivator with PDZ-binding motif (TAZ) and Drosophila Yorkie (Yki) are transcription cofactors of the highly conserved Hippo signaling pathway. It has been long assumed that the YAP/TAZ/Yki signaling drives cell proliferation during organ growth. However, its instructive role in regulating developmentally programmed organ growth, if any, remains elusive. Out-of-context gain of YAP/TAZ/Yki signaling often turns oncogenic. Paradoxically, mechanically strained, and differentiated squamous epithelia display developmentally programmed constitutive nuclear YAP/TAZ/Yki signaling. The unknown, therefore, is how a growth-promoting YAP/TAZ/Yki signaling restricts proliferation in differentiated squamous epithelia. Here, we show that reminiscent of a tumor suppressor, Yki negatively regulates the cell growth-promoting PI3K/Akt/TOR signaling in the squamous epithelia of Drosophila tubular organs. Thus, downregulation of Yki signaling in the squamous epithelium of the adult male accessory gland (MAG) up-regulates PI3K/Akt/TOR signaling, inducing cell hypertrophy, exit from their cell cycle arrest, and, finally, culminating in squamous cell carcinoma (SCC). Thus, blocking PI3K/Akt/TOR signaling arrests Yki loss-induced MAG-SCC. Further, MAG-SCCs, like other lethal carcinomas, secrete a cachectin, Impl2-the Drosophila homolog of mammalian IGFBP7-inducing cachexia and shortening the lifespan of adult males. Moreover, in the squamous epithelium of other tubular organs, like the dorsal trunk of larval tracheal airways or adult Malpighian tubules, downregulation of Yki signaling triggers PI3K/Akt/TOR-induced cell hypertrophy. Our results reveal that Yki signaling plays an instructive, antiproliferative role in the squamous epithelia of tubular organs.
Collapse
Affiliation(s)
- Rachita Bhattacharya
- Biological Sciences and Bioengineering, Indian Institute of Technology Kanpur, Uttar Pradesh208016, India
- Mehta Family Center for Engineering in Medicine, Indian Institute of Technology Kanpur, Uttar Pradesh208016, India
| | - Jaya Kumari
- Biological Sciences and Bioengineering, Indian Institute of Technology Kanpur, Uttar Pradesh208016, India
| | - Shweta Banerjee
- Biological Sciences and Bioengineering, Indian Institute of Technology Kanpur, Uttar Pradesh208016, India
- Mehta Family Center for Engineering in Medicine, Indian Institute of Technology Kanpur, Uttar Pradesh208016, India
| | - Jyoti Tripathi
- Biological Sciences and Bioengineering, Indian Institute of Technology Kanpur, Uttar Pradesh208016, India
- Mehta Family Center for Engineering in Medicine, Indian Institute of Technology Kanpur, Uttar Pradesh208016, India
| | - Saurabh Singh Parihar
- Biological Sciences and Bioengineering, Indian Institute of Technology Kanpur, Uttar Pradesh208016, India
- Mehta Family Center for Engineering in Medicine, Indian Institute of Technology Kanpur, Uttar Pradesh208016, India
| | - Nitin Mohan
- Biological Sciences and Bioengineering, Indian Institute of Technology Kanpur, Uttar Pradesh208016, India
- Mehta Family Center for Engineering in Medicine, Indian Institute of Technology Kanpur, Uttar Pradesh208016, India
| | - Pradip Sinha
- Biological Sciences and Bioengineering, Indian Institute of Technology Kanpur, Uttar Pradesh208016, India
- Mehta Family Center for Engineering in Medicine, Indian Institute of Technology Kanpur, Uttar Pradesh208016, India
| |
Collapse
|
5
|
Bakopoulos D, Golenkina S, Dark C, Christie EL, Sánchez-Sánchez BJ, Stramer BM, Cheng LY. Convergent insulin and TGF-β signalling drives cancer cachexia by promoting aberrant fat body ECM accumulation in a Drosophila tumour model. EMBO Rep 2023; 24:e57695. [PMID: 38014610 DOI: 10.15252/embr.202357695] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2023] [Revised: 10/16/2023] [Accepted: 10/26/2023] [Indexed: 11/29/2023] Open
Abstract
In this study, we found that in the adipose tissue of wildtype animals, insulin and TGF-β signalling converge via a BMP antagonist short gastrulation (sog) to regulate ECM remodelling. In tumour bearing animals, Sog also modulates TGF-β signalling to regulate ECM accumulation in the fat body. TGF-β signalling causes ECM retention in the fat body and subsequently depletes muscles of fat body-derived ECM proteins. Activation of insulin signalling, inhibition of TGF-β signalling, or modulation of ECM levels via SPARC, Rab10 or Collagen IV in the fat body, is able to rescue tissue wasting in the presence of tumour. Together, our study highlights the importance of adipose ECM remodelling in the context of cancer cachexia.
Collapse
Affiliation(s)
- Daniel Bakopoulos
- Peter MacCallum Cancer Centre, Melbourne, Vic, Australia
- Sir Peter MacCallum Department of Oncology, The University of Melbourne, Melbourne, Vic, Australia
| | | | - Callum Dark
- Peter MacCallum Cancer Centre, Melbourne, Vic, Australia
- Sir Peter MacCallum Department of Oncology, The University of Melbourne, Melbourne, Vic, Australia
| | - Elizabeth L Christie
- Peter MacCallum Cancer Centre, Melbourne, Vic, Australia
- Sir Peter MacCallum Department of Oncology, The University of Melbourne, Melbourne, Vic, Australia
| | | | - Brian M Stramer
- Kings College London, Randall Centre for Cell & Molecular Biophysics, London, UK
| | - Louise Y Cheng
- Peter MacCallum Cancer Centre, Melbourne, Vic, Australia
- Sir Peter MacCallum Department of Oncology, The University of Melbourne, Melbourne, Vic, Australia
- Department of Anatomy and Physiology, The University of Melbourne, Melbourne, Vic, Australia
| |
Collapse
|
6
|
Gou J, Zhang T, Othmer HG. The Interaction of Mechanics and the Hippo Pathway in Drosophila melanogaster. Cancers (Basel) 2023; 15:4840. [PMID: 37835534 PMCID: PMC10571775 DOI: 10.3390/cancers15194840] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2023] [Revised: 09/10/2023] [Accepted: 09/15/2023] [Indexed: 10/15/2023] Open
Abstract
Drosophila melanogaster has emerged as an ideal system for studying the networks that control tissue development and homeostasis and, given the similarity of the pathways involved, controlled and uncontrolled growth in mammalian systems. The signaling pathways used in patterning the Drosophila wing disc are well known and result in the emergence of interaction of these pathways with the Hippo signaling pathway, which plays a central role in controlling cell proliferation and apoptosis. Mechanical effects are another major factor in the control of growth, but far less is known about how they exert their control. Herein, we develop a mathematical model that integrates the mechanical interactions between cells, which occur via adherens and tight junctions, with the intracellular actin network and the Hippo pathway so as to better understand cell-autonomous and non-autonomous control of growth in response to mechanical forces.
Collapse
Affiliation(s)
- Jia Gou
- Department of Mathematics, University of California, Riverside, CA 92507, USA;
| | - Tianhao Zhang
- School of Mathematics, University of Minnesota, Minneapolis, MN 55455, USA;
| | - Hans G. Othmer
- School of Mathematics, University of Minnesota, Minneapolis, MN 55455, USA;
| |
Collapse
|
7
|
Honda D, Okumura M, Chihara T. Crosstalk between the mTOR and Hippo pathways. Dev Growth Differ 2023; 65:337-347. [PMID: 37209252 DOI: 10.1111/dgd.12867] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2023] [Revised: 04/27/2023] [Accepted: 05/16/2023] [Indexed: 05/22/2023]
Abstract
Cell behavior changes in response to multiple stimuli, such as growth factors, nutrients, and cell density. The mechanistic target of the rapamycin (mTOR) pathway is activated by growth factors and nutrient stimuli to regulate cell growth and autophagy, whereas the Hippo pathway has negative effects on cell proliferation and tissue growth in response to cell density, DNA damage, and hormonal signals. These two signaling pathways must be precisely regulated and integrated for proper cell behavior. This integrative mechanism is not completely understood; nevertheless, recent studies have suggested that components of the mTOR and Hippo pathways interact with each other. Herein, as per contemporary knowledge, we review the molecular mechanisms of the interaction between the mTOR and Hippo pathways in mammals and Drosophila. Moreover, we discuss the advantage of this interaction in terms of tissue growth and nutrient consumption.
Collapse
Affiliation(s)
- Daichi Honda
- Program of Biomedical Science, Graduate School of Integrated Sciences for Life, Hiroshima University, Hiroshima, Japan
| | - Misako Okumura
- Program of Biomedical Science, Graduate School of Integrated Sciences for Life, Hiroshima University, Hiroshima, Japan
- Program of Basic Biology, Graduate School of Integrated Sciences for Life, Hiroshima University, Hiroshima, Japan
| | - Takahiro Chihara
- Program of Biomedical Science, Graduate School of Integrated Sciences for Life, Hiroshima University, Hiroshima, Japan
- Program of Basic Biology, Graduate School of Integrated Sciences for Life, Hiroshima University, Hiroshima, Japan
| |
Collapse
|
8
|
Ptp61F integrates Hippo, TOR, and actomyosin pathways to control three-dimensional organ size. Cell Rep 2022; 41:111640. [DOI: 10.1016/j.celrep.2022.111640] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2022] [Revised: 09/16/2022] [Accepted: 10/20/2022] [Indexed: 11/17/2022] Open
|
9
|
Nogueira Alves A, Oliveira MM, Koyama T, Shingleton A, Mirth CK. Ecdysone coordinates plastic growth with robust pattern in the developing wing. eLife 2022; 11:72666. [PMID: 35261337 PMCID: PMC8947767 DOI: 10.7554/elife.72666] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2021] [Accepted: 03/07/2022] [Indexed: 11/25/2022] Open
Abstract
Animals develop in unpredictable, variable environments. In response to environmental change, some aspects of development adjust to generate plastic phenotypes. Other aspects of development, however, are buffered against environmental change to produce robust phenotypes. How organ development is coordinated to accommodate both plastic and robust developmental responses is poorly understood. Here, we demonstrate that the steroid hormone ecdysone coordinates both plasticity of organ size and robustness of organ pattern in the developing wings of the fruit fly Drosophila melanogaster. Using fed and starved larvae that lack prothoracic glands, which synthesize ecdysone, we show that nutrition regulates growth both via ecdysone and via an ecdysone-independent mechanism, while nutrition regulates patterning only via ecdysone. We then demonstrate that growth shows a graded response to ecdysone concentration, while patterning shows a threshold response. Collectively, these data support a model where nutritionally regulated ecdysone fluctuations confer plasticity by regulating disc growth in response to basal ecdysone levels and confer robustness by initiating patterning only once ecdysone peaks exceed a threshold concentration. This could represent a generalizable mechanism through which hormones coordinate plastic growth with robust patterning in the face of environmental change.
Collapse
Affiliation(s)
| | | | | | - Alexander Shingleton
- Department of Biological Sciences, University of Illinois at Chicago, Chicago, United States
| | - Christen K Mirth
- School of Biological Sciences, Monash University, Melbourne, Australia
| |
Collapse
|
10
|
Abstract
The Drosophila wing imaginal disc is a tissue of undifferentiated cells that are precursors of the wing and most of the notum of the adult fly. The wing disc first forms during embryogenesis from a cluster of ∼30 cells located in the second thoracic segment, which invaginate to form a sac-like structure. They undergo extensive proliferation during larval stages to form a mature larval wing disc of ∼35,000 cells. During this time, distinct cell fates are assigned to different regions, and the wing disc develops a complex morphology. Finally, during pupal stages the wing disc undergoes morphogenetic processes and then differentiates to form the adult wing and notum. While the bulk of the wing disc comprises epithelial cells, it also includes neurons and glia, and is associated with tracheal cells and muscle precursor cells. The relative simplicity and accessibility of the wing disc, combined with the wealth of genetic tools available in Drosophila, have combined to make it a premier system for identifying genes and deciphering systems that play crucial roles in animal development. Studies in wing imaginal discs have made key contributions to many areas of biology, including tissue patterning, signal transduction, growth control, regeneration, planar cell polarity, morphogenesis, and tissue mechanics.
Collapse
Affiliation(s)
- Bipin Kumar Tripathi
- Department of Molecular Biology and Biochemistry, Waksman Institute, Rutgers University, Piscataway, NJ 08854, USA
| | - Kenneth D Irvine
- Department of Molecular Biology and Biochemistry, Waksman Institute, Rutgers University, Piscataway, NJ 08854, USA
| |
Collapse
|
11
|
Noorbakhsh N, Hayatmoghadam B, Jamali M, Golmohammadi M, Kavianpour M. The Hippo signaling pathway in leukemia: function, interaction, and carcinogenesis. Cancer Cell Int 2021; 21:705. [PMID: 34953494 PMCID: PMC8710012 DOI: 10.1186/s12935-021-02408-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2021] [Accepted: 12/13/2021] [Indexed: 11/13/2022] Open
Abstract
Cancer can be considered as a communication disease between and within cells; nevertheless, there is no effective therapy for the condition, and this disease is typically identified at its late stage. Chemotherapy, radiation, and molecular-targeted treatment are typically ineffective against cancer cells. A better grasp of the processes of carcinogenesis, aggressiveness, metastasis, treatment resistance, detection of the illness at an earlier stage, and obtaining a better therapeutic response will be made possible. Researchers have discovered that cancerous mutations mainly affect signaling pathways. The Hippo pathway, as one of the main signaling pathways of a cell, has a unique ability to cause cancer. In order to treat cancer, a complete understanding of the Hippo signaling system will be required. On the other hand, interaction with other pathways like Wnt, TGF-β, AMPK, Notch, JNK, mTOR, and Ras/MAP kinase pathways can contribute to carcinogenesis. Phosphorylation of oncogene YAP and TAZ could lead to leukemogenesis, which this process could be regulated via other signaling pathways. This review article aimed to shed light on how the Hippo pathway interacts with other cellular signaling networks and its functions in leukemia.
Collapse
Affiliation(s)
| | - Bentolhoda Hayatmoghadam
- Department of Clinical Biochemistry, School of Pharmacy and Pharmaceutical Sciences, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Marzieh Jamali
- Gene Therapy Research Center, Digestive Diseases Research Institute, Tehran University of Medical Sciences, Tehran, Iran
| | - Maryam Golmohammadi
- Applied Cell Sciences and Hematology Department, Faculty of Medical Sciences, Tarbiat Modares University, Tehran, Iran
| | - Maria Kavianpour
- Department of Applied Cell Sciences, School of Advanced Technologies in Medicine, Tehran University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
12
|
Strassburger K, Lutz M, Müller S, Teleman AA. Ecdysone regulates Drosophila wing disc size via a TORC1 dependent mechanism. Nat Commun 2021; 12:6684. [PMID: 34795214 PMCID: PMC8602387 DOI: 10.1038/s41467-021-26780-0] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2021] [Accepted: 10/15/2021] [Indexed: 11/09/2022] Open
Abstract
Most cells in a developing organ stop proliferating when the organ reaches a correct, final size. The underlying molecular mechanisms are not understood. We find that in Drosophila the hormone ecdysone controls wing disc size. To study how ecdysone affects wing size, we inhibit endogenous ecdysone synthesis and feed larvae exogenous ecdysone in a dose-controlled manner. For any given ecdysone dose, discs stop proliferating at a particular size, with higher doses enabling discs to reach larger sizes. Termination of proliferation coincides with a drop in TORC1, but not Dpp or Yki signaling. Reactivating TORC1 bypasses the termination of proliferation, indicating that TORC1 is a main downstream effector causing proliferation termination at the maximal ecdysone-dependent size. Experimental manipulation of Dpp or Yki signaling can bypass proliferation termination in hinge and notum regions, but not the pouch, suggesting that the mechanisms regulating proliferation termination may be distinct in different disc regions.
Collapse
Affiliation(s)
- Katrin Strassburger
- grid.7497.d0000 0004 0492 0584German Cancer Research Center (DKFZ), 69120 Heidelberg, Germany ,grid.7700.00000 0001 2190 4373Heidelberg University, 69120 Heidelberg, Germany ,grid.7700.00000 0001 2190 4373CellNetworks - Cluster of Excellence, Heidelberg University, Heidelberg, Germany ,grid.4488.00000 0001 2111 7257Present Address: Technische Universität Dresden, 01217 Dresden, Germany
| | - Marilena Lutz
- grid.7497.d0000 0004 0492 0584German Cancer Research Center (DKFZ), 69120 Heidelberg, Germany ,grid.7700.00000 0001 2190 4373Heidelberg University, 69120 Heidelberg, Germany ,grid.7700.00000 0001 2190 4373CellNetworks - Cluster of Excellence, Heidelberg University, Heidelberg, Germany
| | - Sandra Müller
- grid.7497.d0000 0004 0492 0584German Cancer Research Center (DKFZ), 69120 Heidelberg, Germany ,grid.7700.00000 0001 2190 4373Heidelberg University, 69120 Heidelberg, Germany ,grid.7700.00000 0001 2190 4373CellNetworks - Cluster of Excellence, Heidelberg University, Heidelberg, Germany
| | - Aurelio A. Teleman
- grid.7497.d0000 0004 0492 0584German Cancer Research Center (DKFZ), 69120 Heidelberg, Germany ,grid.7700.00000 0001 2190 4373Heidelberg University, 69120 Heidelberg, Germany ,grid.7700.00000 0001 2190 4373CellNetworks - Cluster of Excellence, Heidelberg University, Heidelberg, Germany
| |
Collapse
|
13
|
Cho YS, Jiang J. Hippo-Independent Regulation of Yki/Yap/Taz: A Non-canonical View. Front Cell Dev Biol 2021; 9:658481. [PMID: 33869224 PMCID: PMC8047194 DOI: 10.3389/fcell.2021.658481] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2021] [Accepted: 03/02/2021] [Indexed: 12/22/2022] Open
Abstract
Initially identified in Drosophila, the Hippo signaling pathway has emerged as an evolutionarily conserved tumor suppressor pathway that controls tissue growth and organ size by simultaneously inhibiting cell proliferation and promoting cell death. Deregulation of Hippo pathway activity has been implicated in a wide range of human cancers. The core Hippo pathway consists of a kinase cascade: an upstream kinase Hippo (Hpo)/MST1/2 phosphorylates and activates a downstream kinase Warts (Wts)/Lats1/2, leading to phosphorylation and inactivation of a transcriptional coactivator Yki/YAP/Taz. Many upstream signals, including cell adhesion, polarity, mechanical stress, and soluble factors, regulate Hippo signaling through the kinase cascade, leading to change in the cytoplasmic/nuclear localization of Yki/YAP/Taz. However, recent studies have uncovered other mechanisms that regulate Yki/YAP/Taz subcellular localization, stability, and activity independent of the Hpo kinase cascade. These mechanisms provide additional layers of pathway regulation, nodes for pathway crosstalk, and opportunities for pathway intervention in cancer treatment and regenerative medicine.
Collapse
Affiliation(s)
- Yong Suk Cho
- Department of Molecular Biology, UT Southwestern Medical Center, Dallas, TX, United States
| | - Jin Jiang
- Department of Molecular Biology, UT Southwestern Medical Center, Dallas, TX, United States.,Department of Pharmacology, UT Southwestern Medical Center, Dallas, TX, United States
| |
Collapse
|
14
|
Ibar C, Irvine KD. Integration of Hippo-YAP Signaling with Metabolism. Dev Cell 2021; 54:256-267. [PMID: 32693058 DOI: 10.1016/j.devcel.2020.06.025] [Citation(s) in RCA: 103] [Impact Index Per Article: 25.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2020] [Revised: 05/27/2020] [Accepted: 06/21/2020] [Indexed: 12/12/2022]
Abstract
The Hippo-Yes-associated protein (YAP) signaling network plays a central role as an integrator of signals that control cellular proliferation and differentiation. The past several years have provided an increasing appreciation and understanding of the diverse mechanisms through which metabolites and metabolic signals influence Hippo-YAP signaling, and how Hippo-YAP signaling, in turn, controls genes that direct cellular and organismal metabolism. These connections enable Hippo-YAP signaling to coordinate organ growth and homeostasis with nutrition and metabolism. In this review, we discuss the current understanding of some of the many interconnections between Hippo-YAP signaling and metabolism and how they are affected in disease conditions.
Collapse
Affiliation(s)
- Consuelo Ibar
- Waksman Institute and Department of Molecular Biology and Biochemistry, Rutgers University, Piscataway, NJ 08854, USA
| | - Kenneth D Irvine
- Waksman Institute and Department of Molecular Biology and Biochemistry, Rutgers University, Piscataway, NJ 08854, USA.
| |
Collapse
|
15
|
Texada MJ, Koyama T, Rewitz K. Regulation of Body Size and Growth Control. Genetics 2020; 216:269-313. [PMID: 33023929 PMCID: PMC7536854 DOI: 10.1534/genetics.120.303095] [Citation(s) in RCA: 90] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2020] [Accepted: 06/29/2020] [Indexed: 12/20/2022] Open
Abstract
The control of body and organ growth is essential for the development of adults with proper size and proportions, which is important for survival and reproduction. In animals, adult body size is determined by the rate and duration of juvenile growth, which are influenced by the environment. In nutrient-scarce environments in which more time is needed for growth, the juvenile growth period can be extended by delaying maturation, whereas juvenile development is rapidly completed in nutrient-rich conditions. This flexibility requires the integration of environmental cues with developmental signals that govern internal checkpoints to ensure that maturation does not begin until sufficient tissue growth has occurred to reach a proper adult size. The Target of Rapamycin (TOR) pathway is the primary cell-autonomous nutrient sensor, while circulating hormones such as steroids and insulin-like growth factors are the main systemic regulators of growth and maturation in animals. We discuss recent findings in Drosophila melanogaster showing that cell-autonomous environment and growth-sensing mechanisms, involving TOR and other growth-regulatory pathways, that converge on insulin and steroid relay centers are responsible for adjusting systemic growth, and development, in response to external and internal conditions. In addition to this, proper organ growth is also monitored and coordinated with whole-body growth and the timing of maturation through modulation of steroid signaling. This coordination involves interorgan communication mediated by Drosophila insulin-like peptide 8 in response to tissue growth status. Together, these multiple nutritional and developmental cues feed into neuroendocrine hubs controlling insulin and steroid signaling, serving as checkpoints at which developmental progression toward maturation can be delayed. This review focuses on these mechanisms by which external and internal conditions can modulate developmental growth and ensure proper adult body size, and highlights the conserved architecture of this system, which has made Drosophila a prime model for understanding the coordination of growth and maturation in animals.
Collapse
Affiliation(s)
| | - Takashi Koyama
- Department of Biology, University of Copenhagen, 2100, Denmark
| | - Kim Rewitz
- Department of Biology, University of Copenhagen, 2100, Denmark
| |
Collapse
|
16
|
Yin J, Zhang J, Li T, Sun X, Qin S, Hou CX, Zhang GZ, Li MW. BmSd gene regulates the silkworm wing size by affecting the Hippo pathway. INSECT SCIENCE 2020; 27:655-664. [PMID: 31225693 DOI: 10.1111/1744-7917.12702] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/12/2019] [Revised: 05/17/2019] [Accepted: 06/11/2019] [Indexed: 06/09/2023]
Abstract
Insect wings are developed from the wing disc during metamorphosis. Bombyx mori, a model lepidopteran insect, loses flight ability after long-term domestication from the wild silkworm, Bombyx mandarina. The mw mutant (u11 strain) shows minute wings compared to wild type (e.g., p50 strain) wings. RNA sequencing analysis previously revealed differential Hippo-pathway-related gene expression between the u11 and p50 strains. The Hippo pathway is an evolutionarily conserved signaling cascade that controls organ size during development in animals. In this study, the function of BmSd which has been characterized as one of the Hippo-pathway-related genes was analyzed for silkworm wing development. We found that mats, warts, and hippo expression levels were higher in u11 compared to p50 wing discs. BmSd (scalloped) expression, which encodes a prominent transcriptional partner to Yorkie (Yki), gradually decreased during the wandering stage in u11, but exhibited the opposite expression pattern in p50. When BmSd was knocked down by small interfering RNA during the wandering stage in the p50 strain, 57.9% of the individuals showed minute wings. Additionally, ex, kibra, and wingless expression levels decreased in the BmSd knockdown mutant. Further, BmSd deletion mediated by clustered regularly interspaced short palindromic repeats (CRISPR) / CRISPR-associated protein 9 induced 50% of individuals with minute wings, a phenotype similar to the mw mutant. This result demonstrates that BmSd plays pivotal roles in silkworm wing development. Our results show that the Hippo signaling pathway participates and plays crucial roles in the regulation of silkworm wing development, and our findings provide a basis for further research on B. mori wing development.
Collapse
Affiliation(s)
- Jin Yin
- Jiangsu Key Laboratory of Sericultural Biology and Biotechnology, School of Biotechnology, Jiangsu University of Science and Technology, Zhenjiang, Jiangsu, China
| | - Jing Zhang
- Jiangsu Key Laboratory of Sericultural Biology and Biotechnology, School of Biotechnology, Jiangsu University of Science and Technology, Zhenjiang, Jiangsu, China
| | - Tao Li
- Jiangsu Key Laboratory of Sericultural Biology and Biotechnology, School of Biotechnology, Jiangsu University of Science and Technology, Zhenjiang, Jiangsu, China
| | - Xia Sun
- Jiangsu Key Laboratory of Sericultural Biology and Biotechnology, School of Biotechnology, Jiangsu University of Science and Technology, Zhenjiang, Jiangsu, China
- The Key Laboratory of Silkworm and Mulberry Genetic Improvement, Ministry of Agriculture, The Sericultural Research Institute, Chinese Academy of Agricultural Sciences, Zhenjiang, Jiangsu, China
| | - Sheng Qin
- Jiangsu Key Laboratory of Sericultural Biology and Biotechnology, School of Biotechnology, Jiangsu University of Science and Technology, Zhenjiang, Jiangsu, China
- The Key Laboratory of Silkworm and Mulberry Genetic Improvement, Ministry of Agriculture, The Sericultural Research Institute, Chinese Academy of Agricultural Sciences, Zhenjiang, Jiangsu, China
| | - Cheng-Xiang Hou
- Jiangsu Key Laboratory of Sericultural Biology and Biotechnology, School of Biotechnology, Jiangsu University of Science and Technology, Zhenjiang, Jiangsu, China
- The Key Laboratory of Silkworm and Mulberry Genetic Improvement, Ministry of Agriculture, The Sericultural Research Institute, Chinese Academy of Agricultural Sciences, Zhenjiang, Jiangsu, China
| | - Guo-Zheng Zhang
- Jiangsu Key Laboratory of Sericultural Biology and Biotechnology, School of Biotechnology, Jiangsu University of Science and Technology, Zhenjiang, Jiangsu, China
- The Key Laboratory of Silkworm and Mulberry Genetic Improvement, Ministry of Agriculture, The Sericultural Research Institute, Chinese Academy of Agricultural Sciences, Zhenjiang, Jiangsu, China
| | - Mu-Wang Li
- Jiangsu Key Laboratory of Sericultural Biology and Biotechnology, School of Biotechnology, Jiangsu University of Science and Technology, Zhenjiang, Jiangsu, China
- The Key Laboratory of Silkworm and Mulberry Genetic Improvement, Ministry of Agriculture, The Sericultural Research Institute, Chinese Academy of Agricultural Sciences, Zhenjiang, Jiangsu, China
| |
Collapse
|
17
|
Vea IM, Shingleton AW. Network-regulated organ allometry: The developmental regulation of morphological scaling. WILEY INTERDISCIPLINARY REVIEWS-DEVELOPMENTAL BIOLOGY 2020; 10:e391. [PMID: 32567243 DOI: 10.1002/wdev.391] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/31/2019] [Revised: 04/30/2020] [Accepted: 05/23/2020] [Indexed: 12/11/2022]
Abstract
Morphological scaling relationships, or allometries, describe how traits grow coordinately and covary among individuals in a population. The developmental regulation of scaling is essential to generate correctly proportioned adults across a range of body sizes, while the mis-regulation of scaling may result in congenital birth defects. Research over several decades has identified the developmental mechanisms that regulate the size of individual traits. Nevertheless, we still have poor understanding of how these mechanisms work together to generate correlated size variation among traits in response to environmental and genetic variation. Conceptually, morphological scaling can be generated by size-regulatory factors that act directly on multiple growing traits (trait-autonomous scaling), or indirectly via hormones produced by central endocrine organs (systemically regulated scaling), and there are a number of well-established examples of such mechanisms. There is much less evidence, however, that genetic and environmental variation actually acts on these mechanisms to generate morphological scaling in natural populations. More recent studies indicate that growing organs can themselves regulate the growth of other organs in the body. This suggests that covariation in trait size can be generated by network-regulated scaling mechanisms that respond to changes in the growth of individual traits. Testing this hypothesis, and one of the main challenges of understanding morphological scaling, requires connecting mechanisms elucidated in the laboratory with patterns of scaling observed in the natural world. This article is categorized under: Establishment of Spatial and Temporal Patterns > Regulation of Size, Proportion, and Timing Comparative Development and Evolution > Organ System Comparisons Between Species.
Collapse
Affiliation(s)
- Isabelle M Vea
- Department of Biological Sciences, University of Illinois at Chicago, Chicago, Illinois, USA
| | - Alexander W Shingleton
- Department of Biological Sciences, University of Illinois at Chicago, Chicago, Illinois, USA
| |
Collapse
|
18
|
Venugopal P, Veyssière H, Couderc JL, Richard G, Vachias C, Mirouse V. Multiple functions of the scaffold protein Discs large 5 in the control of growth, cell polarity and cell adhesion in Drosophila melanogaster. BMC DEVELOPMENTAL BIOLOGY 2020; 20:10. [PMID: 32552730 PMCID: PMC7301484 DOI: 10.1186/s12861-020-00218-0] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/24/2020] [Accepted: 04/28/2020] [Indexed: 12/24/2022]
Abstract
Background Scaffold proteins support a variety of key processes during animal development. Mutant mouse for the MAGUK protein Discs large 5 (Dlg5) presents a general growth impairment and moderate morphogenetic defects. Results Here, we generated null mutants for Drosophila Dlg5 and show that it owns similar functions in growth and epithelial architecture. Dlg5 is required for growth at a cell autonomous level in several tissues and at the organism level, affecting cell size and proliferation. Our results are consistent with Dlg5 modulating hippo pathway in the wing disc, including the impact on cell size, a defect that is reproduced by the loss of yorkie. However, other observations indicate that Dlg5 regulates growth by at least another way that may involve Myc protein but nor PI3K neither TOR pathways. Moreover, epithelia cells mutant for Dlg5 also show a reduction of apical domain determinants, though not sufficient to induce a complete loss of cell polarity. Dlg5 is also essential, in the same cells, for the presence at Adherens junctions of N-Cadherin, but not E-Cadherin. Genetic analyses indicate that junction and polarity defects are independent. Conclusions Together our data show that Dlg5 own several conserved functions that are independent of each other in regulating growth, cell polarity and cell adhesion. Moreover, they reveal a differential regulation of E-cadherin and N-cadherin apical localization.
Collapse
Affiliation(s)
- Parvathy Venugopal
- iGReD (Institute of Genetics, Reproduction and Development), Université Clermont Auvergne, UMR CNRS 6293 - INSERM U1103, Faculté de Médecine, 28 Place Henri-Dunant, 63000, Clermont-Ferrand, France.,present address : School of Biotechnology, Amrita Vishwa Vidyapeetham, Kollam, Kerala, 690525, India
| | - Hugo Veyssière
- iGReD (Institute of Genetics, Reproduction and Development), Université Clermont Auvergne, UMR CNRS 6293 - INSERM U1103, Faculté de Médecine, 28 Place Henri-Dunant, 63000, Clermont-Ferrand, France.,present address : University Clermont Auvergne, INSERM U1240, Centre de Lutte Contre le Cancer Jean PERRIN, 58 rue Montalembert, 63011, Clermont-Ferrand, France
| | - Jean-Louis Couderc
- iGReD (Institute of Genetics, Reproduction and Development), Université Clermont Auvergne, UMR CNRS 6293 - INSERM U1103, Faculté de Médecine, 28 Place Henri-Dunant, 63000, Clermont-Ferrand, France
| | - Graziella Richard
- iGReD (Institute of Genetics, Reproduction and Development), Université Clermont Auvergne, UMR CNRS 6293 - INSERM U1103, Faculté de Médecine, 28 Place Henri-Dunant, 63000, Clermont-Ferrand, France
| | - Caroline Vachias
- iGReD (Institute of Genetics, Reproduction and Development), Université Clermont Auvergne, UMR CNRS 6293 - INSERM U1103, Faculté de Médecine, 28 Place Henri-Dunant, 63000, Clermont-Ferrand, France
| | - Vincent Mirouse
- iGReD (Institute of Genetics, Reproduction and Development), Université Clermont Auvergne, UMR CNRS 6293 - INSERM U1103, Faculté de Médecine, 28 Place Henri-Dunant, 63000, Clermont-Ferrand, France.
| |
Collapse
|
19
|
Manning SA, Kroeger B, Harvey KF. The regulation of Yorkie, YAP and TAZ: new insights into the Hippo pathway. Development 2020; 147:147/8/dev179069. [PMID: 32341025 DOI: 10.1242/dev.179069] [Citation(s) in RCA: 54] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
The Hippo pathway is a highly conserved signalling pathway that regulates multiple biological processes, including organ size control and cell fate. Since its discovery, genetic and biochemical studies have elucidated several key signalling steps important for pathway activation and deactivation. In recent years, technical advances in microscopy and genome modification have allowed new insights into Hippo signalling to be revealed. These studies have highlighted that the nuclear-cytoplasmic shuttling behaviour of the Hippo pathway transcriptional co-activators Yorkie, YAP and TAZ is far more dynamic than previously appreciated, and YAP and TAZ are also regulated by liquid-liquid phase separation. Here, we review our current understanding of Yorkie, YAP and TAZ regulation, with a focus on recent microscopy-based studies.
Collapse
Affiliation(s)
- Samuel A Manning
- Department of Anatomy and Developmental Biology, and Biomedicine Discovery Institute, Monash University, Clayton, Australia 3800
| | - Benjamin Kroeger
- Department of Anatomy and Developmental Biology, and Biomedicine Discovery Institute, Monash University, Clayton, Australia 3800
| | - Kieran F Harvey
- Department of Anatomy and Developmental Biology, and Biomedicine Discovery Institute, Monash University, Clayton, Australia 3800 .,Peter MacCallum Cancer Centre, 305 Grattan St, Melbourne, Victoria, Australia 3000.,Sir Peter MacCallum Department of Oncology, The University of Melbourne, Parkville, Victoria, Australia 3010
| |
Collapse
|
20
|
Cui G, Yuan H, Jiang Z, Zhang J, Sun Z, Zhong G. Natural harmine negatively regulates the developmental signaling network of Drosophila melanogaster (Drosophilidae: Diptera) in vivo. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2020; 190:110134. [PMID: 31901541 DOI: 10.1016/j.ecoenv.2019.110134] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/20/2019] [Revised: 12/18/2019] [Accepted: 12/23/2019] [Indexed: 06/10/2023]
Abstract
The widely distributed β-carboline alkaloids exhibit promising psychopharmacological and biochemical effects. Harmine, a natural β-carboline, can inhibit insect growth and development with unclear mechanisms. In this study, harmine (at 0-200 mg/L) showed a dose-dependent inhibitory effect on the pupal weight, length, height, pupation rate and eclosion rate of fruit flies Drosophila melanogaster, which was similar to the inhibition induced by the well-known botanical insect growth regulator azadirachtin. Moreover, the expression levels of major regulators from the developmental signaling network were down-regulated during the pupal stage except Numb, Fringe, Yorkie and Pten. The Notch, Wnt, Hedgehog and TGF-β pathways mainly played vital roles in coping with harmine exposure in pupae stage, while the Hippo, Hedgehog and TGF-β elements were involved in the sex differences. Notch, Hippo, Hedgehog, Dpp and Armadillo were proved to be suppressed in the developmental inhibition with fly mutants, while Numb and Punt were increased by harmine. In conclusion, harmine significantly inhibited the development of Drosophila by negatively affecting their developmental signaling network during different stages. Our results establish a preliminary understanding of the developmental signaling network subjected to botanical component-induced growth inhibition and lay the groundwork for further application.
Collapse
Affiliation(s)
- Gaofeng Cui
- Key Laboratory of Integrated Pest Management on Crops in South China, Ministry of Agriculture and Rural Affairs, South China Agricultural University, Guangzhou, 510642, China; Key Laboratory of Natural Pesticide & Chemical Biology, Ministry of Education, South China Agricultural University, Guangzhou, 510642, China.
| | - Haiqi Yuan
- Key Laboratory of Integrated Pest Management on Crops in South China, Ministry of Agriculture and Rural Affairs, South China Agricultural University, Guangzhou, 510642, China; Key Laboratory of Natural Pesticide & Chemical Biology, Ministry of Education, South China Agricultural University, Guangzhou, 510642, China.
| | - Zhiyan Jiang
- Key Laboratory of Integrated Pest Management on Crops in South China, Ministry of Agriculture and Rural Affairs, South China Agricultural University, Guangzhou, 510642, China; Key Laboratory of Natural Pesticide & Chemical Biology, Ministry of Education, South China Agricultural University, Guangzhou, 510642, China.
| | - Jing Zhang
- Key Laboratory of Integrated Pest Management on Crops in South China, Ministry of Agriculture and Rural Affairs, South China Agricultural University, Guangzhou, 510642, China; Key Laboratory of Natural Pesticide & Chemical Biology, Ministry of Education, South China Agricultural University, Guangzhou, 510642, China.
| | - Zhipeng Sun
- Key Laboratory of Integrated Pest Management on Crops in South China, Ministry of Agriculture and Rural Affairs, South China Agricultural University, Guangzhou, 510642, China; Key Laboratory of Natural Pesticide & Chemical Biology, Ministry of Education, South China Agricultural University, Guangzhou, 510642, China.
| | - Guohua Zhong
- Key Laboratory of Integrated Pest Management on Crops in South China, Ministry of Agriculture and Rural Affairs, South China Agricultural University, Guangzhou, 510642, China; Key Laboratory of Natural Pesticide & Chemical Biology, Ministry of Education, South China Agricultural University, Guangzhou, 510642, China.
| |
Collapse
|
21
|
Tyra LK, Nandi N, Tracy C, Krämer H. Yorkie Growth-Promoting Activity Is Limited by Atg1-Mediated Phosphorylation. Dev Cell 2020; 52:605-616.e7. [PMID: 32032548 DOI: 10.1016/j.devcel.2020.01.011] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2018] [Revised: 08/26/2019] [Accepted: 01/09/2020] [Indexed: 01/31/2023]
Abstract
The expression of multiple growth-promoting genes is coordinated by the transcriptional co-activator Yorkie with its major regulatory input provided by the Hippo-Warts kinase cascade. Here, we identify Atg1/ULK1-mediated phosphorylation of Yorkie as an additional inhibitory input independent of the Hippo-Warts pathway. Two serine residues in Yorkie, S74 and S97, are Atg1/ULK1 consensus target sites and are phosphorylated by ULK1 in vitro, thereby preventing its binding to Scalloped. In vivo, gain of function of Atg1, or its activator Acinus, caused elevated Yorkie phosphorylation and inhibited Yorkie's growth-promoting activity. Loss of function of Atg1 or Acinus raised expression of Yorkie target genes and increased tissue size. Unlike Atg1's role in autophagy, Atg1-mediated phosphorylation of Yorkie does not require Atg13. Atg1 is activated by starvation and other cellular stressors and therefore can impose temporary stress-induced constraints on the growth-promoting gene networks under the control of Hippo-Yorkie signaling.
Collapse
Affiliation(s)
- Lauren K Tyra
- Peter O'Donnell Jr. Brain Institute, Department of Neuroscience, UT Southwestern Medical Center, Dallas, TX 75390-9111, USA
| | - Nilay Nandi
- Peter O'Donnell Jr. Brain Institute, Department of Neuroscience, UT Southwestern Medical Center, Dallas, TX 75390-9111, USA
| | - Charles Tracy
- Peter O'Donnell Jr. Brain Institute, Department of Neuroscience, UT Southwestern Medical Center, Dallas, TX 75390-9111, USA
| | - Helmut Krämer
- Peter O'Donnell Jr. Brain Institute, Department of Neuroscience, UT Southwestern Medical Center, Dallas, TX 75390-9111, USA; Department of Cell Biology, UT Southwestern Medical Center, Dallas, TX 75390-9111, USA.
| |
Collapse
|
22
|
Gou J, Stotsky JA, Othmer HG. Growth control in the Drosophila wing disk. WILEY INTERDISCIPLINARY REVIEWS-SYSTEMS BIOLOGY AND MEDICINE 2020; 12:e1478. [PMID: 31917525 DOI: 10.1002/wsbm.1478] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/30/2019] [Revised: 12/02/2019] [Accepted: 12/17/2019] [Indexed: 12/16/2022]
Abstract
The regulation of size and shape is a fundamental requirement of biological development and has been a subject of scientific study for centuries, but we still lack an understanding of how organisms know when to stop growing. Imaginal wing disks of the fruit fly Drosophila melanogaster, which are precursors of the adult wings, are an archetypal tissue for studying growth control. The growth of the disks is dependent on many inter- and intra-organ factors such as morphogens, mechanical forces, nutrient levels, and hormones that influence gene expression and cell growth. Extracellular signals are transduced into gene-control signals via complex signal transduction networks, and since cells typically receive many different signals, a mechanism for integrating the signals is needed. Our understanding of the effect of morphogens on tissue-level growth regulation via individual pathways has increased significantly in the last half century, but our understanding of how multiple biochemical and mechanical signals are integrated to determine whether or not a cell decides to divide is still rudimentary. Numerous fundamental questions are involved in understanding the decision-making process, and here we review the major biochemical and mechanical pathways involved in disk development with a view toward providing a basis for beginning to understand how multiple signals can be integrated at the cell level, and how this translates into growth control at the level of the imaginal disk. This article is categorized under: Analytical and Computational Methods > Computational Methods Biological Mechanisms > Cell Signaling Models of Systems Properties and Processes > Cellular Models.
Collapse
Affiliation(s)
- Jia Gou
- School of Mathematics, University of Minnesota, Minneapolis, Minnesota
| | - Jay A Stotsky
- School of Mathematics, University of Minnesota, Minneapolis, Minnesota
| | - Hans G Othmer
- School of Mathematics, University of Minnesota, Minneapolis, Minnesota
| |
Collapse
|
23
|
Liang Z, Lu Y, Jiang M, Qian Y, Zhu L, Kuang S, Chen F, Feng Y, Hu X, Cao G, Xue R, Gong C. Alternative isoforms of BmYki have different transcriptional co-activator activity in the silkworm, Bombyx mori. Int J Biochem Cell Biol 2019; 116:105599. [DOI: 10.1016/j.biocel.2019.105599] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2019] [Revised: 09/02/2019] [Accepted: 09/04/2019] [Indexed: 02/07/2023]
|
24
|
Borreguero-Muñoz N, Fletcher GC, Aguilar-Aragon M, Elbediwy A, Vincent-Mistiaen ZI, Thompson BJ. The Hippo pathway integrates PI3K-Akt signals with mechanical and polarity cues to control tissue growth. PLoS Biol 2019; 17:e3000509. [PMID: 31613895 PMCID: PMC6814241 DOI: 10.1371/journal.pbio.3000509] [Citation(s) in RCA: 77] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2018] [Revised: 10/25/2019] [Accepted: 10/03/2019] [Indexed: 11/19/2022] Open
Abstract
The Hippo signalling pathway restricts cell proliferation in animal tissues by inhibiting Yes-associated protein (YAP or YAP1) and Transcriptional Activator with a PDZ domain (TAZ or WW-domain-containing transcriptional activator [WWTR1]), coactivators of the Scalloped (Sd or TEAD) DNA-binding transcription factor. Drosophila has a single YAP/TAZ homolog named Yorkie (Yki) that is regulated by Hippo pathway signalling in response to epithelial polarity and tissue mechanics during development. Here, we show that Yki translocates to the nucleus to drive Sd-mediated cell proliferation in the ovarian follicle cell epithelium in response to mechanical stretching caused by the growth of the germline. Importantly, mechanically induced Yki nuclear localisation also requires nutritionally induced insulin/insulin-like growth factor 1 (IGF-1) signalling (IIS) via phosphatidyl inositol-3-kinase (PI3K), phosphoinositide-dependent kinase 1 (PDK1 or PDPK1), and protein kinase B (Akt or PKB) in the follicular epithelium. We find similar results in the developing Drosophila wing, where Yki becomes nuclear in the mechanically stretched cells of the wing pouch during larval feeding, which induces IIS, but translocates to the cytoplasm upon cessation of feeding in the third instar stage. Inactivating Akt prevents nuclear Yki localisation in the wing disc, while ectopic activation of the insulin receptor, PI3K, or Akt/PKB is sufficient to maintain nuclear Yki in mechanically stimulated cells of the wing pouch even after feeding ceases. Finally, IIS also promotes YAP nuclear localisation in response to mechanical cues in mammalian skin epithelia. Thus, the Hippo pathway has a physiological function as an integrator of epithelial cell polarity, tissue mechanics, and nutritional cues to control cell proliferation and tissue growth in both Drosophila and mammals.
Collapse
Affiliation(s)
| | - Georgina C. Fletcher
- Epithelial Biology Laboratory, The Francis Crick Institute, London, United Kingdom
| | - Mario Aguilar-Aragon
- Epithelial Biology Laboratory, The Francis Crick Institute, London, United Kingdom
| | - Ahmed Elbediwy
- Epithelial Biology Laboratory, The Francis Crick Institute, London, United Kingdom
| | | | - Barry J. Thompson
- Epithelial Biology Laboratory, The Francis Crick Institute, London, United Kingdom
- EMBL Australia, Department of Cancer Biology & Therapeutics, The John Curtin School of Medical Research, The Australian National University, Acton, Australia
- * E-mail:
| |
Collapse
|
25
|
Wang ZH, Liu Y, Chaitankar V, Pirooznia M, Xu H. Electron transport chain biogenesis activated by a JNK-insulin-Myc relay primes mitochondrial inheritance in Drosophila. eLife 2019; 8:49309. [PMID: 31612862 PMCID: PMC6809605 DOI: 10.7554/elife.49309] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2019] [Accepted: 10/13/2019] [Indexed: 12/25/2022] Open
Abstract
Oogenesis features an enormous increase in mitochondrial mass and mtDNA copy number, which are required to furnish mature eggs with an adequate supply of mitochondria and to curb the transmission of deleterious mtDNA variants. Quiescent in dividing germ cells, mtDNA replication initiates upon oocyte determination in the Drosophila ovary, which necessitates active mitochondrial respiration. However, the underlying mechanism for this dynamic regulation remains unclear. Here, we show that an feedforward insulin-Myc loop promotes mitochondrial respiration and biogenesis by boosting the expression of electron transport chain subunits and of factors essential for mtDNA replication and expression, and for the import of mitochondrial proteins. We further reveal that transient activation of JNK enhances the expression of the insulin receptor and initiates the insulin-Myc signaling loop. This signaling relay promotes mitochondrial biogenesis in the ovary, and thereby plays a role in limiting the transmission of deleterious mtDNA mutations. Our study demonstrates cellular mechanisms that couple mitochondrial biogenesis and inheritance with oocyte development.
Collapse
Affiliation(s)
- Zong-Heng Wang
- National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, United States
| | - Yi Liu
- National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, United States
| | - Vijender Chaitankar
- National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, United States
| | - Mehdi Pirooznia
- National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, United States
| | - Hong Xu
- National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, United States
| |
Collapse
|
26
|
Yee WB, Delaney PM, Vanderzalm PJ, Ramachandran S, Fehon RG. The CAF-1 complex couples Hippo pathway target gene expression and DNA replication. Mol Biol Cell 2019; 30:2929-2942. [PMID: 31553691 PMCID: PMC6822585 DOI: 10.1091/mbc.e19-07-0387] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
Abstract
The Hippo signaling pathway regulates tissue growth and organ development in many animals, including humans. Pathway activity leads to inactivation of Yorkie (Yki), a transcriptional coactivator that drives expression of growth-promoting genes. In addition, Yki has been shown to recruit chromatin modifiers that enhance chromatin accessibility and thereby enhance Yki function. Here, we asked whether changes in chromatin accessibility that occur during DNA replication could also affect Yki function. We found that depletion of the chromatin assembly complex-1 (CAF-1) complex, a histone chaperone that is required for nucleosome assembly after DNA replication, in the wing imaginal epithelium leads to increased Hippo pathway target gene expression but does not affect expression of other genes. Yki shows greater association with target sites when CAF-1 is depleted and misregulation of target gene expression is Yki-dependent, suggesting that nucleosome assembly competes with Yki for pathway targets post-DNA replication. Consistent with this idea, increased target gene expression is DNA replication dependent and newly replicated chromatin at target sites shows marked nucleosome depletion when CAF-1 function is reduced. These observations suggest a connection between cell cycle progression and Hippo pathway target expression, providing insights into functions of the Hippo pathway in normal and abnormal tissue growth.
Collapse
Affiliation(s)
- William B Yee
- Department of Molecular Genetics and Cell Biology.,Graduate Program in Cell and Molecular Biology, and
| | | | - Pamela J Vanderzalm
- Department of Molecular Genetics and Cell Biology.,Department of Biology, John Carroll University, University Heights, OH 44118
| | - Srinivas Ramachandran
- RNA Bioscience Initiative and.,Department of Biochemistry and Molecular Genetics, University of Colorado School of Medicine, Aurora, CO 80045
| | - Richard G Fehon
- Department of Molecular Genetics and Cell Biology.,Graduate Program in Cell and Molecular Biology, and
| |
Collapse
|
27
|
Zheng Y, Pan D. The Hippo Signaling Pathway in Development and Disease. Dev Cell 2019; 50:264-282. [PMID: 31386861 PMCID: PMC6748048 DOI: 10.1016/j.devcel.2019.06.003] [Citation(s) in RCA: 598] [Impact Index Per Article: 99.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2019] [Revised: 05/23/2019] [Accepted: 06/09/2019] [Indexed: 12/13/2022]
Abstract
The Hippo signaling pathway regulates diverse physiological processes, and its dysfunction has been implicated in an increasing number of human diseases, including cancer. Here, we provide an updated review of the Hippo pathway; discuss its roles in development, homeostasis, regeneration, and diseases; and highlight outstanding questions for future investigation and opportunities for Hippo-targeted therapies.
Collapse
Affiliation(s)
- Yonggang Zheng
- Department of Physiology, Howard Hughes Medical Institute, University of Texas Southwestern Medical Center, Dallas, TX 75390-9040, USA
| | - Duojia Pan
- Department of Physiology, Howard Hughes Medical Institute, University of Texas Southwestern Medical Center, Dallas, TX 75390-9040, USA.
| |
Collapse
|
28
|
McKenna KZ, Tao D, Nijhout HF. Exploring the Role of Insulin Signaling in Relative Growth: A Case Study on Wing-Body Scaling in Lepidoptera. Integr Comp Biol 2019; 59:1324-1337. [DOI: 10.1093/icb/icz080] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Abstract
Adult forms emerge from the relative growth of the body and its parts. Each appendage and organ has a unique pattern of growth that influences the size and shape it attains. This produces adult size relationships referred to as static allometries, which have received a great amount of attention in evolutionary and developmental biology. However, many questions remain unanswered, for example: What sorts of developmental processes coordinate growth? And how do these processes change given variation in body size? It has become increasingly clear that nutrition is one of the strongest influences on size relationships. In insects, nutrition acts via insulin/TOR signaling to facilitate inter- and intra-specific variation in body size and appendage size. Yet, the mechanism by which insulin signaling influences the scaling of growth remains unclear. Here we will discuss the potential roles of insulin signaling in wing-body scaling in Lepidoptera. We analyzed the growth of wings in animals reared on different diet qualities that induce a range of body sizes not normally present in our laboratory populations. By growing wings in tissue culture, we survey how perturbation and stimulation of insulin/TOR signaling influences wing growth. To conclude, we will discuss the implications of our findings for the development and evolution of organismal form.
Collapse
Affiliation(s)
| | - Della Tao
- Department of Biology, Duke University, Durham, NC 27708, USA
| | | |
Collapse
|
29
|
Snigdha K, Gangwani KS, Lapalikar GV, Singh A, Kango-Singh M. Hippo Signaling in Cancer: Lessons From Drosophila Models. Front Cell Dev Biol 2019; 7:85. [PMID: 31231648 PMCID: PMC6558396 DOI: 10.3389/fcell.2019.00085] [Citation(s) in RCA: 57] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2019] [Accepted: 05/03/2019] [Indexed: 12/19/2022] Open
Abstract
Hippo pathway was initially identified through genetic screens for genes regulating organ size in fruitflies. Recent studies have highlighted the role of Hippo signaling as a key regulator of homeostasis, and in tumorigenesis. Hippo pathway is comprised of genes that act as tumor suppressor genes like hippo (hpo) and warts (wts), and oncogenes like yorkie (yki). YAP and TAZ are two related mammalian homologs of Drosophila Yki that act as effectors of the Hippo pathway. Hippo signaling deficiency can cause YAP- or TAZ-dependent oncogene addiction for cancer cells. YAP and TAZ are often activated in human malignant cancers. These transcriptional regulators may initiate tumorigenic changes in solid tumors by inducing cancer stem cells and proliferation, culminating in metastasis and chemo-resistance. Given the complex mechanisms (e.g., of the cancer microenvironment, and the extrinsic and intrinsic cues) that overpower YAP/TAZ inhibition, the molecular roles of the Hippo pathway in tumor growth and progression remain poorly defined. Here we review recent findings from studies in whole animal model organism like Drosophila on the role of Hippo signaling regarding its connection to inflammation, tumor microenvironment, and other oncogenic signaling in cancer growth and progression.
Collapse
Affiliation(s)
- Kirti Snigdha
- Department of Biology, University of Dayton, Dayton, OH, United States
| | | | - Gauri Vijay Lapalikar
- Department of Biochemistry and Biophysics, Texas A&M University, College Station, TX, United States
| | - Amit Singh
- Department of Biology, University of Dayton, Dayton, OH, United States.,Pre-Medical Programs, University of Dayton, Dayton, OH, United States.,Center for Tissue Regeneration and Engineering at Dayton, University of Dayton, Dayton, OH, United States.,Integrated Science and Engineering Center, University of Dayton, Dayton, OH, United States
| | - Madhuri Kango-Singh
- Department of Biology, University of Dayton, Dayton, OH, United States.,Pre-Medical Programs, University of Dayton, Dayton, OH, United States.,Center for Tissue Regeneration and Engineering at Dayton, University of Dayton, Dayton, OH, United States.,Integrated Science and Engineering Center, University of Dayton, Dayton, OH, United States
| |
Collapse
|
30
|
Liang Z, Lu Y, Qian Y, Zhu L, Kuang S, Chen F, Feng Y, Hu X, Cao G, Xue R, Gong C. Cultured cells and wing disc size of silkworm can be controlled by the Hippo pathway. Open Biol 2019; 8:rsob.180029. [PMID: 29973396 PMCID: PMC6070717 DOI: 10.1098/rsob.180029] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2018] [Accepted: 06/12/2018] [Indexed: 12/20/2022] Open
Abstract
Hippo signalling represents a cell proliferation and organ-size control pathway. Yorki (Yki), a component of the Hippo pathway, induces the transcription of a number of targets that promote cell proliferation and survival. The functions of Yki have been characterized in Drosophila and mammals, while there are few reports on silkworm, Bombyx mori. In the present study, we found that BmYki3 facilitates cell migration and cell division, and enlarges the cultured cell and wing disc size. Co-immunoprecipitation results indicated that BmYki3 may interact with thymosin, E3 ubiquitin-protein ligase, protein kinase ASK1, dedicator of cytokinesis protein 1, calcium-independent phospholipase A2 and beta-spectrin. RNA-seq results indicated that 4444 genes were upregulated and 10 291 genes were downregulated after BmYki3 was overexpressed in the cultured cells. GO annotation indicated that the up/downregulated genes were enriched in 268/382 GO terms (p < 0.01); KEGG analysis showed that the up/downregulated genes were enriched in 49/101 pathways. These findings provided novel information to understand the functions of BmYki3 in a cell proliferation and organ-size control pathway.
Collapse
Affiliation(s)
- Zi Liang
- School of Biology and Basic Medical Science, Agricultural Biotechnology and Ecological Research Institute, Soochow University, Suzhou, 215123, China.,Agricultural Biotechnology Research Institute, Agricultural Biotechnology and Ecological Research Institute, Soochow University, Suzhou, 215123, China
| | - Yahong Lu
- School of Biology and Basic Medical Science, Agricultural Biotechnology and Ecological Research Institute, Soochow University, Suzhou, 215123, China.,Agricultural Biotechnology Research Institute, Agricultural Biotechnology and Ecological Research Institute, Soochow University, Suzhou, 215123, China
| | - Ying Qian
- School of Biology and Basic Medical Science, Agricultural Biotechnology and Ecological Research Institute, Soochow University, Suzhou, 215123, China.,Agricultural Biotechnology Research Institute, Agricultural Biotechnology and Ecological Research Institute, Soochow University, Suzhou, 215123, China
| | - Liyuan Zhu
- School of Biology and Basic Medical Science, Agricultural Biotechnology and Ecological Research Institute, Soochow University, Suzhou, 215123, China.,Agricultural Biotechnology Research Institute, Agricultural Biotechnology and Ecological Research Institute, Soochow University, Suzhou, 215123, China
| | - Sulan Kuang
- School of Biology and Basic Medical Science, Agricultural Biotechnology and Ecological Research Institute, Soochow University, Suzhou, 215123, China.,Agricultural Biotechnology Research Institute, Agricultural Biotechnology and Ecological Research Institute, Soochow University, Suzhou, 215123, China
| | - Fei Chen
- School of Biology and Basic Medical Science, Agricultural Biotechnology and Ecological Research Institute, Soochow University, Suzhou, 215123, China.,Agricultural Biotechnology Research Institute, Agricultural Biotechnology and Ecological Research Institute, Soochow University, Suzhou, 215123, China
| | - Yongjie Feng
- School of Biology and Basic Medical Science, Agricultural Biotechnology and Ecological Research Institute, Soochow University, Suzhou, 215123, China.,Agricultural Biotechnology Research Institute, Agricultural Biotechnology and Ecological Research Institute, Soochow University, Suzhou, 215123, China
| | - Xiaolong Hu
- School of Biology and Basic Medical Science, Agricultural Biotechnology and Ecological Research Institute, Soochow University, Suzhou, 215123, China.,National Engineering Laboratory for Modern Silk, Agricultural Biotechnology and Ecological Research Institute, Soochow University, Suzhou, 215123, China
| | - Guangli Cao
- School of Biology and Basic Medical Science, Agricultural Biotechnology and Ecological Research Institute, Soochow University, Suzhou, 215123, China.,National Engineering Laboratory for Modern Silk, Agricultural Biotechnology and Ecological Research Institute, Soochow University, Suzhou, 215123, China
| | - Renyu Xue
- School of Biology and Basic Medical Science, Agricultural Biotechnology and Ecological Research Institute, Soochow University, Suzhou, 215123, China .,National Engineering Laboratory for Modern Silk, Agricultural Biotechnology and Ecological Research Institute, Soochow University, Suzhou, 215123, China
| | - Chengliang Gong
- School of Biology and Basic Medical Science, Agricultural Biotechnology and Ecological Research Institute, Soochow University, Suzhou, 215123, China .,National Engineering Laboratory for Modern Silk, Agricultural Biotechnology and Ecological Research Institute, Soochow University, Suzhou, 215123, China.,Agricultural Biotechnology Research Institute, Agricultural Biotechnology and Ecological Research Institute, Soochow University, Suzhou, 215123, China
| |
Collapse
|
31
|
Mirth CK, Shingleton AW. Coordinating Development: How Do Animals Integrate Plastic and Robust Developmental Processes? Front Cell Dev Biol 2019; 7:8. [PMID: 30788342 PMCID: PMC6372504 DOI: 10.3389/fcell.2019.00008] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2018] [Accepted: 01/16/2019] [Indexed: 02/02/2023] Open
Abstract
Our developmental environment significantly affects myriad aspects of our biology, including key life history traits, morphology, physiology, and our susceptibility to disease. This environmentally-induced variation in phenotype is known as plasticity. In many cases, plasticity results from alterations in the rate of synthesis of important developmental hormones. However, while developmental processes like organ growth are sensitive to environmental conditions, others like patterning - the process that generates distinct cell identities - remain robust to perturbation. This is particularly surprising given that the same hormones that regulate organ growth also regulate organ patterning. In this review, we revisit the current approaches that address how organs coordinate their growth and pattern, and outline our hypotheses for understanding how organs achieve correct pattern across a range of sizes.
Collapse
Affiliation(s)
- Christen K Mirth
- School of Biological Sciences, Monash University, Clayton, VIC, Australia
| | - Alexander W Shingleton
- Department of Biological Sciences, University of Illinois at Chicago, Chicago, IL, United States
| |
Collapse
|
32
|
Abstract
Hippo signaling is an evolutionarily conserved network that has a central role in regulating cell proliferation and cell fate to control organ growth and regeneration. It promotes activation of the LATS kinases, which control gene expression by inhibiting the activity of the transcriptional coactivator proteins YAP and TAZ in mammals and Yorkie in Drosophila. Diverse upstream inputs, including both biochemical cues and biomechanical cues, regulate Hippo signaling and enable it to have a key role as a sensor of cells' physical environment and an integrator of growth control signals. Several components of this pathway localize to cell-cell junctions and contribute to regulation of Hippo signaling by cell polarity, cell contacts, and the cytoskeleton. Downregulation of Hippo signaling promotes uncontrolled cell proliferation, impairs differentiation, and is associated with cancer. We review the current understanding of Hippo signaling and highlight progress in the elucidation of its regulatory mechanisms and biological functions.
Collapse
Affiliation(s)
- Jyoti R Misra
- Waksman Institute and Department of Molecular Biology and Biochemistry, Rutgers University, Piscataway, New Jersey 08854, USA;
| | - Kenneth D Irvine
- Waksman Institute and Department of Molecular Biology and Biochemistry, Rutgers University, Piscataway, New Jersey 08854, USA;
| |
Collapse
|
33
|
Abstract
Yes-associated protein (YAP) and transcriptional coactivator with PDZ-binding motif (TAZ) are two homologous transcriptional coactivators that promote cell proliferation, stem cell maintenance, and tissue homeostasis. Under favorable conditions, YAP and TAZ are active to promote cell growth through a transcriptional program mediated by the TEAD family transcription factors. Given the indispensability of cellular energy and metabolites for survival and growth, YAP and TAZ are inhibited when energy level is low. Indeed, glucose, fatty acids, hormones, and other metabolic factors have been recently revealed to regulate YAP and TAZ. Conversely, YAP and TAZ are also involved in metabolism regulation, such as to promote glycolysis, lipogenesis, and glutaminolysis, suggesting YAP and TAZ as emerging nodes in coordinating nutrient availability with cell growth and tissue homeostasis. In this Review, we summarize recent findings and provide a current overview of YAP and TAZ in metabolism by focusing on the role of YAP and TAZ as integrators for metabolic cues and cell growth.
Collapse
Affiliation(s)
- Ja Hyun Koo
- Department of Pharmacology and Moores Cancer Center, University of California, San Diego, La Jolla, CA 92093, USA
| | - Kun-Liang Guan
- Department of Pharmacology and Moores Cancer Center, University of California, San Diego, La Jolla, CA 92093, USA.
| |
Collapse
|
34
|
Vollmer J, Casares F, Iber D. Growth and size control during development. Open Biol 2018; 7:rsob.170190. [PMID: 29142108 PMCID: PMC5717347 DOI: 10.1098/rsob.170190] [Citation(s) in RCA: 39] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2017] [Accepted: 10/17/2017] [Indexed: 11/30/2022] Open
Abstract
The size and shape of organs are characteristic for each species. Even when organisms develop to different sizes due to varying environmental conditions, such as nutrition, organ size follows species-specific rules of proportionality to the rest of the body, a phenomenon referred to as allometry. Therefore, for a given environment, organs stop growth at a predictable size set by the species's genotype. How do organs stop growth? How can related species give rise to organs of strikingly different size? No definitive answer has been given to date. One of the major models for the studies of growth termination is the vinegar fly Drosophila melanogaster. Therefore, this review will focus mostly on work carried out in Drosophila to try to tease apart potential mechanisms and identify routes for further investigation. One general rule, found across the animal kingdom, is that the rate of growth declines with developmental time. Therefore, answers to the problem of growth termination should explain this seemingly universal fact. In addition, growth termination is intimately related to the problems of robustness (i.e. precision) and plasticity in organ size, symmetric and asymmetric organ development, and of how the ‘target’ size depends on extrinsic, environmental factors.
Collapse
Affiliation(s)
- Jannik Vollmer
- D-BSSE, ETH Zürich, Mattenstrasse 26, 4058 Basel, Switzerland.,Swiss Institute of Bioinformatics (SIB), Mattenstrasse 26, 4058 Basel, Switzerland
| | - Fernando Casares
- CABD, CSIC-Universidad Pablo de Olavide-JA, 41013 Seville, Spain
| | - Dagmar Iber
- D-BSSE, ETH Zürich, Mattenstrasse 26, 4058 Basel, Switzerland .,Swiss Institute of Bioinformatics (SIB), Mattenstrasse 26, 4058 Basel, Switzerland
| |
Collapse
|
35
|
Shyamal S, Das S, Guruacharya A, Mykles DL, Durica DS. Transcriptomic analysis of crustacean molting gland (Y-organ) regulation via the mTOR signaling pathway. Sci Rep 2018; 8:7307. [PMID: 29743490 PMCID: PMC5943448 DOI: 10.1038/s41598-018-25368-x] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2017] [Accepted: 04/20/2018] [Indexed: 12/24/2022] Open
Abstract
The intermolt crustacean Y-organ (YO) maintains a basal state mediated by pulsatile release of molt inhibiting hormone (MIH), a neuropeptide produced in the eyestalk ganglia, inhibiting YO ecdysteroidogenesis. Reduction of MIH results in YO activation and the animal enters premolt. In the crab, Gecarcinus lateralis, molting was induced by eyestalk ablation (ESA). ESA animals were injected with either rapamycin, an mTOR inhibitor, or DMSO vehicle at Day 0. YOs were harvested at 1, 3, and 7 days post-ESA and processed for high throughput RNA sequencing. ESA-induced increases in mRNA levels of mTOR signaling genes (e.g., mTOR, Rheb, TSC1/2, Raptor, Akt, and S6 kinase) declined following rapamycin treatment. In concert with mTOR inhibition, mRNA levels of ecdysteroid biosynthesis genes (e.g., Nvd, Spo, Sad, Dib, and Phm) were decreased and accompanied by a decrease in hemolymph ecdysteroid titer. By contrast, rapamycin increased the mRNA level of FKBP12, the rapamycin-binding protein, as well as the mRNA levels of genes associated with Wnt and insulin-like growth factor signaling pathways. Many MIH and transforming growth factor-β signaling genes were down regulated in ESA animals. These results indicate that mTOR activity either directly or indirectly controls transcription of genes that drive activation of the YO.
Collapse
Affiliation(s)
- S Shyamal
- Department of Biology, University of Oklahoma, Norman, Oklahoma, 73019, USA
| | - S Das
- Department of Biology, Colorado State University, Fort Collins, Colorado, 80523, USA
| | - A Guruacharya
- Department of Biology, University of Oklahoma, Norman, Oklahoma, 73019, USA
| | - D L Mykles
- Department of Biology, Colorado State University, Fort Collins, Colorado, 80523, USA
| | - D S Durica
- Department of Biology, University of Oklahoma, Norman, Oklahoma, 73019, USA.
| |
Collapse
|
36
|
Manning SA, Dent LG, Kondo S, Zhao ZW, Plachta N, Harvey KF. Dynamic Fluctuations in Subcellular Localization of the Hippo Pathway Effector Yorkie In Vivo. Curr Biol 2018; 28:1651-1660.e4. [DOI: 10.1016/j.cub.2018.04.018] [Citation(s) in RCA: 54] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2018] [Revised: 04/04/2018] [Accepted: 04/05/2018] [Indexed: 12/20/2022]
|
37
|
Shingleton AW, Frankino WA. The (ongoing) problem of relative growth. CURRENT OPINION IN INSECT SCIENCE 2018; 25:9-19. [PMID: 29602367 DOI: 10.1016/j.cois.2017.10.001] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/11/2017] [Revised: 10/20/2017] [Accepted: 10/31/2017] [Indexed: 06/08/2023]
Abstract
Differential growth, the phenomenon where parts of the body grow at different rates, is necessary to generate the complex morphologies of most multicellular organisms. Despite this central importance, how differential growth is regulated remains largely unknown. Recent discoveries, particularly in insects, have started to uncover the molecular-genetic and physiological mechanisms that coordinate growth among different tissues throughout the body and regulate relative growth. These discoveries suggest that growth is coordinated by a network of signals that emanate from growing tissues and central endocrine organs. Here we review these findings and discuss their implications for understanding the regulation of relative growth and the evolution of morphology.
Collapse
|
38
|
A Kinome RNAi Screen in Drosophila Identifies Novel Genes Interacting with Lgl, aPKC, and Crb Cell Polarity Genes in Epithelial Tissues. G3-GENES GENOMES GENETICS 2017; 7:2497-2509. [PMID: 28611255 PMCID: PMC5555457 DOI: 10.1534/g3.117.043513] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
In both Drosophila melanogaster and mammalian systems, epithelial structure and underlying cell polarity are essential for proper tissue morphogenesis and organ growth. Cell polarity interfaces with multiple cellular processes that are regulated by the phosphorylation status of large protein networks. To gain insight into the molecular mechanisms that coordinate cell polarity with tissue growth, we screened a boutique collection of RNAi stocks targeting the kinome for their capacity to modify Drosophila “cell polarity” eye and wing phenotypes. Initially, we identified kinase or phosphatase genes whose depletion modified adult eye phenotypes associated with the manipulation of cell polarity complexes (via overexpression of Crb or aPKC). We next conducted a secondary screen to test whether these cell polarity modifiers altered tissue overgrowth associated with depletion of Lgl in the wing. These screens identified Hippo, Jun kinase (JNK), and Notch signaling pathways, previously linked to cell polarity regulation of tissue growth. Furthermore, novel pathways not previously connected to cell polarity regulation of tissue growth were identified, including Wingless (Wg/Wnt), Ras, and lipid/Phospho-inositol-3-kinase (PI3K) signaling pathways. Additionally, we demonstrated that the “nutrient sensing” kinases Salt Inducible Kinase 2 and 3 (SIK2 and 3) are potent modifiers of cell polarity phenotypes and regulators of tissue growth. Overall, our screen has revealed novel cell polarity-interacting kinases and phosphatases that affect tissue growth, providing a platform for investigating molecular mechanisms coordinating cell polarity and tissue growth during development.
Collapse
|
39
|
Mo JS. The role of extracellular biophysical cues in modulating the Hippo-YAP pathway. BMB Rep 2017; 50:71-78. [PMID: 27916025 PMCID: PMC5342869 DOI: 10.5483/bmbrep.2017.50.2.199] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2016] [Indexed: 12/14/2022] Open
Abstract
The Hippo signaling pathway plays an essential role in adult-tissue homeostasis and organ-size control. In Drosophila and vertebrates, it consists of a highly conserved kinase cascade, which involves MST and Lats that negatively regulate the activity of the downstream transcription coactivators, YAP and TAZ. By interacting with TEADs and other transcription factors, they mediate both proliferative and antiapoptotic gene expression and thus regulate tissue repair and regeneration. Dysregulation or mutation of the Hippo pathway is linked to tumorigenesis and cancer development. Recent studies have uncovered multiple upstream inputs, including cell density, mechanical stress, G-protein-coupled receptor (GPCR) signaling, and nutrients, that modulate Hippo pathway activity. This review focuses on the role of the Hippo pathway as effector of these biophysical cues and its potential implications in tissue homeostasis and cancer.
Collapse
Affiliation(s)
- Jung-Soon Mo
- Genomic Instability Research Center (GIRC), Ajou University School of Medicine, Suwon 16499, Korea
| |
Collapse
|
40
|
Coleman RT, Struhl G. Causal role for inheritance of H3K27me3 in maintaining the OFF state of a Drosophila HOX gene. Science 2017; 356:eaai8236. [PMID: 28302795 PMCID: PMC5595140 DOI: 10.1126/science.aai8236] [Citation(s) in RCA: 153] [Impact Index Per Article: 19.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2016] [Accepted: 02/03/2017] [Indexed: 12/20/2022]
Abstract
Many eukaryotic cells can respond to transient environmental or developmental stimuli with heritable changes in gene expression that are associated with nucleosome modifications. However, it remains uncertain whether modified nucleosomes play a causal role in transmitting such epigenetic memories, as opposed to controlling or merely reflecting transcriptional states inherited by other means. Here, we provide in vivo evidence that H3K27 trimethylated nucleosomes, once established at a repressed Drosophila HOX gene, remain heritably associated with that gene and can carry the memory of the silenced state through multiple rounds of replication, even when the capacity to copy the H3K27me3 mark to newly incorporated nucleosomes is diminished or abolished. Hence, in this context, the inheritance of H3K27 trimethylation conveys epigenetic memory.
Collapse
Affiliation(s)
- Rory T Coleman
- Department of Genetics and Development, Columbia University College of Physicians and Surgeons, 701 West 168th Street, New York, NY 10032, USA
| | - Gary Struhl
- Department of Genetics and Development, Columbia University College of Physicians and Surgeons, 701 West 168th Street, New York, NY 10032, USA.
| |
Collapse
|
41
|
Strigini M, Leulier F. The role of the microbial environment in Drosophila post-embryonic development. DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2016; 64:39-52. [PMID: 26827889 DOI: 10.1016/j.dci.2016.01.017] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/28/2015] [Revised: 01/19/2016] [Accepted: 01/26/2016] [Indexed: 05/14/2023]
Abstract
Development, growth and maturation of animals are under genetic and environmental control. Multicellular organisms interact throughout their lives with a variety of environment- and body-associated microorganisms. It has now been appreciated that the very conspicuous and varied microbial population associated with the food and the gastro-intestinal tract is a critical factor that can influence growth. Beyond the phenomenology, the mechanisms underlying the beneficial effects of microbes on development are being revealed from studies in Drosophila melanogaster, a particularly well suited system for a mechanistic understanding of host/microbiota interactions. Association of otherwise germ-free eggs with specific bacterial strains isolated from Drosophila gut samples can accelerate growth in larvae raised on restrictive diets. We review advances made possible by the exploitation of such simplified gnotobiotic systems in the search for the genes, molecules and physiological adaptations responsible for this effect in both host and microbes. Transposon mutagenesis and gene-trait match studies in bacteria can identify the key microbial genes and metabolites required for the beneficial effect, acetic acid being one of them. In the fly, functional genomic analysis, transcriptomics and metabolomics point to the modulation of systemic insulin and steroid hormone signalling as well as the regulation of intestinal physiology, including the enhancement of intestinal protease activity, as crucial mediators of the host's response.
Collapse
Affiliation(s)
- Maura Strigini
- Institut de Génomique Fonctionnelle de Lyon, Ecole Normale Supérieure de Lyon, Centre National de la Recherche Scientifique, Université Claude Bernard Lyon 1, Unité Mixte de Recherche 5242, Allée d'Italie 46, F-69364 Lyon, Cedex 07, France.
| | - François Leulier
- Institut de Génomique Fonctionnelle de Lyon, Ecole Normale Supérieure de Lyon, Centre National de la Recherche Scientifique, Université Claude Bernard Lyon 1, Unité Mixte de Recherche 5242, Allée d'Italie 46, F-69364 Lyon, Cedex 07, France.
| |
Collapse
|
42
|
Elbediwy A, Vincent-Mistiaen ZI, Thompson BJ. YAP and TAZ in epithelial stem cells: A sensor for cell polarity, mechanical forces and tissue damage. Bioessays 2016; 38:644-53. [PMID: 27173018 PMCID: PMC5031209 DOI: 10.1002/bies.201600037] [Citation(s) in RCA: 69] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
The YAP/TAZ family of transcriptional co‐activators drives cell proliferation in epithelial tissues and cancers. Yet, how YAP and TAZ are physiologically regulated remains unclear. Here we review recent reports that YAP and TAZ act primarily as sensors of epithelial cell polarity, being inhibited when cells differentiate an apical membrane domain, and being activated when cells contact the extracellular matrix via their basal membrane domain. Apical signalling occurs via the canonical Crumbs/CRB‐Hippo/MST‐Warts/LATS kinase cascade to phosphorylate and inhibit YAP/TAZ. Basal signalling occurs via Integrins and Src family kinases to phosphorylate and activate YAP/TAZ. Thus, YAP/TAZ is localised to the nucleus in basal stem/progenitor cells and cytoplasm in differentiated squamous cells or columnar cells. In addition, other signals such as mechanical forces, tissue damage and possibly receptor tyrosine kinases (RTKs) can influence MST‐LATS or Src family kinase activity to modulate YAP/TAZ activity.
Collapse
Affiliation(s)
- Ahmed Elbediwy
- Epithelial Biology Laboratory, Francis Crick Institute, London, UK
| | | | - Barry J Thompson
- Epithelial Biology Laboratory, Francis Crick Institute, London, UK
| |
Collapse
|
43
|
Abstract
In this review, Meng et al. focus on recent developments in our understanding of the molecular actions of the core Hippo kinase cascade and discuss key open questions in Hippo pathway regulation and function. The Hippo pathway was initially identified in Drosophila melanogaster screens for tissue growth two decades ago and has been a subject extensively studied in both Drosophila and mammals in the last several years. The core of the Hippo pathway consists of a kinase cascade, transcription coactivators, and DNA-binding partners. Recent studies have expanded the Hippo pathway as a complex signaling network with >30 components. This pathway is regulated by intrinsic cell machineries, such as cell–cell contact, cell polarity, and actin cytoskeleton, as well as a wide range of signals, including cellular energy status, mechanical cues, and hormonal signals that act through G-protein-coupled receptors. The major functions of the Hippo pathway have been defined to restrict tissue growth in adults and modulate cell proliferation, differentiation, and migration in developing organs. Furthermore, dysregulation of the Hippo pathway leads to aberrant cell growth and neoplasia. In this review, we focus on recent developments in our understanding of the molecular actions of the core Hippo kinase cascade and discuss key open questions in the regulation and function of the Hippo pathway.
Collapse
Affiliation(s)
- Zhipeng Meng
- Department of Pharmacology, Moores Cancer Center, University of California at San Diego, La Jolla, California 92093, USA
| | - Toshiro Moroishi
- Department of Pharmacology, Moores Cancer Center, University of California at San Diego, La Jolla, California 92093, USA
| | - Kun-Liang Guan
- Department of Pharmacology, Moores Cancer Center, University of California at San Diego, La Jolla, California 92093, USA
| |
Collapse
|
44
|
Abstract
The discovery of a handful of conserved signaling pathways that dictate most aspects of embryonic and post-embryonic development of multicellular organisms has generated a universal view of animal development (Perrimon, N., Pitsouli, C., and Shilo, B. Z. (2012)Cold Spring Harb. Perspect. Biol.4, a005975). Although we have at hand most of the "hardware" elements that mediate cell communication events that dictate cell fate choices, we are still far from a comprehensive mechanistic understanding of these processes. One of the next challenges entails an analysis of developmental signaling pathways from the cell biology perspective. Where in the cell does signaling take place, and how do general cellular machineries and structures contribute to the regulation of developmental signaling? Another challenge is to examine these signaling pathways from a quantitative perspective, rather than as crude on/off switches. This requires more precise measurements, and incorporation of the time element to generate a dynamic sequence instead of frozen snapshots of the process. The quantitative outlook also brings up the issue of precision, and the unknown mechanisms that buffer variability in signaling between embryos, to produce a robust and reproducible output. Although these issues are universal to all multicellular organisms, they can be effectively tackled in theDrosophilamodel, by a combination of genetic manipulations, biochemical analyses, and a variety of imaging techniques. This review will present some of the recent advances that were accomplished by utilizing the versatility of theDrosophilasystem.
Collapse
Affiliation(s)
- Ben-Zion Shilo
- From the Department of Molecular Genetics, Weizmann Institute of Science, Rehovot 76100, Israel
| |
Collapse
|
45
|
Gene regulation: Nuclear seclusion--a novel mechanism of transcription factor regulation. Nat Rev Genet 2015; 16:684-5. [PMID: 26526017 DOI: 10.1038/nrg4038] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|